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'%cooperativeness for the team. The methods presented are based on new
procedures for estimating interrater reliability. For situations such as the
above, these procedures are shown to furnish more accurate and interpretable
estimates of agreement than estimates provided by procedures commonly used
to estimate agreement, consistency, or interrater reliability. In addition,
the proposed methods include processes for controlling for the spurious
influences of response biases (e.g., positive leniency, social desirability)
on estimates of interrater reliability,
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Estimating Within-Group Interrater Reliability

With and Without Response Bias

Many occasions arise in research and practice when it is useful to have

an estimate of interrater reliability for judgments of a single target by one set

of judges. Examples include the needs to estimate interrater reliability among

judges' ratings of (a) the level of performance indicated by a potential anchor

for a Behaviorally Anchored Ratings Scale (BARS) in the development phases of a

BARS, and (b) the overall "publishability" of a manuscript submitted for journal

review. In these examples, the "variable" consists of a single item, with a

rating scale such as a seven-point performance scale. It is also helpful to have

an index ofinterrater reliability when scores on a variable consist of means

taken over items that are indicators of the same construct. Illustrations include

estimates of interrater reliability for (a) a single class, where the data are

students' mean scores on items measuring an instructor's "consideration of student

A needs" and (b) for a single team, where agreement among team members' mean scores

on items measuring "team cooperativeness" are used in the design of a team develop-

ment program.

For these illustrations, each of K judges has rated a single target (i.e., a

*potential BARS anchor, a manuscript, an instructor, a team) on a variable having

either a single item (level of performance, publishability) or a set of J items

that measure the same construct (consideration of student needs, team cooperative-

ness). For both single and multiple item variables, two assumptions are made.

First, the item(s) have been shown to have acceptable psychometric properties (e.g.,

construct validity, internal consistency in the case of multiple items) in prior

research; thus we may focus on interrater reliability for an item or items with

.5
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Reliability 3

known measurement qualities. Second, the alternatives on an item's measurement

scale are approximately equally spaced (i.e., an approximately interval response

scale such as used in Cooper, 1976; Hsu, 1979). The item response alternatives

are assumed to be identical for multiple item variables.

The objective of this article is to introduce procedures for estimating inter-U rater reliability for judgments of a single target by one group of judges, given

the assumptions above. The term "interrater reliability" is used here to refer

to the degree to which judges are "interchangeable", which is to say the extent

to which judges "agree" on a set of judgments (Shrout & Fleiss, 1979, p. 425; see

also Bartko, 1976). Mathematically, interrater reliability is typically defined as

a proportion, which in this case is the proportion of systematic variance in a set

of judgments in relation to the total variance in the judgments. Total variance

will be decomposed into two components, the first of which is random measurement

error variance. This variance is produced by nonsystematic factors such as brief

fluctuations in mood and motivation, momentary inattention, uncontrolled administra-

tion conditions (e.g., noise, distraction), illness, fatigue, emotional strain, or

chance. The second component is systematic variance, which will be further divided

into true variance and variance due to systematic error that reflects a common

response bias among judges. Response bias creates problems because its contribution

to systematic variance serves to inflate the estimate of interrater reliability

(cf. Guion, 1965). For example, if a common tendency exists among judges to select

socially desirable response alternatives rather than response alternatives reflec-

tive of true judgments, then the appearance of high interrater reliability is likely

indicative of response bias rather than true agreement among the judges.

This suggests that an estimate of interrater reliability should not only assess

the proportion of total variance in a set of judgments that is systematic variance,

but also effect controls for that portion of the systematic variance that is due
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to response bias. Unfortunately, the few attempts to propose methods for esti-

mating interrater reliabilty for a design in which one set of judges has rated

a single target fall short of accomplishing these objectives. A procedure

presented by Howe (1977) poses problems because errors associated with lack of

agreement at a particular time are confounded with errors associated with insta-

bility of judgments over time. Procedures recommended by Finn(1970) and James,

Wolf, and Demaree (1981) are based on the classic psychometric model, which

partitions total variance into true variance and random measurement error variance.

The result is that variance due to response bias is regarded as true variance.

Thus, estimates of interrater reliability will be spuriously inflated if a response

bias is included in the measurements. However, a review of the procedures intro-

duced by Finn (1970) and by James et al. (1981) is instructive because it furnishes

a rationale for estimating interrater reliability for the design of interest.

These procedures are reviewed below. Included in this overview is a comparison

between the Finn and James et al. procedures and other methods that have been

commonly used to estimate agreement, consistency, or interrater reliability.

Attention is then given to procedures to effect controls for response bias.

METHODS FOR ESTIMATING WITHIN-GROUP INTERRATER RELIABILITY

Overview of Prior Methods

Review of the Finn (1970) and James et al. (1981) procedures begins with the

estimator for judgments on a single item and proceeds to that for mean judgments

on J items. The K judges on whom observations are available are viewed as a group

in the statistical sense, and thus the estimators are referred to as "within-group

interrater reliability coefficients."
Single item estimator. For a single item, designated X, within-group inter-

Aa
rater reliability, or simply IRR, was viewed as a function of two variances. These

9,were (a) the observed variance of the scores furnished by the K judges on X, or
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8x2 and (b) the variance on t that would be expected in a condition of an IRR

of zero. Finn and James et al. assumed that an IRR of zero would occur when all

judgments on X were due exclusively to random measurement errors. A mathematical

definition of "random" (cf. Brunk, 1965) applied to the present design denotes that

each alternative on the measurement scale of X has an equal likelihood of response

and, therefore, that the judgments would be distributed uniformly (i.e., a rectangu-

lar distribution). Consequently, James et al. proposed that the variance expected

on X when judgments are theoretically due exclusively to random measurement errors

could be calculated using the equation for the variance of a rectangular or uniform
2

distribution. This equation is: aEU -(A2_1)/12 (Mood, Graybill, & Boes, 1974).

