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ABSTRACT

A method is developed for calculating natural
frequencies of cracked rectangular plates and of cracked
cylindrical shells of rectangular planform. 1In either case
the crack is rectilinear of arbitrary length and of arbitrary
location. The analysis is based on finite Fourier transform
method of discontinuous functions in the form suggested
earlier by the author (Refs., 1,2,3,6,24). For the shell the
problem is described by Donnell's equations. For either case
the discontinuities of the displacement and of the slope
across the crack are the unknowns of the problem. The
unknown amplitudes of those discontinuities are determined by
satis- fying the boundary conditions at the crack's edge (2
for the plate and 4 for the shell). This requires
differentiation of Fourier series representing discontinuous
functions and is achieved by using generalized Green-Gauss
theorem. The square-root singularities of the bending moment
(and also of the normal and shear stresses for the shell) are
built into the solution. Ultimately the problem is reduced
to an infinite system of linear algebraic equations. The
method of reduction is applied to the characteristic
determinant of the problem and numerical values of the lowest
two frequencies are found, as examples, for (1) a simply
supported square plate with symmetrically located crack,

parallel to one edge for various d/a ratios (d-length of the

R n an SR 2D o B ol Bg S\



crack, a-length of the plate side);

(2) for a simply

. supported square plate with a crack of fixed length, parallel

. to one edge at varying distances from it; (3) for a simply

supported square plate with a diagonal crack of varying

= length; (4) for a simply supported cylindrical shell of a
square planform with a crack of varying length located at the

apex parallel to the straight boundary for various

g

radius/edge length ratios.
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I. INTRODUCTION

For the past two years, the author has carried out a
research program for the Department of the Navy that was
aimed at the analysis of natural vibration of cracked
rectangular plates and of cracked shallow cylindrical shells
of rectangular planform. The results of this investigation
have been reported elsewhere,(l], [2],[3], here more details
of derivation are added.

The report consists basically of two parts:- in Part 1
the cracked plate is analyzed while the cracked shell is
investigated in Part 2.

The studies of bending and vibration of finite cracked
plates are limited to few papers. Bending of a cracked
rectangular plate was first investigated by Keer and Sve in
[(4]. Their analysis was limited to such location of the
crack that allowed reduction of the problem to a dual series
equation. Hence the crack was confined to a position along
the symmetry axis. Analogous method was applied by Stahl and
Keer [5) for analysis of natural vibration and stability of
rectangular plate and was bounded by similar limitations as

encountered in [{4]. In [6] Solecki attempted to remove

existing restrictions by developing a method that would allow
to study rectangular plates with arbitrarily located crack.

He partially suceeded by developing a method based on the
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combination of finite Fourier transformation and of the
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generalized Green-Gauss theorem. A cracked rectangular plate
was discussed as one of the examples. Numerical data were

not however obtained partially because the singularity of the
curvature at the tips was not explicitly isolated. The only
other paper dealing with a similar topic was written by Ali
and Atwani [7] who used a version of Rayleigh's method to
study natural vibrations of rectangular plates with cutouts.

Numerous papers were devoted to analyses of vibrations
of thin shells of various geometries (see, for example, Dym
[8] and Kraus [9) for references). All reported studies
however were applied to homogeneous (uncracked) shells,
Apparently no investigation of vibration of cracked shells
was done so far. Considerable mathematical difficulties are
encountered when attempting to solve this problem formulated
by a coupled system of partial differential equations
describing functions with discontinuous derivatives.

Let us survey briefly, related studies on statics of
cracked cylindrical shells noting that almost all of the
analyses refer to infinite shells. The first attempt to
determine deflection, stresses and stress intensity factor of
a cracked shallow cylindrical shell is due to Folias [10] who
reduced Marguerre-Reissner differential equations describing
the problem to a system of dual integral equations. This in
turn can be transformed to a set of coupled singular integral

equations of the Cauchy type.

IR S
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:"& & This technique of reducing a system of partial dif-

” g ferential equations to a system of dual integral equations,
j A and subsequently to a system of singular equations, seerns to

”5 g be the favorite of most authors of papers on statics of

= cvacked shells.

>4 3‘ A similar type of shell to that discussed in [10], was

.? ; treated with similar mathematical devices by Copley and

Sanders in [l11). Erdogan and Kibler [12] also studied

'7 f shallow cylindrical shells using Marguerre-Reissner equations

and reducing them to a syst_em of singular integral equations.

w i Their solutions however is valid, unlike Folias's solution

:_é -’ '[10), also for relatively long cracks. Keer and Watts ([13]

'i - based their analysis of a complete cylindrical shell with a

" ! circumferential crack, on the equations of three-dimensional

‘ o theory of elasticity. Sanders [14] used his equations tEo

“ "j analyze an infinite cylindrical shell with a circumferential
N m through-crack.

A

0 Few solutions exist that are based on 10th order shallow

§ shell theories (Naghdi equations). These are also obtained

‘ v by reducing the differential equations to singular integral

"' equations via dual integral equations. Krenk [15] used this

‘ 3 theory (which takes into account transverse shear

; ‘ deformation) to analyze cylindrical shell with an axial

‘; i. crack. Most recently, Delale and Erdogan [16] also

TZ A investigated the effect of transverse shear on the behavior

e E of circumferentially cracked cylindrical shell.
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: ' In [17) Delale analyzed, among others, also an axially
_%} A or circumferentially cracked infinite cylindrical shell. An
s; i; original approach often applicable to quite general

N geometries, partially based on Sanders paper [18],

f '3 characterizes works of Simmonds and colleagues (see, for

i% - instance, (19], ([(20] and [21]). Finally, still another

M technique due to Lakshminararyana and Murthy [22] and [23] is
;ﬁ Zﬁ valid for short arbitarily located cracks in infinite shallow
:; ) shells. It is based on formulating the problem in elliptic
2 i coordinates. This allows the crack edges to become

;? >, coordinate lines (as a limit of an elliptic cutout). This
‘§3 gj procedure although elegant and useful in establishing close

i~

o . form expressions for local quantities would be too cumber-
a; some, even if applicable, to deal with global quantities,

§ i? because it would require manipulating infinite series of i
: B Mathieu functions.

o

- In the static case differential equations describing

g1

"

LAyl
LA S

A various shell theories are amenable, for certain geometries

and special crack's locations, to a system of dual integral

'; g equations. These are in turn transformed into singular ;
j . integral equations which are usually solved numerically.

' ;; When inertia terms are included in the differential equations

'ﬁ = and when in addition the crack's location and its relative
i? - length are arbitrary, the above procedure encounters :
a considerable difficulties or is even not applicable (in :
;; . particular for finite geometries). !
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In part 1 of the present report a method is demonstrated
for determining frequencies of steady-state vibration of a
rectanggular, simply supported, isotropic plate with an
arbitrarily located crack (Fig. l1l). It is based on
application of finite Fourier sine transformation in
conjunction with the generalized Gre~n-Gauss Theorem. This
method, as was shown in (6] and [24]), eliminates considerable
amount of tedious integration by parts.

