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tal gradients in the surface temperature or heatflux is investi-

gated. A linear model is described that can treat the problem for

the case of small surface temperature gradients, including the

approximate effect of a large-scale flow and the effect of a ver-

tical structure in the heat and momentum diffusivity, and in the

stratification. The second part of this report describes a nu-

merical mesoscale model, and results from the application of

this model to the simulation of the sea-breeze.
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The sun also ariseth, and the sun

goeth down, and hasteth to his

place where he arose.

The wind goeth toward the south

and turneth about unto the northy;
it whirleth about continually, and

the wind returneth again according

to his circuits.

Ecclesiastes 1:5,6

1. INTRODUCTION

The present report deals with some aspects of the atmospheric
response to time-varying horizontal gradients in the surface

temperature and heatflux on the mesoscale. The interest is con-

centrated on the modelling of the sea-breeze circulation in its

"pure" form as the two-dimensional flow across a coastline in

response to the periodic heating of the land.

In the first part an analytical technique is employed, which

enables the study of different scales of the mean flow. The

method is based on the linearization of the dynamical equations,

and the neglect of any feedback from the mean flow to the strati-

fication and turbulence structure (constant diffusivity and

stratification). The model is generalized to include the effect

of vertical variation of diffusivity and stratification.

The second part describes a numerical model in which a more

sophisticated treatment of the turbulent transport is employed.

A large number of theoretical studies of the sea-breeze phenom-

enon have appeared in the literature. Most of these are based on

numerical modelling (Estoque 1961,Neumann and Mahrer 1971,Pielke

mop--
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1974, and many others) but most of the results presented in these
studies relate to only gross features of the flow which in many

cases can be inferred from an analysis of the governing equations

using analytical techniques (Walsh,1974). The accurate modelling

of the development of small-scale structure in the sea-breeze

flow, and the interaction with the turbulence field is however

possible only by using a numerical technique. In recent years

the interest in the detailed structure of the flow and the tur-

bulence fields has been promoted by concern for the implications

to dispersion of pollutants in the coastal zone (Keen and Lyons

1978, Anthes 1978), and the level of sophistication of oper-

ational dispersion models, in particular "puff" models (Mikkelsen

et. al. 1981), has allowed for a direct use in such models of

the detailed windfields and turbulence parameters from the flow

models. The model presented here has potential for such practical

use, but at present it has been applied only for simulations

using synthetic "typical" input data.

The physical situation modelled in both chapters, except for

Section 2.9, is a straight coastline dividing a heated semiin-

finite land area and a sea where the temperature is assumed

constant. The coordinate system is defined as a right-handed

one with the x-axis pointing inland, the y-axis along the coast-

line, and z-axis vertical. The flow is assumed to be describable

as two-dimensional with no variation along the y-axis. The

components of the wind vector u, v, and w, are, as usual, de-

fined as the components along the x-, y-, and z-axis, respect-

ively.

A

i!Y
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2. LINEARIZED PERIODICALLY FORCED MODEL

2.1. The scaled basic equations

The equations of motion assuming the Boussinesq approximation

can be written as:

+ *# * V + ft x - .Vp +

+ Ve, + wr = + Q
(2.1)

v3 .o

ap e'
T'= gPs - '

Where the hydrostatic approximation has been also assumed and

the horizontal diffusion of momentum and heat have been neglected.

The hydrostatic approximation is justified if the aspect ratio

of the flow can be assumed to be much less than one: We are here

considering flow driven by surface heating and therefore the

pressure gradient is the important driving force for the flow. J "

We can therefore assume the scaling:

p . U (2.2)

from the equation for the horizontal velocity, where L is a
i characteristic length, T characteristic time, and U velocity.

From the equations of continuity and vertical velocity we can

write:

/ " 1
- m m m m I III I
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W H U - H2 p (2.3)

Thus the magnitude of the time change of w is of the order

(H/L)2 p-1 times the magnitude of the vertical pressure gradi-

ent. Also the omission of the horizontal diffusion of momentum

can be justified assuming H << L. In a viscous fluid we have

that the horizontal diffusion of momentum is of the order vU/L 2 ,

where v is the kinematic viscosity of the fluid; the vertical

diffusion term is similarly of the order vU/H 2, and thus the

ratio of the two terms is (H/L)2. In the case of the diffusion

by turbulence in the atmospheric boundary layer, the fluxes of

momentum and heat are typically of the same order of magnitude

in both the horizontal and vertical, and therefore the ratio of

the two terms in the flux-divergence terms in the equation of

motion and in the thermodynamic equation is of the order (H/L).

For small values of the amplitude of the thermal forcing the

amplitude of the flow perturbation will be small and the non-

linear advection terms can be neglected. The equations of motion

in the case of vanishing basic state flow becomes in this case

au fq 1 ap + Ka

3V+ fl 32K

ae 32i

ae + %r - K 2 (2.4)

at 0
au aw

IT t

-+ 0
, m.N~mmmm.,--. 77



1_I

-9-

where the further simplification has been made that the vertical

diffusion terms can be parameterized employing a constant dif-

fusivity.

We assume the surface forcing to be harmonic in time with fre-

quency w. Equations (2.4) can then be nondimensionalized by the

introduction of the following scaling:

= Hg ps p

g
N

g

(2.5)

~x = •L

N
L - H • N (horizontal scale)

InH 30 (vertical scale)

where N is the Brunt-VAisAl frequency corresponding to the basic

state stratification, and variables with a "-" denote dimensional

quantities. With this scaling the equations of motion can be
Slwrtten as

44

-
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au ap 32u
- - f = - + ..
a' a 9 3n2

--"+ fSO U 
I; -

+ w =(2.6)

.-e

au aw

where

fs = f/W

2.2. Method of solution

In the following we specifically consider the case of flow driven
by diurnal variation of surface temperature difference across a

straight coastline, in which case w a - angular frequency of
the earths rotationi thus with f - 2 0 sin # we have f. "

2 sin #. We wish to obtain periodic solutions to this system of
equations with the following boundary conditions:Iat z a nO =0 u v -vw 0

0 for < 0
8 ,,(2.7)

COST for > >0

at , R 4' . u, v,,p, -0

1 m
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It is convenient to write the fields in terms of Fourier series

as follows

U(P',n,T) -- f u(kn) cos k&dk exp(-iT) (2.8)
0 k

and similarly for v, also

I " sin kC
w(-,n,T) f w(k,n) __= dk • exp(-iT) (2.9)

0

and for p as well. The boundary condition at n = 0 far B means

that 8 must be expanded as

e( ,n,T) = (1 0() + sin k(
0(,,) 6'(n) +-j f (k~rl)dk exp(-iT) (.0

with 9 (k,0) = 60(0) = 1. Because of the linearity of the system

it can be solved for each Fourier mode independently. The first

term on the right in Eq. (2.10) corresponds to the heating of

the surface harmonically in time and independently of . This

forcing is easily seen to induce no flow, but to give contri-
butions to the 6 and p fields only. When only this forcing termi
is considered the 6 equation simplifies to

.:1l (i + 2 80 = 0 (2.11)

then

e 0(n) exp( n)Cos( n T (2.12)

This is the classical Stokes solution to the problem of a viscous

fluid subject to harmonic forcing at the surface. The equation

governing the functions u(k, n), v(k, n) etc. is obtained from
the set of Eqs. (2.6):

=I..
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(+ - )u + fsv = kp

92
(i + .2..v - fsU = 0r2)

i + 6 - w =0 (2.13)

ap
= 0

an

combining the above equations we can get an equation for the

perturbation pressure:

32 )[a~6 + i 4 + 32
i + - - +2 + (f 2-1) kp = 0; (2.14)2 an6 a4 2

the solution can be written as the sum

4
p= pj exp(aj n) (2.15)

j=1

with the a's determined as the solutions with negative real

* part of the following equations:

and

"+ 2i, 2 + (fj-,), -k 2 . 0 (2.16) /

iU

with

a -zvi

The terms with Re(a) > 0 corresponds to unphysical solutions

which increase exponentially with height.

4
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For small values of fs, corresponding to w >> f rotation can be

neglected and Eq. (2.14) reduces to

36 34  a 2 1

+ 2i - k 2jp = 0 (2.17)

and Eq. (2.16) becomes in this case

(i+a 2 ) a ± k = 0 (2.18)

Here we are interested only in the case where w 1/(24 h), and

therefore rotation can only be neglected if we have * Z 10 deg.

It should be noted, however, that if the surface boundary con-

ditions are changed so that the horizontal length scale no longer

is determined by L in Eq. (2.5), but rather induced externally as

I with £ << L, then only large values of k in Eq. (2.14) need

be considered. In this case Eq. (2.14) can be satisfied only if

the higher-order terms and k 2 are of comparable magnitude and

thus the rotation term can be neglected. It is obvious that the

flow structure is determined in this case solely by the par-

ameter X/L. A discussion of the flow structure in this case is

given in Kimura and Eguchi (1978), where the governing parameter

is defined as 0 = (L/L) 2 / 3 . They neglect rotation even in the I
case Q = 1, however. In Eq. (2.5) we have introduced the time

scale as w -1; alternatively, we could have used f- 1 . The equation

for the perturbation pressure in this case where we have an ex-

ternally specified horizontal length scale X can be obtained

from Eq. (2.14) by the substitution n'= /Ai/f n yielding:

2 r[ 16 34 2 ~
i + T-77 _ )Ln_.+2iw 3 + (1-2) . - mj p = 0 (2.19)

with w = w/f and
V

m = = (2.20)

In this case the vertical scale is the Ekman depth H = /K/f,

n Z/H. Eq. (19) makes it possible to identify a number of

prototype boundary layers by requiring that different combi-
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nations of two terms be dominant. This analysis is performed in

Park and Mahrt (1979), where it is argued that the stratifi-

cation paramater m is much more sensitive to the choice of hori-

zontal length scale I than to the stratification. This latter

term is given by N because the diffusivity K should not be chosen

independently of N, since turbulence is suppressed when N is

large. The choice of X >> L or equivalently m << w3 should, how-

ever, be expected to lead to incorrect scaling of the flow par-

ameters because even though a typical length scale characterizing

the heating/cooling area is £, then the "internal" flow scale L

is the proper length scale. The conclusion is thus that m in

actual flows is limited both downwards and upwards.

In the following we return to our original formulation, and are

therefore interested in the solution of the system of equations

(2.16).

The solution of the cubic equation is easily found by using

Newton-Raphson iteration to obtain one root B1, and the two re-

maining roots from the quadratic obtained when (a-01) is factored

out. the solution for the ai's depends on the wavenumber k and

the scaled Coriolis parameter fs. Figure 2.1 shows the real and

imaginary part of the three values of a from the solution of the

cubic as function of k. The value of fs is 1.5 corresponding to

diurnal forcing at middle latitudes ( = 500). The asymptotic

solution corresponding to the limit k * is given as

= k 1/ 3 exp(i(j+1)) , j = 1,2,3 (2.21)

WA
This expression is a fair approximation even at moderate values
of k. The fourth root in Eq. (2.16) is independent of k and

given as 4 = - /2/2(1-i). As for the pressure the coefficients

in the Fourier integrals Eqs. (2.9) and (2.10) can be written as

a sum of four exponentials as Eq. (2.15). The coefficients are

related through the following relations obtained from substi-

tution of Eq. (2.15) into Eqs. (2.13):

_skI



- 15-

2.0 fz 1.5

1.5 .

1.0 .

0.5"

0 1 2 3 4 5 6 7 8 9 10

k

Fig. 2.1. The absolute value of the real part (-), and the

imaginary part (---) of the roots a of the characteristic

equation (2.16).

Yj fj k 2 + Y? PJ
S +T

fs
vj = k f pj

5 (2.22)

4Wj = aj Yj Pj

"j = Cj pj

with

Yj ( + i)

The solution for pj is obtained by application of the boundary

conditions Eq. (2.7).

4-- -
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2.3. Limit of large wavenumbers

In the asymptotic limit of k * we can use aj from Eq. (2.21)

and the system of Eqs. (2.22) can be approximated by the following

system:

[ exp i(j + 1) 7r pj = k-1 / 3

exp (- i(j + 1) 3-pj 0 j 1,2,3 (2.23)

exp (i(j + 1)w)pj = 0

and

P4=- f2(PI + P2 + P31"

The solution is

3
= 1 + i 1/3

P2 = - k-1 3

P3= - _. f 7
4(

p4 = f2 k- 1 /3

L.E
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and

u1 = 1 V3
1

U2 = -_u2

u3 = + - i

u 4 = 0

The cross isobar flow field u(k, n) is therefore given as

(Fig. 2.2) for large k:

u(k,n) = u uj exp(ajn)

(2.24)

1 /T 1exp- 1 I/T 3-
exp(-x) + T- eo .

with

A = k1/ 3 n

The appropriate dimensional scale height is thus dependent on

the horizontal length scale. Denoting this by L we have k =L/
and the scale height therefore becomes

0a

f ,~1/3 i1w 1/ 3I ItN 1/3
h (2.25)

In Park and Mahrt (1979) the dynamics in this limit of small t
is termed E1/ 3-layer dynamics. In Mahrt (1979) it is noted that

this dynamics may describe actual small-scale nocturnal flows
even though the initial conditions are complicated since the

flow structure is determined only by the balance of the pressure
gradient and momentum diffusion. This is brought out in Eq.

F - *--
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I I

9

8
7i

6
-Y 5
II

42

-010 -0.05 0 0.05 0.10 0.15 0.20
WOOA

Fig. 2.2. The Cross isobar component u(k,n) in the limit of

large wavenumbers k as function of kl/ 3 n , where n is the

scaled vertical coordinate.

(2.24), showing u(k, n) to be real, and therefore the cross

isobar flow to be in phase with the temperature perturbation.

2.4. Solution for small wavenumbers

In the limit of k2 << I a simple solution can again be obtained:

We have for the cubic Eq. (2.16) the approximate roots

k2
01 + 0(k

4)

1 k2
0 T fs) + 0(k4 ) (2.26)

, 2fH (l1fs)

04 = -i .