The subscript "EU" refers to an expected error (E) variance based on a uniform (U)

distribution, and A corresponds to the number of alternatives in the response scale

for X , which is presumed to vary from 1 to A.
:12

The equation forEU includes the assumption that the psychological response

scale (cf. Guilford, 1954) underlying the measurement scale of X is discrete (as
:a

well as approximately interval). That is, the underlying psychological response

scale for an item is assumed to be composed of a finite set of sequentially orlered,

countable categories. Support for this assumption is furnished by psychophysical
scaling studies, which have shown that psychological judgments of continuously

distributed, physical stimuli tend to involve only a limited number of sequentially

ordered categories -- specifically seven categories, plus or minus two (Miller.

1956; Parducci, 1965). Support is also provided by performance evaluation studies

where Landy and Farr (1980) concluded that the number of response categories

efficiently used in rating scales follows the Miller (1956) "dictum" of seven, plus

or minus two categories. Studies of cognitive style and structure furnish

er
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additional support for an assumption of discrete response scales. These studies

have shown that unidimensional cognitive schemas (attributes, dimensions) are

comprised of a modest number of categories, which is a function of limited cognitive

information processing capabilities, simplification strategies, and bounded ration-

ality (cf. Dawes, 1976; Goldstein & Blackman, 1978; Scott, Osgood, & Peterson,

1979; Slovic, Fischhoff, & Lichtenstein, 1976; Struefert & Struefert, 1978; Wyer,

1974).

We do not wish to imply that all psychological response scales are discrete

or that all judges are equally articulated on a particular discrete, psychological

response scale. Nevertheless, the evidence reviewed above suggests that an assumption

of discrete scales with seven plus or minus two categories is applicable to many

judgment tasks for most judges. Thus, an assumption of discrete response scales was

employed to develop estimating procedures. Later in this article it will be shown

that changes in the computation of expected variances makes possible the use of the

estimating procedures when psychological response scales are assumed to be continu-

ous rather than discrete.

Given s2 and an a based on a discrete response scale, an estimate of IRR
x ___

-I-

may be derived as follows (James et al., 1981). An observed score on item X

designated Xlk (k-. ...,K judges), may be represented as Xk = j + (X- ) + e

In this equation, 0i is the population mean (true score) on the item, X is the

sample mean, and e is a random error of measurement. If the X are reflective

solely of U, then the Xk are entirely devoid of random error varian. - and s 0.

This is because variance in the X arises only from variation in the e k, and thus

9s2 estimates random error variance. On the other hand, if the X are a function

of random error exclusively and conform to equal likelihood, random responses, then



Reliability ?

2 2. EU This suggests that the extent to which the Xjk are actually reflective

2

of p and may be said to reveal nonerror or true variance, is indicated by (aEU -

2
s x-

An IRR estimate is obtained by placing the estimates of the variances in the
2 _ 2 ) (E 2 _

equation: (true variance)/(true variance + error variance), or (oEU _2

s~~E )+ (aE-U)o T

s _) + sE2 U2 s2 )/a 2. This equation reduces to the equation proposed by
2 t ms2 / 2)

Finn (1970), namely 1 - ( / EU2). The ter_* /aEU ) estimates the "proportion of

2 
2

random or error variance present in the observed ratings", and 1 - (s /o "givesx U "

the proportion of non-error variance in the ratings, a reliability coefficient"

(Finn, 1970, p. 72).

The discussion above is summarized by the following equation:

r2 
2rWG(l ) 1 - (s 'o. _ u()

where rWG(I) is the within-group interrater reliability for a group of K judges on

a single item X , s2  is the observed variance on X , and a 2i the variance onJ x J' EU--

X that wo-L i be expected if all judgments were due exclusively to random measure-

ment error.

Use of Eq. 1 is illustrated in Table 1 for K - 10 and A = 5, 7, and 9, respect-

ively. The 10 judgments in the A - 5 column are distributed approximately uniformly.

Thus, we would expect rWG(l) to be approximately zero, which is irdeed the case (i.e.,

.e2 2) 1 (1.73/2.0) .13; a (521)/12 2.0]. The A - 7 column involves. rWG(I )  =1 (1 7/ .) 13 EU =
V.

a judgments clustering about the upper end of the scale, which suggests a high inter-

rater reliability. This is also the case; rWG(l) .94. Finally, judgments in the

V.

,4

h L > X j . .. .
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A - 9 column cluster about the theoretical midpoint of a 9-point scale, which

again suggests a high interrater reliability. The interrater reliability for this

data set is .92.

Insert Table 1 about here

Multiple item estimator. The estimate of IRR for judges' mean scores is based

on the assumption that the J items (j'1,...,J) are "essentially parallel" indicators

of the same construct. This implies that the variances of, and covariances among,

the items are approximately equal, respectively, in the underlying domain of items.

Given these assumptions, it is possible to estimate IRR among judges' mean scores

by applying the Spearman-Brown prophecy formula to Eq. 1 (Finn, 1970; James et al.,

1981). James et al. derived severalestimating equations, the most direct for

computing purposes is as follows:

Jl- (s 
2 la 2)

- _(2)
rWG(J) 2 2 2 2(2

* (- ( /E&] x( /EU)

where r WG(J) is the within-group interrater reliability for judges' mean scores

based on J essentially parallel items, s 2 is the mean of the observed variances on

the J items, and EU 2 has the same definition as before.