After applying double finite Fourier transformation to
the differential equation governing the problem, and after
using the inversion theorem one obtains, as usual, a system
of integral equations with respect to the unknown
discontinuties of the deflection and of the slope across the
crack. It is known [25], [l1] that using as the unknowns
higher order derivatives one improves the convergence of the
resulting infinite series. Therefore using the condition
that the bending moment at the crack equals zero one can
replace the integral involving unknown discontinuity of the
deflection by the discontinuity of the curvature in the
direction normal to the crack. The unknown quantities are in
turn expanded into Fourier series. Since the curvature is
square-root singular at the tips therefore it is represented
as a sum of a regular part (expanded into Fourier series) and
of a singular part with known strengths of the singularities
multiplied by unknown coefficients determined from the

conditions of the problem. Finally, the unknown infinite
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sequences of Fourier coefficients are obtained by applying

the conditions that the bending moment and the shear force
across the crack are zero. Application of these conditions
requires differentation of Fourier series of discontinuous
functions. A novel approach is suggested in relation to
this operation. Determining Fourier coefficients of
derivatives constitutes in this case a major undertaking.
This effor is reduced to a fraction by applying again the
generalized Green-Gauss theorem. In Part 2 of the report
Donnell equations are used to describe vibration of
cylindrical shells. The same method as in Part 1 is applied
again here. 1Its main feature consists in expanding
displacement functions discontinuous inside the region of
interest into infinite series and then proceeding according
to the rules of integral transformations developed previously
for discontinuous functions (application of integration by
parts, Green-Gauss theorem, etc.). Differential equations
are transformed as the result of these operations, into
algebraic equations with respect to the transforms of the
unknown displacements. Application of the inversion theorgm
allows to determine formally the displacements that still
include at this stage certain integrals depending on unknown
quantities. Specifically, the unknown functions appearing in
the integrands are the quantities discontinuous across the

crack (discontinuities of the first kind),
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In addition, depending on the boundary conditions on the

shell's circumference, other unknown integrals may appear.

1B

These include certain unknown boundary quantities. The

,{l"’._l"

objective of the next step is evaluation of the unknown
functions in the integrands.

At this point it is very important to realize (1) which
i unknown functions are singular at the ends of their range of
definition, and (2) what are the strengths of singularities.

Sufficient experience and information was gathered by

‘LY 27 8 X -4 e b -4 A e SEERRS AF TS o E e SRR
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)

various researchers to answer these questions. It is
therefore possible to represent the unknown functions as the
sum of a reqular part in the form of infinite series with
unknown Fourier coefficients, and of a singular part of
known form multiplied by an unknown constant (the intensity
factor).

Subsequently available boundary conditions at the edge

of the crack are applied. At this stage particular care must

be exercised when differentiating infinite series N
representing functions with "inside" discontinuities: they

never can be differentiated term by term. The appropriate

formulae for differentiation are derived applying again i
generalized Green-Gauss theorem. Once all these mathematical, E
obstacles are overcome the final result is obtained in the 5
form of an infinite system of linear algebraic equations. 1In 3

the case of natural vibration the system is homogeneous and ;
depending on the unknown natural frequencies. Thus the g

:
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! characteristic equation is in the form of an infinite
determinant equated to zero. As usual, assuming that the
system is regular, one applies the method of reduction

- obtaining frequencies with any desired accuracy. Adaptation

of this procedure to higher order theory would not present

any major difficulties.
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II. Vibration of Cracked Rectangular Plates

1. Series Solution of the Differential Equation

The differential equation which governs the amplitude of

flexural vibration w(x,y) of the plate shown in Fig. 1 is

D V27%w-pw?w = q(x,y) (1)

with the boundary conditions of simple support around the
contour and the conditions of vanishing bending moment M, and
vanishing shear force Q, at the crack's edge where u is the
direction normal to the crack.

The solution of Eq. (1) is assumed in the form

©o ©o

=4 . .
wix,y) = 35-m£] nfl Won STNgX sing y (2)

In order of finding w one applies finite Fourier sine

mn
transformation to eq. (l1). As in [24] this is performed in

rconjunction with the generalized Green-Gauss theorem

H Foy dS = J Fn, dr + J Fa, of  (i=1,2,3) (3)
S

r
where T is the outer contour of the plate, [ - its inner
contour, n; and ﬁi are the components of unit vectors normal

to I and T respectively and where F is any tensor.




Application of this procedure and subsequent solution of

the resulting system of algebraic equations with respect to

Wnn Yields the following expression:

d

30 3%
"on = ) {-J Clay® + 8,%) "%%ﬂl' - (=) —331%244 A de
mn o
d %9 -
(mn)

+ l [amz + an)¢(mn) + (1-v) e ] a 5E-dc
a8 [ D e} o - a2

% Bn ) W 3 dr + D [Hg D“ \)) W] 3u dr + qmn}

r r
(4)
where AW and A(3w/du)are discontinuities across the crack of
the displacement and of normal slope respectively. Also: v
is the Poisson's ratio, Qmp-the transform of q(x,y), H, is

the bending moment,

O(mn) = STnay(sy + c cos y) sing (y; + c sin y) (5)
and

A"n = [(m)z + n2]2 - 92 (6)
where

= =W2b‘o
$=b/a, 0= T (7)

Since T' is the contour of the plate therefore the last two
integrals in (4) vanish for a simply supported plate. 1In

order of improving convergence the approach of Fletcher and

------
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Thorne [25] is applied, that is the unknown Aw is replaced by

the unknown discontinuity of the curvature in the direction

.
P e e e e e et
oy l"'!_L;J.'I'J..! o gt 4!L' ORI

normal to the crack: & 3%w/du?. This is achieved by

utilizing the condition that

2 2
add +v2Y -0 (8) l

Integrating the first integral in (4) by parts and using (8)

one obtains the following relations

d
3¢ 3%
I [(%2 + an) __g.':‘m - (]-\)) —3-‘#3%'2‘1] Aw dc
0
d 3 % 2
0
(9)

The unknown slope discontinuity is now expanded into Fourier

cosine series

AU, cos %E , ce(0,d) (10)

The unknown discontinuity of the curvature has square-root
singularities at the tips of the crack. It is therefore
represented as a sum of a the unknown regular function which
is expanded into Fourier sine series and of a singular

function with square-root singularities at the end of the
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interval ce (0,d) and adjusted in such a way that, in concert
! with the physical conditions of the problem, both Aw and

. AdW/3u  vanish at the ends.

