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ABSTRACT

A method is developed for calculating natural

frequencies of cracked rectangular plates and of cracked

cylindrical shells of rectangular planform. In either case

the crack is rectilinear of arbitrary length and of arbitrary

location. The analysis is based on finite Fourier transform

method of discontinuous functions in the form suggested

* .. ~ earlier by the author (Refs. 1,2,3,6,24). For the shell the

problem is described by Donnell's equations. For either case

the discontinuities of the displacement and of the slope

across the crack are the unknowns of the problem. The

unknown amplitudes of those discontinuities are determined by

satis- fying the boundary conditions at the crack's edge (2

for the plate and 4 for the shell). This requires

differentiation of Fourier series representing discontinuous

functions and is achieved by using generalized Green-Gauss

theorem. The square-root singularities of the bending moment

(and also of the normal and shear stresses for the shell) are

built into the solution. Ultimately the problem is reduced

to an infinite system of linear algebraic equations. The

method of reduction is applied to the characteristic

determinant of the problem and numerical values of the lowest

two frequencies are found, as examples, for (1) a simply

supported square plate with symmetrically located crack,

parallel to one edge for various d/a ratios (d-length of the
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crack, a-length of the plate side); (2) for a simply

supported square plate with a crack of fixed length, parallel

to one edge at varying distances from it; (3) for a simply

supported square plate with a diagonal crack of varying

length; (4) for a simply supported cylindrical shell of a

square planform with a crack of varying length located at the

2 :apex parallel to the straight boundary for various

radius/edge length ratios.
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I. INTRODUCTION

For the past two years, the author has carried out a

research program for the Department of the Navy that was

aimed at the analysis of natural vibration of cracked

.i .rectangular plates and of cracked shallow cylindrical shells

of rectangular planform. The results of this investigation

have been reported elsewhere,(l], [21,[3], here more details

of derivation are added.

The report consists basically of two parts:- in Part 1

the cracked plate is analyzed while the cracked shell is

investigated in Part 2.

* The studies of bending and vibration of finite cracked

plates are limited to few papers. Bending of a cracked

rectangular plate was first investigated by Keer and Sve in

[4. Their analysis was limited to such location of the

crack that allowed reduction of the problem to a dual series

equation. Hence the crack was confined to a position along

the symmetry axis. Analogous method was applied by Stahl and

Keer [5] for analysis of natural vibration and stability of

rectangular plate and was bounded by similar limitations as

encountered in (4]. In [61 Solecki attempted to remove

existing restrictions by developing a method that would allow

to study rectangular plates with arbitrarily located crack.

He partially suceeded by developing a method based on the

combination of finite Fourier transformation and of the

-Z -
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!.4 generalized Green-Gauss theorem. A cracked rectangular plate

was discussed as one of the examples. Numerical data were

not however obtained partially because the singularity of the

Ccurvature at the tips was not explicitly isolated. The onlyI other paper dealing with a similar topic was written by Ali

and Atwani [7] who used a version of Rayleigh's method to

study natural vibrations of rectangular plates with cutouts.

Numerous papers were devoted to analyses of vibrations

of thin shells of various geometries (see, for example, Dym

L, [8] and Kraus [91 for references). All reported studies

however were applied to homogeneous (uncracked) shells.

Apparently no investigation of vibration of cracked shells

was done so far. Considerable mathematical difficulties are

* encountered when attempting to solve this problem formulated

by a coupled system of partial differential equations

describing functions with discontinuous derivatives.

PLet us survey briefly, related studies on statics of

cracked cylindrical shells noting that almost all of the

analyses refer to infinite shells. The first attempt to

.A determine deflection, stresses and stress intensity factor of

9" a cracked shallow cylindrical shell is due to Folias (101 who

" reduced Marguerre-Reissner differential equations describing

the problem to a system of dual integral equations. This in

turn can be transformed to a set of coupled singular integral

equations of the Cauchy type.

& -,- , - . - " . • - . . . . . ..- .- . ., , , , .. , . '

% , % -- U,,.---, . % ° . . ,% - , , .% ,- .% .. " ,. . . . . , .• .



This technique of reducing a system of partial dif-

Iferential equations to a system of dual integral equations,
and subsequently to a system of singular equations, seen. to

ibe the favorite of most authors of papers on statics of

cracked shells.

A similar type of shell to that discussed in (10], was

treated with similar mathematical devices by Copley and

Sanders in [11]. Erdogan and Kibler [12] also studied

shallow cylindrical shells using Marguerre-Reissner equations

and reducing them to a system of singular integral equations.

i Their solutions however is valid, unlike Folias's solution

[101, also for relatively long cracks. Keer and Watts [13]

based their analysis of a complete cylindrical shell with a

circumferential crack, on the equations of three-dimensional

theory of elasticity. Sanders [141 used his equations to

analyze an infinite cylindrical shell with a circumferential

through-crack.

Few solutions exist that are based on 10th order shallow

shell theories (Naghdi equations). These are also obtained

by reducing the differential equations to singular integral

equations via dual integral equations. Krenk [15] used this

theory (which takes into account transverse shear

deformation) to analyze cylindrical shell with an axial

crack. Most recently, Delale and Erdogan (16] also

investigated the effect of transverse shear on the behavior

I of circumferentially cracked cylindrical shell.

.

I . . . .. * .. .- . . . . . , ' " . ... .. '--2,2"? i 5<'<''
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p In [17] Delale analyzed, among others, also an axially

or circumferentially cracked infinite cylindrical shell. An

original approach often applicable to quite general

geometries, partially based on Sanders paper [18],

characterizes works of Simmonds and colleagues (see, for

instance, (191, [201 and [21]). Finally, still another

- technique due to Lakshminararyana and Murthy [22] and [23] is

valid for short arbitarily located cracks in infinite shallow

shells. It is based on formulating the problem in elliptic

coordinates. This allows the crack edges to become

coordinate lines (as a limit of an elliptic cutout). This

procedure although elegant and useful in establishing close

p form expressions for local quantities would be too cumber-

some, even if applicable, to deal with global quantities,

because it would require manipulating infinite series of

Mathieu functions.

-. In the static case differential equations describing

various shell theories are amenable, for certain geometries

and special crack's locations, to a system of dual integral

equations. These are in turn transformed into singular

integral equations which are usually solved numerically.

#A dWhen inertia terms are included in the differential equations

and when in addition the crack's location and its relative

length are arbitrary, the above procedure encounters

considerable difficulties or is even not applicable (in

particular for finite geometries).

. . . • .. . ! • • , ". ". ° ° °. °. " "- "- - " . "-o . . .• .-



In part 1 of the present report a method is demonstrated

for determining frequencies of steady-state vibration of a

rectanqgular, simply supported, isotropic plate with an

-. arbitrarily located crack (Fig. 1). It is based on

* application of finite Fourier sine transformation in

conjunction with the generalized Grein-Gauss Theorem. This

method, as was shown in (6] and [24), eliminates considerable

amount of tedious integration by parts.

