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Abstract

The size of data sets subjected to statistical analysis is increasing as computer technology
develops. Quick gstimam of statistics rather than exact values are becoming increasingly important
to analysts. We propose a new technique for estimating statistics on a database, a “top-down"
alternative to the “bottom-up” method of sampling. This approach precomputes a set of general-
purpose statistics on the database, a "database abstract”, and then uses a large set of inference rules g
to make bounded estimates of other, arbitrary statistics requested by users. The inference rules ;
form a new example of an artificial-intelligence "expert system”. There are scveral important
advantages of this approach over sampling methods, as is demonstrated in part by detailed
experimental comparisons for two quite different databases.
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"Publish?” Dan hunched forward, protecting the notebook with his knobby wrist. “No,
1 don’t publish. It’s not the point. It's not what I'm working for, my name in some Al

. Journal, I don’t have time, see?”
! “But that’s how you buy the time, publishing. How do you think somebody like )
. Czernski got the Norbert Wiener Chair of Cybernetics at -

" Anyway, why should I? Roderick’s mine, think I want (o stick him in some Al journal
) Jor everybody 10 rip-off? He’s private, he’s not another toy for some toy company, I don't
V3 want {o see him crammed inside some plastic Snoopy doll. I dor't want him grabbed up by
some Pentagon asshole to make smart tanks.”

at “Don’t know what the hell you're talking about,” Ben lit a cigarette. " Applications,
what the hell do you care about applications? Feel like I'm sitting here with Alexander
Graham Bell, he’s invented this swell gadget only he’s afraid to tell anybody about it, in
case some loony uses it to make dirty phone calls.”

John Sladek, Roderick, Pocket Books, 1980
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- Captain Kook: What in the world was THAT?!
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i Captain Kook: That big? Are you sure? p

Mr. Spook: That was a 7.895 Amplitude Shock Wave!

Mr. Spook: Positive! Look at this instrument! See? The little hand fell off Donald Duck!

Mad Magazine. /967 (in The Pocket Mad, Wamer, 1974)
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Overview ;
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S
g But the Demon of the Second Kind continued to operate at a speed of three hundred .
3 million facts per second, . . . so he greedily read everything that flew out from under the
diamond nib, the drinking songs of Quaidacabondish and the sizes of bedroom slippers
available on the continent of Cob, with pompons and without, and the number of hairs !
growing on each brass knuckle of the skew-beezered flummox, and the average width of :3-
! the fontanel in indigenous stepinfants, and the litanies of the M hot-tma-hon'h conjurers ]
‘; to rouse the reverend Blotio Ben-Blear, and the inaugural catcalls of the Duke of Zilch, -5
and six ways to cook cream of wheat, and a good poison for uncles with goatees, and twelve e
. types of forensic tickling and the names of all the citizens of Foofaraw Junction beginning -
t with the letter M, and results of a poll of opinions on the taste of beer mixed with o
mushroom syrup.... e
3 z
5 i Stanislaw Lem, Cyberiada, 1967, trans. M. Kandel (Avon, 1976) -$)
! . 7
; o
¥ ;‘}
§ \ i
g *
1.1. Introduction add
\h
¥ The critical aspccts of statistical analysis of data arc often the storage and access, not the g
statistical analysis routines themselvcs [Bates et al 82, Shoshani 82). For very large data scts this \.
: suggests special attention to charactcristics of secondary storage devices. Forthcoming devices such x
3 as videodisks, bubble memories, and special processors may improve time and space efficiency in ~
,, the ycars ahcad. but it will be difficult for such improvements to surpass those in processing power ::f
duc to mere integration and scaling down of components in VI.SI designs. 1t scems likely that j:Z_-
5 ~ 1
sccondary storage access will continuc to be the bottleneck in statistical analysis of computer data!, .
‘g -
:‘; Perhaps, however, we can trade off processing speed for storage. Statistical databases often
i ) have much redundancy in attributc values and statistics that can be predicted by other attribute :"\'
7{ 'And a corollary of Parkinson’s | aw scemis to operate in statistical anatysis: data expand to fill available memory. :.‘:
3 :f:
% N
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values and statistics. 1f we can formulate this redundancy computationally, we may be able to put it

into chcap processors and programs instcad of expensive sccondary storage. We may be able to
creatc a much smaller databasc, a “database abstract” [Rowe 81}, that preserves most of the

5, 1 information content of the original data. We can then use a number of "rcasonable guess” rules
,t from statistics (together with some “special case™ checks) to infer (impute) statistical characteristics
;"5 of the original data from the abstract -- that is, by an artificial-intelligence "expert system".

This approach shares some ground with "exploratory data analysis” (EDA) [Tukey 77]. EDA
is a loosely related sct of techniques for "getting a feel for data” in the initial stages of statistical

Jxon i

analysis, emphasizing quick and rough estimates and visual displays. It is dirccted towards
hypothesis generation, not hypothesis testing (or "confirmatory data analysis"), though it does not
preclude subsequent use of the latter on the data if interesting phenomena are found worthy of
further study. OQur objective stated in the last paragraph is very close to this. But EDA is also

i

relevant to this work in another way: we can support EDA activities by creating small, partial
database abstracts for data analysts to explore rather than full databascs. The advantages are speed
of query answering and storage savings (perhaps allowing employment of a small personal
computer).

There are, however, two disadvantages with our approach. First, our answers to statistical
questions will usually be approximate rather that exact, just as with random sampling. But for the
S user doing EDA, estimates (perhaps in the form of rough graphs) arc often perfectly satisfactory.
Seccond, we require a "closed world” database with which to work; that is, a databasc that includes
all possible data items of a given type, not just a sample of them. For instance, to rcason about the

} population of the United States we nsed records for every person in the United States, and not just
""é records for California or a 1-in-1000 random sample. However, with increasing computerization of
i“? routine data in all areas such a coverage can be quite possible.

5

ij 1.2. Overview of the approach

] |

A Figure 1-1 shows our approach. We start with a uscr and a database. The database is
i preprocessed to create a "databasc abstract”, a collection of simple statistics (mean, maximum,
3‘? mode frequency, ctc.) on important and frequently asked-about scts in the database. The user talks )
Xa, through an interface to the database abstract, asking it the same statistical questions he would ask
T : the full databasc if he had morc time (or space). If an answer is not in the databasc abstract, an

cstimatc and bounds on that ¢stimate arc inferred for it from rules. ‘These rules (400 of them in our
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currcent implementation) form an artificial-intelligence production system [Davis and King 76), and
represent distinct picces of domain-independent knowledge about statistical estimation from a
variety of of very different sources. Some (e.g., EDA rules) arc justificd on intuitive cﬁlcria. but
most can be derived mathcmatically.. by theorem-proving methods, non-lincar optimization, and
maximum entropy theory. Rulescan also be suggested by analogies to other rules,

The next chapter gives a demonstration of the implementation. Walker [Walker 80] has also
studicd database abstracts, in addressing how the abstraction operation interacts with the standard
database query operations [Ullman 81) of selection, projection and join. But his work differs from
ours in two fundamental ways: (a) it ignores statistical aggregates, and (b) it addresses the
conditions for exact answers, not what you can say about an inexact answer.

1.3. What’s wrong with sampling

Our approach provides a new alternative to random sampling for exploring a large‘dala

population at low cost. There arc several serious disadvantages to attempting to cstimate statistics

on a population by statistics on a random sample of that populationzr

1. The data may alrcady be partially aggregated in means, counts, ctc., as when there are
large amounts of data from instrument rcadings in laboratory experiments. Sampling
then is tricky, and may not be possible without detailed information about the
preaggregation.

2. Sampling is inefficient in paging. Suppose we randomly sample m items from a
databasc of p pages with k items per page on the average. We can model the
apportionment of sample items to pages as a Poisson process where the cxpected
number of pages examined in sampling is p(l-c"“’ P), approximately p(1-(1-m/p)) = m
for m < p. This will generally be considerably larger than m/Kk, the sampling ratio. So a
sample of one thousandth of a database with a hundred items to a page will access one
tenth the pages, not one thousandth,

Because of this, Morgenstein [Morgenstein 80] has proposed randomized page
assignment for databases. But this faces many problems. Randomization is very
complex when joins are involved. Randomization is difficult to maintain on updates
without reorganizing the whole database. Most important of all, randomization of
databasc pages is will markedly degrade performance for nonstatistical querics on the
same databasc, and thus is inappropriate for most large databascs, which are multi-

_ purpose.

szt of these disadvantages apply 1o to cstimation from uny sample, random or not. l'or instance. stratificd sampling

designs can only possibly answer objections 3 and 6, and only partially.
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Figure 1-1: Block diagram of the system
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3. Random sampling is also incfTicient with indexes when they are used. Since one has no
assurancc that indexes list itcms in a statistically random order, usually one must
assemble pointers to all the items in the sct to choose randomly among them. This may

- requirc much temporary storage space for the pointers, and many index page accesses,

depending on how the index is stored.

4. Sampling is a poor way to estimate extrcmum statistics likc maximum, mode frequency,
and bounds on distributional fits. Many applications can exploit such statistics.

S. Similarly, sampling is very poor for obtaining absolute bounds on statistics, which are
important for many computer algorithms based on those statistics (cf. section 7.2.2.3).

6. Sampling is "brittle": given a sample, it is hard to speculate about properties of a subset,
superset, or sibling of that set. This is serious because an EDA user may not be sure
what he wants to look at, or want to explore clusters of related sets in the course of data
analysis, or may simply make mistakes.

A random sample of a set is unlikely to be a random sample of a superset or sibling.
(We may be able to use it in a stratified random sample design for the superset or
sibling, but such designs are highly data-specific.) So if we choose a set too restrictive in
our initial query to a database, we must sample all over again for a superset, with all the
paging incfficiences doubled. On the other hand, we must also resample if we choose
too large a set to start with, for otherwise we’re sampling a sample, a poor statistical
design. (Erroncous generalizations are suggested from the accidental correlations of a
sample of a sample.) Also, the removal of points not in the subpopulation from the
sample may leave too few points for sufficiently reliable infcrences.

7. A random sample doesn’t have semantics. That is, it is of interest only as a random
sample and not as an entity in its own right as a set created by set intersections might be.

8. Sampling in the artificial world of a database makes lcss sense than in natural, real
world populations. Databases are "closed worlds” containing finite amounts of well-
characterized data, where cach datum is (in principle at lcast) cqually accessible. And
with increasing computerization of routine clerical records in many different parts of
society, computer databasc are coming more and more to be complete in covering alt of
a rcal-world population. On the other hand, real world populations, as for example
populations of people, have fluid boundarics and members of differing accessibilities.
The idea of knowing the mean exactly for some set only makes sense in a (nonsampling)
database -- we can only be more or less sure of the mean in the real world.

) corend i

Our approach of a databasc abstract of precomputed statistics plus some inference rules
compares favorably to random sampling in rcgard to each of the abovementioned points:

1. The database abstract is aggregated data.

2. Once set up, the database nced not be paged at all. Paging of the abstract will be low
(sce scction 1.7.2). And sctup can be quite cfficicnt -- cach page can be fetched in turn,
and cvcry item on a page examined.

.......

.........

L ol TP S Gk R YA Wit N




5ok AL

i
£

© e
LA RS

1. qpll‘&\“fs t PRk

et e e

S . R A PR LS L m b . - . ~cLepeln

3. Databasc index pages arc uscd cfficiently for the same reasons.

4, Inference rules can handle cxtremum statistics (e.g. maximum) ncarly as well as
normative statistics (¢.g. mean).

S. Inference rulcs explicitly infer bounds. .

6. Inference rules gracefully handle extensions of a set to supersets and restrictions of a set
to subsets; many rules explicitly address these cases.

7. Sets in the database abstract have an explicit semantics,

8. Inference explicitly takes into account the closed world nature of databases.

1.4. About rules

We now discuss the inference rules used with the database abstract.

1.4.1. The querying language _

We use a set-descriptive language for queries, in the style of relational algebra (as opposed to -
predicate calculus). Figure 1-2 gives a formal specification. Queries S(C.F,R) consist of a statistical
aggregate operator S applied to three arguments: a database relation R, a class C (or set) of items
within that relation, and an attribute F (or field) of those items. (The statistics S are defined in
Appendix A.) Rules are substitutions for a query of a particular form by a mathematical function
of the results of other queries.

This query language is cquivalent to most relational-algebra languages for database queries
[Uliman 81}, with a few additional statistical opcrators; see Appendix B for details.

1.4.2. Describing answers

Rules may give cxact or, usually, incxact answers for querics, When incxact for a statistic S,

we describe the probability distribution with four items of information (and always four items):




An arbitrary single-statistic query is in the form S(C.F.R) where
o S is a single-attributc aggregate statistical operator
o C is a set of tuples (a "class”), or "rows" of a rclation

o F is an attribute or field (which may be virtual), or "column” of a relation

o R is a relation
w43
%% S,C, R, and F are specified as follows:
oS :: SIZE | MAX | MIN | MEAN | SIGMA | MEDIAN | MODE | SIZEUNIQUE |
. MODEFREQ | MODEFREQ2 | LEASTFREQ | MAXGAP | MINGAP |
‘ % MAXEVENDEYV | MINEVENDEYV | KEYS
S
X3
e (see Appendix A for definitions of these statistics)

o C :: first-order-class | NOT(C) | AND(C,C) | OR(C,C)

(where NOT corresponds to set complement, AND to set intersection, and OR to set

union)

e o F :: schema-fieldname | ARITHOP(F) | ARITHOP2(F,F) | ABSTRACTION(F) |
. VECTORIZE(F,F)

i:\ -
By ® R :: relation-name | JOIN(R.R,F)

S5
2> e ARITHOP :: SQUARE | SQRT | LOG | ANTILOG | RECIPROCAL | ABS
. o ARITHOP? :: PLUS | DIFFERENCE | TIMES | QUOTIENT | MAX | MIN
gty

:t ‘1 o ABSTRACTION :: domain-dcpendent nonnumeric function on an attribute
*j
vy
e
o
KN

353
! _-g‘\

X

e Figure 1-2: The query language
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f e An upper bound on $ (alias SUP-S)
e A lower bound on S (alias INF-S)
® An estimate of S (alias EST-S)

o The expected standard error of that estimatc (alias ERR-S)

The bounds are absolutely guaranteed. The estimate is guaranteed (see 1.8.2) within some
criterion (say 10%) on some finite number of qucries chosen by the system designer.

1.4.3. The rule taxonomy

Our four hundred rules can be categorized along four different dimensions:

o the statistic dimension (whether it is mean, maximum, standard deviation, mode
frequency, etc.)

o the characteristic dimension (whether it is an exact answer, a bound, an estimate, or a
standard error of an estimate)

o the computational dimension (what form of queries it applics to) -- see Figure 1-3 -

o the derivation dimension (where we got it) -- see Figure 1-4

As an example, consider the rule that the largest item in the intersection of two scts cannot be
any larger that the minima of the maxima of the two sets for some numeric attribute. On the
statistic dimension, this is a rule for a2 maximum statistic; on the characteristic dimension, this is a
SUP (upper bound); on the computational dimension, this is a sct intersection rule of the tuple-
class-decomposition type; and on the derivation dimension, this is a thcorem derivable from basic
mathematics. Or consider the rule that the mode of a set can be estimated as the mode of its largest
subset. This is a mode rule on the statistic dimension; an EST (reasonable guess) on the
characteristic dimension; an upwards inheritance rule (sec 3.4.5) on the computational dimension;

and a maximum cntropy rule on the derivation dimension. Appendix C gives rule examples for all
the items in the taxonomics of figures 1-3 and 1-4.




_ 1. intraquadruple rules
2 smtistk-staﬁstic rules '
3. row (item class) decomposition
: a. subset inheritance ' »
b. sct intersection " -
c. sct union 3
N
d. set complement :.
4. column (attribute expression) decomposition A
a. unary 1-to-1 operators
b. other unary operators
¢. binary operators on corresponding values
% d. vectorization of corrcsponding values :::
’ - €. operations with constants
. 5. relation (join) decomposition ’
z 6. unusual inheritances
3 a. upwards inheritance '-:'
b. lateral inheritance %
: c. diagonal inheritance
Ky

d. attribute-hierarchy inheritance

. e. rule inheritance =
[ fe
5 . -
v 7. canonical query rearrangement )
% i
8. the closed-world rule y
i '. .
f Figure 1-3: The computational dimension of rules -
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1. basic mathematics
2. probability and statistics

~§ a. definitions
«% b. theorems

o ¢. extrema of definitions and theorems
. i. bounds on values
ii. independence assumptions

iii. linearity assumptions

i iv. nonlinear optimization
i1 _

12 v. entropy maximization

" 3. database theory

a. functional dependencies

> b. theory of inference compromise

” i. small samples and trackers

g ii. exploiting uniqueness

'

3 iii. Diophantine (integer) equations
4:” 4. ncw rules from old
; a. rule composition
- b. rule rearrangement

¢. theorem proving

d. analogics

5. reasoning from prototypical examples

Figure 1-4: The derivation dimension of rules
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1.4.4. A production system architecture

The production-system architecture frequently uscd in artificial intelligence expert systems
[Davis and King 76] is strongly suggested here:

¢ The dcrivation and computational dimensions of the taxonomy show much variety.
o Rules represent highly modular pieces of knowledge.

e So much heterogeny enables synergistic effects where several very different rules
together lead to surprising results that could not be foreseen by examining any of the
rules independently.

o There is no "complete” set of rules. There are always special cases formulable in a more
powerful additional rule, perhaps automatically (see 1.6.4); additional rules can improve
performance for particularly common or important queries. And in moving to a smaller
computer we may want to remove rules that aren’t sufficiently cost-effective.

e Production rules let us make a conceptually clean break between database-independent
knowledge (the rules) and database-dependent knowledge (the database abstract).
Note the productions are invoked by "backwards chaining”; to establish the value for a statistic you
need to establish values for others first.

1.5. Two processing examples

To make things clearcr, we show two examples of a number of different rules contributing to
answcring a query.

1.5.1. Example 1: a set size on the ships database

First, suppose a query asks for the number of Amcrican tankers in a database of ship
information3, Assume that basic statistics on American ships and tankers separately arc available,
but none for American tankers. With this information, we cannot uniquely determine the size of
the sct intersection. But for a uscr who is satisficd with an estimate, we can try the following lines of
reasoning:

1. An intersection of two scts can't be any larger than the smaller of the two. For 1000

American ships and 5000 tankers, there cannot be more than 1000 American tankers (a
SUP).

1l‘hc: statistic values here have been made up to illustrate our points.  Actually, according to the definitive source of
[1loyd's 82, there were in 1982 8645 tankers, 6133 American ships. and 361 American tankers. Other statistical information
about these ships has not been published.
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2. Sct sizes are nonncgative, so there are no fewer than zero (an INF).

_.‘4
; gee @
P 0 B XK

3. For an cstimate, use a simple log-linear model. If there arc 20,000 ships in the database,
expect 5000 * 1000 / 20000 = 250 Amcrican tankcrs (an EST).

4. For the standard crror (ERR) of this estimate, find the standard deviation of a truncated -
: exponential distribution (the maximum-entropy distribution) consistent with SUP, INF,
and EST. The math is complicated and we won’t go into it here.

5. If the modc tanker nationality occurs 140 times, there cannot be more than 140
American tankers (a SUP). Analogously, find the mode frequency of the ship type field
for the set of American ships.

IR SC A

6. Similarly, if the least frequent ("antimode™) tanker nationality occurs S times, there
cannot be fewer than 5§ American tankers (an INF).

4 5

7. Occasionally we may know a superset containing a set intersection. For instance, all
American tankers may have identification codes of a certain type, hence the number of
ships with those type codes is an upper bound on the number of Amcncan tankers (a
SUP).

I

rits

R,

8. We can infer bounds and estimates from "range analysis” of arbitrary numeric
attributes. Suppose the length range of tankers is from 300 to 1000 feet and that of
American ships 50 to 400 feet. Then American tankers must have lengths 300 to 400 -
feet.

v e et
W R A

VY
AR

ar 2

=
'

L SRR HAFAAE

If we have statistics on length subdivisions of ships, we can upper-bound the size of this
set (a SUP). Statistics for any range that includes 300-to-400, like 260-to-420, will do too
{we may partition on deciles, etc.). We can lower this upper bound, if we know the
maximum distance betwecn successive Amcrican tankers in this range, or the maximum
deviation of values across the range from some standard distribution. For instance, we
may know that vatucs arc never off more than 10% of range from where they would be
in a perfectly even distribution, in which casc for our 260-t0-420 cxample range, the
300-to-400 range can contain no more than 100/160 + .1 + .1 = 82.5% of the points in
the 260-t0-420 range.

9. We can set up Diophantine (integer-solution) equations for mcan computations and
find sets of distinct points (as opposed to ranges) consistent with those equations.
Suppose there is a numeric code for each of four basic ship types (freighters, tankers,
bulk carriers, and misccllancous) -- say 2, 3, 8, and 11 respectively. Suppose the mean
of this code ficld for American ships is 2.3. 'Then we can solve simultancously the two

AN

equations:

Z 2n; + 3n, + 8n, + 1ln, = 2.3* 1000

3 n, + n, + n; + n, = 1000

0% where variable n, represents the number of Amecrican tankers which we are looking for. -
For these equations there can only be a number of American tankers whichis a muluplc
" of 3 up to 300, excluding 297. Hence 300 is a SUP. -

In general, there arc many ways to include extra information leading to fewer solutions.
We discuss this inference method in detail in [Rowe 83b).
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‘t'o give an answer to the original query, we must combine the results of these rules. 1'o do this
we make the cumulative SUP the minimum of alf the SUPs found, and we make the cumulative
INF the maximum of all the INFs found®. In this casc, assuming items 7 and 8 do not apply, the
cumulative SUP is 140, and the cumulative INF is 5. Since there is only one EST (rule 3) and one
ERR (rule 4), we take these to be the cumulative EST and cumulative ERR; section 1.6.1 explains

what if there are more than one.

Once obtained, this query answer is useful for many other rclated queries. The size of the
union of two sets is the size of the first set plus the size of the second set minus the size of their
intersection. The size of the intersection of three sets can be obtained from statistics on the

intersection of two of those sets first, together with statistics on the third.

1.5.2. Example 2: a mean on the medical database

As a second example, we give a query on our medical (rheumatological) database, asking the
mean of the serum cholesterol, per visit, for all male patients that were taking more than 10 units of
prednisonc. We assume we know statistics on the set of all patient visits, the set of male patient
visits, and the set of visits by patients not taking significant amounts of prednisone (i.e., less than
10).

1. To get an estimatc (EST) of the mean of the intersection of two scts, we weight the
means of the two sets by the reciprocals of the sizes of the two sets. (Justification is that

the smaller set affects more the nature of the intersection.) Assume that we know there

are 550 malc paticnt visits with a2 mean of 350 for cholesterol per visit, and 130 patients

taking insignificant prednisonc with a mean of 240. We neced statistics of patients taking
significant prednisonc: g

a. For 1000 total paticnt visits, 1000-130 = 870 had significant prednisone.

b. For a cholesterol mean of 310 over all patient visits, the mean for significant
prednisone visits must be the weighted difference

(310*1000 - 240*130) / (1000-130) = 320

Hence our weighted average for the intersection is
[(350/550) + (320/870)] /7 [(1/550) + (1/870)] = 338

2. We would also like bounds (SUP and INF) on this cstimate. First we must know
bounds on the sizc of the intersection sct in order to know how much it can resemble its
two parents.

4|fx$a and x<h. then x<min(a.b); if x> a and x> b, then x> max(a.b).

Tr et
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:'_1 a. If there arc 550 male visits and 870 significant-prednisonc visits, there can be no ‘
‘ j more than 550 of the intersection. :
Y d
o b. But since there are 1000 visits total, the intersection can only "subtract out” * !
,,,& 1000-870 = 130 visits maximum from the 550 male visits, hence a lower bound on )

3 the intersection size is 550-130=420. )
X3 ]
D) ¢. We can get a better lower bound from knowing the mode (greatest) frequency of ]

prednisonc values for the set of male visits. If it is 13, and only six distinct |

3 prednisonc dosages for this patient population exist that can be considered )
59 negligible, then a lower bound on the intersection size is $50-(13*6) = 472. )
N . . .. 4

s> d. Given the mean of prednisone dosages for the set of male visits and the number of .

' such visits, we can again obtain two linear Diophantine equations to solve.

“ Hence 472 to 550 items are in the intersection set. ;
L,
Xy

v 3. We now find bounds on the mean of the intersection. For an upper bound, we pretend

Rk that 78 items were removed from the male visit set, all equal to the minimum

cholesterol level among low-prednisone dosages, let us suppose to be 138:
[(550*350) - (78*138)} / (550-78) = 385

*
5w
"} Similarly, if the maximum cholesterol level among low-prednisone visits is 740 the
lower bound on the mean is

[(550*350) - (78*740)] / (550-78) = 286

J 4. We can narrow these bounds if we know some distribution fits. That is, if we know the
3 tolerance with which the distribution of cholesterol values for male patient visits fits an
] even distribution, and it is tight, we can bound the mean of any fraction k/550 of the
1 points of this distribution, 0<k<78, and use this number rather than the minimum
' (138) and maximum (740) used in the above calculation. (We don’t have space for the
math here.)

£l
POt 5. A very different way to get bounds is if we have marked in advance as "unusual”
Ay particular statistics on intersections of two sets. If we define "unusual” as deviating
Lo more than 10% in cstimate from the actual value, then any statistic with no marking
must be estimatable within 10%, and this narrows its bounds. In this example, no
marking would mean an upper bound of 338 + 34 = 372, and a lower bound of 338
-34 = 34,

As the above examples may suggest, a varicty of sources of knowlcdge can contribute to a
query answer. The mathematics for the rules is not complex, but has rarcly been formalized before.
Note it is difficult to predict which particular reasoning path will be critical in obtaining bounds on
the answer, and thus many rules need to be tricd on the same query even though only a few will
matter in the end.
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1.6. More about rules

1.6.1. Conflict resolution

As with other production systems [Nilsson 80}, we must specify action when more than one
rule applics to the same query. Bounds rules are easy -- we just apply all of them separately, and
intersect the answer ranges. With cstimatés and standard errors we do two things in our
implementation. First, we try as much as possible to establish priority schemes among rules so that
there are "weak™ rules that arc defaults, used only when no "strong" rules apply. (And some
“strong” rules are in turn defaults of some “super-strong” rules.) Second, in the few instances
where more than one EST or ERR rule still applies to the same query, we execute the rules
separately, model the results as truncated normal distributions, assume statistical independence, and
use the standard formulae, which in the two-rule case are:

ol = l/[(l/o P+ /e 2)]
X=g0 ("1/"% + x /a%)

1.6.2. Subqueries and caching

Queries may invoke many subqueries. To avoid infinite loops, we check subquerics against a
stack of active queries, terminating analysis if a match is found. For efficiency in addition, we
check new queries and subqueries against cache of previous querics and their answers. Cached
answers may be saved over a session if users tend to concentrate on particular sets, kept at the end
of a scssion for the next onc, or pooled among a user group with similar interests. Items cached
frequently cnough could be added to the database abstract permanently.

1.6.3. Rule compilation, lower level

"Levels of knowledge” occur frequently in artificial-intelligence expert systems [Hart 82).
Upper levels represent general but hard-to-usc knowledge that can be compiled in a
computationally expensive operation into a more cfficient form. For our system there is both a
level below the rules to which they can be compiled into an cfficiently exccutable form, discussed
below, and a level above of general knowledge from which rules can be created, discussed in the

next scction.

As suggested by part 1.5, nilc‘s can work on different subquerics in parallel.  Each can be

assigned a processor, and subquery answers pooled in a common cache. In addition, rule condition
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‘l.'} testing can be made more efficient by a decision tree [McDermott, Newell, and Moore 78). Usually
: large classes of rules can be climinated by inspection; for instance, a query involving only the
interscction of scts with respect to a databasc attribute doesn’t nced rules on sct unions or

3 ?C: complements, or virtual attributes.

X
- 1.6.4. Rule compilation: upper level ﬂ
WA .
% Another kind of rule compilation is the creating of rules from underlying theories. There are ]
i—' four basic approaches: rearrangement of an existing rule or functional composition of existing rules, ~
3% symbolic optimization via theorem-proving to get bounds rulcs, entropy maximization to get

- estimates and standard-error rules, and analogies to previous rules to get both. All can be
automated in a symbolic algebra system to varying degrees.

Given the maximum, minimum, mean, and median of a set, what is the largest possible value

b
M

of the standard deviation? That is a SUP question for our system, but it is also a quadratic

5
% optimization problem. There are standard solution techniques [Gill, Murray, and Wright 81] given
W3
-:}; exact values for certain statistics. But with only approximate values denoted by ranges we require a
“_:i? kind of symbolic optimization which is much trickier, more like thcorem-proving, and whose

difficulty varies markedly from case to case.

D

‘. ;::: Rules for estimates and standard errors arc another thing altogether. In information systems 3
“J in general, the best guess for a parameter is that with least information content [Shore and Johnson J
; 81]. Formalizing this leads to the calculus of variations and a gencral solution involving agrange 1
f,"- multipliers (see Appendix to [Shore and Johnson 81]). For instance, if we know the maximum,

; ' minimum, mean, and standard deviation of a set, thc maximum entropy distribution is of the form .
aﬂ aeb(""”z. where the constants a, b, and ¢ can be determined uniquely. From this concrete ]

distribution we then calculate any statistic we want to cstimate.

b Rules can also be found by analogy. The most obvious examples are maximum and minimum .
P ';4 rules, where additions arc replaced with subtractions, maxima with minima, and minima with ‘
1

- maxima in the text of the rule. Analogics have been used extensively to obtain rules for our
A 3 implementation. [Lenat 82] gives many other sophisticated ideas for analogy generation. But

: ,‘ analogies can be mislcading, and rules postulated must always be rigorously checked.
b3
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o 1.6.5. Algebra on quadruples

.

g - Since we express query answers as quadruples, we need a special algebra for arithmetic

i opcrations on them. For bounds, the first half of the quadruples, we can use idcas from interval

SN analysis [Nickel 69, Rall 81), a branch of numcrical analysis. For estimates and standard errors, we

? can interpret the quadruples as a truncated normal distribution (the 'maximum-entropy
assumption), and use the formulas of [Haugen 68]. (Some adjustments must be made to his

: formulas to model closed world effects, like the mean of the sum of corresponding values for two

b1 numeric fields being exactly the sum of the means of the two ficlds instead of just an

approximation, because one is drawing without replacement from a population.)

1.6.6. Our methods in distributed systems

The accuracy of estimates by these methods may vary considerably. When an estimate is
unsatisfactory, the user should be able to go to the full database to get the exact answer. (Thus is

5

19,

true of our current implementation.) Thus our methods have particular application to distributed
computer systems. In particular, we envision the database abstract and rules at local nodes, perhaps
5 within small personal computers, with the database at a remote site only accessed when
occasionally.

1.6.7. Easy extensions

AATEN IR

Nulls that represent unknown values can be treated by taking statistics on the nonnull portions

by

of the set, and inferring upwards to characteristics of the full set including the nulls. Inexact data

>

can be formulated as quadruples, and treated by our special algebra directly.

-

« 1.7. The database abstract as a database 5
'.:3 A database abstract plus rules can provide significant savings in both space and time over usc
'ff of a full databasc for statistical computation. q
3 3
b :.:1
‘B
b .~‘1
f 2
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1.7.1. Storage space

Database abstract entries are best grouped by sets. A bit string headcr for cach set can indicate -
’ which statistics arc kept and to how many bits of accuracy, and the values can follow in a compact
BN ‘ form. Sets can be accesscd by an index on their names; any set with at least one stored statistic will ;
§ be put in this index.
% Rule storage should be comparatively negligible. Rules are short and simple, and use very few 1
3 symbols which can be encoded in very few bits, using the taxonomy. Triggering conditions can be )
" compacted in decision trees, with potential parallclisms indicated by a fow additional pointers; since '
we anticipate 1000 or so rules in even sophisticated systems, pointers need not be large. The rule
74 interpreter itself need not be large. ;
1 ﬁ ; Though the database abstract is a compression of a databasc, other compression mcthods may
i apply too. We can store low order bits for a statistic value, and infer high order bits by inference - F
4“5 ) rules. That is, use a statistic on American ships as a "base register” value, and kecp only the
! * "offset” to the American tankers value with the statistics for American tankers. ]
Y J
The number of database abstract entries necessary to achieve a certain level of answer accuracy ’
"{% is difficult to say, though we are developing a theory. But note information thcory cannot be
’ cheated: a database abstract can only contain a limited number of bits, for answering with limited
v ' accuracy a limited number of nonredundant queries. ]
\ 1 1.7.2. Time considerations
N Our system can be quite fast if desired. Cached information from previous queries makes a
big difference. We expect page faults to be low for the database abstract because:
: ¢ it will be smaller (generally, much smaller) than the full database, and all or part of it

might reside permancntly in main memory;

o usually there arc not many scts relevant to a query (just the onces explicitly mentioned in
it), hence many fewer retricvals than for the same query on the full database;

o putting all the statistics for the same set on the same page greatly increases locality of

references. -
9y
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1.8. Loading the database abstract

Choosing which statistics on what sets to store in the database abstract involves art as well as

science, but some guidclines are possible.

1.8.1. Chosing the first-order classes

Sets representing simple concepts, e.g. “"tankers”, "American ships”, "ships in the
Mediterranean”, are what we call first-order sets. While their statistics can sometimes be close to
statistics on entire database relations (important things to have a lot of information for), it is
statistically unlikely this will be a good estimate in general. So we must keep many statistics about
first-order sets explicitly in the database abstract. Then when there is sufficient extra room we can
include second-order sets (the intersections and unions of two first-order sets) and higher-order sets.
Our approach works best for databases where attributes are correlated only is simple ways and few
such higher-order sets are needed to capture subtleties. Note if there are n first-order classes there
are O(nz) intersections of any two of those, 0(n3) intersections of any three of those, and so on

-- numbers increase rapidly.