O This leads to the following representation:
» 2 L] W .
" °w 2 kwc 3 k | 1 :
By A7 = L W sin + — I (- —+ )

= L = -‘

L%

W
& (

+

-2 ?

z
=1, Jd-c

|~

2
w/d k

3

B

(1) 1

Presently eqs. (10) and (11) are used in (4) which is in turn

3_ substituted into eq. (2) leading to a formal solution of the
»

problem which still includes unknown Fourier coefficients Uy

E 2. Boundary Conditions and the Characteristic Equations

In order to determine two infinite sets of unknown
. Fourier coefficients, two boundary conditions available at

the crack's edge are applied

&

2% +v 3w 0 at x=x, + c cosy, y=y, + Cc siny (12)
& u? TV acr 1 Rl

314 + (2-v) -E:!r = 0 at x=x, + ¢ cosy, y=y, + ¢ siny
X au auac 1 ’ 1

(13)
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RN It is seen that the series (2) must be differentiated and
.
l that this can not be done term-by-term because (2) represents
a function with discontinuous second and third derivatives.
As indicated in [l]) proceeding in traditional way will result
- in proper formulae being devised but at a cost of
= considerable amount of cumbersome manipulations. The
A procedure devised in (1], based on Green-Gauss theorem is

generalized here to include the use of straight line
N . discontinuity arbitrarily located within the plate's area.
Let

¢(lmn) = sinumx siany

¢(2mn) = COSo X siany

.
Lt

¢(3mn) = sinamx coany

¢(4mn) cosa X COSB Y (14)

N, | 3¥

n Assume that we want to obtain the expression for 3w/3u where,

as before, u is the direction normal to the crack.

Pal AW

; Let F = w ¢(2mn) be substituted into (3) for i = 1,

The following relation results

Y. S WY

P

LS
2 s a2 s

- JJ %-X- (W ¢(2mn))ds = J L ¢(2mn)uxdf" (]5)
& S .

where the integral along T vanished because of the assumed

VR 5T . 4 L

boundary conditions.
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Expanding the integral on the left hand side of eq. (15)

and taking into account that

H 3% $(2mn) = “% ®(lmn)
S

and that

J[ % ¢ = "o
S

one obtains finally

H g%— cosa x singy dxdy = o w . + J W ¢(2mn)"xdf
s r (16)

One can easily find now the formula for owfdx:

o 2 t df sinB
9x  ab nz'l I"(Sinsn”r Uy n’
r
+ gF r {am"‘mn + J w(cos%x sian)’)I-, ude‘ coso X sinB y
m=1 n=1 -
(17)
In a similar way, starting with the expression F = W¢R3mn)
one obtains from
a -
j[ 3y (w ¢(3mn)) ds = Iw ¢(3rlm) uy dar (18)
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E T {Bn Won t J w(sinamx coany)r u_ df sinumx coseny

Now using known expression for directional derivative

oW _ ow oW

3u - ax CosV tay siny (20)

yields the desired result.

The same procedure was used to obtain higher order
derivatives appearing in the boundary conditions (12) and
(13). Resulting system of equations still depends on the
local coordinate ¢ (along the crack). This dependence is
removed by multiplying the equations obtained from (12) and
(13) by cos (2nc/d) or sin (&nc/d) respectively (where 2 =
0,1,...2) and integrating the results with respect to
ce(o,d).

This yields an infinite system of linear algebraic equations

of the following form

L Wch.,+t I W c,,+ ; U, C.p. = = -
kep K OTKE T oy g Tk Coke T2 Tk Cake T 00 B0,
£ W c + I W ¢ + ¥ U ¢ =0, &=1,.. .

kel K 4KE T T3 Tk Sske T 20 Yk C6ke .
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where U = -2 1 U, and where
0 k=1 K

3
kg = o Wyss " Tamoe ["Zomok = 2k *27 E3po]
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*asc L0 Taong [Z10nk -~ T2k Evonl?
e8r ot Te X T, )(enZ
V =1 n=1 Snn Tmn "3mng 2mn 4mn2’ " "1mnk
3/2n
* % Etmn) * X300 Tanne * Xamn Tamne) C"Zomnk
3/2n
* = Ezmn)?
(22)
czkﬁ‘k—yﬁ {-¢a ;mT Egmp - @ ;nT E
v 55 m=1 4m02 ~4m0 5¢C =1 40n2 ~20n
- -] oo 1
+ I yF —
m=1 n=1 Amn [xlmn E2mn * x3mn E4mn) T3mn2
¥ (x2mn EZmn ¥ x4mn E4mn) T4mn2}
(23)
Ak L g
ke *gn @11 I Tanok Tamox * 211 I, Taonk Taone -
00 (- .] ]
+ .
mfl n£1 Amn [(XSmn T3mn2. + xGmn T4mn2) T3mnk
+ (X200 Tamne * *aon Tamag) Tamnk! + 7521380y
) ' ’ (24)
T e e e N L e o T i T e e e e i e e s e




I d K]
L'.'ﬂ!‘.'

b ua
.1“

*a
W SN

[0

where 502 is Kronecker's delta, and Ak =1 - %-6

0k
The coefficients C4kl’ Cskl+ Sekl are obtained from C1k1¢

Cokl and c3y; respectively by making the substitutions shown
in Table 1. The expressions for the terms appearing above
are given in the Appendix 1. The characteristic equation is
obtained by equating to zero the infinite characteristic
determinant of the system of linear algebraic equations (21).
In practice the method of reduction is applied and the

frequencies are determined from a finite characteristic

equation.

3. Examples 1l: A Plate with a Parallel Crack

As the first example consider a plate with a crack
parallel to one edge (see Ref. {l1] and Fig. 2). 1In the
present case eq. 21 can be simplified because the double
series appearing there (see Eqgs. 27:24) can be reduced to

single series to yield the following system:

oW (Cp, -trC)- ¥ 4 Cup=0 p=02,.
cer.3 " (Capk " Csp) 7 5 Yk P
WP -R)+ T UC =0 p=13,..=
kel,3 K KP O KTTPT T g g K TIRK

(25)
The dimensionless quantities appearing in eq. (25) are given

below:
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c]pk 375.m=§ , _Eﬂ%,__.[(1-\92m~ - fz]Zlm(e,e) p=1,3...5k=2,4...

a,_ a

+ (1-9)[24,(0,0) - Z, (2e,0)]) p=0,2,...;k = 2,4,...
N o

Capk ;-,4;'“}’3 LR [(-) - £212, (e,e) p=0,2,..5k = 1,3,...
. -8 ¢ m_ _— [cos ™¢ in MO

D7 e O F SR ¢ sin B ()

[O-v)?m* - £2]2, (e,e) P=0.2,.. (2)

a akm

.1
Pep = 5 ? -&m,_ {- (T-v)m? + 2(1-v)m2 (2 - m*)Z. (e,e)

pm=,3

+IF2 - (1-2)m*]Zy (e,e)} kop = 1,3,...

= 72 2
Rp = 2mp m=$,3 m—Z% [cos w C(vmme) + sin @ S(vmrg)J{ - (1-v)m?

+ 2(1-v)m2(f2 - m*) ZSm(e,e) + [f? - (l—vz)m"]Z3m(e.e)} p=1,3,...

/where ¢ = d/a, vy = a/b, and e = e,/b >
= n sin nuE; cos n
1 E1,82) = v ,,Z] W;%Tpﬁgl , i
- sin nwg, sin nme, s :;:
sz(EIoEz) nz] YZnZ +m T_r f :
(27)
Lo (E1,6) = y2 ¥ n? cos nmgy cos nme, .
" n=)] Y'nT Hmo)e - =
(€,,6,) = ¥ €0 amé, cos nm . |
..._.‘.. . ;"_‘ __(4. R e L. ..*‘..‘_.."'. .. ;“-._'-.. R -._-..'...'..‘:_-_‘-;,:.‘,-v_ -----------------------



KL

A

rg "L’fl.’