Use of Eq. 2 is illustrated in Table 2. Section A if Ta-1- 2 presents simulated

6~ data for K - 10 judges who have rated the same target on i - 6 essentially parallel

items. All items employ the same discrete, approximately interval five-point scales

(i.e., A - 5) and, after reflection if necessary, are scored in the same direction.

Cursory examination of the data suggests a high IRR. The estimate furnished by

r14G(J). shown in Section B of Table 2, supports this observation. That is,

4I,.
a..,-, ,.e ., ' . ' ' ., ' ,,, ,,. ' . ,. ' . .. ' .. '. . . ' .. - .. ' .. - - . - ., - . . - "" . . """ - . .,
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rWG(6) - .97, which denotes a high level of IRR among the judges' means shown at

the bottom of the data matrix in Section A. TWG(J) will generally be larger than

rWG(l) because averaging over essentially parallel items reduces the 
influence of

measurement error (cf. Lord & Novick, 1968).

Insert Table 2 about here

Comparison of rWG(J ) with commonly used methods. Methods commonly used to

estimate IRR, agreement, or consistency of judgments (cf. Mitchell, 1979; Shrout &

Fleiss, 1979) should not be employed in our present design. To see why this is the

case, representatives of these methods and their associated estimates for the data

in Section A of Table 2 are presented in Section C of this same table. Whereas the

data indicate obvious agreement or consistency, the estimates based on these methods

are either low, indeed negative in one case, or uninterpretable (i.e., D 1.76).

The low values for the intraclass correlations, mean percentage of agreement, and

average intercorrelation among judges' profiles occur for multiple reasons. Never-

theless, in one form or another the most salient reason can be traced to the simple

fact that the item data in Section A suffer a severe restriction of range, which

is quite likely to occur if judges in a single group agree on responses to essen-

tially parallel items.

To expand briefly on this point, the intraclass correlations could not assume

high values unless the between-item mean square- -ere 7'-e in relation to the

within-item mean squares (cf. Lahey, Downey, & Saal, 1983). Large between-item

.mean squares were not obtained because the means on the essentially parallel items

were almost identical. Mean percentage of agreement was low because this statistic

is "insensitive to degrees of agreement, that is, it treats agreement as an all-or-

..4° . . o . . i , , . • . ° - , - , • i 
o , 

° ° , i . , - , " .. . " " " ° '
• ... ,,.. ,. o.- ,.,... • .., -.. . .- ,-.- - .-.. .' .- ". - ., .- . .-¢ - - ' -i -'-' ', 5 ''¢ .i ',
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none phenomenon, with no room for partial or incomplete agreement" (Mitchell,

1979, p. 377). In the present illustration, scores of "4" versus "5" in the

item data were treated as disagreements when in fact they reflected at least

"partial agreement" on a response scale with five alternatives. The mean correla-

" ft tion of -.11 between judges' profiles was due to the small and unreliable variations

in shapes among judges' profiles on the items, as well as minimal variance in the

judgment matrix (Lahey et al., 1983). Finally, the mean Euclidean distance value

' :of 1.76 furnished no direct basis for inferring level of agreement or estimating

interrater reliability. This statistic could be used for other purposes, such as

relating comparative levels of agreement to some other variable when data are

collected from different groups of judges. However, we believe that most investi-

gators will find it informative to have an estimate of interrater reliability for

a group, or, as discussed later, for each one of a set of groups if the level of

agreement varies among groups.

Other methods that have been used to estimate agreement or consistency among

judgments include r (Cattell, 1949), Mahalanobis D (Cronbach & Gleser, 1953;

Overall, 1964), and r (Cohen, 1969). These methods were not included in Table 2

for the following reasons. Mahalanobis D and r require that profile elements (items

in this case) be sampled from orthogonal lh.ent variables. This is clearly not

applicable because the items in Table 2 are assumed to be essentially parallel

measures of a single latent variable or construct. A key problem with rc is that

it considers the direction of scoring of items to be arbitrary. This is often not

the case. Furthermore, r is a function of the correlations among judges' profiles
c

and thus would be subject to the same problems discussed above for the mean

correlation among judges' profiles.

ft. fto. f ° - . -.° . * . . . . -. ft ° . . . . . o ... -,** .. .ft-f..- . ° •
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Methods Associated with Response Bias in Expected and Observed Distributions

Several authors (and an anonymous reviewer) have argued that the expected

distribution of responses might be nonuniform when no true agreement exists among

judges (Hsu, 1979; Selvage, 1976). This suggests the need to consider systematic

errors or bias in the expected distribution; that is, systematic factors which

render the expected distribution nonuniform when the true IRR is zero. The likely

candidates for systematic bias are response sets and response styles, such as

central tendency, leniency, and social desirability (cf. Cronbach, 1946, 1950;

Guilford, 1954; Guion, 1965; Nunnally, 1978). Response sets and styles are

typically regarded as personal characteristics. Our concern here, however, is the

systematic effects that response sets and styles have on expected and observed

distributions for a group of K judges. Consequently, we employ the term "response

bias" to indicate systematic biasing of a response distribution due to a common

response set or style within a group of judges.

Situations in which different judges employ different response sets or styles

are not addressed in this initial effort to consider the effects of systematic

bias in judgments. The generalizability of the discussion to follow is therefore

limited. Nevertheless, prior research suggests that response bias evolving from

a common response set or style among judges is an important issue with the poten-

tial for frequent occurrence. Examples include a common tendency for individuals

to select socially desirable response alternatives on questionnaires designed to

*' measure affective variables such as anxiety (cf. Nunnally, 1978), for subordinates

to exhibit positive leniency when describing supervisors (Schriesheim, 1981), and

for judges to select neutral response alternatives when items are ambiguous or

when the judges wish to be evasive (cf. Guilford, 1954; Guion, 1965).