After applying double finite Fourier transformation to

the differential equation governing the problem, and after

using the inversion theorem one obtains, as usual, a system

* of integral equations with respect to the unknown

discontinuties of the deflection and of the slope across the

crack. It is known [251, [1) that using as the unknowns

higher order derivatives one improves the convergence of the

4 resulting infinite series. Therefore using the condition

that the bending moment at the crack equals zero one can

replace the integral involving unknown discontinuity of the

'S deflection by the discontinuity of the curvature in the

*direction normal to the crack. The unknown quantities are in

turn expanded into Fourier series. Since the curvature is

1< square-root singular at the tips therefore it is represented

as a sum of a regular part (expanded into Fourier series) and

of a singular part with known strengths of the singularities

* multiplied by unknown coefficients determined from the

- conditions of the problem. Finally, the unknown infinite
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sequences of Fourier coefficients are obtained by applying

the conditions that the bending moment and the shear force

across the crack are zero. Application of these conditions

requires differentation of Fourier series of discontinuous

functions. A novel approach is suggested in relation to

this operation. Determining Fourier coefficients of

derivatives constitutes in this case a major undertaking.

This effor is reduced to a fraction by applying again the

Ageneralized Green-Gauss theorem. In Part 2 of the report

Donnell equations are used to describe vibration of

cylindrical shells. The same method as in Part I is applied

again here. Its main feature consists in expanding

displacement functions discontinuous inside the region of

interest into infinite series and then proceeding according

to the rules of integral transformations developed previously

for discontinuous functions (application of integration by

parts, Green-Gauss theorem, etc.). Differential equations

4 are transformed as the result of these operations, into

algebraic equations with respect to the transforms of the

unknown displacements. Application of the inversion theorem

allows to determine formally the displacements that still

include at this stage certain integrals depending on unknown

quantities. Specifically, the unknown functions appearing in

the integrands are the quantities discontinuous across the

crack (discontinuities of the first kind).

4

I - '--.. '. . -. - . ." .-. " " • " : . ." • . . . ' - - , .2- -,-.. [- : '"" k .
' f - ,"' " " " " ',t.'' J_,'' _'.''. t ".'" " ' -; '. .'-: ' ,.: ! ,.'- * - : 

" : u - ' "
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In addition, depending on the boundary conditions on the

shell's circumference, other unknown integrals may appear.
These include certain unknown boundary quantities. The

.~ ~%objective of the next step is evaluation of the unknown

functions in the integrands.

At this point it is very important to realize (1) which

unknown functions are singular at the ends of their range of

definition, and (2) what are the strengths of singularities.

Sufficient experience and information was gathered by

various researchers to answer these questions. It is

therefore possible to represent the unknown functions as the

sum of a regular part in the form of infinite series with

a unknown Fourier coefficients, and of a singular part of

* known form multiplied by an unknown constant (the intensity

factor).

Subsequently available boundary conditions at the edge

of the crack are applied. At this stage particular care must

be exercised when differentiating infinite series

representing functions with "inside" discontinuities: they

never can be differentiated term by term. The appropriate

-. .*formulae for differentiation are derived applying again

generalized Green-Gauss theorem. once all these mathematical.

obstacles are overcome the final result is obtained in the

form of an infinite system of linear algebraic equations. in

the case of natural vibration the system is homogeneous and

depending on the unknown natural frequencies. Thus the

-6
V 5.
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q characteristic equation is in the form of an infinite

determinant equated to zero. As usual, assuming that the

'system is regular, one applies the method of reduction

obtaining frequencies with any desired accuracy. Adaptation

of this procedure to higher order theory would not present

any major difficulties.

L

*"°

p.
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i II. Vibration of Cracked Rectangular Plates

1. Series Solution of the Differential Equation

The differential equation which governs the amplitude of

flexural vibration w(x,y) of the plate shown in Fig. 1 is

D V2V2 w-pw2
w = q(x,y) (1)

with the boundary conditions of simple support around the

contour and the conditions of vanishing bending moment Mu and

vanishing shear force 0 u at the crack's edge where u is the

direction normal to the crack.

.. , The solution of Eq. (1) is assumed in the form

w(x,y)4. 4 * w
"=- - Wmnsinamx sinanY (2)

: 'm l n I

In order of finding wmn one applies finite Fourier sine

transformation to eq. (1). As in [24] this is performed in

:conjunction with the generalized Green-Gauss theorem

F, dS = Fni dr + f F~i dP (i=1,2,3) (3)
S

where r is the outer contour of the plate, P - its inner

contour, n i and ni are the components of unit vectors normal

!,, ]to r and P respectively and where F is any tensor.

"V0 %. ....
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Application of this procedure and subsequent solution of

the resulting system of algebraic equations with respect to

Wmn yields the following expression:

b- -- d [(%2 + a 2) ) - (1-v) (mnA
a nw n0u c

' :d a 2
+ (daM2 + 82)(n) + (-v) mn) A dc

I n *(n)+ C2  au
0

+ (aM 2 + 2) f (u d + [H2 - D(1-,) aW- amn)

r r

.5 where AW and A(aw/au)are discontinuities across the crack of

r the displacement and of normal slope respectively. Also: v

'ass is the Poisson's ratio, qmn-the transform of q(x,y), H2 is:n.:' 
2 sthe bending moment,

"(mn) = sinam(sl + c cos ,) sinBn(y 1 + c sin ,) (5)

and

SM= [() 2 +n 2 ]  2  (6)

,. where

,.-b/a, S. (7)

Since r is the contour of the plate therefore the last two

integrals in (4) vanish for a simply supported plate. In

order of improving convergence the approach of Fletcher and
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Thorne [251 is applied, that is the unknown Aw is replaced by

the unknown discontinuity of the curvature in the direction

normal to the crack: A 32w/ u2. This is achieved by

utilizing the condition that

A a w + V 2 w =0 (8)
'I !

Integrating the first integral in (4) by parts and using (8)

one obtains the following relations

d
- ( a*(mn) (1 - Ymn)3 Ad

[(((X2 + Onn2) au 30 u c dc d

* -, 0

I JfJ[(,,M2+2) _(r) 1V) m dc dc) A- dc

a, 0

(9)
The unknown slope discontinuity is now expanded into Fourier

" *cosine series

_=2 y Xkirc2 w k kUk cos ce(O,d) (10)
k=0,2

The unknown discontinuity of the curvature has square-root

singularities at the tips of the crack. It is therefore

represented as a sum of a the unknown regular function which

"" is expanded into Fourier sine series and of a singular

function with square-root singularities at the end of the

.-
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U

interval cc (O,d) and adjusted in such a way that, in concert

with the physical conditions of the problem, both AW and

AW/au vanish at the ends.

:. ':This leads to the following representation:

k2W 2s + 3 Wk

-.A Ei-- -'r

ITVU k=1k Wk c-/dE-

(11)

Presently eqs. (10) and (11) are used in (4) which is in turn

substituted into eq. (2) leading to a formal solution of the

problem which still includes unknown Fourier coefficients Uk

Sand Wk.

2. Boundary Conditions and the Characteristic Equations

N

In order to determine two infinite sets of unknown
.4

Fourier coefficients, two boundary conditions available at

the crack's edge are applied

a2 W + v = - 0 at x=xI + c cos*, y=yl + c sin* (12)

a + (2-v) w =Oat x=x I + c cos*, y=yl + c sinp

' (13)

,%J
o9"

.~~~~~~~~~~~~~~~-J-..-.- -.- v --- ,-"-".-..-" - .-- "-- ------- - .", ,"- -" ,"- -"-" -"" i.20.-. N' , 2'"
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It is seen that the series (2) must be differentiated and

that this can not be done term-by-term because (2) represents

* a function with discontinuous second and third derivatives.