ER

g

#
-

x5 3

.

s -(.. 4_'.

RN
L

s IACMER NI Sl et te A | ndhh ARG ST Ay

- 23 -

The characteristic equation is obtained by equating to zero
the finite characteristic determinant of the system (25). 1In
practice method of reduction is used to obtain the natural
frequencies, that is the number of rows and columns is
limited to a certain finite number.

For a square plate, Y=1, and the functions (27) become:

i - vmZ-f] inh [w(1-£,-E,)vn%+F
Z, (£,,6,) = & (£5in [n(1-,+E,)/7-F] + sin
n'e1et2) = gF sinh nv/mZ-F

_ C sinh [n(1-£,4E, )T + sinh [n(1-E,-€, ) /AT
sinh nv/inZ+f

where C = {] for €1 2 &,

1 for £, < &

( cosh [n(1-[€,-€,|)M*=F - cosh [n(1-£,-£,)/MZF]
/MZ-F sinh w/mZ-f

sz(g 1 ’52 ) = 'g—f'

z.cosh_[n(1-]£,~E,]) MZ+F] + cosh [w(1-E,-E,)/M7FF) }
/mZ+f sinh w/mZ+f

{-vmr=F Cosh [n(1-]g,-2|)V”-F + cosh [w(1-£1-£,)/M*=F ]
sinh w/mZ-f

Z3n(E1.E2) = B

+ Jurrr cosh [n(1-]€,-8, |)/ATFF + cosh [m(1-£,-£,)/AFFF 1 |
sinh n/m7+f

(T cosh [n(1-1£;~821)/m%-F ] + = cosh [w(1-£,-£, )/mZ=F 1
2/m*-F sinh n/mZ-f

Zsm(EI )52) = ';—f'

- mcosh [n(1-]16,-E>|)/m*+F ] + w cosh [w(1-£,-E,)vm?*F ]
2/mZ+F sinh n/mZi+f

- 2 2; } (28)

1
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The system of algebraic equations (25) was also put in more

compact form (see [26]) by introducing the following

definitions:
"k fOr k=] '3 [
Ak = ;
Ak -for k=2,4,...
C - I c f k:] . =
4pk 'E!' Sp or O3D--" P-O,Z,...
-Cka for k=2,4,...; p=0,2,... )
ckp = { )
Pkp - %7 Rp for k=1,3,...; p=1,3,...
c]pk for k=2,4,...; p=1,3,...
(29)
Now the system of eqgs. (25) takes the form
Ta = -
ek =0 P=0,1,..= (30)
and the characteristic equation becomes ;ﬂ
3
detlckp' =0 k=1 ,2,.,@; p=0,1. .o (3]) i
bR
Characteristic equation (31l) was first solved for the crack ﬁ
'.I
located on the symmetry line y = b/2 = a/2 (see fig. 2). i,
o
This allowed for commparison with the existing results given ‘!
in [5]. Table 2 presents the smallest values of the ‘i
frequency factors f corresponding to symmetric-symmetric and ;f
symmetric-antisymmetric ("opened crack") vibrations and !
|
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compares them with values calculated in [5]. It should be
noted that the present results were obtained by considering a
20 X 20 matrix (in few cases a 30 X 30 matrix). For
"opened-crack" vibrations the results were not sufficiently
accurate for a crack extending almost to the edges.

When crack is not located on the symmetry line both
modes are coupled. The frequency factors f for 2 lowest
modes were calculated for d/a = 0.5 and for various relative
distances of the crack from the edge (0 < e;/a < 0.5).
Results are given in table 3 and represented graphically in
Fig. 3. 1It is interesting to note that the smallest value of
the frequency factor corresponding to the second mode is

obtained for a crack located approximately at e /a1=0.25.

4. Example 2: A Diagonally Cracked Square Plate

The system of equations (21) is first put in a more

convenient form (see [1})

- =0.1....® (32)
z Ak Ckp O ’ p oi]!
k=1 .
where
Ay W s Ay 2l kel2,e - (33)

.
a
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kol

kp = cl(Zk-])(D/Z) + CZ(Zk-])(p/Z)’ k=1 ,5,9,...', p=0,2,...

kp © CU(2k-1)(pr2) K3 TH0The05 pe0,2,.

ckp = C3(2k)(p/2) 9 k=2’3’ooo; p=0,2’.o-

“kp ™ Ca(2k-1)(20-1)/2 * C5(2k-1)(2p-1)72 * k15,9005 p=1.3,...

ckp = C4(2k-])(20-])/2 + k=3’7’]]’-.-; p=] ,3,---

ckp = cG(Zk)(ZD-])/Z 9 k=2,4,o-.; p=],3

Characteristic equation for the system (32) becomes
det | ckp ] =0 k=1,2,...o; 0=0,1,...m

The geometry of the plate and of the crack allows for modes
which are symmetric or antisymmetric with respect to the
diagonal.

For such modes the natural frequencies have been found
for various relative lengths of the crack: é = d/a. The
results are presented in Fig. 4. When the crack extends to
the corners the corresponding frequencies should equal these
of a right triangular, equilateral plate simply supported
along the legs and with the hypothenuse either free
(symmetric vibration of the cracked plate) or "sliding"
(antisymmetric vibration of the cracked plate).
Unfortunately these data are not available for this type of
supports of a triangular plate. The indirect verification of

the results is obtained by noting that the frequencies

...........
------------------
....................
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e of both modes seem to converge to the same value when & is

. . increasing to v2. It was not possible to determine the exact

!;3 value of this limit because the convergence of the series
Vi;jﬁ involved decreases when & approaches Y2, This pheonomenon is

- similar to the one noted in ref. [24].
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; ] III. Vibration of Cracked Cylindrical Shells
W
A
Ly
by b 1. Series solution of the differential equations
)

b w Consider a cracked shell shown in Fig. 5. It is assumed
* - for simplification that the deflections, normal displace-
' ;Z; ments, bending moments and shear stress vanish on the
S‘: A contour, Validity of Donnell Equations [8] is assumed:
o~
o *
T Ly 2, (v 2+ v+ 2. g R (2)
! . ) v 2 2
R var t gt (1 + K9 = g RY/C (3)
S T
. - where v is Poisson's ration, k2 is the thickness parameter,
‘. J: and C is the extensional rigidity
3 L
& Z o= @, C=Ev(-?) (4)
., :'} where R is the radius of curvature, h is the thickness of
'é‘ the shell and where the body forces q,, dys 9p also include
o inertia terms. The following Fourier tranforms of the
f « displacement components u, v, w are defined:

Y WS
A
)