To visualize the problem caused by response bias, consider a condition in

which there is no true variance in a set of judgments on a single item. Based

on Eq. 1, this implies that (a) the distribution of observed judgments should be
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2 2E
approximately uniform, (b) s 2 a EU, and (c) the proportion of true variance

in the judgments, given by rWG(l), should be approximately zero. Suppose, however,

that a response bias generated by social desirability resulted in a unimodal,

negative skew in the observed distribution of judgments. Since s2  (skewed) is
x,

2 2
by necessity less than s (uniform), it follows that rWG(l) based on sx. (skewed)

will be positive. Theoretically, what we have done by estimating the proportion

of true variance in the judgments by rWG(1) = 1 - [s 2 (skewed)/2EU 2 ] is to regard
_Li

all systematic sources of variance as true variance. In other words, the clustering

of responses in the socially desirable tail of the observed distribution is falsely

assumed to be reflective of true agreement when in fact this clustering of judgments

is due to systematic bias evolving from social desirability. The result of this

false assumption is that rWG(l), and by implication rWG(J), will furnish spuriously

high estimates of IRR when judgments are affected by a response bias that causes

observed responses to cluster about a subset of response alternatives on a scale.

Spurious inflation ot all forms of reliability due to response bias has been

addressed at the theoreLical level (cf. Guilford, 1954; Guion, 1965; Wherry &

Bartlett, 1982), but almost ever considered at the empirical level. We shall attempt

to bridge this gap between psychometric theory and data for Eqs. 1 and 2 by propos-

ing three steps that are designed to control for the spurious influences of

response bias on estimates of rWG(1) and rWG(J).

Step 1

Ask the question: If there is no true variance in the judgments and the true

IRR is zero, then what form of distribution would be expected to result from

response bias, and, of course, some random measurement error? This distribution

9"

i J ' 
°

,°' %" " . '%" " " ",° q * -. -. , • .- . *" . ** ,- .. . ..- . . . 9 - 9 " , - • , -. 9 "' "
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reflects one's hypothesis about response bias and is referred to as the "null

*- distribution". (If no systematic bias is expected, then the null distribution is

uniform.) The hypothesis may reflect application of knowledge from prior research

to the present context. For example, it may be reasonable to expect a skewed null

distribution in interest inventories as a result of a conscious or unconscious

bias to present oneself in a favorable manner (cf. Guion, 1965; Nunnally, 1978).

Performance evaluations by supervisors might be expected to be skewed as a result

of such things as a bias that leaders should be supportive of subordinates, or a

bias motivated by the need to avoid attributions by others that poor subordinate

performance is due to inadequate leadership (cf. Guilford, 1954; James & White,

"S in press; Landy & Farr, 1980). The hypothesis may also reflect knowledge that

conditions conducive to a common response set or style were inherent in the research

.' design (see extensive discussions by Cronbach (1946, 1950) and Guilford (1954)].

To illustrate, a triangular distribution that reflects a central tendency response

bias (on a discrete scale) might be expected if inexperienced or indifferent judges

with low articulation and little or no training are asked to respond to complex

and/or ambiguous items (Guilford, 1954; Scott et al., 1979). Central tendency and

a triangular distribution might also result from other types of common biases, such

as when judgea are purposefully cautious or evasive because responses to items are

not collected on a confidential basis and political reasons exist "cr not depart-

ing from the neutral alternatives on the scales (cf. Guion, 1965).

We will focus on the null distributions presumably generated by central

tendency (triangular distribution) and social desirability and positive leniency

(skewed distributions) because these are the sources of bias that appear to have

been empirically supported in research (cf. Anastasi, 1982; Landy & Farr, 1980;

Nunnally, 1978; Wherry & Bartlett, 1982). Discussions concerning skewed distri-

butions apply to positively or negatively skewed distributions, although
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negatively skewed distributions will be used in illustrations. Response sets

or styles such as acquiescence, criticalness, deviant-response tendencies, and

extreme response tendencies are not considered here because there is little

evidence of their generalizability over instruments or ability to account for more

than small fractions of variance (cf. Numnally, 1978; Rorer, 1965). Other response

sets or styles such as impulsion can be neutralized with good measurement techniques

(Guilford, 1954). Correction for guessing is not addressed because our interest

focuses on items for which there is no correct response (Rorer, 1965). Finally,

halo and implicit theories regarding covariation among variables that presumably

measure different constructs are beyond the confines of our single variable design.

Empirical evidence should also be used to propose a null distribution. This

issue is more meaningfully treated in a later context. For the present, this first

step is considered satisfied when the investigator hypothesizes a null distribution

that corresponds to the response bias expected as a result of central tendency,

social desirability, or positive leniency.

Stej2

Given a null distribution, the next step is to derive an expected variance,

or "EV". This is the variance expected when all systematic variance is due to

resporze bias. Calculation of EVs for triangular and skewed distributions is

illustrated for five-point scales, where .:e again presume discrete, approximately

equally spaced, psychological response scales.