First-order sets may be dictated by the needs of a user community. When choice is possible,
they should be large enough to matter (say 10 items or more), and should represent reasonably even

subdivisions of a database, consistent as possible with the way human beings cluster concepts.

1.8.2. Closed world reasoning

We mentioned an important idea in the last point of section 1.5.2. A useful trick for setup of
the database abstract is to only enter "unusual” statistics, defined to mean that the rule-inferred
value is within, say, 10% of its actual value. Since this involves effort in advance, we only check this
for a limited “"guarantee” sct of qucries. Generally this means only queries on scts larger than a
certain minimum and relatively simple in description (like all queries involving three or fewer scts).
So we have a new and powerful inference rule for answering queries, the "Closed World Rule™: if a
query is in the guarantced query set and the answer is not in the databasc abstract, then the answer
found by inference rules is within 10% (or else the answer would have been loaded).
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1.8.3. Monotonicity
A complication of the preceding rule is that when new information is placed in the database .
) abstract it may lessen the accuracy of answers to previous queries, causing what we call
} nonmonotonicity. For example, suppose we cstimate the mean of the intersection of three sets by ’
3‘; the average of the means of the three sets. Suppose we add to the database abstract the mean of the
intersection of two of those sets, where this mean is far off from the mean of three sets taken
g:, together. We will get a poorer answer for the mean of the three sets after adding this new
: f:‘j information. An answer that was within 10% before and did not need to be represented explicitly in
‘?_1‘ the database abstract may now need to be, and the closed-world rule cannot hold.
‘ j There is a way out if we can impose a consistent partial ordering on all queries, where query A
‘% is partially ordered with respect to to query B if B is a subquery generated in processing A. If we
" : then load the database abstract in some linearization of the partial ordcring we cannot interfere with
» the closed-world rule. This means loading first-order set statistics before second-order, second-
“;‘ order before third, and so on. It also means ordering different statistics on the same sets, as mean
,-;: before maximum, and standard deviation before mean.
£24 .
A consistent partial ordering does require restriction of the class of possible inference rules.
_? We are trading off the power of a number of miscellaneous "backwards" inference rules for one
\"'ﬁ really powerful rule, the Closed World rule. (We can still use the backwards rules in answering
N queries, just not during loading.)
‘;; 1.9. Handling updates to the database
N
} When the full database is updated, the database abstract must remain consistent. This is not a
problem for much statistical data since much of it is never updated [Shoshani 82]. But we can
‘ handle it by a set of update rules; [Koenig and Paige 81] provides a formal framework for
4 f‘-"fl developing them. Some updates are much easier to handle than others (c.g. to mean, standard
8 deviation, set sizc), only requiring knowledge of the value updated, whereas others (c.g. median and
- mode) usually rcquire expensive recomputation on the full database and hence may not be
ok practical
W
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g 1.10. Evaluation

N .
X |

' . Evaluation of the performance of our system is a complex issue. In chapter 6 we will show for

two particular databases that our methods compare favorably to several simpler alternatives in

regard to both space and time, without sacrificing large amounts of accuracy.

o

o

5k 4
T

1.11. Extensions and applications

o We can add various kinds of correlation statistics and rules to estimate them.

S

2
Sal
‘53

e We can include reasoning about possible distinct values.

e We can use graphics or linguistic hedges to capture fuzziness of query answers.

e When sufficiently standardized, the database abstract and rules can be put into

hardware.

<t e Our set-size rules can estimate sclectivitics for general query optimization (cf.

B [Christodoulakis 81]).

N

Pk

Zi’ . ® Rules provide ideas for compromise methods for work in inference security of statistical
databascs [Rowe 83b). But more importantly, our system provides a testbed for this
research. much of which has focused on small numbers of inference rules in

; ", - compromise, ignoring synergism between quitc different sorts of rules.

1

* e Rules raisc important issues for artificial intclligence. They allow extension of the
B\ notion of inheritance to statistical properties, filling a key gap in representation-of-

knowledge research, and demonstrating the adequacy of scts as the building block of a
knowledge representation system [Rowe 82].

1.12. Organization of the thesis

Chapter 2 gives a demonstration of our implementation for the two test databascs, Chapters 3
and 4 describe our methods: chapter 3 covers the rules, and chapter 4 the databasc abstract.

:'.g Chapter § concerns our specific implementation of these methods, and chapter 6 presents a formal

s J
R cvaluation of their success. Finally, chapter 7 points out somc additional cxtensions and .
i applications.
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Chapter 2
Demonstration

Dost see thy leg? I'll take thy leg away from thy stern if thou speakest to me of the
merchant service again. Merchant service indeed!

Hennan Melville, Moby Dick

We have a demonstration system under Interlisp on a DEC-20. Two test databases were used,
onc containing merchant shipping data, and one containing medical-patient clinic-visit data. As
discussed, the system attempts to answer statistical queries about a database. It gives fast answers, at
the expense of accuracy, in the form of quadruples. A good deal of reasoning goes on beneath the
surface of this protocol, discussed in chapters 3, 4, and 5.

2.1. The merchant shipping database

The database used for development consists of a single relation containing propertics of
merchant ships. In what follows, INMED denotes the set of ships in the Mediterrancan; NATLI,
Liberian ships; and ALI, ships of a particular subclass of tankers. The database abstract first
includes simple statistics on all first-order (single-word-name) scts. No closed-world guarantees are
offered, and no correlations between attributes are exploited. The system does not actually
understand English; we have paraphrased the queries to make it easier to see what is going on,

printing this after the " =" sign.

10— (SET'Q ABSTRACT 'FIRST.ORDER)
= We want to use a database abstract consisting only of statistics on sets with single-word names.

R L o
oo Do, Bos .

11-(SEIQ GUARANTEE 'NOGUARANTEE)

= We do not want to use any 20% closed-world guarantee (sce scction 1.8.2).
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{We now print out some statistics on the first-order scts we will be querying, to give a flavor of

2 '; ‘ what facts the rulc-based reasoning works with. We have edited out statistics on the latitude and

in ship-type attributes of these sets as they arc not relevant to the demonstration.] . -

?5 5 12— (STUDY "ALI)
7.,»'5 = List the statistics on the set of type ALI tankers.

. (SIZE 121 MAXLONG 17° MINLONG 2 MEANLONG 435 SIGMALONG 36.7
” ,,;:‘ MEDIANLONG 31 MAXGAPLONG 27 MINGAPLONG 1 MODELONG 24
«g: MODEFREQLONG 19 SIZEUNIQUELONG 44 LEASTFREQLONG 1 MODEFREQ2LONG
i«'_,; 18 MAXEVENDEVLONG .03 MINEVENDEVLONG -.56 MODENAT UR MODEFREQNAT

. 33 SIZEUNIQUENAT 27 LEASTFREQNAT 1 MODEFREQ2NAT 15)

i" é [Read these codes as follows (see Appendix A for more explanation of the statistics):
S SIZE 121 = there are 121 type-ALI ships

- MAXLONG 179 = their maximum longitude is 179 degrees
{1 MINLONG 2 = their minimum longitude is 2 degrees
Y MEANLONG 43.5 = their mean longitude is 43.5
_ SIGMALONG 36.7 = their standard deviation is 36.7

. MEDIANLONG 31 = their median is 31
MAXGAPLONG 27 = the largest gap between successive ordered longitudes is 27
z _ MINGAPLONG 1 = the smallest gap between successive ordered longitudes is 1
ED N

MODELONG 24 = the mode longitude is 24

MODEFREQLONG 19 = the frequency of the mode is 19
SIZEUNIQUELONG 44 = there are 44 distinct longitude valucs
LEASTFREQLONG 1 = the least frequent longitude occurs once
MODEFREQ2LONG 18 = the second most common longitude occurs 18 times
MAXEVENDEVLONG .03 = fits an even distribution with upper limit .03
MINEVENDEVLONG -.56 = fits an even distribution with lower limit -.56
MODENAT UR = most common nationality is UR (Russian)
MODEFREQNAT 33 = its frequency is 33

SIZEUNIQUENAT 27 = there are 27 distinct nationalitics

; X LEASTFREQNAT 1 = the least common nationality occurs once

e

5 ;} MODEFREQ2NAT 15 = the sccond most common nationality occurs 15 times]

I 13—(STUDY 'NATLI) | )
\ = List statistics on the sct of Liberian ships.
A
%)
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(SIZE 90 MAXILONG 168 MINLONG 3 MEANIONG 463 SIGMALONG 29.0
MEDIANIL.ONG 47 MAXGAPLONG 29 MINGAPIONG 1 MODELONG 49
MODEFREQLONG 21 SIZEUNIQUELONG 32 LEASTFREQLONG | MODEFREQ21.ONG
10 MAXEVENDEVLONG .06 MINEVENDEVI.ONG -.55 MODENAT LI MODEFREQNAT
90 SIZEUNIQUENAT 1 LEASTFREQNAT 0 MODEFREQ2NAT 0)

[To get a statistical estirnate in our system, one invokes the function ANS with three
arguments: query set, queried statistic, and query attribute (the latter being null for SIZE and
KEYS statistics). Our queries in this demonstration take up four lines:

1. the formal query definition in our query language, what is actually typed to our system
2. a paraphrase in English (after an " =" sign)
3. the answer quadruple returned by the system, using the database abstract and rules

4. the actual answer, obtained from going to the original data and computing from it]

14— (ANS '(AND ALI NATLI) 'SIZE)
= How many type ALI Liberian tankers arc there?
(GUESS: 18.0 GUESS-ERROR: 3.855017 UPPER-LIMIT: 24 LOWER-LIMIT: 11)
(ACTUAL ANSWER IS 11)

15— (ANS *(OR ALI NATLI!) 'SIZE)
= How many ships are cither type ALI or Liberian?
(GUESS: 193.0 GUESS-ERROR: 3.855017 UPPER-LIMIT: 200 LOWER-LIMIT" 187)
(ACTUAIL. ANSWER IS 200)

16— (ANS '(AND ALI NATLI) 'MEAN 'LONG)
= What's thc mean longitude of a type ALI Liberian tanker?
(GUESS: 44.88269 GUESS-ERROR: 33.04689 UPPER-LIMIT: 168 LOWER-LIMIT: 3)
(ACTUAIL. ANSWER IS 48.54545)

17—-(ANS *(OR ALI NATLI) 'MEAN 'LONG)
= What's the mean lougitude of ships that arc either type ALI or Liberian?
(GUESS: 44.67642 GUESS-ERROR: 3.083323 UPPER-LIMIT: 50.23529 LOWER-LIMIT:
26.975)
(ACTUAL ANSWER IS 44.465)
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[Notice from a comparison of query 14 with query 15, and a comparison of 16 with 17. that the
unions give better estimation results than the intersections. This is true almost always for any two

query sets.]
[Now let’s introduce a third set, the sct of all ships in the Mcditerranean (on a particular date).]

18 -(STUDY "INMED)
= Give statistics for all ships in the Mediterranean.
(SIZE 366 MAXLONG 79 MINLONG 3 MEANLONG 34.1 SIGMALONG 143
MEDIANLONG 31 MAXGAPLONG 8 MINGAPLONG 1 MODELONG 24
MODEFREQLONG 83 SIZEUNIQUELONG 46 LEASTFREQLONG 1 MODEFREQ2[.ONG
64 MAXEVENDEVLONG .14 MINEVENDEVLONG -.29 MODENAT LI MODEFREQNAT
69 SIZEUNIQUENAT 38 LEASTFREQNAT 1 MODEFREQ2NAT 68)

[The following query answer was obtained without use of binary rearrangement rules
discussed in section 5.6.4, which were implemented in our system after this protocol was run; we
wish to demonstrate comparison to queries 30, 31, 35, and 36. Hence bounds are not any better
than for query 14

19—(ANS (AND INMED (AND ALI NATLI)) 'SIZE)
= How many Liberian type-ALI tankers are in the Mediterrancan?
(GUESS: 14.39708 GUESS-ERROR:1.051749 UPPER-LIMIT: 24 LOWER-LIMIT:0)
(ACTUAL ANSWER IS 7)

20— (ANS '(AND INMED (AND ALI NATLI)) 'MEAN 'LONG)
= What's the mean longitude for Liberian ships in the Mediterranean of type ALI?
(GUESS: 39.51238 GUESS-ERROR: 25.39134 UPPER-LIMIT: 79 LOWER-LIMIT: 3)
(ACTUAL ANSWER IS 50.71429)

[Comparing the last two answers to those for qucrics 14 and 16, we sce that accuracy of SIZE
and MEAN deccreases with the number of sets intersected. This is a useful rule of thumb for any
statistic.]

[Besides intersections (ANIDs) and unions (ORs), we can also reason about sct complements.]

21 -(ANS (AND (NOT INMED) (AND ALI NATLD) 'MEAN '1.ONG)
= What's the mean longitudc for Liberian ships of type ALL not in the Mediterrancan?
(GUESS: 49.60453 GUESS-ERROR: 42.37534 UPPER-LIMIT: 176 . OWER-LIMIT: 6)
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(ACTUAL ANSWER IS 44.75)

[And we can also reason about nonnumeric attributes like ship nationality. Here for example

is an estimation of a modc frequency.]

af ot { L'i. . !

22— (ANS’(AND ALI INMED) 'MODEFREQ 'NAT)
= What's the mode frequency of the nationalities of ALI ships in the Mediterranean?
(GUESS: 20.49946 GUESS-ERROR: 14.43376 UPPER-LIMIT: 78 LOWER-LIMIT: 2)
(ACTUAL ANSWER IS 16)

[We can also reason about generalizations on the valucs of a nonnumeric attribute. For
instance, we can categorize ship nationality as one of three world regions, and estimate statistics on

these region values.]

23—-REGIONGEN
= What regions are nationality codes assigned to?
(OTHER (US LI PL PN GC1Z RP YO IR MY SN NA KU CU SA BR IN GB) NORTHEUROPE
(NO UR RO UK PO BU CH FI DA GE SZ) MED (IT SP CY GR FR TU EG AG))

[Mcaning US through GB are assigned to region "OTHER", NO through SZ to region .
"NORTHEUROPE", and IT through AG to region "MED".] :

24— (ANS’(AND ALI INMED) 'MODEFREQ (REGION NAT))
= What's the mode frequency of the regions of the nationalities of ALI ships in the Mediterrancan?
(GUESS: 46.5509 GUESS-ERROR: 9.317242 UPPER-LIMIT: 78 LOWER-LIMIT: 26)
(ACTUAL ANSWER IS 37)

[We can also ask questions about scts whose statistics we know nothing about, provided we
od know a superset they arc contained within, For instance, we have defincd in our system the set of
,-\_' ships in the Adriatic (INADRIATIC) to be a subsct of ships in the Mcditerrancan (INMED).]

25~ (ANS (AND ALI INADRIATIC) '"MEAN 'LONG) d
= What's thc mean longitude of ALI ships in the Adriatic?
- (GUESS: 38.81484 GUESS-FRROR: 27.84864 UPPER-LIMIT: 179 LOWER-LIMIT: 3)
(ACTUAL ANSWER IS 21.93939)

[We can also query virtual attributes derived from arithmetic operations on actual numeric

attributes.]
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26—-(ANS AL 'MEAN '(PLUS (SQUARE LONG) (SQUARE LAT)))
= What's the mean of the sum of the squares of the latitude and longitudc for type ALI ships?
(OUR ANSWER IS 4485.661)
(ACTUAL ANSWER IS 4485.661)

55-(ANS 'ALI'MEAN *(SQRT (PLUS (SQUARE LONG) (SQUARE LAT))))
= What's the mean distance of ALI-type ships from 3JONSW?
(GUESS: 51.0 GUESS-ERROR: 12.3 UPPER-LIMIT: 57.1 LOWER-LIMIT: 6.0)
(ACTUAL ANSWER IS 42.34673)

[We now include statistics on all intersections of two first-order sets in the database abstract,
and ask (19) and (20) again.]

27—-(SETQ ABSTRACT 'SECONDORDER)
= We want a second-order-intersection abstract [that is, one consisting of statistics on the
intersection of any two first-order sets as well as statistics on every first-order set].

29—(SETQ CACHE NIL)

= Forget all the previous query answers [we might give better answers because of that cached

information, which might make the subsequent results look better than they deserve to be].

30—(ANS (AND INMED (AND ALI NATLI)) 'SIZE)
= How many Liberian ships in thc Mediterranean are type ALI?
(GUESS: 10.87381 GUESS-ERROR: .3065485 UPPER-LIMIT: 11 LOWER-LIMIT: 7)
(ACTUAL ANSWERIS 7)

31-(ANS’(AND INMED (AND ALI NATLI)) 'MEAN "LONG)
(GUESS: 41.34377 GUESS-ERROR: 18.90695 UPPER-LIMIT: 79 LOWER-LIMIT: 14)
= What's the mean longitude for Liberian ships in the Mcditerranean of type ALI?
(ACTUAL ANSWERR IS 50.71429)

[Answers are better for this "second-order” abstract than the "first-order” abstract, for the
same queries, as may be observed by comparing 14 with 30, and 15 with 31]

[We now restore the original database abstract, but add a 20% guarantce query set to include
all intersections of two first-order scts.)
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32— (SETQ ABSTRACT 'FIRSTORDER)

= Use the first-order (singlc-word-name scts) abstract again.

33—-(SETQ GUARANTEE '‘SECONDORDER)

= Now apply a 20% guarantce on all answers (see section 1.8.2).

34—(SETQ CACHE NIL)

= Again, throw away all previous query answers so as to not help in getting subsequent results.

35—~ (ANS '(AND INMED (AND ALI NATLI)) 'SIZE)
(GUESS: 5.733211 GUESS-ERROR: .9619619 UPPER-LIMIT: 11 LOWER-LIMIT: 0)
= How many Liberian ships in the Mediterranean are type ALI?
(ACTUAL ANSWER IS 7)

36— (ANS (AND INMED (AND ALI NATLI1)) 'MEAN 'LONG)
= What's the mean longitude for Liberian ships in the Mediterranean of type ALI?
(GUESS: 39.51238 GUESS-ERROR: 11.32716 UPPER-LIMIT: 79 LOWER-LIMIT: 3)
(ACTUAL ANSWER IS 50.71429)

[Answers are not as good as with the second-order abstract (compare query 35 with 30, and 36
with 31), but better than the plain first-order abstract without guarantces (compare 35 with 14, and
36 with 15).]

2.2. The rheumatology-patient database

The data for rheumnatology patients clinic visits was subjected to a detailed formal study of the
performance of our system, discussed in chapter 6. We give here a fcw processing examples, in a
more systematic format than in the previous section. We believe that set intersections are the most
important kinds of composite querics to a databasc system, and thus performance of our system for
statistics on them is important.

6—*(SETQ ABSTRACT (QUOTE FIRST.ORDER))
= Use a first-order databasc abstract.

71—*(SETQ GUARANTEE (QUOTE NOGUARANTEE))

= Do not use any 20% closed-world guarantee.
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({ [Ihe following nine querics represent the same statistics on a different set, the set of all male 1
Lis paticnt visits where low cholesterol was measured. Except for the first (sct size) statistic, they are all |
. refer to the prednisonc dosage attribute, measured in integer units. MALE denotes the mz-xlc -
3‘:} paticnt visit records, and LOCHOL the low-cholesterol visits.)

7

¥ ’~ 8—*(ANS (AND MALE LOCHOL) SIZE)

) = How many visits involved malc paticnts with low cholesterol?

;;, (OUR ANSWER IS 33)
o (ACTUAL ANSWER IS 33)

I

Tv 9—*(ANS '(AND MALE LOCHOL) 'MEAN 'PREDNISONE)

' = What was the mean prednisone dosage for those visits?

K * (GUESS: 17.42672 GUESS-ERROR: 13.84462 UPPER-LIMIT: 80 LOWER-LIMIT: 1)

N (ACTUAL ANSWER IS 17.57576)

b, 10-*(ANS (AND MALE LOCHOL) 'SIGMA 'PREDNISONE)

, = What was the standard deviation of the prednisone valucs?

(GUESS: 13.54828 GUESS-ERROR: 1.534365 UPPER-LIMIT: 24.68412 LOWER-LIMIT: 0)

(ACTUAL ANSWER IS 14.94237)

%

} 11-*(ANS '(AND MALE LOCHOL)'MAX 'PREDNISONE)

% = What was the maximum prednisone dosage in those visits?

(GUESS: 77.85685 GUESS-ERROR: 2.143146 UPPER-LIMIT: 80 LOWER-LIMIT: 1)
(ACTUAL ANSWER IS 60) '

¥ -

g G W e B

12— *(ANS '(AND MALE LOCHOL) 'MIN 'PREDNISONE)

,3~
-~ = What was the minimum?
. (GUESS: 3.143146 GUESS-ERROR: 2.143146 UPPER-LIMIT: 80.0 LOWER-LIMIT: 1) q

4% (ACTUAL ANSWERIS 1) |
- :—1

N

> 13—*(ANS '(AND MALE LOCHOL) 'SIZEUNIQUE 'PREDNISONE)

A = How many distinct prednisone dosages were there? ‘
e (GUESS: 16.2106 GUESS-ERROR: 5.484827 UPPER-LIMIT: 20 LOWER-LIMIT: 1) _
¥ (ACTUAL ANSWER IS 15) !
;' q 14— *(ANS (AND MALE 1.OCHOLI.) "MOI)F,FRF.Q ‘PREDNISONE) :
o = What was the frequency of the most common dosage? ‘
“ l
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(GUESS: 10.08819 GUESS-ERROR: 8.948928 UPPER-LIMI'T: 33 L OWER-LIMIT: 1)
(ACTUAIL. ANSWER IS §)

15—-"*(ANS ‘(AN MALE LOCHOL) 'MODFEFREQ2 'PREDNISONE)
= What was the frequency of the sccond most common dosage?
(GUESS: 5.044097 GUESS-ERROR: 2.020726 UPPER-LIMIT: 11 LOWER-LIMIT: 0)
(ACTUAL ANSWER IS 4)

16— *(ANS '(AND MALE LOCHOL) 'LEASTFREQ 'PREDNISONE)
= What was the frequency of the least most common dosage?
(GUESS: 3.0 GUESS-ERROR: 1.16743 UPPER-LIMIT: 11 LOWER-LIMIT: 1)
(ACTUAL ANSWERIS 1)

[The next nine queries represcnt different statistics on the same set, in this case the set of all
male patient visits where the temperature was normal in addition to there being low measured
cholesterol. Again, the attribute quericd (except for the first query) is prednisone dosage. The code
MEDTEMP denotes the sct of all visits with normal temperature, and as before MALE represents
the set of male patient visits and LOCHOL the set of low-cholesterol visits.]

18~ *(ANS '(AND (AND MALE LOCHOL) MEDTEMP) 'SIZE)
= How many visits involved male patients with low cholesterol and normal temperature?
(OUR ANSWER IS 33)
(ACTUAL ANSWER IS 17)

19— *(ANS '(AND (AND MALE LOCHOL) MEDTEMP) '"MEAN 'PREDNISONE)
= What was the mean prednisone dosage for those visits?
(GUESS: 17.44304 GUESS-ERROR: 13.17575 UPPER-LIMIT: 120 LOWER-LIMIT: 1)
(ACTUAL ANSWER IS 17.23529)

20—*(ANS (AND (AND MALE L.OCHOL.) MEDDTEMP) 'SIGMA 'PREDNISONE)
= What was the associated standard deviation?
(GUESS: 13.49634 GUESS-ERROR: 1.549613 UPPER-LIMIT: 48.36783 LOWER-LIMIT: 0)
(ACTUAL ANSWER IS 15.349)

21-*(ANS '(AND (AND MALE LLOCHOL) MEDTEMP) 'MAX 'PREDNISONE)
= What was the maximum dosage?
(GUESS: 61.57157 GUESS-ERROR: 0.0 UPPER-LIMIT: 120 LOWER-LIMIT: 1)




(ACTUAL ANSWER IS 60)

22-*(ANS '(AND (AND MALE LOCHOL) MEDTEMP) '"MIN 'PREDNISONE) -
= What was the minimum?
(GUESS: 3.143146 GUESS-ERROR: 0.0 UPPER-LIMIT: 80.0 LOWER-LIMIT: 1) -
(ACTUAL ANSWER IS 1)

23—-*(ANS '(AND (AND MALE LOCHOL) MEDTEMP) 'SIZEUNIQUE 'PREDNISONE)
= How many distinct prednisone dosages were there?
(GUESS: 13.5 GUESS-ERROR: 7.216878 UPPER-LIMIT: 26 LOWER-LIMIT: 1)
(ACTUAL ANSWER IS 12) +

-

24—*(ANS (AND (AND MALE LOCHOL) MEDTEMP) '"MODEFREQ ‘PREDNISONE)
= What was the frequency of the most common dosage?
(GUESS: 11.20344 GUESS-ERROR: 8.660253 UPPER-LIMIT: 33 LOWER-LIMIT: 1)
(ACTUAL ANSWER 1S 2)

PO S

25—*(ANS (AND (AND MALE LOCHOL) MEDTEMP) 'MODEFREQ2 'PREDNISONE)
= What was the frequency of the sccond most common dosage?
(GUESS: 5.601722 GUESS-ERROR: 2.309401 UPPER-LIMIT: 11 LOVER-LIMIT: 0)
(ACTUAL ANSWER IS 2)

26—-*(ANS '(AND (AND MALE LOCHOL) MEDTEMP) 'LEASTFREQ 'PREDNISONE)
= What was the frequency of the lcast common dosage?
(GUESS: 3.0 GUESS-ERROR: 1.328403 UPPER-LIMIT: 11 LOWER-LIMIT: 1)
(ACTUAL ANSWER IS 1)

[Again, note that estimates on sets involving three intersections are not as good as the
corrcsponding estimates on sets involving two intersections.]
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Chapter 3
Methods: the rules

And then there were the imaginary dragons, and the a-, anti-, and minus-dragons
(colloguially termed nots, noughts, and oughin’ts by the experts), the minuses being the
most interesting on account of the well-known dracological paradox: when two minuses
hypercontiguate (an operation in the algebra of dragons corresponding roughly to simple
multiplication). the product is 0.6 dragon, a real nonplusser. Bitter controversy raged
among the experts on the question of whether, as half of them claimed, this fractional beast
began from the head down, or, as the other half maintained, from the tail up. Trurl and
Klapaucius made a great contribution by showing the error of both positions. They were
Jirst to apply probabilitv theory to this area and, in so doing, created the field of statistical
draconics which says that dragons are thermodynamically impossible only in the
probabilistic sense, as elves, fairies, gnomes, witches, pixies and the like.

Stanislaw Lem, Cyberiada, 1967, trans. M. Kandel (Avon, 1976)

Our methods in this thesis fall into two categories, those for the rules and those for the
database abstract. In this chapter we discuss the former, and in the next chapter the latter.

We shall present the rules according to the rule taxonomy sketched in section 1.4.3. As we
said, there are four dimensions: (1) what statistic is being estimated; (2) what answer characteristic
is being supplied by the rule (estimate, error, bound, or exact answer); (3) the situation in which the
rule works (the "computational” dimension); and (4) what category of reasoning supports it (the
“derivational” dimension). We discuss these dimensions in sections 3.2, 3.3, 35, and 3.6
respectively.  Scction 3.4 provides the necessary background on the algebra of quadruples for
understanding the rule computations in section 3.5, and section 3.6 covers a few general issues
concerning the rules.

As we said in section 1.4.1, querics consist of a statistical operator applied to three arguments,
arclation, a query set (tuple sct) on that relation, and a ficld (or virtual ficld) representing attributes
of that set. In formal specification of rules in this chapter, where we omit the relation name or the

ficld name they should be taken to be the same in all query expressions within a rule.
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Appendix C provides concrete examples of the major rule categorics to be discussed.

3.1. The statistic dimension of rules

3.1.1. The statistics examined

In this work we have explored "knowledge-based” reasoning from several rather different
sources of knowledge. Thus in contradistinction to most work in statistics, we have deliberately
addressed a variety of quite different statistical aggregates within the same research framework. See
Figure 3-1. Formal definitions of the statistics are contained in Appendix A.

The basic such statistical aggregate operations, alias "statistics”, with which we are dealing are
number of items in a set (SIZE); the three classical measures of central tendency: MEAN,
MEDIAN, and MODE,; and the three classical measures of dispersion: MAX, MIN, and standard
deviations. symbolized as SIGMA. These have had central attention in our work.

The obvious application of the above statistics is on the distribution of valucs of a numeric
attribute of items in a database. But there are several derived distributions for which it is useful to
tabulate additional statistics, giving them separate names. Three important such derived
distributions are the frequency distribution of values by decrcasing frequency, the distribution of
gaps (spacings) between successive ordered values, and the fit of the original values to some ideal
distribution. All three are useful in characterizing essential characteristics of attribute values not
captured by the basic measures of central tendency and dispersion, but still very important tc
statistical analysis, to varying degrees for different situations. Even when they are not directly of
use, they arc often helpful for estimating other morc interesting statistics. Frequency distributions
in particular are quite important because they can also characterize nonnumeric attributes.

For the first derived distribution, we have used statistics on the number of distinct values in a
set (SIZEUNIQUE), the frequency of the mode (MODEFREQ), the frequency of the second most
common item (MODEFREQ?2), and the frequency of the least-commonly-occurring item that still
has nonzero frequency (ILEASTFREQ). For the sccond, we have uscd the maximum gap between
distinct values (MAXGAP) and the minimum gap (MINGAP). For the third, we have uscd only an

172

5In this work we compute the standard deviation as {2(x N ,‘)z/n]V2 instead of the more usual [):(xi-yx)zl(n- N as it
simplifics formulas. Because we only consider as micaningful those statistics on scts ten items or more, the discrepancy
between the formulas is no more than about 5%.
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Figure 3-1: The statistical aggregates studied in this work :
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cven distribution to fit to, and the maximum (MAXEVENDEV) and minimum (MINEVENDISV)
residuals from this fit. In addition to these things, we also tabulate for scts one more morsel of
information, the ficlds and groups of ficlds which are "cxtensional® keys” for that set, i.c. for which
every item is distinct in some particular database state.

2 3.1.2. Why histogram-statistic rutes were not included

2

Clearly there are many other statistics we could study, as for instance other order statistics,

'}

Wy f
3 ::' proportions, other fits, and so on. We are only providing a framework for many possible future ,
—;‘ research efforts. In particular, we have chosen not to include the obvious possibility of histograms ;

in characterizing distributions. There are several reasons for this:

o histograms must be in regard to a particular distribution, and there are four interrclated
but distinct distributions of interest we have explored, plus a number of others. Good
histograms for each would take up considerable space. We are particularly interested in
supporting abstracts in which only, say, three words of storage are allocated to each set
of interest, but where there are many such sets.
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.._:; o histograms rcpresent a systematic but "nonscmantic” representation of data, which
" ignores the fact that certain bins may be much more interesting than others. Carefully .
"R selected non-histogram statistics like those we are using can better reflect the )
particularly striking characteristics of data.
\ 4

e much of the power of our reasoning, as will be scen, resides in the exploitation of
multiple data dimensions. Histograms characterize only a single dimension well,

I
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e we are likely to implicitly include histograms anyway in the database abstract, in the
fc 1 of statistics on "first-order sets” representing partitions on the values of attributes,
as we shall discuss in detail in section 4.2.2 R
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?f 6Wc: shall use the terminology "extensional” to describe things like dependencics and key relationships between databsse X
¥ 4 entitics that happen to be true only for a particular database state, instead of for any database state, the usu»! meanings of
" ‘ the terms. Our work is concerned with particular databasc states (cxtensions), not abstractions on all states (intcnsions) -- see
o seetion 34.5.2.  For instance, if the ship-nationality attribate of a sct of ships uniquely identifics ships in that set, it is
considered an “cxtensonal key” of the subrelation corresponding 10 that sct, cven though it is not a key in general (there are ‘

% many ships of the same nationality in the database). On the ather hand, ship-10)-number is an exiensional key for any A
‘j;. darsbasc sct, and henee an unqualified key. 4
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‘ -,:3‘ 3.1.3. Why correlations rules were not included
2
; - We have chosen not to include in this analysis another obvious possibility, correlations
20N between attributes (c.g., the linear correlation coefficient p), for several reasons:

o there are O(Nz) binary correlations for N fields, as opposed to O(N) of all the statistics
mentioned above, hence they requirc a lot more space

o there are many different kinds of correlations: lincar and nonlinear regression equations
" x.rf for numeric attributes, "gencralized” tuples using higher-level symbols for all attributes,
3:;?& phenomena akin to database dependencies (functional dependencies, muitivalued
"§ dependencies, join dependencies, ctc.) but true only for a particular database state, and
et soon

o correlations are implicitly represented anyway by sct-size statistics on the intersection of

two simple sets (c.g. if the intersection is larger than expected by the product of the
2D selectivities, the two intersected sets are positively correlated); an explicit correlation
3 just is a kind of meta-statement about the statistics of a family of sct intersections

e lincar correlation between numecric fields can be derived from the MEAN of a TIMES
of two fields, as explained below in 3.5.5.1

e correlations can be used in many different ways in rules, and using them effectivcly is a
large undertaking

3.2. The answer dimension of rules

3.2.1. The form of answers

We give two kinds of answers to statistical queries, exact answers and bounded

approximations. The former arise only occasionally, most notably for unions of disjoint sets. For

instance, the size of a disjoint union is exactly the sum of the sizes of the component sets. Two
more cxamples of exact rules: the maximum of a union of any two scts in the larger of the maxima
SIA of the two sets, and the mean of the sum of corresponding numeric attributes for the items of some

tf’g sct is the sum of the mcans of the sct for cach attribute.