As indicated in [1] proceeding in traditional way will result

in proper formulae being devised but at a cost of

considerable amount of cumbersome manipulations. The

procedure devised in [1], based on Green-Gauss theorem is

generalized here to include the use of straight line

' discontinuity arbitrarily located within the plate's area.

Let

O (Imn) - SifmX sina nY

.(3mn) = Csx sinany

' (4rn) = CSfmX c°S8nY (14)

= COn) a~x COSBny

Assume that we want to obtain the expression for aw/3u where,

as before, u is the direction normal to the crack.

Let F w 2mn) be substituted into (3) for i = 1.

The following relation results

laJ- (w *(2mn))dS = Jw (2mn)Uxd(
S r

where the integral along r vanished because of the assumed

boundary conditions.

J

%"

, • ,. ,- -. .-. ,+ % % " " -- - , . - ,- - - - - - . , . .. .' ' - - - ' " -. ". . - -. -, .- ..
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Expanding the integral on the left hand side of eq. (15)

and taking into account that

.%

if 2¢ (2mn) m " (lmn)

and that
-J

~ f w '0'(mn) dS m

one obtains finally

:w- cOSrmX sinBnY dxdy= mn + fw (2mn)uxdF
s F (16)

One can easily find now the formula for 3w/.3x:

:.- * .

on e 2 a i s i sinnY

"I
[!'I  -Go C mm +  w(cos~mx "i~y Udf cosamx sin~n

m=l nul

* J(17)

' "?'in a similar way, starting with the expression F--' w (3mn)

i - one obtains from

ffS- (w ¢(3Un)) d f w '(3mn) Uydr(8

-" s
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the following formula

-. +w _ 2 E J ww(sinamX) u dF sinacmx

'<. + 4 M! E B We wlstnamx coS 6ny) uY dr sinox coOnY
S- n=1 +

-: r (19)

4,

Now using known expression for directional derivative

U 3w = 3w 3
u x cos + !- sini (20)

yields the desired result.

The same procedure was used to obtain higher order

derivatives appearing in the boundary conditions (12) and

"* (13). Resulting system of equations still depends on the

local coordinate c (along the crack). This dependence is

removed by multiplying the equations obtained from (12) and
4'. 1. (13) by Cos (t7rc/d) or sin (R9-rc/d) respectively (where t =

*i""."".0,1,...- ) and integrating the results with respect to

c (O,d).

4 This yields an infinite system of linear algebraic equations

of the following form
E W k C]k + E W k RI+ E0 Uk =~k O, Z=09Ik-i kn k=1 ,3 k= C3kt"

W C + £ Wk C + U = 0, o=

k C4kt k C5k9 C6k O "'
ki k-,3 1=0

(21)

*., ., : .4 .. ,, . . . . ¢ , . . . . .. . . . . . . . . . . . , , . . . , , . . . .. . . . .
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where U =-2 E U k and where
0 k=l

.. :Cki v a5s m 4 *ToL (1I' 2 Ok -k 3w EO

+ a5  E nT 4 ~ [lrflk - 3 v'i E10 J
n=

+ E~L E )((X T

2k bun 3m 3mnt + x4m Tmt)(-wZ~mnk

k 3mn

* (22)

ck -E -*5  m T~o E~m0 - a5  n T4n E20mi= n=

+ l iaXmn E2mn + x 3mn E m T 3mntm=l nl mnn

+ (X 2  E 2mn + X4mn E~~ 4m T ~ 
. -

(23)

c k{ ao l T
C3ki -a 1 1 ME T4mfl ~+ 1  n£ T4Onk 40nt

+ E E ((X Tn + X~ T,) Tmn
111 n=1 mn n mnUt 3n

or ~+ (X 7mn T mnt + x 8m ' T 4mnkl + ff~al16 0,

(24)



where 6 is Kronecker's delta, and Ak = 1- 6
k 2 Ok

The coefficients C4kl, C5kl, c6kl are obtained from Clkl,

C2k I and C3k1 respectively by making the substitutions shown

in Table 1. The expressions for the terms appearing above

are given in the Appendix 1. The characteristic equation is

obtained by equating to zero the infinite characteristic

determinant of the system of linear algebraic equations (21).

.,. In practice the method of reduction is applied and the

* frequencies are determined from a finite characteristic

equation.a

3. Examples 1: A Plate with a Parallel Crack

.1 As the first example consider a plate with a crack

parallel to one edge (see Ref. [11 and Fig. 2). In the

present case eq. 21 can be simplified because the double

series appearing there (see Eqs. 27*24) can be reduced to%
single series to yield the following system:

k-1,3 k (C4pk ." C5p Uk C2kp = 0 p 0,29.

,Wk (Pkp" Rp) + Uk 1pk
knI,3 k=24 0 p4= (25)

The dimensionless quantities appearing in eq. (25) are given

below:



ap akm 
2pk iy= m~ 3' 2 !mz7 (1vmI- ]M(e~e) p =1,3...;k =2,4...

a a

C2kp = ' 2! 1v)'-f 2 ]Zm(e~e)

+ . (I-)Z~,(0,0) - Z31 (2e.0)Ji p =0929 ... ;k =2,4, ...
C4pk 1' T (-)M f] e p = ,2*..;k =1939,...M1=1,3 (1v 2  fZIm~ee

Sp a.& .!.m' C(/viiiW-) + sin !!. f viij).-1.3 M2 rM~j 22

[(_V)2.i4 f2]Z, (e,e)p=0,.. 
()

1 a' 8PM km (-VM~kp 'a azkp nil m 1~j~ + 2(1-v)m2(fz -M4)Z 5(e,e)

+ f 2 
- 13 2 mz ( e) k ,p = 1 ,3 9,...

=p l .ig! (COS M'r C GmSTr + sin T S(v5Wo*)Jf (1.V)M 2

8P1m1 3 m2vli

+ 2(1-V)M2 (f2 -M4) Z 5,(e,e) + [f2 -(l-V
2 )M4]Z (e,e)) p =1,3,...

/where * d/a, y =a/b, and e e e/b

z2 ~~, 2  n- s I!inlrCo nirg2

s n in ~& sin nr

(27)
y2 f nE COS lwgjL COS nwE2,

n=1 (yznz +m)Z -f

*. ,Q1I4'2) I COS nf&-pO ~E

Ll (ynz+ -qn j
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The characteristic equation is obtained by equating to zero

-.- the finite characteristic determinant of the system (25). In

practice method of reduction is used to obtain the natural

frequencies, that is the number of rows and columns is

limited to a certain finite number.

For a square plate, Y=l, and the functions (27) become:

Z ft1,EO f C sin [ir(1- 2+E)v'2f + sinh [i(1-I-E2 )A+f
sinh .r"i-_ f

- C sinh [ir(1-t,+Ej)A7Tf] + sinh [9r(1-{,-{,). f
£-.*.T s inh irtAX2"f

where C = 2fr E, >
1 for E, < E2m<

Z~(~j2)= r cosh (ir(1I i~I)~ -cas [i(1-I-)iC
2m: 8f, '- s i nh r,/ '7-f

:-cosh [yr(1-1kl-E f),i-zf + cosh [wr(1-E-,),,--f}
/m2+ s in h iT-7-+-

'-=;"'".-+7- cash [ r(-I.- -E2 ) -f + cash [hr(I--)

. -a

+Zsm('+f cas [. r(1osh[I1-{,- l)'+ + cas [i osh [ 1 (1-)/ -{+ ) ]
".- h /m'fsinh '-

- /M( =r cosh [ah-[-E(1.) 2M ] + Cosh rO1-Ei- h ]f
2 '+s inh ,/'m " r

v cash [r01&1-E2I)/M+f I + ir csh [ir(-Ej- 2)ii Tf'
2/m +f sinh irf/m +f

2f
-- } (28 )

.6.

