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ABSTRACT

A subset Ar of nxn c leixvaliwed matrices is stable if all powers of

all matrices from the set A are uniformly bounded. We show that if- A is a

bounded convex circular set which spans a stable linear subspace of matrices,

then ;A, is stable if the spectral radius of any A A is bounded by 1.
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When solving partial differential equations numerically one often has to

use iterations involving matrices restricted to a given set A of nxn

complex valued matrices. It then follows that the iteration scheme is stable

if and only if this set of matrices is stable, that is all powers of all

matrices from the set A are uniformly bounded. Such sets were completely

characterized by H. 0. Kreiss. However, his criteria are hard to use.

In this paper we characterize in a very simple way stable sets of

matrices A, whenever A is closed, convex and circular. We show that

if A span a stable subspace of matrices then A is stable if and only if

for any matrix A in A the spectrum of A is contained in the unit disc

zI ( 1 in the complex plain. This paper extends the main result in WRC

Technical Summary Report #2507.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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Shmuel Friedland

1. Introduction

Let A be a subset of Mn(C), the set of nxn complex valued matrices. A is

called stable if

leAti (K,n-0, 1, 2.... Aea A.

Here I1* I i a vector norm on Kn(). The stable sets play an Important role in the

stability and the convervencvs of certain numerical schemes for partial differential

equations. Se for example ,ichtmyer-Morton 141. In 1962 Ireiss (21 characterized

stable sets. In particular he showed that (1.1) is equivalent to

1(a1-A) I1 4 c/(Ixl-1) , for all 1s > 1, A e A (1.2)

The serious draw-back of (1.2) Is that it is difficult to verify in general. A natural

approach is to replace (1.2) by a weaker condition assuming that A is of a certain

type. Se (41 for ssom examples. For a e N(C) let p(A) denote the spectral radius

of A. If A is a stable net then it Is easy to show that

o (A) e 1, A e A (1.3)

Indeed, since on finite dimensional vector spaces all the norms are equivalent it follows

m tmp(A) - l IAI/ ,
ape

so (1.3) is implied by (1.1). Recently, Friedland-Senger [1] showed that if A satisfies

the assumptions

(i) A Is a bounded convex closed set,

(ii) A is circular, i.e. • 0e A - A for all real O,

(iII) A contains an open set.

Sponsored by the United States Army under Contract H. DAAG29-S0-C-0041.
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fthn A in stable it and only in 0. *3) holds. * he purpose of this paper in to replace

condition (iii), or conditions (ii) and (iii), by acme other conditions such that the

stability Of A is equivalent to (1.3). We now state our main results. To do that we

need the following notions.

Definition I Let L be a subsoace of NOWC VI) - the set of n x n olx (real)

valued matrices.* Denote

LWx - ( Ax. Ae L , Xe Cn(f))(1)

Then is called stable if

* din L Wx - k - const. (1.3)

* for all non-zero x e C'1(3'1). If ki - n then L is called maximall, stable.

Here by C1 (IN' we denote the set of n-complex (real) valued column vectors.

Def inition 2 A subset A of tn(M) i. called hyperbolic iL each A a A has only real

sigonvalues.

Recall that A is called balanced if -A -A. W e now state our two main theorems.

Theorem 1 lot A be a bounded convex closed circular mot of complex: valued matrices.

Denote by L the complex subspace soanned by A.* Assume that L is stable and contains

the identity matrix. Then A is stable if and only if (I .3) holds.

Theorem 2. taLt A be a bounded convex closed balanced set of real valued matrices.

Denote by L the real subspace spanned by A.* Assume that A is hyperbolic and L is

stable and contains the identitv matrix. * hen A Is stable if and only if (1.*3)

holds.

2. The complex case.

As usual, let I be the identity matrix. In what follows we need the following

simple result.

Leais 1. let A C n (C) be a stable set. Put

a (3D a 1 a iI + a ai A e A, 0 4 a -C 1, 0. P 63).
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Then 3 is a stable set.

Proof By enlarging K if necessary we may assume that 1 4 z. The triangle

inequality and (1.1) imply

18, ! (R 10ikS i(n-k)p k (-)n-k n-k

k-O

4 K I (R) uk(1-a)n .K
k-C

The above lemma show that when studying stable sets one always can assume that i e a.