If we cannot give an cxact answer, we always give an estimate in the form of a quadruple
(always a quadruple, never more nor less), which for statistics which are numbers (the predominant

casc) contains:

. ® a "best estimate” of the answer (alias EST)

o e a standard crror associated with that answer (alias ERR), i.c., the standard deviation
A il':'f associated with the EST estimate
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e an absolute upper bound on the answer (alias SUP), a "less than or equal” bound’

e an absolute lower bound on the answer (alias INF), a “greater than or equal” bound?

For the few statistic values which are nonnumeric (¢.g. the mode of a nonnumeric attribute, or

the keys of a database relation) we have instead:

® 3 "best guess™ as to the answer

e a value superset guaranteed to contain the answer

though we have now removced this from the implementation, after some experiments, as it requires

a good deal of effort to define interactions with other uncertainty, while having low payoff.

3.2.2. Justification of quadruples

We arrived at the quadruple representation of query answers after a good deal of thought.
Our basic objective was to find a robust way of characterizing uncertainty about a statistical value
that did not require probabilities, certainty factors, or their ilk. These often require reasoning about
subjective phenomena such as behavioral probabilitics and possible worlds that are hard to pin
down and inherently subject to expert biases and errors. On the other hand, absolute bounds on
answers derived by logical deduction (our SUP and INF) cannot be argued. And expccted values
of the answer distribution and the deviations about its mecan (the EST and ERR, respectively)
substantially "integrate out” (in the calculus sense) subjectivity, reducing "noise” analogous to the
way that capacitors (as integrators) are used to reduce clectrical noise.

We believe we need all four of these entities to characterize uncertainty. An cstimate isn’t
much help unless one knows how good it is, and the standard way to quantify this is a standard
error; without this information the combining of estimates from different sources is virtually
impossible. Absolute bounds on an estimate can be quite helpful to analysis, though statisticians
have not been much concerned with them (though there are cxceptions, e.g. results related to
Chebyshev’s incquality like [Fahmy and Proschan 81, Arnold 74]). Bounds (also under the name

“constraints”) are a central issue in much of computer scicnce, and their manipulation the source of

7Do not confuse the SUP upper bound with the MAX (maximum) statistic, which is quile different. MAX applics to a
finite, knowable-in-principle set of valucs contained in a databasc. SUP applics to a distribution of a subjective random
variablc. the possible values that a panticular sratistic on-data values can take on.

aSimilarly. don’t confuse INF with the MIN (minimum) siatistic,
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many major accomplishments. Bounds on computation time and space are important for analysis
of algorithms (e.g. [Graham, Yao, and Yao 80]). Artificial intelligence in particular has cxploited
e novel methods of problem-solving based on nonnumeric-constraint propagation. Constraints can
., be used to simplify search problems: if you absolutely know that an answer can’t be of a certain
kind, you can prune the branch corresponding to it. Even when constraints are weak, the
e cumulative effect of many can be important, as in many linear programming problems near the

optimum point.

S0 3.3. Algebra of quadruples

Before going on to discuss the computational dimension of rules, we must articulate what the
computations are. Most of our rules involve mathematical operations on the values of certain
statistics to get certain other desired statistics. When the former are expressed as quadruples we
need a special algebra to define the results for this special data type.

*‘: _
i" 3.3.1. Bounds: interval mathematics
v‘ » ‘
by Intcrval mathematics [Rall 81, Cole and Morrison 82] is an offshoot of numecrical analysis
e concerned with analyzing propagation of absolute errors in numerical calculations. We can use it to
\_“ determine the effect of numerical operations on bounds. Denoting the closed interval from the
';\’ number a to the number b as [a,b] (that is, INF is a and SUP is b) we can give the laws of interval
oy mathematics for the arithmetic operations important in our system as follows;
X (a.b] + [c.d] = [a+cb+d]
. [a.b] - [e.d] = [a-c,b-d]
\?.‘
{ +
- [a.b] * [c.d] = [a*c,b*d)ifa > Oorc > 0
‘ = [b*d.a*c])ifb<0and d <0
% = [min(a*c,b*c,a*d,b*d).max(a*c,b*c,a*d.b*d)] othcrwise
1S5
iy
Ay [a.b] / [c.d]) = [a/d.b/c]ifc >0
-2 = [b/casd)ifd<0
= [-00,a/¢c] U [b/d.+00]if a > 0 and c<0<d
‘ = [-00,a/d] U [b/c,+ 0] if b< 0 and ¢ <0<d
o
max([a,b).[c.d]) = [max(a.c),max(b,d)]
4]
X0 min([a.bl.[c.d]) = [min(a.c).min(b,d)]
._: fifa.b)) = [f(a).Ab)] where fis a monotonically increasing function on [a.b]
3
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(important examples of f being log, antilog, square, square root)

abs([a,b]) = [a.b]ifa >0
= [-b,-a] if b< 0
= [0,max(-a,b)] othcrwise
Di?i’sion by an interval containing zero is the most serious problem in the above, since the result is
two &ié‘joint and unbounded intervals, and cannot be expressed as in our quadruples. (We ignore
this case in our implementation.) Sometimes calculations can be rearranged to eliminate division
by such an interval, a trick used by numerical analysts.

Comparisons (€ and ) between intervals are possible, but must set to "undefined” for cases
where the ranges of the intervals overlap. Formally:

[a,b] < [c.d] iff bXc;
[a,b] > [c,d] iff a>d;
undefined otherwise

All these rules assume independcace of the random variables representing distributions, and if
this is not the case better (tighter) ranges can be found, essentially by defining a new function and
performing an analysis of it. For instance, to usc the example of [Cole and Morrison 82], Rx) =
x+(K/x) is monotonically increasing for x> VK because df{x)/dx = 1 - ( K/xz) is greater than 0 for
VK. Hence f on the interval [a,b] has 2. minimum at f{a) and a maximum at f{(b), provided
vK<a. Thus

SUP(x+(K/x)) = SUP(x) + K/SUP(x)
INF(x +(K/x)) = INF(x) + K/INF(x)

as long as INF(x) > VK, which would not be true if the occurrences of x were not linked, since by
our algebra

{a,b] + K/[ab]) = [a,b] + [K/b,K/a] = [a+K/b,b+K/a]
or in other words:;

SUP(x+(K/y)) = SUP(x) + K/INF(y)
INF(x+(K/y)) = INF(x) + K/SUP(y)

which will always be worse (broader) bounds than those obtained from the derivative reasoning.

Note that exact numbers (as opposed to ranges) are perfectly compatible with the above
algebra; just treat them as pairs where the n~oer bound equals the lower.
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3.3.2. Estimates and errors: normal curve algebra

For the cstimates (FSTs) and standard errors (FRRs) of quadruples we need a quite different
kind of algebra, modclling the quadruples as denoting truncated normal distributions and
combining them according to standard probability theory. It can be proved from information
theory that the least-information-content probability distribution one can construct given a
maximum, minimum, mean, and standard deviation is a truncated normal onc, and that is why we
make this assumption9. It can be shown in turn, on the basis of a number of sophisticated criteria,
that the least-information-content distribution is the most “reasonable” one to make when one
wishes to best summarize a partial degree of knowledge; any other will get you into certain
contradictions [Shore and Johnson 81}.

There is in addition both experimental and other thcoretical justification for such a
distribution from sampling methods. Even if a distribution is highly skewed or otherwise far from a
normal distribution, sampling distributions of its statistics (e.g. mean, 'median, standard deviation,
maximum) tend to be normal. Sampling is an important concept since set intersections are a kind

of mutual nonrandom sample.

Our algebra for ESTs and ERRs is that for cxpected values of normal random variables
sclected without replacement from their distributions used in [Haugen 68]. Unfortunately however,
the rules are only approximations, not absolutes as with bounds. Decnote an EST-ERR pair as
<a,b>. Then:

<@b> + <c.d> = <a+c,v(b? + dd)>
<abd - e, d> = <a-c,V(b? + d)
<ab> * <, d> = <a*c, V(bk? + ad)>

<a,b> / <c,d> = <a/c, b/abs(c) + abs(c)/d>
for abs(a) significantly > b, abs(c) significantly > d

fi<a,b>) = <fla).(a+b)-Ra-b))/2>
for f continuous and abs(a) significantly > b (sce section 3 5.1.4)

The first three results can be derived from computing the cumulative distribution of the result (the

2
9Slriclly spcaking, the distribution is a truncation of ca+bx < Ae [(x-C)zl. or a displaced normal curve. In some

cascs (Lo be discussed in section 3.4.1) the standard deviation may not be known, and the maximum-entropy distribution is a
truncated exponential: and in others, only the bounds are known, and the miaximum-cntropy distribution is uniform. ‘These
can correspond to ¢ =0 in the first case, b=0and ¢=0in the second. -
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probability that the result is less than some fixed number xy) and taking the derivative of this with

respect (o X, Unfortunately, there is no nice formula for the distribution of the maximum or
minimum of two random variables'®; we usc a crude fitting of two appended uniform distribution
to get an answer in our implementation.

Again, note that exact numbers (instead of <EST,ERR> pairs) are perfectly compatible with
the preceding algebra; they're just things with zero ERR.

3.3.3. Combining evidence

There is one other operation on quadruples of great importance to our systcm, namely the
combining of evidence from the results of multiple rules applicable to the same situation. We gave
the formulas for this in section 1.6.1. As with the rest of quadruple algebra, the combined bounds
are exact but the estimate and error only approximate. It is difficult to know how much weight to
give to different EST and ERR rules applying to the same situation, an important issue since some
ways of obtaining ESTs and ERRs are much better than others in a particular situation. For this
reason we try to ensure that only one EST rule and one ERR rule apply to a query, while making no
attempt to control the number of the bounds rules that apply. We do this by enforcing a priority on
EST and ERR rules where a more specific rule always preempts a more general one. In the
two-level case, this becomes a scheme for rule defaults. We do not consider more sophisticated rule
selection architectures, though there is much room for further research in this direction.

3.3.4. Embedded quadruple algebra

Early in this work we felt it necessary to allow for indefinite embedding within quadruples.
For instance, we could characterize a lower bound by its own estimate, standard crror, and bounds.
The idea was that absolute bounds can get to be quite pessimistic in many calculations, and perhaps
a lower bound on an upper bound, or an upper bound on a lower bound, is needed to illustrate just

chnote two normally u.stributed random variables as N,(x) and N.,(x). and their intcgrals (erf{x)'s) as & l(u) and ¢ 2(x).

Then the distribution of the maximum is the derivative of ¢ l)(x )¢2(x). and the mean is
Ix i, () (x))/dx
= 19, (00,(x) - [ @, (),(x) dx

from intcgration by parts, and the latter integral has no closed-form solution. But we can get an approximation by
expressing thig unction as

N |(!)‘2(l) + Ol(l)N 2(‘)
and using numerical methods Lo approximate its mean.




r - L ) L e e AT e W & T NTY AT TR e Vi T a T AT e " e ™ e " VT YT "L T TP Y .Y Y L,
" & ) A AR VA S O B O A B AP i T A A e A LI A O I R S e P Y A R S .

LY 43 \
ﬁ how broad the bounds werc. All the abovementioned algebra can be cextended to embedded K
: 3 quadruplcs by introducing recursion appropriately. For instance: .
" - [fa,b}lc.d]l + [le.fl[g.h]] = [[a,b]+[e.f]. [c.d]+[g.h]} :
= [la+cb+flllc+g.d+h]] :
When embedded quadruples become too far embedded to make computation efficient, it is
helpful to apply a simplification operation to restore them to a single-level form, defined as follows: 3
SIMPLESTAT(QUAD) = by
b’y LIST(SIMPLESUP(QUAD),SIMPLEINF(QUAD),SIMPLEEST(QUAD), -
32 SIMPLEERR(QUAD)) .
';; SIMPLESUPQUAD) = QUAD if QUAD is an atom, >
B SIMPL ESUP(CAR(QUAD)) otherwise
i SIMPLEINF(QUAD) = QUAD if QUAD is an atom,
& SIMPLESUP(CADR(QUAD)) otherwise
: X SIMPLEEST(QUAD) = QUAD if QUAD is an atom,
K- SIMPLESUP(CADDR(QUAD)) otherwise
b SIMPLEERR(QUAD) = QUAD if QUAD is an atom,
SIMPLEEST(CADDDR(QUAD)) otherwise
é (Note that last SIMPLEEST is not a misprint.)
5 . However, we now question the value of embedded quadruples. They make the algebra much
slower, are difficult to explain and debug, and rarely provide much advantage.
g 3.3.5. Integer quadruples
t
T
If we know a quadruple represents something that is an integer (for instance, if it is a count of X
"*é a sct), we "intcgerize” it by mapping the SUP to its floor and the INF to its ceiling. Our considered 5
o ~
J judgment was that nothing special should be done to the EST and ERR in this circumstance 5
i*.
because useful information might be lost. While it sounds funny to say that the average American
- family has 2.3 children, it does convey a sense of how much more frequent a 2-child family is ,
» compared to a 3-child family. 8
& :
¥ R
b 3.4. The computational dimension of rules by
ﬁ‘ The query argument dimension concerns the nature of the query submitted to the system. .
g’ . There are three basic kinds, or "levels™ of such rules: (1) intraquadruple rules, (2) rules depending .
only the statistic queried, and (3) rules that examine the query sct and query attribute as well as the
: . statistic. There arc just a few of the first, a number of the sccond, and quite a lot of the latter.
{ :
2 ; hY
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Scction 3.4.1 covers the intraquadruple rules, and 34.2 the statistic-specific. 'The next two
sections cover two very important classes of rules based on query expression decomposition: set
decomposition in 3.4.3, and attribute decomposition in 344. 3.4.5 covers somc rather different .
rules suggested by artificial-intelligence concept of inheritance; 3.4.6 rules for rearranging qucrics

to logically equivalent forms; and 3.4.7 some miscellancous (but important) rules.

3.4.1. Intraquadruple rules

With the algebraic manipulations of the last section, there is no guarantee that the EST and
ERR will remain consistent with the SUP and INF bounds in a quadruple. For instance, the mean
American ship may be 300 fect long, the mean tanker 600 feet, and a rcasonable EST of the mean
American tanker length can be the average of the two, or 450 fecet. But it may possibly be the case 3
that American ships only run 50 to 400 feet, hence the longest one is no more than 400, and hence
the mean for any subset cannot be larger than 400.

There are also many situations in which good bounds are available, but no good ways of
getting EST and ERR values (as in reasoning about the sizes of sets based on mode frequencics and
least-common-item frequencies), and many other situations where EST is known but it is hard to
get the associated ERR (like the rule that a good estimate for the mode of a subset is the mode of
the set). Thus we may need to compute a "reasonable” EST and ERR from a SUP and INF to
supply to the user.

Our policy is to assume primacy of the SUP and INF bounds to the estimate (EST), and this in
turn to the crror (ERR). SUP and INF arc always true, assuming no bugs in an implemented
system that computes them, and hence form an "anchor" for obtaining the unguaranteed EST.
ERR only makes sense associated with an EST, as a kind of qualifier, and hence should be

estimated from it. .
2

As for specific details: if the EST is not in the range SUP t INF, or there is no cstimate N
whatsoever, the ES'T' is sct to the midpoint of the range, the average of SUP and INF. (this is the ._4
value corresponding to the maximum entropy distribution given knowledge only of maximum and .i

minimum, the even distribution.) This done, the ERR is then cxamined. if it is greater than the :
geometric mean of the deviations of EST from SUP and INF, or if there is no ERR, it is sct to that - (:':I

samec g ~~%7ic mean divided by the square root of 2. (We justify this as the "midpoint vari.ance"

betweea the maximum variance and zcro; unfortunatcly the maximum-centropy value for the

. a4t - e - N C e el =
. T et et S S I P Y - * RN
----- PR R SN . .




standard deviation cannot be computed in closed form'!) As for SUP and INF, if cither is missing
(though this happens very rarcly), they are sct to +00 and -00 respectively (approximations,
actually). If SUP=INF, the quadruple is replaced by that single number, and EST and ERR
ignored.

3.4.2. Rules relating statistics

The next kind of rules are those relating statistics on the same set and attribute to one another.
Most of these are bounds rules. For example, an upper bound on the mean is the maximum; the

(5 Y LAl

mean is never more than one standard deviation away from the median; and mode frequency is
never less than the number of items in the set divided by the number of distinct items.

These rules can generally be used in several directions. For instance, the latter example can be

PP I

inverted in cither of two ways, so we have three results:

MODEFREQ > SIZE / SIZEUNIQUE
SIZEUNIQUE > SIZE / MODEFREQ
SIZE < SIZEUNIQUE * MODEFREQ

and we can use whichever version we need at some point, depending on the degree of knowledge

)
:'%
§,:f
»t

Nngee

[x M & = Mxyal
and the mean of the general exponential probability distribution p(x) = Aeh/[exb-eh] on the intervalato b is
u = AL - eMa-1)) 7 A FeMerY

which, given the constant mean p xt is equal to, cannot be soklgd irﬁcnenl for A except numerically. (The scaling of p(x) is
the reciprocal of the integral of ¢ X over the interval, or [e"7 - €™} 7 A.) Then once A is found the distribution in fully
parameterized. and its standard deviation can be computed from the formula

'2 = .“2 + I X2 Aekl,[ekb_ekal dx

i R
Ry

l’ raes

%
)

= -pz + (exb(bz- /A + 2/)\2)- e}"(a2 -2a/\ + ZIAZ)] / [e}‘b-eh]

If however the mean is near the middle gl’ the range between the maximum and the minimum, A will be small, and we can
get a closed-form approximation using ¢ X 2 1 + Ax. This means then that

px) =1 + Ax]/ [(b-2) + .Ssz-az)l
30 using the formula

Frll + Mjdx = 5x2 + 3333A0°
the mean is approximated by

B [S062- 4D + 33301 - )/ (b-a) + SADZad)
= [S(b+2) + 3333A®2 + ab + 22 /{1 + SA(b+a)]

A (- Sb+a) /[ 333Xb2 + ab + a2)- Sp(b+a)]
Again, this approximation requircs small A,
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about these values. If we arc not careful with this, however, we can get into infinite cycles during

rule application. To avoid this we must designatc some rules as "forwards” and other as -

“' "backwards” and treat them differently; sec section 5.5 for further discussion. (Do not confuse the :
:: forwards-backwards distinction with the upwards-downwards-latcral-diagonal distinction :
3 forthcoming in section 34.5.) T
¥ :
N Rules relating statistics are very important because there arc many queries for which ,
;;_,. "standard” rules involving decompositions, to be discussed in the rest of this claboration of the
"} query argument dimension, do not exist. Just as with integration in symbolic algebra systems #
s [Tobey 71), there turn out to be some situations which have closed form “solutions” (i.c., query
% rearrangements), and others without. For instance, there is a nice rule for the median of the union
o of two disjoint scts (it is bounded by the medians of the two sets), but no rule at all for the median 4
‘é. of the intersection. But our domain has one advantage that symbolic algebra does not: we give
3; estimates and bounds usually, not exact answers, and weak general-purpose statistic-statistic rules
can always be used to get such information.
A
', A}i 3.4.3. Set expression decomposition L
There are four categories for decomposition of the set argument in a query: a simple parent .
‘; set, set intersection, set union, and set complement. :
W N
3.4.3.1. Simple parent-child inheritance :
) In creating the databasc abstract we have room only for a certain number of partitions of the B
\ ;.4 values of attributes. All other partitions we must relate to these. For instance, if ship statistics are
" ;1 tabulated by length ranges 100-t0-200 fect, 200-to-300 feet, and so on, and if we wish to know 2
- something about ships that are 320 fect in lcngth to 390 feet, we must relate it to the parent superset X
:’s' of ships 300-to-400. So an upper bound on the number of 320-to-390 ships is the number of "y
2 300-t0-400, and an estimate is (390-320)/100 = 70% of that number; an upper bound on the K
j'.‘. maximum tonnagge is the maxiﬁum torinagc of 300-to-400; and the mode nationality of 320-t0-390

* is probably the mode for 300-to-400. Artificial intclligence calls this "downwards inheritance”; see
2 section 3.4.5.

]
-’:i
b A very important application of these rules is to the set of all items in a rclation, what we call
<! . s " L L .
: the "universe” set. Since it is the parent of cvery set on that relation, it can always be used with . W
these superset-to-set rules. This is helpfut for getting bounds, but not it is not usually as uscful with -
o)
_1
[

._l
A
&




= 444 ERLADALANN AL AL P AR A S S S e IS Tt A R - - e

X
N 47
X | | _
cestimate and crror rulcs since the universe is usually a very much larger sct than a random sct on the
i relation, and can display quitc different tendencies.
z 3.4.3.2. Set intersections
< ) A set which is the intersection of two or more sets (which we denote AND(A.B) for two,
- AND(A,ANIXB,C)) for three, etc.) is a specia} but very important case of the above. In this case
: there arc two or more parents bestowing characteristics to the offspring. We must use the formulas
., N for combining evidence (sec 1.6.1). We belicve that set intersections will be the most common type
gp 5 of construct in queries. It is very natural to specify a set by a series of restrictions that must be taken
2 together, much more so than to specify by a disjunction of restrictions, or the opposite of a
& restriction. We have thus paid special attention to handling intersections well in our system, and
E‘ have developed a number of apparently ncw methods for estimating statistics on them, as for
.:'1 instance items 5 through 9 of the set-size query processing example in section 1.5.1.
w33 Note that set intersections can occur simultaneously with parent-sibling inheritance, and one
must be careful to identify the immediate parents. For instance, suppose we wish to know
:" something about the set of tankers in the Adriatic, and the database abstract only includes
s information about the set of tankers and the set of ships in the cptire Mediterranean. We can
. R consider this set as having only two immediate parents, the set of ships in the Adriatic, and the set {
: of tankers in the Mediterranean. All other potential parents can be considered ancestors of these;
| :: for instance, the ships in the Mediterranean are an ancestor of ships In the Adriatic, and the tankers
]

are an ancestor of the tankers in the Mediterranean.

3.4.3.3. Sct unions and complements

There are two other simple set operations, union (OR) and complcment (NOT). We need

rules for each. Generally, unions tend to support good approximations, better than interscctions,
-sf: and complcments tend to support approximations worse than cither. Note also that any set
:’, complement can be written as a union of other sets, provided (as we shall always assume in this
3 thesis) that the first-order scts representing partitions of a single attribute’s valucs are disjoint; for
._. instance, the sct of paticnts without high temperatures is the union of the scts of patients with
'E » normal temperatures and the paticnts with low temperatures. Note also that:
By OR(A.B) = NOT(AND(NOT(A).NOT(B)))
:iit 30 unions may be substituted for by intersections and complements, providing another perspective.

By the way, sct difference (i.c.. ANIXA,NOT(B))) is casy to define as a complement in which

\X-u:,ﬂ:.w::.:;\' ‘\*-‘-'.‘-:_‘.:.\'_'\'. e
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N
; the universe is some set A and not the whole database as in a complement. 'The same rules for
1
i complement apply.
" 3.4.3.4. Special cases
". There are three important special cases for set-expression decomposition that must be
) recognized when they occur: (1) disjoint sets, (2) sets that are subsets of others, and (3) "covering”
sets, sets that include every item on a particular range. We can write the general rules as follows:
2 AND(A,B) = the null set if A and B are disjoint
i AND(A,B) = Aif A is a subset of B
$ = Bif Bisasubsetof A
OR(A,B) = Bif A isasubsetof B
= Aif Bisasubsetof A
§ There are also rules for specific statistics, for instance:
] SIZE(OR(A,B)) = A + Bif A and B are disjoint
SUP(MEDIAN(OR(A,B))) = LARGEROF(MEDIAN(A),MEDIAN(B))
3 A and B are disjoint
= INF(MIN(NOT(A))) = MAX(A)if A is a cover on the attribute referred to,
i and MIN(A) = MIN(UNIVERSE)
b
A/
; These conditions are checked for first in processing a query, before any other rules are tried.
. If they can be found to apply, a query can be simplified, and the accuracy of its answer can be .
‘; greatly improved or even an exact answer supplied. Here is the formal definition of what the rules
5 do. Let DISJOINTP(A,B) be the predicate that A and B arc disjoint sets, let SULSETP(A,B) mean
h’ whether A is a subset of B, and lct COVERP(A,F) mean that A includes every item in the universe
3 set that has a value in that range on attribute F. The three conditions can be defined as follows:
’g DISJOINTP(A,B) = T if A and B are simple partitions on the values of some same ficld
""?; DISJOINTP(A,B) = DISJOINTP(B,A)
: DISJOINTP(A,B) = T if MAX(A) < MIN(B) or MAX(B) < MIN(A)
for some numeric attribute
, DISJOINTP(AND(A B),C) = T if OR(DISJOINTP(A.C),DISJOINTP(B,C))
i DISJOINTP(OR(A,B),C) = T if AND(DISJOINTP(A,C).DISJOINTP(B,C))
3 SUBSETP(A,B) = NIL if A and B arc simple partitions on the values of the same field
SUBSEIPAB) =TifA =8
B SUBSETP(ANIXA.B),C) = T if AND(SUBSETP(A,C),SUBSETP(B,C))
N SUBSETP(OR(A.B),C) = Tif OR(SUBSETP(A,C),SUBSETP(B,C))
H SUBSETP(A,ANIXB,C)) = T if OR(SUBSETP(A,C),SUBSETP(B,C)) RN
s SUBSETP(A.OR(B.C)) = T if AND(SUBSETP(A,C),SUBSETP(B.C)) =
‘ SUBSETP(NOT(A),B) = DISJIOINTP(NOT(A),NOT(B)) -y
SUBSETHA,NOT(B)) = DISIOINTP(A.B) )
2
, =3
o
h Y
2 \
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)

COVERP(AF) = T if A is defined as a partition on the values of attribute F
COVERP(AND(A,B).F) = Tif ANIXCOVERP(A F),COVERP(B,F))
COVERP(OR(A.B).F) = T if ANIXCOVERPKA,F),COVERP(B,F))
COVERP(NOT(A)F) = T if COVERP(A,F)

Note that while these rules may not apply often in simplc queries, they will occur in more
complicated queries, especially when the same set is referred to more than once, and they can
provide a much better answer when they can be applied. '

3.4.4. Attribute (field) expression decomposition

Just as sets may be operated on by intersections, unions, and complements, the attributes may
be combined in various ways to get virtual attributes. Rules can decompose these constructs
analogously.

3.4.4.1. Unary operations on ficlds

Unary operations applied to numeric attributes generally support good inferences, and
particularly so when the functional operations are continuous and monotonic in the interval of
interest. For instance, the maximum of the logarithms of an attribute is the logarithm of the
maximum; the median of the logarithms is the logarithm of the median; and the number of distinct
values of the logarithms of an attribute is the number of distinct values of the attribute, provided no
two numbers are closer than the rounding crror in the calculation. But the logarithm of the mean is
only an upper bound on the mean of the logarithms (its true value is the logarithm of the geometric
mean of the original attributes), and its standard deviation is similarly hard to analyze. The rules
for logarithm are similar to those for antilog, square root, square, and reciprocal, all commonly used
functions in statistical analysis. We have also looked at a few nonmonotonic functions, e.g.
absolute value, which can be seen as an upwards shift of some of the values of attributes of a range.

Unary functions, of course, have been subject of a good deal of attention throughout the
history of mathcmatics, much of it quite simple and cxploitable for our nceds. For instance, for any
function whose second derivative is constant in sign (as log, antilog, square root, square, and
reciprocal are for positive numbers), tangent lines form bounds on the curve (upper bounds if the
second derivative is negative, lower bounds if it is positive). Secants of the curve across some range
may be used to bound in the other dircction. These linear bounding functions (for which
calculation of statistics is much casicr) can give quitc tight bounds, as described further in section
35.14.
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Nonnumeric attributes are also subject to functional transformations. For instance, the .
- nationalitics of ships may be gencralized to regions of the world, and statistics estimated on, say, the ‘
N European ships. We specify all such mappings in a common form, as an association list of mappeﬂ-
to symbols and the lower-level symbols whict.| map to them. We then usc the association list in
3 making estimates of statistics on the generalized values. For instance, an upper bound on the mode
,!: frequency of the generalized values is the mode frequency of the original values times the size of
" the largest set in the association list. Notc that these operations go in one dircction only: given data
3 of ship regions-of-nationality, one cannot reconstruct thc nationalities. Thus it is important in
1 setting up the database abstract to have statistics on a relatively "low level” of attributes.

3.4.4.2. Binary operations
'- One can also have derived attributes from more than onc attribute with respect to some set.

For instance, onc may be interested in mean of the values created by adding the corresponding

valucs for loading time of a ship in port and its voyage duration. We oily consider binary
; operations here because other operations can almost always be decomposed into binary ones; see
5 section 5.6.4. ‘

The algebra of quadruples discussed in 3.3 can substantially be used for getting such statistics.
i But there is one subtle difference for estimate and error rules: the random variables represent
drawings without replacement from a population. So for instance, the mcan of the sums of the
corresponding elements of two fields is exactly the sum of their means, ‘instead of just being
approximated by it, because:

y:, Z(x+y)/n = 2x/n + Zy/n’

ﬂ Most of the other rules look the same, however.

)

b

- These arithmetic operations have surprisingly poor absolute bounds for frequency distribution

statistics (number of distinct items, mode frequency, etc.) This is because it is possible, for instance,
for many different number pairs to add up to the same total, and same-total coincidence pairs can

L3N

-

always arisc uncxpectedly, if not by some underlying phenomenon in the data.  But this happens

v

infrequently, and we arc usually safe in ignoring them for computing the estimate (EST).

-----
-

------
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N 3.4.4.3. The vectorization operation
There’s one very important nonnumeric binary opcration we haven’t mentioned, the creating
77‘) ) of vectors from corresponding values of two attributes. For instance, we can can vectorize the ship
N . attributes of current latitude and current longitude into a ship-position virtual attribute, and talk
Y about about statistics on ship positions. Note that this operation creates a nonnumeric attribute,
whether or not the component attributes are nonnumeric. Note also this operation provides a
o definition of an “extensional key” of a relation at a given time: any set of attributes which when
vectorized, have a mode frequency statistic equal to 1. Vectorization is what [Smith and Smith 77]
and other database work has called "aggregation”, but that word is usually used in statistical
computing to mean calculation of statistics like count, mean, median, etc. on sets, and we shall
avoid it.
é 3.4.4.4. Operations with constants
\ Operations can also take place with respect to constants (or, strictly speaking, attributes whose
:;;! values are all some constant). Rules are particularly simple for these cases, and almost all exact.
? For instance, for K some real number:
}? ) MEDIAN(Q.TIMES(K A)) = K*MEDIAN(Q,A)
SIGMA(Q,TIMES(K ,A)) = K*SIGMA(Q,A)
: .
3 3.4.5. Artificial-intelligence inheritances
N
Another very different class of rules along the query argument dimension originate from the
,;k artificial-intclligence concept of inhcritance. Statistical aggregate propertics such as mean,
5 maximum, and mode have not previously becn thought to "inherit" between sets (cf. [Fahiman80},
& which uses the claim that inheritance of normative and prototype properties can’t be donc between
two types or sets to justify the distinction between individuals and types). But they do in a weak
1 sense, and a collection of such "weak" information can often be combined to get stronger
3 information. We have explored these sorts of rules only partially in our implementation.

3.4.5.1. Some motivation for inhceritances

Inheritance provides a different metaphor for rules than the algebraic style we have thus far

considered. Consider the following example. Suppose we have conducted a census of all clephants

in the world and we can definitely say that all clephants are gray. Then by set-to-subsct inheritance
of the "color” property, the sct of clephants in Clyde's herd must be gray, Clyde's herd being some :-_ 1
X particular herd of clephants. :ji'
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‘This will not work for statistical aggregate propertics such as maximum and mecan. Supposc

L

our census found that the longest clephant in the world is 27 feet long, and the average clephant 15

- feet. This does not mean the longest elephant in Clyde’s herd is 27 fect, nor the average in the herd
Y \ 15 feet. But a weak form of inheritance is present, for we can assign different degrecs of likelihood
s to the following:

i 1. "The longest elephant in Clyde's herd is 30 feet long.”

§$ 2. "The average elcphant in Clyde’s herd is 30 feet long."

R 3. "The longest elcphant in Clyde’s herd is 27 feet long.”

4

4, "The average elephant in Clyde’s herd is 27 feet long.”

S. "The longest elephant in Clyde’s herd is 16 feet long.”

6. "The average elephant in Clyde’s herd is 16 feet long.”

) Statements 1 and 2 are impossible. Statement 3 is possible but a bit unlikely, whereas
g statement 4 is almost certainly impossible. Statement $ is surprising and hence apparently unlikely,
ai whereas 6 is quite reasonable. Since we don’t know anything of Clyde’s herd other than that they
are elephants, a kind of inheritance from the propertics of elephants in gencral must be happening.