»

s
4

- .‘;_.Q’
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. (1) '
i 8 Upn = J I u(E.n) ¢y’ dédn (5)
oo
A3
o ab (2)
NI - 6
2 Vo J J v(g.n) ¢,/ dedn (6)
- 00
SR ab
o w = [ [ wig.n) o83) dgan (7)
OB mn E+n) o
o 00
I
\,. ':}, where
26
b o) = cosar  sing
] m %n n" (8)
3 = (2)
Ve ban’ = SinqE  cosBn (9)
3>
. ¢(3) = sina & sinB_n (10)
Y m %m n
l,‘-'crf - - - .
,:‘5 5 oy, = mm/a, By = nn/b, a = a/R, b = b/R
X
:: G The system of differential equations is subjected to finite
A
‘-" - Fourier transformations with kernels (8), (9) and (10)
N 9
respectively.
}; - The double integrals thus obtained depend on the
4 f{-’
',r_: derivatives of u, v, w. These integrals must be, as usual,
' ﬁ integrated by parts in order to relate them to the transforms
:‘ .. (5)+4(7). 1In view of the discontinuities present this
3 1:{
f standard procedure is extremely tedious. The method used in

Part II of this report based on application of Green-Gauss theorem

I3

JI Fojds = J Fn, dr + I Fﬁi dat  (i=1,2,3)

)
> - ]
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is very helpful in considerably reducing the amount of
manipulations. Ultimately the following system of linear
algebraic equations in up., Vpas Wyn ic obtained, which
includes integrals involving unknown discontinuities of the

displacements and of the slope across the crack:

R? 1+v
I“m 7 By - f_'pwz)"mn * 7 By Von T Y Yo T A

T+y 1-v R?
7 %Bn Ypn t (= ay® + By - t P*WVon = By Wan = Bop

2 2y2 _R* =
= Vo Yun By Vo * [k (o,® + 8,%)% + 1 = &= 0w Iy = Cp
m,n = 1,2,...» (12)

The quantities Ay, Bp,, C,, aPPearing on the right hand

sides represent certain linear combinations (see Apendix 2

for details) of the integrals of the unknown discontinuities

of the displacements Au, Av, dw and of the normal slope A (3w/3u)
across the crack. The system of algebraic equations (12) is
solved with respect to Unns Ymns Wmpn @nd the results sub-

stituted into the inversion formulae:

_ 2 4 a0 [--]
uE,n) == £ u._sinBn+— I I u_ cosa sinB
ab n=1 ©ON " /M= op=y ™ m° n
(13.1)
v(E,n) = :g- ; Vo SinopE + -%- ; ; v sina £ cosB y
ab m=1 ab m=1 n=1 ™ m n
(13.2)
wig,n) =2 ¢ & Wan Sino € sing y (13.3)

ab m=1 n=1
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In order to determine the integrals of the unknown functions

the boundary conditions at the crack must be applied next.

2, Boundary Conditions and the Characteristic Equation

Four boundary conditions are available at the crack's

edge to determine four unknown discontinuities. These are:

= = = -0
Man = 0, Y 0, Opn = 00 Ocn (14)

where M, is the bending moment in the direction normal tc

the crack, V, is the reduced shear force at the edge, © and

nn
Oon are stress components normal and tangential to the crack
respectively. Using standard expressions for cylindrical
shells (see [8]) relating quantities (14) to the displace-

ments u, v, w and the formulae for directional derivatives

lw

+ A %ﬁ- (18)

9
=5‘§ an

9

o

3
an

one obtains from (14) the following conditions at the edge of

the crack:

2 2.y 9w 2 .2y O%w : Aw_
(‘sin a + v cosa) 'a—E'T"' (cos2a + v sin2qa) P 2(1-v) sina cosa 36 0
(16.1)
: 2.9 33 .2 7 9w
sina [1 + (1-v)cos2a] 3ET - Ccosa (1 + (1-v)sin%a] T

+ cosa [(1-2v)sin?a

3
(2-v)cos?a] §E¥5ﬁ-- sin [1-2v)cos?a

0 (16.2)

- - 2 33W
(2-v)sin2a) Eon?
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(%%-+ v%% + w)sin?a + (v ag a“ + w) cos?a - 2Gh (29-+ %%) sina cosa
(16.3)
- ( an ve— + W) sina cosa + (v——-+ %!-+ w) sina cosa
+ Gh (2, g%) (cos?a - sinZa) = 0
(16.4)

satisfy conditions (16). In order to derive proper

differentiation formulae Green-Gauss theorem (ll) is applied

again in the way shown in Part I. Consider for instance the

series (13.1) and the transform (5). 1In order to find 9u/3g

Green-Gauss theorem is applied to the expression u ¢3

mn

yielding

(3) (3) (3)

ou - mn o T

”?ﬁ;’%n ds--JJu —3F ds+]u¢mn ugdl‘
S S T (]7)
where T is the "contour" of the crack
Since ¢(3) qn¢(]) therefore the above becomes

mn,§

(3) - (3) - .=
JIaE mn ds"amumn"'JU¢ ung‘

S -
r (18)

The derivative of (13.1) must be of the following form:

u _ 4 (3)
aF ~-—- L Tt g.¢
3% ab m=1p=1 ™ M0

(19)

3 B
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i . where g, . are Fourier coefficients to be found. Substitution
l‘ .
% : of (19) into (18) yields the desired formula
S
e [
N = o (3)
ik Ymn % Y * J U bon e df
I! ol F (20)
KR! S : '
5§ i Similar approach was used to derive expressions for other
i \'4
W

derivatives appearing in egs. (16).

In order to derive conditional equations determining
these quantities, boundary conditions (16) are applied by
performing differentiation on eqs. 13 according to the rules
explained in the previous section., After lengthuy
manipulations this leads to an infinite system of linear

algebraic equations of the following form

) (Frag Uy + Py Vy + Py )+ T Fayg 2yt 0 220,1,...
I (g Vi * Feig Vi * Frig W)+ : Faig 23 = 0 2=1,...
i=1 s i=2

I Foia Vi * Froig Vit Frie M)+ 5 Fraqe 3700 ol
I Faaig Vi * Frane Y * Fisie ¥ )+ iEZ Fleie L4 =0 1.

(21)

Coefficients Fyjg, Fpie,... Figj are composed of double and

single series with complicated general terms, some involving

--------
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Fresnel integrals (due to the presence of the square roots in

el SR N -
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le

-l

the denominators of eqs. 31). Expressions leading to

> -4
-

!

evaluation of these coefficiencies are given in Appendix 3
for the case when the tangential inertia terms are neglected.
In order to obtain the frequencies of natural vibration of

B the cracked shell one should equate to zero the
characteristic determinant of the system (26).

