AD-A136 634 REASONING ABQUT DIGITAL CIRCUITS(U) STANFORD UNIV CA
DEPT OF COMPUTER SCIENCE B C MOSZKOWSKI JuL 83
STAN-CS-83-970 N00039-82-C-0250

UNCLASSIFIED F/G 9/2

=z
=

“ 1.0 EE =
mer—— i 3.2

— N 122
I Rl
="

a2 e e

-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

IR s T g A S e T SRS et i Wy

DTIC ACCESSION NUMBER

—

PHOTOGRAPH THIS SHEET

s—

LEVEL

bea

INVENTORY

th No. STAN-CS-83-970

DOCUMENT IDENTIFICATION Jul(1 'g3

ct NOP03F - %2 -C - &S0

Distribution Unlimited

DISTRIBUTION STATEMENT A
Approved for public release;

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

DISTRIBUTION STATEMENT
GRAAI ’g
5 DTIC
ELECTE
JANS 1984
BY
DISTRIBUTION / D
AVAILABILITY COD!
[DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED
DISTRIBUTION STAMP
83 12 22 087
DATE RECEIVED IN DTIC

FORM

DTIC Sorm T0A

DOCUMENT PROCESSING SHEET

.

AP-A136634

Regport No. STAN-CS-83-9%

Reasoning about Digital Circuits

by

Benjamin C. Moszkowski

Contract NOOO39-82-C-0250
AFOSR Grant 81-001)

Department of Computer Science

Stanford University
Stanford, CA 94308

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

e BT TER [IR Yn AT

-

9%a. REPORT SECURITY CLASSIFICATION

ROJIC

1b. RESTRICTIVE MARKINGS

Hone

20. SECURITY CLASSIFICATION AUTHORITY

'l'

IDNDEnCeLASSIFlCATION/DOWNGRADlNG SCHEDULE
0

3. DISTRIBUTION/AVAILABILITY OF REPORT

Uniimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

STAN-(S-83-970

5. MONITORING ORGANIZATION REPORT NUMBER(S)

Same

¥

P S e .

b. OFFICE SYMBOL
(If applicadle)

Stanford University NA

6a. NAME OF PERFORMING ORGANIZATION

7s. NAME OF MONITORING ORGANIZATION

Same

6¢. ADDRESS (City, State and ZIP Code)
Department of Computer Science

Stanford University
Stanford, CA 94305

70. ADORESS (City, State and ZIP Code}

Same

8b. OF FICE SYMBOL
(If applicable)

8s. NAME OF FUNDING/SPONSORING
ORGANIZATION

£FOSR -Grant 81-0014

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Contract N00039-82-C-0250

8c. ADDRESS (City, State and ZIP Code)

10. SOURCE OF FUNDING NOS.

1. TITLE (Include Security Classification)
Reasoning about Digital Circuits

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

. PEASONAL AUTHOR(S) .
enJﬂaan CA ‘arosziowsh

13b. TIME COVERED
FROM To

13a TYPE OF H_EPOHT
Dissertation

18. PAGE COUNT

135

14. DATE OF REPORTY (Yr, Mo., Dey)

July 1983

16. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP

SUB. GR.

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

10. ABSTRACT (Continue on reverse if necessary and identify by block number)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

uncLASSIFIED/UNLIMITED (O samE As meT. (J oTic usens O

21. ABSTRACT SECURITY CLASSIFICATION

23s. NAME OF R 3!3&.’%
&b. X

DD FORM 1473, 83 APR

22v. TELEPHON! NUMBER

‘OAM ‘T(a

22¢. OFFICE SYMBOL

23

EDITION OF 1 JAN 73 18 OBSOLETE.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE]

kAR o e o
i

o A

REASONING ABOUT DIGITAL CIRCUITS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
' FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Benjamin Charles Mosskowski
June 1983

@© Copyright 1983
by
Benjamin Charles Mosskowski

I certify that I hiave read this thesis and that in my opinion it
is fully adequate, in scope and quality, as a dissertation for the
degree of Doctor of Philosophy.

Yola/ [lps

(Principal Adviser)

I certify that I have read this thesis and that in my opinion it
is fully adequate, in scope and quality, as a dissertation for the
degree of Doctor of Philosophy.

/‘% [Qi

I certify that I have read this thesis and that in my opinion it
is fully adequate, in scope and quality, as a dissertation for the
degree of Doctor of Philosophy.

W«%J\

I certify that I have read this thesis and that in my opinion it
is fully adequate, in scope and quality, as a dissertation for the
degree of Doctor of Philosophy.

’é (IBM; San Jose)

Approved for the University Committee
on Graduate Studies:

Dean of Graduate Studies & Research

s

2

THNPT

To my famsly

W AT S GRS

i

|
|
i

Abstract

Predicate logic is a powerful and general descriptive formalism with a long
history of development. However, since the logic’s underlying semantics have no
notion of time, statements such as “I increases by 2" and “The bit signal X
rises from 0 to 1” can not be directly expressed. We present a formalism called
interval temporal logic (ITL) that augments standard predicate logic with time-
dependent operators. ITL is like discrete linear-time éemporal logic but includes
time intervals. The behavior of programs and hardware devices can often be
decomposed into successively smaller intervals of activity. State transitions can
be characterised by properties relating the initial and final values of variables over
intervals. Furthermore, these time periods provide a convenient framework for
introducing quantitative timing details.

After giving some motivation for reasoning about hardware, we present the
propoiitional and first-order syntax and semantics of ITL. We demonstrate ITL’s
utility for uniformly describing the structure and dynamics of a wide variety of
timing-dependent digital circuits. Devices discussed include delay elements, adders,
latches, flip-flops, counters, random-access memories, a clocked multiplication cir-
cuit and the Am2901 bit slite. ITL also provides a means for expressing properties
of such specifications. Throughout the dissertation, we examine such concepts as
device equivalence and internal states. Propositional ITL is shown to be undecidable
although useful subsets are of relatively reasonable computational complexity.

This work wes supported in part by the National Science Foundation under a Grads-
ate Fellowship, Grants MCS79-09495 and MCS81-11586, by DARPA wnder Contract
NO0039-88-C-0850, and by the United States Asr Force Office of Scientific Research
wnder Grent AFOSR-81-0014.

e e

I

. .

R ST g
.

Acknowledgements

Professors John McCarthy and Zohar Manna gave much support and guidance
as this research developed. Zohar’s insistence on clear writing and notation has set
a standard I will always aim for. Joseph Halpern provided valuable insights into the
logic’s theoretical complexity. His friendliness, curiosity and desire for mathematical
simplicity combined to make him a wonderful collaborator. The thought-provoking
lectures of Professor Vaughan Pratt provided an endless source of stimulation and
challenge. Professors Michael Melkanoff and Mickey Krieger helped get me started

~ when I was an undergraduate. My fellow students Russell Greiner, Yoni Malachi

and Pierre Wolper are thanked for the numerous conversations we had on all matter

of things temporal.

Many thanks also go to the following people for discussions and suggestions
concerning the notation’s readability (or lack thereof): Martin Abadi, Patrick Bar-
khordarian, Kevin Karplus, Amy Lansky, Fumihiro Maruyama, Gudrun Polak,
Richard Schwarts, Alex Strong, Carolyn Talcott, Moshe Vardi, Richard Waldinger,
Richard Weyhrauch and Frank Yellin. If it had not been for my friends at Siemens
AG and the Polish Academy of Sciences, it is unlikely I would have undertaken

this investigation. Late-night transatlantic discussions with Mike Gordon helped
provide a sense of infrigue. Highest-quality chocolate and enthusiasm were always
available from the Trischlers.

. ol

Table of Contents

Abstract e e e e e e e e e e . v
Acknowledgements b e e e e e e s e e e vi
Tableof Contents et e e e e e e e vii
Chapter 1 — Introduction 1
11 Motivation ¢ ¢ i i i et e e e e e e e .. 1
12 Conteibutionsof Thesis 5
1.3 Organisationof Thesis - « « . o o o v v v v v v v v .. 6
Chapter 3 — Propositional Interval Temporal Loglc 7
21 TheBasicFormalism¢..... 7
e S 7

Models C e e e e e e e e e e e e 8
Interpretation of formulas R 9

2.2 Expressing Temporal Concepts in Propositional ITL 10
Some properties of nezt and semscolon11
Examiningsubintervals 1

Initial and terminal subintervals13
Theyieldsoperator« ¢t v v v o v 13
Temporallength e et e e e e e e e e e 15
Theoperators half and keep 17
z.snwumm.mqm«m RS |
The until operator e e e e e e e e e L .18

Heration . . “ . e e e e e . 19

i
%
!
!

.‘ o
. PR W

Chapter 3 — First-Order Interval Temporal Logic
31 TheBasicFormalism ¢ ¢ ¢t i v o o 0 o o o«

Syntax of expressions

Syntaxofformulas e .
Models @ i i i ittt 27
Interpretation of expressions and formulas 27
Arithmeticdomain 28
Temporaldomain 29
Naming conventions for variables 29
3.2 Some First-Order Temporal Concepts 30
Temporalassignment 30
Temporalequality 32
Temporal stability0vo.... 33
Iteration it 33
Measuring the length of aninterval 34
Expressions basedon nest PR 36
Initial and terminal stability 36
Blocking ¢ ¢ i i i i it e e e e e e e e e 37
Rising and falling signals 38
Smoothness e e e e e e e e e e e e e e e e 40
Chapter 4 — Delays and Combinational Elements 41
41 UnitDelay 0 i i i ittt e e e 41
42 TransportDelayo, 42
43 FunctionalDelay 43
44 Delay Basedon Shift Register “
45 Variable TransportDelay 45
48 DelaywithSampling 48
4.7 An Equivalent Delay Model with an Intarnal State 40
4.8 Delay with Separate Propagation Times forOand1 47
49 SmoothDelayElements 48
4.10 Delay with Toleranceto Noiee e e e e 48

411 GateswithInputand OutputDelays49

—m .

o e W R

T i

1 R

4.12 High-Impedance . . e e e e e e e e e e 49
Chapter § — Additional Notation 51
51 ReverseSubscripting 51

5.2 Conversion from Bit Vectorsto Integers e e e 52

5.3 Tuples and Field Names e e e e e 52

5.4 TypesforListsand Tuples v v v v v oo o .. 52

55 Temporal Conversion ¢ ¢« v ¢ v v v oo oo 53
Chapter 8 — Adders v 56
6.1 BasicAdder 0 e e e . 56
Formal specification of addition cirenit 56
Combiningtwoadders 58

6.2 Adder with Internal StatusBit PP .59

6.3 Adder with More Detailed Timing Information 60

6.4 Adder with Carry Look-Ahead Outputs 62
Chapter 7— Latches 65
71 SimpleLatch e e e e e e 65

7.2 Conventional SR-Latch 66
Constructingan SR-latch 68

73 SmoothSR-Latch 69
74 D-Latch ¢ @ i i i i e e e e e 69
BuildingaD-latch 7

Combining the interface withSR-latch 73

Introducing ahold time, 74

Chapter 8 — Flip-Flopso (4
81 SimpleD-FlipFlopo .o

8.2 A Flip-Flop with More Timing Information ™
Comparison of the predicates SimpleDFlipFlop and DFlipFlop . . 79

Simplifying the predicate Store in DFlipFlop 79

8.3 Implementationof D-Flip-Flip 80
Specification of the master latch 80

Combining the latches 82

8.4 D-Flip-Flops with Asynchronous Initialisation Signals a3

Chapter 9 — More Digital Devices 86

9.1 Multiplexer A 86
Alternative spéciﬁcationl 88

02 MEmMOIY . . « « « v v v e v v o e v e e e 88

93 Counters. i 4 e e e e e e e e e e e 92
Clockedcounter . . . % . . v ¢ ¢ ¢ v v 0 o 0 o 0 v o v o 92

94 Shift Register 94
Variant specifications 0000 08

Combining shift registers 99

Chapter 10 — Multiplication Circuit 101
10.1 Specification of Multiplier oo 101
Variants of the specification 104

10.2 Development of Multiplication Algorithm ‘ 104
Deriving the predicate Inst¢ 106

Deriving the predicate Step 106

10.3 Description of Implementation 107
Implementation theorem 109

Chapter 11 — The Am2901 Bit Slice 111
11.1 Behavior of Ramdom-Access Memory 114
11.2 Behaviorof Q-Register 116
11.3 Behavior of Arithmetic LogicUnit L. 117
114 BehaviorofBuslnterface 121
115 Composition of Two Bit Slices 121
116 TimingDetails 122
Chapter 12 — Disecussiono 1238
121 RelatedWork ¢ . .t i e Lo123
12.2 Future Research Directions 125
Prpof theory i e e e e e e e e e e 125

Some variants of temporallogic 138

Temporal types and higher-order temporal objects 128

Temporal logic as a programming language ‘128

88

123 Comclusion v vt e s e e e e e e e e e e

Bibliography0 181

CHAPTER 1

v

3

A
-

B)

Y INTRODUCTION

§1.1 Motivation

Computer systems continue to grow in complexity and the distinctions between

hardware and software keep on blurring. Qut of this has come an increasing

! ‘—‘ awareness of the need for behavioral models suited for specifying and reasoning
{ about both digital devices and programs. Contemporary hardware description
g languages (for example [5,35,46]) are not sufficient because of various conceptual
limitations:

? e Most such tools are intended much more for simulation than for math-

ematically sound reasoning about digital systems.

APy

Y gl
Ay

e Difficulties arise in developing circuit specifications that out of necessity

must refer to different levels of behavioral abstraction.

o Existing formal tools for such languages are in general too restrictive to
deal with the inherent parallelism of circuits.

Consider now some of the advantages of using predicate logic (12] as a tool for

specification and reasoning:

° Every formula and expression in predicate logic has a simple semantic

P““M‘-‘-—"‘.—

interpretation.

e Concepts such as recursion can be characterised and explored.

o —

e AR e ————

CHAPTER 1—INTRODUCTION

e Subsets of predicate logic can be used for programming (e.g., Prolog

[24)).

e Theorems about formulas and expressions can themselves be stated and

proved within the framework of predicate logic.

e Reasoning in predicate logic can often be reduced to propositional logic.
Propositional logic also provides a means for reasoning about bits in
digital circuits.

e Decades of research lie behind the overall predicate logic formalism.

One problem with predicate logic is that it has no built-in notion of time and

therefore cannot directly express such dynamic tasks as
“I increases by 2"
“The values of A and B are ezchan.ged”
or
“The bit signal X rises from 0 to 1.”
Here are some ways to handle this limitation:

e We can simply try to ignore time. For example, the statement “I tncreases
by 2” can be represented by the formula

I=1I+2.

Similarly, the statement “The values of A and B are ezchanged” can be
expressed as

(A=B) A (B = A).

Unfortunately, this technique doesn’t work since neither of these formulas
has the intended meaning.

e Each variable can be represented as a function of time. Thus, we might
express the statement “I sncreases by 2" as the formula

I(ty) = I(to) +3,

CHAPTER 1—INTRODUCTION

where to designates the initial time and ty is the final time. In an analogous
manner, we can express the statement “ The values of A and B are ezchanged”
as

[Alts) = B(to)] A [B(ts) = Alto))-

Because of the extra time variables such as ta, this approach rapidly be-

comes tedious and lacks both clarity and modularity. For example, it is not
straightforward to alter the above formulas to concisely express the state-
ments “I increases by 2 and then by 3" and “The values of A and B are

ezchanged n times in succession.”

R v
:-*w:&;s&”«(‘ﬂxﬁ;gﬁgﬂ‘:’éﬁ.‘m TR T, L
L . H i et S i .

‘ y e Variables can be represented as lists or histories of va.lugs. Thus, the state-
ment “I increases by 2" corresponds to the formula

el

last(I) = first(I) + 2

where first(I) equals I's first element and last(I) equals I's last element.
This technique is very much like the previous one and suffers from similar
.problems.

0 R T }'“

I | The logic presented in this paper overcomes these problems and unifies in a
single notation digital circuit behavior that is generally described by means of the
following techniques:

e Register transfer operations

o Flowgraphs and transition tables
o Tables of functions {
e Timing diagrams

e e P~ et
R i N

e Schematics and block diagrams

Using the formalism, we can describe and reason about qualitative and quantita-
tive properties of signal stability, delay and other fundamental aspects of circuit
operation.

. We present an extension of linear-time temporal logic (31,39] called interval
temporal logic (ITL). The behavior of programs and hardware devices can often be

B W ST ey e o

CHAPTER 1—INTRODUCTION

decomposed into successively smaller periods or intervals of activity. These intervals
provide a convenient framework for introducing qua.nti'tative timing details. State
transitions can be characterised by properties relating the initial and final values
of variables over intervals of time. The principle feature of ITL is that every
formula refers to some implicit interval of time. The dissertation will later examine
the logic’s formal syntax and sema'ntics in great depth. Below are a few English-
language statements and corresponding formulas in ITL. These examples are meant
to give an feel for what ITL looks like.

) o I increases by 2:

I+2—1
o The values of A and B are ezchanged:

(A= B) A (B—A)

o I increases by 2 and then by 3:

I+2=D;(I+3 1)

o The values of A and B are ezchanged n times in succession:

((A—B] A [B— A"

o The bst signal X rises from 0 to 1:

(X == 0); skip; (X =~ 1)

t As in conventional logic, we can express properties without the need for a
‘ ' separate “assertion language.” For example, the formula

i

{

(T+1-I(I+1-D)D>(I+2-1)

states that if the variable J twice increases by 1 in an interval, then the overall
result is that I increases by 2.

%
i
X

CHAPTER 1—INTRODUCTION

ITL's applicability is not limited to the goals of computer-assisted verifica-
tion and synthesis of circuits. This type of notation, with appropriate “syntactic
sugar,” can provide a fundamental and rigorous basis for communicating, reasoning
or teaching about the behavior of digital devices, computer programs and other
discrete systems. We apply it to describing and comparing devices ranging from
delay elements up to a clocked multiplication circuit and the Am2901 ALU bit slice
developed by Advanced Micro Devices, Inc. Interval temporal logic also provides
a basic framework for exploring the computational complexity of reasoning about
time. Simulation-based languages can perhaps use such a formalism as a vehicle
for describing the intended semantics of delays and other features. In fact, we feel
that ITL provides a sufficient basis for directly describing a wide range of devices
and programs. For our purposes, the distinctions made in dynamic logic [19,37)
and process logics [11,20,38] between programs and propositions seem unnecessary.
Manna and Mosskowski (29,30 show how ITL can itself serve as the basis for a
programming language.

§1.2 Contributions of Thesis

Here is a summary of the key ideas developed in this thesis:

o The propositional and first-order syntax and semantics of interval tem-
poral logic are presented.

e We give complexity results regarding satisfiability of formulas in proposi-
tional ITL.

o We demonstrate the utility of ITL for uniformly describing and reason-
ing about the structure and dynamics of a wide variety of timing-
dependent digital circuits. Devices discussed include delay elements,
adders, latches, flip-flops, counters, random-access memories, a clocked
multiplication circuit and the Am2901 bit slice.

o The overall approach used indicates that multi-valued logics and partial
values are such as L are not necessary in the treatment of timing-
dependent hardware.

CHAPTER 1—INTRODUCTION

§1.3 Organization of Thesis

Chapter 2 introduces the propositional form of interval temporal logic. The
logic’s basic syntax and semantics are given. In addition, ITL serves to express a

number of general temporal concépt.s and properties. The chapter concludes with'

some results on the theoretical complexity of propositional ITL.

In chapter 3, we present first-order ITL. A variety of useful predicates are

introduced to capture dynamic notions such as assignment and signal transitions.

The next few chapters show how to formalize specifications and properties of
a number of digital devices. Chapter 4 describes and compares a number of delay
models that arise in digital systems. In chapter 5 we introduce some extra notation
for dealing with subscripting, conversion and tuples. Chapter 6 looks at adders,
chapter 7 discusses latches and chapter 8 examines flipflops. Chapter 9 contains
descriptions and properties of multiplexers, random-access memories, counters and
shift registers.

Chapter 10 discusses a clocked multiplication circuit and shows one way to
derive a suitable multiplication algorithm in ITL. In chapter 11, we use ITL to
describe and reason about the functional behavior of the Am2901 bit slice, a large-

scale integrated circuit. The dissertation concludes with chapter 12 containing a

discussion of some related work and future research directions.

v+ ra

pami———

CHAPTER 2

i"_‘
; PROPOSITIONAL INTERVAL TEMPORAL LOGIC
‘
We first present propositional ITL; this later provides a basis for first-order
: §2.1 The Basic Formalism
i
Propositional ITL basically consists of propositional logic with the addition of
: modal constructs to reason about intervals of time.
: Formulas are built inductively out of the following:
|
L F

L e A nonempty set of propositional variables:
. PQ,...

o Logical connectives:

~w and w; A wg, where w, w; and wg are formulas.

e Next:

O w (read “nest w"), where w is a formula.

e Semicolon:
wy; Wy (rud “w; semicolon wy" or "w, followed by Wg”),'

where w; and wg are formulas.