3.4.5.2. Our four-characteristic approach

Inheritance phenomena can take place with any statistic, and form the basis of a complete

theory of knowledge representation. To site our approach relative to other knowledge
representation work:

e our theory concerns set representation only (but sets of SIZE=1 can represent
individuals)

o it concerns "definitional” sets primarily (those with absolute criteria for membership) as
opposed to "natural kind” scts[Brachman and Isracl 81] (though degrees of set
membership as in fuzzy set theory could be introduced)

e it mainly dcals with extensions (exemplars), not intensions (meanings); or in other
words, it deals with a particular databasc statc and not things with arc true for any valid
database state, like the "extensional keys" mentioncd in the footnote in section 3.1

o it only addresses the set-subset semantic relationship; however, often other relationships
can be viewed this way by "atomization” of the included concepts, ¢.g. geographical
containment may be scen as a sct-subsct relationship between scts of points
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The key idea is to note that while in a few cascs statistical propertics inherit values exactly
from sct to set, in most cases they do not; but that there are characterizations of a numeric statistic
that will inherit much more often than nonstatistical propertics, namely bounds, estimates, and

standard errors. Some examples:

o An upper bound on the mean of a subset is the maximum of the set.
o A lower bound on the maximum of a subset is the minimum of the set.

e A best estimate of the mean of a subset, in the absence of further information, is the
mean of the set.

e The "sampling theorem of the mean": a standard deviation of the mean of a subset is
approximatcly the standard deviation of the set times the square root of the difference
of the reciprocals of the subset size and set size (i.c. ERR(MEAN(Q,F) is a(1/N - 1/n),
where g is the standard deviation of the set, n its size, and N the size of the subset)

The last also illustrates an important feature of statistical property inheritance, namely that
functions (in the mathematical sense) of values may be inherited rather than the values themselves.
But since the different values are so strongly coupled it scems fair to still call it “inheritance”.

3.4.5.3. Inheritance types

The main categories of statistical inheritance are:

o Downwards inheritance. That is, from set to subset, as most of the previously
mentioned rules. This is the usual direction for statistical inheritance since it is usually
the direction of greatest fanout: people tend to store information more for general
concepts than specific concepts, for broadest utility. In particular, downwards
inheritance from sects'to their intersection is very common in human reasoning, much
more so than reasoning with unions and complements of sets. Downwards inheritance
works best for statistics that rcpresent a kind of universal quantification over all
members of a sct, e.g. set maximum.

e Upwards inheritance. Inheritance from subset to set occurs with sct unions, in
particular unions of disjoint sets which (a) seem easier for humans to grasp, and (b) have
many nice inheritance properties (¢.g. the largest clcphant is the larger of the largest
male and largest female clcphanl‘). Sampling, random or otherwise, to cstimate
characteristics of a population is another form of upwards inheritance, though with the
special disadvantage of involving a non-definitional set. Upwards inheritance also arises
with caching [l.cnat et al 79] (scc 5.4); pcople may cache data on some small subsets
important to them (like Clyde’s herd) in addition to general-purpose data. Upwards (as
well as downwards) inheritance is helpful for dealing with "intermediate” concepts
above the cache but below gencral-purpose knowledge (c.g. the sct of clephants on
Clyde’s rangelands). Upwards inheritance works best of statistics that represent a kind
of cxistential quantification over all members of a sct, ¢.g. the possible valucs that items
can have. We have not implemented arbitrary cache-based upwards inheritance for our
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e system, however, because it is a relatively weak inference and docs not seem cost-
L2 effective unless a good deal of information is cached.
P o Lateral inheritance. A set can suggest characteristics of sibling scts of the same parent ’
7t superset [Carbonell 80). Two examples are set complements (i.c. the set of all items not
B, :" in a set, with respect to some universe), and when sibling scts differ only by an -
e independent variable such as time or space, and there are constraints on the rate of
fr i change (i.c. derivatives) of numeric attributes betwcen siblings (e.g. the stock market
average on successive days). Lateral inheritance is much more domain-dependent than
the other kinds of inheritance, becausc a set can have many siblings, and some kind of
TF domain knowledge is needed to choose the single "best” one to inherit from.
N Unfortunately, except for some unusual situations, no bounds are possible with lateral

w% inheritance, only estimate and error information. For thesc reasons we have not
v implemented general lateral inhceritance in our system, only the complement usage.

§j o Diagonal inheritance. An interesting hybrid of downwards and lateral inheritance is
7_,' possible with statistical propertics. Given statistics on the parent and some set of
¥ I} siblings, we can often "subtract” out the effect of the known siblings from the parent to

get better estimates on the unknown siblings. For instance, the number of female
elephants is the total number of elephants minus the number of male elephants; and the

e mean of the length of female elcphants is
::j [MEAN(ALL)*SIZE(ALL) - MEAN(MALES)*SIZE(MALES)]
% / SIZE(FEMALES)

This idea also works for moment and extrema statistics. We have not implemented this
inheritance in our system because our abstracts had too many first-order set partitions

%; per attribute to make these inferences very strong.

o Attribute-hierarchy inheritance. A different kind of inheritance hierarchy arises with

s auribute vectorizations (see 3.4.4.3) on the same sct, and there can be downwards,
upwards, and lateral inheritances of this kind too. For instance, the number of distinct

54 latitude-longitude pairs for a set of ships is lower-bounded by the number of distinct

\ latitudes, a different form of downwards inhcritance; and is upper-bounded by the
number of distinct latitude-longitude-status triples. We have implemcented the upwards

A

p
3\ version in our system, but neither of the others because we felt they would only arise for
05 queries very awkward to phrase.

k “ o Inheritance-rule inheritance. Some sets are sufficiently “special” to have additional

inheritance rules for all subsets or supersets. An example is an all-integer set, where for
M any subsct an upper bound on the number of distinct values for that property is the
cciling on the range. Since this is definitely a rule concept at work here, and one
iy sufficiently different (and stronger) than other rules applying to these statistics, it make
sensc to designate it as a special rule rather than as the value of a special "integerness”
-7, statistic. We have not implemented this in our system as it requircs theorem-proving
reasoning. N
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3.4.6. Query rearrangement rules

Our three sct operations of intersection, union, and complement are equivalent in power to the
propositional calculus, and obey cquivalents to all its theorems, as for instance associativity,

absorption, and distributive laws. Virtual field expressions can also be rearranged.

3.4.6.1. Associativity

Commuting the order of a binary intersection or union should not affect the answer given by
our system; we have tried to be careful about ensuring this in our implementation. But one of the
disadvantages of requiring such operations to always be binary is that associativity does aot hold,
eg.

SUP(SIZE(AND(A,(AND(B,C))))) is not necessarily SUP(SIZE(AND(AND(A,B),C))))
because analysis of the set B with respect to the attribute on which C is defined may give a tight
bound which will not be noticed in the second case. (This rule is discussed in more detail in
34.7.2) We ty to get around this for intersections of three and four sets by defining all
permutations, trying each separately, and combining the results. But things get rapidly out of hand
as the number of sets increases, and we see no nice solution.

3.4.6.2. Absorption laws

One class of equivalent forms exists, however, where one form is definitely superior to the
other, the so-called absorption-law forms, e.g.

OR(A,NOT(A)) = UNIVERSE
AND(A,NOT(A)) = the empty set
OR(A,AND(AB)) = A
AND(A,OR(A,B)) = A
OR(A,AND(NOT(A),B)) = OR(A,B)
AND(A,OR(NOT(A),B)) = ANIXA,B)

Here the second form is definitely preferred since it reduces the number of binary combinations
and hence oppertunitics for inaccuracy in estimation. A general heuristic we suggest is that the
fewer terms an cquivalcht expression has, the better it is. This is because our rules (for all of SUP,
INF, EST, and ERR) implicitly assume independence of sets in computing an intersection or a
union, and if there are any terms common to both sets being intersected or unioned, independence
no longer holds. While we cannot give a general proof of this heuristic, we can prove it scparately

for specific query forms. For instance,
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f:‘ SUPSIZE(ANIXA.OR(NOT(A)B))
-‘f_'.,: = SMALLEROF(SIZE(A).SIZE(OR(NOT(A)),B))
e = SMALLEROF(SIZE(A),LLARGEROF(SIZE(NO'T(A)),SIZE(B)))
- = SMALLEROF(SIZE(A),LARGEROF(SIZE(UNIVERSE)-SIZE(A),SIZE(B))) ’
A whereas:
;’ SUP(SIZE(AND{A,B)) = SMALLEROF(SIZE(A),SIZE(B)) ’
and if SIZE(A) = 60, SIZE(B) = 35, and SIZE(UNIVERSE) = 100, the first form will give an
upper bound of SMALLEROF(GO.LARGEROF@O.JS)) = 40, whercas the second form will give
:$ LARGEROF(60,35) = 3512 Since lower upper bounds are better, the second form gives a better
A% L ., . . ' .
:_ answer in this case. Similar analysis can be applied to many other query-form pairs in regard to
¥ bounds rules, and some statistical analysis can be applied for estimate and error rules.
2y 3.4.6.3. Distributive laws
o
‘ ¥
A J The abovementioned absorption laws can be derived from more general distributive laws of
intersection over union and vice versa, which arc quite useful in their own right. That is, we should
\ "factor out” parallel occurrences of the same symbol in expressions:
"‘z AND(OR(A,B),OR(A,C)) = OR(A AND(B,C))
§ AND(OR(A,B),OR(C,A)) = OR(A,AND(B,C))
<< OR(ANIXA,B),AND(A,C)) = AND(A,OR(B,C) i
OR(AND(A,B),AND(C,A)) = ANIXA,OR(B,O))

There are also distributive laws in regard to complements (alias DeMorgan’s laws) which are
useful in the following directions:

NOT(ANIXA,B)) = OR(NOT(A),NOT(B))
NOT(OR(A,B)) = AND(NOT(A),NOT(B))

on the grounds of the heuristic that it's hard to apply complements to composite sets, but easier for
simple sets.

Again, we can justify these in terms of bounds rules if necessary.

V25MALLEROF and 1 ARGI:ROF are different from MIN and MAX: the former arc binary operators taken in the

-l"'1 standard mathematical sense, and the latter are statistical aggregate opcerations used in database querics on an indcfinite
7 number of objects. ’

4

L%
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#:i 3.4.6.4. Minimum-term form
Loy
It appears, then, that in nearly all cases we want to rewrite query sets in an equivalent
’ ) minimum-term form. This form should be distinguished from (a) minimum-level form, and (b)
‘-ﬁ‘ . minimum-operation form, both of which occur in the logic design literature [Givone 70). Both of
; thesc have algorithms for finding them; the former is just simple disjunctive (or conjunctive)
o= normal form, and the latter is approached via Karnaugh map theory. But minimum-term form has
f no nice algorithm for its discovery, except for a few special cases [Lawler 64], and the only way to
-‘;4 finding it is exhaustive scarch. Thus we cannot give a general theory, only pairs of query forms
“j where one form is superior to another.

3.4.6.5. Field-expression rearrangement

Field expressions can also be rearranged into equivalent forms. One can think of the names of

real attributes of the database abstract as mathematical variables, and find the alternative forms
with the standard laws of algebra. Just as with set-operation expressions, commutativity,

g: associativity, and distributivity apply, and the minimum-term form is probably to be the best,
-?.:” following our heuristic. For instance,
hoo PLUS(TIMES(F,G), TIMES(F,H)) should be replaced by TIMES(F,PLUS(G,H))

for purposes of estimate rules, even though it makes no difference to bounds rules. Squares, cubes,
and other powers of attribute values are better than computing these things via TIMES since for
instance ‘

MEDIAN(Q.SQUARE(F)) = (MEDIAN(Q,F))?
but:

SUP(MEDIAN(Q,TIMES(F.G))) =
SMALLEROF(TIMES(MAX(Q,F),MEDIAN(Q,G)),
TIMES(MEDIAN(Q,F) MAX(Q.G)))
INF(MEDIAN(Q.TIMES(F,G))) =
LARGEROF(TIMES(MIN(Q,F),MEDIAN(Q,G)),
TIMES(MEDIAN(Q.F),MIN(Q,G)))

hence:

SUP(MEDIAN(Q.TIMES(F,F))) =
SMALLEROF(TIMES(MAX(Q.F).MEDIAN(Q.F)),
TIMES(MEDIAN(Q,F)MAX(Q.F))
INF(MEDIAN(Q.TIMES(E.F))) =
. LARGEROF(TIMES(MIN(Q.F)MEDIAN(Q,F)),
TIMES(MEDIAN(Q.F)MIN(Q.F))

and you get intervals, not exact valucs. Another cxample of the same thing has been given in

section 3.3.1.
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\ 3.4.7. Miscellaneous rules i

There are a few unusual rules that do not fall into any category thusfar discussed.

3.4.7.1. Database-domain-dependent rules

o Our system is an expert system for the domain of statistical estimation, not the domain of the
s database. Our intention is to scparate out this knowledge in the form of rules from database-
% dependent knowledge in the abstract. Thus we believe it important to write domain-dependent
i% knowledge, as much as possible, as the value of a statistic, and not as an inference rule. For

instance, the statcment (as in [King 81]) that every ship nationatity includes one freighter can be
asserted for any particular database state by the fact that the statistic that the number of distinct
nationalities for freighters is the same as the number of distinct nationalities for all ships in the

};;. database. The two assertions are not logically equivalent however -- the former concerns the

intension of the database (things that are true for any database state), and the latter the extension

% (things that are true for only a particular database state).

Fed

:’:ﬂ Much of the so-called "domain knowledge” of [King 81] can be rewritten this way. For

L instance, any assertion about the intension of the database having the form i

2 ValP(x) — Q(x)]

where P and Q are predicates corresponding to a classes of items in a relation, logically entails the ) L‘
fg assertion about an extension that the sct corresponding to P is a subset of the set corresponding to
" Q. or in other words g
4 SIZE(AND(PSET.NOT(QSET)) = 0 ?
_;’.% Similarly, any assertion about the intension of the database having the form
% Ix(P(x)) -
.",, entails the assertion about the extension o
‘A INF(SIZE(PSET)) = 1 N
tf But unfortunately multiple quantifiers in the same expression like
a VxyPo) > Qo

W cannot be captured this way.
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3.4.7.2. Definitional-mode analysis

There is a fundamental interrelationship between intersections of pairs of simple sets and
frequency statistics on both those sets, when simple sets are defined by partitions on the values of
N single attributes. For example, consider the sct of American tankers, and assume we have statistics

i e

only on American ships and tankers separately. Consider the set of American ships, and its statistics

v

with respect to the ship type ficld, and suppose that "tanker” is a ship type. The mode frequency ™
§ for American ships is then an upper bound on the number of American tankers, and the frequency L
; of the least most common item (the “antimode™), a lower bound. This is a powerful rule. ‘ '
1 Some refinements need to be added for most situations, however, because usually the level of
aggregation for first-order sets is coarser than the inherent aggregation of data values. For instance, N
§ only ship subtype may be entered, not type, whercas types may be the first-order classes. We must E
f then find out how many different subtypes are in a given type, and, for instance, multiply the mode ;'t

frequency by this number to get an upper bound.

; 3.4.7.3. Redundant intersections from range analysis .»
. - Sometimes it is beneficial to add redundant information to a query. An cxample is when a 22:.
query set is known to span a certain narrow range with respect to some attribute, and you intersect a
t ) first-order sct on that attributc containing that range with the query set. For instance, suppose that ;:'.:‘
% Egyptian ships never leave the Mediterranean, and that supertankers never venture west of Naples. ‘-
’ Then we know that Egyptian supertankers (if therc are any) are only to be found in the Eastern =
; Mcditerranean, and we may be able to exploit characteristics of that geographical population, as for -~
i; instance using its siz¢ to upper-bound the number of Egyptian supertankers. Another example is ‘
§ item 8 of section 1.5.1. :§
T 'I'hcbretically we can do this for any attribute, just appending additional set intersections. In
E practice we can do it only rarely, when the inferred range for some query set is fully contained in :T;:;
: some first-order sct defined on that range attribute. We can perhaps then rearrange the query using
v the rules of 3.4.6 and find cven better forms, and so on. 2
| A
e | .
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R
Y 3.5. The derivational dimension of rules g
¥ :
The last dimension of rules, the derivational one, differ from the others (statistic, answer, and . u
g computational) in that it docs not have logical force, only heuristic. It represents the justification
»" for a rule, what branch of knowledge it comes from. Since rules can often be supported by several ;
2 ,.
lines of reasoning, a rule does not necessarily occupy a unique position on this dimension. ‘
In section 3.5.1 we cover ways of deriving rules directly from mathematical laws and theorems.
,§ Section 3.5.2 covers some idcas from database theory. The next three sections concern three
, systematic formal ways of deriving query answers and rules: nonlinear optimization, maximum
entropy theory, and theorem-proving manipulations of existing rules. Section 3.5.6 briefly
{ mentions psychological rules people use for statistical reasoning. ‘
3 3 |
_ "
39 3.5.1. Mathematics .
a,ﬁ Simple mathematical manipulations provide us with a large number of rules. :
g 35.1.1. Definitions and theorems .
: -l
¢ We can directly take for rules many things expressed in mathematics and statistics books. For
e instance: 5
‘x e a proportion statistic may be defined as the ratio of subset sizes to set sizes ’
. o the variance (the standard deviation squared) is equal to the difference of the mean of
. the squares and the square of the mean
3; e the sa:ﬁpling theorem for means: the estimate (EST) of the mean of a subsect is the mean
N of the set, and the error (ERR) of is ¢ * SQRT(1/N - 1/n), where N is the size of the .
subset, n the size of the sct, and o the standard deviation of the set
‘”’ o the Chebyshev inequality for statistics (as opposed to probabilities): the number of :
X items farther than distance D from the mean of a distribution can be no more than -
® no/1%, where o is the standard deviation and n the total number of items ;
2 2
) o the Cauchy-Schwartz-Buniakowski incquality: an upper bound on mean of the ]
. itemwise product of two attributes is the gcometric mean of the arithmetic means of the ¢
b squares of values on those two attributes :
X [Mitrinovic 64] gives some morc simple inequalitics of this sort. ;'-
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3.5.1.2. Extreme cases of definitions and theorems

Analysis of definitions and thcorems in particular cases can generate many useful rules. For
instance, consider the formula for the mean, Zx./n. Since x,.2x map 2X/N 20X /= X oy AN
an upper bound on the mean of a set is the maximum, using the dcfinitions of mean and maximum,
Similarly, we know from the definition of median that we can renumber the X, such that xl(x‘m‘l ian
fori<n/2, and x>x for i>n/2, for n even. Hence an upper bound on the mean of a set is
[x/n] + Z,

[x;/n] < (0/2)x  gin/0 + (0/2)x . /0

|<n Dn/2

= (xmedmn max)/2

Another example is for the abovementioned Chebyshev inequality. If we suppose the
maximum of some set to be a distance D from thc mean, ISnale2 hence D<o vn, which says
that a lower bound for any distribution on the distance between the maximum and mean is the
standard dcviation times the square root of the number of items.

3.5.1.3. Independence and linearity assumptions

A large class of results follow from the assumption that the data behave "reasonably” in one
way or another. Exploratory data analysis [Tukey 77] in particular likes to make use of very simple
data models, where data modecls are necessary. An important example is the "log-linear” model for
data which represents sct sizes or counts of intersections of two sets [Ku and Kullback 74]. It
assumes that the sets are statistically independent of onc another, and contribute to their
intersection in a log-linear way:

1og(SIZE(ANI(A B))) = K, log(SIZE(A)) + K,log(SIZE(B)) + K,
and the usual case is l(1 = K2 =1, K3 = log(SIZE(UNIVERSE)), or in other words
SIZE(ANDXA,B)) = SIZE(A) * SIZE(B) / SIZE(UNIVERSE)
We can think of this as suggesting a two-dimensional contingency table where cntries represent the
number of items having pairs of attributes, and rows and columns must sum up to specified
amounts. This sort of data model can be used for other statistics too. For instance:
MEAN(ANIXA,B).F) = [MEAN(A,F) + MEAN(B,F)} /7 2
where the mcan is thought of as a logarithm of some fictitious quantity, and K, = K, = LK, =
log(2). The same averaging formula can be uscd for standard deviation and median too. Actually,
these computations are weighted in our system by the inverscs of the relative sizes of A and B, so we
do not use just a simple average, though the principle is the same.

The rules for our system that the above data models suggest are EST rules. That is, formally
we should say
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A
3% EST(SIZE(ANIXA.B))) = SIZE(A) * SIZE(B) / SIZE(UNIVERSE)
% because a data model is only an attempt to fit reality and not a depiction of it. ERR rules can also
be derived from this analysis, as cxemplificd by the goodness-of-fit analysis of [Ku and Kullback .
I
kY
ii 3.5.1.4. Functional linearity

Another quite different way in which linearity assumptions lead to good rules is in the
A simplification of mathematically intractable expressions. A good example is the modclling of
monotonic unary functional operations on numcric attributes, as when for instance we desire the
mean of the logarithms of the values of some attribute. Unlike the median of the logarithms, there
is no exact formula for this from the values of any simple statistics on the original attribute values.
But since we know In(x) is concave downwards because its second derivative (-I/xz) is always
negative for x>0, any tangent to the curve In(x) for x>0 will bound it from above; and any secant
through two points of the curve will bound it from below in the interval between the two points.

'g ' Let either of these bounds lines be represented as f{ix) = ax + b. Then if we wish a bound on

N In(x,) we usc ax; + b. Hence: .
’ mean of In(x )is Zin(x.)/n '

| which is bounded by Zfax; + b)/n = ap_+ b _
3 where p_ is the mean of the original set of values x;. The constants a and b are straightforward to

;‘ obtain. If m is the minimum of the original sct of values and M the maximum:

P
S

for the line tangent atx=p ta=dfip )/dx =1/p,b= ln(p )-1
for the secant line: a = [ln(M)-ln(m) M-m}, b = In(m) - am

o So, substituting, we can say for the mean of the logarithms:

y anupperboundisp_*1/p + ln(p) 1=In(p)
alower bound is . In(M)-In(m)}/[M-m] + In(m) - m{In(M)-In(m)l/[M-m]

. e o

= {In(M)-In(m)Kp_-m)/{M-m] + In(m)
= aln(M) + (I-a)in(m), a = (u,-m)/(M-m)
bz To give an example, if a set of data values ranges from 10 to 100, and the mean is 23, the mean of
o the logarithms of the data valucs has
an upper bound of In(23) = 3.135
a lower bound of 13790 In(100) + 77/90 In(10) = 2.635
}‘-'Zl : We can do this for any monotonic function of one variable. The bounds on the mean of f(x) .

for any monotonic f{x) are

onc bound: Rp ) ' .
other bound: afiM) + (1-a)im), a = (i -m)/(M-m)
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where p_ is the mean of the x’s, m the minimum on the range, and M the maximum. We can also
bound standard deviation this way. And we can also get a tighter quadratic bound on the answer,
but the mathematics becomes quite complicated.

3.5.1.5. Amounts of detail in rules

A key issue in using mathematics to get rules is the amount of detail one is willing to put up
with. Frequently one can get a somewhat better (tighter) bounds rule by adding extra clauses and
terms, while requiring more space and processor time to evaluate, and running greater risk of errors.
One must decide if the tradeoff is worth it. For instance, a lower bound on the number of distinct
items in a set is the size of the set divided by its mode frequency. But if one also has a reasonbly
tight value for the second most common item in the set (MODEFREQ?2, a value which we do
tabulate routinely for database-abstract sets), a better (larger) lower bound is

1 + [[SIZE(A) - MODEFREQ(A)] / MODEFREQ2(A)]
And we can prove this rule is better:

SIZE(A) / MODEFREQ(A)
= 1 + [[SIZE(A) - MODEFREQ(A)] / MODEFREQ(A)]
< 1 + [[SIZE(A) - MODEFREQ(A)] / MODEFREQ2(A)]

because MODEFREQ(A) > MODEFREQ2(A).

3.5.2. Database theory
Database theory provides a different way of obtaining rules.

3.5.2.1. Keys and functional dependencies

Keys are attributes or "fields” in database terminology (or groups of fields, through
vectorization) of a relation whose values together identify a unique tuple [Ullman 80]. In this work
we broaden the concept to include "extensional keys", fields whose unique-identification property
holds only in the current databasc state, as we mentioned in section 3.1. Such information is quite
uscful because the number of distinct values for sets which restrict valucs for all or some of the key
fields can have much better bounds than otherwise.

Extensional functional dependencies are a related more general concept. There is a functional
dependency for field A to ficld B if knowing the value of an item for field A logically implies its
values for ficld B. This is uscful because, for instance, it puts an upper bound on the numbcer of
distinct itcms for ficld B for some sct as the number of distinct items for ficld A for the same sct.
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; We do not usc functional dependencics in our implementation, however, since they are a kind of Z:'_~
: correlation (sec scction 3.1.3). '
5 3.5.2.2. Theory of inference compromise

3

Frequently statistical databascs must satisfy the two conflicting goals of giving out values of

statistics and protecting the confidentiality of individual record (tuple) values. Research has

explored conditions for violating this confidentiality when giving out statistics, the conditions for
"compromise” [Fernandez et al 81, Denning 83]. While the aim of our system is not inference of
individual values, the same mecchanisms can often be used for the (less difficult) problem of
inference of statistics on arbitrary sets. Four important compromise methods are useful for our
purposes:

AV TR

o "trackers” [Denning et al 79], formulas that represent a "padding” of another query so
that the latter can be "subtracted” from the former to get statistics on the difference set.
For example, to find the number of Isracli ships with atomic weapons, subtract the
number of non-Israeli ships with atomic weapons from the number of ships with atomic
weapons, both the latter of which may be large. We use this ideas in many guises in our
system.

SR
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o small-set inferences, the unique or near-unique solution of systems of constraints on .
very small sets. For instance, if one knows a set is no larger than four items, exact values
for the maximum, minimum, mean, and median -- or even many kinds of bounds on
them -~ exactly determinc what those values are. The U.S. Census Bureau does analysis
of this kind of compromise on all statistical summary tables before they rclease them to
the public [Cox 80). A number of our rules have this effect when set sizes are small, so
we did not implement rules explicitly,

2o g WA

¢ key inferences, exploitation of the fact that fields (or the vectorizations of fields) are
extensional keys of a relation. For instance, if we know that ship ID number is an
extensional key of a ships relation, that the maximum ID number of ships involved in
accidents last year was 2694410, and that the median 1D number of American ships last
year was also 2694410, then the American ship with that ID must have been involved in
an accident. We did not implement this kind of inference because it requires
coincidences which will occur rarely in large databases.

A

ot

e

o Diophantinc compromise. The additional constraint on a sct of variables that they must
be intcgers (the "Diophantine™ constraint) is usually a very powerful one. Any situation
where counts are unknown is an example, but in fact any unknowns that are rational
numbers can always be scaled upwards, turning the problem in a Diophantine one.
Standard algorithms exist for solving scts of linear Diophantine equations, though the
size of the solution space for a problem may vary tremendously. We discuss this
inference method in dctail in [Rowe 83b). We have done a number of experiments with
an implementation of this method, but we have not integrated it into the full system

r R AR

because solving lincar Diophantine cquations is an NP-complete problem, requiring .

exponcential amounts of time in the number of variables, and henee requires care before

application.
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Finding out absolute bounds on functions also goes by the namce of "optimization”, and has

1
i
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3.5.3. Nonlinear optimization ,
been subject of extensive attention in opcrations research [Gill, Murray, and Wright 81}, some of ]

which is relevant to us. (We have not, however, uscd these methods much in our implementation,
for reasons discussed in section 3.5.3.2.)

3.5.3.1. The optimization process \

The general optimization problem is to find the maximum of some function f of n variables x..

(This corresponds to an upper bound; the lower bound is found by optimizing -f.) In the case of

statistics, f is some statistic like maximum, mean, standard deviation, median, ctc. and the x, are
data points. Note right away one problem: one must know exactly how many data points there are

R
P et

in advance for this to work, i.e. one must have an exact value for the SIZE statistic on the set. Then i
one gets additional information in the form of “constraints™ on the solution, which for our statistics
domain will be values of other statistics on the same or overlapping data points. Some of these
: constraints can be equality constraints, e.g. mean or standard deviation; some can be inequality
constraints, e.g. maximum, median, or maximum of a distribution fit; and some can be neither, as
the frequency of the mode. So a typical situation might be to find the largest value of the mean of a
set, given values for the maximum, minimum, median, and number (;f distinct values.

i NI i il

Note that uncertainty in the values of known statistics is straightforward to handle if we know

an absolutc range. For instance, if we don’t know the exact value of the mean but know it is in the
range 12 to 17 we can writc two inequality constraints instead of the onc equality constraint we
would have if the valuc was known exactly, namely

Zx/n 212, Zx/n <17

p—.

Once the problem is set up, optimization techniques attempt to characterize the behavior of

A Ml il ol .

the function f in the range given by the constraints. This usually involves calculating its gradient
and following it (c.g. stecpest ascent method). perhaps also finding the Hessian (sccond-derivative) !

matrix and using it to control step size. A good starting point for scarch for the optimum is often
important.
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3.5.3.2. Disadvantages of optimization

There are three difficulties with using optimization in our system, however. First, it only

-ﬁ works for specific cases, not in general. That is, we cannot get general rules from it that characterize
1% the solution for a class of known values, only answers for specific known values. There arc some
nE

h"%( other techniques that will do this, but they only work for a few cases -- see section 3.5.3.3.

The second problem is that the optimum found this way is a local optimum, not nccessarily a
global one. Few methods have been found for that latter kind of problem. But if one docs have
some knowledge of the behavior of the function being optimized in the form of its gradient and
Hessian, one may be able to prove globality in special cases. For instance, when the objcctive
function is linear.

The third problem is that in most interesting cases there are many variables, since the variables
represent data points and their number is the size of the set being studied. Since in most cases they
are interchangeable, this is an inefficient paradigm for determining things about them.

3.5.3.3. Some tractable special cases

An important special case where we can get "nice” general solution is when constraints are
linear and the objective (optimization) function is lincar as well. An example would be when we
know set size (assume it even), maximum, minimum, and median (call these n, M, m, and d
respectively) and we wish to know the largest possible value of the mean. Then if we assign indices

1 to the variables in order, i.c.x, < x, < .. <x , <x o We can write the constraints

X, =m
1
x, = M
x . =d
mSx Sdforl<i<n/2
d<x, <Mforn/2<i<n
%% and the objective function is
% . x,/n + x2/n +o+x /n+x/n
So the gradient vector is
(aflxl af'/x2 af/x3 ..)=({/n1/nl/n...)
A ," and is constant in the feasible region (constant everywhere, in fact). So we can use the Simplex
o
3 “5 ) method in the usual lincar programming way to show the maximum occurs for

‘?‘} =m
s x,=d,1<i<n2
xi=M.d<i5n

and hence an upper bound on the mean is
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. If, say, we have the same constraints and wish to bound the standard deviation, we have a

quadratic programming problem which also has some nice properties, albeit not quitc as nice. But

DS B
. A BB

if a standard deviation is one of the constraints, things are considerably messicr.

T

3.5.4. Maximum-entropy theory r
;
Symbolic optimization provides a nice metaphor for how one goes about deriving bounds
rules. Can we do anything similar for estimate and error rules? It turns out that we can, if we
restate the problem as one of finding the "maximally nice” probability distribution consistent with
some given information. For "nice", there are many good reasons to take it as meaning 3
"maximum-entropy"” [Shorc and Johnson 81). The entropy associated with an arbitrary probability )
distribution p(x) may be quantified as: ‘ :
- -f p(x)In(p(x)) dx
§ For instance, the entropy of the even distribution p,(x) = 1 on the range 0<x<1is 4
:? -f1*In(0)dx = 0 by
5 . whereas the entropy of the exponential distribution p,(x) = e™/ 1-¢’! on the same interval is :
- Ie"‘/]-e Teydx = -[e /() / et '
}3 =2e1 + -e%1-¢! = -4180 -
% 50 p;(x) has a larger entropy than p,(x), and so is more "natural”.
35.4.1. Finding the maximum-entropy distribution "
% Our problem then becomes one of finding a distribution that maximizes a single number, the :
'tg entropy, given certain prior information. This is now a problem for the calculus of variations [Korr -
- and Korn 68]. For this particular form of function to be evaluated it turns out the solution always
has the general form:
fix) = er + Alx + Azxz + .. \
where the A, arc constants, the so-called "'l agrange multiplicrs”. :
The solution takes simple forms in important cases. .
e If nothing whatsocver is known about a distribution, then the maximum-entropy
distribution has only the first A term, and is perfectly even.
. o If only the mean of a distribution is known, only the first two ()\ and }\ terms) occur, >

and the maximum-cntropy distribution is an exponential.

----------
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‘; o If the mcan and standard deviation are known, then only the first three terms occur. [t
5,, can be proven that necessarily A, <0, giving a displaced normal curve. (This in fact is a
“deep” justification of the Central Limit Theorem of probability.)

o If a maximum and/or a minimum is known in addition to a mean and/or standard
deviation, the maximum-entropy curve is just a truncated version of the curve without .
the maximum and/or minimum.

o If medians or other order statistics are known, the curve is piecewise-constant,

‘e piecewise-exponential, piecewise-normal, etc.

L, o If the number of distinct values in a set as well as the set size is known, the mean
g number of items per value is their ratio. Thus the maximum-entropy curve for a
b5 Jrequency distribution ot values where the horizontal axis is frequency of occurrence
s and the vertical axis is number of items having that frequency of occurrence is an
3 exponential. The curve is bounded on the high end by the mode frequency and on the
N low end by the frequency of the least common item if these are known, otherwise by the
e size of the set on the high end and zero on the low end. Complicated arguments can be

used to relate this to the Yule distribution, a distribution very close to the simple
reciprocal predicted by Zipf's "Law" [Rapopport 78).

k)

_ Ez*: 3.5.4.2. Using the maximum-entropy distribution

.:" For getting ESTs and ERRs for our system, then, we just compute respectively the mcan and :
‘_ standard deviation of the maximum-entropy inferred distribution. Unfortunately, the mathematics
:ﬁ of finding the Lagrange multipliers cannot be done in closed form in all but a few cases, and
j;‘ft numerical methods must be used, analysis of whose accuracy is sometimes difficult; [Shore and
.' Johnson 81] discusses this in detail. Again, it is difficult to generalize thesc answers, as results of a
4 kind of optimization, into rules for classes of answers.

BN
R

TN 3.5.5. New rules from old

Y .
v- A very important way of obtaining rules, perhaps the most important, is to work from existing
_':4 rules in various ways.