- -.- -
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To simplify we will assume fs > 1 in the following: Then

a, = - a b k + 0(k 3 )

a2 = - (1 + i) + 0(k2 )
b 2

(2.27)
1 /T

13 = - - - (1 - i) + 0(k2)
a 2

a4 V2 ( -i)

with

a = (fs + 1)-1/ 2  and b = (fs -1)-1/2

Eqs. (2.22) and the surface boundary conditions. Eqs. (2.7)

lead to the following linear equations for the expansion coef-

ficient for pj (Eq. 2.15) when the above relations are inserted
and terms only up to first order in wavenumber k are retained:

iabk -fsb - 2  -fsa - 2  0 kabp, 0

abk ib- 2  -ia- 2  k2  P2 0

-i r*fsb-1  rfs a - 1  0 P3  0

-1 -rb 1  -r*a-l -r* P4  I

(2.28)
' V" where j

r (1+ i)

L p ith the solution

-' ,.
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P, = -'z~ (/T - i/F (1 - k~cl i: /W )

P2= = -f(fs -1 -(1-) Q Ii
PI (=S - (1f-=l (1/

P3~~~ 2f(f I)" i) •(I + kr J-(-i) fs- - C

2 + 1((fs 1)+ fs ))P3 2f2(f 5 + 1), _ -)f

(1 i(
C (2 1+ 1 )3 2 +  i(f +  1)3/2

((,5  -- ++(1- )

Using Eq. (2.22) the leading terms in the cross isobar flow

field for k << 1 becomes

_______ + 1 (1 -k C)

'-1-k V/T 1 2

U 2  jf - (1-i) - k((fs + ________ + - (1-i)CI
2 s ( 2(2.30)

k +i12
U3 = 2f-", (1-i) +k -k-((f (1-i C

U4 - 0

-* I retaining only the first-order terms we see that the contri-

bution in the Fourier integral Eq. (2.8) is:

1,
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cos k
Re {u(k,n) exp(-iT) 

COs k E e _ - ir_
2ys\ -expi( P;L ) Cos( T

- exp- n • cos( n + + T } (2.31)
2

The u1-term is of order k2 and can be neglected for small

heights n, however, since the root al is proportional to k

(Eq. 2.27) the depth of the disturbance from this component

increases as k tends to zero. For decreasing values of k, there-

fore, part of the return flow will consist of an increasingly

deep layer of very weak flow. The contribution to the total

profile from the first term takes the form:

cos k E
Re{u 1  k exp(- iT)}

kcosk C k
(- ) cs (.-i) - n (2.32)

where a

Os = tan-1

The expression (2.31) can be rewritten as

cos
Reu(k,,) fo exp(- iT)} - cos(k E) •A(n) cos( T+#( n) )

Vk
(2.33)

* 1 In Fig. 2.3 the amplitude A(n) is plotted for different values

of the scaled Coriolis parameter fs. The phase function 4(n) is

shown in Fig. 2.4. For large values of fs the flow structure

becomes asymptotically independent of w, as should be expected,

corresponding to a quasi-steady state. The proper depth scale
becomes the Ekman depth, as can be seen from Eq. (2.31) with
fs >> II

too
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cos K
Re u(k,n " k exp(- it)}-

cs kEexp(- n') sin(') cos T (2.34)

where

= f = z(2K

Thus, for fs > > 1 we have *(n) = - Tr/4 up to the height n =

* • (1/2fs)- 1 /2 where it becomes equal to 3n/4. This stepwise

behaviour is seen to be a fair approximation to * even at

fs = 2 (Fig. 2.4). The inflow layer becomes deeper as fs de-

creases towards 1.

I ITI

21.5 1.1 1.01 1.001 =f,

3

* 2
I 1

i 0 0.1 0.2 0.3 0.4 0.5 0.6
[u(00l

Fig. 2.3. The amplitude A(n) for the u-component at small
wavenumbers (Eq. 2.33) for different values of the scaled

Coriolis parameter.

i '
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5 1.0011.01 1.1 .5 1.75 2.0 fs

4

3

2

1

0
-n -12 0 1/2

PHASE ANGLE

Fig. 2.4. The Phase angle O(n) for the u-component at small

wavenumbers (Eq. 2.33) for different values of the scaled
Coriolis parameter. I

.4, 2.5. Land-sea breeze circulation

By inspection the dynamics of the small scales are seen to be

characterized by a balance between momentum diffusion and pres-
4 sure gradient force in the u-momentum equation, and between tem-

perature diffusion and adiabatic cooling in the thermodynamic

equation. By contrast the large scales are found to be charac-
terized by a balance between the harmonic term, Coriolis force,

and the vertical momentum diffusion for the u and v components,
whereas in the thermodynamic equation the adiabatic cooling isunimportant and we have the Stokes balance between forcing and

vertical diffusion. Well above the surface, however, the dif-
fusion terms are unimportant and the principal momentum balance

is between the harmonic terms, Coriolis term, and the pressure

gradient, whereas the thermodynamic equation here simplifies to

T__ 7
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a balance between the harmonic term and the adiabatic cooling

term.

For intermediate wavenumbers all terms are important and even

though the cubic characteristic equation can be solved to yield

explicit roots for any wavenumber, the final solutions obtained

after the solution of the linear equations for the boundary

conditions are so complicated that explicit expressions are of

little use. The amplitude and phase for different wavenumbers

are shown in Fig. 2.5. Also shown is the amplitude and phase

functions for the integrated profile at the coast obtained by

numerically integrating Eq. (2.8) using Simpsons rule. The

upper limit was set to k = 100 and stepsize in the integration

was Ak = 0.1. The profiles corresponding to individual wave-

numbers are characterized by a nearly constant "inflow" layer

where the phase is essentially constant with height; at the

top of this layer the amplitude is close to zero and the phase

changes 180 degrees over a rather thin layer. The profiles

CO 0.5 .~~3.0 .
4.0

2.0

1.0

,0 0() 0.2IUD

Fig. 2.5a. The amplitude of the modes of the u-component

for different wavenumbers. The dotted curve gives the

amplitude of the integrated u-profile.

K

_ _ _ _ _ __ . . -_ -, , ,
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IT I I IIT I I I I I I I I I

0.1 0.5 11.0 1

2
4.0

1

1 i i i !I I I 1 I I I I

-160 -120 -80 -40 0 40 80 120 160
u ('q) PHASE (degrees)

Fig. 2.5b. As fig. 2.5a, but for the phase.

II
U (-t

- Fig. 2.6. Definition of parameters describing the wind

hodograph.
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plotted for different values of the time T differ, therefore,

only by a factor nearly independent of height. For the integrated

profile the inflow layer is less well defined in depth and

changes in the course of one period in the interval from n = 1

to n Z 2. For the velocity component along the coast the ampli-

tude and phase functions can likewise be found. The hodograph

-180 -90 0 90 180

0.2 '0 1,

0.0 , ,

0.0 0.1 0.2 0.3

-180 -90 0 90 180

E=0.25
0.2 -.

.4

0.1

0.0 s-________________

0.0 0.1

Fig. 2.7. The parameters of the elliptical wind hodograph as

function of height for different values of distance from the

- coastline. The full lines give half the major and minor axes,
" ( ....): O' (#-) To  (fig. 2.6).J

The amplitudes refer to the lower scale, and the phase

angles #o,To refer to the upper scale.
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-180 -90 0 90 180

. E=05 1
0.2 . -

0.1

0.0 ''
0.0 0.1

-180 -90 0 90 180
,.,N.

""% {91.0

0.2

0.1
I I

0.0 '
0.0 0.1

Fig. 2.7. continued

of the horizontal velocity vector at different heights above

the coast are given by iu(n)Icos(T+*u(n)), Iv(n)Icos(T+v(n)))
where the amplitude and phase functions corresponds to the func-

tions for two components. The hodograph is an ellipse with par-
ameters depending on height and distance from the coast, and the v

behaviour of the horizontal wind vector can therefore be charac-

terized by the parameters of this ellipse as shown in Fig. 2.6,
where vertical profiles of the maximum and minimum magnitude of

the wind vector, together with the phase lag of the maximum mag-
nitude relative to the maximum land surface temperature, and the
angle between the maximum wind vector and the gradient of sur-

! -i
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face temperature are plotted for different distances from the

coast.

2.6. Effects of horizontal advection

The above results were obtained by assuming the flow to be

forced solely by a temperature perturbation at the surface. A

crude estimate of the effect of an overlying advective velocity

can be obtained assuming the basic state velocity to be constant.

This also requires that it is permissible to neglect the wind-

shear near the surface in the basic state velocity; furthermore,

the nealect of the "self advection" by the perturbation u in com-

parison with the advection by the background velocity U means

u << U. The solution in this case can be obtained directly as

above by noting that the same system of equations and boundary

conditions are recovered in the coordinate system moving along

with the velocity U in the x-direction. To be more specific, it

is easily seen by performing the Galilean transformations, that

the solution in the original (non-moving) system can be written

for each wavenumber in real notation as:

Re{u(kn) cos k exp(-iT)} = u(k ) =k

1 (k) (k)
jAW+.(z/HZ+.) Cos(k(+T+)+,(z/HZ+,))

(2.35)

+ _ (z/HZw) cos(kC-T+ !_ (z/HZ_.)}

where Ak)(n1 ) is the amplitude of the u-component corresponding

to the wavenumber k, and the forcing frequency w in the case of

U=O. Similarly, *k)(n) is the corresponding phase function,

HW is the depth scale corresponding to the frequency w (H, = 'I
/K/w , and i is the "induced" forcing frequency - k U/L. The

results from the preceding sections are recovered for Z - 0.

Equation (2.35) enables us to identify two limiting cases corre-

sponding to small and large scales considered above. Assuming

t4-"
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>> w corresponding to strong advection or k U/L >> w,

Eq. (2.35) becomes

(k) (k)
u(k) AW (z/H ) cos(k&+j (z/HZ)) cos(T) (2.36)

The scaling introduced in the preceding sections shows that

(k) 1 1 A , ) I ( 3/2 f 1/22
Az; A(R,i) = A~kI-; ~ j (2.37)

On introducing Z into Eq. (2.37) we obtain

(k ) A k k (2.38)kktk

-here ku = N/U K77- . Similarly the phase function can be

written as

* (kj) = Fk- , )(2.39)

The assumption Z >> w in connection with diurnal forcing, where

fs 1 1 means that Z >> f, and rotation can be neglected. The

wavenumber ku defines a lower limit above which advection by U

dominates and Z >> w is equivalent to k >> ku. With this assump- I
tion the first argument in the amplitude function in Eq. (2.38)

is small compared to one and the value of A can be found by solv-

ing for small wavenumbers as in the previous section but for

fs = 0.

A = exp (2.40)

For the phase function we obtain

(k)k
¢ (2.41) '

Using these two expressions valid for k >> kU in Eq. (2.36) the

result can be written:

4- -
___________.___£
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= 1 exp -n sinL1 kun sin -kI+ COST

k I1 2kUJ 7 T2 V 51lk TfYku (2.42)

Comparing with the expression obtained for large wavenumbers in

the case of zero advection, Eq. (2.24), the depth scale is de-

creased in the presence of advection by essentially k
1/ 6 ku1 / 2

7_. For large scales << w and advection have only little

effect, and noting that w =- _ and A,=A_ w we can write

Eq. (2.35) as:
~()=(k) (k)

u(k )  = A (n) cos(k,) cos(T+# (n)) . (2.43)

for k << ku. This is identical to the expression valid in the

case U = 0 as expected. For intermediate scales k - kU no simple

relation exists between the two terms on the right in Eq. (2.35)

and each wavenumber must be treated separately. A special case

appears as k = kU equivalent to =w , where the last term be-

comes undefined. This "resonance" case corresponds (in the case

of zero advection) to steady convection where the diffusive depth

scale becomes infinite. The proper depth scale will be the Ekman

depth = /K/_f in this case. Replacing w by f in the scaling re-
lations, Eq. (2.5), the set of equations corresponding to

Eq.(2.13) becomes

2u + e k p+v=kp

82 v,

26 0 (2.44)

an'

I I

-k u +__
an_ __--__LJ
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The equation for the perturbations pressure p becomes:

a2 [ a6  a2  '1
a+' 2  - ]p' = 0 (2.45)

(The prime on all quantities indicates the deviation in scaling).

As above, the solation for the flow can be obtained from Eq.

(2.44) and the boundary conditions with the exception that the

boundary conditions at infinity for v, e, and p cannot be satis-
fied because of the appearance of a linear solution in Eq. (244).

Physically this particular solution corresponds to a temperature

perturbation independent of height with associated linear press-

ure variation and linear geostrophic wind, which because of the

orientation of the coordinate system appears only in the v-

component. The depth of the cross isobar flow u is determined by

the Ekman depth.

The effect of a basic state velocity will be pronounced if kU

is not large compared to one (U N V-TT ): Taking reasonable
values for the parameters viz. N 0.01 s- 1 , K = 1 m2 s -1 ,

= 0.7 • 10-4 s- 1 (= 1 day -1 ) then the requirement is U

1 ms-1 . The smaller scales are attenuated at all levels and

phase shifted in the direction determined by the sign of U. In

the above arguments we have assumed U to be positive; negative

U yields by symmetry identical results exept that -C should be

replaced for E in Eq. (2.35).

4P It is well known that the inland penetration of the sea-breeze

is lessened or prevented when a synoptic scale off-shore wind

is present. Empirical predictions of the occurrence of sea-

breezes have been based on the negative correlation of the syn-

optically driven wind and sea-breeze occurrence (Biggs and

Graves, 1962). Based on a linear model Walsh (1974) finds that -

this model lends theoretical support to the empirical relations.