Triangular null distribution. The expected proportions of judgments for a

five-point, discrete scale (i.e., A - 5) in a triangular distribution are: 1 - .11,

2 - .22, 3 - .33, 4 - .22, 5 - .11 (Messick, 1982). Equations for EVs for the null

distribution are (Messick, 1982, Eq. 4):

(A-l) (A+3)

2 24 for A odd, and2=T 24-
C ET 2 + 2A 2

-,24 for A even,
", 4

Lv " " 
' ' " " ' " " "" " • " .•" "" " " " "" " " " ' . ." " "
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2
where aET denotes the EV for a triangular null distribution. For A = 5, the

value of GET is 1.33

Negatively skewed null distribution. Three distributions were arbitrarily

selected to simulate different as well as representative degrees of skew. The

first distribution possesses a small skew, the second a moderate skew, and the third

a large skew. The EV for the distribution possessing a small skew is designated
2 2

by aESS . The EV for the distribution with a moderate skew is denoted by CE ,

2

while that from the large skew is aELS . For the small skew condition, the propor-

tions of judgments on a five-point, discrete scale were set as follows: 1 = .05,

2 - .15, 3 - .20, 4 = .35, and 5 = .25. The expected value of this null distribu-

2
tion is 3.6, and aESS is 1.34. The expected value and the expected variance were

determined by employing definitional equations for discrete random variables (cf.

Mood et al., 1974). For example, the expected value or E(X) is equal to Eaipi,

where ai is a scale value and pi is the probability of occurrence of that scale
'4

P value (i.e., the proportions assigned above). Thus, E(X) - 1(.05) + ... + 5 (.25) -

3.6. The expected variance is given by E([X-E(X)]2), which is equal to:

(1-3 (.05) + ... +(5-3.6) 2 (.25) - 1.34. The proportions of judgments for the

moderate skew condition were set at: I - 0, 2 - .10, 3 - .15, 4 - .40, and 5 - .35.

2
The expected value is 4.0, and aEMS  is .90. Finally, the proportions for the

large skew condition were set at: I - 0, 2 - 0, 3 - .10, 4 = .40, and 5 - .50.

The c -acted value is 4.4 and a 2 is .44.
ELS

There are, of course, an infinite number of negatively skewed distributions.

Similarly, a central tendency response bias does not connote a perfectly triangular

distribution. However, these null distributions are representative and furnish a

,4-.
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basis for demonstrating the principles involved in estimating rWG(l) and rWGcJ)

in the presence of response bias.

Step 3

2This step consists of (a) replacing aEU in Eqs. I or 2 with the EV for the

proposed null distribution, and (b) using the values furnished by Eqs. 1 or 2 as
estimates of within-group interrater reliability (s 2 or s 2remain the same). To

illustrate, consider the data in Section A of Table 3, which simulate the observed

judgments of 10 judges on 6 essentially parallel items. Inspection of these data

indicates a clustering of judgments about the scale midpoint of "3". If it is

believed that these data reflect a central tendency response bias, and that the

null distribution is approximately triangular, then aET2 should be used in place

2
of aEU in Eqs. 1 and 2. As shown in Section B of Table 3, the resulting estimate

of TWG(I) is .50 for each itemnd TWG(6) is .86.

Insert Table 3 about here

. 2

The logic of this approach is that if OET is an accurate reflection of the

nul isriuio, he 2 2 2null distribution, then s2  (or s ) - ET implies that ali systematic variance

in the judgments is a function of a central tendency response bias. Consequently,

rWG(l) (or rWG(J)) = 0 because there is no true variance in the judgments. However,

2 2 2
if s 2  (or s ) < a.ET , then we infer that not all of the systematic variance in

the judgments is due to response bias. Rather, at the item level, (s2 /aE2

reflects the proportion of variance that is attributable to systematic response
S.

bias and random error. This is (.67/1.33) or .50 for each item in Table 3.

a,7
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Accordingly, rWG(l) and rWj ) estimate the proportion of variance that is system-

atic and nonbiased, which is to say the proportion of true variance in the single

item judgments and mean judgments. Thus, although rWG(l) - .50 is modest, rWG(6) -

..

.86 suggests that a substantial proportion of the variance in the mean judgments

in Table 3 is true variance.

Applications and logic for skewed null distributions follow a similar course.

2 2 2The values for 0ESS 2 , aEMS and aELS from Step 2 were used in Eqs. 1 and 2 to

estimate IRRs for the data shown in Section A of Table 2. The resulting estimates

are reported in Table 4. Of initial importance is the point that the observed data

in Table 2 reflect a severe negative skew. If it is believed that this negative

skew is at least partially a function of a social desirability or positive leniency

response bias, then one might argue for a null distribution involving a large skew.
2

Accordingly,fO ELS were set equal to .44, then the estimate of the proportion of

systematic variance that is true variance in item 1 is given by rWG(I) - 1 -

2 2
( /E ) - 1 - (.28/.44) - .36. However, rWG(j) - .78, a result of the fact

that the modest amount of true variance at the item level is emphasized for judges'

means over six items.

Insert Table 4 about here

One might also believe that while a social desirability or positive leniency

response bias is a possibility, the bias is not large. This suggests that the null

distribution should reflect a moderate or even a small skew. In these cases, the

proportions of observed variance attributable to response bias and random error
2 2 2

are substantially reduced at the item level in comparison to aELS (i.e., sx  lEMS

---..-. 1

'-,,4 -'...' ,',,.'," ,, -, . ",,.,',"-.;,;'- ' " '''-.'..''. " ., " '"'--' " ''';- i ' ,



Reliability 18

2 2
.28/.90 = .31; and /a 28/1.34 = .21). It follows that estimates ofx ESS

rWG(l) and rWG(J ) will be comparatively higher. As shown in Table 4, this is the

case.

In summary, estimates of IRRs in conditions of response bias are obtained by

calculating an EV for a null distribution that reflects the influence of the pre-

sumed response bias, and employing that EV in Eqs. 1 and 2. We proceed now to the

issue that the accuracy of the IRR estimate is dependent on the accuracy of the

null distribution and the EV, and therein is likely to be a problem.

Multiple Null Distributions

A key issue in attempting to hypothesize a null distribution is that true

scores tend to be confounded with systematic errors (Guilford, 1954; Nunnally, 1978).

