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Abstract

---This report presents a theory of the optimal display format for

tasks that have multiple stimulus elements. Our previous research

indicates that these various elements should be presented to display

channels that employ separate resources (e.g., be distributed between

auditory and visual modalities). In this report we suggest that this

distribution should not be done to the extent that (a) the values of

the various display elements are correlated (e.g., temperature and

pressure of gas in a pipe), (b) the separate elements must be

integrated into a single mental model of the environment.

Collectively, we define these two conditions as the degree of

correlation/integration. As correlation/ integration increases, the

relative advantages of separate resources decreases. The research in

our own and other laboratories that supports this concept is reviewed.
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Wickens & Boles

The Limits of Multiple Resource Theory:

The Role of Task Correlation/Integration in Optimal Display Formatting

Christopher D. Wickens & David B. Boles

The purpose of this report is to describe a theoretical framework

for predicting the limits of application of multiple resource theory to

dual task performance. In brief, this theory proposes that two tasks

will be time-shared less efficiently if they impose demands on the

common processing resources shown in Figure 1 (Wickens, in press,

1984). The particular theoretical framework is meant to resolve some

seeming contradictions that exist in the experimental data relating

task similarity to dual task time-sharing efficiency. On the one hand,

we have demonstrated in several experiments that the more similar two

tasks are, in terms of their competition for processing resources

(i.e., input and output modalities, central processing codes), in the

multiple resources model, the greater will be the degree of task

interference (e.g., Wickens, Sandry, & Vldulich, 1983; Vidulich &

Wickens, 1982). On the other hand, there are a more diverse set of

results coming from a variety of sources that suggest the opposite

conclusion: Time-sharing efficiency improves with greater similarity

between tasks and task elements. In the following pages we shall

describe these different classes of results, and then attempt to

integrate the two contradictory classes of results within the framework

of a testable theory.

1. Attention switching. LaBerge, VanGelder, and Yellott (1971)

compared the time it took to switch attention to unexpected stimuli

that were presented along the auditory or visual modality. The stimuli

were lights or tones that required a left or right keypress response.

Attention was aligned to an expected sensory channel by a probablistic

.. . .. - " " v ,', "-'-.-.... ". . c.:? .L: .".: . "



Wickens & Boles

4---STAGES 
-

CENTRAL
ENCODING PROCESSING RESPONDING

$ VISUALVEBLOA

AUDITORY

SSPATIAL

FI8e 1. The proposed scruc.ure of processing resources (after Wickens, 1983).

I.

' q . . ' . .. ' " " " " : ':,' .2,'" ; ,:2:,?/ ;".'.,.2 :".".'.:'. : ,-. - .



Wickens & Boles 4

cueing technique, and the experimenters examined the delay in RT that

resulted when a stimulus occurred on a non-attended channel (i.e., in

-i "the stimulus modality that was not expected on a particular trial).

LaBerge et al. found an approximate 100 msec increase when attention

needed to be switched between modalities, in contrast with conditions

when attention could be maintained within a modality. In these results

there is a cost to cross-modality stimulation that appears to run

contrary to the view of multiple resource theory which predicts that

cross-modal time-sharing will be uperior to intra-modal.

These results have been echoed to some extent by other research in

our laboratory, where the advantages of employing separate input

modalities have not always been terribly robust (i.e., Vidulich &

Wickens, 1982), and have sometimes been absent altogether (Tsang, 1983;

Wickens, Kramer, Vanasse, & Donchin, 1983). In fact, in the

investigation by Wickens, Kramer, Vanasse, and Donchin, in which

subjects performed a tracking task concurrently with an evoked

potential-eliciting task requiring the discrimination of stimuli, there

was actually an advantage to the intra-modal condition, in which visual

tracking was time-shared with a visual probe task. In a related line

of research Klapp (personal communications) has reported that

monitoring of two asynchronous rhythms is easier if both are presented

to the auditory modality than if one is auditory and one is visual.

