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A subset A: of nxn \Complex valueéd matrices is stable if all powers of

all matrices from the set | A' are uniformly bounded. We show that if A is a

bounded convex circular set which spans a stable linear subspace of matrices,
xpproschirng

then ;| A is stable if the spectral radius of any A ¢ A  is bounded by 1.

L "'\

AMS (MOS) Subject Classifications: 15A60, 39Aa11
Key Words: Stable norms, Numerical ranges, Hyperbolic sets

Work Unit Number 3 (Numerical Analysis and Scientific Computing)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.




W»w .

, Accession For l//'
NTIS GRA:I
DTIC TAB

| Unanneunced O

{ Juatifdicatlon ?

Ry,
; Distribution/
Availability odes
SIGNIFICANCE AND EXPLANATION ‘Avetl and/or ~
fi1st | Spectal

Al

When solving partial differential equations numerically one often has to

[
4
Q340348N1
AdOQ
o110

use iterations involving matrices restricted to a given set A of nxn

complex valued matrices. It then follows that the iteration scheme is stable

if and only if this set of matrices is stable, that is all powers of all
matrices from the set A are uniformly bounded. Such sets were completely
characterized by H. O. Kreiss. However, his criteria are hard to use.
In this paper we characterize in a very simple way stable sets of
-k ) matrices A, whenever A is closed, convex and circular. We show that
if A span a stable subspace of matrices then A is stable if and only if
for any matrix A in A the spectrum of A is contained in the unit disc
{zl € 1 in the complex plain. This paper extends the main result in MRC t

Technical Summary Report #2507.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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STABLE CONVEX SET* OF MATRICES

Shmuel Friedland

1. Introduction
Let A be a subset of M, (C), the set of nxn complex valued matrices. A is

called stable if

A* €x, m=0, 1, 2..., A €A (1.1)
Here |*{ 4is a vector norm on ¥,(C). The stable sets play an important role in the
stability and the convergencve of certain numerical schemes for partial differential
equations. See for example Richtmyer-Morton [4]. In 1962 Kreiss (2] characterized
stable sets. In particular he showed that (1.1) is equivalent to

l(:l-h)"l < c/Clzl=1) , for all |zl > 1, A €A (1.2)
The serious draw-back of (1.2) is that it is difficult to verify in general. A natural
approach is to replace (1.2) by a weaker condition assuming that A is of a certain
type. See [4] for some examples. Por A € R (C) et p{A) denote the spectral radius
of A. If A 4is a stable set then it is easy to show that

p(A) <1, AeA (1.3)
Indeed, since on finite dimensional vector spaces all the norms are equivalent it follows

p(a) = 1im 1A% V™,

we

S0 (1.3) is implied by (1.1). Recently, Friedland-Zenger (1] showed that if A gatisfies
the assumptions
(1) A is a bounded convex closed set,
(11) A 1is circular, t.e. o A= A for all read o,

(41i) A contains an open set.

Sponsored by the United States Army under Contract No. DAAG29-80-C-~0041.




Then A is stable if and only in (1.3) holda. The purpose of this paper is to replace
condition (iii), or conditions (ii) and (iii), by some other conditions such that the
stability of A is equivalent to (1.3). We now state our main results. To do that we
need the following notions.

Definition 1 Let | be a subspace of M, (C) (M (R)) - the set of n x n complex (real)

valued matrices. Denote

Lix) = { ax, A€ |, x e c(x")) (1.4)
Then is called stable if
dim L (x) = k = const. (1.5)

for all non-sero x € C'(R"). I x=n then [ is called maximally stable.

Here by ™ (X") we denote the set of n-complex (real) valued column vectors.

Definition 2 A subset A of M, (R) is called hyperbolic if each A € A has only real

eigenvalues.
Recall that A is called balanced if -A = A, We now state our two main theorems.

Theorem 1 Let A be & bounded convex closed circular set of complex valued matrices.

Denote by [ the complex subspace spanned by A. Assume that L is stable and contains .
the identity matrix. Then A is stable if and only if (1.3) holds.

* 1)
Theorem 2. Iet A Dbe a bounded convex closed balanced set of real valued matrices.
Denote by | the real subspace spanned by A. Assume that A is hyperbolic and L is
stable and contains the identity matrix. Then A is stable if and only if (1.3)
holds.
2, The complex case.
As usual, let I be the identity matrix. 1In wvhat follows we need the following
simple result. E

Lemma 1. let A C M (C) Dbe a stable set. FRut

B=(B, B=(1-a) ¢i®1 + a o!°

,A€A 0<Cact, 08, pen.
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Then B 4is a stable set.