%

¥ X 3.5.5.1. Rule composition

55 Rules can be created from the functional composition of existing rules. This is particularly
: ’ important in the defining of new statistics from existing ones. A simple cxample is defining the
«’ "proportion” statistic as the ratio of the sct-sizc statistic of some sct to the size of the universe. Then
the rule _ .
3 SUP(SIZE(ANIXA.B))) = LARGEROF(SIZE(A)SIZF(B))

:j transforms into

-
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:
SUP(PROPORTION(ANIXA,B))) = SUP(SIZE(ANIXA,B)) / UNIVERSESIZE) :.
N = SUP(SIZFE(ANIXA.B))) / UNIVERSESIZE ‘]
: = LARGEROF(SIZE(A).SIZE(B)) / UNIVERSESIZE

‘ = LARGEROF(PROPORTION(A),PROPORTION(B))

Y
i

An important application of functional composition is to the mean of the pairwise product of

two numeric attributes, which is related to the linear correlation of those two attributes through the
relationship

By = Pxby ¥ PxyOx%y :
\ where p’s are means, ¢’s standard deviations, and p, a "correlation coefficient” between X and Y

ot 2

Dt

that ranges from 1 (perfect correlation) through 0 (no correlation) to -1 (perfect negative
correlation). We can get results such as:

SUP(MEAN(Q.TIMES(F,G))) = :

* IMEAN(Q,F) * MEAN(Q,G)] + [SIGMA(Q,F) * SIGMA(Q.G)] D

o INF(MEAN(Q, TIMES(F,G))) = :

- [MEAN(QF) * MEAN(Q,G)] - [SIGMA(Q,F) * SIGMA(Q,G))

g -
3 A different example is derivation of the rules for handling subsets in intersections and unions
from the rules for handling disjoint sets, using the fact that set A is a subset of set B if and only if 2

the complement of B is disjoint from A. Then the rule
SIZE(OR(A.B)) = SIZE(A) + SIZE(B) if A and B are disjoint

maps into .
SIZE(OR(A,NOT(B))) = SIZE(A) + SIZE(NOT(B)) if A is a subset of B :

#

3.5.5.2. Inversion and rearrangement of rules

u R
' As we mentioned in 3.4.2, rules (especially statistic-statistic ones) can be rearranged in various :
ways, and the best form usually ought to be chosen in advance. Bounds rules are equivalent to N
inequalities, and different single terms can be moved to either side of the inequality to get different
B forms. For instance ;
iij SUP(MODEFREQ(OR(A,B))) = MODEFREQ(A) + MODEFREQ(B)
‘] rcally means ' :
- MODEFREQ(OR(A,B)) € MODEFREQ(A) + MODEFREQ(B)
Estimate and error rules can be thought equivalent to cqualities, with however the provision that
. substitution of equivalent forms is not allowed, i.e. just because
% EST(SIGMA(A)) = [MAX(A) - MIN(A)] 7 SQRT(12) X
" EST(SIGMA(ANIXA.B))) = [SIZE(B)SIGMA(A) + SIZE(A)SIGMA(B)] ¢
/ [SIZE(A) + SIZE(B)} ;
docs not mean :
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[MAX(ANIXA,B)) - MIN(ANIXA,B))} 7 SQRT(12)
= [SIZE(B)SIGMA(A) + SIZE(A)SIGMA(B)} / [SIZE(A) + SIZE(B)]

Note that one must be careful about signs in manipulating inequalities, and this may prohibit

certain forms of incqualities. For instance, if

MEAN(Q,F) * SIZE(Q) < MEAN(UNIVERSEF) * SIZE(UNIVERSE)
that means that

MEAN(Q,F) < MEAN(UNIVERSE,F) * SIZE(UNIVERSE) / SIZE(Q)
(provided SIZE(Q) is nonzero) but not that

SIZE(Q) < MEAN(UNIVERSE,F) * SIZE(UNIVERSE) / MEAN(Q,F)
unless MEAN cannot be negative. '

3.5.5.3. General theorem-proving

Certain kinds of interesting rules cannot be derived from the above “shallow” analyses, but
require going back to the original definitions of statistics and reasoning from there. Standard
artificial-intelligence theorem provers can used for doing this automatically. A simple example is
putting bounds on the median given the maximum and minimum. Since

"M is the maximum of set A" < Yx€EA(x<M)
"m is the minimum of set A" «> ¥Yx€A(x>m)

and since one of the conditions on the median is
"d is the median of set A" — d€A
we logically conclude that for the particular x=d, m<d<M.

As another example, consider the following way of deriving both upper and lower bounds on

the mode frequency given the size of a set (n) and the number of distinct items in the set (m).
Define the frequencies of values of the set as fl, fz’ ., fm. all nonzero. Then:

n=fi+6,+.. 4+
By the definition of the mode frequency r of a set,

Vilr 2 f)
hence substituting in the first equation

ar+r+.+r=mr
hence r 2 n/m, i.e. the mode frequency is bounded below by the ratio of the set size to the number
of distinct values in the set. We can use analogous rcasoning to get an upper bound. Since by the
definition of the f;

Vilf,2 1A 3if, = 1]
therefore
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n2r+l+l+..+1=r+(ml)
andr < n + 1-m, iec. the mode frequency is bounded above by the size of the set plus 1 minus the
numbcr of distinct values.

3.5.5.4. Exploiting analogies between rules

Rules tend to show symmetries, and m many cases, form "families” (which may even be
groups in the group-theoretic sense). Thus an important way of getting new rules is to derive one
rule, analogize a corresponding rule, and then verify its correctness. The last step is particularly
important, since there are often misleading symmetries and surprising special cases. But since
theorem-proving is considerably easier than theorem-finding (a good algorithm, namely resolution,
exists for proving a large class of theorems), good analogies can be very useful.

One important general symmetry can be suggested, however; the symmctry of rules for
maxima with rules for minima (not to be confused with the SUP and: INF bounds). The two are
always related by the following:

MIN(AF) = (MAX(A,MINUS(F)))
i.e. the maximum of a set with respect to an attribute is the negative of the minimum with respect to
the negative of that attribute. We thus can rewrite the rule

MAX(OR(A,B),F) = LARGEROF(MAX(A,F),MAX(B,F))

MIN(OR(A,B),F) = {MAX(OR(A,B)MINUS(F)))
= {LARGEROF(MAX(A.MINUS(F)),MAX(BMINUS(F))))
= {LARGEROF(-MIN(A,F),-MIN(B,F)))
= SMALLEROF(MIN(A,F),MIN(B,F))

and we have the corresponding rule for MIN. (We assume laws for manipulating LARGEROF,
SMALLEROF, and -.) Something similar can be done for other MAX rules,

As an example of a family of rules, consider the following regarding maxima and minima of
sums and differences of corresponding attribute values for sets:




B n
X 3
N SUP(MAX(Q.PLUS(F,G)) = MAX(Q.F) + MAX(Q.G) ‘
= INF(MAX(Q,PLUS(F.G)) = LARGEROF(MAX(Q.F) + MIN(Q.G).
3 MIN(Q.F) + MAX(Q.G))

SUP(MIN(Q,PLUS(F,G)) = SMALLEROF(MIN(Q.F) + MAX(Q,G). -

MAX(Q.F) + MIN(Q.G))
INF(MIN(Q.PLUS(F,G)) = MIN(Q,F) + MIN(Q,G)
SUP(MAX(Q,DIFFERENCE(F,G)) = MAX(Q.F) - MIN(Q,G)
INF(MAX(Q,DIFFERENCE(F,G)) = LARGEROF(MAX(Q.F) - MAX(Q,G),
MIN(Q,F) - MIN(Q,G))
SUP(MIN(Q,DIFFERENCE(F,G)) = SMALLEROF(MIN(Q.F) - MIN(Q,G),
MAX(Q,F) - MAX(Q.G))
INF(MIN(Q,DIFFERENCE(F,G)) = MIN(Q,F) - MAX(Q,G)

An example where symmetries are not exact but more complex occurs with the cight cases
involving bounds on MAXGAP and MINGAP (largest distance between successive different
ordered values) of intersections and unions:

SUP(MAXGAP(AND(A,B))) = o0

INF(MAXGAP(ANIXA.B))) = LARGEROF(MAXGAP(A),MAXGAP(B))
SUP(MINGAP(AND(A,B))) =

INF(MINGAP(AND(A,B))) = LARGEROF(MINGAP(A) MINGAP(B))

N SUP(MAXGAP(OR(A,B))) = \
LARGEROF(MAXGAP(A).MAXGAP(B),DISTBETWEEN(A,B)) :
g INF(MAXGAP(OR(A,B))) = 0 -
SUP(MINGAP(OR(A,B))) = A

% SMALLEROF(MINGAP(A),MINGAP(B),DISTBETWEEN(A,B)) .
% INF(MINGAP(OR(A,B))) = 0 ;
o3 where 1
b ‘

DISTBETWEEN(A,B) = 0if A is not disjoint from B on thc range
= LARGEROF(MIN(A)-MAX(B), MIN(B)-MAX(A)) otherwise

Clearly there are symmetries among the eight rules where MAXGAP is interchanged with .
MINGAP, SMALLEROF with LARGEROF, AND vwith OR, and SUP with INF, but the addition L'
of the DISTBETWEEN term is a surprise, and also its nonoccurrence in the sixth and eighth rules. 3
These symmetries allow us to find rules by finding a few of a class, then postulating others by .
analogy. N

(Note there arc other rulcs for these same situations -- these are only the set-decomposition
rules. Note in particular some important statistic-statistic rules (sec 3.4.2 can be uscd to get better
bounds in rules 1, 3, 6, and 8 above:

SUP(MAXGAP(A)) = MAX(A) - MIN(A) -
SUP(MINGAP(A)) = MAXGAP(A)
INF(MAXGAP(A)) = MINGAP(A)
INF(MAXGAP(A)) = [MAX(A) - MIN(A)] / SIZEUNIQUE(A)
SUP(MINGAP(A)) = [MAX(A) - MIN(A)] 7 SIZEUNIQUE(A)

where SIZEUNIQUE is the number of distinct items in a set, which have their own symmetries.)
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3.6. Two rule categories not impliemented

Two important rule categories of the taxonomy of chapter 1 and appendix C werc not
implemented, for important reasons: join rules and prototype rules.

3.6.1. Join decompaosition

In addition to specifying a set of items and a set of their attributes of interest, queries must
i specify a database relation as we are assuming a relational database model. Since we have covered
P the relational operators of restriction, projection, union, intersection, and complement by our
previous discussion, all that remains for relational completeness [Uliman 80] is handling of joins
between relations (or alternatively, the inverse of the join operation, sometimes called the
“quotient”, but we shall not discuss it).

A few general comments are in order. If we expect a join to be frequently requested, we may
tabulate statistics on its attributes in advance, just as with any other rclation. (We often know in
advance that just a few joins are semantically meaningful, from our data model or schema.) But

. otherwise we may only have statistics on the individual relations being joined. In this case, the join
may be seen as a weighting of the values of one relation by distributional characteristics of the
® other. If the join column(s) form an (extensional) key for the second relation, the weights are

constant, and the new relation is the same as the old except for some new added columns.
Otherwise, to get estimates one must determine the maximum and minimum weightings for each
term, and how they would change the values of statistics computed on particular fields of interest.
The bounds on such new statistics are often weak because the extra uncertainty associated with the
join multiplies the uncertainty in calculating the statistic on the original relation.

Thus, except for some nice cases, joins are not well handled by our system (though we can take
comfort in the fact that all relational systems find joins a problem in one way or another). We have
not implemented join handling in our demonstration system for this reason, and also becausc both

test databascs were naturally expressed as single relations.
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3.6.2. Reasoning with prototypes

One other catcgory of rules includes those that pcople apparcntly make judgments of statistics
on sets. In gencral, people use a simple method subject to numcrous fallacics [Rosch and Mervis
75, Rips 75, Kahneman and Tversky 82). This behavior seems to be well modelled for most
domains by metric-distance models of points in hyperspace. That is. first-order sets are
representing by locations in an n-dimensional Cartesian coordinate system, and some queried set is
also represented by a location; lateral inheritance (see section 3.4.5) then estimates statistics on the
query set from some sort of average of statistics on "nearby" points in the coordinate system, their
importance being inversely weighted by their distance from the query set location. As an example,
consider figure 3-2. The dimensions represent two properties of ships, tonnage and variety of goods
carried; and five sets are represented, American ships, Liberian ships, tankers, freighters, and a
quericd set of American tankers about which no statistics are known. So "the average American
tanker” might be’ three times closer to the set of American ships than to the set of tankers, and
hence its length might be 3/4 times the average length of an American ship plus 1/4 times the
average length of a tanker.

goods variety

T

freighters American tankers
American ships

Liberian ships

tankers
tonnage 3

Figure 3-2:  Example of statistical cstimation from metric-space prototypes

Nonnumeric attributes can also be handled by this method -- for instance, "Hamming distance” can
be used which is the number of attributes in common between two entitics specified as property

lists -- but much effort has gone into finding numeric dimensions for even very clearly nonnumeric
data,

Reasoning with prototypes is a highly database-dependent method -- dimensions, scales, and
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point locations must be found for cach attribute -- and is thus highly incompatible with the
database-independent character of our statistical inference system. Users may not be consistent in
their behavior with such models, and they may be missing particular prototypes that others have, or
have additional prototypes. Also, since it is a form of lateral inheritance, the reasoning does not
give bounds on statistics, which we consider a serious weakness since many applications are only
interested in bounds. For these reasons we do not use it in our system.

3.7. Global issues for rules

There are a few general issues regarding the rules which do not fit anywhere in the preceding
discussion.

3.7.1. Completeness of the rules

‘We have a large rule-based system (about 400 rules in the current implementation), and it is !
important to use the rule taxonomy during design to look for gaps in coverage. But general :

statistic-statistic rules can always be used to give weak bounds on answers if no strong rule can be
thought of. This does happen, in the same way that in a symbolic algebra system there are
functions that have no closed form integral, In fact, it may be possible to prove as in symbolic
algebra that in certain rule situations that no rules of a certain form could ever exist. Inability to
find a closed-form maximum-entropy estimator for AND(A,AND(B,C)) given the sizes of
ANIXA.B), AND(A,C), and ANIXB,C) (cf. [Ku and Kullback 68]) may just represent such a .
fundamental limitation. Note there is an estimator given only sizes of A, B, and C, namely
SIZE(A)*SIZE(B)*SIZE(C)/SIZE(UNIVERSE)*SIZE(UNIVERSE)
and there is one given only sizes of B, AND(A,B), and AND(B,C):
SIZE(ANIXA,B))*SIZE(AND(B,C))/SIZE(B) ' i
so some superficially similar sitdations are easy while others are hard. b

Observations like these suggest a general principle is justifying our rule-based approach: when
a priori knowledge situations become too complicated, closed-form rules are not possible, only
computationally expensive global methods like maximum-entropy estimation [Chceseman 83}. Our .
goal is to "partition” complex situations into pieces small enough so that maximum-entropy and ;
nonlinear-optimization methods can be prccompiled where a closed form solution exists.
Unfortunately, this partitioning does not ensure a sct of maximum-cntropy solutions on the picces

is a maximum-cntropy solution for the whole situation, but it is a good heuristic.
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3.7.2. Degree of detail of the rules

As we noted in 3.5.1.5, rules can be formulated to varying degrees of precision, depending on
how critical time, space, and accuracy are for certain classes of querics. (In our implementation we
have generally tried to keep rules simple, except for a few important but complicated ones.)

3.7.3. Redundancy of the rules

Rules that are subsumed by other rules can often be suggested experimentally. One just keeps

. track of which rules "contributed” to answers in a large corpus of queries, which means that the

final answer would change if that rule were omitted. The easy case for determining this is when the
value resulting from a rule appears in the corresponding place (bounds, estimate, or error) in the
final answer quadruple, and no binary operations were used in getting the answer. Binary
operations require a table of backwards-propagation dependencies derived from our quadruple
algebra definitions, which for instance for DIFFERENCE looks like this:

o if SUP is in error in a difference, examine the SUP of the first argument and the INF of
the second

¢ if INF is in error, examine the INF of the first argument and the SUP of the second
o if EST in error, examine the EST of the first argument and the EST of the second

o if ERR is in error, examine the ERR of the first argument and the ERR of the second

Redundancy can be never proved by finite experimentation, however, only suggested;
theorem-proving methods are needed for proof.,

3.7.4. Debugging the rules

Debugging can use the same "blame assignment” methods as redundancy-checking. Unlike
many_omcf expert systems, a clear and unambiguous right answer cxists for all probiems our system
attempts to solve, namely the answer to the same query on the full database from which the
database abstract is abstracted. If an estimate strongly disagrees with the answer, all the rules that
contributed to it are under suspicion, and the predictions of cach may be individually compared to
the values on the full database.

Consistency between the answer and the bounds provides only one kind of dcbugging,
bowever. We can also compare bounds on qucrics on related sets for expected narrowings
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consistent with the inheritances of section 3.4.5. For instance, the SUP on the modc frequency of a
subset must not exceed the SUP of the mode frequency on the set, for the same attribute, or else
e there is a bug in the bounds rules.

3.7.5. Storage of the rules

Compared to the size of database abstracts we envision, rule storage is negligible. Rule action
parts are mostly simple, using just a few arithmctic operations, codable in just a few bits each. Rule
condition parts can be coded using the first three dimensions of the taxonomy (statistic,
characteristic, and computational), and the code can be explained in a separate table. Since we have
400 rules in our current implementation, and we envision on the order of a thousand in a
reasonably complete system, this is not a major storage issue.
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Chapter 4
Methods: the database abstract

e 8
St 3
-

Since the discovery of the Pervertimento, even his detractors have had to admit that
P.D. Q. Bach must be considered history’s greatest late-eighteenth-century Southern
German composer of multi-movement works for bagpipes and chamber orchestra.

.
i

Peter Schickele, The Definitive Biography of P. D. Q. Bach, Random House, 1976
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We now shift attention to the other half of our system, the database abstract. Section 4.2

addresses design criteria for the abstract, and section 4.3 explains the physical storage scheme.

. Section 4.4 discusses management of construction of the abstract, and section 4.5 keeping it
consistent with the database.

4.1. The abstract as closed world

The expertise of this expert system is in the domain of statistics, not the domain represented by
a particular database as in [King 81]). The database abstract itself thus represents al/ the knowledge
of the databasc domain that system has available, and it is the job of a database administrator to
guarantee that its contents maintain "integrity” with regard to the real world, representing the
world accurately and completely.

4.2. Choosing what to put in the abstract

System performance is quite sensitive to the contents of the databasc abstract. Different
databases abstracts of the same sizc can have markedly different estimation behavior, It is thus
. important to carefully plan out the contents of the database abstract.

J Unfortunately, however, this is just as much an art as a science. Frequency statistics for query
types may be very difficult to cstimate if the databasc is new, and even if the databasc has been
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quericd for a long time, the very different query responses and response time for the databasc
abstract and rules may evoke new querying patterns.  Also, our rules interact in many complicated
ways -- this is a primary justification -- and including onc itcm of information in the databaée
abstract may make scemingly unrclated infonpation mostly redundant. Thus the most frequently
queried sets should not necessarily be the ones loaded into the abstract: only some of them may
give nearly the same effect. Sclecting the best sets to put into a fixed-size databasc abstract is
therefore a difficult problem in optimization of a nonlinear function of a large number of variables,
probably much too complicated a problem to solve completely in reasonable time. Guidance from
an expert in the domain of the data could be helpful. Perhaps we can think of our system as a
"double expert system” here: a statistics expert provides the rules, and an expert in the domain of
the database constructs the abstract.

A few guidelines for what to put in the abstract are possible, though, based on intuitive
arguments.

4.2.1. The universe

There are sets on which it is essential to have a quite complete sct of statistics for any database:
the sets which correspond to complete relations of the database (or “universe” sets). Since
downwards inheritance can always give bounds on statistics, it is essential there be a "last resort” set
from which weak absolute bounds can be inferred when nothing else is known. For another thing,
the quadruple algebra has trouble with null bounds, and weak bounds are much preferable to none.

4.2.2. First-order sets

For building database abstracts we have found it uscful to exploit the concept of a “first-order
set” (see 1.8.1). These are sets defined as disjoint partitions of the values of a relation as per values
of a single attribute of that relation. For instance, "tankers" is a partition of ships on the ship-type
attribute; "American ships™ a partition on the nationality attributc; "ships 300 to 400 fect long” on
the length attribute. We belicve that such scts arc often the conceptual building blocks which
people use to describe a domain, and thus they should be the building blocks of a databasc abstract.
More complicated sets can be described as subsets, complements, intersections, and unions of them.
E.g.. "American tankers” is the intersection of the set of American ships with the set of tankers, and
"North American ships” is the union of United States ships and Canadian ships.

As an cxample, 18 first-order sets were defined for the experiments on the medical database
discussed in chapter 6, as follows:
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o paticnt-number attribute: visits of paticnt 3, visits of paticnt 6, visits of paticnt 10

AN AT R
v

e sex attribute: male patient visits, female patient visits
N e discase-activity attribute: visits where patient was not sick, visits where they were mildly
3% sick, visits where they were modcrately sick, visits where they were very sick
‘L Y -
:}g e temperature attribute: visits where the patient temperature was below normal (37.5 \

centigrade) , visits where temperature was normal, visits where temperature was above ‘
8.5 normal :

T o cholesterol attribute: visits where the patient had low (< 230 units) cholesterol, visits ‘
S % s where cholesterol was medium (230 units), visits where cholesterol was high (> 230)

e prednisone attribute: visits where patient was being dosed with low amounts of
prednisone (< 10 units), visits with medium prednisone (11 to 24), visits with high
prednisone (2 25)

Disjointness of the first-order sets defined on the same attribute is very important, because the
inference rules for unions (and intersections too, naturally) of disjoint sets are generally exact
instead of approximate, and exact rules for statistics are highly valuable. For instance, disjoint
unions are exact for set sizes, means, maxima, minima, standard deviations, and some of the time
for modes, mode frequencies, and medians too. Nondisjoint unions are only exact for maximum

o4 and minimum.

%

o

B 4.2.3. Selection of the attribute partitioning

There are three very different, often contradictory objectives to be addressed in defining the
first-order sets: semantic meaningfulness, cvenness of coverage of user queries, and evenness of
coverage of the data. Since users tend to ask queries about semantically meaningful sets of items, it
may be a good idea to try to develop first-order sets from classical psychological "clustering” results
on domains, e.g. [Rosch et al 76] which suggests there is some orimal "middle” level of category
description that people tend to prefer in thinking and talking about common natural phenomena,

like animals and furniture. However, databascs are not very "natural” for the most part since many

reflect artificial environments and data not primarily intended for human consumption, and thus it
,% may be foolish to apply psychological clustering methods blindly to all attributes, But it may work
s:} for attributes that have well-defined common-consent natural-language categories.

On the other hand, database rescarch suggests that best performance occurs when database
n access paths are adjusted for even usage frequencics, i.c. even "loading” ( [Wicderhold 77), scction
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',;;_:{’ 5-4-4). An cxample is trying to maximize the average fraction of user queries that can be aaswered
: i directly from the abstract. So if users arc asking thrce times as many questions about tankers as

i freighters, we should definc threc times as many subtypes of tankers for first-order sets as subtypes .
f‘;j of freighters. Ultilities of different kinds of queries may be introduced as a way of weighting
) ”:‘\:i query-form frequencies by importance. The difficulty with access-frequency optimization is that it
=N often does not address fundamental structural differences in a domain that can lead to significant,

g exploitable statistical differences between classes.

f ,:ﬁﬁ

i{g } A third option is to make the first-order sets denote equal-sized partitions of their attributes,

r:f; that is, equal in the number of database items that correspond to them. Of course, this can only

o work for a particular database state, and if the database contents change (e.g. many inserts occur of

Yk items belonging to a particular first-order class), evenness may no longer be assured, and it is costly

to construct a whole new database abstract. The advantage, however, is that a relatively uniform

.- level of accuracy can be provided for query answers on all sets of the same size. For instance for

. means, as we mentioned in section 3.4.5, the error in an estimate of the mcan of a subset of some set

fg with known mean is ¢ v(1/N - 1/n) where n is the size of the set with the known mean, o its

","),- standard deviation, and N the size of the subset; the smaller the subset, the worse this estimate is.

$ Something similar occurs for all other statistics. )
‘% ~ These three approaches are all important to varying degrees in different database query i
’é} situations. How they affect the tradcoff between space, time, and accuracy in a system is complex

'3 '4: and more a matter of judgment than formal analysis.

4.2.4. Grain of the attribute partitioning

A related issue is that of how many first-order sets one should have for a given database. If the

database abstract consists only of first-order sets, then obviously more sets means a bigger abstract

A and better estimation accuracy (though probably not an increase in calculation time -- see
,'p:‘ p

:y.: discussion in 6.6). if one also allows statistics on "second-order sets” (intcrsections and unions of
1 . - . .

ifn'ﬁ two first-order sets) and scts representing non-disjoint partitions of attribute values, the abstract

may become much larger. Intuitive judgment may be the best guide. It may be a good policy,
however, to err on the side of too many first-order sets in design, since inference upwards on
disjoint sets is more robust and demonstrates less sensitivity than inference downwards to subsets.

Some formal mcthods do apply to choosing the grain size in the casc of an entircly first-order .

abstract. Consider the first-order scts that represent cven partitions on the values of an cvenly
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distributed numeric attribute of a relation. Let there be k such scts, of size m cach, and let cach
first-order sct cover a range of of R on the attribute. Suppose all qucries that users ask refer to
contiguous ranges of the attribute, ranges whose width is described by a probability density
function p(w), w the width. We first consider the case where w<R. The odds that the user query
width will overlap a boundary are w/R, and the standard deviation of the mean of a samplec of w/R
of m items is V(R/wm - 1/m). Hence the average standard deviation for an estimate of the mean
on this range is
p W) = (1-w/R)Y(R/wm - 1/m)
+ w/R) I3 Y(R/xm - 1/m) + Y(R/(w-x)m - 1/m) x dx

And for w2R:
B> R(w) = pw(k(w mod R)/(w/R)
We can solve this numerically.

4.2.5. Choice of the value abstraction level

Another choice that must be made regarding the data of the database abstract is at what level
of abstraction the statistics on the values should be tabulated (which may just be how much
rounding for numeric values). Statistics can be estimated on the values of functions applied to sets
(like region-of-nationality in queries 23 and 24 of scction 2.1), but these are estimates, not exact
values. Just as with sets, there is probably some optimum levgl of value aggregation, an "even” one
in some sense, that we should use, and we can find it using the methods discussed in the last two

.sections. But note that the level of aggregation of values into first-order sets is something quite
different, and that grain is usually too large to be appropriate for value abstraction. For instance,
we may have only a dozen nationality-region first-order scts, but in answering queries on the
frequency distribution of nationalities we need to treat every nationality as distinct.

4.2.6. Incomplete first-order abstracts

Of course, we nced not include every statistic of every sct that is included in the abstract.
Some statistics may be quite accuratcly cstimated from others, using the inter-statistic rules
discussed in 34.2. An interesting problem which we have not investigated is to prunc the scarch
among the 2* combinations of s statistics for the combination to include that minimizes some
weighted sum of space and crror. Heuristics are generally sufficient, as for instance the heuristics
that the more useful statistic of the mean should always be preferred for storage to median, and the
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more uscful mode frequency to the frequency of the second most common item??,

4.2.7. Other sets in the database abstract

In principle, statistics on any arbitrary set can be put in the database abstract. The first-order
sets should be designed to cover the domain of the database well, and thus should represent a good
“gencral-purpose” collection of data. But if there is still room, other sets can be considered for
inclusion. There are two main categories of such extensions of the abstract: systematic and cache.

4.2.7.1. Systematic extensions

A systematic extension includes statistics on every set of a given form. For instance, statistics
on all the “second-order” intersection scts (intersections of two first-order sets), or only those
second-order intersections that are bigger than a minimum size, or only those involving sets with
atypical characteristics, like those with large outliers. Or we could have statistics on derived

K attributes, like statistics on all first-order sets with regard to logarithms of numeric atributes, or

Xy statistics on all first-order sets with regard to the products of corresponding values for two numeric

W attributes.

il There are two difficulties to be faced with systematic extensions. First, estimates based on .
:::E first-order information may be sufficiently close to the actual answer to make extra information not

‘&’? very useful. Second, the size and number of such extensions are often enormous. If there are m

first-order sets, there are O(m?) intersections or unions of any two, O(m?) intersections or unions of
any three, etc. lfthere are f numeric attributes, there are O(fa) virtual fields representing products
of any two, etc. The number of ways of arranging and embedding intersections, unions,
complements, and subsets also grows exponentially with their number. Thus systematic inclusion
of other sets than first-order in the database abstract should be done with caution®,

n'lelmedomal‘ewuperhnemsvimm incomplete abstract - sec section 6.8.

“We did some inconclusive cxperiments with a sccond-order intersection abstract on the first (merchant shipping
database), discusscd in scction 6.9.
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4.2.7.2. Caching extensions

The idea of caching extensions to the database abstract is to dynamically include statistics on
sets particularly interesting to a uscr or users. If certain sets arc being queried repcatedly, and in
particular if a system knows that the user has been unsatisfied with an cstimate and has gone to the
full database to get an exact value for a statistic, important statistics on the set or sets in question can
be placed in the abstract in anticipation of improving performance for future querying (statistics
which may be just those retrieved anyway from a database). Cached statistics may be on quite small
sets, and hence upwards inheritance (see section 3.4.5) (which need not arise at all with a systematic
i database abstract) is needed as well as downwards, necessitating special checks to avoid circularity.
' A few cached values may, in fact, be quite helpful to making conclusions on an abstract, because
they can facilitate bounding from both directions on statistical estimates. For instance, suppose we
know the longest American ship is 550 feet long, and the longest loaded American tanker currently
in the Mediterranean is 420 feet long. Then the longest American tanker must be between 420 and
550 feet long. Thus it may be a good idea to include small sets (or even example items, sets of size
1) in a database abstract as well as the reasonably large first-order sets.

& .

. 4.3. More on storage of the database abstract

. We now discuss some issues not.mentioned in the overview in section 1.7.1.

4.3.1. Format of the abstract

: The database abstract should be stored by sets, with all statistics on the same sct on the same
: physical page. (With about twenty statistics maximum per attribute, and 1000-word pages, this
means at least 50 attributes can be tabulated for a set and still fit on a page, so there is no difficulty
‘nearly all the time.) Since generally with our architecture, if one statistic is queried on a set, many
R others on that same set will be too, this is important.

* Each sct should have a header denoting which statistics on which ficlds are stored for it, and

offsets to their locations. With this header information, data can be compressed (perhaps a factor of

three for a typical database) and still be found, which is important is space is tight. A "base value”

for each statistic on each attribute can be used, perhaps the value of the same statistic on the same

attribute for the entire database relation, and the number storcd can represent an offset to be added

. to this base value. Other basc valucs can be used, like the average of the values for the two scts for
an intersection of two scts. Ideas like these can significantly compress the size of the database
abstract, particularly for normative statistics and well-behaved attributcs.
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_ 1t may be helpful o put special codes in the abstract having to do with inheritance, cspecially
5 in regard to the priority of downwards vs. upwards vs. lateral inheritance cstimates where all apply,
since their appropriatcness is quite data-dependent.

4.3.2. Indexing the database abstract

Clearly to avoid large searches one needs to index the sets of the database abstract. This can

f‘* be a list of (set-name, page-pointer) pairs, sorted alphabctically on names. First-order sets are easy,
but other sets have 1o be put in a canonical form before placement in the index. To usc an example
L _ from our medical database, both (AND MALE (AND HITEMP HIPRED)) and (AND HITEMP

(AND HIPRED MALE)) would be rearranged algebraically to the same pseudo-alphabetic form,
A (AND HIPRED (AND HITEMP MALE))!. One way t0 get a canonical form is to convert the
Ly query set expression to disjunctive normal form, alphabetize separately the terms in each
conjuction, and then order the conjunctions by first term,

Another idea for storing the index to sets is the “tree” approach of keeping pointers to
composite sets with their parents and rclatives that are first-order sets. So next to the set MALE in
the index have pointers to the sets “below" it, (NOT MALE), (AND MALE x), and (OR MALE x)
where x is any other set. This helps when users query related sets frequently.

Efficiency of index storage and access speed should not be critical to system performance. Set
\ names can be coded, and only two things need to be stored for each set in the index: set name code
‘ and pointer to its entry in the abstract. This can be compared to s*f things per set in the database
abstract, s the number of statistics stored for the set, and f the number of attributes {n the relation
defining the set, which may be hundreds or thousands of items for interesting databases. So
considering that the database abstract is intended to be, in most cascs, considerably smaller than the
database from which it is abstracted, the index to the database abstract will take up even less space,
and can probably be stored in main memory. Even if it cannot, a good hashing scheme can mean
; that only one index page nced ever be fetched in order to look up a set.

PR

YSMALE: denotcs visits by malc paticnts, HITEMP denotes visits in which the patien ad a high temperatur, and
THPRED denotes visits in which the patient had high serum cholesterol.
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4.4. Building the database abstract

Constructing the database abstract is a major enterprise.

¢ 4.4.1. Getting the abstract statistics from the database

The database abstract can be created on a single (though computationally expensive) pass
through the database. Given a list of sets which it will tabulate statistics on, it examines each
database page in turn, looking for members of those sets. Each time it finds an instance of a
particular set, it updates registers for that statistic for that set; each set keeps its own distinct
information. For set sizes this means incrementing a counter; for maxima and minima, comparison

to and possiblc substitution in a register; and for means and standard deviations, adding to a sum
register as well as incrementing a counter. Other statistics arc trickier, gencrally requiring

“reasonable-guess” assumptions as to the distribution of an attribute. For instance, median needs a
likely range in which the median is likely to lie, points within which are kept in storage, and mode
frequency needs both an estimated range of the frequency and an estimated range of the mode.
Perhaps an earlier database abstract on the same database can be used to get the bounds.