CHAPTER 2—PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Ezamples:

Here are some sample formulas:
P
PaA@Q
O(P A ~R)
Q;(P A R)
-Q A O[P;"O(Q;R)]

Notice that all constructs, including O and semicolon, can be arbitrarily nested.
Models

Our logic can be viewed as linear-time temporal logic with the addition of the
“chop” operator of process logic [11,20]. The truth of variables depends not on
states but on intervals. A model is a pair (X, M) consisting of a set of states & =
{s,t,...} together with an interpretation M mapping each propositional variable P
and nonempty interval ag...8, € =% to a some truth value M,,. ., [P]. In what
follows, we assume X is fixed.

The length of an interval 8p...3, is n. An i.nterval consisting of a single state
has length 0. It is possible to permit infinite intervals although for simplicity we
will omit them here. An interval can also be thought of as the sequence of states of
a computation. In the language of Chandra et al. [11], our logic is “non-local” with
intervals corresponding to “paths.”

Here is a sample model:

e States:
L = {s,t,u}
e Assignments:
Variables { Where M is true
P s,t,tus, tt, ts, su
Q t,ts, tat, tots

R _

O A R S A A SO

T a e R IRy NER

TP AR TR DT

CHAPTER 2—PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Interpretation of formulas

We now extend the meaning function M to arbitrary formulas:

o Myo...o 0] = true iff M., [w] = false

The formula ~w is true in an interval sq... s, iff w is false.

® Mag..a[wr Awg] = true iff M,,..0.[wi] = true and M,,...,, [we] = true

The conjunction w; A we is true in sg... s, iff w; and we are both true.

® My..on[Ow] =true iff n=1and M,,..0,[w] = true
The formula O w is true in an interval sg...8, iff w is true in the subinterval
81...8,. If the original interval has length 0, then O w is false.

o Myo...sn[wi;we] = true iff M,q..ofwi] = true and M,,. ., [ws] = true,
for some 1,0 <t < n.
Given an interval sq. .. s,, the formula w;; w, is true if there is at least one way
to divide the interval into two adjacent subintervals sq. .. s; and s;. .. s, such that
the formula w; is true in the first one, sp...s;, and the formula wg is true in the

second, s;...8,.

~ Ezamples:

We now given the interpretations of some formulas with respect to the par-
ticular model discussed earlier:

o Mu[P A Q] = true since My, [P] = true and M., [Q] = true.
o Miuu[Q; P] = true since M¢,[@] = true and M, {P] = true.
o M~(P A Q)] = false since M¢[P A Q] = true.

o M, JO(P A -R)] = true since M,[P A ~R] = true.

A formula w is satisfied by a pair (M, 8¢...8,) iff

Maq...sq [w] == true

CHAPTER 2—PROPOSITIONAL INTERVAL TEMPORAL LOGIC

This is denoted as follows:
(M, 00...804) k.

We sometimes make M implicit and write
80.. .84 BW,

If all pairs of M and s... s, satisfy w then w is valid, written = w.

§2.2 Expressing Temporal Concepts in Propositional ITL

We illustrate propositional ITL’s descriptive power by giving a variety of useful
temporal conc-pts. The connectives ~ and A clearly suffice to express other basic
logical operators such as v and ==:

e w; v wg - logical-or:
wy v wg =g “(~wr A "w)
® w; O wq - implication:

Wy O wp |y "W V W3

* w; == wg ~ equivalence:

w) =wg =My (w1 O wa) A (WD w)

o if w; then wy else wy - conditional formula:

f wy thenwg elsews =myer (wy D wy) A (~wy O wy)

e {rue —~ truth:

o false - falsity:

e Ty e —— g vy " " 3————1
AT e, - T . X - e e e e -

CHAPTER 3—PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Some properties of nest and semicolon

Throughout this thesis, numerous sample formulas are given in order to convey
the utility of ITL for expressing temporal and digital concepts. The reader need
not look at every single formula. Here are some representative properties of the

operators nert and semicolon. All follow from the semantic model just covered.

LRTREY TR, T IRDAEA

r (P;Q);R = P;(Q;R)

Semscolon is associative. Therefore a formula such as P; @; R is unambiguous.

* [P v QsR] = [(P;R) v (@ R)]
The left of semsicolon distributes with logical-or. An analogous property applies to

K ,:..;xﬁ,:\;.:;‘-r-’ff r’-*‘ R BT

the right of semscolon.

» [Pi(Q A R)] 2 [(P;Q) A (P;R)]
A logical-and can be removed from semicolon’s right. The left of semicolon has a i
similar property.
. r (OP);Q@ = O(P;Q)
’ The operator O commutes with the left of semscolon.

A We now introduce a variety of other useful temporal concepts that are express-

ible by means of the constructs just defined.

Examining subintervals é

For a formula w and an interval g¢. .. s,, the construct ® w is true if w is true
in at least one subinterval s;...s; contained within s¢...s, and possibly the entire
interval sg...s, itself. Note that the “a” in ® simply stands for “any” and is not
a variable.

Moo, O W] =trie if M, ,[Jw]=true, forsome0<i<j<n

e et AN OO, B, - - -
e e T B T YO VI I ETIT AT s S

Similarly, the formula @ w is true if the formula w itself is true in all subintervals
g of sg...84:

e i Y .

(Mog..on|Bw] =true iff M, ., [w]=true, forall0<i< isn

CHAPTER 2—PROPOSITIONAL INTERVAL TEMPORAL LOGIC

These constructs can be exprésaed as follows:
®w =4 (true;w;true)

Bw =4 ~"®w

Because semicolon is associative, the definition of ¢ is unambiguous. Together,
& and @ fulfill all the axioms of the modal system S4 [23], with interpreted as

possibly and @ as necessarily.

Properties:

R BPOP
If the proposition P is true in all subintervals then it is true in the primary interval.

k B(PAQ) =[EP A EQ

The logical-and of two propositions P and Q is true in every subinterval if and only
if both propositions are true everywhere,

kR ®P = &&P

A proposition P is somewhere true exactly if there is some subinterval in which P
i is somewhere true.

k [@PA®Q] D &P A Q)
If P is true in all subintervals and Q is true in some subinterval then both are rJ
simultaneously true in at least one subinterval.

Initial and terminal subintervals

For a given interval s¢...s, the operators & and [are similar to ¢ and
but only look at ¢nstial subintervals of the form sq...s; for 1+ < n. We can express
¢ w and @0 w as shown below:

A ase O, e

dw et (w; true)

Ow =Wy ~O~w

12

—erma N, e

o . AR A, Bt .. e N — o ot .

R TG AT 8 W B g s R

< avew

CHAPTER 2—PROPOSITIONAL INTERVAL TEMPORAL LOGIC

For example, the formula B(P A Q) is true on an interval if P and Q are both true
in all initial subintervals, The connectives ¢ and (4 refer to termsinal subintervals

of the form s;...s, and are expressed as follows:
Sw =g (true;w)
Bw =g ~®-w

Both pairs of operators satisfy the axioms of S4. The operators ¢ and [correspond
directly to © and O in linear-time temporal logic [31].

Properties:
» (P = MEP) A (3P = @@OP)
The proposition P is true in all subintervals exactly if P is true in all initial
subintervals of all terminal subintervals. In fact, the operators @ and @ commute.
r [@(P>Q) A (P;R)] > (QR)
If P implies @ in all initial subintervals and P is followed by R, then Q is followed
by R.
r (®P)Q = &(P;Q)

The operator ® commutes with the left of semicolon.

The yselds operator

It is often desirable to say that within an interval sg...s, whenever some
formula w; is true in any initial subinterval sg...s;, then another formula wq is
true in the corresponding terminal interval s;...s, for any ¢, 0 < ¢ < n. We say
that w, yselds wg and denote this by the formula w; ~» ws:

Ms,...0. Jw1 ~ wa] = true

i Moo Jwi1] = true implies M, , [wz] = true, forall0<i<n

The yields operator can be viewed as ensuring that no counterexample of the form

w); ~wz exists in the interval:
(w1~ wa) =aer ~(w1;~wg)

This is similar to interpreting the implication w; O wy as the formula ~(w; A -~wg).

p— R v AR e P e e -

CHAPTER 2—PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Ezamples:
Concept Formula
After P, both Q and R are true P~ (Q A R)
After P, Q yields R P~ (@~ R)
P always yields @ GB(P ~ Q)
After P and Q, R is false (P A Q) ~> (-R)
Properties:

k ([P;Ql~ R) = (P~ [Q~ R))
The formula P; Q@ yields R exactly if after P is true, Q yields R. This is analogous

!

to the propositional tautology

* [(P A Q)>E] = [P>(Q>R)

k false ~ P
After false, anything can happen. Since false never occurs, this is a vacuous

assertion.

When combined with other temporal operators, yield exhibits a number of
interesting properties based on the underlying behavior of semicolon. Here are

some examples:

k @P = (true ~ P)
The proposition P is true in all terminal subintervals exactly if P is true after any
initial subinterval satisfying true.

P (P~0Q) = (¢P~Q)
After P, Q is true in all terminal subintervals iff the result of P being true in some
initial subinterval yields Q.

r (P~0Q) = OFP~Q)
After any initial subinterval where P is true, the formula (@ Q results iff in all initial
subintervals, P yields Q.

14

- - . et B —

VAR

S e e o

CHAPTER 2—PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Temporal length

e a dra v Ceama i s e a9

The construct empty checks whether an interval has length 0:
Mog...s [empty] = true iff n= 0
Similarly, the construct skip checks whether the interval’s length is exactly 1:
Moo...s [skip] = true if n=1
These operators are expressible as shown below:
emply =4t ~O ftrue

skip =g O empty

Combinations of the operators skip and semicolon can be used to test for intervals
of some fixed length. For example, the formula

skip; skip; skip

is true exactly for intervals of length 3. Alternatively, the connective nezt suffices:

O O O empty
Ezamples:
Concept Formula
After two units of time, P holds skip; skip; P
P is true in some unit subinterval ®(skip A P)
Properties:
E ®emply

Eventually time runs out because intervals are finite.

CHAPTER 2—PROPOSITIONAL INTERVAL TEMPORAL LOGIC

e (skip;P) = OP

The operators skip and semicolon can be used instead of nezt.

r (empty;P) = P
The construct empty disappears on the left of semicolon. An analogous theorem

applies to the right of semicolon as well.

Initial and final states
The construct beg w tests if the formula w is true in an interval’s starting state:
Mao...onfbeguw] = M, [w]
The connective beg can be expressed as follows:
begw =gt O(empty A w)

This checks that w holds for an initial subinterval of length 0, t.c., the interval's
first state. By analogy, the final state can be examined by the operator fin w:

finw =y S(empty A w)

This checks that w holds for a terminal subinterval of leagth 0, i.c., the interval’s
final state. The construct deg corresponds directly to the construct f in the process
logic of Harel et al. [20]. Similarly, fin corresponds to the process logic’s construct
last.

Ezamples:

Concept Formula
* If P is initially true, it ends true begP D fin P
P and Q end true Sin(P A Q)

r.,,‘_.d—‘s-‘——.._

WGP S

CHAPTER 2—PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Properties:

b begP = -beg(-P)
P is true in the first state iff ~P is not.

k fin(Pv Q)= [finP v finQ]
The logical-or of P and @ ends up true exactly if either P ends true or @ ends true.

The operators halt and keep

Various other useful operators can be expressed in propositional ITL. For
example, the construct halt w is true for intervals that terminate the first time the
formula w is true:

haltw =4 O(w = empty)
Thus Aalt w can be thought of as forcing an interval to wait until w occurs.

The construct keep w is true if the formula w is true in all nonempty terminal
intervals:
keepw =4 O[([~empty] O w)

§2.3 Propositional ITL with Quantification

It is very useful to extend propositional ITL to permit existential and universal
quantification over variables. In order for quantification to properly work, we require
that X, the model’s set of states, be varied enough so that any possible combined
behavior of variables is represented by some interval. More precisely, let P be a
propositional variable, sg...8, be an interval and oft,j) be a function mapping
ordered pairs 0 < ¢ < 5 < n to truth values. We require some interval sj,. .. s/, exist
such that s...s) agrees with the corresponding subinterval s;...s; on assignments
to all variables with the exception that each subinterval s;...s} gives P the value
afs, 5):

Mo ol@ = Miofl@l, forQs#Pand0<i<j<n
My.sIPl = afij), for0sisjs<n '

CHAPTER 2—PROPOSITIONAL INTERVAL TEMPORAL LOGIC

We denote the interval sj,... n’,“ as

(0. ..84)[P/q]

The construct
3P.w

represents existential quantification and has the semantics
Mao...0n [[HP w] = true iff for some a, M, . [w] = true,
where 8. ..8), = (sg...3,)[P/a].
Universal quantification is expressed as the dual of existential quantification:

VP.w =def -~3P. ~w

Property:

k (~empty) O IP.[beg P A fin(-P))
In a nonempty interval, a variable can be constructed that starts true and ends
false.

The until operator

Linear-time temporal logic has the until operator w; U wg which is true in an
interval if the formula wy is eventually true and w; is true until then:

M,,...00 lwl uw?' = true iff
M....onJwz] for some 0 <4 < nand M,,. ., [wi] forall0 < j <¢

We can express until as follows:

wylwy =gy 3IP.[begP A W(begP O [wg v (wy A O beg P)])] y

where P does not occur free in w; or wy. In essence, P is initially true and *
inductively remains so until wy is true.

CHAPTER 3—PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Iteration

An interval can be broken up into an arbitrary number of successive subinter-

‘ J vals, each satisfying some formula w. We can use, for example, the construct w3 as
an abbreriation for

w; w; w

In general, we abbreviate repetition by induction:

w® =4 empty

wt!l =4y wuf

Thus, for the case of 1+ = 0, an interval sg...s, satisfies the operator exactly if
the interval’s length is 0. We can extend propositional ITL to include the Kleene

closure of semicolon:
Maq...on[w?] = true ff M,,.. ... [w"l = true, for some s 2 0.

Iteration can be expressed by quantifying over a variable P that is true at the
end-points of the steps:

w* =y 3IP.(begP A TbegP O (empty v Slw A O halt(beg P)])])

where P does not occur free in w. Other constructs such as while-loops can also be
expressed within ITL:

while PdoQ =4y [(beg[P] A Q)* A fin(-P))

Properties:

. L e e R v WM .

B P* m (P A -~empty)*
During iteration, each step can be assumed to have length 2 1.

k false® m empty
An interval in which false is iterated must be empty.

B B e RN e .
. .

19 {

CHAPTER 2—PROPOSITIONAL INTERVAL TEMPORAL LOGIC

§2.4 Some Complexity Results

We prove that satisfiability for arbitrary formulas in propositional ITL is un-
decidable but demonstrate the decidability of a useful subset.

Undecidability of propositional ITL

Theorem (Halpern and Moszkowski): Satisfiability for propositional ITL is un-
decidable.

Proof: Our proof is very similar to the one presented by Chandra et al. [11].
for showing the undecidability of satisfiability for a propositional process logic.
We strengthen their result since we do not require programs in order to obtain
undecidability.

Given two context-free grammars G, and G2, we can construct an propositional
ITL formula that is satisfiable iff the intersection of the languages generated by G,
and G is nonempty. Since this intersection problem is undecidable [22], it follows
that satisfiability for propositional ITL is also.

Without lose of generality, we assume that G, and G2 contain no e-productions,
use 0 and 1 as the only terminal symbols and are in Greibach normal form (that is,

the right-hand side of each production starts with a terminal symbol).

For a given an interval sg...s, and an interpretation M, we form the trace
Oso...sn(P) of a variable P by observing P’s behavior aver the states sg,...,5,. We

define o as follows:
0 if M,[P] = false

oulF) = {1 it M,[P] = true
Oso...s.(P) = 0,,(P)...0,.(P)

Suppose that G is a context-free grammar consisting of a list 7 of m production
sets 7y,..., %y, one for each nonterminal symbol A;:
T Ar =g mig || Tymyg

xg : 1‘_12"’721|"'22|"'|'2,|*s|

Tm : Aﬂ"”ﬂlll'ﬂﬂl""*’“-'*ﬂ'

T A e g 2 e e ra -

CHAPTER 2—PROPOSITIONAL INTERVAL TEMPORAL LOGIC

e -mwn‘..'m

Let L{G, A;) be the language generated by G with A; as the start symbol. We
give a translation f(G, A;) into ITL such that an interval s¢. .. s, satisfies f(G, A¢)
iff P’s trace in sg...s, is in I{G, A:): '

80...8a b f(G,Ai) ff Os....(P) € LG, A) (+)

For each of the production sets x;, the associated translation f(x;) is the ITL formula

EI(A‘- = [f(‘lu) v f(®a) v --- v f(’ri.lml)l)

Each production string x;; = V1 V3...V|,,,| has the translation

I(ViVa. .. V) = f(V1); skip; f(Va); skip; . . . skip; f(Vix,,)

£(0) = (~P empty)
(1) =(P A empty)
f(A) = Ay, for each nonterminal symbol A;
Recall that the variable P determines whether a state maps to 0 or 1. In order to
avoid conflicts, we require that P not occur in the grammar. The overall translation
f(G, A)is
Ai A f(x)

It is now easy to show (s) by induction on the size of the interval sy...5,. We
need the grammar to be in Greibach normal form in order for the inductive step to -
go through. See Chandra et al. [11] for details.

Given two context-free grammars G| and G2 with disjoint sets of nonterminals
and respective start symbols S; and S3, the ITL formula

1(G1,51) A f(Ga, Sa)

is satisfiable iff the intersection of the languages L(G,) and L(G3) is nonempty.
Because this emptiness problem is undecidable [22], it follows that satisfiability in
propositional ITL is also. |}

21

o e . G O e

o~

B A

CHAPTER 2—PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Corollary: Validity for propositional ITL is undecidable.

Remark: Undecidability can be shown to hold even if we are restricted to just
using empty instead of skip. To do this, we use propositional variables P and Q. We
introduce an operator group(P,Q@) which is true in intervals satisfying the formula

(B beg Q); skip; (@ beg[P A ~Q)); skip; (& beg Q)

Such intervals are in effect delimited on both sides by states with @ true and contain
internal states with P A ~Q true. Hence, @ acts as a delimiter around a group of

states where P is true. The following is a sample 5-state interval sq... 54 satisfying

P,Q):
group(P, Q) o0 o1 83 83 o0

RP PRQRRQ

A A
Q -Q
Similarly, group(-P, Q) denotes a delimited group of states with -P true in the

interior. K we take empty as a primitive operator, the operator group can be
expressed without the use of nezt:

group(P,Q) =der [9rP(P,Q) A ~(grp(P, Q); gp(P, Q)]
where grp(P, Q) has the definition
oP(P,Q) = [begQ A finQ A B(beg(PA-Q) v Q) A & beg P]
Recall that beg and fin are defined using empty and semicolon:
begw =g O(empty A w)

finw =4y S(empty A w)

The modified translation f’ is like f with the following exceptions:

fViVa.. . V) = f'(V1); f'(Va)i.. i f'(Ven)
£'(0) = group(-P, Q) '
(1) = growp(P, Q)

P SN

S

o . AR el e e e

RTINS VI PRSP PRI AP UG, T
'

CHAPTER 2—PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Decidability of a subset of ITL

In local ITL (LITL), we restrict each variable P to be true of an interval sg...8,
iff P is true of the first state sq: '

Moo...a,ﬂpn = Mtonpl

Theorem (Halpern and Moszkowski): Propositional local ITL with quaatification
is decidable.

Proof: We give a linear translation from formulas in propositional ITL to formulas
in a temporal logic that is known to be decidable. This is the quantified proposstional
temporal logic (QPTL) described and analyzed in Wolper [50] and Wolper et al. [51].
Formulas are built from propositional variables P, @, ... and the constructs

~w wyAwy Ow @Bw 3JP.w

where w, w; and wg are themselves QPTL formulas. The 'interpretation of variables
and formulas is identical to that of local ITL with quantification. The particular
QPTL used by us restricts intervals to be finite and is known as weak QPTL
(WQPTL). Weak QPTL can express such constructs as ¢ w, wy U wg, and empty.
For a given variable P and local ITL formula w, we now give a translation g(P,w)
which is true of an interval sq...s, in weak QPTL iff the variable P is true for
the first time in some state s; and w is true over the initial interval sq...s;. Thus,
g(P,w) is semantically like the ITL formula

®([halt P) A w)

Here is the definition of g:
9(P,Q) =(®P) A Q
g(P, ~w) = [~g(P,w) A & P}
9(P, [wr A wa]) = [o(P,w1) A g(P,ws)]
g(P, 0 w) = [~P A O¢g(P,w))
o(P, [wi;we]) = 3R.[g(R,w1) A ([FPIU[R A ¢(P,ws)))],

‘where R does not occur free in either w; or wg.
9(P,3Q. w) == 3Q. g(P, w)

- — et — IR P, Mt s

CHAPTER 2--PROPOSITIONAL INTERVAL TEMPORAL LOGIC

A formula w in local ITL has the same semantics as g(empty, w) in weak QPTL:

80-..8aPLITL W S 80...84 PwQpTL 9(empty, w)

Wolper [50] and Wolper et al. {51] show that the theory of QPTL over infinite
intervals is decidable but nonelementary; this result easily extends to weak QPTL.
The complexity is elementary in the aiternation of ~and 3.

Remark: The translation can be extended to handle local ITL over infinite inter-
vals. 1

Lower bound for satisfiability

The decision procedure just given is essentially the best that can be done since

D. Kozen (private communication) has proved the following theorem:
Theorem (Kozen): Satisfiability for propositional local ITL is nonelementary.