2. Integral and separable dimensions. A series of empirical

studies and theoretical analyses carried out by Garner (1970; Garner &

Fefoldy, 1970) have drawn the distinction between pairs of dimensions

that are said to be integral and those that are sparable. While the

clarity of this distinction has been challenged recently (e.g., Dykes,

1979; Smith & Baron, 1981), the original view proposed that integral
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dimensions were those in which the level along one dimension could not

be specified without specifying the other dimension. As an example,

the height and width of a rectangle are said to be integral because it

is impossible to specify the height of a rectangular stimulus without

also specifying itswidth (Dunn, 1983). If the physical stimulus did

not have width, it would not be a rectangle.

In one of Garner's paradigms (Garner & Fefoldy, 1970), integral

dimensions are shown to provide efficient parallel perceptual

processing. This processing leads to advantages when the dimensions

are correlated, each calling for the same response, but to

disadvantages when the dimensions call for different actions (see

Htntzman et al., 1975).

Kahneman and his colleagues have expanded upon this treatment by

arguing that the different dimensions of an object (which generally
.i

tend to be "integral" by Garner's criterion), all "want" to be

processed in parallel (Kahneman & Chajczyk, 1983; Kahneman & Treisman,

1984). These investigators provide data indicating the extent to which

different dimensions of an object (color and shape) facilitate each

other's processing in a cooperative fashion. An experiment by Lappin

(1967) is also highly consistent with these results. Lappin reports

that the color, size and shape of a single object can be efficiently

processed in a single tachistoscopic exposure of the stimulus. But

subjects have a far more difficult time reporting the color of one

object, the size of another and the shape of a third. The "objectness"

in the first case fosters the parallel processing of its elements.

Kahneman's recent research has established that the advantages to

dimensional perception in a single object are not simply the result of

the smaller visual angle, and therefore better stimulus quality

I.,
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relative to the control conditions with which it is compared. It is

the "objectness" and not the extent of visual space that makes the

difference.

These data are relevant to our general discussion because they

suggest that the single dimensions of an object, dimensions which are

thereby spatially and psychologically "closer" or more "proximate" than

dimensions of separate objects, are better processed in parallel, and

therefore lead to more efficient time-sharing. It is, of course, true

that this proximity is not necessarily defined in terms of the multiple

resource space. For example, we can assume that the dimensions of

either one or three objects in Lappin's experiment are all processed by

the visual-spatial resource. Nevertheless, this second category of

results shares with the first, the property that time-sharing is found

to increase with increased proximity.

3. Manual control research. A number of studies of dual axis

tracking have reached conclusions similar to those reported above:

that when two tracking tasks must be carried out concurrently,

performance of both will be better if they are combined into a single

integrated error indicator moving simultaneously in the X and Y axes,

than if they are represented as two separate indicators (see Wickens,

in press, 1983 for a summary). In fact, Navon, Gopher, Chillag, and

* Spitz (1982) have called attention to the fact that time-sharing can be

nearly perfect under such circumstances. This phenomenon represents an

example of extremely good parallel processing of two dimensions of a

single stimulus.

These research findings in manual control have been extended to

provide yet another example of a situation when time-sharing efficiency

increases with increased proximity. This extentlon is the observation

~ .~.. ~ * * ** < ~ *. *.off
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made by Chernikoff, Duey, and Taylor (1960), that dual axis tracking

will be improved when two axes have the same rather than different

dynamics. This superiority will hold even when the "different"
condition sharing axes with a higher and lower order is compared with a

"same" condition in which two tasks with higher order are time-shared

(i.e., dual axis tracking is better with two second order control tasks

than it is with a second order task time-shared with one of zero

order). Presumably it is easier for the subject to time-share two

independent axes, when only a single "internal model," or transfer

function, need be activated in working memory.

A subsequent investigation by Chernikoff and Lemay (1963)

integrated this finding with the observation of superiority of the

single tracking display reported by Navon et al. (1982). Chernikoff

and Lemay found that the cost of having dissimilar dynamics on two axes

was reduced if the displays were also separate, but was enhanced if the

displays were integrated into a single indicator. Stated in other

terms, the advantage of an integrated display was reduced when the

dynamics were different. Hence, these findings define a sort of

"compatibility of similarity." Similar dynamics are most compatible

when they are paired with similar (integrated) displays.