As a case in point, Guilford (1954, p. 451) reported that a clustering of observed

judgments about the middle alternatives on a response scale may reflect a "genuine-

ly moderate amount of the trait [target in our terms] indicated by the items"

4.J rather than a central tendency. For example, consider the data in Table 3 that

were used to illustrate a central tendency response bias. An equally plausible

explanation for these data is that 4 in the equation X + (X ) +

is equal to "3; that is, the true score is 3. This connotes that all systematic

variance is true variance, and that all variation in the observed judgments is due

to random influences (i.e., the ejk). These assumptions imply that the null

2
distribution is the uniform distribution. Thus, aEU 2 2.0 should be used in Eqs.

1 and 2, and, as shown in Section C of Table 3, the estimates of rWG(I) and rWG(6)

should be .66 and .92, respectively.

The same possibility applies for skewed distributions. The data in Table 2

might indicate that the high ratings by multiple judges of a department head who

is being considered for a vice-presidency reflect the selection, training, and

II .
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experience of the department head--that is, true ability--rather than positive

leniency on the part of the judges (cf. Bernardin & Pence, 1980; Borman, 1979).

If this is the case, then the uniform null distribution should be used for estima-

tion purposes. This null would replace the nulls that were based on skews and

employed to obtain the IRR estimates reported in Table 4. Estimates of rWG( ) and

rwG(J) based on EU2 are reported at the bottom of Table 4 for comparison purposes.

In short, a particular observed distribution may be consistent with any number

of null distributions, including the uniform distribution and nulls involving

response bias. It follows that the shape of the observed distribution should not

in general be employed to propose a null distribution. Rather, evidence other than

the observed distribution should be used to propose a null, after which the proposed

null can be compared to the observed distribution and a subjective goodness of fit

test conducted. The question here is whether the proposed null could have generated

the observed distribution. For example, if a null distribution with a large skew
2

and aELS - .44 were hypothesized, but the observed distribution has a moderate skew

with s- .90, then this particular null distribution has been disconfirmed. Allow-

ance should be made for sampling error, where, for example, an obtained s2  of .46
2x

could well be consistent with n ES of .44.

This procedure is designed to reduce the number of viable null distributions.

However, as discussed in greater detail shortly, it is still likely that multiple

- ~ null distributions will be consistent with a specific observed distribution. This

underscores the need to obtain evidence other than the observed distribution to

propose nulls. This other evidence consists of the aforementioned use of knowledge

from prior research. A stronger base for hypothesizing a null is furnished by

obtaining empirical data on the Judges, target, item(s), and/or judgment context

4i~
4
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at hand. The many possibilities that exist here are reviewed in numerous

articles and texts. They include (a) comparisons between the judgments of concern

and objective indicators of a target, (b) comparisons among judgments from the

same judges on diverse scales, (c) use of "lie scales" or "faking keys" to identify

judges who presumably are not answering frankly or honestly, (d) having judges

respond to the same items in honest versus realistic conditions, (e) comparisons

between the responses of the judges and those of independent observers or "expert

Judges", and (f) having judges respond to amiguous items, or simply to response

scales for which there are no items (cf. Anastasi, 1982; Berg & Rapaport, 1954;

Borman, 1978; Cronbach, 1946, 1950; Damarin & Messick, 1965; Guilford, 1954; Guion,

1965; Nunnally, 1978; Rorer, 1965; Schriesheim, 1981; van Heerden & Hoogstraten,

1979). Rater training is another possibility, although there is the potential

problem of introducing bias into judgments, as in the case of introducing a central

tendency bias by training designed to avoid positive leniency (Bernardin & Pence,

1980). Finally, the advent of laterctrait theory (cf. Guion & Ironson, 1983;

Hulin, Drasgow, & Parsons, 1983; Lord, 1980) and latent variable structural analysis

(cf. James, Mulaik, & Brett, 1982; J6reskog & S~rbom, 1979) may furnish novel and

productive approaches for dealing with response bias.

It is reasonable to expect that the stronger the empirical base, the more in-

formed the decision-" king regarding nulls. Nevertheless, it is also the case

that, at the present time, no method or set of methods furnishes an infallible basis

for completely unraveling the confounding between true scores and response bias

(Nunnally, 1978). This implies that while empirical efforts may substantially

reduce the list of possible nulls, the end-product of these efforts will likely

be the identification of several possible nulls, including, perhaps often, the

S' uniform distribution. Moreover, one must consider the likelihood that even though

a strong case has been built for response bias, a number of viable alternatives

remain for the shape of the null distribution (e.g., various degrees of skew).

OF
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.4 To deal with these issues, we suggest the following additions to the three steps

described earlier for estimating IRR in conditions of response bias. These sugges-

tions are designed to obtain a range of IRR estimates within which the true IRR

'. is likely to fall.

Suggested Estimation Procedures When the Null Distribution May Assume Multiple Forms

First, in Step 1 gather as much pertinent infbrmation regarding null distri-

butions as possible, including empirical data designed to identify response bias

for the judges in the sample at hand. The recommendation is based on the logic

that if a fallible decision is unavoidable, then let us attempt to reduce the

degree of fallibility as much as possible by considering multiple sources of infor-

mation.

Second, use this information to propose a small but inclusive set of null

distributions that represent the major forms of anticipated response bias. For

example, one might anticipate a small to moderate positive leniency response bias,

in which case a small and a moderate negative skew might be proposed. Or, a mod-

erate to large anticipated central tendency might involve the triangular distribution

as well as a more peaked distribution with higher proportions of judges in the

_ middle response alternatives. If the uniform distribution is a possibility, then

it too should be included in the set. The rationale here is thaL even though we

*cannot pinpoint a particular null with a high degree of confidence, we can place

bounds on the most likely types of nulls and thereby increase the likelihood that

the true null likes somewhere in this range of distributions.