Proof: Stockmeyer [44] shows that the problem of deciding the emptiness of an
arbitrary regular expression over the alphabet {0,1} and with operators +, - and -~
is nonelementary. Given a regular expression ¢, we construct an ITL formula h(e)
which is satisfiable iff the language generated by e is nonempty. The definition of
h given by induction on the syntactic structure of e:

h(0) = (-P A empty)

h(1) = (P A empty)

h(ey + e2) = [h(e1) v h(e3)]

h(-e) = ~h(e)

h(ey - e3) = [h(e1); skip; h(eq)]

For example, the translation of the regular expression (01) + -1 is

(=P A empty); skip; (P A empty)] v ~(P A empty)
Note that the length of h(e) is linear in that of e.

A formal proof relating nonemptiness of a regular expression e and satisfiability

of the ITL formula h(e) would use a straightforward induction of the syntactic
structure of e. |

24

S e MLl IR Y " o

CHAPTER 2—PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Remark: We can show nonekmentary complexity even with the operator empty
instead of skip. We use a modified translation h’ defined as follows:

h'(0) = group(P, Q)

h'(1) = group(-P,Q)

h’(81 + ea) = [h’(el) \' h’(eg)]
h'(~e) = ~h'(e}

h'(eseg) = [h'(e,); skip; h'(e2)]

Again, the language L{e) generated by ¢ is nonempty iff h’(e) is satisfiable. B

et . e e

R L

CHAPTER 3

FIRST-ORDER INTERVAL TEMPORAL LOGIC

- §3.1 The Basic Formalism

We now give the syntax and semantics of first-order ITL. This subsequently

serves as our hardware description language.

Syntax of expressions

Expressions and formulas are built inductively-as follows:

e Individual variables: U,V,...

o Functions: f(eq,...,ex), where k > 0 and ey, ..., e, are expressions. In practice,
we use functions such as + and v (bit-or). Constants like 0 and 1 are treated as

zerc-place functions.

Syntax of formulas

o Predicates: p(e;,...,e;), where k = 0 and e, ..., e, are expressions. Predicates

include < and other basic relations.
¢ Equality: ey=ej3, where ¢; and e; are expressions.

e Logical connectives: ~w and wy A w3, where w, w; and wq are formulas.

o Existential quantification: 3V. w, where V is a variable and w is a formula.

CHAPTER 3—FIRST-ORDER INTERVAL TEMPORAL LOGIC

o Next: O w, where w is a formula.

e Semicolon: wy; wg, where w; and w are formulas.

Models

A model consists of a set of states & = {s,t,...} and domain D together with
an interpretation M mapping each variable V' and interval sq...s, to some value
Ms,...s. [V] in D. Furthermore, cach function and predicate symbol is given some
meaning. As ir propositional ITL, for quantification to properly work, there must
be some interval for every possible behavior of variables. Each k-place function
symbol f has an interpretation M[f] which is a function mapping k elements in D
to a single value:

M[s] € (D* - D)

Interpretations of predicate symbols are similar but map to truth values:
M[p] € (D* — {true, false})

The semantics given here keep the interpretations of function and predicate symbols
independent of intervals and thus time-invariant. The semantics can however be
extended to allow for functions and predicates that take into account the dynamic

behavior of parameters.

Interpretation of expressions and formulas

We now extend the interpretation M to arbitrary expressions and formulas:

Mu...c.. ﬂf(ch ceey ck)n = Mnfn(Mao...o.. llel]p ceey Mao...a,. nekl)v
The interpretation of the function symbol f is applied to the interpretations of

€lyeee, e

Mu...o. lP(Clp ceey ek)l = MIPI(Mu...c. lellu ooy Mco...a. uekl)

Ma....o. l¢l=¢21 = true iff Mu...g, lell = Mo....a.. leﬂn

Mn...o. l"‘W' = frue iff Mo....a.lwl == false

By T e i

CHAPTER 3—FIRST-ORDER INTERVAL TEMPORAL LOGIC

o Mogofws Awg) = true iff Mg,..0fwn] = M,,..... [wa] = true

® Myg...anl3V.w] = true iff for some a, M,;.. o [w] = true,
where 3. ..), = (80...8,)[V/a] and the function a(t,j) maps pairs 0 <i <j <
n to values in the data domain D. .

b Mco...c.uo ‘wn =true +ff n21and M.l"_."uwn = frye

o My, o wiswe] = true s M,,..oJwi] = true and M,,. ., [ws] = true,

for somet, 0 <1 < n.

Satisfiability and validity of formulas are as in the propositional case. All the
other related temporal operators mentioned earlier are expressible as before. If the
data domain D includes at least two values, the iterative construct w* can also be

expressed.

Arithmetic domain

We will assume that the data domain D contains natural numbers as well as
nested finite lists. Both 0 and 1 serve as numbers and bits, with 0 standing for low
voltage and 1 standing for high voltage. The data domain does not contain any
intermediate voltages or “undefined” values. We permit finite sets and represent
them by lists. The following are sample values:

o, 3, (0), (1,2}, () (8,3,(),9), (4{3,2})

We adapt the convention that an n-element list L has subscripts ranging from 0 on
the left to n — 1 on the right:

L = (L[0},...,Lin ~1]), where n=|L|

It is assumed that M contains standard interpretations of function and predi-
cate symbols such as +, < and v (bit-or). We also include conditional expressions
and conventional operators for constructing, combining, subscripting and determin-
ing the length of finite lists and sets.

gy o e o

CHAPTER 3—FIRST-ORDER INTERVAL TEMPORAL LOGIC

The unary predicate nat(U) is true if U’s value is a natural number (i.e., -

nonnegative integer).

Moyo...s [nat(U)] = true iff M,,....[U] €{0,1,2,...}

Sometimes we use the predicate ttme instead of nat when the associated parameter
is used as a time. The two predicates are however semantically equivalent. The
predicate bit checks if a value is either 0 or 1 and the predicate positive checks for

positive integers (that is, integers > 1).
Temporal domain

A variable V is static in an interval sg...s,, if V has a single interpretation
over all subintervals:

Mco...a.ﬂvn = Ma‘...cj IIVn, forall0<t<j y<n

Just as nat and bit look at the type of a value, the predicate static checks that its

parameter is static in an interval. We give static the following interpretation:
M.,,,,.a I[static(V)]] = true
iff forsomed€ D,forall0 <i<j<n, M.‘...:,'IIV“ =d,

Within an interval sg...8,, a signal has a unique value for all subintervals
starting with a given state. Thus, signals are local in the sense of LITL. The
predicate signal(V) is true iff the variable V' behaves as a signal. We define signal
as follows:

P ——t -

— A el i =

aigr;al(V) =yt [3IU. [static(U) A O(V = U)

The predicate Bit checks that its parameter is always bit-valued:

Bit(V) =g @ bit(V)

Naming conventions for variables

For convenience, we will associate sorts with variables:

- gy A el B s P S —— -
. . .=

ST

T 3

T s

o o 26 o s ki)

© e hemagss W s

S an

CHAPTER 3—FIRST-ORDER INTERVAL TEMPORAL LOGIC

o Interval variables: A, ¥, X, ...
These can vary in value from interval to interval and are also known as non-local
or path variables.

¢ Signal variables: A, N, X, ...

Signal variables can also be referred to as local or state variables.

o Static variables: a,n, z,...
Static variables can also be called global or frame variables. All static variables

are signals.

In general, variables such as 4, B and c range over all elements of the data
domain D. On the other hand, J, K and n range over natural numbers. The
variables X, Y and z always equal one of the bit values 0 and 1. If desired, the
naming style suggested here can also be used in propositional ITL.

As in conventional first-order logic, sort information can always be made ex-
plicit. For example, a formula Vb. w containing a static variable b is equivalent to
the formula

VV. [static(V) > w/]

where the formula w) results from replacing all free occurrences of b in w by the

sort-free variable V.

§3.2 Some First-Order Temporal Concepts

Within the framework of first-order temporal logic, we can explore a variety
of qualitative and quantitative timing issues. The constructs given below are useful

for describing and reasoning about circuits.

Temporal assignment

The formula A — B is true for an interval if the signal A’s initial value equals
B’s final value:

A—=B =g Ve.[beg(A=c)> fin(B = c)|

CHAPTER 3—FIRST-ORDER INTERVAL TEMPORAL LOGIC

We call this temporal assignment. Unlike inA conventional programming languages,
it is perfectly acceptable to have an arbitrary expression on the receiving end of
the arrow. Furthermore, temporal assignment only affects variables explicitly men-
tioned; the values of other variables do not necessarily remain fixed. Incidentally,
because the variables A and ¢ are signals, the subformula beg(A = ¢) used in the
definition could be replaced by A = c.

Ezamples:

Concept Formula
Z gets the initial value of Y (-Y)— 2
I doubles 2I -1
M + N doesn’t change (M+N)->(M+N)
A and B swap values (A= B) A (B— 4)

As noted above, temporal assignment specifies nothing about the behavior of
those variables that are not referenced. Thus, the formulas

(r+2)—1]
and
(T+2) =1 A [J = J]
are not equivalent.
Properties:

k a—a
A static variable's initial and final values agree.

» [(A—B)(B—+C) > (A—C)
If B gets A’s value and then C gets B's, the net result is that C gets A’s initial
value.

B empty D (A— ')

CHAPTER 3—FIRST-ORDER INTERVAL TEMPORAL LOGIC

In an empty interval, the first and last states are identical. Therefore, a variable’s
initial and final values agree.

* (A—B) > [f(4a)— f(B)]
If A is assigned to B, then any time-invariant function application f(A) is passed
to f(B).

e [(-Z = 2);(~Z2 - 2)] > (Z - 2)

If a bit signal is twice complemented, it ends up with its original value.

Temporal equality

Two signals A and B are temporally equal in an interval if they have the same
values in all states. This is written A =~ B and differs from constructs for initial
and terminal equality, which only examine signals’ values at the extremes of the
interval: '

A~B =44 B(A=B)
Because A and B are signals, the formula A = B can also be expressed using the
linear-time temporal operator [@:

k A~B = @(A=B)

Concept Formula
The signal A is 0 throughout the interval A0
The bit-and of X and Y everywhere equals 0 (X AY)ss0
X agrees everywhere with the complement of Y X=~-Y

Property:

» [(4B)=~(4',B)] = (A~ A A B B)
The pair (A, B) temporally equals (A’, B') exactly if the signal A temporally equale
A’ and B temporally equals F'.

N - m
e . .
¥

CHAPTER 3—FIRST-ORDER INTERVAL TEMPORAL LOGIC

Temporal stability

A signal A is stable if it has a fixed value. The notation used is stb A and can
be expressed as shown below: ‘

sthA =4 3b. (A == b)
It follows from this that every static variable is stable.

| Properties:

P X =[X=~0v X =1]
A bit signal X is stable iff it is always 0 or always 1.

k 8th(A,B) = [stbA A stbB]
{ A pair is stable exactly if the two individual signals are.

Iteration

The propositional constructs w*® and while w, do wy can be expressed as in
i propositional ITL with quantification. We can also augment the first-order logic]
" with iteration of the form w* where w is a formula and e is an arithmetic expression.
We first define the construct cycle® w which iterates w the number of times specified

by e:

cycle*w smyer 3. [beg(I =€) A while (I 3% 0) do(w A [I-1— I})]

j where the guantified variable I does not occur free in e or w. We initially set I to e
' and then decrement I by 1 over each iteration. The semantics of cycle are such that
the individual iterations of w take at least one unit of time since 7 cannot decrease

‘ in an empty interval. Thus the formulas
t
i

cyele® w

and

cycle’(w A ~empty)
33

B O

e

CHAPTER 3—FIRST-ORDER INTERVAL TEMPORAL LOGIC

are semantically equivalent.

In order for the formula w® to permit possibly empty steps, we define it as

follows:

w® =g cyelefw v 34,5.(1+5 <e A [(cycleiw);(w A empty); (cycle?w)))
where the static variables + and 7 do not occur free in w or e. By introducing extra
quantified variables that always equal w and e, we can modify this definition to be

linear in the size of w and e.

Ezamples:
Concept Formula
Z is complemented n times (~Z - 2)
N doubles some number of times (2N — N)*
I keeps halving itself (I — 20)*
While construct while (I < n)do(I +1 —I)
Properties:

k (f(A) = AP > [f3(A) — 4]
After a series of three applications of f, A ends up with the initial value of f3(A),
where f3(A) = f(f(f(A))). '

e (I+1-1™)" > (I+mn]| 1)
This property illustrates how to nest iteration.

Measuring the length of an interval

We will view the formula

‘m TTomm—" ToTTT e T e e B ‘WF Ty v

1 gy S D M MLl M O s aa s m s a
) - - e et e r———— . FUNENEEESRRE S E S 3
1 ‘ I

CHAPTER 3—FIRST-ORDER INTERVAL TEMPORAL LOGIC

as an abbreviation for the iterative construct
aksp®
This is true exactly of intervals with length e. The construct len = e expands to

ize. (len = 1)

We can similarly use formulas such as len < e.

Alternatively, we can introduce len as an interpreted 0-place temporal function

whose value for any interval sq. .. s, equals the length n:

Me...s fllen] =n

| Ezamples:
Concept Formula
The signal A is stable and the interval has > m 4+ n units stbA A (len 2 m +n)
, In some subinterval of length 2 m, X is stable ®([len = m] A sth X)
t
i I doubles in < I steps (2I ~1I) A (len < I)
Properties:

k empty = (len = 0)
i The predicate empty is true exactly if the interval has length 0.

k skip = (len = 1)
] The predicate skip is true if the interval has length exactly 1. Since time is discrete,

this is the minimum nonsero width.

k (len =m+n) =m [(len = m);(len = n))
An interval of length m+ n can be subdivided into two adjacent intervals of lengths
m and n. The converse is also true.

——— i - At B e o .

08 e B NI RO OO £

CHAPTER 3—FIRST-ORDER INTERVAL TEMPORAL LOGIC
Expressions based on nezt
We extend the operator next to handle expressions. The construct O e for an
interval sg...8, equals the value of the expression e in the subinterval s;... s,:

Mno...o.. ﬂo Cn = Mn;...o.. ﬂel
If the length of the interval is 0, the resulting value is left unspecified. The following

natural extension of nezt facilitates looking at values some specified number of units

in the future:
Mio...s [O 2] = M,,..s.[ea], where ¢ = M,,...s.[e1}
This definition results in the following properties:
b 0% = e
» O'e = Oe

We can analogously permit formulas of the form O° w, where w is itself a formula

and e is an expression.
We now show how to eliminate these constructs. The formula O° w abbreviates
H.([i=¢] A [(len =1);v)),
where z does not occur free in w or e. A formula of the form A = O°! e3 becomes
3b.[(O%[b = ea]) A (A=1)]

where b does not occur free in e; or 3.

Initial and terminal stability
The predicate istb™ A is true for an interval sq... s, if the signal A is stable in
the initial states 8g...3m. The next definition has this meaning:
™A =ger O(sthA A len =m)

Note that the formula is false on an interval of length less than m. By analogy,
tstd™ A is true if A ends up stable for at least m units of time:

tstd™ A =gyt S(sthA A len =m)

- e . PSS

e

B it adiat e e T VU

CHAPTER 3—FIRST-ORDER INTERVAL TEMPORAL LOGIC

Property:

k™A D th™A
The time factor can be reduced.

Blocking

It is useful to specify that as long as a signal A remains stable, so does another
signal B. We say that A blocks B and write this as A blk B. The predicate blk can

be expressed using the temporal formula

Ablk B =4 [(sthA D sthR)

Ezamples:

Concept Formuls
While A remains stable, so do B and C A bk (B, C)
As long as the pair (A, B) is stable, sois C (A, B) bk C

Properties:

b [AbkB A stbA] O sthB
If A blocks B and A is stable, then so is B.

= [AblkB A BblkC] > AblkC
Blocking is transitive.

ke Ablk(B,C) = [Ablk B A AblkC)
The signal A blocks the pair (A, B) exactly if A blocks both B and C. This and the
next property generalise to lists of arbitrary length.

» (AB)bkC = [AbkC v BbikC|
The pair (A, B) blocks C iff A blocks C or B blocks C.

WPTOU - ar - e e

PRt <o = s -

y

4

.

[

v

v

¥

L3

I

«

L]

N

k

i

.

o .

.

H

'

e AT el ot
5" e e
g ooy 5D ~des N &
£ patkd = . 8-

i

CHAPTER 3—FIRST-ORDER INTERVAL TEMPORAL LOGIC

W AbkB > (sthA~» Ablk B)
If A blocks B, then after A is stable it continues to block B.

The predicate A blk B can be extended to allow for quantitative timing. When
describing the behavior of digital circuits, it is often useful to state that in any
initial interval where A remains stable up to within the last m units of time, B is

stable throughout:
Ablk™ B =ger D][(atb A;len < m) D sth B]
This modification has utility in situations where B is known to be slow in responding
to changes in A.
Properties:

= AbkB = Abk°B
The original notation is equivalent to the quantitative one with blocking factor 0.

k .[Abk™B A Bblk™C] > Ablk™t"C
Transitivity accumulates blocking factors. Other properties of the predicate blk can
also be extended to include quantitative timing.

 Ablk'A D sthA
If a signal A won’t change until after it does then A is stable. This is a form of

induction over time. The converse is also true.

Rising and falling signals

A rising bit signal can be described by the predicate 1 X:
1X =gor [(X == 0); skip; (X ~ l)]

This says that X is 0 for a while and then jumps to 1. The gap of quantum length
represented by the test skip is necessary here since a signal cannot be 0 and 1 at
the same instant. Falling signals are analogously described by the. construct | X:

IX =y [(X = 1); skip; (X = 0)]

P T L

CHAPTER 3—FIRST-ORDER INTERVAL TEMPORAL LOGIC

Ezamples: 4
Concept Formula k
X is stable and Y goes up stbX A 1Y
The bit-or of X and Y falls X vY)
In every subinterval where X rises, Y falls B(tX > |Y)
X goes up and then back down 1X;1X
X twice goes up and down (1X; 1X)?
Properties:

(X ATY)2 [HX AY)A (X v Y)]
‘ If two bit signals rise, so do their bit-and and bit-or.

kX = t(-X)
A bit signal falls exactly if its complement rises. <

k [1X A beg(Y =0) A (X blkY)] > (X v Y) -
1 If X rises and in addition Y initially equals 0 and depends on X, then the bit-or of ‘
X and Y also rises.

These operators can be extended to include quantitative information specifying
minimum periods of stability before and after the transitions. For example, timing
details can be added to the operator {:

_ i 1™ X =gef [(X S0 A len 2m); skip; (X =1 A len 2 n)]
‘ This can also be expressed as shown below:
‘t P ™ X = (1X A std™X A tath™ X)

Thus, the extended form of f can be reduced to the original one with separate
details concerning initial and terminal stability.

39

o

R

CHAPTER 3—TFIRST-ORDER INTERVAL TEMPORAL LOGIC

A negative pulse with quantitative information can be described as shown

below:
lT"m'" X =

(X =~ 1 A len 2 1); skip;
(X =0 A len 2 m); skip; (X =1 A len 2 n)]

Positive pulses of the form {}"™"™X are similarly defined. These constructs can be

further modified to provide for noninstantaneous rise and fall times.

Smoothness

A bit signal X is smooth if it is either stable or has a sinéle transition. The

following definition illustrates one way to express smoothness:
smX =4¢q (stbX v 1X v |X)
The next property gives two equivalent ways to Qay that a bit signal raises or falls:
P (1X v |X) = (smX A [-X = X))
Since digital devices often require clock inputs to be smooth, it is sometimes
important to ensure that a signal has this property. The predicate sm can be ex-
tended to include quantitative timing details similar to those given for the predicates

1 and |:
m™tX =4 (smX A 8tdTX A tstd™ X)

The notion of smoothness generalizes to arbitrary signals. A scalar-valued

signal A is smooth if it is either stable or has a single transition:
mMA =g [atbA v (std A; skip; stb A)]
A list L is inductively defined to be smooth if all its components are smooth:

mL =g V0 <1 <|L| (sm Lis])

The individual components of L need not all change at the same instant.

CHAPTER 4

DELAYS AND COMBINATIONAL ELEMENTS

Delay is a fundamental phenomenon in dynamic systems and an examination
of it touches upon basic issues ranging from feedback and parallelism to implemen-
tation and internal device states. In addition, a key design decision in buiiding any
hardware simulator centers around the treatment of delay. For example, Breuer and

! Friedman [10] and Blunden et al. [8] present a number of models of propagation.
For these and other reasons, it is worth taking a detailed look at various forms of

signal propagation.
§4.1 Unit Delay

One of the simplest and most important types of delay elements can be modeled

as having the following structure:

A~ —B

Here A is the input signal and B is the associated output. The following
statement uses intervals to characterize the desired behavior:

In every subsnterval of length ezactly one unit, the instial value of
the input A equals the final value of the output B.

r.-—.—.—vM——-&..__mv
i L e R W AT RS LD TR s e f

The next predicate del formalises this:

AdelB myy @(len =1) > (A— B)

. = e
el . S g
— e —

CHAPTER 4—DELAYS AND COMBINATIONAL ELEMENTS

Properties:

» (AdelB) = (skip A [A— B])*
Unit delay can also by viewed as the successive iteration of atomic assignments.