Proof By enlarging K if necessary we may assume that | I | € X. The triangle
inequality and (1.1) imply

n o]
IB-I < Z (E) | cikﬂel(n k)p ck”_"’n kAn k'
k=0

n )
<x J B *(1-)®* = x
k=0
The above lemma shows that when studying stable sets one always can assume that I @ A.
let V be a finite dimensional vector space over C or R. As usual denote by V* the
dual space of linear functionals on V. let [I+*1 be a normon V. Then the dual norm
1+0* on V* 4igs given by
£l = gup |f(v)l| (2.1)
Ivi<t
Since V is finite dimensional 1¢1%** = j« that is
fvl = gup |£(v)]. (2.2)
1£1%<1
Also for any 0 ¥ v @€ V there exists £ € V* guch that
1= £(v) = 1£8* Qvl, (2.3)
As usual let l-l2 be the standard ‘2 norm on c
n 1
I, = (3 Ix, 0% 2, x = (xy «euy x5
2 i 1 n
i=1
Denote by 8 = {x, Ixi, = 1} the unit sphere of fel,. Por A€M (C) we dencte by

IAI2 the induced operator norm IAl, = max llxlz.

lxlzﬂ

Proof of Theorem 1. Assuming (1.3) it is left to show the backward implication. As

I € | using lemma 1 we may assume that I € A, 1let
Atx) = {2, 2= Ax, A € A} (2.4)
Assume that x € 8., Since A 1is a bounded closed convex circular set the set A(x) is

also a bounded closed convex circular set. Clearly, the set A(x) span the subspace

....... -
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L(x). Thus A(x) is a unit ball of some vector norm on [(x). We denote this norm by

l-lx. Since I @A we get that x € A(x). Next we note that x is on the boundary of N
A(x). If not then there exists 1, IAl > |, such that Ax € A(x). That is
Ax = Ax for some A € A In particular p(A) > V. This contradicts the hypothesis !

(1.3). So lxlx = 1, Naxt we identify the dual space L*(x) with L(x) by the

equality
f{x) = (x,f) (2.5)
where (°*,*) is the standard inner product in . let l'l; be the dual norm on

L (x). According to (2.3) there exists £, € L(x) such that

1= (x,fx) - lf‘l; (2.6)

r={g, t=¢ , xes} 2.7
We claim that F is bounded. Assume to the contrary that there exists a sequence
{x}. tx 1, = 1 such that ¥f. 1, + = (£ = !‘k). By taking a convergence subsequence
if necessary we may assume that X *x let Cqseee,0 be an orthonormal basis in
Vv = L(x). 8o e =dx B € LLi=1, ..., m. Pt & x " B, x.. Since
‘t,k . 01.1 = 1,s0,,m wa deduce that 'L,k....,'-.k are linearly independent for

k> N. (Assume ¥ = 1 for simplicity). As L is stable e is a basis

1,k,00., ",k .
in L(x, ). let g; x ..., %,k be a set of orthonormal vectors obtained from
® K, eee, .-,k by the Gram-Schmidt process. Clearly we can choose M, Kyees, oK
such that g, *e.. 1=1, ... , ®. et U, be a unitary matrix with the property
uk’i,k "oy i =1, -..., ». Also we can choose Uy, such that uk [ & ™at is
U, Lix,) * L(x).
As the set A is bounded, the sets A(x) are uniformly bounded for x € 8. So
B, = O Alx,) = (U, = I) Alx,) + Alx,) + Alx). As before By, is & unit ball of a

L ]
nora '.'k on Lix). It then follows that U f lies in B_ -~ the unit ball of the dual

k'k 3
* »
norm §<f . Wore precisely VU 1 = 1. as B A(x) we ismediately deduce that :
Y o i
B, * A®(x) - the unit Pall of the dual norm I+ . 1In particular B are uniformly .
g




bounded. Hence, the sequence l!kl2 - Iuktklz' k=1, 2 o0n, is uniformly bounded which
contradicts our assumption that lfkl2 > n, The above contradiction proves the existence
of C, such that

lfxl2 <C,xe8. (2.8)
To this end we show that A satisfies the Kreiss regolvent condition (1.2). Indeed, let

x€&€s8 and AE€ A Then

l((s!-n)x.!x)l . is - (Ax,f')l

—

l(ll-l)xlz >
c [

*
5 izl - I(A:'!x)l R Is] ~ lml.l!lx

[ Cc

>lel =1 _ sl - 1) ax1,
(4

[

Clearly, the above inequality holds for any x. Iat |z| > 1. Choose x = (2I-M) 'y o

get

1 [

'2‘|:|-1

1(z1-A)"

Whence, according to the Kreiss resolvent theorem A is stable. The proof of the theorem
is completed.
We nov show that the assumption that [ is stable can not be dropped. lLet | * | be the
max norm on M (C)

Al = max la,l , A= (a)® (2.9) 1

1€4,4¢n 13 1 :

Denote by llln(c) the set of all nxn upper triangular matrices. Clearly, the max nora
is spectrally dominant on o (C) Let A Dbe the restriction of the unit dall of the
max norm to L = unn(c). 80 A is a bounded convex circular set which satisfies the
condition (1.3). Clearly A is not a stable set for n > 2. Indeed, take

Ae(a ) a1 for 163, a =0 for 1> 3. Themtrix A isin A ana

5=
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the powers of A are unbounded. Clearly [ is an unstable subspace, since
aim L(".) -3, .1 - (611' seey cin)t' 1 =1 ..n.