His analysis is based on the assumption that the requirement for

the occurrence of sea-breeze is umax ! IU1 where umax is the

maximum velocity predicted by the linear model. Clearly this re-

quirement is inconsistent with the linearization of the advection

terms. In addition, large amplitudes of the surface heating

------- ------
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necessary to meet the above requirement for realistic values of

the windspeed U and the background stratification N2 leads to

violation of the linearization of the adiabatic heating term in

the thermodynamic equation. The necessary assumption here is

that the flow-induced perturbation of the stratification can be

neglected. This means that the following relation must hold:

AN2  0 g = 48 << (2.46)
H K

-he analysis by Walsh (1974) is based on a particular choice for

N since he did not anticipate the possibility of scaling the

problem such that only fs = f/w appears as an external parameter

as shown in the present analysis. Using his results of the

maximum value Umax in the linear model as function of a back-

ground velocity it is possible to obtain Umax as function of

the wavenumber kU as shown in Fig. 2.7. The results are well

reproduced by the relation

(U) (0)
Umax = Umax (1 - exp(-aku)) (2.47)

with a = 0.65. Eq. (2.47) reproduces the asymptotic behaviour for

Umax as U + 0 (ku + -) and also as U + - (ku + 0): Umax + 0 as

1/U. At moderate values of kU Fig. 2.7 shows Eq. (2.47) to re-

produce the model results adequately.

Returning to the requirement Eq. (2.46) in connection with the

assumption Li > U (where "-" denotes dimensional quantity):; assuption max~

g A 0  (U) g 0  (0)
- N Umax N U max (1-exp(-aku) (2.48)

for ku << 1 we obtain

AN2  K (0)U < - N u akU , or

(2.49)

<(AN)2 k2 (0)~ 249. 1 k Urea x

4--

I ~:~munnuu-mnn___n_ -l n____n_ --.----- unJ -,
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since our linearization requires AN/N << 1 and Umax a 0.14

clearly Umax " U strongly violates the linearization for U

large. Ignoring for a moment this objection Eq. (2.49) can be

rewritten as

0  W U2 (2.50)-0.14 gK

This relation is similar to the expression found by Walsh (1974)

and has the form of the empirical relation found by Biggs and

Graves (1962); furthermore, as shown by Walsh the consta't in

Eq. (2.50) is very nearly the empirical constant when a realistic

value for K is inserted*).

In view of the simplicity of the linear model and the objections

raised above it is surprising that the model agrees with obser-

vational data with an accuracy as good as that with which the

parameters in the model can be determined. The appropriate mean

diffusivity K cannot be estimated independently better than as

an order of magnitude estimate; also the relation between the

gradient wind, which enters in the empirical relation similar to

Eq. (2.49) in place of U, and the "bulk" background velocity U

used in the model must include a geometrical factor of order one

to account for the effect of windshear in the boundary layer.

In the case of zero background velocity the linear model predicts

the magnitude of the maximum cross isobar flow Umax to be pro-

portional to the amplitude of the land surface temperature. The

scaled profile of u obtained from the linear model by solving

for all wavenumbers and integrating (Eq. 2.8) is shown in Fig.

2.8 for different values of T = w t. The profile corresponding

The numerical constant ( 0.14) in Eq. (2.49) differs from

the constant found by Walsh (0.11) because of the fitting used

here by the expression Eq. (2.46). Using (2.49) and the empirical

coefficient yields K - 8 m2s-1.

_____ _____ _____ ____- .- --- .
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0.3 f=1.5

X 0.2

0.1

.4

2
ku

Fig. 2.8. The effect on the maximum value of the u-component

of an background velocity U. ku=N/U/K/w. (o): Results from

rescaling data from Walsh(1974), (---): Eq.(2.47).

I
to T = 0.15 corresponds to the profile when the largest value

of u is found. The model estimate of Umax is therefore

umax = 0.22 N e (2.51)N 0

where the superscript zero indicates zero advection. The numeri-

cal constant is valid only for the case of a step change in tem-

perature across a straight coastline which is considered here,

and also only valid for the particular choice of the nondimen-

sional Coriolis parameter (f. = f/w = 1.5) corresponding to

diurnal forcing at mid latitudes. The strong dependence found

above on the background velocity and the favorable comparison

with empirical data suggest that a reasonable order of magni-

tude estimate of the maximum velocity taking into account the

self-advection at finite values of 6e0 can be obtained using

Eq. (2.47), and assuming the effective advective component to be

- ---
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proportional to Umax' viz U = Umax, where a is a geometrical

factor of order one. The proposed equation becomes

9 _g A 0 (0) N ,r

Umax N * Umax " (1-exp(-aku)) = (2.52)

.here the last equality follows from the definition of kU. Eq.
(2.51) can be solved for ku by iteration and Umax is then de-

termined by the last expression. From Eq. (2.50) it is clear

that the linear result becomes questionable as 600 increases and

as stratification N2 decreases. Using Eq. (2.52) in the limit

kU << 1 we obtain

Umax ax  (2.53)

where Umax = 0.22, a =0.65. Using a = a =0.65 and K = 5 m 2 s- 1

yields

A~6 1/2
Umax = 24 ms- 1 (2.54)

I

1.5

'Y6
Z 1.0,"

E

0.0
0 5 10 15 20

A*,i/ (N/2 YIK/W)

Pig. 2.9. (-)t Umax from the self advection model from the 1

solution of Eq. (2.52) with a-a-0.65. (---): Linear model.L4--
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Comparing Eq. (2.53) with (2.51) we see that the strong depen-

dence on stratification in the linear model disappears and is re-

placed by a very weak dependence on the diffusivity K in (2.53).

Equation (2.53) can be interpreted as a Froude number relation-

ship:

Fr = Ua x -gd = 1.5 (2.55)

where d is the depthscale 7-T , Ap/P 0 Z A8°/0, and we have

used a = a = 0.65. In studies of the sea-breeze front Simpson et

al. (1977) have found that if d is the depth of the intruding

(cold) sea air, umax is the rate of advance of the sea-breeze

front and Ap is the density difference between sea- and land air

then Fr = 0.7. In our definition Umax represents the maximum

air-speed and comparing the two Froude numbers we find that they

agree if the rate of advance of the sea-breeze front is 2.1

times slower than the maximum speed. This number agrees sur-

prisingly well with what is found from observations. As an ex-

ample Kimura and Eguchi (1978) find the average ratio to be 2.2

based on an average over 56 sea-breeze days observed from 13

surface stations in Japan. The maximum speed predicted from

Eq. (2.54) can be likewise compared with observations; in the

field study of the sea-breeze at the great lakes in the United

States Keen and Lyons (1978) found a maximum onshore windspeed

of 4.1 ms-1 at a height of 150 m above the shoreline, the tem-

perature difference between land and sea was 8 K. Using this

value Eq. (2.54) yields max = 4.0 ms - . Compare this, however,

with the variability discussed in connection with the numerical

simulations (Chapter 3).

2.7. Comparison with inviscid model

The result from the linear model for the cross isobar flow has

already been discussed in the preceding section. The v-com-

ponent at the coastline at low heights is much smaller than the

u-component in magnitude, reflecting the influence of high wave-

numbers where rotation is negligible. The hodograph of the hori-
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zontal wind is an ellipse in all points because of the assumed

periodicity. The assymetry observed for the land and sea breezes

can partly be incorporated into the linear model by adding har-

monic terms to simulate the typical diurnal land surface tem-

perature. As discussed by Mak and Walsh (1976) this will account

for only part of the assymmetry because a large part is caused

by the diurnal variation of stratification and diffusivity which

cannot be incorporated into the linear model. Because of the

strong influence of the small scales on the magnitude of the

maximum cross isobar component this quantity is to only a rela-

tively small degree influenced by complicated initial conditions

at the beginning of a sea-breeze day. A slowly varying synoptic

scale u-component will act to modify the maximum breeze u-

component as described above. The v-component, and also the u-

component at higher levels, is dominated by larger scales where

the Coriolis force is important and the initial conditions will

likewise be important. At all points the wind vector exibits the

expected clockwise turning (for f > 0).

Near the coastline very large gradients exist in the vertical

velocity, which is antisymmetric across the coastline. The be-

haviour of w here is determined by the contribution from large

wavenumbers for which advection becomes important even for small

values of the forcing. As discussed in the previous section the

u-field also is dominated by large wavenumbers near the coastline.

Consequently, the detailed results from the linear model cannot

be expected to apply to the land- and sea-breeze near the sea-

breeze front. If we define the "inner region" in the circulation

as the region where the non linear effects are important, then

we can expect the linear dynamics to apply in the complementary
"outer" region. The reason that such a division is meaningful is

4that we are dealing with a disturbance generated essentially at

one point and propagating in a dispersive medium. The propagation

of a disturbance in a stratified inviscid fluid is usually ana-

lysed in terms of internal gravity waves, and such an analysis

applied to the sea breeze outer region was presented by Geisler

and Bretherton (1968) who treated the problem as an initial-value

problem by introducing the temperature distribution everywhere

instantaneously. They introduced the term the sea-breeze fore-

) ; ". .=a r: ---- '
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runner as the disturbance being carried by the gravity waves and

reaching points away from the coastline in advance of the sea-

breeze proper. In their analysis rotation and diffusion were

neglected, and they found in the simplest case where stratifi-

cation is independent of height that the perturbation in U can

be expressed as g/N(z/h,T) where h is the depth of the initially

imposed temperature perturbation and T = Nh t/x. The connection

to the linear harmonic model can be seen if h is interpreted as

the diffusive depth scale /w . The dispersion relation for

gravity waves in the system is given by (Pearson, 1973):

W2 = f2 + N2 k2/m2  (2.56)

when rotation is included. Neglecting rotation the horizontal

phase and group speed for waves with vertical wavenumber m is

w/k = N/m, and noting that all modes are excited simultaneously

as the temperature contrast is imposed in the Geisler and

Bretherton model, at any point away from the coastline a sequence

of modes arrive with the largest vertical scales arriving first

and eventually modes of smaller and smaller vertical wavelength

arrive. In the periodic model three other mechanisms are in ef-

fect, firstly rotation is included, affecting the behaviour of

the large scales; secondly, the periodic forcing means that the

disturbance arriving at a point is a superposition of disturb-

ances generated at different times with a strength given by the

harmonic time variation; and thirdly, the effect of surface drag

and the internal dissipation is to damp the different modes at

different rates. The e-folding time on modes with vertical wave-
number m is of order m- 2 K- 1 which for modes of vertical extent

f of h = 'w = m -1 becomes equal to L = N/ K-/, which is the

horizontal scale length in the periodic model. The largest per-

turbation in u occurs at the surface in the inviscid model where

a slip-condition is assumed. Employing the scaling introduced for 4"
the periodic model, the result found by Geisler and Bretherton

for u(x,z,t) can be written as

4-- -
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1 T/C dy
u(t,n,T) = 7 {i - cosy} cos[yn] (2.57)

0 Y

where we have used Eq. (24) in the original paper and h =

L = N/wK/lw, etc. from the scaling used in the periodic model

described above. It may seem confusing to introduce a forcing

frequency w and a diffusivity K when we are dealing with an

inviscid model with steplike forcing, however it makes compari-

son with the periodic model easier, as will be apparent below.

At the surface the result Eq. (2.57) can be written:

1 _ _(/ _ 2

u( ,T,0) = n( ( n i2.58)rn-=1 2n.2n!

This function is shown in Fig. 2.10. It can be seen that the
maximum value found in the periodic model (=0.22) is exceeded

already at values of T/& - 2, suggesting the importance of

diffusion of momentum. Introducing into the model an internal

dissipation of the waves leads to the appearance of the term

I
-' 1.0

4

-" 0.5

0

15 10

Fig. 2.10. The u-component at the surface from the inviscid

model of Geisler and Bretherton (Eq. 2.58).

F~~ ~~ ........ .
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U

0.2

22.

0
0 1 2 3 4 5

t=x/L= x/(h 3N/K)

Fig. 2.11. The u-component in the Geisler and Bretherton model,

in the case where internal dissipation is included. Numbers

on the curves refer to the time T.

exp(-y 3 &) inside the integral in Eq. (2.57), as also discussed

in the paper by Geisler and Bretherton. The effect of this term

is to give a sharp cutoff at y = The maximum value of

u now becomes approximately equal to Eq. (2.58) with &-1 /3

replaced for T/E. The result is shown in Fig. 2.11. The curve
labelled T = - gives the asymptotic value of umax, and the curves

labelled with different valves of T gives umax (C,T,0). These

curves follow the asymptotic curve up to the point where the

diffusive cutoff occurs at = T3/2. Note that we can eliminate

the dependence on w by substituting K/h2 with x/(Nh3/K)

and T = t/(h2 /K). The maximum u-component in the periodic model

is shown together with the i = * curve from Fig. 2.11 in Fig.
2.12. The large difference is a consequence of the mechanisms

active in the periodically forced model: the surface drag which

becomes infinite at 0 (cf. Eq. 2.24), the finite tempera-
ture gradient above the surface at = 0 resulting from the

action of the vertical velocity in the thermodynamic equation,

and the periodic forcing. The horizontal temperature distri-

bution in the periodic model is illustrated in Fig. 2.13 for

1 -0



- 41 -

U

0.2

0.1

0.0
0 1 2 3 1 5

9=x/L

Fig. 2.12. The maximum u-component as function of distance

from the coast for the periodic model (lower curve), and

the Geisler and Bretherton model with internal dissi-

pation (curve marked T=- on the previous figure).

.= 1.6

1 0 1 = 1 0

4F

1= 0.4

0.0
-0.4 -0.2 0 0.2 0.4

Fig. 2.13. The temperature perturbation at the time of maximum

perturbation at the surface in the periodic model for differ-

ent values of height. (The zero point for 8 has been chosen a

arbitrarily for each curve.)