This suggests how to implement unit delay by means of looping.

k (Adel B) = keep(A = O B)

The concept of unit delay can be expressed in semscolon-free linear-time temporal
logic.

b (Adel A) = stbA

If a signal is feed back to itself, it is stable. The converse is also true.

§4.2 Transport Delay

It is natural to extend the predicate del to cover delays over m-unit intervals:
Adel™B =4y OB(len=m D> [A— B))

Breuer and Friedman [10] refer to this as transport delay.

Propertses:

k (AdelB) = (A=~ B)
Zero delay is equivalent to temporal equality.

b Adel®A
A signal has sero delay to itself.

B (Adel™B A Bdel"C) > Adel™"C
Delay is cumulative.

B (A B)del™(A',B') == (Adel™ A' A Bdel™ B')
Delay between pairs is equivalent to component-wise delay. This generalises to lists
of arbitrary length.

kSt Ul

CHAPTER 4—DELAYS AND COMBINATIONAL ELEMENTS

e

P §4.3 Functional Delay

Often, one signal receives a delayed function of another. The following ex-
amples illustrate this and are based on the predicate del although the other delay
models later presented can also be used.

Ezamples:
! Concept Formula
X keeps on being complemented (-X)del X
B cither accepts A or itself, depending on X [if (X = 1) then A else B] dei B
N keeps on doubling 2N del N
. A receives a delayed f(A, B) f(A,B)del A
‘ » I keeps decrementing by 1 Idel(I+1)

Here is the description of a system that runs the variable I from 0 to n and

: simultaneously sums [into J:

beg(I=0 A J=0) A [(I+1)delI] A [(J+I)delT] A halt(I = n)

: . Properties:
| ® [f(A)del™ B A g(B)dei® C] > g(f(A)) dei™*" C
‘ Functional composition applies.

B (-X)ded™Y = X del™(-Y)

Bit inversion can occur either on the input or output.

] [(-'X)del™Y A (-Y) del® Z] D> Xdei™"™2Z
Two inverters cancel.

f’———‘—M‘-——A‘

CHAPTER 4—DELAYS AND COMBINATIONAL ELEMENTS
§4.4 Delay Based on Shift Register
An (m + 1)-bit vector R acting as a shift register can be specified as follows:
R[0) del R[1] A --- A R[m —1] del R[m]

Over each unit of time, the contents of R shift right by one element. That is,
the value of R[0] is passed to R[1] and so forth. This description is more formally

expressed by means of quantification:

Vi € [0, m — 1). (R[s] del R[: + 1))

. The next formula has the same meaning but is more concise:

" R[0tom — 1] del R[1 tom],

where the vector R{0tom — 1] by definition equals (R[0}, ..., R[m — 1]).

The féllowing property shows how to achieve an m-unit delay by means of such
a shift register:

k R[0tom — 1] del R[1wom] D R[0] dei™ R[m] (%)
This suggests an implementation of A del™ B of the form A shdelR B:
Ashdelg B =4 (A= R[0} A Rlm]=~ B A R[0tom — 1] del R[1tom])

Here, the value of A is fed into R[0] and B receives the value R[m]. The correctness
of this implementation is given by the following property:

b AshdelD B > Adel™ B

We can localise R in the formula A shdelp B by defining a variant A shdel™ B
that existentially quantifies over R: '

Ashdel™B may IR.[(R: signal™*') A (A shdel} B)]

R A O PRI P e

CHAPTER 4—DELAYS AND COMBINATIONAL ELEMENTS

Here the construct

SRR s e e e]

R: signal™*!

constrains R to being a vector of m + 1 signals. This notation will be described in
more detail in the next chapter. Note that R is assumed to exist without necessarily
being externally visible to an observer. The quantifier’s effect on scoping is similar
to that of a begin-block in a conventional block-structured programming language.
We call A shdel™ B an external specification of the implementation. In fact, this
is logically equivalent to the basic delay predicate A del™ B as the next property
states:

k Ashdel™ B = Adel™ B

Basically, the proof that shdel implies del follows from the property (*) given

above. The converse requires demonstrating that some R exists. Perhaps the easiest

P way to do this is by direct construction. At each instant of time, the values of the
| m+1 elements of R can be those of the next m + 1 values of B in appropriate order:

Rl{|~ 0™ "B, for0<si<m

f The output value R[m| always equals the expression O° B, which is defined to be
B’s current value. Similarly, R[0] always equals O™ B, that is, the value B will
have m units later. This technique works even if the interval has length less than

m.

§4.5 Variable Transport Delay

A batch of delay elements may have varying characteristics although each
individual device is rather fixed in its timing behavior. The predicate Avardel™" B
3 specifies that A's value is propagated to B by transport delay with some uncertain
factor between m and n:

P“-‘—‘MA———.-—
- .

2 Avardel™™ B =y 3i€[m,n]. (Adel' B)

CHAPTER 4—DELAYS AND COMBINATIONAL ELEMENTS

§
H

{ §4.6 Delay with Sampling .

Digital circuits often require that inputs remain stable and be sampled for some 9
minimum amount of time in order to ensure proper device operation. The delay
model A sade! B has this characteristic:

Asadel™B =yt B(stbA A len 2m) O fin(A = B)]

Here the input A must be stable at least m units of time for the output B to equal
A. Behavior during changes in A is left unspecified. The properties below illustrate :
two other ways of expressing sadel. We present them to demonstrate other possible
styles:

e Asadel™ B = B(tstb™ A O fin(A = B))

e Asadel™ B = [tsth™ A - . heg(A = B))

Properties:

k Ade™B > Asadel™ B
Basic delay implements sampling-time delay.

B Asadel™ B = (tstb™ A~ [beg(A = B) A A bik B))
Once the device stabilises, the input A blocks the output B.

The predicate sadel can be extended to associate some factor with the blocking
of B by A:

j Asadel™™ B sy (tstb™A ~»> [beg(A = B) A Ablk™ B))

In a sense, m is the maximum delay and n is the minimum delay.

| §4.7 An Equivalent Delay Model with an Internal State

p——

A related delay model Astdel’’™ B is based on a bit flag X that is set to 1 after
the input A has been held stable m units. Whenever X is 1, the input A equals the

XS A

K . Ny T T - "
iy & e w, 4 et . - P -'f‘;;f et gl b, T
. o= S "‘u% o S AR . e Lo AT AN . % w Y N
ot e -) . ’:.'. Y o8 ¥ I _:'}' gy 1 &
Rty ; PO RN A *¥e) oy, %

e

- e - l

CHAPTER 4—DELAYS AND COMBINATIONAL ELEMENTS

output B and blocks X, which in turn blocks B by the factor n:
AstdelD" B . =go

B([stb A A len 2 m] O fin(X =1))
A B(beg(X =1) D [beg(A= B) A Ablk X A X bik™ Bj)
In the manner described earlier, we internalize X by existentially quantifying over
it:
A stdel™™ B = 3X. (A stdels'™ B)

This external form is in fact logically equivalent to A sadel™™ B:

= Astdel™™ B = Asadel™™ B

- The following construction for X can be used:

X = (if [beg(A = B) A A blk"™ B) then 1 else 0)

The right hand expression is not a signal but is converted to one as outlined in the
next chapter.

There are a variety of specifications that use different internal signals such as
X and yet are externally equivalent.

§4.8 Delay with Separate Propagation Times for 0 and 1

Sometimes it is important to distinguish between the propagation times for 0
and 1. The following variant of sadel does this by having separate timing values
for the two cases. The delay’s input and output are both bit signals.

X 3adel0O1™™Y =qer

EB([X ~0 A len 2m] D fin(X =Y))
A B(X ~1 A len 2 n] O fin(X =Y))

Property:

kX 8adel0l™™Y D X sadel™ ™™y
The separate propagation times can be reduced to those for the more general form
of sampling-time delay by using the larger of the two parameters.

47

P P U

CHAPTER 4—DELAYS AND COMBINATIONAL ELEMENTS

§4.9 Smooth Delay Elements

It is possible to specify that between times when the delay element is steady, if
the input changes smoothly, then so does the output. We call such a device a smooth
delay element. This type of delay has utility in systems that must propagate clock
signals without distortion. Here is a predicate based on the earlier specification
stdel:

Asmdelg™ B =gt

A stdely'™ B
A B([beg(X =1) A fin(X =1) A smA] O smB)

The external form quantifies over X:

Asmdel™™ B =4y 3X.(A smdely'™ B)

§4.10 Delay with Tolerance to Noise

Sometimes it is important to consider the affects of transient noise during signal
changes. A signal A is almost smooth with factor | if A is continuously stable all

but at most ! contiguous units of time:
std A;(len s [); 80 A

The delay model toldel is similar to smdel but has an additional timing coefficient {
for showing how almost smooth input changes result in smooth output transitions:
Atoldelp™ B =yu
A stdely’™ B

A B[(beg(X =1) A fin(X =1) A [stbA;(len <);stbA]) > sm B]

From this we can obtain the external form
A toldel™™ B
The predicate smdel is a special case of toldel with a noise tolerance of 1 time unit:
b Asmdel™" B =m Atold™™' B

48

)

CHAPTER 4—DELAYS AND COMBINATIONAL ELEMENTS

§4.11 Gates with Input and Output Delays
One might specify an and-gate with both input and output delays as follows:
(X, X")saand™"Y gy 32,2'.[Xsadel™Z A X'2adel™Z' A (Z A Z2')sadel™Y]

Here a delay exists from the input X to an internal signal Z and another delay
exists from X’ to Z’. The bit-and of Z and Z’ is propagated to Y. The input
delays are given by m and the output delay by n. If we choose to ignore input

delays, the model reduces to a single occurrence of sade!l:
k (X,X')saand®" = (X A X')sadel™Y
If the internal propagation is modeled by transport delay, things are even
simpler. Here is an and-gate specified i 1 this manner:
(X, X") tand™"™Y =g 32,2'.(X del™ Z A X' del™ Z' A (Z A Z')del™Y]
The predicate tand simplifies even if the internal input delay m is not sero:

b (X, X') tand™™Y = (X A X')del™Y

§4.12 High-Impedance

Digital devices sometimes use the phenomenon of high-impedance as a decentral- -
ised means for sharing a common output among several sources. Each source has
its own enabling signal which, when on, causes data to pass to the output. When
the enable signal is off, the connection “disconnects” or “floats.” Pass transistors
in MOS semiconductor technology and tri-state drivers in TTL exhibit this kind of

~ behavior. See Gschwind and McCluskey (17] or Mead and Conway [32] for details.

The predicate A passy B specifies the connection of the signals A and B when
the bit signal X is 1:

Apassy B w4y B[(X =1) O (A==B)

e

St EmeLmUm e L e ——— s o i o ¢+ ~ee.

CHAPTER 4+—DELAYS AND COMBINATIONAL ELEMENTS

Thus the pair of devices i

(A passy B) a (A' pass-x B)

will pass the signal A to B when X is 1 and will pass the signal 4’ to B when X is ;

0. The following formula has the same semantics:
(f [X = 1] then Aelse A)~ B

The predicate pass shows that the key feature of high impedance can be modeled
in ITL without the introduction of extra bit values.

Properties:
= Apassy B = Bopassxy A
A pass transistor is commutative.

r [Apassyy B A (X ==1)] O (A= B)
During intervals when the pass transistor is enabled, the input and output are equal.

» [Apassyx B A Bpassy C] O Apassix,y)C
Pass transitor behavior is transitive.

IR R e i e

h

T y
IR e > ¢ A o . Sty

[

CHAPTER §

ADDITIONAL NOTATION

This chapter introduces some useful notation that we need before looking at

more complicated devices.

§5.1 Reverse Subscripting

Because some of the devices we present deal with numbers and their repre-
sentation as bit vectors, it is convenient to occasionally adapt an alternative sub-
scripting order. Subscripté on a vector V = (vp, ...,v») normally range from 0 on
the left to n on the right. The construct V] follows this style. However, in order to
simplify reasoning about the correspondence between a bit vector and its numerical
equivalent, a slightly different convention is sometimes used. The alternative nota-
tion V] indexes V from the right with the right-most element having subscript 0.
For example:

(1,0,5}0} =5, (1,0,5){1} =0, (1,0,5){2} =1
t t t

For a vector V and § 2 j, the expression V{itoj} forms a new vector out of
the elements indexed from ¢ down to 5. If « < j, the empty vector is returned. For
example,

(0,0,4, 2300 1} = (0,0, 4), (0, 1){0s00} = (1), (3,1,0, 1){1 402} = {)

e e

CHAPTER 5—ADDITIONAL NOTATION

§5.2 Conversion from Bit Vectors to Integers

The function nval cbnvert.s a bit vector to its unsigned numerical value. For
example,
nval({0, 1,1)) =3, nval((1,1,0,0)) = 12

The following definition of nval can be used:

nval(X) =qet Z (2 - Xf})
0si<|X]|

§6.3 Tuples and Field Names

We also permit composite values with field names. For example, the pair
(X:3,Y:4)

t has one clement accessed by the field X and another by accessed by Y. A given
field name cannot be used twice in a tuple. For an given expression e, the value in
field X can be referenced to as

eX.

Thus, if a variable A equals the tuple above, the value of A.X +A.Y is 7. Arbitrary

nesting of such references is permitted.

Sometimes it is desired to let the particular field selected be variable. In that

case we use field names such as 'X and 'Y which can be used like numerical

subscripts. For example, the expressions A[’ X] and A.X are equivalent. Thus,
if the variable b equals either X or 'Y, the expression A[b] equals either A.X or
A.Y. Note that the expression A.b is not equivalent to A[b] but rather A['b]. Rather
than extend the data domain, We view each field name as representing a distinct
numerical constant. Thus, 'X might stand for 23. We view a construct such as
'{A, B} as an abbreviation for the set {" A,’ B}.

o I AR Bl . it e o g

§5.4 Types for Lists and Tuples

Given two predicates p and g, we form the predicate p x g which is true for

any pair whose first element satisfies p and whose second element satisfies g. For H

P-——..——MJ—.__. e ——— o — ettt -

. aee e

CHAPTER 5—ADDITIONAL NOTATION

example, the formula
(nat x bit)((3,1))

is true. In general, we write such a test as
(3,1): (nat x bit)
This can be considered an abbreviation for the formula
(3, 1)] =2 A nat((3,1)[0]) A bit((3, 1){1])
The operator x extends to n-element tuples:

mxn.XP’”

where p1,...,pn are unary predicates. In addition, the construct p™ is equivalent
to n repetitions of p. For instance, the test

a: nat®

is true if a is a triple of natural numbers.

The predicate struct(X;:p1,...,Xn:Pn) checks for tuples whose elements have
field names X;,..., X, and satisfy the respective types p,,... ,p,..' For example,
the predicate

struct(X: nat,Y: bit?)

is true for tuples such as
(X:3,Y:(1,0)).

§5.5 Temporal Conversion

Sometimes a formal parameter of a predicate or function has a sort that is
slightly incompatible with that of the corresponding actual parameter. For example,
in the formula

AddV B

S

e <ttt it . < o
P-A‘.-—M

CHAPTER 5—ADDITIONAL NOTATION

the signal variable NV is in a piace requiring a static delay factor. We handle this by
temporally converting the occurrence of N to a static variable. Thus, the formula

just given is considered a syntacti¢ abbreviation for
3. [(t = N) A (Adel’ B)].

In essence, the initial value of IV is used as the delay factor. This convention cor-

responds to the technique of call-by-value parameter passing in standard program-

ming languages. The formula

A=~ B

expands to
3C.(@(C =8) A (A== C)]

The occurrence of the interval variable B is replaced by a signal C that agrees with
8 in all terminal subintervals.

- PP

i et S et]
.

CHAPTER 6

ADDERS

In many computations involving arithmetic operations, it is advantageous to

" directly reason about numbers. We will now concentrate on addition. To express

that the numerical variable I always equals the sum of J and K, we write the
temporal formula
I~ (J+K)

If there is, say, a unit delay, this might be given as the formula
(J+K)delI

Even though actual computers possess only finite capacity, it is quite natural to
assume an unbounded range of values. When finite precision must be accounted
for, modular arithmetic can be used. For example, if it is known that I, J and K
all range between 0.and 2™ —1, then we can represent addition in the manner shown
below: .

I [(J + K)mod 2"}

Such descriptive techniques are sufficient for many purposes. However, in
specifications of actual digital circuits we must often descend to the level where
numbers are implemented by bit vectors. For instance, given that Inl, In2 and
Ot are all n-bit vectors, the following formula specifies that Out always equals the
n-bit sum of Inl and In2: '

nval(Out) == ([nval(In1) + nval(/n2)] mod 2™)

F,... heae L B i o ol i - g

B A v

CHAPTER 6—ADDERS

Bit signals for carry-in and carry-out can be included in the manner below:

nval({Co) || Out) == [nval(In1) + nval(In2) + Ci]

The list operator || appends the lists (Co) and Out together. Since the carry-in Ci |

is a single bit (i.e., 0 or 1), it can be used directly in arithmetic expressions without

reference to nval.

§6.1 Basic Adder

Let us now consider an adder specification which includes some timing infor-

mation regarding propagation delay. The diagram below gives the device’s various

fields:
Inl: Bit"= L, Out: Bit"
| In2: Bit"=
| Ci: Bit—| | OO B
n: nat,

(prd, lat): time

In this and further diagrams, we generally use a single arrow (—) to indicate a bit
input or output and a double arrow (=) to indicate a vector signal. The variables
at the bottom of the diagram are static and usually de.ermine the device’s sise
or timing coefficients. Here, prd stands for the adder’s propagetion delay and lat

‘ stands for the adder’s latency or blocking factor. The temporal specification makes
| | this more precise.

Formal specification of addition circuit

The predicate BasicAdder formally characterises the circuit’s desired structure
and behavior. The device’s various inputs, outputs and timing coefficients are rep-
resented as fields of the single parameter A. For example, the expression A.CY equals
the carry input. The predicate’s definition makes reference to other predicates given

f-'.-‘“_

CHAPTER 6—ADDERS |

BasicAdder(A) ==4er
BasicAdderStructure(A)
A B Add(A) _ ' -‘

The predicate BasicAdderStructure presents A's fields. The predicate Add gives the) !
control sequencing required to perform an addition. The operator [indicates that
Add must be true in all subintervals.

b e A b e e

Definition of BasicAdderStructure:

The definition below of BasicAdderStructure contains information on the physi-
cal structure of the adder. Fields starting in upper case represent signals while
lower-case ones are static. Constructs such as “%Inputs” are comments included

| : to classify the various circuit fields. For example, A.In1 is an input bit vector. The
input bit vectors Inl and In2 are of length n as is the output vector Out which
yields the sum. The input bit Ci determines the carry input and Co receives the

N .

carry output. The values /at and prd are the latency and propagation times.
BasicAdderStructure(A) =gor

b A: atruct[
(In1, In2): Bit™, %Inputs
; Ci: Bit
! . Out: Bst™, %Outputs
Co: Bit t

L e

n: nat,(prd, lat): time %Parameters

]

For brevity, the prefix “A.” is omitted when a field is referenced below.

Definition of Add:

R S

;" After the inputs Inl, In2 and Ci are held stable long enough, the combined
' numerical value of the outputs Out and Co equalis the inputs’ numerical sum. In

|
i

¢ CHAPTER 6—ADDERS

addition, there is a certain amount of latency. Recall thft the function nval converts
a bit sequence to the corresponding numerical value.
Add(A) =def
(stb{In1, n2, Ci) A len 2 prd)
~»[nval({ Co) || Out) = (nval(Inl) + nval(In2) + Ci)
A (In1, n2, Ci) blk*** { Co, Out)]

It is possible to modify the predicate BasicAdder to handle other combinational

logic elements with similar timing characteristics.

Combining two adders

Two such adders can be used to build a bigger one by appending the cor-
responding vector inputs and outputs and using the carry-out of one adder as the
carry-in of the other. The following property formally expresses this:

k [BasicAdder(A) A BasicAdder(B) A (A.Ci = B.Co)] O BasicAdder(C)

]

where the tuple C' has exactly the following fields and connections to A and B:

CInl = A.nl| B.Inl

: CIn2 = A.In2||B.In2
| . C.Ci =~ B.Ci
J { C.Out = A.Out]| B.Out
i CCo = A.Co
j Cn = An+Bn
{

C.lat = min(A.lat,B.lat)

| - C.ptd == A.prd + B.prd

Here A contains the most significant bits and B contains the least significant ones.
The operator || appends two lists together.

!

§6.2 Adder with Internal Status Bit

AR T e Rl .]

g

R

CHAPTER 6—ADDERS

An adder of length n can be defined to include an internal status bit in the

manner of the delay model stdel. Here is the device structure:

Inl: Bit"=
In2: Bit™=4 Status: Bit

Ci: Bit—

= Out: Bit™

~ Co: Bit

' ' n, prd, lat

The specification given below is externally equivalent to BasicAdder.