In the next section we show that in certain sense the above L is special

3. Naximsl le .
Theores 3 let

2n-1¢ k ¢ n? (3.1)
Then “most® of k dJimgagional sybspaced of M (C) are maximally stable.

The proof of the theoram follows from some basic notions and results in algebraic
geometry. Algo, the term "most” must be formulated in the language of algebraic
geometry. We refer to Shafaverich [5] for the basic reference on the subject. In this
context we restrict ourselves to projective spaces. Recall that the n - 1 dimensional
projective space ! is the set C" = {0} where two collinear points £ and n are
identified. Let ¥ : ¢ - {0} + P ' be the above projection. If L is k (1)
dimensional subspace in c® then ¥(l) is called k ~ | dimensional subspace in

”, Vice versa, any k - 1 dimensional subspace U of ! is of the form w(l)
for some k dimensional subspace L[ in . A set of points V in ’n-i is called an

algebraic variety if W = ﬂ-'(V) is given as zero set of a finite number of homogeneous

polynominals
PL) =0, =21, vou, m T ® (2,000, 8)C" (3.2)
i 1 n .
Rere we assume that the above system of equations has & non-trivial solutions. It is well
N
known, e.g. (5], that W U W, where each W is an irreducible homogenecus variety.
i=1

If V is an irreducible variety in .4 then at "most” of it points it is a manifold.
That is, there exists a subset Uo CU euch that U, is a manifold and the closure of
U, is U. The dimension of U is defined to be the dimension of U, and we denoted it

by dim U. Then the dimension of W <-dim W is defined

-
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dim ¥ = max dim wi
1CiCN,

The dimension of the algebraic variety V - dim V in PP~V g given

dim V= dim W - 1.
The following theorem is a basic tool in theory of zero sets of homogeneous polynomials.
See for example (5],
Theorem 4 let U and W be algebraic varieties in P*. Assume that

dim U +dim W > m. (3.3)
Then U and W intersect.
Let G, ), the set of all k dimensional subspace of ¥". Soany UeG,, isan
algebraic variety of dimension k. Thus if k > m = dim W then any k dJdimensional
subspace U intersect W. 1In fact this property can be used to define the dimension of
w {5].
Theorem S Let W be an algebraic variety in P*. Then d is the dimension of W if

and only if
(1) any subspace U of dimension m -~ 4 intersets W,

(11) there exists subspace U of dimension m - 4 - 1 which does not intersect W.
In fact we claim that “most® subspaces in G, for k < m~d do not intersect W. More

precisely we claim

Lewma 2 let VW be an algebraic variety in ™ of dimension d < m. Assume t
k ¢ md and suppose that U e G-,k intersects W. Then there exists an open ﬁ
neighborhood 0 of U, 4in G, ) such that the et of all U in 0 yhich intersect o
W form an aigebrajc variety in 0. |

Proof We let n = m¢i, p = k+1 and we will restrict ourselves to C° rather than to f

. Let U, =Mv,), Y, bea p dimensional vector space in c®. By making a linear

change of coordinates of necessary we say assume that vo is spanned by the standard

basis vectors e,, ...) op. ¥We then define ( to be the set of all p dimensional

subspaces V which have & basis of the form fy, ..., tp such that

"

P
B




n
g, =, + J £ e, ,41%1, ., p (3.4)
S N Bt

Here e ,..., e, is the standard basis of c". Clearly, the neighborhood of V,
consists of all subspaces V which have a basis hyseesshy such that !
lhi - o‘lz <¢e, 4= 1 o, pPs

for a small positive €. Iet

h, = 351 h“oj. i=1..p, B = (hu), L= %eepe 3 =1, ooy e
Thus if ¢ emall enough by using elementary now operations H is equivalent to
r= “13)' 215 - 613' L= 1, coesPr I =1 ceop n, vhence, any p ~ dimensional
vector space V which is close to V, has a basis of the form (3.4). Therefore, if
Vy and V3 have basis of the form (3.4) then V4, = ¥V, if and only if the above bases
are the same. We also claim that any p dimensional vector space V can be obtained as
4 limit of subspaces V, in (. That is

lin v, =V,

toe ) _(2)