-.. .-. ..
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The system of algebraic equations (25) was also put in more

qe compact form (see 1261) by introducing the following

definitions:

W k for k=1,3,...

Ak-
Ak for k=2,4,...

kp

C4pk - for k=1,3,...; p=0,2,...

UC' p for k=2,4,...; p=0,2,...
Cp
k Pkp 1 R for k1l,3,...- p=1,3,...

Pkp-.R P

Clpk for k=2,4,...; p=1,3,...

(29)

Sp Now the system of eqs. (25) takes the form

1 Ak Cp "
iAk P=091,9-0 (30)
ki p

and the characteristic equation becomes

.,

detCkpJ = 0 k=1,2,..-; pr0,1..C (31)

-. Characteristic equation (31) was first solved for the crack

located on the symmetry line y = b/2 = a/2 (see fig. 2).

dThis'allowed for commparison with the existing results given

.- in [5]. Table 2 presents the smallest values of the

frequency factors f corresponding to symmetric-symmetric and

symmetric-antisymmetric ("opened crack") vibrations and

i

-

,
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compares them with values calculated in [5]. It should be

P noted that the present results were obtained by considering a

q 20 X 20 matrix (in few cases a 30 X 30 matrix). For

"opened-crack" vibrations the results were not sufficiently

accurate for a crack extending almost to the edges.

When crack is not located on the symmetry line both

modes are coupled. The frequency factors f for 2 lowest

modes were calculated for d/a - 0.5 and for various relative

distances of the crack from the edge (0 < el/a < 0.5).

Results are given in table 3 and represented graphically in

aFig. 3. It is interesting to note that the smallest value of

the frequency factor corresponding to the second mode is

obtained for a crack located approximately at e /al=0.25.

4. Example 2: A Diagonally Cracked Square Plate

The system of equations (21) is first put in a more

4 ~convenient form (see [1))(2

E A k C kp =0 , P=0, (32)
W=

where

4 - 2 k- Wk , 2k U~ k1,(33)
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and

Ckp = c1( 2k1)(t)/2) + C2 (2k-l)(p 2 ),  kW,5,9,...; p=O2,...

% Ckp = C1(2k-1)(/2) ' k=3,7,11,...; p=O,2,...

Ckp = c3(2k)(p/2) , k=2,3,...; p=0,2,...

-.- "- kp c4(2k-1)(2p-1)12 + c 5(2k-1)(2p_])/2 ,k=1,5,9,...; P=1,3,.

kp = C4(2k-1)(20.1)/2 + k=3,7,1 I P=193,...

Ckp = c6(2k)(2p-1)12 k2,4,...; p=1,3

Characteristic equation for the system (32) becomes

det I = 0 k=1,2,...-; n=O,1,...o:"i C~~kp,-.•, ..

The geometry of the plate and of the crack allows for modes

Iwhich are symmetric or antisymmetric with respect to the

diagonal.

For such modes the natural frequencies have been found

for various relative lengths of the crack: = d/a. The

results are presented in Fig. 4. When the crack extends to

. the corners the corresponding frequencies should equal these

of a right triangular, equilateral plate simply supported

along the legs and with the hypothenuse either free

: '(symmetric vibration of the cracked plate) or "sliding"

.;* (antisymmetric vibration of the cracked plate).

*l',:, * Unfortunately these data are not available for this type of

supports of a triangular plate. The indirect verification of

the results is obtained by noting that the frequencies

.

k . T' : . - - . . . ., P' ' " ' , : ,
,

" " : ' " ' .. : : , " , , . . , 1 . . , " ' , -
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of both modes seem to converge to the same value when C is

increasing to v2. It was not possible to determine the exact

value of this limit because the convergence of the series

involved decreases when approaches Vi. This pheonomenon is

similar to the one noted in ref. (24].

"~ .'.

.4-

_444 ~4
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4.

III. Vibration of Cracked Cylindrical Shells

1. Series solution of the differential equations

Consider a cracked shell shown in Fig. 5. It is assumed

for simplification that the deflections, normal displace-

* ments, bending moments and shear stress vanish on theVS I

contour. Validity of Donnell Equations [8] is assumed:

( ,2  + 1-v a2  .+ -+v w _ -12)

1+v V~ +- 2 +a aw2- v 0 - -qR /C (2)

v -+ 1v + (1+ k2 V2V2)W -q R2/C (3)

0 where V is Poisson's ration, k2 is the thickness parameter,

* and C is the extensional rigidity

'. k.2 'Z 1 h2 c = Eh/(1-v2) (4)

::!~

where R is the radius of curvature, h is the thickness of
the shell and where the body forces qx' qy, qn also include

inertia terms. The following Fourier tranforms of the

displacement components u, v, w are defined:

%. .

i%
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m~n =Iuft~)~n) d~drn

iimin (5)
0 0

*a b

=Jv(&,n) f(') dF~dn (6)

0 0

a b
wUn= uJ(.n) (3) dtdn (7)

"I' 00

where

,(2)

-- * (8)

:'," lll ( ,)ln(2) d dnB,

*m iaE oon (9)

(3) sin%& (3) dn (10)

%:" :m,., On nr/B, i a/R. 6b/R

V - The system of differential equations is subjected to finite

'V .. Fourier transformations with kernels (8) , (9) and (10)

"£ ,a(o

derivatives of u, v, w. These integrals must be, as usual,

*'

integrated by parts in order to relate them to the transforms

(5)47). In view of the discontinuities present this

standard procedure is extremely tedious. The method used in

Part II of this report based on application of Green-Gauss theorem

o u iF , e d S f k e r n l + ( ) dfa ( 1 =1 ,2 ,3 )

s* respectirely.
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is very helpful in considerably reducing the amount of

manipulations. Ultimately the following system of linear

algebraic equations in Umn, Vmn, wmn is obtained, which

includes integrals involving unknown discontinuities of the

displacements and of the slope across the crack:

• ~~+ 2':, R~ + (,v .
.-.. + 2 - -2) umn + mn Vmn Wr en -1m

-+,. l + 1-V 2 + a2 R2 PW2 )v="o .2- T on+ n Umn - -8 -Pw )Vmn - n Wmn Bmn

" - vom Un - 8n Vmn + 2+ ) + 1 - R 2
e i _.;:  Um n m +OnC ]Wmn =Cmn

"".m,n = 1,2,... ~ (12)

The quantities Amn , BmnI Cmn appearing on the right hand

sides represent certain linear combinations (see Apendix 2

for details) of the integrals of the unknown discontinuities

of the displacements Au, Av, Aw and of the normal slope A (aw/au)
% .across the crack. The system of algebraic equations (12) is

solved with respect to umn, Vmn, Wmn and the results'sub-

I ~stituted into the inversion formulae:

a n=l W m=I n=1 umn

(13.1)

. V mo sinaE + 4 E v n sinam COSnY
. m=1 6m=1 n=1

(13.2)

w( = ml nIE wmn sinam& sinBnY (13.3)

i6 1 n=1

4)4
,. . . , .. .. - ...4...,.4 ... ' , ,, .. .. ' - ' .. ' . :- :. .:-
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In order to determine the integrals of the unknown functions

the boundary conditions at the crack must be applied next.