I _ _ _ _I__ _ _ _ _ _ _ _
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different values of n at the time of maximum in the surface

temperature difference. The curves demonstrate the difference

in the forcing function between the viscous periodic model and

the model by Geisler and Bretherton where the initial forcing

is a stepfunction of amplitude equal to one up to the height

n = 1 and zero above. It should be noted that the vertically

integrated temperature perturbation far away from the coast is

identical in the two models. The effect of surface drag can be

incorporated into the model of Geisler and Bretherton, but only

in a crude way, as discussed in their paper. In the periodic

model treated sofar the atmosphere is modelled as one layer of

constant diffusivity and basic state stratification. This is

obviously a gross oversimplification and even in the outer part

of the flow large deviations in the structure must be expected,

in general, because of temporal and spatial structure in the

basic state parameters. The most obvious inhomogeneity is be-

tween the boundary layers developed over sea and land because

of the difference in surface heating. In the outer part one may

expect the conditions over land and sea to be uncoupled and the

inviscid model by Geisler and Bretherton (and the periodically

forced inviscid model described by Kimura and Eguchi (1978))

could apply in particular over the sea, whereas for conditions

over land turbulent diffusion must be incorporated. Over land

there may be no outer region in the boundary layer but only

above it because as one moves inland from the coast in the con-

vective boundary layer the stratification vanishes except near

the surface where it is superadiabatic in the sea-breeze situ-

ation. As a consequence, the phase speed of gravity waves tend

to zero and the linear dynamics breaks down. In the periodic

viscous model the determination of the proper diffusivity presents

a problem, since it has a large dependency on height. The values

used in the example above are proper only for near surface

conditions. The stratification enters only in the thermodynamic U1

equation through the adiabatic cooling term w • r which is un-

important near the surface but is responsible for the cooling

over land/heating over the sea at heights in the upper part of

the boundary layer over land and above, generating high pressure

over land and the return flow. The stratification parameter N in

the linear model should therefore properly be a zharacteristic
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value for the upper boundary layer including the (possible)

inversion and the stratification above. With an inversion on top

of a mixed layer both the turbulent diffusivity and the strati-

fication depends on height, and the velocity and temperature

profiles will deviate from the profiles found in the simple

model. The effect of an elevated inversion layer on the profiles

in the framework of the linearized periodically forced model is

discussed in the next section.

2.8. Vertical variation of diffusivity and stratification

In real boundary layers the diffusivity of heat and momentum

are typically functions of height through the dependence of the

mean flow structure and the stratification. The inclusion of a

height-dependent diffusivity and stratification in the linearized

model leads to an eight-order differential equation with non-

constant coefficients, and no simple solutions exist in general.

Semi analytical solutions can be obtained, however, if the par-

ameters can be assumed to be piecewise constant. For each layer

in which K and N are constant the solution is identical to the

solutions considered above except for the boundary conditions.

The total solution is obtained by applying matching conditions

at the interfaces between layers in addition to the boundary

conditions at the surface and at infinity. The matching conditions

are that all fields (U , i, V and P) and the fluxes of heat

and momentum (K aU/az, K aV/az, K a az) are continuous across the

interfaces. Subdividing into N homogeneous layers gives (N-i)

interfaces, and with our previous boundary conditions at the sur-
face (u=v=w=O and e prescribed) together with the boundary con-
ditions at infinity (four coefficients to exponentially increas-

ing terms vanish) we have 8 N constraints to determine the 8 N

coefficients in the pressure profile. The other fields are found

from the pressure profile by applying the relations (2.22) for

each layer. The large number of equations appearing when we sub-

divide prohibits any manageable explicit expressions for the ver-

tical profiles, but since the coefficient matrix is sparse the

solution is easily obtained numerically even in the case of many

sublayers.
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With discontinuties in the diffusivity K this means that the

fields will not have a continuous first derivative across the

interfaces; note, however, that the first derivative of the ver-

tical velocity and the pressure are continuous by virtue of the

matching conditions together with the continuity equation and

the hydrostatic equation, respectively. The matching conditions

ensure non-singular behaviour of all terms in the dynamical

equations when applied across interfaces.

With this model we can simulate the effect of an elevated inver-

sion layer by subdividing into 3 layers. If the height of the

inversion base is larger than the diffusive scale height in the

lower layer (=/Kl/w) we must expect the scaling Eqs. (2.5) to

be applicable but with the flow modified by the inversion. If the

inversion is at a height lower than this scale height then no

unique scaling exists and the structure and strength of the flow

is a function of the basic state parameters in all three layers.

If, on the other hand, the inversion base is at a height much

larger than the scale height the effect of the inversion is neg-

negligible.

For scaling the additional non-dimensional parameters the par- I
ameters in the lowest layer are used. This the height of the

inversion base, inversion thickness, the scale heights and the

scale lengths in the two upper layers. The proper diffusivity

for each layer is strongly dependent on the stratification and

* a convective boundary layer is generally capped by an inversion

Alayer effectively reducing diffusive transport above the inver-

sion. With horizontal homogeneous conditions the inversion layer

is formed by the entrainment process at the top of the boundary

layer. The strength will depend on the stratification above the

inversion, the rate of surface heating, and possible subsidence

on the synoptic scale. In the sea-breeze situation conditions

are complicated by the inhomogeneity across the coastline, the

effect on stratification by the vertical motions generated by

the sea-breeze itself and horizontal advection. These compli-

cations cannot adequately be incorporated into the linear model,

and presumably they can be handled only numerically. In spite of

this it is of interest to study the effect of an inversion layer

- K.
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on the flow in the linear model since the linear dynamics still

apply in the circulation locally with the possible exception

of the region near the sea-breeze front and the coastline. With

essentially vanishing diffusivity above the inversion the depth

scale of the flow becomes very small and the flow in the boundary
layer will be influenced only by the thermal stratification up

to a height immidiately above the inversion base. This means that

the effect of an inversion in the framework of the linearized

model can be modelled using only two layers.

The maximum magnitude of the two-level wind vector is shown as

function of the ratio of the Brunt-V~is~la frequencies for dif-

ferent heights of the inversion base on Figs. 2.14a-c. The depth

scale in the upper layer is set to 0.1 times the depth scale in

T -- T -

0.08

0.07 -K 0.2

0.06 - Z.

0.05 1.

0.04
0,03

Q02

0.01 5
I O

1 10 100

N2/Nj

Fig. 2.14. Maximum value of the low level speed as function

of the ratio of the values for N in the two layers.

Values given on the curves refer to the height of the lower

layer (inversion height) scaled with parameters pertaining

to the lower layer. K on the figures gives the wavenumber k.

(See text).
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Fig. 2.14. continued

* the lower layer corresponding to a decrease of the diffusivity

by a factor of 100 across the inversion base. This value is some-

what arbitrary, but using larger values of this ratio results in

only very small changes in the maximum low-level wind speed. As

expected from the discussion above, however, the depth of the

flow above the inversion base is reduced as the depth scale is

decreased. For all wavenumbers the wind speed is strongly influ-
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enced by the reduced vertical mixing even in the absence of tem-

perature inversion. The values for the homogeneous case (h =

are close to the values for h = 2 and there occurs obviously an

"overshoot" for values of h comparable to one. For larger ratios

of the stratification the wind speed decreases toward an asymp-

totic value determined by the inversion height, the flow becomes

confined to the lower layer except for a thin layer with a strong

return flow in the inversion layer. The phase angle (t 0 on Fig.

2.6) decreases as the inversion strength is increased and with a

strong low level inversion To - 0 for all wavenumbers, the angle

*0 also tends to zero for strong inversions. This is not surpris-

ing in view of the discussion in section 2.7 and the results in

section 2.4; the stratification is most important in the dynamics

near n = 1 (in the homogeneous case), whereas the largest effect

of diffusion is near the surface; consequently a two-layer model

with an inversion layer at n - 1 must dynamically become similar

to the one-layer model for large wavenumbers. We have used the

j parameters in the lowest layer for scaling, and if the "effec-

tive" stratification increases with the strength of the inver-

sion, then for any wavenumber (= Ll/k, where £ is the physical

wavelength and Ll is the scale length in the lower layer a N1 )

the "effective" wavenumber influenced by the much larger length

scale L2 above the inversion base must be larger than the wave-

number itself. Figure 3.2 shows windprofiles for the more compli-

cated situation where we have employed several layers simulating

a parabolic diffusivity profile and a jump in the Brunt-V~is~la

frequency at the top of the layer of strong mixing. The increase

of the diffusivity with height near the ground tends to concen-

trate a strong windshear near the ground to lower the level ofI maximum wind speed compared to the homogeneous case. the return

flow is concentrated near the top of the layer with strong

mixing, as expected from the discussion above.

In connection with an inversion layer with an effective decoup-
~ling of the horizontal wind a synoptic pressure gradient can

give rise to a strong wind shear across the inversion, and the

role of horizontal advection by such a basic state wind velocity

is complicated by the different advection rates acting on the

ll -- __ -_
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Fig. 2.15a. Contour plot of the u-component at the time

of maximum surface temperature perturbation as function of

I' ~ (abcissa) and ni (ordinate). Contour interval is 0.025.

(Max value is 7,0.025=0.18).
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Fig. 2.15b. As fig. 2.15a, but for the case with background

velocity U with kU=4.



- 49 -

2.0 '

1.5

1.0 "0--.

0.5 -/

0.0 ,1-1.0 -0.5 0.0 0.5 1.0

Fig. 2.16a. As fig. 2.15a, but in the case of a two layer

structure (inversion) with N2 in the layer above n=1 given

as N 2=100"N I , and K2 =0.01"K. Scaling with lower layer

parameters.
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Fig. 2.16b. As fig. 2.16a, but with a background U with kU=4

in both layers. ~1 .I~
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Fig. 2.16c. As fig. 2.16b, but with ku=1.
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Fig. 2.17. As fig. 2.16b, but with ko=4 in the lower layer,

and kU-4 in the upper layer. "
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flow in the mixed layer and on the return flow near the inver-

sion. In consistency with the treatment of a constant horizontal
basic state velocity (section 2.6) and with the layered model

treated here, different basic state velocities can be assigned

to each layer to simulate this situation. For the two-layer model

including windshear at the inversion results are shown on Fig.

2.16 for the cross isobar flow at the time of maximum surface

temperature.

The effect of the inversion in concentrating the return flow

and reducing the low level wind speed is apparent from these

figures; the effect of a constant basic state velocity is quali-

tatively the same with and without the inversion. At the same

distance inland the windspeed actually increases with increasing

basic state velocity (decreasing kU) because the maximum is

displaced away from the coast in the direction of the wind. The

maximum is decreased, however, as discussd in section 2.6.

The effect of different basic state velocity in the two layers

is to displace the points of maximum low-level inflow and maximum

return flow in the inversion layer away from each other in the

horizontal. With larger shears the situation changes and disturb-

ances generated in the shear layer appear equivalent to the un- I
stable gravity waves which are generated at the interface be-

tween two homogeneous layers of different density and with a

.velocity jump across the interface (see, e.g. Gossard and Hooke,

1975). The stability analysis is complicated in the case treated

here by the surface boundary conditions and the diffusivity in

the two layers. In the model considered where all fields are

assumed harmonic in time with frequency w, and where 8 is tied
at the surface, these waves appear as finite disturbances which

are amplified with increasing shear. This is obviously a model

artifact and their structure in the real atmosphere cannot be
analysed in the framework of this simple model. Waves are often

observed in connection with the nocturnal boundary layer where

they may form intermittently when strong shear is present. In
the laboratory experiments by Britter and Simpson (1978) such

waves are found behind the sea-breeze head on top of the layer

I I i

I, u-mm ~ mnnnmmm u jI•nn



- 52 -

of protruding sea air simulated by a gravity current of a dense

fluid undercutting a lighter fluid.

2.9. Circular island

In the previous sections we have considered the two-dimensional

problem of flow across a straight coastline. In cases where the

coastline is curved the flow will be subject to imposed diver-

gence or convergence which in turn will induce vertical motions

and pressure adjustments. Because of the 1/N dependence of hori-

zontal velocity which is coupled to the thermodynamic equation

through the adiabatic tooling term wr, the expected effect of

increased convergence/divergence is to decrease the magnitude

of horizontal velocity compared to the case of the straight

coastline.

The effect can be studied by solving the linear flow problem for

2jthe case of a heated circular island. Assuming angular symmetry,
and interpreting and horizontal coordinate E as the (scaled)

radial distance from the island center, the dynamical equations

Eq. (2.6) are unaltered except for the continuity equation, which

in cylindrical coordinated becomes:

u au aw
+ + - = 0 (2.59)

The Fourier representation is impractical in this case and the

fields are instead expanded in a Fourier-Bessel series:

u(En) = - u(tn) Jl(oat/D) ; 0 4 < D (2.60)

=I ,
for the radial velocity component u and similarly for the tan-

gential velocity v. The temperature, vertical velocity, and

pressure are given the expansion, viz for e:

(, 8(tn) Jo(att/D) 1 0 t < D (2.61)
Jul
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The functions Jo and J1 are Bessel functions of zero'th and

first order, respectively, and al is the £'th zero of J. Inser-

ting the expansions (2.60) and (2.61) into Eqs. (2.6) with the

continuity equation replaced by Eq. (2.59) leads as before to Eqs.

(2.13) for the expansion coefficients. The wavenumber k now takes

the discrete values kj = oi/D, t = 1,..., . In particular we

can rewrite the continuity equation for the X'th term using the

relation for the derivative of J1 (x):

dJ1  J1
. .. . + Jo (2.62)

and obtain the form identical with (2.13). In analogy with the

case of the straight coastline the surface boundary condition for

the temperature is in analogy with the case of the straight coast-

line e - 1 over land and 6 = 0 over sea. This means e(c,O) = 1

for < r and O(C,0) = 0 for > r, where r is the scaled radius

of the island. This boundary condition leads to the following ex-

pansion coefficients (e.g. Charlton 1969):

-2 r/D

J 1() 2 f y Jo(aty)dy (2.63)
0

or by performing the integration

6(1,0) = 2J1 (ajr/D) ro2/D • (J1(aj)aX)- 2  (2.64)

The solution can now be obtained as above employing the same

boundary conditions. Since we have already scaled with the ap-

propriate intrinsic length scale L, the flow structure depends

only on the scaled radius r. For large radii r >> 1 the effect

of curvature must be negligible and the results for all fields

near the coastline should be identical to the results obtained

for the case of a straight coastline. For radii comparable to '
I or smaller the maximum radial velocity should be influenced

by the effect of curvature of the coastline. The result for the

radial velocity at E = r and n - 0.3 (where the maximum in u is

found for large r) is shown in Fig. 2.18. No appreciable effect

* of the curvature is found when r 1 1, and the point where umax

is half the value at infinite r is the value r = 0.06. Using

4--i

i-
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Fig. 2.18. Radial velocity (u-component) for the circular

island at C=radius, and n=0.3, shown for diffent radii.

the values K = 5 m2 s-1 and N = 10-2 s-1 the scale L becomes

approximately 36 km and the radius has to be less than - 10 km

before the maximum inflow velocity is influenced by the finite

size of the heated area. The rather small value of r for which

curvature effects are important for the maximum inflow velocity

shows the importance of small scales. As discussed in section

2.6 these small scales are attenuated strongly in the presence
of even a small basic state velocity across the coast. Also non-

linear interactions become important for these scales even with
4 small values of the surface temperature perturbation. As a con-

sequence we must expect the curvature effects to be of import-

4 ance at somewhat larger valves of r in the real atmosphere. The

analysis could be extended as in section 2.6 by the introduction

of a basic state velocity U; however, this will lead to a muchj more complicated mathematical problem since obviously the circu-

lar symmetry assumed here will be violated in this case, and the

flow will beiome truly three-dimensional. It should be noted in j
passing that j rather simple technique has been devised for

problems of this kind by Scorer (1956) and Olfe and Lee (1971).