Definstion of StatusAdder:

StatusAdder(A) =gor
o StatuaAdderStructure(A)
’ - A @ Add(A)
Lo A @ Steady(A)

Definstion of StatusAdderSiructure:

Moo

StatusAdderStructure(A) =qqr

A: struct|
X | | (In1, In3): Bit™, Ci: Bit
|} Ost: Bit™, Co: Bit
{ - Status: Bit
{ n: nat, (lat, prd): time

Z%Inputs
%Outputs
%Internal
%Parameters

CHAPTER 6—ADDERS

Definstion of Add:

After the inputs remain stable long enough, their sum is propagated to the
outputs and the status bit equals 1.

Add(A) =def

(stb(In1, In2, Ci) A len 2 prd)
> fin([Status = 1]
A [nval((Co) || Out) = nval(In1) + nval(In2) + Gi))

Definition of Steady:

Whenever the signal Status is 1, there is a certain amount of blocking from the
inputs to it and the outputs.

Steady(A) =qor
beg(Status = 1)
> '[(In1, In2, Ci) bik Status A (Inl,In2, Ci) bik'** (Out, Co)]

§6.3 Adder with More Detailed Timing Information

Further timing details can be accomodated as we now demonstrate. Suppose
each input has its own propagation time. This can be specified as follows:

Definition of DetasledAdder :

DetasledAdder(A) migqe
DetasledAdderStructure(A)
A @ Add(A)

PR SR

o T AT U o o e e

o

ey

-

CHAPTER 86—ADDERS

Definstion of DetasledAdderStructure:

In this adder, there isa separate parameter for each input's propagation time.

DetasledAdderStructure(A) =ger

A atruct[.
(In1, In2): Bit™, Ci: Bit %Inputs
Out: Bit™, Co: Bit %Outputs
n: nat, %Parameters
prd: (Inl, n2, C%): time,
lat: time

]

We use the construct
prd: (Inl, In2, Ci): time

to indicate that prd has three subfields accessible as prd.Inl, prd.In2 and prd.C%.

Definstion of Add:
Here each input has its own time for stabilizing.

Add(A) =ger
(tstd® 4™ In1 A tath?" 472 [n2 A tsth? 45)
~>[nval((Co) || Out) = (nval(Inl) + nval(in2) + Ci)
A {Inl, n2, Ci) bik'** (Co, Out)]

The sampling requirements can also be given in a less redundant form:
Vfield € *{Inl, In2, Ci}. (tatb?r4l7i19] A(feld])

Recall that '{In1, In2, Ci} represents the set

(' In1,’ In3,’ G}

R e S .

i] B TR s N

CHAPTER 6—ADDERS

§6.4 Adder with Carry Look-Ahead Outputs

Long adders usually have extra control .signals to speed up the propagation of
carry bits. One technique is called carry look-ahead (see [17]) and produces sum and
carry outputs as well as two bit signals Gen and Prop. The structure is as follows:

Inl: Bit"= b Out: Bt

— Co: Bit
In2: Bit"™ =)
— Gen: Bit

Ci: Bit— — Prop: Bit

n, prd, lat

The bit signal Gen is 1 iff the result of adding Inl and In2 will generate 1 as carry
no matter what the carry input Cs is. The bit signal Prop is 1 iff the carry input C¥
will be propagated unchangéd to the carry output Co. Because both Gen and Prop
can be computed without the carry input, they need not wait for carry rippling.

Definition of CarryLookAheadAdder :

CarryLookAheadAdder(A) =g4et
CLAAdderStructure(A) -
A @ Add(A, output), for output € '{ Out, Co, Gen, Prop}

The last line is equivalent to

@ Add(A,’ Out) A B Add(A,’ Co) A B Add(A,’ Gen) A @ Add(A,’ Prop)

N RV AN £ TR 8

Eps

NS P AT e

SR

CHAPTER o—ADDERS

Definition of CLAAdderStructure:

CLAAdderStructure(A) mmyer

A: atruct[
(Inl1, In2): Bit", Ci: Bit %Inputs
Out: Bit"™,(Co, Gen, Prop): Bit %Outputs
n: nat, %Parameters

prd: (Out, Co, Gen, Prop): time,
lat: (Out, Co, Gen, Prop): time

]

The specification gives various propagation and latency times by making prd and
lat each have a subfield for every output.

The function snputs shows the inputs used by each output:

output inputs(A, output)
Out (Ci, Inl, In2)
Co (Ci, Inl, In2)
Gen (In1, In2)
Prop (In1, In2)

As noted earlier, the generate and propagate signals can be computed without
reference to the carry input.

Definstion of Add:

For any selected output, after the appropriate input fields remain stable long
enough, the device satisfies the predicate result and the output depends on its
associated inputs.

Add(A, output) =4y

(b inputs(A, output) A len 2 prd[outpst])
~>[result(A, output) A inputs(A, output) bk Aloutput]]

where § = lat[ouéput] and the predicate result has the following definition:

T " —— R ——— R Y
CHAPTER 6—ADDERS
output result(A, output)
Out nval(Out) = (nval(Inl1) + nval(In2) + Ci) mod 2
Co Co = carry(n, nval(Inl1), nval(In2), C¥)
Gen Gen = carrygen(n, nval(In1), nval(In2))
Prop Prop = carryprop(n, nval{Inl), nval(In2))

The functions carry, carrygen and carryprop compute appropriate values:
carry(n,j, k,ci) =gt (J+k+ci)+2"
carrygen(n, 7, k) =qer if (Vci € {0,1}. carry(n, 7, k, ci) = 1) then 1 else 0
carryprop(n,j, k) =aet if (Vei € {0,1}. carry(n, 3, k, ci) = ci) then 1 else 0
Both carrygen and carryprop can be simplified:
| carrygen(n, 5, k)=14(j+k22")thenlelse0

carryprop(n,§, k) = if (+ k =2" — 1) then 1 else 0

Thus, a carry is generated exactly when the sum of the two numbers ; and k exceeds
the capacity of n bits. Similarly, the incoming carry is propagated if the sum of j
and k is the “borderline” value 2™ — 1. In practice, a carry look-ahead adder may
output Gen and Prop in complemented form as the signals Gen and Prop.

If we ignore propagation delay, the adder has the following behavior:

Voutput € '{Out, Co, Gen, Prop}. [@ result(A, output)]

- Apn P

O R

CHAPTER 7

LATCHES

A latch is a simple memory element for storing and maintaining a single bit of
data. The two inputs S and R determine what value is stored with S standing for
Set and R standing for Reset. When the latch is steady, the outputs Q and Q are
complements. Note that the bar in “Q” is part of the name and not an operator.
Such elements are among the simplest storage devices' that can be constructed
out of TTL gates and provide a basis for building counters and other sequential
components.

§7.1 Simple Latch

Here is one possible latch specification:

(S,R) lateh™™ (Q, Q) =qeor
A[(S=~0A Rms1 A len2m)
~>(beg[@ =0 A @ =1] A S bik™(Q,Q))]
AB[(S=~1AR=0Alen2m)
~(beg[@ =1 A T=0] A RbK"(Q,Q))]

For example, the specification states that after S is 1 and R is 0 for at least
m units of time, Q equals 1, @ equals 0 and R blocks both with factor n. That
is, the outputs are stable as long as R remains “inactive” at 0, independent of S’s

R Sy N .

CHAPTER 7—LATCHES

Such a latch can be constructed out of two nor-gates that feed back to one

another:
k [~(R v Q)sadel™™Q A (S v Q) sadel™™ @ A n 2 1]

> [(S, R) latch®*™™ (Q, Q)]

For example, to set @ to 1 and @ to 0, we keep R at 0 and S at 1. After m units of
time, Q equals 0 and after 2m units of time, @ equals 1. At this point both @ and
'Q are stable as long as R remains equal to 0. The gates’ blocking factor n must be

nonzero in order to achieve a feedback loop that maintains the values of @ and @.

§7.2 Conventional SR-Latch

The latch specification now given has separate parts for entering and main-
taining a value in the device. The following sort of table is often given to describe

operation for various input values:

S R Q Q
1 0 1 0
0 1 0 1
0 0 unchanged
1 1 unspecified

For example, assuming unit delay, the behavior of @ can be expressed by the formula
@(skip > ([beg(S = ~R) > (S — Q)] A [beg(S =0 A R =0) > tb Q))]

The following predicate SRLatch goes into more details on timing.

Definition of SRLatchStructure:

The latch includes the internal bit flag Status:
SRLatchStructure(Ll) =gyor

L: atruct[
(S, R): Bst %Inputs
(Q, Q): Bit %Outputs
Status: Bit %Internal

(prd, lat): time %Parameters

4
¥

o e

CHAPTER 7—LATCHES

We use Status to indicate when the device is steady.

Definition of SRLatch:

The latch can be set to 1, cleared to 0, disabled or kept steady.
SRLatch(L) =gor
SRLatchStructure(L)
A @ Store(L,?), for <€ {0,1}
A @ Disable(L)
A @ Steady(L)

The formula
@ Store(L,z), fori€ {0,1}

is equivalent to
@ Store(L,0) A @ Store(L,1)

Definition of Store:

This definition uses the static variable ¢ to determine the value to be stored:
Store(L,t) =qet

[(S) A (R ~) A (ten > pra)
> fin[(Status = 1) A (Q =1)]

Alternatively we can omit ¢ by using a formula such as
[stb(S,R) A beg(S = -R) A (len = prd)] > fin[(Status =1) A (@ = S|

This works because S and R must be complements when setting or resett;ing and S
matches the value stored in Q.

Definition of Disable:

If the device is initially steady and the two inputs S and R smoothly become
0 for a period of sufficient length, the device remains steady and the outputs are

«rrrsocmy

s

LRI AR IR AR 24 S AR~ T+ 7 roem i s

iy

CHAPTER 7—LATCHES

stable.
Disable(L) ==ger

[beg(Status =1) A am®P"4S,R) A fin(S=0 A R= 0)]
> [fin(Status =1) A stb{Q, Q)]

Definstion of Steady:

When the flag Status equals 1, the outputs @ and @ are complements. In
addition, the Aag and outputs depend on the two inputs S and R.
, Steady(L) =get

beg(Status = 1)
> [beg(@ = ~Q) A (S, R) blk Status A (S, R) bik™ (@, Q)]

Constructing an SR-latch

The next property shows how the first latch described implements a conven-
tional SR-latch:

| k [(S, R) latch™" (@, Q)] > SRLatch(L)

! where the tuple L has exactly the following fields and connections:

LS = S
LR = R
LQ =~ Q@
L =~ @
Lprd = m
Llat = n

and L.Status is constructed as follows:
L.Status ~

f(3i€{0,1}.(Q=1 A =3 A (S,R)[}] =0 A ({S,R)[s]) bik™ (Q, Q)]) then 1 else 0

——

At all times, L.Status is set to 1 if Q and Q have complementary values and are
blocked by S if @ == 0 and by R if @ = 1. The quantified variable 1 is used to i
determine the values of @ and @.

e e . ARSI B s ittt e Attt

e Nl vy -

CHAPTER 7—LATCHES

§7.3 Smooth SR-Latch

The predicate Store in the specification SRLatch can be modified to include
additional details regarding smooth transitions. As before, Store shows how to enter
0 or 1 into the latch. In addition, if the status bit is initially 1 and the inputs S and
R are smooth, the outputs are also smooth. Notice that there is no requirement

that @ and @ change at exactly the same time.
Store(L,1) =get
(tstbP (S, R) A fin[(S =1) A (R = ~i)]]
> [fin(Status =1 A Q =1)
A ([sm(S,R) A beg(Status =1)] > sm(Q, @))]

§7.4 D-Latch

A simple D-latch has one input pin to selectively enable the latch to accept data
and another to indicate the actual value to be stored. The operation corresponds
roughly to the following table, where E and D are the enable and data inputs, and
Q@ and @ are the outputs:

E Dl @
1 oo 1
1 1|1 0
0 - { unchanged

When E is held active at 1, D’s value is propagated through the device as through
a delay element. When E is 0, the device maintains whatever value is stored,
independent of D. The formula below uses unit-delay to describe this:

(¢f (E = 1] then (D, ~D) eise (@, @) del (@, @)
If we just look at the behavior of @, this reduces to

(7 [E = 1] theln D else Q) del Q

The D-latch is also referred to as a transparent laich because when E is enabled,
the input data passes through to the output.

B s .

CHAPTER 7—LATCHES

Definition of DLatch:

As with the SR-latch, the specification has predicates for examining, modifying
and disabling the device:
DLatch(L) =def

DLatchStructure(L)
A @ Store(L)

A @ Disable(L)

A @ Steady(L)

DLatchStructure(L) =qet

L: atruct[
(E, D): Bit %Inputs
(@, Q): Bit %Outputs
Status: Bit %%Internal

(prd, lat): time %Parameters

Definition of Store:

When the latch is enabled, the data signal D’s value propagates to the output
Q.
Store(L) =qot

((E=1) A stbD A (len = prd)] O fin[(Status =1) A (Q = D)

Definition of Disable:

If the enable signal drops to 0 and the data remains stable, the latch becomes

disabled and retains the value it was set to.
Di’sable(L) =def

[L0?79E A stbD A beg(Status = 1)]
> [fin(Status =1) A st5(Q, Q)]

CHAPTER 7—LATCHES

Definition of Steady:

Whenever the signal Status equals 1, the outputs @ and @ are complements
of each other. If E is disabled, it blocks the status flag and outputs. When E is
enabled, the flag and outputs are blocked by E and the incoming data signal D.

Steady(L) =get
beg(Status = 1)
> [beg(@ = -Q) A V bik Status A V bik"* (Q, Q)]

where V is a function of the enable signal’s initial value:

E | 14
0 (E)
1 (E, D)

Building a D-latch

A D-latch can be implemented by connecting a suitable combinational interface
to the inputs of an SR-latch. The interface has inputs E and D and outputs S and
R with stable-state behavior given by the following table:

E D}| S R

1 0 0 1
1 1 1 0
0 - 0 0

When the interface is enabled with E at 1, the data signal D controls S and R
for clearing or setting. If E is 0, both S and R are deactivated. The interface has
the following description:

Definition of DLInterface:

DLInterface(A) =gt
DLInterfaceStructure(A)
A @ Store(A)
A @ Disable(A)
A @ Steady(A)

S U O

P T

CHAPTER 7—LATCHES

Definition of DLInterfaceStruciure:

DLInterfaceStructure(A) =qor
A: struct[
(E,D): Bit %Inputs
(S, R): Bit %Outputs
Status: Bst %Internal 4
(prd, lat): time %Parameters

Definstion of Store:

When the device is ehabled, the outputs eventually reflect D and its comple-
5 ment. This is done so that any connected SR-latch will be actively set to D’s value.
Store(A) =4t
[E=~1 A stbD A (len 2 prd)]
> fin[(Status =1) A (S=D) A (R=-D))

Definition of Disable:

When the interface is disabled, both outputs smoothly change to 0 so that any
: connected SR-latch retains its value.
‘ Disable(A) =ger
(\9*¢E A sthD A beg(Status = 1)]
D [fin(Status =1 A S=0 A R=0) A am(S, R)]

Definstion of Steady:

When the device is steady, the status bit and outputs are blocked by the
appropriate inputs:
Steady(A) =yt
beg(Status = 1) D (V bik Status A V blk™* (S, R)) |

| 72

v,

AT T2 oyt rredegimt o e . AL . R e ¥y F:% gy o FURRRY DRV, -
e , IR I SR SRt L N o |
ok et 3 : R . [e b

T 3 add iy S ot atiin SRR R oo ©1y
e SRR T i R A 5 B A R R ’ * ¥ TR Oy SR

CHAPTER 7—LATCHES

where V is based on the initial value of E:

E | Vv
0 (E)
1 (E, D)

Combining the interface with SR-latch

The following predicatc shows how to connect the interface's outputs to the
inputs of an SR-latch:

DLatchImplementation(A,L) =ger

DLInterface(A) A SRLatch(L)
A (A.S=~L.S) A (AR= L.R)

The next property states that this implementation results in a D-latch:

k . DLatchImplementation(A,L) > DLatch(M)

where
M.E ~ AE
M.D ~ AD
M.Q ~ L.Q
M.Q ~ LQ
M.Status =~ A.Status A L.Status
M.lat = A.lat + L.lat

M.prd = A.iml + L.prd

The interface itself can be built from combinational gates based on the steady-

state formula
S=(EAD) A R=(EA-D)

We omit tl_le details.

2 e TP R

O

e

CHAPTER 7—LATCHES

Introducing a hold time

In practice, a D-latch’s data input need not be held stable during the entire
period when the D-latch is disabled and the enable signal drops. This can be for-
malized by adding a kold-time parameter hld and redefining Disable to incorporate
it:

Disable(L) =ger
[19P4E A E bik™¢ D A beg(Status = 1))
3 > [fin(Status = 1) A stb(Q, Q)]

A, S,

. 74

CHAPTER 8

FLIP-FLOPS

§8.1 Simple D-Flip-Flop

The simple D-flip-flop described here has as inputs a clock and a data signal.
The overall structure is given by the following diagram:

Ck: Bit— Q: Bit
“ D: Bit— - @: Bt
(el, ¢2, c3, hld, lat): time

If we ignore the clock input Ck and assume unit delay, the flip-flop behavior
can be described by the formula

A B e

[D del Q] A [(-D) del Q]

The predicate SimpleDFlipFlop given below takes a more detailed look at clocking

and propagation. '

CHAPTER 8—FLIP-FLOPS

Definition of SimpleDFlipFlop:

SimpleDFlipFlop(F) =gt
Simple DFF Structure(F)
A @ Store(F,1), for i€ {0,1}

Definition of SimpleDFFStructure:

SimpleDFFStructure(F) ==qer

F: atmct[
(Ck, D): Bit %Inputs
(@, Q): Bit %Outputs

(c1,¢2,¢3, hid, lat): time ~ %Parameters

Definition of Store:

The predicate Store shows how to store a value in the flip-flop:
Store(F,5) =myer
[t1cte3e3Ck A Ck bikMID A beg(D = 1))
~>[beg(Q =1 A =1%) A Ck bik'** (Q, Q)]

The flip-flop specification can be generalized into a multi-bit register by rep-
resenting the input data and the output as vectors of the appropriate .length. If
still more detail is deaired, such a register can be viewed as a collection of one-bit
flip-flops, each with its own status bit. Incidentally, it is easy to connect, say, the
output of one device to the cleck input of another. Here is an example:

SimpleFlipFlop(F) A SimpleFlipFlop(G) A (F.Q »s G.Ck)

78

T e T
*

x

O R T N O

B T S

b NV e b ey K ST R i T T

CHAPTER 8—FLIP-FLOPS

§8.2 A Flip-Flop with More Timing Information

The predicate DFlipFlop presented below includes additional timing details.
When the clock signal rises, the current value of the data line is stored in the device.
Falling clock edges leave the stored value unchanged. This description also takes
a more precise look at the process of setting up the input data prior to triggering.
When the internal flag Status equals 1, as long as the clock is stable, the output bit
@ remains stable and is also available in complemented form as Q.

Definition of DFlipFlop:
Here is the main predicate:
DFlipFlop(F) =gar
DFlipFlopStructure(F')
A @ Store(F)
A B Nontrig(F)
A @ Steady(F)

Definstson of DFlipFlopStructure:

DFlipFlopStructure(F) =g4et

F: atmct[_
(Ck, D): Bit %Inputs
(@,Q): Bit %Outputs
Status: Bit %Internal

(stp, prd, hid, lat): time Z%Parameters

Definition of Stove:

The predicate Store shows how the clock triggers the flip-flop to accept a new
value. The data must not change until after the clock goes high. Before the actual

1 CHAPTER 8—FLIP-FLOPS

triggering, the clock and dats are set up by being initially stable for at least stp
! units of time. The actual clocking is given by the predicate Trigger.

Ston(F) =0
(atb(Ck,D) A [len 2 stp]) ~ Zhgyer(F)
If desired, we can have separate set-up times for the clock and data inputs. For

example, the value stp.Ck can give the time required to set up the clock. The
following formula demonstrates one way to do this:

g (tstb**PC* Ck A tsth**PC D) 5 Trigger(F)
! Incidentally, an externally equivalent D-flip-flop specification can be given that

- includes an additional internal field SetupStatus equaling 1 whenever the inputs
* ’ have been set up.

Definstion of Trigger:

After the clock rises and triggers the device, the data input D must remain
stable for at least the hold time specified by the parameter hld. If this condition
| is fulfilled, the device ends up steady with Status equaling 1 and Q receiving D'’s
initial value.

Trigger(F) =saet |
(1974Ck A Ck blk™4 D) > [fin(Status =1) A (D — Q)]

Definition of Nonirig:

I the clock has s falling or non-#riggering edge and the devics is initially steady
then the device remains steady and outputs are stable.
- Nontrig(F) wae

g | o [19mk & beg(States = 1)]
" 2 [fin(Status = 1) A '“(Q. ml

iy i H‘Jﬁﬁ%’f . (e

CHAPTER 8—FLIP-FLOPS

Definition of Steady:

Whenever the status bit equals 1, it and the outputs remain stable as long as
the clock does, independent of the behavior of the data input. The outputs are
complements.

Steady(F) =qor

beg(Status = 1)
> [beg(@ = ~Q) A Ck bk Status A Ck blk** (Q, Q)]

If desired, the latency factor can be a function of the initial value of the clock or

even the currently stored value.