2. Boundary Conditions and the Characteristic Equation

Four boundary conditions are available at the crack's

edge to determine four unknown discontinuities. These are:

Mnn = 0, Vn = 00 ann cn =0 (14)

• -where Mnn is the bending moment in the direction normal tc
the crack, V n is the reduced shear force at the edge, 0nn and

acn are stress components normal and tangential to the crack

respectively. Using standard expressions for cylindrical

.. *. - shells (see [81) relating quantities (14) to the displace-

ments u, v, w and the formulae for directional derivatives

a ~+~f- (15)
.~-'an an a~an an-

one obtains from (14) the following conditions at the edge of

the crack:

(sinla + v COS2c) 2 + (cosca + v sin c) a- + 2(1-v) sin cosa =W 0

+ .1 _ )(16.1)

sina [I + (-v)cosa - + -sin] a3w

+ cosa ((1-2v)sin 2 a - (2-v)cos 2c] w s [ 2

.,- . (2-v)sin2 a] VW 0 (16.2)

• ........ ................. o . • . . . ...... ..
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P(2" + av' + vw)sin 2a + (v - + + W) COS 2 
a 2Gh u_ + avsin cosa 0

a- ''+ an - 5& Fni

(16.3)
au av

-(2 + v + vw) sina cosa + + 21 + w) sint cosa

2u + avjV
an G 1 +t) (cOs2t -sin 2a) 0

(16.4)

- satisfy conditions (16). In order to derive proper

, differentiation formulae Green-Gauss theorem (11) is applied

again in the way shown in Part I. Consider for instance the

series (13.1) and the transform (5). In order to find au/aC

Green-Gauss theorem is applied to the expression u 3

yielding

(3(
JJ; ,) dS = -J u dS + u mn 5 di

s s r (17)

where 1 is the "contour" of the crack
•4 j (3)(1

,. Since =a therefore the above becomes:" mn,t{

f. I 2
S n = - am u + u "(3) drmn- mn f mn

~(18)

iq. The derivative of (13.1) must be of the following form:

au L (19)
m-1 n=1

.-( 9)
p U.p

.%4
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p where gmn are Fourier coefficients to be found. Substitution

of (19) into (18) yields the desired formula

Ju(3),,gmn "cm umn +fU*M Ud

r(20)

Similar approach was used to derive expressions for other

derivatives appearing in eqs. (16).

In order to derive conditional equations determining

these quantities, boundary conditions (16) are applied by

*' performing differentiation on eqs. 13 according to the rules

explained in the previous section. After lengthuy

manipulations this leads to an infinite system of linear

algebraic equations of the following form

(FI, U + F + F W) + E F Z = 0 L0,l
lit i " 231=2 41t i

Z (F 5 i Vi + F6  V + F7 1 W) + E F8 .. Z = 0iL1 5 t i 6 tfi 7 X i i-2 8lt 1 '

E E (F9 1 t Vi + F1IO V1 + F WlIt w1) + Z F1 ( Z1 - 0 1t=I,...
1= i=2

E (Fl3it Vi + F141t, V1 + Fl5it Wi) + E F161t Z - 0 =l.
1=1 1-2211R

(21)

Coefficients Fit, F2it,... Fl6it are composed of double and

single series with complicated general terms, some involving

4.

U,
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Fresnel integrals (due to the presence of the square roots in

the denominators of eqs. 31). Expressions leading to

evaluation of these coefficiencies are given in Appendix 3

for the case when the tangential inertia terms are neglected.

In order to obtain the frequencies of natural vibration of

the cracked shell one should equate to zero the 4.

characteristic determinant of the system (26).

The quantities Aw, Au, and Av appearing under the

integrals are not singular and can be therefore expanded into

Fourier series. However, the fact that the bending moment

and the stress are square-root singular at the tips of the

crack makes these Fourier series very slowly convergent. To

eliminate this difficulty the procedure adopted in Part I

will be generalized here. To this end the singular

• quantities are chosen to be the primary unknows with

"built-in" singularities:

n i .c + L+ _ (22.1)

' an 2  i C r

__ 2 co . Inc + C3  + 4A _- sin -+ (22.2)
dc rd d

A 2 i'TTC 5 _ C6

where the unknown constants C,.,C are determined using11 ...

continuity conditions of the displacements at the tips of the

.4.. .*..*
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crack and by applying integration by parts. Variable "c" is

.t *. measured along the crack starting at one tip. Extensive but

Vi *-" straightforward manipulations yield finally the following

expressions:

O Wi 0 Wi, Cl _ 3 + ._ + 2-- Z

C = 1 -

1 i i=1,3
3 41

' l .~ (-1) i W ,3

.15 C CO i 2 32 W.

3 T/ 5i21
1  Riv=1 2 ) i=1,31

C 1u00 3 /2,, 8 C.., C4 _ - l - 2y_ d [T-5T ( TL

rv'd i=1 W R=1 2i2 2  i=,3

2I :5 = - r" X 3/2  3 1
6irl =1 1 2 =1,3

i 3/2

C6l . +  d [ _ (l8"
"Z: + rd 2iT 7r 1-1,3

(23)

The only unknown function which is not singular is the slope

I% discontinuity across the crack. It is represented by the

following series:

n - CZ Z os (24)
an d. 0+ d i d

.I .)
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The condition that A (w/an)be zero at both tips leads to the

Ifollowing relationships:

zo = -2 Z z (25.1)AN ; i=2,4

Z = - i  (25.2)
i=3,5

The unknown functions Aw, A(3u/Dn), A(aV/3n) appearing under

the integral signs in the quantities Amn, Bmn, Cmn (Eqs. 12)

are replaced now by their representations (eq. 27.l27.3,

23). The discontinuities of the higher order derivatives of

the displacements are eliminated by using the conditions (14)

referred to the local coordinate system Ocn along the crack

p (c,n being directions respectively tangential and normal to

the crack). Thus to eliminate for instance A 3 W/a n) we

-. -would use the condition.

- 33
3

-A-=-AW (26)
3:5A (2-v,) - -

9n~". .

and then eliminate the dependence on "c" by integration by

parts.

Presently all the quantities appearing on the right hand

sides of eqs. 12 (and, after inversion, in eqs. 13) depend

.. solely on four infinite sequences of Fourier coefficients:

i , Ui, Vi, Wi, and Zi .

The frequencies have been calculated for the crack

positioned at the apex, parallel to the straight edge of a

%'. * V ' '4 * 4 \ . 4"
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On

shell with square planform for various d/a ratios and for

three R/a ratios: R/a = 25, R/a = 2.5, and R/a = 1.0. (See:

. Figs. 6, 7, 8).