> The quantities Aw, Au, and Av appearing under the

] integrais are not singular and can be therefore expanded into
E Fourier series. However, the fact that the bending moment
and the stress are square-root singular at the tips of the
crack makes these Fourier series very slowly convergent. To
. eliminate this difficulty the procedure adopted in Part I
will be generalized here. To this end the singular
quantities are chosen to be the primary unknows with

"built-in" singularities:

bl

c

o . C
~ I w 2 . ime 1 2
: ASE = S T MW, sin—jF= +—+ (22.1)
i a2 G4 10 4 g AT
© c C
u 2 . imc 4
A = £ 5 U, sin—4] + = + —— (22.2)
- an d o | d /c yd-c
(&) ,
. c C
= v 2 inc 5 6
A = £ 17 V., sin—p4+—= + —— (22.3)
E
.. where the unknown constants Cl,...,C6 are determined using

continuity conditions of the displacements at the tips of the

..........
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. crack and by applying integration by parts. Variable "c" is
s measured along the crack starting at one tip. Extensive but
o straightforward manipulations yield finally the following
AY
a expressions:
ey
:{ o Y. © W.

¢, = -L § .2 7 d
i wd =1 nd i=1,3
Y/
Z::l 3 =W s =Y
Ky C2 = ~—— I T - I, T

wd i=1 md i=1,3
: . - 1 3 (-1)', &g ¥z} e nh 3 K
- 3 i - I — (¢g- )‘_ z -
= RS I ™ =1 1% 23282 5 5
) wd i=1 Rrv =1 1% 2552 T8y 5
P (DY, 2y M (o3
=— I - d E o (g- - I

o S = v i T2t LT
: :
- TSy 2)_ , 3/2 i 2 ] 8 i

Cc = -— + =—d [z ( - - T ik
% 6 wa =1 Rrv 1 75T %2 T T L 5
X
' (23)
;:1
&
.. The only unknown function which is not singular is the slope
= discontinuity across the crack. It is represented by the

following series:

w 1

.1 2 o imc
% San = dlta l LSy (24)

----------

« e

.............




The condition that A (3w/3n)be zero at both tips leads to the

. following relationships:
N Z = -2 % Z. 25.1
“ ° i=2,4 1 (25.1)
X Z, = - » 1,

! i=3,5 ! (25.2)
‘;

The unknown functions Aw, A(3u/3n), A(3V/3n) appearing under

the integral signs in the quantities A,,, Byyr Cpy (Eas. 12)

. are replaced now by their representations (eq. 27.1%27.3,
! 23).

- the displacements are eliminated by using the conditions (14)

The discontinuities of the higher order derivatives of

referred to the local coordinate system Ocn along the crack
! (c,n being directions respectively tangential and normal to
3
. the crack). Thus to eliminate for instance AE)W/33N) we

would use the condition.

% 2w (2-v) _7_"3394' (26)
Ry e —_— = . -v) A
-3 an> ac“an
"L v

and then eliminate the dependence on "c" by integration Ly
i parts.

Presently all the quantities appearing on the right hand
E sides of eqs. 12 (and, after inversion, in egs. 13) depend

solely on four infinite sequences of Fourier coefficients:

3
i Ui' vi' Wi' and Zio
E; The frequencies have been calculated for the crack

positioned at the apex, parallel to the straight edge of a

...............
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¥

' shell with square planform for various d/a ratios and for

. three R/a ratios: R/a = 25, R/a = 2.5, and R/a = 1.0. (See:

(' Figs. 6, 7, 8).

ki The first case is equivalent to an almost flat plate and

- was considered for the purpose of compassion. In the second

- and the third cases the effect of the curvature is more &

i; evident. Since no other data are available for these last ¢ ;

T ases therefore the frequencies of the uncracked shell with i

3: identical geometry were evaluated first. For this end the

a characteristic equation for a shell with tangential inertia A

c effects neglected has been solved

) . )

i .

| | ’

| 6 B 2. 8 4 3
* (48, - 2~y + 8 - P'? B, = 0 (27) 3

! as well as the characteristic equation corresponding to the

" case when all inertial effects are included. 1t was found

E: that the decrease of the curvature increases the frequencies

- and that neglecting tangential inertia slightly overestimates

: the magnitudes of frequencies as shown in Table3.

é;
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Appendix 1

The following is the list of symbols appearing in equations (21) : (24):

- 4 _ 2 222 4 4
2n(a5cn a5c9 *+ag. $°m n" + . ¢m )

4 22 2 4 4 2
n(a]cn =2z ¢mMnT -3, ém” 4 CPRY

>
n

4 4
Xomn = 2gs ¢ mt + ag ¢2m2n2 +ag.n - a1092

2 2

2) ’ x7mn = ¢m"(aIOS¢ LI alﬂcnz)

><
L]

2 2
6mn = O (3)5.0°M" + 2,50 0

2.2 2 4 2

ann - 2a”(¢4m4 + 2v¢m n" + n - Q

><
1]

x]mn, x4mn’ X7mn are obtained from x3mn’ X2mn’ xﬁmn respectively by replacing

n by ¢m and 3. by ¢ and vice-versa

224
Ko = 2155 #°0° + aj; 0'mn’ + ayy ¢%mn’ - g n’(n'-af)

+ alBs omQ

] 44 22 2 4 2
Xjomn = omnlaggs #M° + a5y  0TMRT + 2yg N4 ay5007)

44 222 4
Xiamn = ¢m(agqs @0 + agg, $mNT + Age n” * dppc07)

4 2 2 a4 2
Xjan = #lapgcn" + 259 0200 + 22 (¢%n"-0%)]

x]lmn’ lemn’ x]Smn’ xl4mn are obtained from x9mn’ x10mn. x]3mn’ and
xlﬁmn respectively by replacing n by ¢m and ;. by ;¢ and vice-versa. 1

......



P
<11
§?3 = The symbols a,  and a;. are listed below where for abbreviation
' S = sin ¢, C Z Cos Y
. 2 _ 4 2
- ay = -(1-v)sc, age = (1-0)[(1-3v)c” - 2(1-2v)c® + 1-v]s
20152 i 4. -
- g, = 2(1-%)(2-v)sc®(1-2¢%), a4 = [-1 + (2-v)c”]s
o S S
o g, = (1-v)sc4, g, = -v(l-v)s3c2
- a9, = (1-v)[-3 + 2v + (5-3v)sc2 aq. = (1- 2)c4
- s * %8s v
N ags = 201-v)[1-(3-v)c? + (3-v)ct, a2y =1 -2(1-v)c? + 2(14v)ct
B
3% a = -Z(I-V)[l-(l—v)sz]sc, a = (1-\))szc2
e, ﬂ 10s n
), = (1-v)sc4, 3¢ = -t [54 - vszc2 + (l+v)c4]
A A14¢ = -s4c(s2-3c2), dge = (l+v)szc4 (1=4c2)
] 2146 = 2[-7 + 2v - 2(1+v)c2]s2c4
Y 2 4 64,2
§-_§ 176 = [-1 -v-2(1-5v)c® - (7+19v)c” + 4(1+v)c®]s
s I
a - dgs = [TI_\: + 2«':2 - 2vc4 + 4('I+\))c6]s2
-
24 39 = 2[1-(2+v)c2 + 2(1+v)c4]s4
.. - 2 4 6
» 3505 = [2(14+v)cC - 3(5+3v)c” + 8(1+v)c”]sc
5
Ay * 2[-1 v -(1-9v)c2 - (7+17v)c4 + 8(1+v)c6]sc
» a5y = [-5 + v+ 12¢% - 3(5+3v)c? + 8(1+v)cBlsc

%23s * [ETZ;X - 40+0)c? + 12(1s0)c? - B(14v)cB]sc

(A

.. 344 = (-7+v+8c2)sc4. Ay * 2[-2 + v - 2'(2+v)c2 + Bcalsc2
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[-1 + v+ 2(1-20)c? + 3(-3+u)c? +8]s

a265

275 = Iy + 6c® - 8cPls, ayg, = 2(6-v-ac?)s?]