V, has a basis h,,---.hp of the form (3.4) such that

%)
lim hy

Lre

- hi
and hy  h, is a basis in V. Indeed a basis hy  __ h, in V is represented by
pxn watrix H. The subspace V Delongs to ( if the pxp minor based on the first p

columns is different from zero. Clearly, the set of such matrices H is dense in

Mon(C). Mext we claim that not all Ve intersect X = 1 '(W). Othervise all U in
K(0) will intersect W. Since P is compact all U £n the closure of MN(0) will
intersect W. That is any U € G-,k will intersect W which contradicts Theorem 5. let

Vve(O. Then V intersects X if the system (3.2) together with K

P
= t.f (3.5)




has a non-zero solution. Since (3.2) + (3.5) do not always have a non~trivial solution,
the unknowns fii' i=1.00,ps J = ptl,..., n must satisfy some non-trivial algebraic

conditions. See for example Shafarevich [5]. The proof of the lemma is completed. -

Consider next the space M, (C). We identify M (C) with - 2. 8o an_‘ can be viewed
as the set of one dimensional subspaces of nxn matrices. Let R4y be the set of non-
zero rank 1 matrices. We then claim

Kr) = ' x (3.6)
Indeed if O ¥ A is rank one matrix then A = xy*, x ¥ 0, y ¥ o.
Clearly x and y are determined up to a multiplication by scalar. 8o we have (3.6).
Recall that Rq is given by the oonditio.u that all 2x2 minors of A € Hh(C) are

zero. 8o Ry is an algebraic variety in M, (C) and (3.6) implies

dim ll(l!,) = 2n~2 (3.7)
Let L be a subspace of M,(C). Denote by L' the orthogonal subspace to L

' = (8, tx(AB) = 0 for A el). (3.8)
Clearly

ain ML) = n2<1 -amm M) (3.9)

Lewma 3. et L be a subspace of M (u). Then L is maximally stable if and only if
L TTAR) does not_intersect IH(R,).
Proof Assume that L[ is not maximally stable. Then dim (x) < n for some x ¥ 0. 8o
there exists 0 ¥ y @ cn such that

yS(Ax) = 0 for a1l A e L. (3.10)
Put B=xy* andwe get that B € L'. WVice versa if 0 » B = xy® e L' then (3.10)
holds and dim [(x) < n.

Proof of Theorem 3. let L be k ¢ n® dimensional subspace of M,(C). Satisfying

{3.1). Then

di-l(l.‘)-nz-x-‘l(nz-zn

;
[

-9~
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am Nl + atm MR < ¥,
Hence "most" of the subspaces [I (L’) do not intersect R (Ry). Hence, according to
Lesma 2, "most” of the subspaces [ which satisfy (3.1) are maximally stable. -
In fact Theorem 3 is best possible in the following sense.

Theorem 6 let | be a k - dimensional subspace of m(C). 1f

k < 2n~1 (3.11)

then | 4is not maximally stable.

Proof The above condition imply that dim H(L’) + dim l!(R1) > n?-1. According to
Theorem 4 Il (L') intersects 1 (Ry) and the result follows from Lemma 3.

Problem Characterize an open set of all stable subspaces [ of M,(C) which satisfy

(1.5) for a fixed k < n.

4.1. The real case

Let A be a set of matrices in M,(R) - the set of nxn real valued matrices. Clearly,

the definition of the stability of A involves only real valued matrices. However, if we
look on the Kreiss resolvent condition we see that it involves complex numbers and must be
stated in the space M (C) rather than in M, (R). This can be explained by the fact that
the spectrum of a real valued matrix can be complex valued. Recall that A is called
hyperbolic if the spectrum of A is real for any A € A. In that case the Kreiss
resolvent condition can be stated in M, (R).

Theorem 7 Llet A be a hyperbolic set in M,(R). Then A is stable if and only if

ltrzza)~ ') € c/tr-1), for all r > 1, A e A. (4.1)

Proof Our proof is a modification of the proof of the Kreiss resclvent condition given in
(4], p' 77-80. So we point out the necessary changes one should make. Since all the
eigenvalues of A @ A are real there exists an orthogonal matrix Q such that QA Qt is

an real apper triangular matrix. See for example Marcus and Minc [3). The rest of the

-10- .
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proof is exactly as the proof given in (4] since the values of z used there turn out to
be real values. So one uses the inequality (1.2) only ‘or 2z = 2r, i.e., one needs (4.1)

to deduce that A (s stable. L

Proof of Theorem 2 The proof of this theorem is analogous to the proof of Theorem 1. 8o

we point out the nec ary changes. We first note that the norm | 'x and its dual
I-l; are defined on real subspace L (x) of W. Since [(x) is stable as in the proof
of Theorem 1 it follows that (2.8) holds. By choosing £ to be real valued we deduce the

inequality (1.2) for lz| = r > 1. Now Theorem 7 implies that A is stable.

~lle
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