4.4.2. Loading the database abstract

 We surveyed this in section 1.8. If one does not wish to place guarantees on closeness of
estimate (EST) values to actual values, loading of statistics computed on the database may be done
in any order. But this closed-world guarantee can be quite powerful in narrowing the possible
range on a query, and thercby improving estimation accuracy.

The guarantee will work if a partial ordering consistent with subquery invocation is imposed
on all queries, and they are loaded in this order. Formally, we want a partial ordering (i.c., a
noncyclic set of binary order relationships) for querics on our query language such that statistics on
query sct A arc loaded before statistics on query set B if Query A is a subquery nceded in answering

query B. This then guarantees that the accuracy of the estimate of B can’t be changed by anything
that is loaded after it, and if it satisfies 10% accuracy at loading, that accuracy will be maintained.
So to give somec examples, queries on A should be loaded before queries on (AND A B), queries on
. (AND A B) before queries on (OR A B), queries on a sct with respect to the F attribute before
querics on the same sct with respect to (1LOG F), querics on the maximum of a set in regard to an

. attribute before querics on the mean of the same sct in regard to the same attribute, and so on.
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Unfortunatcly, the simultancous use of some intcresting rule pairs docs not satisfy a consistent
partial ordering betwcen queries (and not even in our prototype implementation, discussed in the
next chapter). While it is uscful to be able to bound a mean of a sct by the maximum and minimum
6n that set, it is also sometimes uscful to work in the other direction (as when maximum or
minimum is unknown and mean is not, or when there happens to be an cxact or very tight estimate
of the mean and not the maximum or minimum), and bound the maximum, for instance, as the
mean plus the product of the standard deviation and the square root of the set size -- that is, after
section 3.5.1.2,
SUPMAX(Q.F)) = MEAN(Q,F) + [SIGMA(Q.F) * VSIZE(Q)]

This "backwards” reasoning can arise often when arbitrary query answers are cached in the
database abstract, and necessarily when upwards and lateral inheritance (see 3.4.5) are used. But we
do not have to throw these kinds of rules away entirely in order to get the monotonicity of accuracy
on loading. We can disenable them when making estimates of statistics for loading comparisons,
but use them freely in actual answering of user queries. Thus to do loading we simply delete
sufficient rules from our rule set to tum a cyclic graph into a tree, and we can pick and choose on
intuitive criteria the rules we consider least important to delete sufficient to make a tree. Sece
discussion in 5.5 for implementation details.

4.5. Updating the database abstract

If the database changes, we must update the database abstract to reflect it. As we have said,
many statistical databases never updated and so this is not a central issue for our work. But there
are systematic ways of proceeding if the database does change, without having to create the
database abstract all over again.

4.5.1. The form of updates

Updates take two forms, inserts and deletes (changes to existing items may be considered a
delote followed by an insert). A set of updates may thus be characterized by two lists of database
tuples, an insert list and a delete list.

In order for the database abstract to use these lists, however, the items must be classified as to
what first-order classes they belong to, to know which databasc abstract entries may have to be
changed. Since first-order classes are defined as partitions on the values for particular attributes,
this classification information may be thought of as a "gencralized tuple”. For instance, the
inserted wple
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(PATIENT # =33 SEX=F DISEASE.ACTIVITY =2 TEMPERATURE=137.5
CHOLESTEROL =470 PREDNISONE=20)

would correspond to the generatized tuple

(PATIENT.33 FEMALES MODERATELY.SICK NORMAL.TEMPERATURE
HIGH.CHOLESTEROL MODERATE.PREDNISONE)

where each of those six names represents a first-order set in our rheumatology-database
demonstration implementation (albeit the actual implementation names are more arcane). Since
the information about how to classify tuples into first-order sets is not necessary for estimation on
the database abstract, only in setup and update, this information should reside with the database,
and the generalized tuple for each insert or delete needs to be transmitted along with the insert or
delete, approximately doubling the amount of data that must be transmitted to the database
5 abstract.

Pt

4.5.2. Modifying the database abstract vs. recomputing the statistic

Loading of the database abstract is computationally expensive, as we noted in 4.4.1, because
every page and every record of the database must be examined. Recomputation of a single statistic
on the same database is not much cheaper, considering that sets will be in most cases randomly
scattered over many pages of a relation, and thus their retrieval will be paging-inefficient for the
- same reasons that random samples are paging-inefficient. Thus it is imperative to try to find
"shortcuts”, situations in which a known update (together with its generalized tuple) can be used to
change the database abstract directly, without any statistical computa{ion on the full database.

g g

Al

For example, supposé each atribute of a single-relation database is partitioned into 1000
ranges, each of which defines a first-order set (a somewhat larger number of partitions than most
practical cases); and suppose therc are 100 data records per page on the average for this database.

- Then one can use the same Poisson-distribution model for page accesses that was used for the
1-in-1000 random sampling discusscd in section 1.3, and estimate the number of pages that contain
a record of a random first-order set as one tenth of the database, not one thousandth. So to
computc a single statistic on this databasc requircs fetching about onc tenth of the pages, not very
good at all. Hence if there are only 10 different attributes in the database, each of which defmes
1000 first-order scts, recomputing statistics on a database given even a single update will be nearly
equivalent to fetching all the database pages, since an update will require recomputing statistics on
cvery set mentioned in the gencralized tuple. And things cannot be any better for more usual
. (smalicr) numbers of range partitions. '




(Of course, one can always get rid of the guarantee that the database abstract accuratcly
reflects the database, and not bother to make updates at all. But absolute correspondence is
essential to the validity of our reasoning about bounds.) b

4.5.3. Formal derivation of update rules

There are a number of cases where the database abstract is casy to update when updates occur

on the database. Rules for these cases can in many cases be derived logically from the other rules in
our system by the following method. Denote the set of items to be inserted in a relation as the set
INSERTS, and the set to be deleted as the sct DELETES. Then the new database set can be
described as
iy OR(AND(QNOT(DELETES)).INSERTS)
e where Q is the old set. Oftentimes the inference rules applied to this will give an exact answer
= because we assume we have complete knowledge of the set of inserts and deletes available, and we
may know a lot of statistics on Q. Also note we can assume the union is a disjoint union (there's no
sensc inserting into the database something already there), and disjoint unions lead to many exact
rules. Similarly, an intersection with the complement of a set (i.c. a “set difference”) is particularly
nice since the set is known to be a subset of Q.

4.5.4. Rules for specific updates

'Hmmmmummwdorormﬁcmmnymmedmbasesupdam
o et size: just add SIZE(INSERTS) - SIZE(DELETES) to old database abstract value.

o mean: make new value

[SIZHQMEAN(Q) + SIZE(INSERTS)MEAN(INSERTS)
- SIZE(DELETES)MEAN(DELETES)]
; / [SIZE(Q) + SIZE(INSERTS) - SIZE(DELETES)]

o maximum and minimum: for delctes, must go to database for a check if the deleted
value is the old maximum or minimum, clse make no change. For inserts, set value to
larger (or smalicr) of old value for the maximum (or minimum) of the inserts set.

o median: if the median of the dcletes is cqual to the median of the set, and the frequency
of the median can be reasoned to be lcss than the number of deletes of it, then the
e median rcmains the same; otherwise must go to the full database to recompute the
S median. For inscrts, one knows ncw median is bounded by the old median and the
median of the inserts, hence if they arc identical the new median is known exactly; .
: otherwise must go to databasc to reccompute. (Both solvable cascs may be extended
somewhat if item frequency information and minimum-possible gaps between distinct
; values arc known.)
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e mode: for inscrts, compare two differences: between frequency of two most common

3 items, and between the maximum net number of inserts for an item and the net number

of inserts for the mode. Go to database to recompute when latter exceeds former. Do
. analogous thing for deletes.

, o mode frequency: if the mode remains the same after the inscrts and deletes according to

q - the preceding rule, the new mode frequency is always the old mode frequency plus the

number of inserts of the mode value and minus the number of deletes of that value,
Otherwise, must go to the database to recompute except for a few special cases.

a o number of distinct values in a set: must go to database to recompute unless one knows
‘ the exact values in the old set.

¥

¢ ¢ MODFEFREQ2, LEASTFREQ, MAXGAP, MINGAP, MAXEVENDEYV,

MINEVENDEYV: must go to database to recompute.
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Chapter 5
Implementation

All magic - I repeat, all magic, with no exceptions whatsoever -- depends on the control
of demons. By demons I mean specifically fallen angels. No lesser class can do a thing for
you.

James Blish, Black Easter, 71968 (Avon, 1980)

We discuss now some details of our prototype implementation, programmed in Interlisp
[Teitelman 75] and run on the DEC-20 at ARPANET site SRI-AL. Section 5.2 discusses the
implementation of the abstract, 5.3 the implementation of the rules. Control structure is covered in
54, the "backwards” rules in 5.5, and miscellanecus details in 56. Evaluation of this
implementation is contained in chapter 6.

5.1. Databases used and statistics queried

We tested our prototype implementations on two databases. The first was a subset of the
Stanford KBMS merchant shipping database containing data on four attributes (latitude, longitude,
ship class, and registration nationality) of 605 tankers. The second was a subset of the database of
the RX project at Stanford [Blum 82}, containing six attributes (patient number, sex, disease-
activity, temperature, measured serum cholesterol, and administered prednisone dosage) of 1000
clinic visits of 28 rheumatology patients. On the first databasc, 67 first-order scts were defined; on
the sccond, 18. Two of the attributes of the first database were nonnumeric, and onc of the second
database. Since both databases could be expressed as single relations, we did not implement any

join-manipulation rules.
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i 5.2. The database abstract
54
In our experiments described in the next chapter an explicit database abstract was not created. .
o . . . . .
tx! . We expcrimented with a variety of abstracts, both during development and evaluation, and
_‘ containing both different sets and different statistics, and we did not want to have to creatc new

abstracts for each experiment, or to edit an abstract thereby introducing the possibility of errors
which, even when small, might ruin the experiment. Our usage of the abstract was considerably
smaller than anticipated in a practical application, where there would be many more repeated
queries, and thus the cost of building it is correspondingly more significant.

So instead of creating an explicit abstract, we access the database -- in both cases they were

small enough to make this possible -- and dynamically compute statistics as needed. All such

: computed answers are cached in an answer list, s0 a subsequent repeat of the same query does not

need recomputation -- which is important, because query answers are generally used in many ;
different places. The answer list requires query sets and attributes to be in a canonical form. It also

w4 !
3 is currently unorganized and just searched linearly, but clearly if efficiency were important it could :
e ; be indexed or hashed.

% -

Most of our experiments discussed in the next chapter werc done with "first-order” abstracts ‘
containing only statistics on the pmdeﬁned'ﬁm-order sets. However -- and this is one of the 4
advantages of a virtual abstract over a real abstract -- it is easy to change the virtual abstract simply '
by modifying the procedure PRECOMPUTEDP that defines it. PRECOMPUTEDP takes three
arguments -- a query set, an attribute, and a statistic -- and returns true if the answer to that
particular query should be in the database abstract. We also have an analogous procedure
GUARANTEEDRP which returns true if a query has a 20% closed-world accuracy guarantee applied
to it (see 1.3.2).

o
o e
b e

v
3y

5.3. The rules

We do not store the rules as distinct cntities, the way most production systems are
documented, but in the "compiled” form of a decision tree [McDermott, Newell, and Moore l
78, vanMelle 80, Leith 83] for efficiency. That is, the left sides (condition parts) of all rules are
differentiated in COND clauses, calling upon subprocedures (possibly containing subprocedures as -
well, and so on) to handie all rules of a given type. For instance, our top-level procedure for '
handling boolcan-cxpression scts first checks whether the outermost boolcan operator in the st l
expression is an AND, OR, or NOT, and calls onc of three subprocedures accordingly. Within cach

''''''''
.............
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1 g
? of these procedures further subprocedures are invoked, now depending on the kind of statistic 3
{ being quericd. Each of those may then invoke further subprocedures to handle particularly
- complex analysis situations. For instance, the "backwards” rules (sce 5.5) for standard deviations
are considcrably more complicated than those for other statistics, and have been removed to a X
é - separate procedure.
There are both advantages and disadvantages to this particular rule implementation. It is fast
@, and all control knowledge is "built in", making it clear what the program is doing at any given time. j
{ On the other hand, more complicated sorts of control (as resource-limited evaluation, time-sharing '
between different reasoning methods, etc.) are very difficult or impossible to implement. In :
. addition, it harder to sce in the compiled form just exactly what rules are being applied (or even
ij“ how many there are), and it is harder to reason about patterns and analogics of rules.
& 1
,;’St,a Currently, about 400 rules are implemented: 65 statistic-statistic (section 3.4.2), 170 set :
. decomposition (section 3.4.3), 150 attribute (field) decompositi(;n (section 34.4), and 1S
g “backwards" rules (section 5.5), besides the four intraquadruple rules (section 3.4.1). Of the rule
%a categories enumerated as the “computational dimension” in section 1-3, the following are not Y
N - implemented: (1) relation decomposition rules (section 3.6.1), (2) rules for diagonal, rule, and :
general lateral inheritance (section 3.4.5), (3) rules for nulls (sectiori 7.1.1), and (4) rules involving
- prototypes (section 3.6.2).

5.4. The control structure

Control of our program is centered in a single Lisp procedure, REFORM (figures 5-1, 5-2, and
5-3 -- a few inessential parts of the procedure have been omitted). This procedure organizes the ,
answering of particular queries. It calls on subprocedures, which may eventually recursively call
REFORM with subqueries, and so on.

We keep a cache (variable CACHE) of previously answercd querics with their answers, which X
we check first before trying anything more (lincs 7 through 11). (This cache is a Lisp association list :
and is scarched sequentially, but it could be hashed for cfficiency.) We also keep a stack (STK) of

the subqueries currently invoked but not yet answered, to prevent infinite loops where a query is :
- invoked as a subquery of itself (lines 12 through 19). If the same query is on the stack, NIL

(meaning "I can’t say anything about the answer”) is returned: proccdures QUICKMAX and
. QUICKMIN are explained in section 5.6.3, below.
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(REFORM
[LAMBDA (QS F)
(PROG (ANS NEWANS OLDCACHE)
(COND
5  (NUMBERPF)
(RETURN F)))
[COND
[(SASSOC (LISTQ S F)
CACHE)
10  (RETURN (CADR (SASSOC (LISTQS F)
CACHE]
((MEMBER (LISTQS F)
STK)
(RETURN (COND
15 ((EQUAL S (QUOTE MAX))
(QUICKMAX Q F))
((EQUAL S (QUOTE MIN))
(QUICKMIN Q F))
(TNIL)
2  (SETQSTK (BAPPEND STK (LIST QS F)))

Figure 5-1: Central control structure, part 1
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Preliminaries disposed of, the program checks whether the value can be retrievcd from the
abstract, and if not, decides as per section 5.3 which top-level rule bundle procedures to invoke.
This is handled in lines 25 through 46. Thesc rules are specific to cither the query syntax or the
ficld syntax. The result is then filtered (lines 21 through 25) through quadruple-consistency rules
(RESOLVE), statistic-statistic rules (FRESOLVE), and quadruple-consistency rules once again. If
a percentage-accuracy applies to an inexact query estimate, it is then applied (lines 47 through 49).
Then the cache is updated with the new answer (lines 50 through 59). '

5.5. Backwards rules

We have some "backwards"” rules in our implementation whose inclusion transforms the tree
of subquery dependencies into a graph with cycles (see 5.5). These are handled in lines 47 through
58 of the REFORM procedure,

Backwards rules are necessary because one direction of inference between two statistics may
work well for one query, and the opposite direction for another query. For instance, an upper
bound on the number of distinct values in a set with respect to some attribute (SIZEUNIQUE) is
the size of that set, corresponding to the situation where every item has a distinct value. This we
designate a "forwards” inference rule in our system because set size is a statistic not predicated on
an attribute, unlike the number of distinct values, and thus has only one value for a set instead of
many, and thus is more valuable to have available for answering queries. The corresponding
"backwards” rule is that a lower bound on a set size is the SIZEUNIQUE. Most of the time we will
use the forward rule to estimate the number of distinct values, drawing upon methods like those
demonstrated in section 1.5.1 to find a good upper bound on the size, which is then an upper bound
on the SIZEUNIQUE. But we can also get additional bounds on set size by getting bounds on the
SIZEUNIQUE with respect to a different attribute. In general we cannot predict which directions
will be used in advance, and so we must allow for backwards rules if we are to get full power from
our system 5.

There are problems with unrestricted use of backwards rules, however, even when they are
eliminated from loading as discussed in section 4.4.2. Backwards rules create queries whose
forwards subqueries include the same queries from which the backwards rules were initiated. Thus
the original query will be invoked a second time. usually returning a NIL from line 19 in this

16In an informal survey, backwards rules applicd about 10% to narrow the bounds on the size of the intersection of two
scts in the medical database, so they are significant,

''''''''
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[SEI'Q ANS
(SIMPLESTAT
(RESOLVE -
(FRESOLVE
25 [RESOLVE (COND
(PRECOMPUTEDP QS F) |
- (SIMULATE.ABSTRACT QS F))
3 @OTQ)
& 0
»Y 3 ((NOT (ATOM F))
(DOFIELD Q § F)
1 (ATOM Q)
) (DOATOM Q § F)
((EQUAL (CARQ)
3 (QUOTE OR))
(DOOR QS F)) -
((EQUAL (CAR Q)
{(QUOTE AND))
(DOAND QS F))
40 ((EQUAL (CAR Q)
(QUOTE NOT))
(DONOTQS F))
(T [PRINT (APPEND (QUOTE (SORRY, I CANT HANDLE QUERIES
WITH OPERATOR (LIST (CAR Q)) (QUOTE (IN THEM]
45 (BOMBOUT]
QSF

Figure §2: Central control structure, part 2
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(COND

((GUARANTEEDP QS F)
N - (SETQ ANS (GUARANTEEANS ANS Q'S F)))
3 5  (SETQCACHE (FAPPEND (LIST (LIST QS F) -
- ANS) 4
E CACHE)) !
. (SETQ OLDCACHE CACHE) L
b (SETQ NEWANS (RESOLVE (BRESOLVE ANS Q § Fy)) N
55 (SETQ CACHE (FAPPEND (LIST (LIST QS F) .
NEWANS) 3
(CDR OLDCACHE))) q
; (SETQ STK (BUTLAST STK)) 3
X (RETURN NEWANS)) ﬂ

Figure 5-3: Central control structure, part 3
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R4 invocation, thereby ignoring perhaps a lot of reasoning that had gone on about the query before the
% backwards rule was tried. Hence to take advantage of the work of previously invoked forwards

rules we place in the cache a provisional estimate obtained by the work of the "forwards” rules
“:‘i before invoking the backwards rules (lines 47 through 49). If any backwards rules are found to
3 change the estimate, the answer is so changed (lines 50 through 54), with any subqueries invoked in
o the course of applying the backwards rules deleted before finishing, since these answers are based

on the superseded old estimate value for the top-level query.

ol
v

5.6. Miscellaneous implementation issues

SR

§.6.1. Optimization of UPPERBOUND and LOWERBOUND

) Paging cost is going 10 be by far the predominant time cost in our system, since the operations
performed in rules (with a few exceptions such as solving Diophantine equations) are quite simple
e and do not involve iteration. However, as rule systems become complicated (and especially with
2 embedded quadruple algebra discussed in 3.3.4) some improvements may make a difference. At
least, they can simplify debugging by climinating useless information.

¥

¥ One major improvement in particular is straightforward  to introduce, optimization of
% quadruple-element extraction. At many points in rules all we need is a bound, estimate, or error
H associated with the calculation of another statistic, and not the full quadruple itself. For instance, a

lower bound on the number of distinct items in a set is the size of the set divided by the mode
frequency; if the mode frequency is not known exactly, all that matters to the overall rule is that we
know an upper bound (SUP) on it. We can think of this as a kind of optimization in the relational-
calculus sense (cf. [Ullman 80}, ch. 5), moving the quadruple-element extractors insidc the query
expressions as far as possible, e.g.

INF(A/B) = INF(A) / SUP(B) if A>0, B>0

:‘:.;.;

1 The other rules given in 3.3.1 define the rest of the formal optimization.

3

o In our implementation we have hand-optimized many of the rules this way, pushing extractors

o inside expressions. One disadvantage of this is that the optimized rules are harder to understand

2 : than the nonoptimized ones, since additional symbols are being inserted, and thus we trade off

N understandability for efficiency. |
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5.6.2. UPPERBOUND vs. probabilistic maximum

. We also employ a related kind of simplification with bounds rules. Since we usually apply

many different bounds rules to the same query, only a few will affcct the result directly. In most

{: ’ cases we thus limit the effect of bounds to the SUP and INF parts of quadruples, and do not allow

any cffect on the EST and ERR parts, instead of using the technically correct probability-theory
approach given in the footnote to section 3.3.2.

5.6.3. QUICKMAX and QUICKMIN

Normally we do no reasoning about a subquery if the same query is above it on thc subquery
stack. We make an important exception, however, for queries on maximum and minimum, since
they are intimately related to the bounds given in many quadruplcs, and are queried repeatedly to
answer most user questions. We thus can have a "cheap™ way of evaluating them that incorporates
only the most simple rules, which we call upon whenever the same ciuery is above on the stack.
o Clearly such “cheap” evaluations could be done for other statistics too in other situations, but
maximum and minimum seem to be by far the most important.

2R R

5.8.4. Binary decomposition of indefinite-number operands

5 £
-

Set intersections, set unions, attribute sums, and attribute p_roducts can involve arbitrary
numbers of arguments. Our implementation for simplicity only handles binary combinations (e'.g., ’
ANIDXA.B,C) should be written as something like AND(A,AND(B,C))). The specific
decomposition docs not matter with most rules. For instance, MAX(ANIXA,B,C)) is the larger of
the three numbers MAX(A), MAX(B), and MAX(C), and these three numbers will be found

.
%]
Le)
g
A

e regardiess of whether the intersection is written AND(A,AND(B,C)), AND(ANDXA,B),C),
AND(B,ANIXA,QC)), or any other way. Similarly

f*"_ 2 EST(SIZE(ANIXA,B.C))) = SIZE(A)*SIZE(B)*SIZE(C)/SIZEXUNIVERSE)

3 and this will be computed no matter how the binary decomposition is done. But the bounds on set
) intersection size obtained by rcasoning about modes are inhcrently binary. For instance,
A SIZE(AND(AAND(BC))) may lead to a much better upper bound than
é ] SIZE(AND(ANIXA,B),C)) if the mode frequency of the attribute defining C is much smaller than
{3 the mode frequency of the attribute defining A.To handle situations like this in our

implementation, we gencrate every possible associative rearrangement of intersection or union

(commutative rearrangements make no differcnce), and combine the results from cach, following
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‘ .
2 the methods of section 1.6.1: intersecting the bounds ranges, and taking the weighted average of the

# estimates (ESTs) and crrors (ERRs).

5.6.5. A little domain knowledge

’
TSRNICICLT. T

We have tried to isolate knowledge of the domain of the database in the abstract, but a few
important things cannot be put there. These are things that are critical to system performance, but

%

= are basically intcnsional (true for any database statc) instead of extensional (true for a particular
2 B

'%‘ database state) as the abstract. These include the names of first-order sets, what attributes they
Xy '

represent partitions on, the names of attributes, whether they are numeric or nonnumeric, and the
definitions of functions on nonnumeric attributes. This data is kept in property lists.

5.6.6. User interface
Our implementation is only an experimental prototype, and we have not added much in the
’;ﬁ way of user aids. We do, however, paraphrase all query-language queries in simple embedded
*' English clauses, and print this out before the query is executed, as an debugging aid for
¢

typographical and other obvious errors. When an answer is computed, it is formatted and printed
with Enghsh explanations to make it clearer what it means. Values retrieved directly from the

database abstract (PRECOMPUTEDP) and those to which a 20% accuracy guarantee applies
(GUARANTEEDP) are so noted.
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Chapter 6
Evaluation

“Is it a loss?” Rachael repeated. "I don’t really know; I have no way to tell. How does
it feel to have a child? How does it feel 1o be born, for that matter? We're not born; we
don’t grow up; instead of dying from illness or old age we wear oul like ants. Anis again;
that's what we are. Not you; I mean me. Chitinous reflex-machines who aren’t really
alive.” She twisted her head to one side, said loudly, "I'm not alive! You're not going to
bed with a woman. Don't be disappoinied, okay? Have you ever made love to an android
before?”

Philip K. Dick, Do Androids Dream of Electric Sheep, 1968 (Ballantine, 1982)

We have claimed advantages of a new approach to estimation of statistics on a databases. We
now back up these claims with quantitative experimental evidence of the comparative performance
of our approach versus several simpler alternatives. We have validated performance on two quite
different databases, demonstrating the generality of the ideas.

After an introductiori in section 6.1, we explain our mcthod for comparing answers and
estimates in 6.2. Section 6.3 introduces the four basic control expcriments needed to validate
performance. Section 6.4 gives a set of results tables for the medical database. Section 6.5 discusses
these results in regard to space and accuracy performance, and 6.6 in regard to time performance.
The last three sections present results of three miscellaneous experiments: a "guaranteed-accuracy™
abstract in 6.7, a partial first-order abstract in 6.8, and results for the merchant shipping database in
69.
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6.1. Introduction

We claimed in section 1.3 that our "top-down" approach to statistical estimation has quite
different advantages and disadvantages than the competing technique of random sampling, claims

‘. ! we would like to quantify. Our work is in the wadition of many rule-based "expert systems"
?’ ! developed in the field of artificial intelligence [Buchanan and Duda 82). But unlike, say, a medical

expert system designed to choosc the most appropriate medical treatment for a patient, there is a
‘ quite rigorous way in which our statistical estimation expert can be evaluated: comparison of
32 estimated numeric values with the actual values of the same statistic found by going back to the
original data. We can thus quantify the disparity, and study the relative effectiveness of the

estimation for different kinds of statistics, database sets, and attributes of those sets.

Evaluation of a statistical estimation system is tricky because there is a three-way tradeoff
between space required, time required, and accuracy obtained. Plotted as a three-dimensional
surface (see Figure 6.1), it is roughly a hyperboloid". For a fixed level of accuracy, the curve is a
hyperbola relating time vs. space. For less accuracy, the hyperbola moves closer to the vertical axis;
moving this way "up"” the surface is essentially what our system is trying to do. We would like to

rize this surface to some
paramete: is sul degree. evy by

Sfaci

~ 'ch.

ﬁ Figure 6-1: Space vs. time vs. accuracy

17Whidl we expect from the information-theorctic assumption that the total information quantity transmitied across a
channc! is constant, that is. SAT = K where S=space, A =accuracy, T=lime. and K is some constant.
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6.2. Comparing answers and estimates

To quantify "how close” an estimate is to an actual answer we use the number of consecutive
high-order bits in common between the estimate and the answer, -logzl(es(-ans)/ansl. We wish to
compare space and accuracy, and representing both in bits allows this. We could have used other
metrics, as for instance an extremum of estimation rather than a normative surr;mary of estimation,
but we felt (1) extrema are harder to compare to space measurcments, and (2) a good normative

measure seems to correspond better to an intuitive performance assessment of an estimation system.

There are three problems with this bit-accuracy formula, however. First, the actual answer
may be zero or negative; we ignored this, since much statistical data represents positive sums and
counts anyway. (To handle this we would need to measure absolute accuracy or something else
other than bits in common.) Second, the estimate may be exactly equal to the answer, giving an
infinite number of bits in common; we handle this by putting 2 maximum on all such measures
equal to the bit accuracy of the attribute whose statistics are being estimated. Third, the estimate
may be greater than twice the answer, or less than half the answer, in which case the formula
becomes negative; we handle this by arbitrarily rounding all negative results to zero.

We thus tabulate this performance metric on a series of random queries to our system. These
abrupt changes for very close and vei'y far apart values, however, are somewhat arbitrary, and so we
also tabulate the breakdown of items in each of three categories (very close, reasonable, and very
far) for a set of random queries.

Estimation performance depends on the database abstract as well as the inference rules, and so
is database-dependent. In particular, it will not work well for data with complicated correlations
between attributes. And since statistics on very small sets are not usually very meaningful, and
subject to large variances, we impose the restriction that we only check our system performance on
querics ten items or more in size. In addition, performance depends on the particular statistic
quericd, the form of the query set, and the query attribute. To avoid averaging these factors out

over many queries we tabulate performance scparately for major categorics.
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6.3. Control experiments

In order t0 demonstrate that our estimation approach is advantagcous wc must have a
standard of comparison, a "control” experiment. Matters are complex because there are at least
four such controls. We present them in approiimate otder of increasing challenge to our methods.

1. answering the query from a database abstract without using any inference rules (the
“null rules” control) :

2. answering the query with a minimal abstract (just statistics on each relation as a whole),
but a full set of inference rules (the "null abstract” control)

3. running the query on the full original database, calculating the exact answer (the "full
database” control) '

4, "upwards” inference from a random sample the same size as a particular database
abstract (the "sampling” control)

Our system must perform at least as well as all four of these in order for it to be judged a "success".
By "at least as well” we mean that if any two of the three factors of space, time, and accuracy are
held constant, performance will be better in regard to the third factor. To put it in terms of figure
6.1, the hyperboloid representing behavior for the experimental scheme must be "below” the
hyperboloid representing behavior for the control scheme for a reasonablc range of parameters. In
some cases, only one factor needs to be held constant. For instance, for the first and fourth controls
above, we shall show that both time and accuracy are better when space is hel_d constant.

Restrictions that the database, abstract, or sample be of a certain size or type, are fair when
stated explicitly. Significance can be checked by the standard deviation of the bit accuracy and
usual hypothesis-testing methods.

6.4. Some résults

We developed an implementation of our idcas originally for four attributes of a small subsct of
the merchant shipping database of the KBMS project at Stanford, doing dcbugging and
preliminary evaluation with this data. To demonstrate the gencrality of our idcas more
convincingly we needed a different databasc, and we chose a random subsct of the databasc of the
RX project at Stanford [Blum 82], itself a subset of the ARAMIS (American Rhcumatology
Assoriation Medical Information System) database of information about rhcumatology patients. As
we discussed in scction 4.2.2, we chose six attributes to analyze for 28 paticnts with a total of 1000
visit rccords: patient number, scx, discase activity level, temperature, measured cholesterol, and
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administered prednisone. (Occasional missing valucs for the last four attributes were filled with
valucs on previous visits) We created a vocabulary of 18 named (or “first-order" sets) whose
statistics would be stored in the abstract, representing partitions into two parts on sex, four parts on
disease activity, and three parts for the other four attributes.

We summarize our results in tables. Each table contains several subtables representing
v different experiments. Each experiment is numbered, and contains three lines of result data. For
% : explanation of the format, see figure 6-2.
5

Table 6-3 shows results for statistics on the temperature attribute, table 6-4 the prednisone
dosage, table 6-5 results for two arithmetic operations between attributes, and table 6-6 results for
set unions. Experiments tested particular query set forms, attributes or "fields”, and abstracts. The
same query sets were tested for each of the six statistics. "Exact” means that exact rules give a

certain value for the answer, not an cstimate; this is implies in our table a 10.0 bits of accuracy, a
10-0-0 answer breakdown, and .00 range narrowing. For set intersections, only those larger than 10
items were used for tests, since statistics on smaller sets fluctuate widely, and the statistics are not
particularly significant anyway. For set unions, because of time constraints, we disenabled the

- "backwards” reasoning or relaxation-style analysis used in all the other tests here; hence results are
not as good.
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Each cxperiment involved testing of estimation performance for ten random querics

on six statistics: count (set size), mean, max (maximum), sigma (standard deviation),

median, and modefreq (modc frequency). Results for each statistic are tabulated separatcly, -
and are spaced horizontally across the page in six columns, in that order.