What, if anything, is the common theme that runs through these

findings, beyond the general conclusion that more similar task or

similar display elements can under some circumstances lead to increased

time-sharing efficiency? A major component appears to be related to

the similarity or integrality of task components. Thus in Garner's

research, when both task elements called for a common internal response

(i.e., there t "s redur" -t coding of two stimulus dimensions), then

there was an adv-,tage to integral (close) dimensions. In the manual
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control research, when the two axes called for a common integrated mode

of internal processing--that is, their dynamics were identical--

time-sharing improved, and favored an integrated display configuration.

The theory that we propose below asserts at its most general level

that the advantage to display proximity of two tasks will be increased

as the correlation/integration of task elements is increased. This

very general statement needs elaboration of each of the underlined

terms: 1) Display proximity refers both to similarity of display

Y. elements within the resource space and to similarity of elements within

a given resource. Thus, proximity may refer to two visual

configurations, as opposed to an auditory-visual (bimodal) one; or it

may refer to two spatial configurations, as opposed to a spatial and a

verbal one. Both of these cases refer to "between-resource"

similarity. Alternatively, spatial proximity may refer to two spatial

dimensions of a single object as opposed to two dimensions of two

objects (within-resources similarity). 2) The correlation/integration

(CI) of task elements defines two different concepts: (a) External

correlation refers to the correlation of stimulus values. Thus, the

pressure and temperature of a thermal process represent examples of

externally correlated variables, since high values of one typically

accompany high values of the other. So too do the aileron position and

bank angle of an aircraft or, in a different domain, the

years-in-service and pay-grade of Naval personnel. (b) Internal

correlation or integration refers to the extent to which changes in two

external stimuli (whether these are correlated or not), must be

combined together in a single internal model, before action can be

selected.

The air traffic control task offers a good example of
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integration. Although the flight courses of the various aircraft on a

given display may be uncorrelated with each other (low external

correlation), the controller obviously needs to integrate the movement

of the various aircraft together into a single internal model of the

air space before recommending an action to any one aircraft. Another

example is provided by the many attributes that must go into a decision

of whether or not a unit commander should deploy a particular force.

Here again the attributes or cue values may be unrelated to or

uncorrelated with each other (e.g., readiness status of the units,

weather patterns, intelligence reports). However, the decision clearly

requires integration of this material. According to the theory of task

integration, the air traffic control problem would be a situation

ideally tuned for display proximity, because the integration is high.

Indeed it makes a great amount of intuitive sense to present aircraft

all within one display format (visual-spatial), rather than to present

half of the craft in one format, and half in the other--or to present

latitude spatially and longitude in terms of numerical coordinates.

At the other extreme, consider a situation in which integration is

not present. Consider, for example, control of "inner loop" flight

control variables and a reading of weather patterns in an aircraft.

Information for these two tasks will best be displayed with low

proximity. There is little integration required of these two sources

since they essentially form two separate tasks rather than two display

elements of a single task. The two will thus benefit from a display

using separate resources.

The general theory we propose is represented in Figure 2a. The

ordinate is some measure of general task performance or time-sharing

efficiency (the specific measure will be seen to depend upon the
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abscissa value). The abscissa describes the degree of

correlation/integration. This may be zero--in which case the subject

is performing two independent tasks--the kind of time-sharing research

most often investigated in our laboratory--or it may range to near

"unity." An example of a unity correlation task would be two tracking

tasks with identical input functions. An example of a unity

integration task would be one in which two digits (the task elements)

must be added to produce a single output. Of course, correlation and

integration are two functionally independent concepts. Hence,

technically the abscissa should be two axes and not collapsed into a

single one. Since the theory predicts that both correlation and

integration will have the same impact on performance efficiency and

proximity, however, for the moment we chose to combine the dimensions.

Their separate effects will be considered below.

The two curves on the graph in Figure 2a describe endpoints on a

continuum of "display proximity." The "close" label may refer to two

dimensions of a single object. The "distant" label might refer to

information conveyed by the height of a bargraph and the verbal content

of an auditory (spoken) message. The difference in slopes of the two

curves--the interaction between the two independent variables--is the

fundamental property of the proposed theory.