Let V be a finite dimensional vector space over C or I.. An usual denote by V* the

dual space of linear functionals on V. Let I * be a norm on V. Then the dual nova

1i1E on V' is given by

lfI* - Sup If~v)I (2.1)

Since V is finite dimensional 1-1** - I.E that in

lvi - sup If(v)I. (2.2)
IfWO(

Also for any o ov ev there exists fe * such that

1 - f(v) - if1* 1vi. (2.3)

AS usual let 1-1 2 be the standard 12 norm on

NO1 ( Ixt 1 2)/, x - Cx1 F .... ,X ) t2- I I n

Denote by S - (x, 1012 ' 1) the unit sphere of l*1 2- For A e %(cC) we denote by

1A1l2  the induced operator norm 1A1 2 . Max lAxlE2 .

Proof of Theorem 1. Assuming (1.3) it in left to show the backward Implication. As

x e L using Lemma I we may assume that I e A. lt

AWx - (2,. a Ax, A 6 A) (2.4)

AOSse that x e a.* Since A is a bounded closed convex circular set the set A Cx is

also a bounded closed convex circular set. Clearly, the set A Cx span the subapace

-3-



LW-) Thus AWx i~s a unit bell of sone vector norm on LWx. we denote this norm by

#*I Since I eA we get that x 6 AW.) Next we note that x is on the boundary of

AMx). if not then there exist* 1, PdI > 1 such that Xx e AWx. That is

As - Xx for some A 6 A. In particular p(A) > i. This contradicts the hypothesis

(1.3). so IxI, a 1. Next we identify the dual space L*(x) with LWx) by the

equality

f(x) - (x~f) (2.5)

where (*.*) is the standard inner product in C" let I* * be the dual norm on

L Wx. According to (2.3) there exists fx e L(x) such that

I - (x, f.) -If":C (2.6)

Let

T - (f, f f f x )(2.7)

We claim that 7 is bounded. assume to the contrary that there exists a sequence

(xk), Ixk2 - I such that *f.12 + * ( - f xk). By taking a convergence subsequence

if necessary we may &asim that xk, x. Let ev ... e% be an orthonormal basis in

V - 1(x). so ei , flx, BL e L, i 1 , ... , a. Put ei.k - 31 xk,- Since

e Lk * 4101 - I,.m we deduce that ik, ... k are linearly independent for

k ), . (Assum N-I for simplicity). As L is stable e e, is abasis

in L(xk1). let gi,k,..., 9m,k be a set of orthonormal vectors obtained from

elk,.. *m by the Gram-Schmidt process. Clearly we can choose 'i ,kv.... #m9,k

such that %,k Ol1.i- , . a. ?At Uk, be a unitary matrix with the property

-ki~ "i *1 i '1 0.. Also we can choose tUk such that Uk + . That is

As the set A Is bounded, the sets A( x) are uniformly bounded for K IS S. so

B- Ok ANx) - (Elk - 1) A(xk) + MYxk + AMx. As before is a unit ball of a

norm glkon 40x. It then follows that Ukfk lies in sk - the unit bell of the duel

norm M ore precisely I U kf kIk-1 As sk *A(x) we imediately deduce that

% * (in) -the unit bell of the dual norm 1*IR. In particular % are uniformly

-4-
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bounded. Mence, the squence If Y 2  WUfI 2 , k 2, is~ uniformly bounded which

contradicts our assuption that 'fk 6 2 .* he above ontradiction proves th. existence

of C, such that

To this end we show that A satisfies the Ureiss resolvent condition (1.*2). *indeed, let

36e3a2 and A eAP Then

I~z-A~l 2)0l((zI-a)x~f3 X)I 18 - (AX't 3d'

C

131 I(Az'f x)1 121 - lAXI if If

C C

1.1 1 (12 iiz.L1x2

C C

Clearly, the above Inequality holds for any x. lot Is! > 1. Choose x - W-A)- ~Y to

get

* I(XI-Ai1 T- C

Whence, according to the Rreiss resolvent theorem A Is stable. The proof of the theorem

is completed.

We now show that the asumtion that L is stable can not be dropped. lot I*Ibe the

max norm an H.(C)

JAI - SAX I& iI , A - (a1~' (2.9)

Denote by UK n (C) the set of all nan upper triangular matrioes. Clearly, the amnr

is spectrally dominant an ton (M) Eat A be the restriction of the unit bell of the

aax norm to L - tm n (C). goI A is a bounded convex circular not which satisfies the

condition (1.3). Clearly A Is not a stable set for a 2. Indeed, take

A-(a 1j)ln 1 a, I for i ( j aij 0 for i ) .The matrix A is in A and



the powers of A are ubounded. Clearly L to an unstable subspace, since

dim W~ei 1 . , a (al .. ' a in) , ± - I, .. n.