* !,-. This latter work is of particular interest here since it deals

with the urban heat island studied by linearized equations as in

the present investigation. This technique is based on the super-

position of solutions for two-dimensional surface heating distri-

r F
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butions. For the island flow discussed here the appropriate two

dimensional problem is the flow over an infinitely long strip of

land of finite width of say 2k. This can be solved directly as

in the case of the infinite land with the only difference that

the expansion coefficients in the Fourier expansions now depends

on 9 as (sin(kZ/L)/k)coskE for the temperature, pressure, and

vertical velocity, and a ; -(sin(kX/L)sinkE for the horizontal

velocity. The solution can be found for any value of the basic

state cross coastal velocity. Noting that any component of vel-

ocity along the coast will have no effect on the flow field the

solution can be found for any orientation of a basic state vel-

ocity vector. Superposing solutions for all orientations of the

strip of land keeping constant the basic state velocity in an

absolute frame of reference leads to a three-dimensional solution

for the flow over an isolated island with the surface temperature

distribution given by the superposition as:

<2Z
1 for E -

e( ,o)

I 2 2.
- arcsin for E >

This function is shown in Fig.2.19. By using distributions for

the two-dimensional surface temperature field other than the
"top hat" used here other three-dimensional distributons are

obtained; the method will always give distributions with a tail

E-1. In the urban heat island such distributions may ad-
~equately approximate the rather smooth surface temperature dis-

tributions observed, and in the study by Olfe and Lee (1971) the

three-dimensional temperature field over a city heat island was
studied using this technique. Their model differs from the lin-

earized one descriued here in that -.otation and viscous effects

were neglected and the surface forcing was constant in time
(w = 0). In this study we will not proceed along these lines

but note that the periodically forced model can be employed for

this rather complex flow problem and give semi-analytical sol-

utions for the perturbation flow with proper boundary conditions.

i i.

~ _______ --...---- ~.
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Fig. 2.19. Surface temperature distribution obtained from the

superposition of infinite strips of width 21. (See text).t

3. NUMERICAL MODEL

3.1. Basic equations

The model is based on the anelastic approximation (Ogura and

Philips 1962, Gough 1969). The approximation is justified by
Sscale analysis of the terms in the Navier Stokes equations

treating the flow variables as perturbations on a basic state
of constant potential temperature. The scale height of poten-

tial temperature is roughly four times higher than the density

scale height, and the anelastic approximation is consistent with

the continuity equation for "deep convection" (Dutton and Fictl

1969):

V3  " (Po ) " 0 (3.1)

-
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where P0 is the height dependent density corresponding to the

basic state of constant potential temperature. The inelastic

approximation has been used in models of gravity waves and deep

(cumulus) convection. The approximation effectively filters out

sound wave solutions and is not based on the hydrostatic approxi-

mation. Neuman and Mahrer (1971) argue that it is necessary to

include nonhydrostatic effects in their model of the sea-breeze;

however, as pointed out by Walsh (1974) their argument is false,

and from the point of view of scaling of the Navier Stokes

equations effects of dynamical pressure is unimportant when the

aspect ratio of the flow (typical height/typical width) is

small. It cannot, however, be ruled out that nonhydrostatic

effects are important in parts of the flow, and when modelling

in detail the propagating sea-breeze front it should be expected

that nonhydrostatic effects come into play. The modelling of

such small-scale features requires a very high resolution, and

since most model formulations require that model boundaries are

effectively outside the influence of the flow, the number of

gridpoints required (or equivalently the number of functions in

a Fourier-type expansion) becomes very high. A typical extension

for a sea-breeze flow is 100 km and in order to resolve in de-

tail a frontal structure with dimension of the order of 1 km the

gridsize required is of the order 0.1 km giving - 103 gridpoints

assuming constant gridsize. The requirements on computer time

and storage very easily becomes probibitive. Two possibilities

are to use a nonuniform grid (Anthes, 1978), or a system of

nested grids with different gridsizes (Walsh, 1974). The obvious

disadvantage is a tendency to concentrate the fine structure in

the region with a fine grid, excluding the possibility for the

front to propagate away from the coast with a correct speed. Most

published sea-breeze models utilize a grid with a gridsize effec-

tively excluding flow structure with an aspect ratio of order

one. Typical grid size of a few kilometers in the horizontal com-

pared to the (possibly correctly resolved) vertical dimension of

the flow of less than one kilometer limits the aspect ratio of

the resolved flow to ~ 0.1 or smaller.

I -
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The basic equations employed can be written as:

au au au arh an a auu w-z - - x -w- + f v + -- Km 7t x az ax ax az m z

av av av a av
- = -u - - W + fu + - K
at ax az g m

aw aw aw ar a aw

- u -- -w + -- 1m  (3.2)

at ax az az Kzn
aR aR aR a DTz

= -u - - + Kn  r
ait aix a z a z C)

au aPO +X -j P ow =

..here

0 = constant basic potential temperature independent of

height.

R = = relative deviation of potential temperature.

Ztop
wh = t gR dz = hydrostatic pressure function.

z

R perturbation (nonhydrostatic) pressure function

P0 height-dependent constant basic state density corre-

sponding to the basic state potential temperature

Rg

-111
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where Poo is a standard surface pressure and Hs the scale

height Cp 0 g-1. Here Rg is the gas constant and C the

the heat capacity at constant pressure.

The r functions are related to the real pressure through i =

C 0 (p/Poo)Cp/Rg.

rc = counter gradient flux correction (see below).

Km, Kn are the turbulent diffusivities for momentum and heat,

respectively, calculated as discussed in the next section.

3.2. Turbulence parameterization

The one-dimensional version of the model results from assuming

horizontal homogeneity as:

Du a au

aT f(v - vg) + _67 Km -

av a av
-- = u u - Ug Km (3.3)

DR a D-=- Kn  - r
at az n \az

The turbulence closure is obtained by the utilization of the

equation for the turbulent energy in connection with a prognostic

length scale equation

3e av fm JaRaKm3e{ = Km (1a - h rc ) + c 2 Tz- Km " - c  -Z

(3.4)

at t.s

__3H52
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with Km = Z;cle. The first term in Eq. (3.4) is the shear and

buoyancy production terms assuming again fluxes to be pro-

portional to the local gradients. The second term is a par-

ameterization of the divergence of the sum the fluxes <w'e'> and

<w'p'>/p as in Shir (1973) and Yamada and Mellor (1975). The

last term in Eq. (3.4) is the dissipation term. The definition

of Km implies a proportionality between the mixing length scale

and the dissipation length scale. Eq.(3.4) can be rewritten as

3e es-e a 3e

at - /c3 e + c2 -z Km (3.6)

with

es £2 1 c 1 (I3V 2  h O g - rc)) (3.7)

Neglecting the transport term, Eq.(3.6) describes the relaxation

of turbulent energy towards the value es, where production and

dissipation are in balance, with a time scale T = £/c30'.

Equation (3.5) for the length scale is based on the assumption

that the length scale likewise tends to an equilibrium value ks

with the same relaxation time scale. £s is assumed to be deter-

mined from the boundary layer height H:

-,min(c4 • H, kz*m), for z < H
t s  = 13.8)

0 , for z > H

The length scale equation (3.5) was originally proposed by Busch

et. al. (1977). They, however, combined this equation with the

assumption ewe s , which under conditions of weak surface heating,

and moderate to strong wind can be further simplified by neglect-

ing the buoyancy production term in (3.7). Also their definition

of the equilibrium length scale was different and given as:

is- kz# 1 (I- , for z < H , (3.9)

-rn-l
-i-
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Near the surface both formulations give Is = kz/ Om in consist-

ency with surface layer similarity. The constants ci,c 2 ,c3 and

c 4 are found from known surface relations under equilibrium

conditions. The transport term in Eq.(3.6) can be neglected for

z/L<< 1 (e.g. Wyngaard and Cot6 1970), and we have e=e s and

I = IS; introducing this into (3.7) and rewriting yields

and T~7c 1  2 KiZ~)(.0

es 2 1  1 - (3.10)

Km -3- u umLc 1 ~ m
and

KM ' z - * ... ._ (3.11) I

For z/L<<I we have es= ic31u2 , 5u2 (Busch,1973) and from
Eq. (3.11) c 12 c= 1  , yielding c=0.2 and c3=0.23/2. The con-

stant c4 in Eq. (3.8) is determined by requiring the length scale

to scale with the peak in the vertical velocity spectrum, which

under convective conditions is found to approach a maximum value

Xm = 1.5H in the upper part of the boundary layer (Kaimal et.al.,

1976), whereas for z<<L Xm M 2z (Kaimal et. al.,1972). This gives

c4 =1.5k/2=0.26. The constant c 2 is set equal to 0.5 here; results

are very insensitive to the choice of this constant. The counter-

gradient flux term rc appearing in Eqs. (3.3) and (3.7) is taken

*from Bodin (1978) as

c 10.•w'e

r C (3.12)

.here w,=(g/To<w'e'>H)1 / 3 is the convective velocity scale. The

justification for the use of this counter gradient flux term in

the convective boundary layer is discussed in Deardorff (1966).
The height of the boundary layer in an important parameter en-

tering into the dynamical equations as the limiting mixing length

under convective conditionsand is determined krom the tempera-
ture profile as the height of the intersection of the temperature

profile with the line passing through the minimum with the line

passing through the minimum temperature and having a slope equal

L
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to Yc. This procedure is similar to that devised by Bodin

(1978).

Under neutral and stable conditions H is determined as the

height where the bulk Richardson number RiB exceeds the value I

with

g (68 - e0) •z

RiB = (u2 + v2) (3.13)

The value 1 for the "critical" bulk Richardson number is somewhat

higher than the values found by Mahrt (1980). It was chosen by

calibrating against the observed nocturnal boundary layer height

for Wangara day 33/34 (see below). The flux gradient relation-

ships Om and Oh are based on the expressions from Businger et al.
(1971). The expressions for unstable stratification are changed

by using the exponent -1/3 in both fm and Oh in contrast to the

original values of -1/4 and -1/2, and changing the coefficients

to z/L to give an unchanged slope for z/L + 0, this leads to the

expressions:

-- 11 for z <0

(3.14)
% z z >

I + 4.7 - for -> 0
LL =

m () 1/3 z <
0.74 1 - 14 - for 0 0

Oh = { (3.15)
z z >

0.74 + 4.7 - L
L

Under strongly convective conditions -L could become arbitrarily

small in the model, whereas in the real atmosphere the convective

motions on the scale of the depth of the boundary layer will

induce horizontal motions near the surface, which in turn will
" generate small-scale turbulence. This mechanism is discussed in

Businger(1973). The effect is simulated in the model by re-

defining the friction velocity entering into the definition of L

as:
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u2 u2 + 0.002 w( (3.16)

here us is the redefined velocity scale, u* the usual friction

velocity and w* the convective velocity scale. From Eq. (3.16)

the minimum value for -L becomes

- Lmin = 2.5 - 10-4 . H (3.17)

More properly, the minimum -L should depend on the ratio H/zo

(Businger, 1973); this can be argued as suggested by Jensen

(1982, personal communication) as follows: Under strongly con-

vective conditions the geostrophic drag law can be written as

(Wyngaard et.al., 1974)

S nk n ( (3.18)

with vanishing forcing G * 0 and u* * 0 the average wind profile

induced by the convection should match the velocity of order w,

well above the surface layer,and the induced velocity scale us
is then determined by substituting us for u.:

(*T 3 (H
a = kIn 0 3kn (3.19)

Here a is a constant of order one. Eq.(3.19) can be solved

give us=f(H/zo)w* and Lmin -g(H/zo). The expression gives only

the scale velocity in the asymptotic case of vanishing u* and

Eq. (3.16) is a simple but somewhat arbitrary way of ensuringf ! this asymptote. Businger(1973) argues that the effect can ex-

plain, at least qualitatively, why the asymptotic behaviour of

Oh' *h - (-z/L)-/ 2 found from measurements differs from what is

expected from free convection scaling *h - (-z/L)-1/31 it in

clear, however, that a quantitative evaluation of the effect re-

quires observation of H* ) in addition to surface micrometeoro-

Or measurements of the low-frequency power spectrum for the

horizontal wind components.
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logical measurements, and the results cannot be composited using

Monin-Obukhov scaling.

3.3. Simulation of Wangara day 33/34

The extensive field programme, The Wangara Experiment (Clarke,
1971) was in part aimed at providing good datasets on the bound-

ary layer structure under rather ideal conditions, and the data

2000 c £

1500-
X

1000

/ -02-,I/

500 N

0 5 10 15

(ms 1)

Fig. 3.1. Wind speed profiles at 14 h day 33 and 02 h day 34

of the Wangara experiment.(--): Model results,(x- -),

(o-o-o): Observations. (A): Geostrophic wind speed at 14 h,

(A): Geostrophic wind speed at 02 h.