We predict that as task elements show greater

correlation/integration, they will be progressively better served by

display configurations that are proximate. The particular

representation in Figure 2a shows a crossover interaction. That is,

greater distance will be better at low levels of C/I and worse at high

levels. This figure also shows a main effect of C/I suggesting that

tasks in general will be easier if their display elements are

--...- , .. ... .". . . . - --. . -
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correlated (this has been demonstrated in decision-making research,

Phelps & Shanteau, 1978; Medin, Alton, Edelson, & Freko, 1982) and/or

if they allow some integration of their elements into a single mental

model--therefore creating more of a single task configuration. It is

important however, to realize that the theory does not necessarily

predict the specific form shown in Figure 2a. The forms shown in

Figures 2b, c, & d are also consistent with the basic tenants, all of

which show that increasing C/I will increase the relative merits of

close versus distant configurations, whatever the absolute merits of

each configuration may be.

As we have noted, most of the research in our laboratory has taken

place at the far left region of Figure 2, and hence has been consistent

with multiple- resource theory predictions of superior performance

(time-sharing) efficiency when there is greater distance between

display formats. However we, like Chernikoff, Duey, and Taylor (1960)

have also found that there is improved performance with greater task

integration in a manual control task, when both tasks use the same

dynamics (Wickens & Tsang, 1979). A recent investigation by Scott and

Wickens (1983) examined a point closer to the right of the continuum,

using an information integration/decision task in which the reliability

and diagnosticity of a sequence of information cues needed to be

combined in order for subjects to formulate a judgment of the

likelihood that one hypothesis or the other was in effect. We

concluded that performance when these dimensions were expressed as an
.a.,

integrated object was better than when expressed as separated numerical

values, a finding consistent with the positioning of the right hand

.. part of the two curves in Figures 2a, c, and d. What we have not done

,J is to systematically vary, within an experiment the display and task

- *
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Wickens & Boles 13

correlation/Integration properties to assess the nteraction shown in

Figure 2. An accompanying report (Boles & Wickens, 1983) partially

accomplishes this purpose by determining if the interaction holds

across different sorts of integration variations, and different

manipulations of display proximity.

In more general terms, we anticipate that three general applied

guidelines could potentially flow from our research: (a) When should

spatial analog data be mixed with verbal numerical data, and when

should data of entirely one format be employed? (b) When should

"holistic" object displays like the iconic display of nuclear reactor

safety parameters (Wood, Wise, & Hanes, 1981) be employed? (c) What

are the limits/constraints on the use of voice display? Voice display

in a visual environment is an example of "distant" proximity. Hence,

when the C/I is high, voice display may not be an effective means of

presenting information. The three technical reports to follow will

address each of these issues.

It is certainly true that there are ways in which the present

theory should be elaborated. For example, we have described the C/I

dimension as unitary, whereas clearly stimulus correlation and task

integration may each be varied independently of each other. Thus,

rightfully Figure 2 should be elaborated to the three dimensional

portrayal of Figure 3, thereby increasing the complexity somewhat. In

this regard the tracking studies described above provide data that

supports the interaction of proximity with integration while Garner's

work on integral and separable dimensions with correlated and

uncorrelated stimuli provides data that supports the interaction with

correlation. Furthermore, to make matters still more complex, the

stimulus correlation dimension may itself be described in terms of

.j. ., ..: . , . . ...:. . . . . ; .." . ., -, . . ...,. ... ,. .. . ..,. . . ..j -.
,~- v . . , o .... '.. ,- , .. . ..... '.'.. \...'.- ....... .- ~ . v ',; '



11

Wickens & Boles 14

(-

.Close

w
Proximity

E

.a

,Low HighLOW.. Integration Hg

Figure 3: Predicted effects of correlation and integration on
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whether the correlation is O-lag, or is time-lagged to varying degrees

(e.g., the lag between aileron position and bank angle in aviation).
It would appear that increasing time-lag would serve to reduce the

perceived correlation and therefore shift a task toward the low end of

the C/I curve.

e,-
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