Results for each statistic in an experiment are summarized in seven numbers presented
on three lines, in this format:

<bits of accuracy>{<standard deviation of accuracy>)
<# of exact answers>-{# of reasonable estimates>-<# of poor estimates>
<average range narrowing>(<standard deviation of narrowing>)

where:

o <bits of accuracy> is the average number of bits in common between the estimate (EST)
and the actual statistic value, in ten random queries, computed according to the formula
in section 6.2. 10 bits is assumed the maximum accuracy for all these experiments, since
it is the accuracy of the numeric data.

o (standard deviation of accuracy> is the standard deviation of those numbers for the ten .
queries

o {# of exact answers) is the number of queries, in the ten, that can be answered to at -
Jeast 10 bits of accuracy, the accuracy of the data

o {# of reasonable estimates> is the number of estimates, in the ten, that were not
near-exact, but no worse than twice the actual answer or half the actual answer

o <# of poor estimates> is the number of estimates, in the ten, that were more than twice
the actual answer of half the actual answer

o average range narrowing> is the average ratio, in ten random queries, of the range
between the bounds on the estimate to the possible range of that statistic

o <{standard deviation of the narrowing> is the standard deviation of the preceding in ten
random queries :

Figure 6-2: Format of results for each experiment
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count mean max sigma modefreq median

; . Experiment 1: statistics on the intersection of two first-order sets, with

3 respect to the temperature attribute, jb( a first-order abstract

; ’ 8.24(3.6) 9.09(1.2) 7.23(2.0) 3.41(1.9) 3.22(29) 8.17(1.3)

B 8-1-1 1-9-0 0-10-0 0-10-0 19-0 0-10-0

01(.01) J32(.19) .28(.16) .10(.07) 07(.10) .29(.16)

X

R Experiment 2: same as experiment # 1 but for null abstract

& .34(.70) 7.00(1.6) 3.95(1.1) 1.87(2.0) 02(.04) 6.59(1.0)
0-2-8 0-10-0 0-10-0 0-7-3 0-1-9 0-10-0
10 10 10 10 10 10

Experiment 3: statistics on a first-order set, for the square root of temperature, first-order abstract

exact 10.0(0) exact 2.59(2.0) exact exact
10-0-0 0-8-2
. 002(.01) J12(.09)

2y . Experiment 4: sﬁme as # 3 but for null abstract
4 .50(.90) 8.97(.9) 5.82(14) 0(0) 52(1.4) 8.17(1.2)
% 0-3-7 1-9-0 0-10-0 0-0-10 0-2-8 0-10-0
10 10 10 10 10 10
":‘(v‘.
o Experiment 5: statistics on a first-order set, for the square of temperature, first-order abstract
,{; exact exact exact 7.38(1.7) exact exact

- ‘ 0-100
¥ 24(.14)

b Experiment 6: same as #' 5 but for null abstract

B " 1.21(1.7) 1.26(1.3) 3.93(1.3) 2.33(1.5) 09(.18) 6.33(1.1)
0-4-6 1-9-0 0-10-0 0-8-2 0-3-7 0-10-0
10 1.0 1.0 1.0 10 1.0

. Figure 6-3: Esumation of statistics on paticnt temperatures
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count mean max sigma modefreq  median
_ Experiment 7: statistics on the intersection of two first-order sets, with -
3 respect lo the prednisone dosage attribute, for a first-order abstract
2. : 6.27(3.9) 3.51(1.9) 3.56(3.1) 1.49(1.6) 2.57(3.2) 4.99(3.4)
e,
¥ 5-5-0 0-10-0 0-8-2 0-7-3 1-7-2 3-7-0
o 03(.04) J4(31) .34(.31) .14(.08) .08(.05) 34(.31)
s Experiment 8: the same as # 7 but for a null abstract
It T73(1.0) 2202.1)  190(33)  140(1.6)  .40(.92) 6.25(4.6)
T 0-4-6 0-7-3 0-6-4 0-7-3 0-2-8 0-8-2
b 10 10 10 10 10 10
o~
2> Experiment 9: statistics on the square root of prednisone, first-order abstract
R exact 1.77(1.4) exact 2.51(3.0) exact exact
g 0-10-0 0-6-4
N
3,:: 05(.04) 13(.05)
%) Experiment 10: same as #9 but for a null abstract -
A \
‘:‘ 76(.73) 4.11(2.6) 2.72(3.7) 0(0) 79%(1.6) 6.59(4.2)
,:’ 0-6-4 0-10-0 0-6-4 0-0-10 0-2-8 6-4-0
& 10 10 10 10 10 1.0
'- Experiment 11: statistics on the square of prednisone, first-order abstract .
N exact exact exact 190(L1)  exact exact
e 0-10-0 |
j " 07(.06) ]
3 ;
b, ? 1
ﬁ: Experiment 12: same as # 11 but for a null abstract ]
86(1.4) 1.22(1.5) 2.99(4.6) 16(.5) 54(1.2) 6.14(4.7)
A 0-3-7 073 037 019 0-2-8 6-3-1
%: 10 10 10 10 10 10
!
o)

Figure 6-4: Fstimation of statistics on prednisonc dosages
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count mean max sigma modefreq median

Experiment 13: statistics on a first-order set, with respect to the sum

of corresponding values for prednisone and cholesterol, with first-order abstract

exact exact 5.59(1.8) 5.52(2.2) 65(.8) 5.97(3.0).

1-9-0 1-9-0 0-6-4 3-7-0
11(.08) 04(.03) 61(.89) .08(.07)

Experiment 14: same as # 13 but with null abstract

J8(1.1) 445(1.7) 1.50(2.2) 62(1.2) J39(1.2) 6.46(3.1)
0-1-9 0-10-0 0-7-3 0-3-7 0-1-9 4-6-0
1.0 1.0 1.0 1.0 10 1.0

Experiment 15: statistics on a first-order set, with respect to the product

of corresponding values for prednisone and cholesterol, with first-order abstract

exact 6.76(2.1) 3.42(34) 1.25(1.8) J15(.3) 3.63(3.3)
2-8-0 2-8-0 0-5-5 0-3-7 2-8-0
57(.36) 34(.31) 27(.18) 30(.49) 07(.05)

Experiment 16: same as # 15 but for null abstract

1.11(1.1) 1.99(1.6) .20(.40) 29%.77) A0(.76) 0(0)
0-6-4 0-8-2 0-2-8 0-2-8 0-2-8 0-0-10
1.0 10 1.0 1.0 1.0 1.0

Figure 6-5: Some virtual-attribute statistics
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\ ; count mean max sigma modefreq  median )
3
’ Experiment 17: statistics on the union of two first-order sets, for the i
,'.-. temperature attribute, with first-order abstract _
o 63424)  656(24)  exact 15443)  112Q25)  626(2.1)
3 N 3-7-0 3-7-0 3-3-4 4-6-0 1-9-0
V J1(.14) J37(.36) 28(25)  07(1)) 42(.35)
!
33 Experiment 18: same as # 17 but for null abstract
o -
Ad 39%.9) 7.29(1.49) 445(1.1) 87(1.6) 23(.50) 7.00(1.3)
0-3-7 0-10-0 0-10-0 0-4-6 0-2-8 0-10-0
1.0 1.0 1.0 1.0 1.0 1.0

Experiment 19: statistics on the union of two first-order sets, for the
prednisone attribute, with first-order abstract ,
7191(1.9) 6.59(2.6) exact 6.63(2.5) 6.49(2.8) 2.193.3)

370 3-7-0 3-70 3740 1-6-3
05(.09) 01(02) 04(.04) 03(.04) .22(.25.) _ -

. Experiment 20: same as # 19 but with null abstract
N 1.12(1.4) 1.58(1.9) 5.25(4.8) 3.02(3.2) 92(.95) 0(0)

L 082 0100 0100 091 0-6-4 0-0-10
o, 1.0 10 1.0 - 1.0 1.0 1.0

‘:T.’u

*'3

"g Figure 6-6: Results for set unions, without relaxation
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6.5. Discussion: space and accuracy

Section 6.3 gave four separate control experiments we must compare performance against.
Our experiments do not provide a complete comparison to each, in part because of time and space
limitations'®, but they do cover most of the issues. The basic philosophy of this evaluation is
determination of "the value of rules” in the style of Michie 76].

6.5.1. Control 1: Abstract, no rules

Clearly we can answer many more quéeries with rules on an abstract than without. An abstract
can only contain contain a finite number of query answers, whereas rules can give statistics on
arbitrarily large intersections and unions of sets in the abstract. The space for the rules is negligible
compared to the size of the abstract because (a) rules can be coded efficiently since they contain few
different symbols, and (b) we are interested primarily in large data sets where the abstract (as well
as the database itself) is likely to be considerably larger than the rule storage.

6.5.2. Control 2: Rules, no abstract

We study this by experiment. For "no abstract™ we still mean to include statistics on entire
relations, information which it seems reasonable to assume is accessible to a user without the
computer -- technically, a "null abstract”. These conditions apply to the even-numbered rows in
our first four tables. As one can see by comparing the figures with those for corresponding queries
with a first-order abstract (experiment 2 with experiment 1, 4 with 3, 6 with §, etc.), performance is
usually significantly better. We can quantify the level of significance by the standard deviations
given in parentheses on the first lines of the entries.

6.5.3. Control 3: calculation on full database

The third control expcriment is getting the exact answer by running the query on the full
database. ‘The data is 1000 tuples with 6 attributcs, a total of 1000 * 6 * 16 = 96,000 bits. 'The
first-order abstract used in the experiments consists of 19 first-order sets plus the universe, with 14
statistics tabulated for numeric attributes and 5 for nonnumeric, for a total of 5*14 + 5 = 75

“We uscd about 50 hours of CPU time on 2 DEC-20 at SRI Iaternational to perform this cvaluation, coming closc to the
spacc limitations of sing!c-user Interlisp in the process. 90% of the time cxpended was calculation of the database abstract
valucs when needed from the actual data.
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attributes, each with 10 bits of accuracy, for a total of 19 * 75 * 10 = 14,250 bits, or about 14.8% of

the size of the database. (Wc ignore herc the size of the program to manipulate the database
abstract, as it is fixed in size independent of the database and database abstract, and its rules can be
coded highly efficiently in few bits if desired.)

The main difference, however, is between the exact answers given by ﬁnll-databas;e querying
and the limited accuracy of estimates. The tests we have run give average bits of accuracy for
particular query forms. If multiply this by the number of possiblc queries of a given type, and sum
up over all query types, we can get an estimate of a “virtual database size" due to the inclusion of
inference rules along with the abstract. Of course there are an infinite number of queries since
intersections and unions can be embedded arbitrarily deep, but one can set reasonable limits on
query size (or better yet, weight query types as per their frequency of occurrence). As an example,
consider just our estimates of the intersections of two sets. There are about 18 * 15 = 270 such sets,
and the six statistics computed on these sets in the first row of table 6-3 cover 8.24 + 9.09 + 7.23 +
341 + 322 + 8.17 = 39.36 bits on the average per sct, so there is virtual storage for about 270 *
39.36 = 10,600 bits, represcnting near to a doubling of the database abstract size. Similar figures
can be summed for all common query forms. The total sum represents how well the rules are
extending a given database abstract, and may be roughly compared to the size of the original
database,

8.5.4. Control 4: Random sampling

The fourth and last control experiment is to extrapolate from a random sample the same size
as the database abstract. We studied this experimentally by constructing a random sample the same
size as our first-order (18-set) database abstract, 148 sample items out of 1000 in this case, and
inferring upwards from statistics on the sample to statistics of the population. Results are contained
in tables 6-7 and 6-8. Experiments should be compared as follows:

o experiment 21 with expeﬁmt 1
o experiment 22 with experiment 7
o experiment 23 with experiment 17
o experiment 24 with experiment 19
o experiment 25 with experiment 3

® experiment 26 with cxperiment 9
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™ o experiment 28 with experiment 11
> e experiment 29 with experiment 13

2 o experiment 30 with expcriment 15

3

Our rule-based method is about the same or better in most comparisons, while at the same time

.\ being likely to have much better access time in terms of page retrievals for all but very small

)

' databases, as discussed in section 1.3, and while avoiding the "brittleness” mentioned there in

7 ; regard to sets of related queries.
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count mean max sigma modcfreq median

Ve Experiment 21: siatistics on the intersection of two sels and the temperature attribute .
%r 2.00(1.8) 8.14(2.9) 1.38(3.3) 3.07(2.8) 2.51(3.8) 8.55(3.2)
;:l 0-8-2 1-8-1 5-4-1 0-7-3 0-7-3 8-1-1
sl Experiment 22: statistics on the inlersection of two sels and the prednisone attribute
"*Ij 2.30(1.4) 4.15(2.6) 3.35(4.4) 1.80(1.4) 2.36(2.1) 4.74(4.3)
- ,;j 0-9-1 091 334 0-7-3 0-7-3 4-5-1
oy Experiment 23: statistics on the union of two sets and the temperature attribute
2\ 2.60(1.3) 9.51(.6) 4.73(1.1) 2941.5) 2.62(2.3) 8.96(.7)
$‘_: 0-10-0 0-10-0 0-10-0 0-10-0 0-9-1 3-7-0

\
&
, Experiment 24: statistics on the union of two sets and the prednisone altribute
3 ;E:: 329%(1.8) 3.84(2.2) 2.50(3.8) 3.52(1.5) 2741.2) 8.45(3.1)
23 0-10-0 0-10-0 2-6-2 0-10-0 0-100 8-2-0

A\ Experiment 25: statistics on a first-order set, of the square root of i
K }.‘ the temperature attribute
2.57(1.5) 9.0%(1.2) 6.78(2.2) 1.45(1.4) 3.08(1.9) 8.80(1.3)

) 0-9-1 0-10-0 3-7-0 0-7-3 0-10-0 3-7-0
3
] f’g Experiment 26: siatistics on a first-order sel, of the square root of
the prednisone attribute |
—- 27X1.7) 45%2.2) 3.29(34) 2.6%1.9) 2.38(1.5) 8.21(3.5)
N 0-9-1 0-10-0 2-7-1 0-8-2 0-10-0 8-2-0
é Figure 6-7: Recsults for extrapolation from a random sample, page 1
oN
-4
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':; count mean max sigma modefreq  median
. Experiment 27: statistics on a first-order sei, of the square of the ._
i temperature attribute ::j:
i 2.3%(1.6) 1.95(1.5) 6.48(3.0) 34424) 2.5%2.9) 8.07(1.8)
0-10-0 0-10-0 4-6-0 0-9-1 0-8-2 4-6-0 .
% s
h Experiment 28: statistics on a first-order set, of the square of the :‘f
h prednisone attribute B
¥
' 2.36(1.1) 3.28(1.8) 6.0(4.9) 2.00(1.5) 2.71(.6) 8.28(3.4)
. 0-10-0 0-10-0 6-0-4 0-10-0 0-100 8-2-0
,§
é Experiment 29: statistics on a first-order set, of the sum of 5
: corresponding values for prednisone and cholesterol =
sj 1.75(1.6) 4.66(2.3) 4.34(39) 1.33(1.8) 1.64(1.8) 5.99%(3.8) -
3 0-6-4 0-8-2 352 0-4-6 07-3 442
g - Experiment 30: statistics on a first-order set, of the product of =
: . corresponding values for prednisone and cholesterol N
5 2.34(1.6) 3.50(2.0) 2.69(3.8) 2.22(1.6) 1.98(1.5) 5.07(3.6) -
§ 0-9-1 0-9-1 244 0-8-2 073 361 i
N Figure 6-8: Results for extrapolation from a random sample, page 2
:
¢
3 N
E >
$ 5
! e
:t Y
:
i

T AT e I T T LT S T e e e e N T e e e T e T e e e e T e e e T L
o SR I S D T e T L e T
T W TP RS U ol ' e g W)y o o i, . . -




e s €L ol
'I

ﬁr",‘."..\.
» LI )

."- -qqu'\

LYPCNCAR S S A G At ) i SO A L R SN S AR IR IR

118

6.6. Discussion: time

These limited experiments do not well address the tradcoff between time and the other factors
of space and accuracy, because significant advantages do not accrue unless the database is several
orders of magnitude larger. A primary motivation for the database abstract architecture is the
improvements in paging performance over random sampling and full-database-access methods, and
1000 sextuples should be easy to fit into most any computer’s primary memory. But if we pretend
that we have very limited primary memory and that all large datascts (database abstract and random
sample as well as full-database tuples) are kept in pages (say 1000 16-bit words) in sccondary
storage, we can make the following comparisons for each of the four control experiments. (We
assume, as with most large databases, that page accesses are the only significant time cost.)

6.6.1. Control 1: abstract, no rules

We assume rules can be coded efficiently and kept in core, hence they add no paging cost.
Hence there is no difference in time,

6.6.2. Control 2: rules, no abstract -

This alternative does obviate paging of the abstract, but that is only one page (14,250 bits =
890 16-bit words) for these experiments. For larger abstracts we assume all statistics on the same set
are placed on the same page, and so an upper bound on the number of page accesses is the number
of different sets queried. This number is constant for all queries of a given form. For intersections
of two sets it is three: the first set, the second set, and their intersection. For unions it is four: all the
preceding plus the union of the two sets. For unary and binary operations on simple attributes it is
one since only the set actually queried need be accessed. So the number of page accesses needed to
estimate a statistic with the database abstract is a small constant independent of the size of the
abstract, rule set, or database.

6.6.3. Control 3: calculation of answer on full database

The database is stored on 1000 * 6 7 1000 = 6 pages. Even if there is an index pointing to
every tuple of a given set, unless the sets arc very small (say, 10 items or less) it is likely that at least
one item of the set is on cvery page. except for the rare case where the databasc is clustered with
respect to the partitioning that defincs the sct. Hence all six pages will need to be fetched ncarly all
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the time, whereas only one page in these experiments, or a small constant number of pages in T

general, will need to be fetched to use the databasc abstract, a clear cost savings during query
N - answering.
190 The database abstract does require setting up, however, which in turn requires accessing these
;E'\ very same six pages. But we only wish to use the database abstract architecture when setup work is
. small compared to query answering, and setup cost can be amortized to insignificance over a large
?:' number of queries. Setup can be made page-efficient, too, by implementation as a single-pass
! algorithm through the database.
VY
e 6.6.4. Control 4: random sampling
) For setup, this has essentially the same paging costs as the use of the abstract, since for
reasonably-sized samples and more than just a few tuples per page, nearly every page must be
" retrieved for at least one tuple. In this particular case, the random sample is 148 items, and the odds
¥ are very high that each of the six pages will be represented. For a larger database with p items per
? page, and a random sample of size m of the database, the number of pages looked at will be
N - p(1-¢™P) from a Poisson model as mentioned in section 1.3. Since our approach must always look
. at every page during setup, the net paging advantage of random sampling during setup is (1-e™P),
“‘3 * For m=p, i.e. the number of sample points being equal to the number of database pages, this is
only a savings of ¢’} =36.8% over our approach, and for most databases this represents a very small
AR " random sample, too small to be useful.
;;_ Once the random sample and the database abstract are created, they both fit into the same
"; amount of space, and the same number of pages. But answering queries with the sample will likely
w require accessing most pages of it, because even if there is an index (which may require additional
-—. paging to obtain), one has similar paging inefficiencies with random placement of records as with
._ random sampling of the full database. Thus as the size of the sample incrcases, the necessary
L 5:1 paging to answer queries will incrcase nearly proportionately. At the same time, answering queries
IN with the abstract will require a fixed number of page accesses (boundced by the total number of
pages) depending on the form of the query, as discussed in section 6.6.2. In addition, ncw random
samples usually need to be fetched from the database if a user is interested in another data set,
- whereas the database abstract is general-purpose. In a distributed architecture where the database
* abstract and/or random sample arc scparated from the databasc by a low-bandwidth connection,
these additional fetches may be intolerable,
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f 6.7. A guaranteed-accuracy system k|
%] :
- Table 6-9 gives results for a first-order order abstract and a 20% "guarantee” on sccond-order

interscctions (i.e., statistics on the intersections of any two first-order sets), following the discussion

s
" 4V

of section 1.8.2 and the cxample of item 9 of section 1.5.1. That is, any statistic on an interscction of
two sets not explicitly in the abstract (virtual abstract, actually) is assumed to be estimatable to
within 20% by rules (leaving out the “backwards” rules discussed in section 5.5, for the reasons

v ‘
RN AR
R S
TR}
AN YA

j’é discussed there). All values not estimatable to that precision are explicitly put into the abstract on
y ': loading. Thus extra effort in the loading of the abstract trades off with additional query accuracy,
:3“ which may or may not be worth it.

-
&,

For these tests we estimate a statistic on a second-order intersection needed to be stored in the
database abstract 10% of the time for counts, 40% of the time for means, 20% for maxima, 70% for
sigmas (standard deviations), 70% for mode frequencies, and 60% for medians. Since there are
about 270 second-order sets, we estimate the size of this "1 and 1/2" order abstract as:

size of first order entries + size of second order entries
= 14,250 bits +
[270 sets * 5 attributes * 14 statistics * 10 bits of accuracy maximum
*Q+4+2+7+.7+.6/6]
= 14,250 + (189,000 * 45) = 98,950 bits

which is about the size of the database, and.hem:e not worth the small amount of extra accuracy
obtained (as one can see from comparing experiment 31 with cxperiment 1 in figure 6-3, and
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expcriment 32 with experiment 7 in figure 6-4).
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w count mean max sigma modelfreq median
- - Experiment 31: Statistics on the intersection of two sets, with
{ :', respect (o the temperature attribute, for a “one and halforder

3‘; h abstract containing statistics on all first-order sets, plus statistics

® on other sets as needed to provided a 20% accuracy guarantee on all

y second-order set statistics. '
VS ! 8.76(2.5) 8.60(1.1) 8.71(1.9) 5.18(2.5) 7.30(3.5) 8.02(1.0)
3 820 0100 0100 280 640 0-100
LY

01(.02) .28(.18) 27(.19) 01(.01) .27(.20)

Experiment 32: same as # 31, except for the prednisone attribute

8.68(2.2) 495(2.2) 7.142.2) 6.40(3.0) 8.38(2.8) 7.06(3.2)
7-3-0 1-9-0 3-7-0 4-6-0 7-3-0 5-5-0
01(.01) 06(.04) 08(.08) 03(.02) 01(.01)  .02(.02)

o

Figure 6-9: Results for second-order +20% guarantees
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s 6.8. Results for a partial first-order abstract

We also ran a few tests on a "partial” first-order databasc abstract consisting of only the
statistics SIZE, MAX, MIN, MAXEVENDEV, MINEVENDEYV, and SIZEUNIQUE on the first-
order sets and the universe. As may be seen in figure 6-10, rcsults are not good; compare
experiment 33 with experiment 1, 34 with 3, and 35 with 13. Thus it seems important to have
thorough statistics on first-order sets, at lcast for this database.
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count mean max sigma modefreq median

e . Experiment 33: statistics on the intersection of two first-order sets with respect

-;‘-2 {o the temperature attribute, for an abstract containing only SIZE, MAX, MIN,

:: B MAXEVENDEV, MINEVENDEY, and SIZEUNIQUE statistics for first-order sets

B 40(7) 672L3)  346(10)  101(L1)  00) 6.25(8)

3 0-3-7 0-10-0 0-10-0 0-6-4 0-0-10 0-10-0
fif 10(0) 10 10 1.0 10 10
V] Experiment 34: statistics on first-order sets witi: respect to the square root
_ of the temperature attribute, for an abstract containing only SIZE, MAX,

- ;sf MIN, MAXEVENDEV, MINEVENDEYV, and SIZEUNIQUE statistics for first-order sets

W T 94%B)  S0H9)  00) S4)  916(T)

N 0-5-5 190 0-100 0010 0-3-7 19-0

\ . 1L.0(0) .88(0) 88(0) .88(0) 1.0(0) .88(0)

,:3,‘ i Experiment 35: statistics on first-order sels with respect (o the sum of the

= corresponding prednisone and cholesterol values, for an abstract containing only SIZE,

‘ ‘3 . MAX, MIN, MAXEVENDEV, MINEVENDEYV, and SIZEUNIQUE statistics for first-order sets

?_.i exact exact 6.70(2.0) 6.50(2.3) 21(.5) 1.79%2.4)

- 2-8-0 2-8-0 0-4-6 5-5-0

e .04(.05) 02(.02) 44(.62) 02(.03)

Ry

'53 Figure 6-10: Estimation with a partial first-order abstract
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‘ 6.9. The merchant shipping database 4
) We also ran some evaluation tests on the merchant shipping databasc used for system J
: development. The field was chosen randomly; between latitude and longitude for numeric statistics ]

! E (MEAN, MAX, SIGMA, and MEDIAN), and between those two, ship nationality, and ship type .

: for nonnumeric (SIZE and MODEFREQ). This test was done previous to all the other tests

e discussed in this chapter, and not all the rules used in the others were employed, and a few

¥ ‘ infrequently-appearing bugs remained to be found. Results are in figures 6-11 and 6-12. Note the .

;' format is different from the other results in this chapter: the top number is the bits of accuracy, and

the next line the breakdown of answer types in ten random queries.
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count mean max sigma modefreq median

Experiment 36: statistics on t e intersection of two first-order

sets, for a random attribute, and a first-order abstract

53.2 357 41.7 219 3238 35.1
2-0-8 0-10-0 0-10-0 0-9-1 1-8-1 0-10-0

Experiment 37: same as # 35 but with null abstract
0 350 236 10.1 16 289
0-0-10 0-10-0 0-10-0 0-7-3 0-2-8 1-9-0

Experiment 38: same as # 35 but with union instead of intersection
96.2 70.0 exact 76.2 66.3 36.5
8-2-0 4-5-1 6-4-0 5-5-0 1-9-0

Experiment 39: same as # 37 but with null abstract
0 0.8 50.0 12 10.0 30.8
0-0-10 0-4-6 0-8-2 0-3-7 2-0-8 2-3-5

Experiment 40: same as # 35 but on the intersection of 3 first-order sets
149 159 18.5 8.6 8.6 242
0-8-2 0-9-1 0-8-2 0-5-5 0-6-4 0-9-1

Experiment 41: same as # 39 but with second-order intersections in abstract too
46.3 237 256 213 10.7 304
4-6-0 0-9-1 0-8-2 0-9-1 0-6-4 0-10-0

Experiment 42: same as # 39 but with second-order 20% guarantee abstract
158 29.5 159 13 15.9 271
0-7-3 0-10-0 0-8-2 0-2-8 0-6-4 0-10-0

Figure 6-11: Some results for the merchant shipping database
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count mean max sigma modefreq

Experiment 43: statistics on a first-order set with respect to the

sum of latitude and longitude, for a first-order abstract

exact exact 418 184 18
190 091 046

Experiment 44: same as #42 but for a null abstract
exact 322 212 14.2 19
0-10-0 0-10-0 0-8-2 0-2-8

median

58.6
2-8-0

474
0-10-0

Experiment 45: same as #'42 but for the product of latitude and longitude

exact 318 153 239 1.9
0-10-0 0-9-1 0-10-0 0-6-4

Experiment 46: same as # 44 but for a null abstract
exact 203 10.5 120 11
0-10-0 0-6-4 0-7-3 0-1-9

Experiment 47: statistics on a first-order set with respect to a

random unary operator, for a first-order abstract

exact 84.0 exact 329 exact
4-6-0 0-9-1

Experiment 48: same as # 46 but for a null abstract
exact 921 exact 369 exact
7-3-0 2-8-0

39
0-1-9

0-0-10

exact

exact

Figure 6-12: More results for the merchant shipping database
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Chapter 7
Extensions and further applications

‘.-q;"‘
L)

3 -} Money, that’s what it took. A little money -- a tenth of the cash they lavished on the
Computer Science Department, say -- and he could have parapsychology really on the
move. Going places. They were doing it elsewhere: Professor Fether in Chicago was
testing precognition in hippos: the Russians claimed a breakthrough on the ouija board to
Lenin; the ghost labs in California were fast building a solid reputation. But here, a
standstill, a frozen landscape. Nobody in the entire field had ever heard of the University
of Minnetonka.

John Sladek, Roderick, Pocket Books, 1980

This thesis opens up a broad area for future research. We now, mention some directions that

x . could be followed. Section 7.1 mentions some possible extensions to the work, and 7.2 new

g applications of the completed work.

¥

) 7.1. Extensions

N

°¢§ 7.1.1. Further statistics and rules

@ We have examined fourteen statistics on numeric attributes and five on nonnumeric in this

¥ . work. Clearly we could look at more, such as other order statistics, correlations (but see scction

!”3 3.1.3). tuple abstractions, possible valucs, results of smoothing, and various Gestalt properties of a

s sct not shared by its members.

‘x There arc many rules that we could study but have not as yet, such as rules for correlations,

5 . causations, rules for intensional knowledge, rules for prototypes, dependencies, quantifiers, and

] nulls. Nulls are particularly casy to handle by extending the databasc abstract with additional sets.
. In defining a first-order sct with respect to some attribute, nulls for that attribute can be interpreted

as items with any valuc possibility. Hence any sct can be vicwed as the disjoint union of items
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known definitely to be in it with a set of items having nulls for the defining attribute. If the size of
the former set is known, we then have a lower bound on the total set size as this number, and an
upper bound as this number plus the number of nulls. Other statistics can be handled similarly by

this disjoint-union model.

As we mentioned in section 1-4, many of the methods we used by hand to derive rules could
be automated with symbolic-algebra systems doing much of the work. Rules for new cases and
statistics could be derived whenever a need for a particular category is foreseen.

7.1.2. Augmented algebra of uncertainty

We could include information on possible values for statistics, extending quadruples into
quintuples. This requires modification of all the interval-algebra and normal-variable-algebra
operations, and extra specifications in every rule. But this sort of reasoning may be very useful, as it
is quite different from any other reasoning in our system, and likely to be “orthogonal” to
(independent of) other results.

Another idea is to allow disjoint ranges in quadruples; for instance, to express a range as the
union of two disjoint ranges. Such a situation arises upon dividing by an interval containing zero,
which we disallow in our implementation (see 3.3.1), but other rules may also lead to disjoint
ranges, as when the standard deviation for a set is almost equal to half the range, implying that

values are clustered around the maxima and minima.

Explicit mention of exceptions with the quadruples may also be fruitful to explore. Much
statistical data contains a few extreme "outliers”, points very atypical, that are often eliminated
before analysis proceeds to avoid biases in calculating means and standard deviations. Kecping
these exceptions explicitly with quadruples allows operating on them separately in calculations.

7.1.3. More sopbhisticated control structure

Our current control structure is meant to be as simple and cxplicit as possible, to facilitate
emphasis of the rules themselves. Many things could be done to add speed and/or flexibility.
Partial orderings defining defaulting for cstimate rules could be derived automatically from analysis
of the rules, by proving that certain rules logically derive from ccrtain other rules. Branch-and-
bound methods could be uscd to decide in advance if a category of bounds rules could help on an
answer. Relaxation methods, both numeric and nonnumeric, could be uscd in a more systematic
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3
R ,: and breadth-first way to handlc what is now forced to be an awkward and inefficient depth-first tree
. traversal, further complicated by the ad-hoc way in which we handle backwards rules.
The database abstract can in principle contain any statistics at all on the database. But we have

‘ ‘ not exploited this much in our database abstracts since this requires careful planning of how to use

‘ downwards, upwards, and lateral inheritance (see section 3.4.5) simultancousiy, and also creates
" problems for loading (see 4.4.2), because it creates cycles in the ordering of queries.

7.1.4. Hardware implementations

Special-purpose hardware could improve performance of our system. Obtaining the database

A abstract is computationally expensive, and special devices for computing the basic aggregate
2 statistics on the database in the one-pass simultaneous-tracking mcthod described in 4.4.1 might be
' very helpful, perhaps as components in disk drives. Such devices would also improve answer speed
e for arbitrary statistical queries on the database, but our database abstract approach would still have
%; a place for those users who do not have the money or space for the special hardware and full
b database, or the time to wait for an exact answer.

< .

, As for our system itself, paging is also the major cost, and thus a read-only-memory database
. abstract might significantly improve .performance; this could be quite cost-effective for much-used
\J databases like the U.S. Census. Rule computation time is less significant, but with more complex

rules (e.g. Diophantine analysis) and bigger rule sets (e.g. if automatic derivation of rules is done) it
might start to matter. Rules could be coded in a read-only-memory themselves, independent of the
$ database, in a highly compact code which could then be decoded for retrieval. Note that much of
the answering of queries involves reasoning along many independent lines (bounds reasoning in
particular), and this could be implemented with multiprocessing if speed were important.
Processors could write subquery results onto a "blackboard” as they found them, and these results

'_;ﬁ

could be uscd or modified by other processors working on other lines of rcasoning. Relaxation

P

mcthods would need to be supported, for one processor might get different results depending on
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7.1.5. Better evaluation

Due to time (CPU) and space (in Interlisp) constraints, we have only been able to run tests on

.,fj two small databases. (For data analysis, howcever, their size is quite typical.) We need to run

:E detailed studics on a database at lcast ten times larger, perhaps one hundred times or more, before )
2N we can confirm the large savings in page faults we have predicted.

:’ We also need more random queries per category, since the dispersion of results in many

\ categories is large. Perhaps we could try to cluster results into categories of rclative accuracy, and

analyze the queries for which particular amounts of accuracy arc obtained. We also need to run

_ “matched pairs” of queries on experiments and controls, since the ten random queries generated for
3, each may be different.

:-
.‘j The criterion for evaluating the effectiveness of the bounds, the “average narrowing”
provided, is rather arbitrary and unsatisfactory. What we really want is the decrease in the entropy
::} of a statistic, in the style of [Haq 75]. But it is difficult to say just what our statc of initial knowledge
¢+ is; whether, for instance, it includes all the possible statistics on the universe, or only some, or also

statistics on common sets, and so on, and just which "obvious” modes of inference are included.
The matter deserves further study.

B, Aty
AR

::‘ ~ 7.2. Further applications of this work

N 7.2.1. Cooperative user interfaces

e

j’ An original motivation for this work was the providing of more “coopcrative” answers to user
\ queries when an exact answer would take much time, namely a quick estimate answer. A number

B of presentation methods could improve the cooperativeness of this. "Bargaining” could be done

; where costs of the actual answer and estimates (perhaps several) could be shown and compared.

: g Answer quadruples could be expressed graphically in various ways [Tukey 77] so that users do not

have to read and interpret numbers. Or quadruples could be expressed in “fuzzy” English, c¢.g. “the

2 answer is pretty big”. If it can be inferred by one way or another (including being told) that the h

:,:: user is interested in a statistic in order to answer a yes/no question -- e.g., “Are there tankers over

':” y 700 feet”™ -- the question can be answered directly. In addition, the system could be much more

informative about its operation, noting and paraphrasing rules that were significant in deriving an

answer. ' .
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7.2.2. Query optimization
Our methods can be used to improve performance of a database system.

7.2.2.1. Access paths

Estimates of statistics and bounds on them are very useful in "optimizing" performance of a
database system ([Ullman 80], ch. 6). Set size estimates in particular are equivalent to
"selectivities” used in deciding between altcrnative access paths, as in choosing an algorithm to
perform a join. Other statistics can indirectly help to estimate set sizes. For instance, the mean and
standard deviation of an attribute of a set suggest how many values might lie in some range of that
attribute (i.e., the size of a first-order set defined on the values). Bounds on set sizes can be useful
too because they allow guarantees that the optimal access path is being followed in lieu of guesses,
for the worst case, no matter how good the guesses.