__in
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obtained naturally lends themselves to the evaluation of the qual-

ity of model simulations. For a number of boundary layer models

day 33/34 of the experiment has been used for this purpose. The

main reason for choosing these two days is the relative absence

of large synoptic scale or mesoscale phenomena, which would

seriously complicate the interpretation of the boundary layer

processes. For the present purpose of the design of a mesoscale

model particularly aimed at simulation of the sea-breeze, the

diurnal variation of the boundary layer structure in response to

the surface heating, and in particular the response of the wind

profile is of interest. The wind profile was measured at the

experiment using theodolite tracking of balloons, which were

filled to rise at a constant, nominal rate enabling the wind

profile to be determined up to 2 km. The initial data for the

model was the observed wind and temperature profile at 06 hr day

33. The surface heating function was prescribed as pure sinus-

oidal during the day with maximum heating <w'e'>max=0.15 Kms
1

and following the observed net radiation. The surface radiational

cooling at night was simulated by prescribing an exponential de-

cay of the surface temperature, with decay rate and asymptotic

value determined from the observed surface temperature at night
between days 33 and 34. This ensures that the night temperature I
at the surface in the model closely follows the observed tempepe-

ture provided that the surface temperature at sunset is correct.

The geostrophic wind was specified as varying linearly in time

and varying linearly between 1 km and 2 km, using the 3 hourly

surface geostrophic winds from the synoptic network given in the

dataset*).

The model was found to predict accurately the development of the

daytime mixed layer height and temperature profile, and also the

*) The surface geostrophic wind was found by fitting a straight

line to the observed values of each of the two components in the

interval between 03 day 33 and 03 day 34.The thermal wind was

observed only at 12 hourly intervals and the values used here

were simply specified by the line connecting the values at 09

day 33 and 21 day 33.

.......
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development of the night mixed layer height. Figure 3.1 shows

the predicted and observed windspeed profiles of day 33 hour 14,

where the mixed layer is well developed, and at hour 02 of day

34, where a nocturnal jet has developed. The model shows good

agreement with the observed wind profiles in particular in view

of the uncertainty with which the geostrophic wind is measured.

The most pronounced difference is the observed decrease of

windspeed with height above 1200 m, a feature which is consistent

through the night. The thermal wind specified in the model was,

as mentioned, computed from the synoptic radiosonde network,

using six stations with separations of around 500 km, and with

three of them located at the coast (see Clarke (1971) for de-

tails). The observed decrease of windspeed above 1200 m could

therefore possibly be explained by baroclinicity not resolved by

the radiosonde network. A particular feature prominent in the

data is the development of a strong nocturnal jet, this is well

reproduced in the model, with regard to the level of maximum

windspeed, time of maximum, and magnitude.

3.4. Two dimensional model

The set of dynamical equations (3.2) for the mean flow, and the j
turbulence parameterization described above form the basis of the

model. Added in Eqs. (3.4) and (3.5) are advection by the mean

flow of the turbulent energy and the length scale, respectively.

The numerical solution of the system of equations is based on

finite difference methods. To some extent the different physical

mechanisms are treated in sequence using time splitting (Mesinger

and Arakawa,1976). The first step consists of the calculation of

the hydrostatic pressure by integration from the model top of

the hydrostatic equation, assuming a linear temperature profile

between gridlevels. The advection terms are calculated using

centered differences in time and space, and the result after the
first step are fields based on the inclusion of advection, hydro-

static pressure gradient, and coriolis terms only. The next step

consists in the inclusion of the diffusion terms by first comput-

ing the forcing by surface fluxes. The numerical method used for

------ '
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the diffusion terms is the finite-element method with implicit

time differencing. The diffusion equation can be written:

a f a a ff K (3.20)
at az 5z

assuming both f(z) and K(z) are expanded in a series of some

basic functions *i(z),viz. f(z)=fi ,i(z)*) and K(z)=Ki i(z).

Then a set of equations can be obtained for the temporal develop-

ment of the expansion coefficient fk by inserting the expansions

into Eq.(3.20), multiplying by Ok and integrating over z to yield:

afi

Aik -;t- = K fi Bik (3.21)

where the matrices A and B are constant and given by

Aik = f 0 i Ok dz

(3.22)

d d
B-tik f Ok *g - 01 . - O dzB~k z

These expressions are quite general for the spectral method for

the solution of the diffusion equation, and Eq.(3.20) can easily

be shown to give the least-square deviation for the expansion

coefficients provided the expansions of f and K are correct.
-5 With orthonormal basic functions, A would become the identity

matrix and no matrix inversion would be neccesary, but B would

generally be complicated. In the finite element method the basic

functions are chosen so as to make both A and B sparse. In the

present model the O's are chosen to be the "chapeau" functions.

The k'th chapeau function is zero everywhere except in the inter-

val form the (k-1)'th to the (k+l)'th gridpoint, it is piecewise

linear ,and takes the value of 1 at the k'th gridpoint. With a

function given as gridpoint values the expansion coefficients

for the function on this grid simply become the gridpoint values

themselves, and the expansion is correct only if the function is

Here summation over repeated indices is assumed.

i[ i • _
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piecewise linear. With this choice for *i the matrix A becomes
tridiagonal, with main diagonal

Akk - 1/3 (Azk_1+AZk) and Ak_1,k = I/6AZk I ,Ak+ ,k = I/
6 AZk-

The elements of B are given by Bk_1,k-1,k = Bk,k1,k =

- Bk.l,k,k = I/(2 azk1), Bk+1,k+1,k = Bk,k+1,k

-Bk+1,k,k = I/(2 azk), and Bk,k,k = Bk1,k,k + Bk+1,k,k

All other terms are zero. The implicit scheme for the time

differencing is a special case of the Cranck-Nicholson scheme,

employed here for the extrapolation from timestep n to n+1:

Aik (fin+1) - fin)) = Kn fXn+1) Blik At (3.23)

The next step consists in including the effect of the dynamical

pressure term. After this step the fields at timestep n+1 are

given by the result after the diffusion step plus the tendency

from the r-terms:

un+1 = u* - (1 At)

(3.24)

wn+1 = w* - lat) (2

* *

where u ,w are the fields obtained after the diffusion step.

Applying the divergence operator given as D = ( az PO)

to the (u,w) in Eq.(3.24) results in the equation

a un+1 + 1a ow n +  3 .xU* + P-l3 PoW*

(3.25)
*2 -p1 3p

xx P0 ZPO aZ

where w has been redefined by letting it absorb the at. The

continuity equation requires that the left-hand side vanishes,

and we obtain a differential equation for w. The finite differ-

ence operators corresponding to ax and 3z are centered dif-

I ferences. With D* = D(u*,w*) calculated w is obtained from the

the solution of this Poisson-type differential equation. The

boundary conditions for w are az w at the lowest level and at

A-

1 ! _ .T
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the top, and i = 0 at the lateral boundaries. The solution is

obtained by a direct method, which consists in first performing

a horizontal Fourier transform at each level. The system re-

sulting for each Fourier mode wk can be written as

(cos(2Axk)-1) + p z% P =D (3.26)

The first term in the parenthesis is the response function for

the horizontal difference operator , and Dk is the k'th

Fourier mode of D*. The boundary conditions for u and w (see

below) gives D* zero at the lateral boundaries and the Fourier

transformation can be written involving only sine terms. With a

centred difference operator for az Eq.(3.26) results in a sys-

tem of linear equations with a pentadiagonal coefficient matrix,

which can be solved by standard methods. The final step then

consists in applying the inverse sine transform to the expansion

rk at each level. To improve the speed in the computations the

operator po-1 3z poaz in eq.(3.26) was written as (po -lzPo)az

+ a zz, and with P. -lazpo computed exactly from the analyti-

cal expression for Po at each level. Using a finite element I
method similar to the method described above, the resultant lin-

ear equations have a tridiagonal coefficient matrix which is con-

stant. This system is conveniently solved by using the the

method described by Ahlberg (1977) performing the first decom-

position step once and for all.

3.4.1. Boundary conditions

The computational domain is bounded at the top by a rigid lid

where the initial values for u,v and 6 are assumed to be main-

tained and where wh = azw - w - 0. At the surface the usual

no-slip conditions are assumed, i.e. u = v = w = 0, and 3zW = 0.

The surface boundary conditions for the temperature are that over

water the initial surface temperature is maintained, whereas over

land the boundary conditions are

during the day: <w'e'> O - <w'e'>max sin t)max G:
I I " •
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at night: To = Tinitial + (Tsunset-Tinitial) exp(-t/tc)

similar to the boundary conditions used in the simulation of

Wangara day 33/34. These boundary conditions reflect the physi-

cal mechanisms of a daytime heated boundary layer with heating

governed by the solar input at the surface, and a night-time

boundary layer, where the ground surface temperature is primarily

governed by direct long wave radiation to space. The lateral

boundary conditions are 3xu = axv = axO = w = T = 0. The first

ten meters above the surface are assumed to obey surface layer

similarity theory, and the actual boundary conditions entering

into the prognostic equations are the fluxes of momentum and heat

at the first level at 10 m. This procedure is commonly used in

boundary layer models as in the model by Busch et. al.(1977). The

surface boundary condition for w is used as w(10m) = 0, thus as-

suming negligible convergence in the 10m layer.

3.4.2. Horizontal diffusion and filtering

The model equations (3.2) include no horizontal diffusion terms.

As discussed in section 2.1 the effect on the mean flow struc-

ture from horizontal diffusion should be unimportant if the flow

aspect ratio is much smaller than unity. In a numerical model the

combined effect of truncation errors in the finite difference

operators, and aliasing introduced by the nonlinear terms, will

result in large errors if no precaution is taken to damp the

small-scale features. In the present model, as in most mesoscale

models reported in the literature, the resolution is insufficient

to accurately resolve all the physical features which we want to

model. We must therefore rely on the asumption that the smallest

resolvable scales have only a negligible influence on the behav-

iour of the larger scales of motion. The relative success of

large-scale weather prediction models, in spite of similar res-

olution problems with, for example, the proper resolution of

fronts, suggests that this assumption is often justified, and
the results with the present model in the simulation of the

propagation of the seabreeze front described below also suggests

that this is a minor problem. The one-dimensional advection-dif-
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fusion equation with a constant advection velocity U and dif-

fusivity K can be written

ax a 2 x
-U + K (3.27)

With a finite difference approximation of this equation, trunc-

ation errors in the advection term will produce small-scale
noise at a rate which must be proportional to U/Ax. Similarly,

the destruction of small scales by the diffusion term must be

proportional to K/&x 2 . If we define a grid Reynolds number

as the ratio of these two numbers:

UAx
Re = - (3.28)K

we can control the amplitude of the small scales by specifying a

maximum value of Re, that is letting K depend on U through (3.28)
with Re fixed. The linear advection-diffusion equation (3.27)

will not give rise to aliasing, but in the more general form in

the model equations (3.2) aliasing will be present in the finite
treatment of, for example, the uau/3x-term, and also in the other

nonlinear terms. In the present model the neccesary horizontal

smoothing is accomplished by specifying Re as constant throughout I
the integration, and using the maximum value of u(x,z,t) at every

timestep as U in (3.28), giving the value of K used as the hori-

zontal diffusivity. The diffusion term is computed, using a 3-

point formula for axx and an explicit forward time extrapolation,
as the final step in the sequence described in section (3.4).

The above consideration s also applies to finite difference oper-

ators acting in the vertical direction. In the model a minimum
diffusivity defined for each vertical column of grid points is

adopted, using (3.28) with UAx replaced by (w(zk,t)Azk)max. The

turbulent diffusivities from the parameterization described in

Section (3.2) are therefore limited from below by this minimum

value before being applied in the model. To avoid the accumu-

lation of noise near the lateral boundaries, an increased hori-
zontal diffusion is applied in a zone near each of the lateral

t4-
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boundaries. This is accomplished by the application of a 3-point

filter (Shapiro, 1970) at every timestep in these diffusive zones.

3.5. Comparision with analytical model

The results from the linearized model described in the previous

chapter should be approximately reproduced by the numerical model

if the surface forcing is so weak that the nonlinear advection

terms are negligible, and the turbulent diffusivities are exter-

nally specified as in the linear model. Comparisons between the

models then yield an independent check on the numerical pro-

cedures with regard to accuracy, stability, and code errors. The

stability and accuracy of the individual finite-difference oper-

ators in the numerical model can be performed by standard

methods, and this kind of analysis is important in designing the

model, but the adequateness of the model as a whole can probably

be asserted only by using known solutions. The layered linear

model enables a realistic vertical profile of the diffusivity

and stratification in the boundary layer. This is important for

the detailed vertical structure of the mean profiles, and specifi-

cally for the maximum wind velocities as discussed in Section

2.8. Furthermore, the most important physical mechanism in the I
sea-breeze flow is the vertical diffusive transport of heat and

momentum; therefore, it is important that transport in particu-
lar be tested as realistically as possible. Figure 3.2a shows

examples of such comparisons in the case where the diffusivities

(Kh=Km-K) are assumed to be closely parabolic up to the top of

4 1the boundary layer, and constant above the layer as shown in

Fig. 3.2a. In addition to the diffusivity profile, this figure

shows the computed analytical u-profile at the time of maximum

surface temperature difference together with the corresponding

result from the numerical model. Here the surface forcing is

assumed harmonic also in the horizontal corresponding to the

inclusion of only one wavenumber in the analytical model (Sec-

tion 2.2); the wavelength is 7 gridunits in the numerical model

corresponding to 28 km, and the Brunt-Viisila frequency is

-- N-1/150 s- 1. Figures 3.bd show the u,v, and w components, using

the same parameters except that the stratification below the

816 m level is reduced by a factor of five.