The first case is equivalent to an almost flat plate and

- was considered for the purpose of compassion. In the second

and the third cases the effect of the curvature is more

evident. Since no other data are available for these last c

ases therefore the frequencies of the uncracked shell with

identical geometry were evaluated first. For this end the

characteristic equation for a shell with tangential inertia

effects neglected has been solved

~,-

d 8 + 4 6 2 + (684 + 1- )

2" 46 0;n 2 8 p a_4
+(4 2p -fM + a k (27)

as well as the characteristic equation corresponding to the

case when all inertial effects are included. It was found

that the decrease of the curvature increases the frequencies

% _and that neglecting tangential inertia slightly overestimates

the magnitudes of frequencies as shown in Table3.

i
,..,
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*"  Appendix 1

The following is the list of symbols appearing in equations (21) . (24):

2 X2 = 2n(a 5cn4 _a5c2 +a 7
c  mn + a6

c  4m)

• x" = n(a 2m2n2 4m4
X3mn 1nC a3c - a2c +a 4c

2

= 4m4 2m2n2 n42

X5mn a8s + ag mn + a8cn - alOIl2

x m a02 m2 + lsn2 mn (a Os2 m2 +alnc n 2

X6mn = 4Nnn (aIn + 10s ' X7mn =as

Xm 2a1 
( 4m4 + 2v2m2n2 + n  4  2

x lmn , X4mn , X7mn are obtained from X3mn , X2mn , X mn respectively by replacing

n by Om and aic by ais and vice-versa
"-=6m6 ¢44n2 2m2n4

-,....m.6 + a 4m4n2+ a1  mn ag n 2(n 4_I 2 )

"--'.*'. X a 5mn mal5s a 6 s  a7s "l-

+ a18 s  M

=+ a 2m2n2 + a n2

X. ei lOmn =mn(aIa 20  m 4 +a2 s  a22s n + a23sQ )

X13mn Om(a24s €4m4+ a25 s *2m2 n2 + a26sn 4 + a2 7s0 2 )

Xl6m On ma 28cn
4 + a29c *2m n2 + 2a14c (4m, )

Xllmn, X 12mn, X15mn, X14mn are obtained from Xgmn , 'Xlmn, X ,mn and

Xl6n respectively by replacing n by Om and aic by ais and vice-versa.

I6' 

4i

i. . .

1. .' j

4, 4.
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.4 *The symbols aic and a15 are lis-ced below where for abbreviation

sj S- Esin 1p, c- Cos ?

a2 i -(v)c, a 5 =(-v)[(1-3v)c 4 _ 2(1-2v)c 2 + 1-vis

ra 3  2(1-0)(2-v)vc 2(1-2c2), a4  E-1 + (2-v)c 4I3s 4s

Ss.a5  (1-V)sc , as = V(1-v)s c2

a15 = (1-v)[-3 + 2v + (5-3v)sc2  aBS =(I-v )c4

~~'-~ 4'2Jv(1(-~ 2 4a9 2s=21v(I(-~ (3-v)c4  a1 1n -2(1-v)c + 2(1+v)c

=lo -2(1-v)C1-(1-v)s 2 ]sc, au1  = (1-v)s 2 c2

a 1 2 = (-v)sc 4  al~ S4( 4 VS2 2 + IVc4

a3 -S C~s 3cC +(Iv
.~ ~. a145 s~ cs c a15 s = (1+v)S c4 (1=4c)

a1~s =2[-7 + 2v - 2(1+v)c 2Js 2c4

-~a 1  P - -v-2(1-5v)c 2 _ (7+19v)c 4 + 41vc6I

a1 1 =i 2 2 _2vc 4 + 4(1+v)c6JIs 2

a1S=2[l-(2+v)c + 2(1+v)c Is

a 2- 3(5+3v)c + 6(+~ s
.. : 20s = 2(1+v)c 2 4 (+~ 6s

=~s 2(-1 -v -(1-9v)c 2- (7+17v)c 4+ 8(1+v)c 6]sc

a [-5 + v + 12c2 - 3(5+3v)c 4 + 8(1+v)c 6]sca22s26

a r12 2V 4(1+v)c2 +- 12( 1+v~c4  8(1+v)c6lIsca23s x 1 -
-

a (-7+v+8c 2)SC4 , a25  2-2 + v 2'(2+v)c 2+ 8c 4 ]SC 2
244.2 s 2
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-I.,. a26s = -1 + v + 2(1-2v)c2 + 3(-3+v)c4 +8]s

7s = 6c - 8 Is, a = 2(6_4c2)sc

,; a27s 2 4c ] 28s
' : . 2  8 4  2c

a29 = 2[-v + (7+3v)c - ]s c

The quantities aNc are obtained from corresponding quantities aNs by

replacing s by -c and c by -s.
Also:

d

Tlmnk =2 (cosamX sinsnY) sin -d-dc

d
Tr snm i kirc dT2mnk = 2 f (sin x cOSany) s dc

0
'* d

=.,... k o

T3mnk 2 (sinamx sinonY) cos -dc

d J kwc
T4mnk = 2 (cosamx COony) cos dc

0
d d ir,. ,

<t' = f sin V3mnC n kc di kt•sin dc d d

4..0 0

d m k~rc d v4mnC knc
, Cos sin -dc, tnCos d sin d3mnk d 4 = d s dc

0 0

All these integrals have been represented by closed form expressions. Also:

Zlmnk , Z2mnk =7 (t3mnk sinVlmn + tlmnkVCOSlm n)

-V3mn

1
_ (t 4mnk sinv2mn + t2k cOSV

~. (t mn2m 2mn
4mn

'.1 . ..



44

Where the upper sign applies to Zlmnk and where

Simn = x + anyi, v2mn = cmI- S

VM v 3m %Cos ~,+ 8 nsin v,)d, v 4m (%Csos a -Bsin.V*)d

*~ .dFinally

5/2
E Imn, sEn = I/v 3mn f~sinv Imn - in~v lmn + v 3m)

v + [cosv1m + c slvmn + V 3mn)] S(rv~m

:t (1/v 5/2 (Esinv~ - sin~v +

I+ [cosy 2n + cos(v2mn + v~in)J S(/v~mn)l

E 2mn E =m (1/yv~ 5/ [sinv1 ,- 2 sin(v + V3n
3mn Imn ~~lmn 3n]Cv;n

+ [cosv I n+ 2 cos(v +"' 3m)J SC,' 3m

l1 o /2 in mn 3m sin

4m (lv") Elvn- i(v 2mn+v~mn)J C(OV~m)

+ [cosv2  2 cos (v +V)JSv

2mn +2mn 4mn) S(4mn"

Where the upper signs refer to E, and E and where

a 02

Iare Fresnel's integrals.



Appendix 2

. The right hand sides of eqs. (12), Part II are:

P2 P
2 -2

Amn R--[s Au 1  dc AU dE]
- ( f mn),n

"'P 1  P1

" : (rn), (mn) ,n:: I I'P 2 P2

Rvc AV dE + Rs [ dE
f Bu(mn),Ec (mn)

: ' P P2

E CBmn =-Em+n (Aw dE 2R(-)sw¢

1-v [r 2u 2
2 (mn) ,u (inn),n ,

*11

2 2 2
-Rv2 dc2Rc dv)
+Rk A (mn), (mn),n (

P P1

P P
2 22 2 2(1_v3

C+n+ (aS2+8n) f Aw* 0' dE +"kR, Aw0 dc
mn (mn),u (mn),ucc

. 2l P 221 2 Rk(1+ 2) AW Lw 23 J''1 A~ !w-

n J (inn) P(mn),cc

P1

2~~-, 2

+ (vs2+C2 JAV~n 3 d
1 *aI)

a'
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where Pi and P2 denote the tips of the crack.

1"1%

"A

"i?