Comparison of the predicates SimpleDFlipFlop and DFlipFlop

The next property shows how to reduce the predicate DFlipFlop to the predi-
cate SimpleDFlipFlop presented earlier: '
» DFlipFlop(F) D SimpleDFlipfiop(G)
where G is constructed from F as follows:

Glfield] ~ F(field], for field €'{Ck,D,Q,Q}

G.cl = F.stp
G.c2 = F.prd
G.c3 = F.prd
Ghid = F.hd-
G.lat = F.lat

Simplifying the predicate Store in DFlipFlop
By merging the processes for setting up and triggering the flip-flop, we can
eliminate the predicate Trigger and define Store as follows:
(1*4P*"4Ck A Ck blkMe D) O [fin(Status =1) A (D — Q)]

Here the clock input is set up at least stp units of time. Because the clock blocks
the data input D, D is also set up.

P e

CHAPTER 8-FLIP-FLOPS

§8.3 Implementation of D-Flip-Flip

A D-flip-flop can be constructed out of two components in a manner similar to
building a D-latch. The first component, known as the master latch, serves as an
interface between the clock and data inputs on one hand and the second component,
the slave latch, on the other. The slave provides the flip-flop’s outputs. There are
four key time periods in the overall flip-flop operation: clock is 0, clock rises from
0 to 1, clock is 1, and clock drops from 1 to 0:

e When the clock is 0, the master latch disables the slave, which maintains whatever
value was previously stored. At this time, the clock and data inputs can be set
up for clocking in a new bit.

o Upon the clock transition from 0 to 1, the master latch itself stores the incoming
data signal and actively propagates it to the slave. The slave in turn adjusts the
outputs to reflect the new data.

e As long as the clock remains at 1, the master continues to transmit the stored
value to the slave.

e When the clock drops from 1 to 0, the master disables the slave, leaving the
stored value undisturbed. At this point, the cycle of clocking can be repeated.

Specification of the master latch

The master latch has the following structure:

Ck: Bit—» —S': Bit

D: Bit— —R: Bit

(stp, hid, prd, lat): time

B e . |
: R 2 .
. .

e T =

CHAPTER 8—FLIP-FLOPS

The timing parameters have the same form as in the flip-flop description since

the master device has the clock and data signals as inputs.

Master(M) =
MasterStructure(M)
A @ Store(M)
A @ Nontrig(M)
A @ Steady(M)

Definition of MasterStructure:

MasterStructure(M) =qor

M: struct[
(Ck, D): Bit
(S, R): Bit
Status: Bit
(3tp, hid, prd, lat): time

Definstion of Store:

The data value present when the clock rises determines the S and R outputs.

StOTC(M) = def

%Inputs
%Outputs
%Internal

%Parameters

(stb{Ck,D) A ien = stp) ~» Trigger(M)

where the predicate Trigger is defined as follows:
Trigger(M) =Baer

(19**4Ck A Ck bik™¢ D)
> [fin(Status == 1) A (D — S) A (~D = R)]

sl
ORI # A e

i

B

CHAPTER 8—FLIP-FLOPS

Definstion of Nontrig:

If the master latch is initially steady, then after the clock drops, both S and
R become smoothly disabled at 0. '

Nontrig(M) =det .
[10P4Ck A beg(Status = 1)]
> [fin([S=10] A [R=0] A [Status =1]) A sm(S,R)]

Definition of Steady:

When the master latch is steady, the status flag and the outputs are blocked

' by the clock.

Steady(M) =ger ’
beg(Status = 1) D [Ck blk Status A Ck blk** (S, R)]

Combining the latches

The next predicate shows how the master and slave latches are combined to

implement a D-flip-flop. We use an SR-latch as the slave.

DFFImplementation(M,L) =qer

Master(M) A SRLatch(L)
A (M.S =~ L.S) A (M.R = L.R)

| The mapping from the latches to the flip-flop takes the following form:
e DFFImplementation(M,L) D> DFlipFlop(F)
where the tuple F' is constructed as follows:

F.Ck =~ MChk
F.D

AD-A136 634 REASONING ABOUT OIGITAL CIRCUITS(U) STANFORD UNIV CA 2/2
DEPT OF COMPUTER SCIENCE B C MOSZKOWSKI JulL 83
STAN-CS-83-970 N00039-82-C-0250

UNCLASSIFIED F/G 9/2

o b e

SN

‘mgﬂﬁgm
LI ¥“ | HY
= W

o
o

EhaL

-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

T T o o PoT

-

. cvet——

R a ﬁ.w%g- rt

[RN

z_

oS AR IR A1,

CHAPTER 8—FLIP-FLOPS

FS m~ LS

F.R = LR

F.Status == (M.Status A L.Status)
F.atp = Malp

F.prd = L.prd + M.prd

F.hid = M.hid

F.lat = L.lat + M.lat

§8.4 D-Flip-Flops with Asynchronous Initialization Signals

Integrated circuits such as the TTL 7474 chip {48] contain D-flip-flops with
extra inputs for initialisation. Since these pins are used more or less independently
of the clock, they are called asynchronous. The device considered here has a single
asynchronous input Clr:

Ck: Bit— —+Q: Bit
D: Bit—+ Status: Bit

- (): Bst
Clr: Bit— Q

sip, prd, hld, lat

Definition of AsynchDFlipFlop:

The specification has predicates for operating the clock and clear signals:
AsynchDFlipFlop(F) =ger
AsynchDFF Structure(F)
A @ UseClock(F)
A @ UseClear(F)
A @ Steady(F)

-

CHAPTER 8—FLIP-FLOPS

Definition of AsyncADFFStructure:

AsynchDFFStructure(F) =g

F: struct(
(Ck, D, Clr): Bit %Inputs
(@, Q): Bit %Outputs
Status: Bit %Internal
(stp, prd, hid, lat): time %Parameters
]
Definition of UseClock:

During periods when the input Clr equals 0, the device acts according to the
earlier specification DFlipFlop:
UseClock(F) =g
(Clr = 0) > DFlipFlop(G)

where G contains exactly the following fields of F:
Ck,D,Q, Q, Status, stp, prd, hid, lat

Definstion of UseClear:
When the clock is stable, the input Clr can be used to initialise the flip-flop:
UseClear(F) =myq
stb Ck D [Clear(F) A Disable(F))

Definition of Clear:

I the input Clr equals 1 long enough, the outpﬁt Q is seroed and the device
becomes steady: :
(Clras 1 A len 2 prd) O fin[(Status == 1) A (Q = 0))

i o i e s £k

tin e B 2

Definition of Disable:
When the device is steady and the input Clr drops to 0, the device 1
steady: :

Diaable(i‘) Eger
[1%%7¢Clr A beg(Status == 1)] > fin[(Status = 1) A stb(Q, Q)]

Definition of Steady:

When the flip-flop is steady, the inputs Ck and Clr together block the signals
Status, Q and Q:

Steady(F) e |
beg(Status = 1) > [beg(T = ~Q) A (Ck, Clr) bik (Status,Q, Q)]

A T S S R . S A TR A R e

& e i

e T i
.

CHAPTER ¢

MORE DIGITAL DEVICES

We now consider techniques for describing and reasoning about multiplexers,
random-access memories, counters and shift registers. '

§9.1 Multiplexer

A multiplexer has a number of addressible inputs and can selectively output
any one of them. The device considered below can be optionally disabled, in which
case it outputs a sero. The general structure is as follows:

Addr: Bit"a!

In[0]: Bit—|
: = Out: Bit
In[2™ - 1): Bit—

E: Bit—

n: nat,
(prd, lat): time

The device operates roughly according the table below:
operation E | Out
select 1 | Infloc]
disable 0 - 0

g

rp———

CHAPTER 9—MORE DIGITAL DEVICES

where loc == nval(Addr). If we ignore propagation delay, the multiplexsr behaves
according to the formula.

Out = (if [E = 1] then In[nval(Addr)] else 0)
During periods when the device is enabled with E = 1, the formula reduces to

Out =5 In|nval(Addr)]

Definition of Multsplezer:

The multiplexer's main predicate is as follows:
Multiplezer(X) =4et
MultiplezerStructure(X)
A B Select(X,loc), for loc € [0,n -»1]
A B Disable(X)

Definstion of MultsplezerStructure:

The device has an n-bit vector Addr for selecting one of 2™ possible incoming
bits of the vector In.

MultiplezerStructure(X) =Eqor

X: struct|
Addr: Bit", In: Bit'®"), E: Bit %loputs
Out: Bit %Onutputs
n: nat, (prd, lat): time %Parameters
]
Definition of ‘Select:

If the enable signal E is held at 1 and the address line and its associated input
are stable, the output ends up equal to the input line indicated by the static variable

" o
5
il i

s

CHAPTER 9—MORE DIGITAL DEVICES

Select(X,loc) yer

(IE = 1] A atbInfloc] A [nval(Addr) =s loc] A len 2 prd) -
~>[beg(Out = Inlloc]) A (E, Addr, Infloc]) bik'** Out)

Definstion of Disable:

Holding the signal E at 0 clears the output.
D:'oable(x) EEder
(E=s0 A len 2 prd) ~> [beg(Out == 0) A E bk Out]

Alternative specifications

Like the adder discussed earlier, the predicate Muitiplezer can be equivalently
specified with an internal status bit and predicate Steady.

The timing parameters could be made more detailed so that, for example, the

p'anmeber select.prd would give the propagation time when using the predicate
Select.

§9.2 Memory

The memory described here has the following form

o |
Addr: Bit Statws[0}: Bit |—Out[0]: Bit
Data: B:'t.
E: Bit ' -
Statws[2™ — 1}: Bit |-{Out[2™ — 1]: Bit

n: nat,
: (prd, stp, lat): time :
There is a series of calls, each associated with status and output bits. At any time,
at most one cell can be selected and modified. During this period the remaining

CHAPTER 9—MORE DIGITAL DEVICES

cells are left untouched. ththombhdp;lhhutmuo,muﬂmh
dw. :

If we sssume unit delay, the memory behaves as follows:
[if (E = 1) then alter(Out, nval(Addr), Data) else Out] del Out
where the function alter(Out, i,a) equals a vector whose i-th element equals a and

whose remaining elements equal those in Out. The behavior can also be expressed
using iteration and an in-place variant of alter:

(skip A [if (E = 1) then Alter(Out, nval(Addr), D) else (stb Out)])*

where Alter(Out,i,a) sets the i-th element of Out to a and leaves the others
| unchanged:

Alter(Out,5,a) =ger |[alter(Out,s,a) — Out]

‘, In practice, a memory has a multiplexer connected to the outputs so that at
i tnytimeatmoltalinglecellmbcrud.Thistechniqﬁepermitlonecelltobe
written while another is being retrieved. We do not include such multiplexers here.

Definition of Memory:

Memory(M) =gy
- MemoryStructure(M)

1 A Vioe € [0,2" - 1].
Enable(M, loc)

‘ A @ Write(M, loc)

A @ Disable(M, loc, mode), for mode € '{ selected, not_selocted)
A @ Steady(M, loc, mode),
for mode € '{ disabled, selscted, not_selected)

CHAPTER 9—MORE DIGITAL DEVICES
Dafinition of MmmSMchm':
MemoryStructure(M) ==ger
M: struct|
Addr: Bit", Data: Bit, E: Bit %Inputs
Out: Bit®") %Outputs
Status: Bit*") %Internal
n: nat, (prd, stp, lat): time Y%Parameters
]
Definstion of Enable:

When the memory becomes enabled with E rising from 0 to 1 and a cell does
not have the address selected by Addr, the cell’s output remains stable.

"Enable(M,loc) ==4q

(1942278 E A oth Addr A beg[nval(Addr) 7 loc A Status|loc] = 1])
> fin[(Statusloc)] = 1) A stb Out(loc]]

Definition of Write:

When the device is enabled, the cell addressed by Addr can be writtea with
the value of the data input.

Wﬂ'u(M yloc) mmgee

(len 2 prd A (E=s1] A stbData A nval(Addr) ms loc)
D fin[(Status(loc] == 1) A (Owut[loc] = Deta))

Definition of Disable:

Disabling the memory does not affect a steady cell’s output. K the cell is
currently addressed, both Addr and Dats must remain stable until after E drope.

CHAPTER 9—MORE DIGITAL DEVICES

Otherwise only Addr need hold. The predicate check, defined below, ensures that
the particular location is in the indicated mode.
Disable(M, loc, mode) =qqr _
(1079E A stbU A beg[check(M, loc, mode) A (Statuslloc] = 1)])
> [fin(Status(loc] = 1) A stb Out{loc]]

where U is as follows:

mode | U
selected (Addr, Data)
not.selected (Addr)

Definition of Steady:

Steady(M, loc, mode) =4q¢

beg{(Status[loc] = 1) A check(M, loc, mode))
> (V blk Status[loc] A V blk'** Qut[loc))

where the table below gives V as a function of the indicated mode:

mode | L 4
disabled (E)
selected (E, Addr, Data)

not._selected (E, Addr)

If a cell is steady, its output is blocked by the signal F and other appropriate inputs
based on whether the device is enabled and whether the cell is the one selected. If
the entire memory is disabled, only E blocks the cells. If the memory is enabled and
the particular cell is the one selected, the cell’s output is blocked by the inputs E,
Addr and Data. If however the cell is currently not selected, it is blocked only by E
and Addr. This is summarised in the table shown after the definition of Steady. The
predicate check, defined below, makes certain that the particular memory location
is indeed in the chosen mode of operation.

Definition of check:

The predicate chckvciﬁuthttheﬁnnbuﬁmhhﬁowdmodnd

dasbled | . Ew=0
' selected (B ==1) A [nval(Addr) == loc}
notselected | (B=1) A [noal(Addr) o4 loc]

§9.3 Counters

We can model animpie counter by means of addition and unit-deiay:
(T+1)del I
The next formula shows a way to handle initialisation:
 [¢(Cir = 1) then 0 eloe (T 4+ 1)] del T

nahwmmmmmhmmuo;mrm&m.
suffices: .
beg(l == 0) A I+ 1) del 1]

The following example takes finite precision into account:
(7 + 1) mod 3| def I

Clocked counter

Aehehdmmu«uannmmatmbymmudbylwbm
base when the device is triggered. Hcreuﬂuphylicdltmture

, Thcﬁmmmmmnu-ﬁthwnm_udmhw_
the numbers 0 t0 3" —1. Not all counters are binary. For example, & decads counter
u.emm.dqa-wmmous Tha values 10 to 18 are
mc-;ud. :
»

oy

CHAPTER 9—MORE DIGITAL DEVIOCES
Definition of Counter:

The predicates Clear and Increment specify how to clear and increment the
counter’s output. '

Counter(C) =get
CounterStructure(C)
A @ Clear(C)
A B Increment(C)
A @ Steady(C)

Definition of CounterStructure:

The device’s structure is given below. The internal bit signal Status indicates
when the device is in a steady state,

CounterStructure(C) =qqr

C: struct(
(CE, Cir): Bit %Inputs
Out: Bit" %Outputs
Status: Bit %Internal

n: nat,(cl, c2,c3): time %Parameters

Definition of Clear:

When the clock has a positive pulse and the input Clr equals 1, the device is
cleared and ends up steady with Status equaling 1:
Clear(C) mger
[to1e2e3Ck A beg(Clr == 1) A Ck bik C¥)
O fin[nval(Out) =0 A Status w= 1]

[P

v o
_ PP S

R MR T I G BRI R R IR

CHAPTER 9—MORE DIGITAL DEVICES

Definition of Incremeni:

If the device is initially steady and the clock is pulsed and Cir equals 0, then
the output vector's numerical value is incremented by 1 modulo 2™. The device
ends up steady.

Increment(C) =qor

[t1ctc3e3Ck A beg(Status =1 A Clr =0) A Ck blk Cir]
> ([nval(Out) + 1] mod 2™ — nval(Out) A fin[Status = 1])

Definstion of Steady:

When the bit signal Status equals 1, the clock input blocks both Status and
Out. The blocking factor lat is associated with Out.
Steady(C) =qot

beg(Status = 1) D [Ck blk Status A Ck blk'** Out]

§9.4 Shift Register

A shift register stores a bit vector that can be selectively initialised, shifted or
left untouched. Some shift registers are bidirectional or can shift more than one
place in a single operation. Others recirculate the bits or have special provisions

for signed arithmetic. The output of a shift register may reflect the entire state or
only part of it.

The TTL device discussed here stores n bits that, when triggered, can be
cleared, loaded with some data, shifted right by one place or maintained unchanged.
The general form is given below. We omit the timing parameters from the diagram.

Ck: Bit— |
Clr: Bit—
Sh: Bit— —Qlsb: Bit
Ld: Bit— Status: Bit
Se: Bit—

=l

: Bit™

CHAPTER 9—MORE DIGITAL DEVICES

The register has a capacity of n bits that are output by the vector Q. The
least significant bit Q[n — 1] is also output in complemented form by Qls5. When
clocking takes place, the fields Clr, Sh and Ld determine which operation occurs.
The following table describes the general behavior upon clocking:

operation Clr Sk Ld Q
clear - 1 - - (o)
shift 0 1 - | (Se)||Q[0ton -2
load 0 0 1 D
nop 0 0 0 Q

The expression (0)* stands for a list of n 0’s. Depending on the operation, only
certain inputs are needed. For example, when Clr is 0, Sh is 1 and and a shift is to
take place, the device ignores the inputs Ld and D.

Definition of ShiftRegister:

As with the counter described earlier, the shift register specification has predi-
cates for clocking and steadiness.

ShiftRegister(H) =qot
ShiftRegStructure(H)

A B Trigger(H,0p), for op € '{clear, shift, load, nop}
A B Nonirig(H)
A @B Steady(H)

Y—

PSPPI X

B Saca ol

v ORI GRS S E

" a2 —p.——

CHAPTER 9—MORE DIGITAL DEVICES

Definition of ShiftRegStructure:

ShiftRegStructure(H) mBger

H: struct|
(Ck, Cir, Sh, Ld, Se): Bit, D: Bit" %Inputs
Q: Bit™, Qlsb: Bt %Outputs
Status: Bit %Internal
n: positive, %%Parameters

(lat, prd): time,
stp: (Ck, Clr, Sh, Ld, Se, D, Q): time,
hld: (Ctr, Sh, Ld, Se, D, Q): time

]

The register’s length n must be at least 1.

Definition of Steady:
When the status bit equals 1, the output Qlsd equals the complement of Q’s
least significant bit Q[n - 1].
S‘CM’(H) et
beg(Status == 1)

> [beg(Qled = ~Q[n - 1])
A Ck bik Status A Ck bik'** (Q, Qlab)]

Definstion of Trigger:

The value of op determines the particular operation to be undertaken. For
example, the field name ’load is used as a parameter to Trigger for performing a
load operation.

Trigger(H,0p) mmger
SetUp(H, op) ~ Compute(H, op)

[

CHAPTER 9—MORE DIGITAL DEVICES

Definition of SetUp:

The predicate SetUp ensures that the appropriate input signals have the proper
values and are stable long enough prior to the actual oporstwn The predicates
check and inpset used here are defined later.

SetUp(H, 0p) =yet

fin{check(H, op))
A Vfield € [inpsct(op) U {* Ck}). (tatb**?l/!4l [field))

Definstion of Compute:

The text of Compute overviews the clocking involved in performing an opera-
tion. The predicates Hold describes how inputs must be held as the clock rises. The
function result indicates the new value of the output Q.

Compute(H,0p) =Eqqr
(to?rdCk A Hold(H, op)]
> (fin[Status = 1] A [result(H, op) — Q])

After clocking, the status bit ends up equal to 1 and the output vector Q receives
the selected function of the inputs.
Definition of check:

The predicate check gives the values of the control bits Clr, Sh and Ld necessary
for the desired operation.

op check(H, op)

clear Clr == 1

shift (Clr =0) A (Sh=1)

load (Clr =0) A (Sh==0) A (Ld =1)
nop (Clr 2=0) A (Sh=0) A (Ld =0)

Definition of inpset:

The function inpset specifies the set of inputa needed in performing the par-
ticular operation. For example, during shifting, the Ld control signal is ignored and
is therefore not listed.

g
- P S .

LR S

- CHAPTER 9—MORE DIGITAL DEVICES

op inpest(op)
clear '{Clr}
shift {Clr, Sh, Se, Q}
load *{Ctr, Sh, Ld, D)
nop "{Cir, Sh, Ld, Q}

Definstion of Hold:
Each operation’s required input signals must be held stable beyond the clock
transition for the time given in the corresponding subfield of Ald.
Hold(H,op) =Eqet
Vfield € inpact(op). (Ck blkMslTicdl F|feld))

Definitson of result:

For each of the three clocked operations, the function result specifies the output
Q's new value.

op resuit(H, op)

clear (o)

shift (Se} || Q[0 ton — 2]
load D

nop Q

Definstion of Nonirig:

If the counter is steady, a falling clock edge preserves the status bit and leaves
the outputs Q and Qlsd stable.
Nontrig(H) =4qt

[1%P9Ck A ‘beg(Status =1)] > [fin(Status = 1) A st&(Q, Qlab)]

Variant specifications

A more detailed description can be given with separate timing information for
the operations clear, shift, load and nop. In addition, the times for rising and
falling clock edges need not be the same.