II



-73-

K (mls'1)
o 20 40 60 80

heigth
meters

1000 I I

0

K protile

500

I 0

0

-.. -0.2 0 0.2 0.1. 0.6 0.8
V u (ms-1(deg)

Fi2 3.2a. u-component at t-6 h as function of height with

N-1-150 s, and a K-profile as shown on the figure (see text
for details); (-.:Analytical result, (o): Numerical

result.:1 44



- 74 -

I I ! ! I I
Z
meters

1000

0

0

0<
5000

0

0

0

0

* 1000
4F

o I

-1.2 -0.8 -0.'. 0 0.'. 0.8 1.2

ms 1/deg

Fig. 3.2b. As fig. 3.2a, but in the case with a jump in

stratification at 816 m with N2 1.150 s and N1-O.2*N2
(See text).
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The profiles are shown in ms- I per deg in the surface temperature

amplitude. Because of the vertical variation of the parameters,

no simple scaling exists. Using the stratification below 816 m

and the maximum diffusivity gives a length scale of 30 km in the

linear model, and thus the nondimensional wavenumber is close to

unity. This means that all terms in the linearized equations are

of comparable importance. The u and w profiles show very good

agreement between the numerical and analytical solutions. The

numerical model initially assumes zero wind conditions at the

start of the heating period, whereas the analytical model assumes

periodic solutions, i.e. any transient solutions are neglected,

and consequently differences should be expected due to the

appearance of inertial-diffusive oscillations. In this case the

numerical model was integrated for one period, and during this

time the differences between the two models show a periodic

variation with nearly constant amplitude. The contributions from

these oscillations are most pronounced in the v-profile as should

be expected, since this component is forced only through the

coriolis term, whereas the u-component is forced more directly

through the pressure gradient term. In all profiles the differ-

ences are largest at the higher levels in the boundary layer,

partly reflecting the lowered resolution in the numerical model

there. The comparisions show that the the numerical schemes are

well behaved; in particular that the time splitting, and the

sequential "correctorm method used for the calculation of the

dynamical pressure term are not introducing systematic or accumu-

lating numerical errors.

r

3.6. Sea-breeze simulations

The model has been integrated with a number of different speci-

fications of the parameters pertaining to the synoptic or large-
scale conditions. The aim has been to compare the model results

with the qualitative response of the sea-breeze flow to vari-

ations in these parameters. A large amount of observational

studies on the behaviour of the land- and sea-breezes has been
reported in the literature (see, e.g. Schroeder et al, 1962 for

references), and thus some general statements can be made re-
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garding the interdependence of the synoptic situation and the

sea-breeze flow (as summarized in Schroeder et al, 1962). Because

of the number of parameters, which can be varied in the model,

and the need to maintain physical realism, a complete study of

model response is prohibitive. As a consequence variation of

parameters was performed by using a reference set of parameters,

and varying only one parameter at a time, keeping all other at

their reference value. The parameters chosen is given by the fol-

lowing set with the reference values listed first, and the other

values chosen are listed in parentheses:

Parameters varied:

Maximum surface heatflux over land: 200 (100,400) Wm 2

Basic state surface geostrophic wind

ug : 0 ( -3, 3 )ms- 2

vg : 0 ( -3, 3 )ms- 2

Basic state thermal wind

x-component Sx , below 1500 m : 0 ( -2, 2 )ms-2/km

above 1500 m : 0

y-component Sy 0

Basic state stratification N :0.01 (0.02,0.005)s-  !
Grid Reynolds number Re: 2 ( 5)

Decay time for surface temperature excess over land at night

(e-folding time) tC : 4.2 (16.7)

Parameters kept constant:

Heating period 1/2 tH: 12 hours

Coriolis parameter f : 1.2110- 4 s-

Sea surface temperature TO: 283 K

Initial surface temperature : 283 K

Surface roughness length

over land zo: 5 cm

K over sea 0.01 mm

noPO
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Horizontal grid

128 points with a seperation of 2 km, coast at gridpoint
no 65. x=O at coast positive inland.

Diffusive zone (sect. 3.4.2) at outermost 16 gridpoints

near lateral boundaries.

Vertical grid

21 levels with increasing separation
z1=10m , Azj = 30m , Azi+1=Azi-1.23 (Azi=zi+i-z i )

resulting in ztop=z2l = 8074 m.

Timestep

0.8 times max allowable given as N-1 , and less than 2 min.

Table 3.1 shows some of the model results after integrating the

model for 8 hours. The initial data was in every case a tempera-

ture field with constant Brunt-V~isila frequency N, and a wind

field given by the geostrophic values at all levels. At 8 hours,

which is two hours after maximum heating over land, the sea-

breeze is well developed, and the maximum of the onshore wind

component u at the coast is found near this time in the case of

no synoptic forcing. In the table each column gives results from

choosing reference values of the parameters except for the par-

ameter given at the top. The first row shows the u-component at

the height of the maximum, which in all cases is near 100 m with

a very small vertical gradient below this level. Similarly, the

value of max(-v) at the coast is shown in the second row. The

next four rows show the maximum u- and v-components, and the

distance from the coast where they occur. In the case of no

large-scale forcing (first five columns), the maximum winds are

found near the coast, and the maximum values are close to those

at the coast. With onshore geostrophic wind (ug 3ms -), the maxi-

mum wind is displaced inland, and the strength of the onshore

component relative to the background value (u-ug) is reduced

roughly by a factor of two compared with the reference value.

In contrast we see that with the geostrophic wind directed off-

shore (ug)- 3ms-), the value of umak-ug is increased
mately 50%. This strong influence on the flow from even weak

synoptic forcing is also evident from the differences in maximum

vertical velocity. In the case of the synoptic forcing acting in

the same direction as the sea-breeze, the maximum vertical vel-

_I,_
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vertical velocity is only one-third of the reference value. With
Ug=-3ms- 1 the maximum w is nealyr a factor of three larger than

the reference value. These results are in accordance with obser-

vations (Schroeder et al, 1962). The row denoted AT.(O) gives the

surface temperature rise relative to the initial value (= sea

surface temperature) at the gridpoint farthest inland, where con-

ditions are nearly homogeneous in the horizontal. The boundary

layer height at the same point is shown in the last row. The sur-

face temperature is only slightly reduced in the presence of a

large scale wind, and this decrease reflects the decrease of the

superadiabatic temperature gradient near the surface, which can

be seen by comparing it with AT.(10m), which is the temperature

rise at the same point at the 10-m level. The frontal position

is defined as the point with the steepest gradient of u at the

10-m level.

The position of the front, which at this hour is weak except when

there is adverse large scale-flow present, is slightly behind the

point with maximum vertical velocity, as expected. The greater

part of the horizontal convergence is confined to the lowest few

hundred meters above ground. Figure (3.2) shows the variation of

the u-profile, at the point of maximum value, for the different

values of surface heatflux over land. The maximum values are

listed in Table 3.1, and we see that increasing the heatflux by

a factor of four from 100 Wm-2 to 400 Wm- 2 leads roughly to a4

doubling of both the maximum windspeed and depth of the inflow

layer. We can compare these with the results obtained in section

2.6 (Eq. 2.53), which can be interpreted as the relation that the

maximum speed umax is proportional to the square root of the sur-

face heatflux. This relation is followed by the model to within

10%. This square root dependence was also found by Pearson (1973).

" IIn contrast to this result we see a substantial dependence of

umax on the stratification N. In the linear model umax is pro-

portional to N-1 , whereas Eq. (2.53) predicts umax independent

of N. The numerical model thus gives a value in between these

two extremes. Table 3.2 lists model results after 12 hours of

integration, at the end of the heating period. At the coastline

the u-component has decreased compared with the values at 8

hours, but the v-component has simultaneously increased as a re-

•_ VMS
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sult of Coriolis turning, and the scalar windspeed has increased.

There is one notable exception, namely the case with a strong

initial stratification N=0.02 s- 1. In this case the v-component

is relatively reduced both at 8 hours and at 12 hours. This re-

duction of the Coriolis turning, or increase of the cross-isobar

angle of the flow, is consistent with the results obtained in

7
.7"

/3

10"

Fig. 3.3. u-profiles at t-12 h from the points with maximum

values near the ground. Unit on vertical axis is 1 km.

C-.Ref. with H =200 Wm2 (profile at x-36 kin),

(---):Ho-400 Wm 2 (50 kmn), (--:H 0- 100 WmC2 (22 kin).

4.'. K

- -2-I 0I - - _ _ _
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section 2.8. The point with maximum u and v has moved inland and

the two maxima have risen. The surface front has likewise moved

further inland, and has become stronger as is evident from the

large increase in vertical velocity. The last row in Table 3.2

shows the ratio of the average maximum u-component to the average

speed of the front between hours 8 and 12. We see that this value

is close to 2 in all cases where there is no large-scale flow in

the x-direction. This value agrees well with the value of - 2 re-

ported by Simpson et al (1977), and the value 2.2 found by Kimura

and Eguchi (1978). The strong dependence on the large-scale flow,

which is evident from the table, suggests that this agreement may

be fortuituous, however. The values obtained from the observ-

ational studies are based on the average of a large number of

observations, and we could expect a dependency from the time of

day as also suggested by Physick (1980). Table 3.3 gives the rate

of advence of the front relative to the maximum u-component for

different hours in the reference case, and for the case with

larger heatflux.

Table 3.3. Progression of the surface sea-breeze front.

A: reference case . B: Heatflux = 400 Wm-2 .

In the last case the model was run with the double number

of gridpoints in the x-direction.

A

hour : 5 7 9 11 13 15 17

frontal pos. km : 7 19 29 43 63 79 91

umax ms- i : 2.5 3.0 3.2 3.6 3.7 2.9 2.4

Sms - 1  a 0.6 1.7 1.4 1.9 2.8 2.2 1.8

2max/Ufront : 4.5 1.8 2.3 1.8 1.3 1.3 1.4

B
hour : 5 7 9 11 13 15 17

frontal pors. km t 17 30 43 61 89 111 131

umax mas-1 : 3.7 4.4 4.6 5.0 5.3 4.6 4.0

2front ms- 1 : 1.7 1.8 1.8 2.5 2.5 3.1 2.8

U max/Ufront : 2.2 2.4 2.5 2.0 2.1 1.5 1.4
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We see that in the reference case the ratio Umax/Ufront is rather

variable with a value of - 2 only between hour 8 and 12 corre-

sponding to the afternoon. After model sunset the front accele-

rates resulting in a decrease of the ratio. The value at 5 hours

is not very well defined because the front is very weak at this

hour. Figure 3.4 shows the u-profiles at 12 hours for the three

values of stratification at the points where u is largest near

the surface. We see that the profiles are nearly identical if a

4000

F
3000

4 .II

a 1000t..

0
-2 -1 0 1 2 3 4

(ms-,

Fig. 3.4. u-profiles at to 12 h and x-32 km. (--): Ref.

with N-0.01 s-- N=0.02 s-1, N-0.005 s-1.



- 86 -

proper rescaling of the vertical axis is performed. The linear

predicts a scale height proportional to /K. The model values of

the maximum diffusivity Km at the points corresponding to the

profiles are 36,7.5, and 81 m2s- for the three cases N=0.01

(ref.),0.02, and 0.005 s-1, respectively, corresponding to the

4000

3000

/

j2000 /

.X

• .2J 1000

* 4

-2 - 0 1 2 3 4 5
(ms')

Fig. 3.5. The u-component relative to the large scale flow

(u-Ug) at 12 h from the points with maximum values near

the ground. (---): Ug- 3 ms-1 (x-74 km), (--):

Ugs- 3 ms-1 (-10 km), (-o-o-): vg- 3 ms-1 (34 km),

-3 ms 34km), (-"km-): S x -2 ms /kin
(18 km), . Sx 2 ms-1/km (44 km).

-j
mmm m m W m mmm m~m mum mm m lmlmmmm n immm m m m m I ..
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ratios of VK of 1:0.5:1.5. These ratios are close to the values

which we would estimate from the figure. Figure 3.5 shows the

profiles of u-ug selected as for Fig. 3.4 but for the differ-

ent values of the large-scale wind field. The u-profiles relative
to the large-scale values are seen to be relatively insensitive

to the value of the latter, except in the case where they add to

each other, in which case a large reduction of umax results. It

should be noted that the profiles are not taken at the same x-

coordinate but at the points listed in the legend. Figure 3.6

shows the u,v, and w fields at 8 hours in more details. The maxi-

mum inflow is concentrated near the surface as is also evident

in the profiles in Figs. 3.3-3.5 (at t=12 h). The asymmetry in

both u and v is small only at this time, but in w there is a

more pronounced difference between the up- and downdraught re-

gions. The convective boundary layer over land slopes upward fol-
lowing the zero line in the w-plot until the maximum height of

approximately 1.6 km is reached; from here it has a nearly con-

stant depth as one moves inland. The downdraught is thus con-

centrated in a rather thin layer on the top of the boundary

layer with a wide extension seaward with only weak subsidence.

The same velocity fields 6 hours later (2 hours after model sun-

set) are shown in Fig. 3.7. At this time a stronger front has

been established, and has moved inland as already described I
above. The definition of the frontal position used above, as the

:4 point with largest gradient in u at 10 m, is seen to be uncriti-

4 Jcal, since the isolines in both u and v are nearly vertical near

tthe surface and essentially coinciding. At the coastline the

surface wind is nearly parallel to the coast at this time with

a comparatively large counter flow between l and 2 km. The maxi-f mum value of u has decreased relative to that at 12 hours, but

we see on the other hand that the maximum value of w has actu-

ally in-reased indicating a strengthening of the front. Compared

to the situation at 8 h, the w field at 14 h shows a downdraught

with a strength much smaller than the updraught, but again lo-

cated above and slightly seaward of the updraught zone. At this

hour the land surface has cooled and a shallow stable surface

layer has formed. The shear zone behind the surface front has
generated a region of turbulence (Fig. 3.7d), and in the upper

part of the old convective layer a decaying zone of turbulent

___ Ii
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0

-5 2 50
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Fig. 3.6a. Contour plot of u-field at t=8 h. Unit on contours

is ms- 1.

z
km

2j

20

*/0 /
-50 0 t ox0k m

Fig. 3.6b. As Fig. 3.6a but for the v-field.

energy still remains. The turbulence length scale at the same

hour is shown in Fig. 3.7e. The length scale at higher levels

near the coast is seen to be very long-lived with large values

in the old boundary layer where the turbulence energy has essen-

tially vanished. The difference in the decay of e and I is also
o- an 1.L :sas
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z
km

2 ,. 0

'" '
2-/ 0

f-2/

-50 0 50 x (kin)

Fig. 3.6c. As Fig. 3.6a, but for the w-field. Contour

interval is 1 cms

illustrated in Fig. 3.9 showing the fields of e and £ at 12 h

in the case where the large-scale wind is directed seawards

1 (ug=-3ms- 1). Here the turbulence energy produced over land de-

cays as it moves over the colder sea. The length scale survives

much further, as shown in Fig. 3.9b. The mean flow in the model

is influenced only by the turbulence fields e and I through the4 diffusivity K ~x , and therefore this behaviour of £ has only
a slight influence on the mean flow. The importance of predicting

the turbulence length scale and the turbulence energy is primar-

ily connected to the application of the model to air pollution

problems. The study of coastal meteorology has been concentrated

on the dispersion conditions in many studies in recent years, in

which case knowledge of both the mean flow and the turbulence

spectra are important. The simplest model of turbulence spectra

which can be of use in this case must enable a determination of

a timescale (Lagrangian integral scale), and a total variance.