In the next section we show that in certain sene the above L is special

3. Maximally stable sabooacee.

Theorem 3 aet

2a- 4k 4 a2  (3.1)

Th" *ost...2f k 4iANuional sabenaged o~f %(C) are maximall, stable.

the proof of the theorem follows fro som basic notions and results in algebraic

geometry. Also, the term *soets mist be formulated in the language of algebraic

geometry. we refer to shafaverich [S) for the basic reference on the subject. In this

context we restrict ourselves to projective spaces. Rescall that the n - I dimensional

projective space in'1 is the set e" - (0) where two collinear points E and q~ are

identified. Let W s C - (0) + Pn* be the above projection. If L is ki 001)

dimensional subspace in C" then WCL) is called k - I dimensional subspece in

p-. Vice versa, any k - I dimensional subspace U of i"4 1 is of the form TMCL

for some k dimensional subspaco L in e. Asto onsVi "Iis called an

algebraic variety if W M toV) i given as zero set of a finite number of homogeneous

polynominals

piO- 0, i - 1, . %) e a... (3.2)

Mere we assume that the above system of equations has a non-trivial solutions.* It is well

known, e.g. [5), that W U where each 111  is an irreducible homogeneous variety.

if V is an irreducible variety in C then at *most" of it points it is a manifold.

That is, there exists a subset U0 C U such that U, is a manifold and the closure of

00 is U. The dimension of U is defined to be the dimension of goand we denoted it

by dim U. Then the dimension of W -dim N is defined

-6-



dinW- max diu 1

The dimension of the algebraic variety V - dim V in I m" in given

dim V - dim V - 1.

The following theorem is a basic tool in theory of zero sets of homogeneous polynomials.

See for example (S].

Theorem 4 Let U and V be algebraic varieties in 1. Assme ,,that

dim U +dim W 'am. (3.3)

Then U and W intersect.

Let G6,k  the set of all k dimensional subspace of In. go any U a mk is an

algebraic variety of dimension k. Thus if k ) - dim W than any k dimensional

subspace U intersect W. Zn fact this property can be used to define the dimension of

W (51.

Theorem 5 Let V be an algebraic variety in Oa. Then d is the dimension of W if

and only if

Mi) any subspace U of dimension a - d interests V,

(ii) there exists subspace U of dimension m - 4 - I which does not intersect V.

In fact we claim that amost" subspaces in %, k  for k < m-d do not intersect W. Nore

precisely we claim

Lea 2 Let v be an algebraic variety in In of dimension d ( a. Assume that

k < m-d and suppose that U e Ga,k  intersects W. Then there exists an on

neighborhood 0 of U0  in su,k  h that the set of all U in 0 which intersect

V form an algebraic variety in 0.

Proof we let n - me+l, p - Wcl and we will restrict ourselves to d& rather than to

Ifn *1. Let Uo - 1(o), Vo  be a p dimensional vector space in C. By making a linear

change of coordinates of necessary we my asse that V. is spanned by the standard

basis vectors Ol, ..., ep. We then define 0 to be the set of all p dimensional

subspaces V which have a basis of the form fit ... fp such that

-7-



f •i + f fi ej , i.. 1, .... P. (3.4)
1-P+1

Rare e1  .. . Sn lt the standard basis of dP. Clearly, the neighborhood of Vo

consists of all subspaces V which have a basis hl,...,h p  such that

Rhi - eil 2 < €, i - 1, ...' P,

for a small positive C. Let

hi . ! h~jej1  i - l.....opU - (h1 ... h.

Thus if C mall enough by using elementary nov operations N is squlvalent to

F- (fij), fij a - 1 '£ "i 1, .... p P J " .. , n. Mene, any p - dimensional

vector sace V which In close to Vo  has a basis of the form (3.4). Therefore, if

V1 and V2 have basis of the form (3.4) then V1 - V2 if and only if the above bases

are the ese. We also claim that any p dimensional vector space V can be obtained us

a limit of aubapaces Vz in 0. That is

hLi VI - V,
Vt has a bsis hi....,h ' -- of the forn (3.4) each that

Ilhi h,

and hi, ...,hp is a basis in V. Indeed a basis hi,..., hp in V is represented by

pxn matrix R. The subspace V belongs to 0 if the pup minor based on the first p

columns is different from saro. Clearly, the set of such matrices N in dense in

lpn(W). ftxt we claim that not all V a 0 intersect I - 11 (M) . Otherwise all U in

1(0) will intersect W. since 1a is compact all U in the closure of 9(0) will

intersect W. That is any u e Gm,k will intersect V which contradicts Theorem 5. Let

V 6 0. Then V Intersects X if the syatam (3.2) together with

p

C-I tjf3 (3.5)
ji



has a non-zero solution. Since (3.2) + (3.5) do not always have a non-trivial solution,

the unknowns fljj i = i,...,p, j = p+1,..., n must satisfy some non-trivial algebraic

conditions. Se for example Shafarevich [M]. The proof of the lemm is completed.