.
¥

R L . :
: L O R A . -
Sl e, *‘F~.‘ ‘,-;", w W L
» Q.‘"\’ R S S T

TRRL L e o
" - : n

B

CHAPTER 9—MORE DIGITAL DEVICES

Alternatively, we can combine the control inputs into a signal called Op and
ignore the details of clocking. The signal Op ranges over the values 'clesr, 'shift,
'load and 'nop. The next formula describes the corresponding behavior using unit
delay and a case construct:

case Op of

clear: (0)*

shift: (Se)|| Q[0ton — 2] | del Q

load: D

nop: Q
The case expression uses as its value the entry selected by Op. For example, when
Op equals 'load, the case expression equals D. The expression (0)* equals an n-
element list of 0’s.

Combining shift registers

Two shift registers can be connected to form a larger one. The following
property reflects this with the shift register H containing the most significant bits
and I containing the least significant bits:

[ShiftRegister(H) A ShiftRegister(I)
A (H.Ck == I.Ck) A (H.Clr = 1.Clr) A (H.Sh = 1.Sh)
A (HLd = I.Ld) A (H.Q[n~1] = L.Se) A (H.lat 2 Lhid.Se)]
O ShiftRegister(J)

where

J{field) = Hlfield), for field € '{Ck, Clr, Sk,Ld}
J.D s~ HD|ID

J.Se = H.GSe

JQ ~ HQ[LQ

J.Status = H.Status A LStatus

Jn = Hna+lIn

~

JERpp—

CHAPTER 9—MORE DIGITAL DEVICES

J.prd
J.stp(field)
J.atp.Se
J.sip.Q
J.hld|field]
J.hid.Se
J.hld.Q
J.lat

= max(H.prd, Lprd)

= max{H.sip|field), Lsip[field]), for field € '{Ck, Cir, Sh, Ld, D}
= H.stp.Se

== max(H.stp.Q, Lstp.Q, I.atp.Sc)

= max(H.hid|ficld), Lhld[field]), for field € *{Clr, Sh,Ld, D}
= H.Ad.Se

= max({H.hld.Q, Lhid.Q, L.hld.Se)

= min(H.lat, Llat)

An abbreviated form of this property can be expressed for combining two unit-delay
shift registers.

s,

A

- -

mmwmxmvwmwmwﬂmﬁmﬁmﬁﬁm ARl e s)

CHAPTER 10

MULTIPLICATION CIRCUIT

The hardware multiplier considered here is motivated by one discussed in

" Wagner’s work on hardware verification [48]. The desired device behavior is first

described followed by a look at implementation techniques. The multiplier has the
following general structure:

Inl: Bit"

In2: Bit"

Ck: Bit

Ld: Bst

P Out: Bit*™™

(m, count): nat,

(e1, €2, c3): time
The circuit accepts two values and after a given number of clock cycles yields their
product. The values are represented as unsigned n-bit vectors /nl and /2 while
the output Out is a 2n-bit vector In addition, there are two input bite Ck and Ld
for controlling operation. The signal Ck serves as the clock input and Ld initiates
the loading of the vectors to be multiplied. The field count tells how many clock
cycles are required. The values c1, c2 and ¢3 are timing coefficients used in the

behavioral description.
§10.1 Specification of Multiplier

The multiplier is first specified by means of the predicate Muitiplier(M). We
then develop an iterative, timing-independent multiplication algorithm that com-

101

|
x
{

CHAPTER 10—MULTIPLICATION CIRCUIT

i putes a product by a series of successive additions. Later, the predicate Implementation(H)
characteriscs a device that computes sums and in fact has the algorithm’s steps em-
bedded within it. A logical implication is then given, showing how Jmplementation(H)
realises Multiplier(M).

Definstion of Multsplier:
Here is the main predicate:
Multiplier(M) =get

» MultStructure(M)
A @ Calculate(M)

Definstion of MultStructure:

' The multiplier has the following structure:
MultStructure(M) =g¢r
M: struct|

(Ck, Ld): Bit, %Inputs
. (In1, In2): Bit"

.‘ Out: Bit™" %Outputs
(n, count): nat, %Parameters
cl, c2, c3: tsme
]
Definstion of Calculate:
If the inputs behave as specified by the predicate Control, the output Out ends

up with the product of the initial values of In1 and In2.
Calculate(M) =myqr
Control(M) 2
[nval(Inl) - nvai(In2)] — nval(Owt)

—

102

CHAPTER 10—MULTIPLICATION CIRCUIT |
Definition of Ce:%r .;

The predicate Conirol describes tﬁe required sequencing of the inputs so that
a multiplication takes place. The computation first loads the circuit and then keeps
the load line inactive while the clock is cycled. '

Control(M) =g Load(M); ([Ld==s0] A Cycling(M))

Definition of Load:

Loading is done as indicated by the predicate Load. The clock is cycled as
given by the predicate SingleCycle. The control signal Ld starts with the value 1
and together with the other inputs Inl and /n2 remains initially stable as long as
the clock input Ck does. .

Load(M) =g4er
SingleCycle(M) A beg(Ld =1) A Ck bik (Ld, In1, In2)

Definition of SingleCycle:
An individual clock cycle consists of a negative pulse:
SingleCycle(M) ==aqr 1123 Ck

The clock signal falls from 1 to 0 and then rises back to 1. The three times given
indicate the minimum widths of the levels during which the clock is stable.

Definition of Cycling:
The overall cycling of the clock is as follows:
Cycling(M) mBay (SingleCycle(M))eo™™t

A total of count individual cycles must be performed one after the other, where
each is & negative pulse satisfying the predicate SingleCycle.

CHAPTER 10—MULTIPLICATION CIRCUIT

Variants of the specification

The predicate Muliiplier does not represent the only way to describe the mul-
tiplier circuit. Alternative approaches based on internal variables can be shown to
be formally equivalent to the one given here. A useful extension to this description
specifies that once the output is computed, it remains stable as long as the control
inputs do. If desired, additional quantitative timing details can readily be included.

§10.2 Development of Multiplication Algorithm

The specification predicate Multiplier intentionally makes no reference to any
particular technique for multiplying. Since the process of multiplication does not
generally depend on any specific circuit timing, it is natural to separate algorithmic
issues from other implementation details. We now use ITL as a basis for deriving a

‘ suitable circuit-independent algorithm for determining the product and in the next

'\ section as a means for describing hardware that realises this method. The synthesis
process can be viewed as a proof in reverse, starting with the goal and ending with
the necessary assumptions to achieve it.

|
4 The aim here is to obtain an algorithma describing some way for doing the
| multiplication. The variables n, Inl, In2 and Out are represented as fields of a
variable A. The predicate Goal below specifies the desired result:
Goal(A) =myer
[nvai(In1) - nval(In2)] ~ nval(Out)

The output Out should end up with the product of the data inputs Inl and /n2. The
presentation given here reduces the problem of multiplying the two n-bit vectors to
that of using repeated additions to determine successively larger partial prodnétl.
The algorithm consists of initialisation followed by n successive iterations. After s
iterations of the loop, for ¢+ < n, the initial product of In1 and the least significant
s bite of In2, that is,

[URQEEEEPS ST e ———

nval(Inl1) - nval(In2f — 10})

is computed and available in the upper n+1 bits of Out. Recall that the subscripting
; brackets {} index a vector from the right. Although neither /nl nor /n2 is guaranteed

104

! - AT e PN : I T o T o
w oo iy ' ’ DR e e T NN <y ~'~“’4“‘ e T Ra, PRI T P, o

g e el

e m g

CHAPTER 10—MULTIPLICATION CIRCUIT

to remain stable, their initial values must be used throughout the calculation. The |
lower n — ¢ bits of Out hold the unexamined bits of /n2 (i.e., In2{n — 1¢04}). In
addition, sn extra n-bit variable Temp is introduced in order to remember the '

original value of In1. The following figure informally depicts the situation after ¢
steps:

partial product rest of In2

Out: | nval(Inl) - nval(In2fi — 1t00}) | In2{n— 14} |

an-1 . . . n—i A—i-l . - . 0

n +1 bits n — 1 bits
value of Inl

Temp:| Inl 1

t" « v e o‘

n bits

After n steps, Out equals the desired 2n-bit multiplication result.

The predicate Assert below precisely specifies this behavior over i iterations !

for ¢t < n.
Assert(A,5) =aet
[nval(In1) - nval(In2f — 1 40 0})] — nval(Outf2n — 1ton —f)
A In2{n — 1104} — Outjn — 3 — 1100}
A Ini — Temp

After n steps, the product must be computed. For i == n, Assert indeed
observes this requirement:

k= Assert(A,n) O Goal(A) (*)

Expressed in the logic, the algorithm takes the following form:
Init(A); (Step(A))"

In the next two sections, the predicates Init and Step are given in detail. Both nst
and Step are derived so as to maintain Assert after looping 1 times for any ¢ < n:

[f<n A Mt(A); (Step(A))’] > Assert(A,s) | .(u)
105

mnn IO—WA‘HON OCIRCUIT

m&nmu.m-&mm.m wo cmit the valldly eymbol »]
,Thnmnln(o)nd(n)mmmthtnmd&bopm . :
the product: u

nit{A); (Step{A)" > Goal(A)

Deriving the predicate Init

The initialisation requirement can be obtained by making sure Init satisfies
Assert for s = 0:

S Init(A) D Assert{A,0)

Simplification of Assert yields the constraint
Init(A) O
0 — nval(Out{2n — 1tonj)
A In2 - Outin — 10}
A Inl = Temp

e - e P - e -

This can be achieved by the definition

3 G

] .# (0)* — Outfan — 11on}

A In2 — Outin ~ 140}
:1 A Inl — Temp

where (0)® equals an n-element lList of 0’s.

Deriving the predicate Step

mmmwmuaum»wmcmrcmuu,.
Step can inductively widen the scope of the assertion to ¢ + 1 increments:

[f<na Au«e(A.i);sup(A)] D Assert(A, i+ 1)
108

g’ T LRI D e T

CHAPTER 10—MULTIPLICATION CIRCUIT

Each step achieves this by uléctively adding Temp's n bits to Out, depending on
Out’s least bit, Out{0}. Only the top n bits of Out are actual inputs for the sum.
The top n + 1 bits store the result. The remaining n — 1 bits of Out are simply

shifted right. For Temp the requirement reduces to the formula
Step(A) > '

Temp — Temp

This guarantees that Temp continues to remamber the initial value of Inl.

The constraint for Out is
Step(A) >

; [nval(Outf2n — 1ton}) + Out{0} - nvai(Temp)]
‘ é — nval(Outf2n — 1 ton — 1})

A Outin — 1101} — Outin — 2100}

AT LR T 1 TS W A

. Thus the overall incremental step can be realized by the definition
{ : Step(A) =det

[nval(Outf2n — 1 ton}) + Out]0} - nval(Temp)]
— nval(Out{2n — Lton — 1))

A Outfn — 1to 1} — Outin — 2100}

Taew a3

A Temp — Temp

§10.3 Description of Implementation

The circuit specified below performs the iterative algorithm just given. The
definition includes relevant timing information and is broken down into parts describ-
; ing the implementation’s physical structure and behavior. The primary predicate
Implementation overviews operation. The device’s fields are shown by ImpStructure.
The predicate LoadPhase specifies device operation for initially loading the inputs.
Once this is achieved, the predicate MultPhase indicates how to perform the in-

dividual multiplication steps.
Implementation(H) =qet

. PR N

ImpStructure(H)
A B(LoadPhase(H) A MultPhase(H))

. bl M,

CHAPTER 10—MULTIPLICATION CIRCUIT

Definition of ImpStructure:

The structure of the implementation differs from that of the original specification
by the addition of the internal states Temp and Status and by the omission of a
count field giving the required number of clock cycles for computing a product. The
vector Temp maintains the value of In1. The bit signal Status equals 1 when the
device is in a steady state. The specification given below shows how to set Status
to 1 and keep it at this value.

ImpStructure(H) =4qr

H: atmct[
(Ck, Ld): Bit, %Inputs
(In1, n2): Bit"
Out: Bit®" %Outputs
Temp: Bst™, %Internal
Status: Bit
n: nat, Z%Parameters
cl, c2, c3: time

]

An external form of the complete specification would in effect existentially quantify
over the fields Temp and Status.

Definstion of LoadPhase:
The body of LoadPhase specifies how to load the inputs as described in the
algorithm:
LoadPhase(H) =gyt
Load(H) > [Init(H) A fin(Status = 1)}

The predicate Load gives the required loading sequence for the circuit inputs. The
predicate Init refers to the algorithm's initialisation predicate. Once loading is
complete, the field Status is set to 1, indicating that the device is ready to proceed
with the multiplication. The definition of Load is identical to that of its namesake

108

CHAPTER 10—MULTIPLICATION CIRCUIT

in Multiplier:
LOGd(H) =gof
SingleCycle(H) A beg(Ld = 1) A Ck blk (Ld, In1, In2)

Individual clock cycles are also defined as in Multiplier':

SingleCycle(H) =4 |1°1°%<3Ck

Definstion of MultPhase:

When the load signal is inactive at 0 and the device is stea.tiy (i.e., Status=1),
the circuit can be clocked to perform a single iteration. The algorithm’s predicate
Step takes place over two clock cycles. Afterwards, the device is again steady with
Status equaling 1.

MultPhase(H) =gor
[Ld = 0 A (SingleCycle(H))? A beg(Status = 1)]
> [Step(H) A fin(Status = 1)]

Implementation theorem

The correspondence between the implementation Implementation and the original

multiplier device specification Multiplier is now given by the theorem
k Implementation(H) > Multiplier(M)

where the mapping from H's fields to M's is

M(field] == H[field], for field € '{In1, In2, Out}
Mn = Hn
M.count = 2H.n

109

Y]

CHAPTER 10—MULTIPLICATION CIRCUIT

Mifild) = HIfield), for field € '{cl, c3, 3}

The value of M.count corresponds to the 2n clock cycles needed for doing the
iterative computation.

The behavioral description Implementation can itself be realised by some eveu
lower-level specification containing further details about the timing and using a still
more concrete algorithm. For example, the iterative steps are decomposible into
separate adds and shifts. If desired, the development ultimately examines such

things as propagation through gates.

- ——igi - . Mt ..

!
%
i |

CHAPTER 11

THE AM2901 BIT SLICE

The Am2901 bit slice is a member of a popular family of integrated circuits
developed by Advanced Micro Devices, Inc. for building processors and controllers.
The next page contains a block diagram of the device. An individual Am2901 chip
consists of four-bit slices of an arithmetic logic unit, memory, bus interface and
other elements. These internal devices are connected together so as to provide
various ways for computing and storing values. The next page contains a block
diagram. A group of m Am2901 chips can be connected to form circuits of bit
length 4m. We give a functional description of the Am2901 based on information
contained in the Am2900 series’ data book [1]. The teraporal description is almost
operational enough to be used as input to a suitable simulator. The reader desiring
a detailed introduction to the Am2900 circuit family and its applications should
consult the Am2900 data book (1], Mick and Brick {34] or Siewiorek et al. [43].

111

P

DESTINATION ALY ALY

CONTROL | FUNCTION |, SOURCE

MICROINSTRUCTION DECODE

LO/RI

CLOCK

‘S°DATA IN

A’ (READ) .
ADORESS ADDRESS ce
RAM
- 16 ADDRESSABLE REGISTERS
(READAWRITE) ‘S’ ADDRESS
ADDRESS ‘A b
DATA DATA
ouT ouY
|
DIRECT
DATA N
[
ALU OATA SOURCE
j SELECTOR
R) -
4
!
l.
CARRY IN
S-FUNCTION ALV

A L4
OUTPUT DATA SELECTOR

——

INASLE

i —
¢

THE Am2901 4-8(T MICROPROCESSOR SLICE

Copyright © 1981 Advanced Micro Devices, Inc.
Reproduced with permission of copyright owner.

All rights reserved.
|
! _
5 112
{
w R g - _ ‘ 'y ¥ f | S

/

B e o S e S —

PR

O i < AR RIS LT

CHAPTER 11—THE AM2901 BIT SLICE

Definsition of BitSliceStructuré

Here are the various signals and parameters used in our description of a general-
ised n-bit bit slice:

BitSlsceStructure(N) =gt

N: struct|
Source: sig(sourceset), ZInputs
Func: sig(funcset),
Dest: sig(destset),
D: Bit™,
(AAddr, BAddr): aig([0 0 15]),
(QLsb, QMsb): Bit,
(RamLab, RamMsb): Bit,
(CarryIn, OF): Bit,
Y: Bit™, %Outputs
(CarryOut, Gen, Prop): Bit,
(FZero, FMsb): Bit,
Ram: (Bit™)!8, %Internal
(Q,F, R, S): Bit"

n: positive %Parameters

In the description of the bit slice, we represent the control input Source as a signal
ranginj over the elements of the set sourceset:

sourceset =4 '{AQ,AB,2Q,ZB,ZA,DA,DQ,DZ}
The inputs Func and Dest fa.nge over similar sets:
funcset =4y '{add, sudr, subs, ov, and, notrs, ezor, eznor}

dcmcf myyr ’{qreg, nop, rama, ramf, ramqd, ramd, ramgs, rams }

The mnemonics are those used in the Am2901’s data book description. A lower-
level specification of the circuit can represent these fields as bit vectors. Similarly,

113

e N .]

CHAPTER 11—THE AM2901 BIT SLICE

the approach taken here has the address fields AAddr and BAddr range over the
integers 0,...,15; a more detailed description can instead use bit vectors of length
4.

Please note: Throughout this description we refer to a vector. V's most significant
bit as V[0]. The least significant bit is Vn — 1], where n == [V'|. This is the op-
posite of the style used in the Am2901 data book but is consistent with the general

convention taken elsewhere in this thesis.

Definition of BitSlice:

The slice’s behavior can be broken down into separate parts for the random-

access memory, Q-register, arithmetic unit and bus interface:

BitSlice(N) =gor
BitSliceStructure(N)
A RamPart(N)
A QRegPart(N)
A AluPart(N)
A BusPart(N)

§11.1 Behavior of Random-Access Memory

The memory section has individual predicates for modifying the memory, the
memory’s end-bits RamLsb and RamMsb and the two output latches A and B.

RamPart(N) =qq¢
SetRam(Ram, Dest, BAddr, F, RamLsb, RamMsb, n)
A SetRamlLsbMsb(RamLasb, RamMsb, Dest, F, n)
A SetAB(A, B, Ram,AAddr, BAddr)

114

CHAPTER 11—-THE AM2901 BIT SLICE

Definition of SetRam:

In the description of the memory, we use the predicate rdel to refer to the
unit-delay predicate de! but with the operands reversed: ’

UrdelV =mgq VdedlU

Here is the predicate SetRam itself:

SetRam(Ram, Dest, BAddr, F, RamLab, RamMsb,n) =ger
{ case Dest of A
qreg: Ram
nop: Ram
rama: alter(Ram, BAddr, F)
Ram rdel] ramf: alter(Ram, BAddr,F) ‘
' ramgqd: alter(Ram, BAddr,(RamMasb) || F[0ton — 2])
ramd: alter(Ram, BAddr,(RamMsb) || F[0 ton — 2])
ramgqu: alter(Ram, BAddr, F(1 won — 1] || (RamLsb))
\ ramu: alter(Ram, BAddr, F[1 won — 1] || (RamLsb)))

Most of the operations alter the element of Ram selected by the input BAddr.

Definition of SetRamLsbMsb:

The predicate SetRamLasbMsd takes into account the high-impedance aspects

(see section §4.12) of both end-bits RamLsb and RamMsb:
SetRamLsbMsb(RamLsb, RamMsb, Dest, F,n) ==qet

(case Dest of \
greg: true
nop: irue
rama: ‘true
@{ ramf: true
ramqd: RamLsd = Fin - 1)
ramd: RamlLsb = F{n - 1]
ramgu: RamMsb = F(0]
\ ramu: RomMsb = F[p]

115

CHAPTER 11—THE AM2901 BIT SLICE

Definition of SetAB:

The latch A always equals the memory word addressed by AAddr. A similar
relation holds between B and BAddr.
SetAB(A, B, Ram,AAddr, BAddr) =g4ot
(A = Ram[AAddr]) A (B = Ram|BAddr])

§11.2 Behavior of Q-Register

The description of the Q-register has a predicate SetQ for @ and another
predicate QLsbMsb for using the end-bits QLsb and QMsb.

QRegPart(N) =ger
SetQ(Q, Dest, F, QLsb, QMsb, n)
A SetQLsbMsb(QLab, QMsb, Dest, @, n)

Definition of Set@:

SetQ(Q, Dest, F, QLsb, QMsb,n) =gyt
(caae Dest of \
greg: F

nop: Q

rama: Q@
Qrdel]l ramf: Q
ramqd: (@Msd) || Q[0 o n — 2]
ramd: Q

ramqu: Q[1 won — 1} || (QLsb)
k ramu: Q

e gy pe e SRR -

R L
L]

CHAPTER 11—THE AM2901 BIT SLICE
Definition of SetQLsbMsb:

Both end-bits QLsb and QAsd can float in a state of high impedance (see
section §4.12). This is taken care of in the following predicate:

SetQLsbMab(QLsb, QMsd, Dest,@,n) et
(case Dest of \

greg: true

nop: lrue

rama: true

o ramf: true

ramqd: QLsb = Q[n — 1]
ramd: QLsb = Q[n — 1]
ramqu: QMsb = Q|0]

\ ramu: QMsb = Q[0})

§11.3 Behavior of Arithmetic Logic Unit

The arithmetic logic unit’s specification has predicates associated with the
many signals originating in this part of the slice.