2[-v + (7+3v)c2 - 8c4]52c

3295

The quantities ayc are obtained from corresponding quantities aNg by

replacing s by -c and ¢ by -s.

Also:
d
Tlmnk =2 I (cosamx siany)r sin 5%5 dc
0
d
T2mnk =2 J (sinumx coany)F sin 5%5 dc
0
d
_ . . kmc
T3mnk =2 J (Slnamx s1any)f cos —a—-dc
0
d
Tannk = 2 I (cosa,x COSB"y)F cos E%S-dc
o
d d
c vV, ¢
ok = j sin 30 sin K€ ge, ¢, = j sin M0 in XIC 4c
) 0
d d
Va C Vo C
tamnk = J cos -3%9- sin Egsdc, tamnk = J cos —5%9—- sin Eﬁs-dc
o 0

A1l these integrals have been represented by closed form expressions. Also:

= ] i
Lyonk® Z2mnk vi (t3mnk S1™1mn * timnkV€OSVipn)
3mn

1
* v% (t4mnk vaZmn * tZmnk COSVZmn)
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Where the upper sign applies to Z]mnk and where

imn = %% ¥ By Voamn = %1 " By

S
Y T Vamn = (o €05 ¥ + B, sin Y)d, var, = (08 ¥ - B sin y)d
)
LI Finally
1 _-‘:
‘ 5/2 ) )
52 % E1mn’ E3mn = '(]/v3mn ) {[S‘"vlmn - S"'(vlmn * v3mn)]
RS
yes ) . —
?t éi c( 3mn’ * [cosv]mn * cos(vlmn+ v3mn)] s( Y3mn
& t (1/v5/2) {{sinv - sin(v, +v, )] C(WN, )
Y - 4mn 2mn 2mn " " 4mn 4mn
¥

+ [cosvm + cos(vmn + "4mn)] S(Jv4mn)}

EZmn’ E4mn = (]/Vgéﬁ) [Si"vlmn -2 Si"(vlmn * v3mn)] c('Gan)

v -
~A

Ok

* [cosv]mn * 2'cos(vlmn+v3mn)] S("’3mn)

O

]
[y

N
4

£ (Wval?) [simvgy, = 2 sin(uyptve: )1 COAGT)

B
,% (- * [cosv2mn + 2 cos (Vme+v4mn)] S(';4mn)}

]
:5 . where the upper signs refer to E]mn and EZmn and where f
CEN x2 %2 :1
e L sin t _ ) cos t 4t "
s = gr | e oo gm [ SR
- Ei o 0 .
;; h‘! :.1
3 ..-- .:

" are Fresnel's integrals.
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X ! The right hand sides of eqs. (12), Part II are: "
) ;
“ . -
23 :
N Pz Py 3

1-v 1 - 1 -
o A =R [s J Au ¢ dc = ¢ Au ¢ dc]
g zv mn Z p (mn),¢ p (mn),n
1 1

9
- X
I Py Py
S - Rvc J Av ¢1 dc + Rs Av ¢] dc A
;‘n ;ﬂ [ (mn),c P (mn)an '
a0 1 1
)
R
,,4 b
‘ 2. P2 P2 , \
N 1-v 2 - .
- B =-R—[c J Au ¢ _dc - s Au ¢ - .
<! mn ¢ p (mn)c p (mn) ,n9¢ :

. 1 ]
‘q’, -
A P2 P2
: -Rvs J Av ¢2 _dc - Re I AV ¢2 dc
N - p (mn) ,c P (mn),n .
A 1 1 .
o -r .
Y :

] '\:

i P, P,

r - -
5 c = - K(al+gl) w6 dE + K2RP(1-v) w6 e
W p (mn),u P (mn) ,ucc

1

\ :1' X
ZES '

2:: "2 3 2,3 "2 w .3

' 2(,24g2 L) ¢ - A de

: * R oy ) I ®on ¢’(mn)dc F R J an ¢(mn).EE

= P d :

A A s Gl G s AN
)

+ (vsz+c2) J Av ¢ dc
e (mn)
P I p]
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> where P and P, denote the tips of the crack.
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Appendix_3: Symbols used in the series eq. (26)

In order to obtain the coefficients Fliz""’ F1612 the conditional

equations (26) are represented in the following form:

4 Z] Z]{[A]A2A3 * dmnA4]wr}m * [AIAZAB * dmnA4]w§m
m=1 n= '
2 2 . 2 3
- R[AlAZ * dmn(F'lS t Fe )J(w;n)mn

3 3
4
- R MA, (1-v)am8n (w,n)mn 3¢+ Ay [A7Umn ¥ A5an
4 4. (ssc)
mng
¥ ABUmn ¥ AGan]} din

+8(1v)sc I £ (8 [A A - d sSINl + o [AR.8

m=1 n=1] n

3 2 3 22
tdpnC ]wmn - R AJAo 8, (w,n)mn - R1:2(]-\’)A2"'rn3n

4 3 .3
+dpnd (W )onse + o8y [A7Unn * . AsVin
4 4 (ccc)
+ A8Umn + AGan} ok
) mn

o 1
+ 2(1-v)sc {2 B3 [%"m°3‘ R(N,n)gsc] (o),
+2 1 [-BW's3 - R (W )2 sc] (CC). - R (W )0 d §.,s¢)
n=1 nn sn’n ng sN 02
=0 20,1,
(A2-1)
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R y 2.3,-2.22..1 - .3 2 .2 ]
2 nfl {[an (yc“+6s )Nn - 2R[Bn(y-6)s c](w,n)n + R°F4 (w,nn)n} (SS)M
NI > w
N 1 7 2
A t4 § 5 {[81A2A3 * dmnBZNmn * I:BIAZA3 * dmnB3]wmn
S, e m=1 n=1
= 3
1'1: +d B (W )Y +d F.RE(W )‘+B[AU3+A03
@ mn 5 'n‘mn mn 3 snn’‘mn 17 mn 5 'mn
14 4 4 (css)
.t A% - by mnl
SR +AU +AYV ]} ———=
{‘ 8°mn 6 mn dmn
i ﬁ ) oo _ ] . - 2
+4 LI [BiAAg + dp, Byl ¢ [BAR; + d BN

m=1 n=1

4

“» X
)

F oLl S A
Y D

* R L-ByAAy + 4y BI00 D0+ R [-28,8,(1-v)q8,sc

% 4 2 2 , = 3 3
ﬁ o * dmﬂB5](w’")mn ¥ dmrl':3R (w,nn)mn * 8 [A7Umn ¥ ASan
MR

R (scs)

Y 4 4 mng

- - + A80mn + Aﬁvmn]} d

A -’3 mn

.