The case of dispersion from a single point in decaying turbu-

.. ... . ...
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Fig. 3.7a. Contour plot of the u-component at t= 14 h

(2 hours after model sunset). Numbers on contours in ms
- I

(Reference case).

zI
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.50 0 sox0 km
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V Fig. 3.7b. As fig. 3.7a, but for the v-component. I
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Fig. 3.7c. As fig. 3.7a, but for the w-field. Unit cms
-1 .
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Fig. 3.7d. As fig. 3.7a, 
but for the turbulence 

energy.

Unit on contours is 
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Fig. 3.7e. As fig 3.7a, but for the turbulence length scale X.

Unit on contours is 100 m.
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Fig. 3.9a. Contour plot of the turbulence energy at t= 12 h

for the case with ug=-3ms-1 . Contour unit is m2 s -2 .
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Fig. 3.9b. As fig. 3.9a, but for the turbulence length scale.~~Contour unit is 100 m. i
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lence using a simple two-parameter model is treated in Troen et

al. (1982), where the the relevance of the knowledge of both e

and t is treated in more detail. With essentially constant

length scale and decaying energy the timescale of the turbulence

will increase, and the model thus predicts a stage in the decay

with weak and slow fluctuations in the turbulence equivalent to

the meandering often observed under light wind conditions (Kri-

stensen et. al. 1981). The modelling of the length scale in the

present model is obviously besed on a rather arbitrary prognostic

equation which however, is simple and has the correct asymptotic

behaviour in transitional periods, provided of course that the

equilibrium values ks are correctly predicted. Using instead

only the energy equation and a diagnostic value for t equivalent

to k=ls leads to a larger dissipation in the energy equation in

the decay case considered. Returning to the behaviour of the

sea-breeze front we present Fig. 3.8, which shows the u-field

at 18 h, where the front has reached approximately 91 km inland.

The maximum value for u has further decreased, but the maximum

vertical velocity (not shown) has decreased from 18 cms- 1 (at

14 h) to only 14 cms- 1 . At this point only very little further

inland progression of the front takes place.

4. CONCLUSION

The flow generated by periodic heating of the land surface while

maintaining a constant sea-surface temperature (sea-breeze) has

been investigated using analytical and numerical modelling. The

linearized equations of motion can be nondimensionalized in such

a way as to make solutions universal except for a dependence on

the scaled coriolis parameter fs=f/w, where w is the frequency

of the surface forcing. In the case when the breeze is superim-
posed on a large scale flow across the coast a strong attenuation

of the breeze circulation results. It is suggested that when the
linearization becomes invalid, at finite values of the surface

forcing, the effect on the strength of the circulation can be

IL -
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taken into account by a simple "self-advection" model. The ana-

lytical model has been generalized to include the effects of ver-

tical structure on the diffusivity and stratification. The effect

of an elevated inversion with a simultaneous jump in effective

vertical mixing and stratification prescribed, is a decrease of

the strength of the circulation when the inversion height is com-

parable with the scale height. This appears as a combined effect

of the limitation of the vertical mixing and the increased strati-

tification, which can be studied independently in the analytical

model. The analytical method requires a simplification of the

physical model, which in the case of the sea-breeze is substan-

tial. The more detailed modelling of the flow requires the use

of numerical techniques, with which the interplay of the mean

flow and the turbulent transport can be handled more realisti-

cally. The numerical described in the present report employs a

turbulence parameterization scheme, based on the turbulence

energy equation and a simple prognostic equation for the turbu-

lence length scale. The model is found to be able to reproduce

a number of observed features in sea-breeze situations, in par-

ticular a realistic formation of a sharp sea-breeze front and

the inland propagation of this front. The qualitative response

of the sea-breeze to different synoptic situations is also found

to be in qualitative agreement with observations. The prediction

of the development of both the turbulence energy and length scale
has applications to dispersion modelling in particular when a

more accurate description than offered by K-models is required,

but presently very little is known about the detailed evolution

of the turbulence field under instationary conditions, and the

study presented here offers o~ily a simple model which should be
tested by comparison with observational data before definite con-

clusions can be made as to this aspect.

The increase in frontal speed relative to the maximum speed in

the evening leads to a structure of the flow, with a small region

behind the progressing front, moving at a speed large enough to

follow the front inland, without any further air from the sea
entering into this region. This structure closely resembles the

*cut-off vortex" described by Simpson et. al. (1977). A more ac-
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curate modelling of this feature will probably require a larger

resolution in the horizontal.

An increase in horizontal resolution down to of the order of

hundreds of meters is possible within the nonhydrostatic model-

formulation, with the exception that the treatment of the hori-

zontal diffusion must be improved using possibly a formulation

along the lines followed in the treatment of the vertical dif-

fusion terms.
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LIST OF SYMBOLS

-1/2
a (fs + 1)

Aik Matrix defined by Eq. (3.22).

AWk), A(n),A k)(n) Amplitude function of a u com-

ponent corresponding to wavenumber k and

frequency w.

b (fs - 1)-1/2

Btik Matrix defined by Eq. (3.22).

C Constant defined on p. 19.

ci, c2 , c3, c4  Constants in turbulence energy equation

(p. 66).

d Depth scale

D Nondimensional value of outer radius in

Fourier-Bessel expansion (D >> 1).

D Divergence operator defined on p. 73.

D* D(u*,w*)

it: Dk Fourier component of D* with wavenumber k.

e Turbulence kinetic energy.

es  Equilibrium turbulence kinetic energy (p.65).

f Coriolis parameter.

i 11
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Fr Froude number.

f( ) function of ().

g gravitational acceleration.

g( ) function of ().

G Geostrophic windspeed.

h depth scale

H, H, depth scale, =

H Height of boundary layer.

Ho  surface heatflux.

Ho Height of boundary layer at winfinity" Xmax -

i imaginary unit, index

Jo, J1 Bessel functions of zero and first order.

k wavenumber in x-direction.

unit vector in z-direction.

kU - N/U K-. 7i

{.[ K diffusivity .1

Km , Kh diffusivity for momentum and heat.

L mixing length.

its equilibrium mixing length (p. 65).

L Length scale *N/w 47.

_ _-_. ......... ..... ........ . ....- - ,, ,
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L Honin-Obukhov length.

m stratification parameter (p. 11).

N Brunt-VAisala frequency.

p pressure.

Pj defined on p. 10.

Poo standard pressure.

q heatflux = <w'6'>

heat source term.

r scaled radius.

r constant = /2(1+i)

r* complex conjugate of r = i-/2(1-i).

R Relative deviation of potential temperature
=~ ( e-e)/e

R9 gas constant for dry air.

RiB Bulk Richardson number (p. 67).

t time.

T timescale, temperature.

To  surface temperature.

tc relaxation timescale of surface temperature
(p. 74).

tR length of day (p. 74).

ILI
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u velocity component in x-direction

~dimensional value of u (in Ch. 2).

u( ,nT)scaled value of u as function of scaled
coordinates.

u(k,n) Fourier transform defined on p. 9.

U (k )  =Re I{u(k, n) cos k t/k exp (-i T).

u, friction velocity.

U* model u-component before adding 3xw-term.

US  x-component of geostrophic windspeed.

" 1 "Uj defined on p. 12-14.

U a max value of u in the presence of a large

i advective velocity U.

U large-scale advective velocity in x-direction,

~horizontal scale velocity.

v velocity component in y-direction.

, dimensional value of v (Ch. 2).

windvector.

v(g,n,,) scaled v as function of scaled coordinates.

v(k,n) Fourier transform of v defined on p. 9.

vj defined on p. 12-14.

S v9 y-eoponnt of geostrophic windvctor.

! L - "
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w vertical component of windvector.

vdimensional value of w (Ch. 2).

w vertical velocity scale.

w(E,n,T) scaled w as function of scaled coordinates.

w(k,n) Fourier transform of w defined on p. 9.

w. convective velocity scale = (g/To<w'e'>H)1 /3.

w* model w-component before adding 32 w-term.

wj defined on p. 12-14.

x distance inland from coast.

y distance along coast.

z height.

zo  roughness length.

zi  height of i'th gridpoint.

, ± / with Re(a) < 0.

B,8 j characteristic roots (p. 10).

I j a(U

r - 30/3z

YC defined on p. 66.

defined on p. 66.

A difference operator.

Pr £ •. . _ _ _:
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Azi  grid spacing zi+ -z i .

scaled vertical coordinate = z/K-Iw

n' scaled vertical coordinate = z//K/f

e potential temperature.

dimensional value of 6 (Ch. 2).

8( ,rr) scaled 8 as function of scaled coordinates.

e(k,n) Fourier transform of 8 defined on p. 9. r

ej defined on p. 12-14.

standard potential temperature.

i 1 3 i.

v kinematic viscosity.

pressure function defined on p. 64.

.h hydrostatic pressure function (p. 64).

wk  Fourier mode of wavenumber k of w.

1scaled x-coordinate.

* latitude.

"5 defined on p. 20.

4 "l echapeaum function defined on p. 72.

- phase function of u-component corresponding
to wavenumber k and frequency a.

-Now-
dP %N-
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#0 direction of wind maximum (p. 26).

P density.

P o  standard density (p. 63).

a~ t'th root of Jo.

scaled time = wt.

T 0 scaled time of wind maximum (p. 26).

diurnal frequency, forcing frequency.

cscaled diurnal frequency w/f.

w = k U/L induced forcing frequency".

diurnal frequency.

length scale parameter- (2/L) 2 / 3 .

Iii
.1

1j
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APPENDIX

Al. Ekman problem in two-layer model

In a homogeneous stationary boundary layer the usual Ekman sol-

ution for the horizontal wind vector results from the equations

of motion if a height-independent diffusivity for momentum is

assumed. The solution for the case where the vertical mixing is

limited to some depth H, for example as a consequence of an in-

version layer at this height, can be obtained by assuming the

atmosphere to be divided into two layers with different dif-

fusivities in the two layers and matching the solutions for each

layer at the interface. Using the Ekman depth corresponding to

the diffusivity in the lowest layer for height scaling i.e. de-

fining n - z(2K,/f)1 2 , scaling wind velocity by the geostrophic

windspeed G, and using complex notation as V = G -1 (uu+

i(v-vg)) the dynamical equations ca be written:

v + a2 i a2 v - 0 (Al)

where

1 in the lower layer
a2 .

* K2/Kl in the top layer.

f The solution in each layer can be written as a sum of two complex

exponentials, and the four coefficients are fixed by application

of the boundary conditions V a -1 at n - 0 (corresponding to u

and v zero at the surface and the alignment of the real axis

along the direction of the geostrophic wind vector), V + 0 for
n + a, and the matching conditions at n - b 2 H(2K 1/f)

-1/ 2 from

the requirement of continuity of the wind vector and the momentum

flux, viz

IL

4 - . . . ... . , , _
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vl(b) = v2(b)

(A2)
a~l a2av2

a2 at n= ban an

The roots in the characteristic equation for Eq. (Al) are
± a- I f2 and the solution can be written

v = A exp((l+i)n) = B exp(-(1+i)n) (A3)

for the lower layer, and as

v - C exp(-(1+i) M))

for the top layer.

The boundary and matching conditions results in the following

equations for the coefficients:

Apb + Sp-b = Cp- b/ a  (A5)

Apb - Bp-b = - Cap-b/a

where p = exp(1+i). The solution to this system of equations is

easily obtained:

I [~a+1 p2b -A= [_-1 - I

a+1 2b 8+ 1 p2 b - (A6)

_==- T p a -- T - M

b
)I

Ji i TL~ -- a+1) 2bb 1-

1[a

--
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For a 1 corresponding to K2 f K1 (and no discontinuity) we

obtain A = 0, B = -1 and C - -1 and the usual Ekman solution

given by Eq. (A3). For the case of vanishing vertical mixing

in the top layer we have a = 0, and Eq. (A6) simplifies to:

A = - [p2 b + 11-1

(a7)

B - p2b [p2b + 11-1

The coefficient C will tend to infinity as a + 0, but as expected

the wind tends to the geostrophic wind everywhere in the top

layer as a * 0 as can be seen by combining (A6) and (A4). With
K2 - 0 undamped inertial oscillations are also possible solutions

in the top layer. The usual Ekman solution is again obtained from

(A7) if the discontinuity tends to infinity. From (A7) and (A3)

we finally obtain the wind profiles in the lower layer as

p u/G = 1 - D[cosh(n-b)cos(n-b)cosh b cosb +

sinh b sinb sinh(n-b)sin(n-b)

(A8)

v/G - D[cosh v cosb sinh(n-b)sin(n-b) -

cosh(n-b)cos(n-b)sinh b sinb]

with

D = [cosh 2b cos2b + sinh
2b sin 2bf-1

These profiles are shown on Fig. Al for different values of the
thickness of the mixed layer b. Also shown is the wind vector

at the top of the mixed layer obtained from Eq. (A8) by setting '
n b.
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Fig. A.1 The Ekman spiral for different values of the scaled

thickness of the boundary layer (see text). The numbers on

the curves give the thickness. The endpoint of each curve

corresponds to the top of the boundary layer, and the dashed

curve connects all possible endpoints.

Geostrophic value in this (u,v)-plot is G-(1,O).
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