I.Third, proceed to Step 2 and identify the smallest and largest EVs for the

set of null distributions. Fourth, go to Step 3 and compute estimate3 of rWG(l)

and/or rWG(J) for the smallest and largest EVs. These estimates represent the

range in which the true interrater reliability is believed to occur. More sophis-

ticated statistical systems involving families of null distributions, weighting

'z 
a.
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of EVs or reliability estimates to reflect differential likelihoods of the value

of the true interrater reliability, and computation of weighted and unweighted

averages of EVs and reliability estimates are possible and await future embellish-

ments on the procedures suggested here.

The range of estimates for rWG(l) may or may not vary considerably as a

function of the difference in the magnitudes of the smallest and largest EVs. A

different and somewhat fortunate condition exists for rWG(J). In general, the

range between the estimates of rWG(J) will decrease as J increases. A dramatic

example of this condition is shown in Table 4, where the "50 point" range for esti-
4'

mates of rWG(l) (.36 to .86) is reduced to 19 points for rWG(6) (.78 to .97). This

generalization is contingent on there being at least a modest amount of true variance

2
in the judgments (i.e., sx is less than the smallest EV). Inasmuch as we would

often expect this to be the case, it is possible to state that ambiguity resulting

from discrepencies in the highest and lowest estimates of rWG(J) will decrease as

J increases. Indeed, if the difference between the smallest and largest EVs is itself

modest, then the estimates will converge rapidly as J increases to only four or five

items. Thus, investigators are encouraged to employ multiple items and r

rathei thar rWG(l). There are, of course, numerous psychometric reasons for encour-

aging the use of multiple indicators of a construct, not the least of which is

reduction of the influence of random measurement errors.
'p

DISCUSSION

The estimating procedures for within-group interrater reliability have the

potential for frequent usage inasmuch as many real-world problems involve judgments

of a single target on a single variable by one group of judges. Examples presented

earlier included the need to estimate IRR for anchors in BARS development,

1
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publishability of a particular manuscript, faculty evaluations from a particular

class, team cooperativeness for a specific team, and judgments of the ability of

a department head to assume a vice-presidency. The list of additional examples

is lengthy and involves such things as estimating IRRs for job incumbents' percep-

tions of job characteristics prior to implementing a job enrichment program, for

ratings of an individual's potential in a management assessment center, and for city

council members' judgments of the feasibility of implementing a new snow removal

program.

*It is important to note that we are not suggesting that the methods presented

here compete with the traditional intraclass correlation (ICC) designs (cf. Shrout

& Fleiss, 1979). These designs require that multiple targets be rated, either in

a factorial design in which each target is rated by a different set of judges, or

in a repeated measures design where each judge rates all (or most) targets. In

contrast, the procedures for estimating interrater reliability presented here apply

to situations in which only a single target is available. However, occasions may

occur where rWG(1) and rWG(J) are useful in multiple target designs. An example

is when violation of the homogeneity of within-target variance assumption precludes

meaningful interpretation of an ICC. In this situation, it would be useful to

obtain separate estimates of rWG(l) or rWG(J) for each group or target. This stim-

ulates the additional point that the targets in organizational research are often

"groups", such as workgroups, departments, or organizations (e.g., climate studies

in which judges are nested in organizations--cf. James, 1982). Given heterogeneity

of within-group variances, estimates of rWG(l) or rWG( , could be calculated for

each group and then used as measures of a group attri.bute in group level studies.

To illustrate, it may be of interest to identify the conditions that contribute to

high versus moderate to low within-group IRRs on a variable such as group coopera-

tiveness.

'B7
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Such uses, indeed all uses of rWG ) and rWG(j), presuppose prior demonstra-

tions of the construct validity of a variable, as stipulated at the first of this

article. Alternatively, consideration of response bias and null distributions

using the present methods might address construct validity issues not addressed

in prior research. That is, if use of the proposed methods indicates that responses

on a presumably "valid" variable may have been generated primarily by response bias

rather than a true score on a target, then the construct validity of the variable

requires further review. Also in need of review, due to benign neglect, is the

effect of response bias on other forms of reliability estimation (e.g., ICC, alpha,

kappa, test-retest). Corrections for spurious inflation of reliability estimates

resulting from systematic response bias (Guion, 1965) should not be limited to the

methods proposed here.

This article is concluded with an overview of several statistical concerns.

First, evidence reviewed earlier suggested that an assumption of discrete psycholog-

ical response scales with seven plus or minus two categories is applicable to many

judgment tasks for most judges. Nevertheless, an investigator may choose to employ

the assumption that the underlying psychological response scale is continuous.