< oy 23,=232 ) = %..3 2

N 2 t2 T (Lapc>(vs™-8c) Wy + 2R [o (v+8)sc”IW )%

7y + R, ) 3(ss) . =0
MRS 3*"%.nn’m me
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4 m=1 n=) -ta v)(amC]F]+ BnClF1)SC]0mn +[ 7 %mPn (CZFI

!! - TP )(c2-52)30% + [-oF, (0 CaFy + BCAF, + CF

2" mn. S % 1'% 371 T Patahy 5F1)
& - 8 F (8 C.F v t, 4
-,
3 _
2 ] 2 2 24,1 2 2

[ogA3CsF kT + B “AgCeF Kk TWy - [BLA3CLF K
= - 24 .2 2 2. = 3
] + OlmA3c5F1k ] wmn +R Alk [qu5F1 + BnCGFll(wfm)mn
% 2 4
- + 2(1-v)R k L [“mCSFl + BnCGFl](N,n)mnSc
g

-

SV I S

“."I'
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1

LA

>
)

1 = 2 3 4
+ AZFI [A3wmn * AW - RA1(wsn)mn - 2(]'\’)R“men sc("‘,n)mn]
3 o3 4 4
* F] [A7 Dmn * A5vmn * ABumn + Aévmn]
= 3 (SSS)mnz

mn F2vmn} d

2 2 =3
+ (1-v)dmn (c-s%) sc U, +d —

- §%ﬂ.sc m§1 n§1 {[(1-v)(BnC1+amC])sc]Ugn * El%! (Bﬁcz—

- oo (-2 00, + [en(aCafy + BoCFy + Cofy)
+ an(8,03F) tayCyFy) 10y + L1-v)(8ICyoCo)se Iy,

2 1 2 2
+,[Bnk A3(c5+°'mcﬁ)]“mn * [Bnk A3(C5+°"mc6)]wmn

2 3 2 .2
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< . g 1-v _. 2 3
7 g 2(1-v) sin 2a mfl nE] {- —— sin 2a [D] Al vy dmn]ﬂmn
()
q + 1% cos2q [0,00% + [o T.F, - A; + D.F, - d_ cos2al?3
;‘:, 2 2= mn m1 1 5 731 mn *mn
Lo A 1oV o (100 + 1292 k22 (o2-g2) - 1 2
-7 sin2a (D00 + 5 Koo (ap-87) C-Aghon = Ay Wy
: : + 3 2 4 (Sss)mnl
X RA) (W, pdmn] - 2R 8, Ay (W )0y d
4Gh (- 1V 3 4 1v 2
2. + =& cos2o m£1 nE] {- 5= sin2a [0,]0° + 5% cos2a [Dy+5sd ]
A
.t 4 _eE s _1v 2 4
< 0mn * 0‘mBn[CZFl C2F1]vmn 7 sinZa [04 MRS dmn] v n
RPN '
B 2, .2 3 1 2 3
X +0-7) Kooy [Ag Wy + Ay Won = R Ay Gy Dy
A ccs)
NG . 4 ( mn
- (1-v)R o B sin2a(W ) ] —fp—
L ' “m®n sn’‘mn don
- - _ _ _ L
\ ) + %—'l cos2c [Uo2 cos2a - VozsinZa] U—T%)—lg-
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4 S 26h > 22 o2
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" m=1
S 26h L2l , g _
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S = sing C = Ccosa

Fy = s2+uc?

F] c2+\)s2

Fp = 1 - 2(1-v)s%c?
¥ =01+ (1-v)c?ls -
[1+ (1-v)s%2c R
[(2v-1)c? + (2-v)s%1s ij

3= [(1-2v)s2 + (v-2)c%1c

O =<
1} [[]

Fy= -s(?sz+§c2)
Fy= c(-vc2+3s?)

2

.2, =
Ay = Frop *+ FiBy

ol e
Ay = -as [oZ+ 82+(1-v)(oZcl+gis?)-2(1-v)82c?]
Ay = 8 clof+s2+(1-v) (o2c?+a2s?)-2(1-v)als?]

ams[-F1(1+c2)+F]c2]

>
»
n

b
"

4 -Bnc[-F](1+52)+F152]

C(1-v)(1-V2) 2, 2222
Ag = ? oo e +8,s7)

Ag = -(1-v) (1-v)e8 sc
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S - () (a-v%) 2. 2,02
2 A7 —T—lam(%+8n)sc
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. N A8 = - 1-v)(1-v %?'Bn(sz_cz
= 2025, 025
By = -op (o v+8,3)
= 5 .o (a2=. 2
' B] = Bn(BnY‘QmG)
£ - -
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Evaluation of terms appearing in Cak1® Ssk1, Cok1

Table 1

Quantity

X

len 2mn 3mn 4mn xSmn 6mn 7mn 8mn
Substitution | Xgoo | Xi2mn | *10mn | *11mn | *13mn Xi5mn | %y4mn X\ 6mn
Quantity Tame| Tamg | %5 | 3¢ | Tamoz | Taona | 211Tamok | 211T40nk
Substitution ) Typnel Tomng | “213¢ | 135 | ®Timos | "Trone] 214sTamok | 214cTa0nk

)




Table 2

Comparison of the Fundamental Frequency Factors with the Results
Obtained in [5].

Symmetric-Symmetric Symmetric-Antisymetric
d/a Ref. [5] Comments Ref. [5] Comments
N 1.988 1.988 4.999 4.998 Inaccurate
.2 1.955 1.956 4.983 4.982
.3 1.906 1.908 4.912 4.912
.4 1.849 1.852 4.721 4.724
.5 1.792 1.794 30 X 30 4.354 4.360
.6 1.738 1.742 30 X 30 3.846 3.848
.7 1.693 1.696 30 X 30 3.298 3.304
.8 1.660 1.662 30 X 30 2.807 2.814
.9 1.640 1.642 2.289 Inaccurate
1.0 1.635 1.634 1.634 Inaccurate
Ny s T A N T A N T T
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X Table 3

"a v Influence of the Relative Location (ei/a) of the Crack on the

2 Frequency Factors f for Lowest Two Modes (d/a = 0.5).

e /a 1 fa Comments

oy ¥ .01 .947 4.605 Inaccurate
fi N .05 .924 4.384
N

-~
o .10 .900 4.250
N .15 .877 4.179 A1 Results
Y .20 .856 4.154 From

.835 4.166 20 X 20 Matrix
.818 4.203
.804 4.253
.794 4.303
.787 4.338
.785 4.351
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Effect of curvature and of tangential inertia on the two lowest
frequencies of vibration of -an uncracked shell of square planform

-
a . Tangent. inertia not_included Tangential inertia included
R/a f f f f
1 2 1 2
N © 2.000 5.000 2.000 5.000
! 25 2.003 5.000 2.003 5.001
i 2.5 2.269 2.256
3.343 3.227 5.042
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