:5

* .*.-,*..
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.,. r.Appendix 3,: Symbols used in the series eq. (26)

In order to obtain the coefficients Flit, ... I, the conditional
.16

equations (26) are represented in the following form:

- 4 E E {[A A A3 + d AW [ AlA A + d A]
m=l n=l inn 2 nm

2 2-2
-R[A 1A2 + d mn(F Is + F ic 2 (Wn)mnj

43 3
-2R A A2 4lvc8 (Wnm c + A1 [A + A 7

1 .v~n(~~m mn 5 mn

4 4. (SSCOgm2,
A 8 0mn +A6 min d

mn

+ 8(1-v)sc E { [A A am dms} + ot [A~A
m=1 n=lmn m £f

+ +d c3 W - R AlA (w ) 22nc 1mn "2 ~ 'Wnmn R[(-) 2%%

S4 3 .3
+ dJn(W n)mnsc + aman [A 7 0mn + A- m

4 4 (CCC) n
+ A8Umn + A 6Vmn} dm

mn

3_ 2
+ 2(l-v)sc {2 E [%~c 3  R(W n)mSc (cc) m

Ml 1 m

+ 2 E W 2 0c (CIn [n~~s-( ScR(WI)d691n= n C~~RWn ~,c

=10 Lt0,l,.c

(A2-1)
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: I !  n=l Lno nY n swn  Wnn 3 (Wnn) n } (Snt
o, ^23,-2+ 2,l- 2R[8n{ _ )s c]( ) R2F 3 1

+ 4 {[BA 2A3 + dmn B2 Wm + [BIA2 A3 + d B]2
m=l n=l 1 2 B mn 3 mn

.. !.,. + R [-BIAIA2 + dB4(W ) + R [-2BIA 2 (l-))Om~SC

4 3
S FR(W,nn)I + B[A703

+dmnB] (Wn)mn mn3 mn 1 mn A5mn

.-L-, 4 4 (CSS)
A 9 ]} mn2,: + A8mn + '6 mn dmn

+ 4 . r {[B1A2A3 + d A 1

mn 3NW + [BIA 2A3 + dmn 2]Wmn, _. m=1 n=1

R [-B1A1A2 + dmn 4](W,n)n R [-21 A2 (1-v)amBnsc

+d B INW 4 + dmn3 a + +
mnB5(Wn mn mn3 nnmn 5 mn

+ A o4 + A9 4 ]} (SCS)mni
8 mn 6 mn m

dmn

+2 3 23-2-2 1 3 3+ 2 {a c3(ys2-c) Wm + 2R [am(y+f)sc3](W )

" - + R2F3(W n)
I 1 = 0

.3.. n m m, 0

=I,2,...oo
(

a...-:

:3 *.

i:
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3v* 4 E {-[(1-v)(aCF,+ C1 F, )cmn(F-m1l n1l mn scon+ 2 xn (2 1

-tF1)(C2-s +~m [-c*mF, ~CF1 , CF CFl)
2 n('C + an4l+ C5

n I (On 3 1 + am4 m - va n(2 2m

z- aACFk2 2 8A k 2w 1  
-[S2A j k2

+ am c 3 F k]W + R A cFk.] AcCF c 8CF 1 ( k

3C 1(-) kcm n 3c*6C5 1 +~

"oA 5F1 1 A w m + A I k l'nC F, m n (-c~ 6c( 1]n omn 1

3 4

" 21 v) [A am F,3  A + a c I )s
On n 5mnC 8n 61 n

+(i1~ ( 2-s)c +d 3  4SS~n"m F An + n R1WnMn 2 ( ld

03

1 [A)(s 7 JOn + [ 5 3F + A 8 mn + A6 mn)

+ 1 am(8n% (c 2_s2F))9 3  + d( V)( 3 1 C)c)4

- 1n'5n6' n mn 2 mv, mn(C+C

Gom
8G 

sc0 
4v(2
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sc(W ,) n + (C 2 )d 04 -2sc d 94 mC n)

mn mn mn mn mn dm

s[(C2-s)0 - 2sc 92]

c 0 0 a

2-2+ C9

+ +2 E [-c2 + scV2] (CS)m

+ 2 (s (CS)~
M1l n n n ~ ..

*~ 
%~£2-3)

.- *' ,'c
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2(l-v) sin 2a z {- 2-- sin 2a [D1 + -d ]a
m=l n=l 2,mn mn

1V cos2 [D mn m tF, - A5 + D3 I - dmn cos2a]V3n
qe 2 C2 Vmn + 5 3 1- m - m n

EDJ- v4 + l-v 2 2 2a 2 EA 1  -A w 2

2 i 2 2mn 3mm(a-.) - n 3 mn

3 9Wn (SSS)
+ R (Wn)mn] - 2Rkmn A7 (

.o 00 1d ] 3 mn2

+ 4Gh cos2tE E {- sin2a [D2 + cos2 D d- 2 os2 [4+-v dmn]
m=l n=l

04 + aa[C 2 F1 - 2V 3  1-v sin2a [D +2 4d 4

mn n2 21mn 2 4 1-v mn mn
2 2 3n 1 W2 3

mn 3 mn RA 1 (W;n)mn

. (CCS)m4 _ n
- (1-v)R camnsin2a(W ,n)mn] dmn

mn dmn

Gh cos2a -2 cos2a - in2 [l-(-l)]d
+c U 0  0 sinT

" -"2Gh Go 2 2 m2S+ 2G cos2 E [--mc + v25c](CS)m

M1- .m ME

2Gh [02S2  -2
+ - -cos2 [S

n=l

X&=l,2 ,...oo

(A2-4)

The symbols appearing in the equations (A2-1 - A2-4) are listed
below:

..

-.. ' .
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s sic C Cosa

22F* F= I- (1vc

2

F2 E= 1 -(1-v)s Is

(I + OVsI

= (2v-1)c 2 + (2-v)s2JIs

2 2
[(1-2v)s + (v-2)c2]c

2=2

c(-c 2 )

-F 2 + 2

A2  1-V 2 +0
2 2 ( n)2~k

3 am+ 2 8+(1-v)(amc 22  22s

A3= 2 2 2 2 2 2 22]
A3Bnclam+Bn+( 1-v)(am C + ns )-2(1-v) % sI

A4  amsE-Fl(1+c 2)+FC 2)

A 4  -a -~cE-F1(1+s 2)+F 1s 2

A .(1-v)(1,4L2) ( 2 C2+$ 2
52 am amc+ns

2 3
A 6 = (1-v)(1-v )amBn sc b
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2
*A 1 = (-v)(1-v ) 2 ( +2 2S

B1 21

-V) ?422-42-
82~ [a(mca ~s -c

- =~2 2-2 4

B3  [(1+sc+(1)+sc2 ( 2-2054;

2 22 2-2843 E(1+2c )ys (+(1 _2s )Z aman

- Z 2- 2-2

B4 =[-(1+2s )jC +(1-2c )6s JBn

B5 =2(-j+9)s s 3c

B5 = (+6as

c, u riv 6 5-v 4 2 7+v 2 4 3±v 62 1- 3V %--%~~~*%~~2~ )k 2+(1+v-p)-v 2_+ 2 ]a

1-v 6 5-v 4 2 7v2 4 3+v 621v2 3+v 2 l-v 2
.. ~~_ **~ 1-2T~ ni

4.'- n +"r Oc +_Pm ('v 2 a]n
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Sf6 (2v1)4 2 + (v 2 a4  6 k2 2 2
2 mn 'm n n vcm n]