An interesting idea to explore is making the first-order database abstract sets correspond to
actual physical pages in the database. Then the statistics on these pages could be used in lieu of (or
in addition to) an index to help decide whether the page was relevant to the answer of a particular

query.
7.2.2.2. Implicit optimization in rules

The statistical inference rules' we have developed also represent a kind of optimization
themselves, namely optimization of statistical queries. What is being optimized is accuracy of the
answer, or perhaps ability to answer from the abstract (assuming that more complex sets are rarer in
the abstract) not processing time. For instance, the rule

MAX(OR(A,B)) = LARGEROF(MAX(A),MAX(B))
looks very much like the optimization mcthods for relational algébra discussed in [Ullman 80]
applicd to the new operator, MAX. Unfortunately, therc are only a few of these exact rules, and it
is arguable whether one can still use the word "optimization” for inexact rules, which give query

forms which arc not cquivalent, but the principle is the same,

7.2.2.3. Optimization of statistical processing

Inferred bounds can also help optimize the calculation of actual order statistics and frequency-
distribution statistics statistics on the database. (Thus our methods can be of use even in a system
used only for high-accuracy hypothesis testing, or "confirmatory data analysis”.) For instance, if

onc knows absolute bounds on the median, one can absolutely bound the amount of storage space
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necd for a onc-pass calculation of it. Similarly for the mode; and one can get additional help if
bounds are known on the mode frequency or othcr frequencics, allowing pruning of items from the
possibilities list. In general, bounds are useful because they can support non-backtracking control
structures for calculation of order and frequency statistics, by putting good absolute bounds on the
amount of space required for the calculation.

7.2.3. Reasoning about uncertainty

The quadruple algebra provides an apparently new way of reasoning about uncertainty. It
could be related to other methods. For instance, Dempsey-Shafer theory [Barnett 81] reasons about
bounds on probabilities of discrete events, and this might be combined with our own reasoning
about events characterized by continuous-valued variables. Fuzzy set theory [Zadeh 79], however,
is fundamentally incompatible with our methods, and we provide a comprehensive alternative to it.
We believe our work raises serious questions for the continued use of fuzzy set theory because our
approach, with much the same functionality although different emphases. is much more rigorously
justified in terms of simple reasoning and maximum-entropy theory with inequalities.

One aspect of our quadruple representation of uncertainty and the associated inference rules is
that it provides, for apparently the first time, a complete knowledge representation scheme based
entirely on the concept of a set (for previous attempts, see [Brachman and Smith 80]). There is no
epistemological need to distinguish concepts representing individuals from concepts representing
sets; what have been called individuals are just sets with SIZE equal to 1, and special "small-set”
inference rules can be used to reason about other small sets (e.8. if you know the maximum,
minimum, and mean of a set of these items or less, you know what those items must be). But it is
essential to distinguish, as in other work in artificial intelligence, the intension of a set from its
extension, two things that arise from quite different sorts of knowledge, though their constraints can
be manipulated through quadruple algebra the same way; our work mainly applies to the latter.

7.2.4. Statistical database inference security

One accidental byproduct of our work is a testbed for inference security research with
databases [Denning 82], in that we have a system that concludes as much as it can about data from a
limited number of statistical aggregate values. Such a system has never existed before; previous
work has examined at only a few rules, or only single rules, and not the possibly synergistic
interactions of very different kinds of rules. For inference sccurity work the bounds rules arc most
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of interest, but the estimatc rules can also be used for "reasonable-guess” inference compromise.
For research of this sort, we would probably want to include rules to handle rare but strong-bounds
special cases that are not cost-effective for statistical estimation, i.e. we should optimize ihc rule set
for power (i.e. accuracy) and not speed and space.

The database abstract itself can be considered as a protection mechanism for a database, if
querics are only allowed to it and not to the full database. The idea is similar to that of
“partitioning” [Yu and Chin 77]: predefining a partitioning of the records of a database and forcing
all queries to be on these predefined partitions markedly simplifies the analysis of inference
security.

7.2.5. Knowledge-based compression

Our database abstract and rules can be scen as a sophisticated kind of data compression of a
database. While the compression factor is intended to be large and tt.le abstract not information-
preserving, this is not intrinsic, and a database abstract could be designed that did capture all of a
highly redundant database, plus just our exact rules (though other rules can occasionally lead to
exact conclusions too through a progressive narrowing of possible values).
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) Conclusions
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In the thesis we have presented a new approach to low-cost estimation of statistics on a large
i computer database. We provided an overview in chapter 1. This method reasons "top-down" from
b a precomputed set of statistics on a particular database (a “database abstract”") using a set of

inference rules. We enumerated important potential advantages over random sampling for a large
class of applications.

Chapter 2 then demonstrated performance of our implementation. We showed our quadruple
estimates for a variety of queries on our two test databases, a merchant shipping one and a medical
one. Answer accuracy varied a good deal with the statistic, the query set, and the attribute of that

T S E AL
KA AL
’

set, but many of our answers were quite reasonable.

Chapters 3 and 4 then went into the details of how the system works. Chapter 3 covered the
rules, claborating on the rule taxonomy given in chapter 1. We explained what statistics we answer

ok
&
"
oo

questions about, and defined the "quadruple algebra” needed to generalize arithmetic for our
system. We eclaborated the different situations in which rules apply, the "computational”
dimension, and then the different methods by which rules can be derived and justified. Chapter 4
then went on to explain the database abstract, covering its format, loading, and updating.

gt Chapter 5 and 6 addressed our particular implementation of these ideas. Chapter 5 covered a
f‘ few specific decisions we made in order to get a working demonstration system. Chapter 6 then
’ analyzed performance for a set of randomly chosen queries to our system, broken down into
25" categories by statistic queried, query form, attribute form, and kind of databasc abstract. Using
B appropriate metrics we found that our system had as good or better accuracy for queries as
E extrapolation from a random sample, while at the same time having the potential for large savings
,7 " in paging time. The databasc chosen for these evaluation experiments was a different one from the
- database on which the system was developed, thus demonstrating a degree of portability.

‘ .

% Chapter 7 then mentioned some ways our system conld be improved, and some applications of
3{“, it to some different problems.
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?':':-‘ Statistics is a new domain for rule-based cxpert systems, and much remains to be explored.
"’ The success of our interdisciplinary intcgration of rescarch in databases, statistics, and artificial
o o5 intelligence suggests that productive work .in this area will continue to be interdisciplinary, and will -
‘ probably involve information theory and operations research as well. We belicve that the '
-;'; availability of rigorous evaluation methods for our domain is very important, channcling the X
£ direction of research in the best directions and decreasing unsupported speculation. :
3 There are interesting parallels between our domain and that of symbolic algebra [Tobey 71). ]
4
: Both use a diverse class of of methods to attack continuous-function mathematics. Originally :4
4 emphasizing heuristic search methods from artificial intelligence, symbolic algebra has become -
_— increasingly mathematical as new analysis methods have been found for important subproblems. It !
q.(; may be that the same thing will happen to our domain, as the mathematics is better understood. i
:33 ]
74‘ The idea of providing for the first time a comprehensive alternative to random sampling, for i
.}, estimating characteristics of a large data population at low cost, is very appealing. Random by
sampling is so important for such a variety of important problems that a real alternative with
; different advantages and disadvantages can be quite significant. Perhaps we can anticipate a future 3
@ in which both random samples and database-abstract are available for many large databases, and - ,j
g one can choose between them according to needs. The possibilities are exciting.
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% Appendix A
Definitions of the statistics used
b
) 4
:
i First: :
" e Letx,, S be a set of data values, denoted "xis". - y
& -3
‘j' e Lety;s be the x;s sorted in increasing order. o4
: e Let fis be the number of occurrences (frequency) of the corresponding clements of y.. -1
x 5
3 j Let "maxi" denote the maximum value of something over all i, and "Z." the sum of something -3
& over all i. Then: .
S o the SIZE of the setisn
3
% e the MAX ofthesetisyn
o the MIN of the setis y, -
o the MEAN of the set is Z.x./n
A . ”
e o the SIGMA (standard deviation) of the set is Zx? - [ZxJ* :
- o the MEDIAN of the setis x,(, . 1| v
3' o the SIZEUNIQUE (number of distinct items) is the number of distinct values in X N
& o the MODEFREQ of the st is max{(f)
- . . A
2 o the MODE of the set is Ymin(f, =MODEFREQ) -
; e the MODFFREQ?2 of the set is max [f,, where £+ MODEFREQ] -
1 o the LEASTFREQ of the set is min(f) .
’ o the MAXGAP of the setis max[y. , -y, where i#nand y, | #y] X
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2
o the MINGAP of the sct is mini[yi oY where i#n and Vit 1;f-*yi]
‘% o the MAXEVENDEY of the set is maxi[(xi-xl)/(xn-xl) - (i-1)/(n-1)]
- o the MINEVENDEYV of the set is mini[(xi-xl)/(x n"‘l) - (i-1)/(n-1)
::3 o the KEYS of the set are all attributes or groups of attributes taken together that '

Sy uniquely distinguish a tuple within this set (not including keys that logically follow from
other keys by appending arbitrary additional attributes to a known key)

T v
A
.-'. oty T Te -

-+
el -
a2l e

b )
Ll o h-
¥ .
e L
iy b3
2 ;
4 o
‘ i
>

. B

1 .
s y
ES) N
i "’ !

%, .
g :
, 4

AN f/ -,{’ AN e T L e e e e e e Ty T R P T A TR

o ot bl

......



) ibad '("" LA gind E_oudit " L O - - T ST LTNY . Y LY
merw > T e CNEIACR I b S B Rt A DR SAtPLS Y S LR W A A SAL i AL DA S AA SAS LA SRS SR RS R TN
.

b
l 139
4
s | . -
Appendix B 3
| Mapping the query language to SQL =
: :7;23
j Our set-oriented query language is very close in functionality to standard database query ‘
‘ languages. As an example, we show how to map it to the language SQL, alias SEQUEL
y [Chamberlin et al 76} R
‘l A uable is needed to decode the meaning of the names denoting first-order sets (see section
B 4.2.2), consisting of four entries: the name (SETNAME), what relation it refers to (RELATION), A
A what field (attribute) of that relation (FIELD), and a logical specification of what range of values o
; corresponds to the name (VALUES). The latter can have two forms: a list of possible values, or (for ;i;
: numeric values) an upper and lower bound.
R The query:
] "What is the STAT of the set SETNAME with respect to attribute ATTRIB?" .
3 translates into SQL as:
! select CODECSTATXATTRIB) b
. from RELATIONCSETNAME> s
where FIELDSSETNAME> in VALUESCSETNAMB> :
b for VALUES that is a list, or N
] select CODECSTATXATTRIB) S
> - from RELATIONCSETNAMBE>
< where VALUES-LOWBOUNDKSETNAMBED> <= FIELIXSETNAMBE>
! and FIELDSSETNAME> <= VALUES-HIBOUNDCSSETNAMBE> -
S for VALUES a range (e.g. "length > 500" becomes "FIELDSSETNAME> > 500"). Angular _
brackets <> dcnotc instantiating arguments that will be removed before execution. 3::
RELATIONSSETNAME> indicates the lookup of the RELATION for SETNAME, -
¥ VALUESCSETNAMED and FIELDCSETNAMED analogously; these represent fext strings inserted
. into the SQL code before it is interpreted. QODEKSTATY denotes the appropriate SQL name for 2
7 the statistic STAT; many statistics uscd in this work are not in SQL, but conceptually .they‘ne simple
- to add. s

)
;' -]
b
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Some cleverness can be used to code a list of values permissible for a set. Abstraction symbols
can be used to stand for sets of basic values, e.g. "tankers” can be defined to have values ALL SEA,
MIS, etc., and each of those can be defined by lists of actual database values for-uie ship type

B2y

34 attribute.

N

‘;:-: -

4 As for Boolean combinations of sets, these have to be composed on the above "where" clauses, R
e g
7 where [where-clause for SETNAME1] AND [where-clausc for SETNAME2] 3
'(':{ where [where-clause for SETNAME]] OR [where-clause for SETNAME2] !
f ,;.’ where NOT {where-clause for SETNAME] y
* .
P Joins can be represented as a nested clause as an additional AND term in the "where" clause; ’
: and need a special table coding what fields are common to any two relations, and these fields are ;
Y .
E}‘ used in the "where <fields> in" header for the nested clause. Alternatively, we can treat the join as a .
b X

relation itself. For instance,
“Give the mean of length of the American ships.” ‘
where length is a property of ship type, in a separate relation from nationality, could be represented

as:

select mean(length) "

from join of ships and shiptype on type ,
Lh where nationality in {us} ]
% ~
o N
X X
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Appendix C
Some rule examples

W«Y‘W_ .1 v -
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% R
5 We give here a few examples of rules, following our two taxonomies for the computational ¥
' (figure 1-3) and derivational (figure 1-4) dimensions, respectively.
% C.1. Examples for the computational dimension o
3 ‘et
N : ¢
1. intraquadruple rule: an estimate of the mean of a set for an attribute is the average of -

. the maximum and the minimum for that attribute. -
\ o
x 2, statistic-statistic rule: an upper bound on the median of a set is the maximum of the set. ._ _

3 @

K - 3. row (set) decomposition rules: W
3 . a. subset inheritance: an upper bound on the standard deviation of a subset is the c'-_
: standard deviation of the set times the square root of the ratio of the set size to the :
5 subset size. =i
i -
! b. set intersection: an estimate of the mean of the intersection of two sets is the
weighted average of their means, where the weighting is the reciprocal of their set b o

sizes. :.'7
¢. set union: a lower bound on the median of the union of two disjoint sets is the :’_
: smaller of the medians of the two sets. ")
; d. set complement: a lower bound on the mode frequency of the complement of a
3 set is the difference of the mode frequency of the item universe (the set of all i
: . items in the databasc) and the mode frequency of the set.
4. column (attributc) decomposition rules:
: a. unary 1-to-1 operations: an upper bound on the mean of the logarithm of an o
) attribute is the logarithm of the mean. gy
* ‘
e
b. other unary operations: the exact value for the maximum of the absclute value of .

an attribute is the larger of the absolute value of the maximum and the absolute -
- valuc of the minimum. o
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¢. binary operations: the cxact value for the mcan of the sum of corresponding
values for two attributes is the sum of the means on the two attributes.

d. vectorization: a lower bound on the number of distinct values of the vector of
corresponding valucs for two attributes is the larger of the number of distinct
values for each attribute.

¢. operations with constants: the exact value for the mode of K times an attribute is
K times the mode.

5. relation (join) decomposition rule: an upper bound on the size of the join of two
relations on an attribute is the size of one attribute times the mode frequency of the
other on the attribute.

6. unusual inheritance rules:

a. upwards inheritance: a lower bound on the maximum of a set is the maximum of
a subset.

b. lateral inheritance: an estimate of the mode of a set is the mode of some other
subset of a superset of the first set.

¢. diagonal inheritance: an estimate of the mean of a subset is the weighted
difference of the mean of a superset and the mean of a different subset of that
superset, where the weighting is the size of the superset and subsct respectively.

d. attribute-hierarchy inheritance: a lower bound on the number of distinct
combinations of certain attributes for a set is the number of distinct combinations
of only some of those attributes.

e. rule inheritance: any special rule that applies to finding an upper bound on the
maximum of a set also applies to finding an upper bound on the maximum of a
subset.

7. query rearrangement rule; any statistic on the union of a set with the intersection of that
same set with another set is just the statistic on the set.

8. the closed-world rule: if the policy followed was that a statistic on set S and attribute A
was only loaded into the abstract if it was estimable within K%, then the absence of that
statistic from the abstract means that the estimate now obtainable from rules is within
K%.
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C.2. Examples for the derivational dimension

2y
<o

- 1. basic mathematics rule: an upper bound on the size of the intersection of two sets is the
smaller of the sets.
;] - 2. probability and statistics rules:
h

a. definitions: the mode frequency of a set is an upper bound on the frequency of
any other item.

b. theorems: the standard error associated with the estimate of the mean of a subset
as the mean of the set is the standard deviation of the set times the square root of
the difference of the reciprocals of the subset size and the set size.

c. extrema of definitions z;md theorems:
%
N i. bounds on values: an upper bound on the standard deviation is the larger of
s the distances of the mean from the maximum and the mean from the

minimum.

ii. independence assumption: an estimate of the size of the intersection of two
sets is the product of tac two set sizes divided by the size of the universe (all
items of that given type).

jii. linearity assumption: a lower bound on the mean of the logarithm of values
is a times the logarithm of the minimum of the values plus (1-a) times the
logarithm of the maximum of the values, where a is the ratio of the distance
of the mean of the values from the minimum to the distance of the
maximum from the minimum.

iv. nonlinear optimization: an upper bound on the standard deviation of a set is
the geometric mean of the distancc of the mean from the maximum, and the
distance of the mean from the minimum.

v. entropy maximization: knowing the mean, maximum, and minimum of a
set, but in the absence of further information, the standard deviation can be
estimated by fitting to a truncated exponential distribution and computing

‘é that distribution’s standard deviation. (See footnote to section 3.4.1 for the i
B mathematical details.) :
§

3. databasc theory rules:

hay

a. functional dependencies: the mode frequency for values of an attribute which is
an extensional key for a set is 1.

.
S 2 b P

b. inference compromise:

., i. small samples and trackers: if sct A contains all of sct B plus one other item,
then the value of that item for some numeric attribute is thc mean of A
minus the ratio of the difference of the two means over the size of B,

-‘:._m;-
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intersection of set A with set B, within some universe, is the smaller of the
proportions of A and B within that universe.

|
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37 ii. exploiting uniqueness: if set A and sct B have the same median for some
1 > attribute, and that attributc is an cxtensional key, then the intersection of set
N A and set B has at least one member, the item with that median value for
- that attribute. "
N
3_3 : iii. Diophantine equations: if the values for some set attribute are all divisible
",,‘ by some number K, then the product of the set size and the mean for that
W attribute must also be divisible by K.

R 4. new rules from old:

*‘5_ . a. rule composition: an upper bound on the proportion of members of the

b. rule rearrangement: an upper bound on the size of a set is the product, for any
attribute, of the mode frequency and the number of distinct values.

c. theorem proving: an upper bound on the mode frequency of a set for an attribute
is one more than the difference of the size of the set and its number of distinct
values for the attribute.

d. analogies: a lower bound on the minimum of a set with respect to the difference
of corresponding values for two attributes is the difference between the minimum
for the first attribute and the maximum for the second. *

5. prototype rule: representing all sets as points in some dimensional space, the median of -

o a set is the weighted average of the medians of all other sets, where the weighting is the
~ reciprocal of the Euclidean distance of the point representing the set from the points
representing each of the others.

o e e e

.....

TR et .ob-.f‘v?; 80 e 1% By



[l

14§

Bibliography

3 [Amold74]  Barry C. Amold.
Schwarz, Regression, and Extreme Deviance. o
; The American Statistician 28(1):22-23, February, 1974,

[Barnett 81) Jeffrey A. Barnett.
Computational Methoods for a Maathematical Thepry of Evidence.
In Proceedings, pages 868-875. Seventh International Joint Conference on
Artificial Intelligence, Augusut, 1981.

-,

X Y
"'J‘/ .r,' .

]

5
'y,

[Batesetal 82] Doug Bates, Haran Boral, and David J. DeWitt,. .
A Framework for Research in Database Management for Statistical Analysis.
In Proceed:ngs, pages 69-78. ACM SIGMOD International Conference on
Management of Data, June, 1982,

i {Blum 82] Robert L. Blum. ]
Discovery, Confirmation, and Incorporation of Causal Relationships from a Large =

" Time-Oriented Clincial Data Base: The RX Project.

" Computers and Biomedical Research 15:164-187, 1982

[Brachman and Smith 80}
R. J. Brachman and Brian C, Sxmth,eds.
Special Issuc on Knowledge Representation.
SIGART:Newsletter (10), February, 1980. ; ey

[Brachman and Israel 81)
R. J. Brachman and D. J. Israel.
: KL-ONE Overview and Philosophy. <3
In W. A. Woods (editor), Research in Knowledge Represenation for Natural -
Language Understanding: Report No. 4785, pages 5-26. Bolt Beranek and
Newman, 1981. S

[Buchanan and Duda 82]
Bruce G. Buchanan and Richard O. Duda. : i
Principles of Rule-Based Expert Systems. ' ,
In M. Yovits (editor), Advances in Computers, . Academic Press, New York, 1982,

. [Carbonell 80]  Jaime G. Carbonell.
Default Reasoning and Inheritance Mechanisms on Type Hicrarchies. ' X
In Proceedings, pages 107-109. Workshop on Data Abstraction, Databases, and
s Conceptual Modelling, Pingree Park CO, June, 1980, ‘

17

> I BLE

o T

L RN



e el L - v et g i St LR IEAE St VAL AL “ab M e S RSP SRR A BN _ B '.'.'. AR S IR

o
2
had
. 146 )
A -
:;s ::lf
B [Chamberlin et al 76) "
o D. D. Chamberlin et al. it
- SEQUEL 2: A Unified Approach to Data Definition, Manipulation, and Control.
kx IBM Journal of Research 20(6).560-575, 1976. -]
% ‘]
4 [Cheeseman 83]) Peter Cheeseman.
% j A Method of Computing Generalized Bayesian Probability Values for Expert y
X1 Systems. ot
In Proceedings of the Eighth Meeting. International Joint Conference on Artificial
;;9: Intelligence, 1983. -
%) N
4 [Christodoulakis 81] 3
1 Stavros Christodoulakis. 5
| Estimating Selectivities in Data Bases.
Technical Report CSRG-136, University of Toronto, December, 1981.
o)
¥ [Cole and Morrison 82]
e A. J. Cole and R. Morrison.
X Triplex: A System for Interval Arithmetic.
Software -- Practice and Experience 12:341-350, 195 .
& [Cox 80} Lawrence H. Cox.
iy Suppression Methodology and Statistical Disclosure Control.
Ed Journal of the American Statistical Association 75(370):377-385, June, 1980.
13 . .
[Davis and King 76]
4, R. Davis and J. King.
¥ An Overview of Production Systems,
; In E. W. Elcock and D. Michie (editors), Machine Intelligence 8, pages 300-334.
_ Wiley, New York, 1976.
* [Denning82]  D. E. Denning.
p Cryptography and Data Security.
% Addison-Wesley, Reading, MA, 1982.
% [Denning83]  Dorothy E. Denning.
k) A Security Model for the Statistical Database Problem.
In Proceedings. Second LBL Workshop on Statistical Database Management,
{: ~ September, 1983.
)
# [Denning et al 79]
;i;k D. E. Denning, P, J. Denning, and M. D. Schwartz,
2 The Tracker: a Threat to Statistical Databasc Sccurity.
. ACM Transactions on Database Systems 4(1):76-96, March, 1979.
).2-
) [Fahmy and Proschan 81]
W Salwa Fahmy and Frank Proschan,

Bounds on Differeoces of Order Statistics.
The American Statistician 35(1):46-47, February, 1981.

* (L F o e 4 S N LT R T T T e T T T ey L e e s e e et TRt o, et L Tt tatet it
1‘4"’& N ' f‘.},‘-“pﬁ\. AL ACAE AR B A T . s . S
l‘

1 ) . R R et IR A SIS A O S, .. e Vet e
Lh l..:iﬁ‘l":ilml._ s ¥ ) “g:‘; iy Lt x . . P . PR e oL -, el

---------------------

B o Y W )
R Y 27
H 1 +




147

[Fernandez ct al 81)
Eduardo B. Fernandez, Rita C. Summers, and Christopher Wood.
Database Security and Integrity.
Addison-Wesley, Reading MA, 1981.

[Gill, Murray, and Wright 81)
Philip E. Gill, Walter Murray, and Margaret H. Wright.
Practical Optimization.
Academic Press, New York, 1981.

[Givone 70] Donald D. Givone.
Introduction to Switching Circuit Theory.
McGraw-Hill, New York, 1970.

[Graham, Yao, and Yao 80]
R. L. Graham, A. C. Yao, and F. F. Yao.
Information Bounds are Weak in the Shortest Distance Problem.
Journal of the Association for Computing Machinery 27(3):425-444, July, 1980.

[Haq 75] M. 1. Haq.
Insuring Individual’s Privacy from Statistical Data Base Users,
In Proceedings, pages 941-946. National Computer Conference, 1975.

[Hart 82) Peter E. Hart.
Directions for Al in the Eighties.
ACM SIGART Newsletter (19):11-16, January, 1982.

[Haugen68]  Edward B. Haugen.
Probabilistic Approaches to Design.
Wiley, New York, 1968.

[Kahneman and Tversky 82]
Daniel Kahneman and Amos Tversky.
On the Study of Statistical Intuitions,
Cognition 11:123-141, 1982,

[King 81] Jonathan J. King.
Query Optimization by Semantic Reasoning.

Technical Report STAN-CS-81-857, Stanford University Computer Science
Department, May, 1981.

[Kocnig and Paige 81)
S. Koenig and R. Paige.
A Transformational Framework for the Automatic Control of Derived Data.
In Proceedings of the 7th Meeling, pages 306-318. International Conference on

Very Large Data Bases, Cannes, France, 1981.

[Korn and Korn 68]
Granino A. Kom and Thercsa M. Korn.
Mathematical Handbook for Scientists and Engineers.
McGraw-Hill, New York, 1968, pages 332-345chapter 11.

----------
...................
........

DA - .
DRI T I SN A AR 5 T PR -

-.
. '.“. o 0 WA

Sl Mo ol ol il

¢

L

...............
- ~ PASEY



T Y

1.

250 &4

BT e At
s ‘B

HE

)

148 [

[Ku and Kullback 68]
H. H. Ku and S. Kuliback.
Interaction in Multidimensional Contingency Tables: An Information Theoretic-
Approach. -
Journal of Research of llle National Bureau of Standards -- Mathematical Sciences
72B(3):159-199, July-September, 1968.

mW.a.Y ¢

PURPII Y rpay

[Ku and Kullback 74)
Harry H. Ku and Solomon Kullback.,
Loglinear Models in Contingency Table Analysis.
The American Statistician 28(4):115-122, November, 1974,

[Lawler 64) Eugene L. Lawler.
An Approach to Multilevel Boolean Minimization.
Journal of the Association for Computing Machinery 11(3): 283-295, July, 1964.

[Leith 83) Philip Leith.
Hierarchically Structured Production Rules.
The Computer Journal 26(1):1-5, 1983.

[Lenat 82] Douglas B. Lenat.
The Nature of Heuristics.
Artificial Intelligence 19:189-249, 1982,

[Lenatetal 79] D. B. Lenat, F. Hayes-Roth, and P. Klahr.
Cognitive Economy. ' *
Working Paper HPP-79-15, Stanford University Heuristic Progtammmg Project,
June, 1979. -

[Lioyd’s 82) Lloyds Register.
Lloyd's Register of Shipping: Statistical Tables 1982.
London, U.K., 1982,

[McDermott, Newell, and Moore 78]
J. McDermnott, A. Newell, and J. Moore.
The Efficiency of Certain Production System Implementations.
In D. A. Waterman and F. Hayes-Roth (cditors), Pattern-Directed Inference
Systems, pages 155-176. Academic Press, New York, 1978.

[Michie 76} Donald Michie.
A Theory of Advice.
In E. W. Ekcock and D. Michie (editors), Machine Intelligence 8, pages 151-168.
Wiley, New York, 1976.

[Mitrinovic 64] D. S. Mitrinovic. :
Elementrary Inequalities. ;
P. Noordhoff, Groningen, The Netherlands, 1964, b

a4 LA 2 A S des 4
T A R




BT .~

434 P LA I

R

XN T

Tyt

..
Yot

Ll'g;"

LRHWNXN

........

149

[Morgenstcin 80] Jacob P. Morgenstein.

[Nickel 69)

[Nilsson 80)

[Rall 81]

[Rapopport 78}

[Rips 75)

Computer Based Management Information Systems Embodying Answer Accuracy
as a User Parameter.
PhD thesis, University of California at Berkeley, December, 1980.

Karl Nickel.

Triplex-Algol and Its Applications.

In E. Hansen (editor), Topics in Interval Analysis, pages 10-24. Clarendon Press,
Oxford, 1969.

Nils Nilsson.
Principles of Artificial Intelligence.
Tioga, Palo Alto, 1980.

L.B.Rall.

Interval Analysis: A Tool For Applied Mathematics.

Technical Report 2268, University of Wisconsin Mathematics Research Center,
1981.

Anatol Rapopport.

Rank-Size Relations.

In W. Kruskal and J. Tanur (editors), International Encyclopedia of Statistics,
pages 847-854. The Free Press, New York, 1978.

Lance J. Rips.
Inductive Judgments about Natural Categories.
Journal of Verbal Learning and Verbal Behavior 14:665-681, 1975.

[Rosch and Mervis 75]

[Rosch et al 76]

[Rowe 81}

{Rowe 82}

LR TR LR AR Tt TN L N e T AN L L L e e e T e e T

--------

Eleanor Rosch and Carolyn B. Mervis.
Family Resemblances: Studies in the Internal Structure of Categories.
Cognitive Psychology 7.573-605, 1975.

Eleanor Rosch, Carolyn B. Mervis, Wayne D. Gray, David M. Johnson, and
Penny Boyes-Braem.

Basic Objects in Natural Categories.

Cognitive Psychology 8:382-439, 1976.

Neil C. Rowe.

Rule-Based Statistical Calculations on a Database Abstract.

In Proceedings, pages 163-176. First LBL Workshop on Statistical Database
Management, Mcnlo Park CA, December, 1981,

Neil C. Rowe.

Inhcritance of Statistical Properties.

In Proceedings of the National Conference, pages 221-224. American Association
for Artificial Intelligence, Pittsburgh PA, August, 1982.

-

..'
..; o .-_\'. N

R IR I

*7
(_

.‘. N ‘ e

......

.......... i R
o Tag et A S T A A RN T
j e St e e e T g



" a h Uil Janc d
T AR TS LT TR R AL YA S I S N o R A A R A R R

M -I.-A_—‘;.‘

[Rowe 83a] Neil C. Rowe.
Top-down Statistical Estimation on a Database.
In Proceedings of the International Conference on Management of Data, pages
135-145. ACM-SIGMOD, May, 1983, :

i [Rowe 83b) Neil C. Rowe.

@ Diophantine Compromise of a Statistical Database.
Information Processing Letters , 1983.

t0 appear.

[Shore and Johnson 81) :
John E. Shore and Rodney W. Johnson.
Properties of Cross-Entropy Minimization.
IEEE Transactions on Information Theory IT-27(4):472-482, July, 1981.

et a s

[Shoshani82]  Arie Shoshani.
Statistical Databases: Characteristics, Problems, and Some Solutions.
In Proceedings of the 8th Meeting, pages 208-222. International Conference on
Very Large Data Bases, 1982.

{Smith and Smith 77]
J. M. Smith and D. C. P. Smith.
Database Abstractions: Aggregation and Generalization.
ACM Transactions on Database Systems 2(2):105-133, June, 1977.

* o A KA ] Y

T

[Teitelman 75) Warren Teitelman et al.
Interlisp Reference Manual .
Xerox Palo Alto Research Center, Palo Alto, CA, 1975.

[Tobey 71) Robert C. Tobey.
Symbolic Mathematical Computation -- Introduction and Overview.
In S. R. Petrick (editor), Proceedings of the Second Symposium, pages 1-15.
Symposium on Symbolic and Algebraic Manipulation, March, 1971.

5 [Tukey77]  John W.Tukey.

Y PRI

FrRN o

i Exploratory Data Analysis.
Addison-Wesley, Reading, Mass., 1977.
[Ullman 80} J. D. Ullman.
Principles of Database Sysiems.

Computer Science Press, Potomac MD, 1980.

{Uliman 81) Jeffrey D. Uliman.
A View of Directions in Relational Database Theory.
Technical Report STAN-CS-81-852, Department of Computer Scieoce, Stanford
University, May, 1981.

[vanMelle 80]  William vanMelle.
A Domain- Independent System That Aids in Constructing Consultation Programs.
Technical Report STAN-CS-80-820, Stanford University Computer Scicnce
Dcpartment, 1980.

L g

€ e TN Y YN T e T Ty~ e R o T N UL P R W N N
.'.4-\5\.-,‘-' Ll 4‘..\".. _\““h' B AR N RN '-.;,..n" et e e

o X d
PRIV IR 1 PSSR S W ‘{-'\ i
A - \. , '.".,b-_. i_ ‘ - -‘.\ ‘.- .\




r::.g'.' Lol TR S M i et A ol S Btttk TRt S A SRR Y S S O A A S i M A M v
e

' 151
AR
A
LSOk
e [Walker 80) Adrian Walker.
‘:3', On Retrieval From a Small Version of a Large Data Base.
o In Proceedings of the 6th Meeting, pages 47-54. International Conference on Very
-,-"'.‘ " Large Data Bases, 1980.
X3 [Wiederhold 77) Wiedethold, G.
ti7 ° Database Design.

1o McGraw-Hill, New York, 1977.
- [Yu and Chin 77]C. T. Yu and F. Y. Chin.

%3 A Stdy on the Protection of Statistical Databases.

3;;:? In Proceedings, pages 169-181. ACM SIGMOD International Conference on
b2 Management of Data, 1977.

Y

i [Zadeh 79) L. Zadeh.

a4 A Theory of Approximate Reasoning.
s ‘:\v In E. W. Elcock and D. Michie (editors), Machine Intelligence 9, pages 149-196.
\“q Wiley, New York, 1979.
Y -v:\
N

-

=3, ﬂ

i

Ty z

"ef‘;; ,

21

N

N

S

A

2%

by

o

“r';

kY.

'«;:f

g -"ij;‘-j.'-*}}\f ;-‘.'._".' .

T IR e

AT Ty

Eaa 2 g