This denotes that the A alternatives on a response scale are assumed to be "only

representative of the possible values aL~ng the continuum" from 1 to A (Selvage,

1976, p. 606). Equationsl and 2 are still employed to estimate IRR for variibles

with continuous response scales. However, the choice of assumption regarding con-

tinuous versus discrete response scales affects both the computation and magnitude

of IRR estimates. Specifically, computing procedures for EVs (expected variances)

under the "continuous assumption" differ fror those described for the "discrete

assumption". Furthermore, the values of the EVs based on a continuous assumption

are less than the values of EVs based on a discrete assumption. The result is that

IRR estimates based on a continuous assumption are generally lower than estimates

' . ', % V %" ., % , V ,\ . '' .•• " •. , . .. .. . . . .. . . .. , . . -. -. . , , . . . . . . .•
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based on a discrete assumption. For example, with A = 5, the EV for a discrete

2
uniform distribution was presented earlier as (A -1)/12 = 2.0. The EV for a con-p 2tinuous uniform distribution is given by (A-I) /12, which is 1.33 (Mood et al.,

1974; Selvage, 1976). If the s2 foz a single item variable is .50, then r
* ~~~ 194 elge196.IthsrWG(l)

is .75 using the EV for the discrete uniform distribution and .62 using the EV

for the continuous uniform distribution (i.e., I - (.50/1.33. Other comparisons

of IRRs may be more or less dramatic (cf. Selvage, 1976). This issue is not pursued

here given our belief that the discrete assumption is generally appropriate, although

estimating procedures for other types of continuous null distributions have been

developed and are available from the authors.

Second, like ICCs, Eqs. 1 and 2 furnish statistically biased estimates of IRR

(Selvage, 1976), but the bias is expected to be minimal for a small number of judges

and essentially negligible for a large number of judges (e.g., 10 or more). Third,

2 2
the estimates of WG(l) and rWG(J) will assume negative values whenever s or s

exceeds the value of an EV. As indicated earlier, such a condition disconfirms the

null distribution on which the EV was based. In addition, if s2 or s2 exceeds

22
the EV for the uniform distributicai (i.e., a EU 2), then the negative estimate of IRR

should be set equal to .00 because variances greater than a EU are associated with

distributions that reflect serious degrees of disagreement. A similar recommendation

was made for ICCs by Bartko (1976).

Fourth, and finally, special attention should be given to the fact that it is

possible to manipulate estimates of r11GL]) and rWG(J) by constructing artificial and

unrealistic measurement scales. Adding a spurious number of alternatives to a scale

merely to inflate the size of an EV, and therefore the estimate of IRR, is poor

research practice at best. Conversely, use of only a few alternatives (e.g., A - 3)

'.
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in a scale when it is likely that the category-width or articulation on the

psychological measurement scale contains a larger number of categories may result

in artificially low estimates of IRR. In the final analysis, use of the methods

described in this article rests on the assumption that measurement scales are

sensitive to, and limited to, psychometrically reliable differentiation on psycho-

logical measurement scales (cf. Guilford, 1954). Valid scaling procedures in con-

junction with professional and ethical Judgment should satisfy this criterion.

4.
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Table I

Within-Group Interrater ReliabAlities for Items

with Varying Numbers of Alternatives

Judgments Furnished by 10 Judges

A5 Aw7 A - 9

5 6 4

2 6 4

3 7 4

5 7 5

2 7 5

3 7 5

1 7 5

4 6 5

3 7 6

4 7 6

Mean: 3.2 6.7 4.9
2

a : 1.73 .23 .54

2 : 2.0 4.0 6.67
EU

rW= .): .13 .94 .92

.9.
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Table 2

Illustrations of a New Method and Commonly Used Methods

for Computing Within-Group Interrater Reliability

A. Data

Judge
2

1 2 3 4 5 6 7 8 9 10 Mean s

Item

1 5 4 5 4 5 4 5 4 5 4 4.5 .28

2 4 5 4 5 4 5 4 5 4 5 4.5 .28

3 5 5 5 5 5 4 4 4 4 4 4.5 .28

4 4 4 5 5 4 4 5 5 4 4 4.4 .27

5 5 4 4 5 5 5 4 5 4 5 4.6 .27

6 5 4 4 5 4 4 5 5 4 4 4.4 .27

Mean 4.7 4.3 4.5 4.8 4.5 4.3 4.5 4.7 4.2 4.3 .275

B.

6 (1 - (.275/2)1

.WG(6) 6[1 - (.275/2)] + (.275/2)

.97

C. Covoonly Used Methods

1. Intraclass Correlations (Shrout & Fleiss, 1979):

a. For a single rating [ICC(2,1)J - .09

b. For mean item ratings [ICC(2,10)] - .58

2. Mean Percentage Agreement - 45%

3. Mean Correlation Between Judges' Profiles - -.11

4. Mean Euclidean Distance Between Judges' Profiles (D) - 1.76
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Table 3

Computation of r WG(l) and rWG(J) Based on

Triangular and Uniform Null Distributions

A. Data

Judge

Item 1 2 3 4 5 6 7 8 9 10 Mean s

1 3 2 4 3 3 4 2 3 4 2 3.0 .67

2 4 3 3 3 2 2 3 4 2 4 3.0 .67

3 3 3 4 2 2 4 2 4 3 3 3.0 .67

4 2 2 3 2 4 3 3 3 4 4 3.0 .67

5 4 4 4 2 2 2 3 3 3 3 3.0 .67

6 3 4 3 4 3 3 4 2 2 2 3.0 .67

Mean 3.17 3.0 3.5 2.67 2.67 3.0 2.83 3.17 3.00 3.00.

B. rNJ(i) and r Based on a2
'W~) WG(J) ~e f ET

rWG(.. - 1 - (.67/1.33) - .50; for each item

r 6(1 - (.67/1.33)] .86
_G(6) 6[1 - (.67/1.33)] + (.67/1.33)

C. r and r Based on a2

______ WG(J) EU

rWG(l ) I - (.67/2) - .66; for each item

6[l - (.67/2)]
r WG(6) m 6(1 - .67/2)] + (.67/2) 92



Reliabillty 36

1p
Table 4

Estimates of rWG(l) and r Based on Skewed

and Uniform Null Distributions

Data From Table 2

Item I Judges' Means

s2 .28 82 - .275
x x

Null Distribution

Larpe Skew .36 .78

Moderate Skew .69 .93

Small Skew .79 .96

Uniform .86 .9.7

-a .. * .
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