.. , .- C2  :{[v8 +( (2 - m n + (v-2)Sma - cxnJ - p(v m-Sn]

, 6 2 42 24 6 2 p(B 2
2Vnnm nm n '

,+,¢ 2)o2
2 2

'" " ~2  = :2 + ( -'

c: rl-v a 6 + (2-_ o ao + 2- 0 4 +B6] +k 2 -(,_).2m + PB
! 3 2 m m n 2%n n +2 n

rl-v 06 + 4 2 5-v24 62 v 2 2
C3 -ETn - + -an cm + + -]k2+ (p)ctn+ pn o

v 5-v) 24 6 ~ 1 V ~ 2 L

'.4m l 1+v (-2, 2+822 + l-V

4 -2 n LT n , -pl n

c7 =-(1-v)k
2 a%( 2-_B 2 ) = -2C5k2

7 n 5c 2 14-v 2 1-v 2

C5  1- n a(v2_-8 2

=i-v 8 6 2 4 2 2 6 1-v 8,2
D, 2 a'm + 4%n+ (7+v)aflB + 4ct.n8 + -r- Onlk

: %

,: + [2(1+v)-p] - (1+v + 2 2 + 3p+ p ( . 1 ,8

2 4 2 204 ^6,2 22

cm +Bn n n )k %-n)](l+v)aman
[orn + ~ k ,,.4B2l-v)oI(l+v)O~

6~ 42 24 6)k2 - _B2) + 2(1_v)c2j
-2 m + -- n an 4cm n af 1
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=6 -v 4 2 7+v 2 4 3+v 6)2 lv 2"2 %1[( o + -2 cmo n + -2 .ctna n + 2 Bn  -2

3+v 2 +1 -v 2
2 2on Bn]hm

D %- 6+ 5-v 4 2 7+v 2 43v6 ko
3 n+- ni + + 2.O6,,.2n

2 22 -v 4 1-v 4. + (3p-v+ pv- v )c'n + Pn - v -2

D [am+ 2(lv)a 6, + 2(1-2v)o8 4  2(1-l n m+ 0n8 )k

+ (1-v -P)aw + 2vpc on - Pon

42 I R 1 2c2 22 1 2m...= : a ns )(w 2 nSC%n a2 2, 2, m )+ ,nn mn n (Wnn)mn
m c.0 n

s

2 R 1 22 2s2)(W 2 _ SC(W 1
Wmn v (a.2. 2 2TI(m c + m n (nnmn n ,nnni

d w d

" d

:i "'(Wsn n )  E Wi  sin "d (n) dE + Z {- [- - ..

* ': n) [ - (mn)dC "

WVU'n','I= ,3 c -
0 0r

.-. 1, I o (n

9.( k. 2. Go zk.;~~: .: Cos 1- 7:-:rK k

::;.E
,n t

Qw f , , r , , t". "# ', ," . . ", .",..". -',', - -.-','. ' ,',-',',-" """". . . ' .' ' ". - "- . ,0, ''
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d d
3 4 - [JR A 2 dc + RaC A av1v( 22 22 n a(mn +  a Wm n cWmn)]

%, 0

+ I .(ns c ;)
n mn + c m~n

a 4  
=1 [R A .8'f 2 dE + X(O8 s ~ 1 C 2m)

l m =~ .2 2 2_ 2 cE 2 n( mn) n %n Rcm W- n
-':' ns -m 0 o

n m 0

-,

(d d
3vi I u 1 -+ au 1n 

= 2 2 Rdc
-n 2 1 2 2 n a (mn)dC - 9nY(mn)

OnS -ac 0 0

+, .. !  .s 2I1

nS Wn %c 1Wmn))

d d
= 1 [R sA u lnd JAm 2u 2

Nmn 2I~~ 2 2~j(~d 2Rn an6an (mn) dc
O s- %C 0 0

+ Y(Ons %n1 - c W

Also 02 - 4 02 04 V4 V2- 94 9 -V4

4 lso: m = mo' n =  on' 9on' "m - mo' -n - on

u4 0 -4 2 _ 94

'nn n Inn on ,nn m Inn mo

24 24

in n

" .:. * 4." 1 1
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(SSC) = sincxm(Ei + ~-c) sine (I + ~-S) Cos dcmni

d

miii ) cosctm(c 1 + RC) Cosa~ (n1 + )Cos -d

d

(SSSjcoiscna ( + 0) sne (ni + s) sin .- E-
0

U(CSS)~ z I oa U, + E 0c sineS (q~ + E. s) sin t~rEdE

0

(SCS).~ sinam U + EC) Cosa~ (r1 + Js snzEdc

2 4:(Cc),, (CC)M0, (CC)n,, = (CcC)0 nt

(CS),, (CCS),0 , (CS)~ 2 = (ccs)~ 2

- (SS),,, (SCS),0,,. =S~ (CSS)onY.
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Table 1

Evaluation of terms appearing in c UP. CRk, '6k1

Quantity xIn 2 x 3m x 4n x5m mn x7n m

* Substitution xg 9n x 12 m xl1 m x iim x 13n xi15mn x i4n xim

j Quantity T Unt T 4,m a5S a5c T~.0t T 4ont a 11T~mOk a,,T 4onk

PN Substitution -T a a *a135 n aT
mt 2mt~i~tnint 13a3SnI 4sT4mOk 1l4cT 4 0nk
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Table 2

- "Comparison of the Fundamental Frequency Factors with the Results
:Obtained in [5].

~.. Symmetric-Symmuetri c _______ Symmetri c-Antisvmetri c

d/a Ref. [51 Comments _Ref. [5l. Comments

.1 1.988 1.988 4.999 4.998 Inaccurate

.2 1.955 1.956 4.983 4.982
a .3 1.906 1.908 4.912 4.912

.4 1.849 1.852 4.721 4.724

.5 1.792 1.794 30 X 30 4.354 4.360

.6 1.738 1.742 30 X 30 3.846 3.848

.7 1.693 1.696 30 X 30 3.298 3.304

.8 1.660 1.662 30 X 30 2.807 2.814

.9 1.640 1.642 2.289 Inaccurate

i 1.0 1 1.635 1.634 1.634 Inaccurate

".'

- *



-60-

Table 3

. Influence of the Relative Location (el/a) of the Crack on the

Frequency Factors f for Lowest Two Modes (d/a 0.5).

e/a f, f2  Conments

.01 1.947 4.605 Inaccurate

.05 1.924 4.384

.10 1.900 4.250

.15 1.877 4.179 All Results

.20 1.856 4.154 From

.25 1.835 4.166 20 X 20 Matrix

.30 1.818 4.203

.35 1.804 4.253

.40 1.794 4.303

:, .45 1.787 4.338

.50 1.785 4.351

R :.

!

I , ' ° '. ' -,'e , , . " ' " - ' ' ' ' . . "o



I Table 4

Effect of curvature and of tangential inertia on the two lowest
frequencies of vibration of-an uncracked shell of square planform

Tangent.inertia not included Tangential inertia included

1f 2  f2

002.000 5.000 2.000 5.000

p25 2.003 5.000 2.003 5.001

2.5 2.269 2.256

.1.0 3.343 5.112 3.227 5.042
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Frequency coefficients fora shell
cracked at the apex
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Frequency coefficients for a shell
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