Consider next the space Mn (C), W identify N,(c) with So . o can be vied

as the met of one dimensional subspaces of nxn matrices. lt R, be the set of non-

zero rank I matrices. We then claim

I(M1 ) " - x p-1 (3.6)

Indeed if 0 0 At is rank one matrix then A m t , x 0 O, y 0 O.

Clearly x and y are determined up to a multiplication by scalar. So we have (3.6).

Recall that R1  is given by the conditions that all 2x2 minors of a e Hh(C) are

zero. So RI is an algebraic variety in Nh(C) and (3.6) Implies

dim 1(R1 ) - 2n-2 (3.7)

Let L be a subapace of Nh(C). Denote by L1 the orthogonal subspace to L

L1 - (3, tr(AN) - 0 for A e L). (3.8)

Clearly

dim n(L 1 ) -n - -din K(L) (3.9)

Lemma 3. iAt L be a subspace of N( ). Then L is maximally stable if and only if

N(L1 ) does not intersect 1(R 1 ).

Proof Assume that L is not maximally stable. Then din (x) < n for some x 0 0. so

there exists 0 ji y e Cn such that

yt(Ax) - 0 for all A e L. (3.10)

Put s - xyt and we get that B e L1 . vice versa if 0 0 a - xy t e L1 then (3.10)

holds and din L(x) < n.

Proof of Theorem 3. Lot L be k < 62  dimensional subspace of Nn(C). Satisfying

(3.1). Then

din I (L1 ) n2 - k - I 2 a - 2n

-9-



So

dim RL) + dim g(R 1) n2-1.

Hence *mosto of the subspace. a (L
1

) do not intersect 4 (R). Hence, according to

Lama 2, "most* of the subspaces L which satisfy (3.1) are maximally stable.

Zn fact Theorem 3 is best possible in the following sense.

Theorem 6 Let L be a k - dimensional subspace of Hn(C). If

k < 2n-1 (3.11)

then L is not maximally stable.

Proof The above condition imply that dim N(L ) + dim I(R 1 ) n 2 -1. According to

Theorem 4 IT (L1 ) intersects I (RI) and the result follows from Lama 3.

Problem Characterize an open set of all stable subspaces L of Hn(C) which satisfy

(1.5) for a fixed k < n.

4.1. The real case

Let A be a set of matrices in Kn(t) - the set of nxn real valued matrices. Clearly,

the definition of the stability of A involves only real valued matrices. However, if we

look on the Wreiss resolvent condition we see that it involves complex numbers and must be

stated in the space (C) rather than in 4n(IR). This can be explained by the fact that

the spectrum of a real valued matrix can be complex valued. Recall that A is called

hyperbolic if the spectrum of A is real for any A e A. In that case the Kreiss

resolvent condition can be stated in MnR).

Theorem 7 Let A be a hyperbolic set in n(UI). Then A is stable if and only if

(rZItA) 
1 

( C/(r-I), for all r > 1, A e A. (4.1)

Proof Our proof is a modification of the proof of the Kreiss resolvent condition given in

(4), p' 77-80. So we point out the necessary changes one should make. Since all the

eigenvalues of A e A are real there exists an orthogonal matrix Q such that Q A Qt is

an real apper triangular matrix. See for example Marcus and Minc (3). The rest of the

-10-
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proof is exactly as the proof given in (41 mince the values of s used there turn out to

be real values. So one uses the inequality (1.2) only ' or a Ir, i.e., one needs (4.1)

to deduce that A is stable. 0

Proof of Theorem 2 The proof of this theorem is analogous to the proof of Theorem 1. So

we point out the necessary changes. We first note that the norm I * Ix and its dual

1-1: are defined on real subapace L(x) of I
n
. Since L(x) is stable as in the proof

of Theorem 1 it follows that (2.0) holds. By choosing a to be real valued we deduce the

inequality (1.2) for lIz - r > 1. Now Theorem 7 implies that A is stable.

I1
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