AluPart(N) =g4qr
SetRS(R, S, Source, A, B,D,Q,n)
A SetF(F,Func,R, S, Carryln,n)
A SetCarryOut(CarryOut, Funec, R, S, CarryIn, n)
A SetOverflow(Overflow, Fune, R, S, Carryln, n)
A SetCen(Cen, Fune, R, S,n)
A SetProp(Prop, Func, R, S, n)
A SetFZeroFMsb(FZero, FMsb, F, n)

117

CHAPTER 11—-THE AM2901 BIT SLICE

Definition of SetRS:
SetRS(R, S, Sowrce, A, B,D,Q,n) Wgur |
(case Dest of \ 'J
AQ:{A,Q)
AB: (A, B)
ZQ: (zero, Q)
(R,S)=~s| 2ZB: (zero,B)

‘ ZA: (zero, A)

‘ DA: (D, A)
' DQ:(D,Q)
\ DZ: (D, zero) } :
. i
.' where zero = (0)", that is, a sequence consisting of n repetitions of 0.
Definition of SetF:

; The following predicate shows arithmetic behavior for bit-vectors representing
.' unsigned numbers:

SetF(F, Func,R, S, CarryIn,n) =qor
(case Func of \
add: nval(F) = [nval(R) + nval(S) + CarryIn]mod 2®
J : subr: nval(F) = [nval(~R) + nval(S) + CarryIn] mod 2*
' subs: nval(F) = [nval(R) + nval(~S) + Carryln] mod 2®
@®] o: F=(RvS)
s and: F=(R A S)
- notrs: F = ([-R] A S)

' ezor: F =(R®S)
\ ezmor:F = ~(R®S) }

Here the operator @ represents exclusive-or. The Boolean operationssuch as RA S
are applied bitwise to the vectors. The table can be augmented with information
about arithmetic operations using one’s and two's-complement representations.

, 118

iR b e
o

NS L 5 S a5 » O

CHAPTER 11—THE AM29001 BIT SLICE

Definition of SetCarryOut:

In the case-expression given below, hyphens indicate unspecified entries and
are not partial values; a more detailed description could fill them in. The function
carry determines the resulting carry output and is defined in section §6.4 in the
discussion of carry look-ahead adders.

SetCarryOut(CarryOut, Func, R, S, Carryln,n) =gt
r case Func of
add: carry(n, nval(R), nval(S), CarryIn)

subr: carry(n, nval(~R), nval(S), Carryln)
subs: carry(n, nval(R), nval(-S), CarryIn)
CarryOut = or: -

and: -

notra: -

ezor;

| |
N—

\ exnor:

Definition of SetOverflow:

In determining the overflow bit’s value, the two’s-complement interpretations of
the incoming bit vectors R and S are used. The function teval(X) takes a bit vector
X and computes its numerical value based on representation by two’s complement:

teval(X) =mgqer if X[0] = 0 then nval(X) else — 21X — nval(X)]
SetOverflow(Overflow, Func, R, S, Carryln,n) =4or

(caae Func of

add: overflow(n, teval(R), teval(S), Carryln)

subr: overflow(n, tcval(~R), teval(S), CarryIn)

subs: overflow(n, tcval(R), teval(~S), CarryIn)

Overflow=s| or: -

and: -

notrs: -

ezor: - . J

\-cznor:-

L i A A R ST RSN 1 ok B S T R

s

P e e

P ks]

CHAPTER 11—THE AM2901 BIT SLICE

Here the function overflow eqM 1 iff two's-complement overflow is occuring and
is defined as follows:
overflow(n,i,j,¢cf) ==qo¢ of =2 'S (i+j+ei) <21 ~1thenOelsel

Both parameters 1 and 5 can range over negative and nonnegative integers.

Definition of SetGen and SetProp:

The predicates SetGen and SetProp describe the bit slice’s carry-lookahead
signals. The functions carrygen and carryprop are defined in section §6.4.
SetGen(Gen, Func, R, S,n) =qer
(case Func of \
add: -carrygen(n, nval(R), nval(S)) .
subr: -carrygen(n, nval(-R), nvai(S))
subs: -carrygen(n, nval(R), nval(~S))

Cen=s| or: -
and: -~
notrs: —
ezor: -
k eznor: - J
SetProp(Prop, Func,R,S,n) =qer
(case Func of \

add: -~carryprop(n, nval{ R), nval(S))
subr: ~carryprop(n, nval(-R), nval(S))
subs: -carryprop(n, nval(R), nval(~S))
Propss]| or: -

and: -

notrs: -

ezor. -

\ eznor: -)
Definition of SetFZeroFMsh:

The values of the bit signals FZero and FMsb are derived from F:
SetFZeroFMsb(Flero, FMsb,F,n) e

(FZero ms if [F == (0)*) then 1 else 0) A (FMsb = F[0})

120

N

CHAPTER 11-THE AM2901 BIT SLICE

§11.4 Behavior of Bus Interface

BusPart(N) =gqqr
SetY(Y, Dest, F, A, OF)

Definition of SetY :

When the signal OF equals 0, the bus interface Y is enabled and receives a value
according to the case formula. When the bus interface is disabled with OF equaling
1, Y’s behavior is left unspecified, thus modeling the effects of high impedance.

SetY(Y,Dest,F,A, OF) =gqq
(case Dest of \
greg: F
nop: F
rama: A
@[(0OE =0) > (Y = ramf: F |)}
ramqd: F
ramd: F

ramqu: F

\ ramu: F

§11.5 Composition of Two Bit Slices

The predicate Combine TwoBitSlices describes how to combine two bit-slices in
parallel to form a larger one. The bit slice M contains the more significant bits and
L contains the less significant ones.

Combine TwoBitSlices(M,L) =4q¢

BitSlice(M) A BstSlice(L)
A M|field] =s L(field),
for field € '{Source, Func, Dest, AAddr, BAddr, OF}
A (M.RamlLsb ~ L.RamMsb) A (M.QLsb =s L.QMasb)
A (M.CarryIn =2 L.CarryOut)

121

CHAPTER 11—THE AM2901 BIT SLICE

The next property expresiea how the implementfation’l various signals are
mapped to the overall bit slice: -

k Combine TwoBitSlices(M,L) > BitSlice(N)
where the tuple N is constructed as follows:

Nlfield] == M/|field,
' for field € '{Source, Func, Dest, AAddr, BAddr, OF}

Nlfield] = Mlfield], for field € '{ QMasdb, RamMsb, CarryOut, FMsb}
Nifield] = L|field], for field € '{@QLsb, RamLsb, CarryIn}
Nlfield] = M/field]|| L|field],
! for field € '{D,Y,Q, F, R, S}
N.Ramfs] = M.Ram[i]||L.Ram[s], for0<i<15
NGen = [MGen A (MProp v L.Gen))
NProp = (MProp v L.Prop) o
N.FZero = (M.FZero A L.FZero)
Nn = Mn+Ln .

B e S

§11.6 Timing Details

d— e e .

The predicate BitSlice presented here contains little quantitative information
about timing. For example, the bit slice’s clock input is not mentioned. One way to
include timing details is by giving behavioral descriptions at a level similar to those
discussed in previous chapters. For example, the arithmetic unit can be specified
in s manner similar to that used in the predicates BasicAdder, DetasledAdder
and CarryLookAheadAdder. A predicate such as ShiftRegister can be modified to
capture the behavior of the Q-register.

e ——

122

— e Y - Al Bl . . e e . —a

CHAPTER 12

DISCUSSION

§12.1 Related Work

We now mention some related research on the semantics of hardware. Gordon’s
work [15,16] on register-transfer systems uses a denotational semantics with par-
tial values to provide a concise means for reasoning about clocking, feedback,
instruction-set implementation and bus communication. Talantsev [47] as well as
Betancourt and McCluskey [7] examine qualitative signal transition concepts cor-
responding to fX and [X. Wagner [49] also uses such constructs as {X in a
semi-automated proof development system for reasoning about signal transitions
and register transfer behavior. Malachi and Owicki [28] utilise a temporal logic to
model self-timed digital systems by giving a set of axioms. Bochmann [9] uses a
linear-time temporal logic to describe and verify properties of an arbiter, a device
for regulating access to shared resources. The presentation reveals some tricky

aspects in reasoning about such comi)onenu.

Leinwand and Lamdan [26] present a type of Boolean algebra for modeling
signal transitions. Applications include systems with feedback and critical timing
constraints. Patterson [36] examines the verification of firmware from the standpoint
of sequential programming. Meinen [33] discusses a semantics of register transfer
behavior. McWilliams [27] develops computational techniques for determining tim-
ing constraints in hardware. Eveking {13] uses predicate calculus with explicit time
variables to explore verification in the hardware specification language Conlan.

e >

CHAPTER 12—DISCUSSION

A number of people have used temporal logics to describe computer communica-
tion protocols [18,25,40]. Bernstein and Harter [6] augment linear-time {emporal
logic with a construct for expressing that one event is followed by another within
some specified time range. This facilitates the treatment of .various quantitative
timing issues. Recently Schwarts et al. [41] have introduced a temporal logic for
reasoning about intervals. They distinguish intervals from propositions.

The research mentioned above has made large strides in developing a seman-
tics of digital systems. However, for our purposes much of this work either has
difficulties in treating quantitative timing, lacks rigor, is unintuitive or does not
easily generalise. This seems unavoidable due to the magnitude of the problem
area. We note that the computational models used in works on temporal logic
generally interleave the executions of different processes. In the treatment of digital
circuits, this approach seems inappropriate. We have chosen instead to model true
parallelism. The semantics of the connective logical-and (A) appear to directly
correspond to this.

It might seem that temporal logic is simply a subset of dynamic logic (19,37].
However, once interval-deﬁendent constructs are added, this is no longer the case.
Operators such as semicolon and yields are not directly expressible in dynamic logic.
Furthermore, the descriptive styles used in dynamic logic and temporal logic differ
rather greatly. Dynamic logic and process logics {11,20,38) stress the interaction
between programs and propositions. ITL is expressive enough to conveniently and
directly specify a variety of programs containing such constructs as assignments,
while-loops and procedures. Our current view is that the addition of program
variables would be redundant.

Lamport [25] feels that temporal logic is a valuable tool but advocates against
the use of the operator nezt by claiming that this introduces unnecessary granularity

into the reasoning process. We do not agree and believe that explicit access to dis-
crete state transitions is invaluable when dealing with such concepts as iteration and
feedback. Furthermore, temporal logic appears to be flexible enough to facilitate
projecting out critical points in a computation so as to ignore intermediate states.
Thus, specifications and theorems that assume a certain degree of atomicity can be

124

;
4

P

R >

1 o LN Lo

CHAPTER 12—DISCUSSION

generalised. If temporal logic is itself used as a programming language, constructs
such as del that are based on O occupy a snug and secure place in the overall
formalism. ‘

§12.2 Future Research Direc_tions

There are many aspects of interval temporal logic that require more investiga-
tion. We now point out a few.

Proof theory

All the valid properties presented in this thesis have been justified on the
basis of ITL’s semantics. Work should be done on suitably axiomatising various
parts of the logic and automating some of the proof process. For example, if bit
signals are represented as truth values, simple versions of temporal constructs such
as stability (stb) and unit delay (del) can be expressed and reasoned about using
existing propositional linear-time temporal logics [14] and their axiomatisations and
decision procedures. Using a program written by Frank Yellin, we have already
automatically established properties such as the following:

B [IX AtY]SH(X A Y)

B (XdelX) = sthX

Some variants of temporal logic

There are a variety of operators and concepts that can be added to temporal
logic. We discuss some here. |

Ignoring intervals

Many of the concepts presented here can generally be expressed in linear-time
temporal logic [31] with O, O, ¢ and Y. In section §2.4 we gave a linear transia-
tion from local propositional ITL to linear-time temporal logic with quantification.

125

P S iy -

T — yr—

CHAPTER 12—DISCUSSION

However, the clarity and modularity provided by semicolon and other interval-
dependent constructs is often lost. A more detailed understanding of the various
tradeoffs involved and the proper roles of different temporal logics should be devel-
oped.

Infinite intervals

In the semantics already given, all intervals are restricted to being finite. It can
however be advantageous to consider infinite intervals arising out of nonterminating
computations. As we mentioned in section §2.4, the inclusion of such intervals does
not alter the complexity of satisfiability.

Traces

The trace of a signal A in an interval s...s, can be defined as the sequence
of values that A assumes:

trace(A) = ((O°A):0 < ¢ < len),

that is,
trace(A) = (0% A,0' 4,...,0"™ 4)

In an interval of length n, the trace of a variable has length n 4 1.

The following property shows how to express unit delay by comparing the traces
of the input and output:

k (Adel B) = [trace(A)[0tolen — 1] = trace(B)[1 w len]]

It would be interesting to compare the use of traces with other styles of specification.

Projection

Sometimes it is desirable to examine the behavior of a device at certain points in
time and ignore all intermediate states. This can be done using the idea of temporal
projection. The formula wy Il wy in an interval forms a subinterval consisting of

44

ket .
o e — e

T

CHAPTER 12—DISCUSSION

those states where w; is true and then determines the value of wj in this subinterval:
Myo...on Jwr Two] = Mq,..¢.. [w2],

where ¢g. ..t is the sequence of the states in sq... s, that satisfly w;:
M [wi] = true, for0<i<m

Note that ¢...%,, need not be a contiguous subsequence of sg...s,. If no states
can be found, the projection is vacuously ¢rue. In the semantics given here, the

formula wy examines states, not intervals. For example, the formula
(X=1)TstbA

is true if A has a constant value throughout the states where X equals 1. Variables
like X act as markers for measuring time and facilitate different levels of atomicity.
If two parts of a system are active at different times or are running at different
rates, markers can be constructed to project away the asynchrony. Other styles
of projection are also possible. For example, a “synchronous” form of projection
might require the marker to be true in the initial and final states of an interval.

In section §2.3 we showed how to express the iterative construct w* by means

of a marker P:
w* =gyt 3P.(begP A Gfbeg P > (empty v &[w A O halt beg P))])

This provides a general means for identifying the end points of the iteration steps
and extracting them using projection. It is even desirable to have variants of the
iteration constructs for making markers explicit. For example, the extended while-
loop

whilep @ do R

indicates that P marks off individual steps. Other constructs such as nezt and trace
can have marker-oriented variants.

We feel that low-level clocking and propagation details in digital circuits can
be more effectively decoupled from high-level functional behavior through the in-
troduction of markers and projection. The Am2901 bit slice discussed in chapter
11 might be a good test of this hypothesis.

CHAPTER 12—DISCUSSION

Additsonal modifications
Further possible extensions include interval temporal logics based on branching
or probabilistic models of time. Operators for reversing or expanding an interval

may also turn out to be useful.

Temporal types and higher-order temporal objects

A theory of temporal types needs to be developed. This should provide various
ways of constructing and comparing types. For example, the predicate p* is true
for vectors of arbitrary, possibly null length whose elements all satisfy p. Thus, the
type bit* is true for all bit-vectors. The type sig(bst*) is true for any bit vector

" signal with a possibly varying length. The temporal type Bit* requires that the

signal’s length be fixed over time:

B A:Bit* = [A: sig(bit*) A stb|Al)

We hope to permit parameterised types such as sig(sxt), where s and ¢ are
type-valued variables. Operators for such things as unioning or recursively defining
types also need to be developed. Perhaps the techniques needed here can be made
general enough so that any unary predicate can be viewed as a type.

It would be intereating to have a semantics of higher-order temporal objects
such as time-dependent functionals. Perhaps a suitable variant of proposition ITL
can facilitate some sort of Godelisation by representing all values as temporal
formulas. Alternatively, an encoding like that used by Scott (42,45] in developing
a model of the typeless lambda calculus might work. However, we wish to strongly
resist the introduction of partial values. One concession we make in this direction
is to not require that every function have a fixed point. '

Temporal logic as a programming language

Temporal logic can be used directly as a programming language. For example, -'
the formula

beg(l == 0) A ((I+ 1) delI] A halt(l == 8)

L, .

CHAPTER 12—DISCUSSION

can be viewed operationally as initidisin; I t0 0, and then incrementing I by 1 over
* each computation step until I equals 5. At that instant, the computation halts. This
style of temporal programming is similar to the language Lucid (2,4] developed by
Ashcroft and Wadge. Note that the formula given above has the same semantica

has the following:

beg(I =0) A while(I 7 5) do(skip A [I+1 1))

. This illustrates how by using ITL we can compare different ways of expressing the

same computation.

In general, if w; and wg are temporal formulas, the combined form w; A we
operaﬁonally specifies that w; and w; be run in parallel. Note that w; and wq are
implicitly synchronised to start and finish at the same time. Similarly, the formula

! . w); wg involves running w, and then wy. For example, the formula

- N 2 ey e

D e ey >

(o—1) A [0-»J]);while(Iyén)do([I*-.l—»I.] AJ+I=J)])

i clears I and J and then repeatedly increments I and simultaneously sums I into J.
P Asynchronous operations can also be handled. For instance, the formula

(stb I A halt[X = 1]); (T + 1) del 1]

leaves I stable until the flag X equals 1 and then keeps increasing I by 1.

I Manna and Mosskowski [20,30] describe how to reason about programming
concepts in ITL and also present a prototype programming language called Tempura
! that is based on the ideas just given. Along with the programming languages
Lucid and Prolog (24], Tempura has the property of having a semantics based on
logic. Much work remains ahead in exploring this temporal approach to language
design and developing practical techniques for specifying, executing, transforming,
synthesising and verifying Tempura programs. We strongly feel that there is a
L ' large potential for the cross-fertilisation of ideas arising from simultaneously using
temporal logic as a hardware specification tool and as a basis for general-purpose
programming languages. It also appears worthwhile to examine interpreters and

P R e

o e e S R

CHAPTER 12—DISCUSSION

other systems that transmit aid manipulate commands and programs. Perhaps the
state sequences of temporal logic can also be used as a convenient basis for logics
of, say, formal languages, typesetting and music. More generally, temporal logic
may provide a semantics of both time and space.

Hardware

The largest device considered in this thesis is the Am2901 bit slice; there
is clearly no reason to stop at that. Future work will explore microprocessors,
pipelines, buses and protocols, DMA, firmware and instruction sets, as well as the
combined semantics of hardware and software. The treatment of specific areas
such as fault-analysis also seems worthwhile. It would be interesting to see how
suitable ITL is as a tool for teaching the basic operation of digital circuits covered
in such textbooks as Gschwind and McCluskey [17] and Hill and Peterson {21]. The
feasibility of hardware-oriented simulation languages based on subsets of ITL should
certainly be investigated. For example, propositional ITL can be used for bit-valued

signals.
§12.3 Conclusion

Standard temporal logics and other such notations are not designed to concisely
handle the kinds of quantitative timing properties, signal transitions and structural
information occurring in the examples considered. Temporal intervals provide a
unifying means for presenting a wide range of digital devices and concepts. Interval
temporal logic can be used for both specifying and reasoning about circuits and
their properties. The same formaliam that handles devices with clock signals, set-up
constraints and hold times can also deal with high-level algorithms. The omission
of partial values does not appear to restrict the generality of specifications; even
high-impedance can be treated.

The future seems bright. Let us therefore conclude this thesis with the conjec-
ture that temporal logics will be around for a long interval to come.

P e A el B .. . ot kB it - .«

R s |

Bibliography

1. Advanced Micro Devices, Inc. Bipolar Microprocessor Logic and Interface Data
Book. Sunnyvale, California, 1981.

2. E. A. Ashcroft and W. W. Wadge. “Lucid: A formal system for writing and
proving programs.” SIAM Journal of Computing 5, 3 (September 1976),
336-354.

3. E. A. Ashcroft and W. W. Wadge. "Lucid, a nonprocedural language with
iteration.” Communications of the ACM 20, 7 (July 1977), 519-528.

4. E.A. Ashcroft and W. W. Wadge. Lucid, the Data Flow Programming Language.
To be published.

5. M. R. Barbacci. “Instruction Set Processor Specifications (ISPS): The notation
* and its applications.” IEEE Transactions on Computers C-30, 1 (January
1981), 24-40.

6. A. Bernstein and P. Harter. “Proving real-time properties of programs with
temporal logic.” Proceedings of the Eighth Symposium on Operating Systems
Principles, Pacific Grove, California, December, 1981.

¥ 7. R. Betancourt and E. J. McCluskey. Analysis of sequential circuits using
clocked flip-flops. Technical Report 82, Digital Systems Laboratory, Stanford
i University, August, 1975.

8. D.F.Blunden, A. H. Boyce, and G. Taylor. “Logic simulation, parts I and I.”
The Marconi Review 40, 208 (1977), 157-171 and 236-254.

9. G.V.Bochmann. “Hardware specification with temporal logic: An example.”
, IEEE Transactions on Computers C~31, 3 (March 1982), 223-231.

10. M. A. Breuer and A. D. Friedman. Diagnosis and Reliable Design of Digital
Systems. Computer Science Press, Inc., Woodland Hills, California, 1976.

1.

12.

13.

14,

15.

16.

17.

18.

19.

A. Chandra, J. Halpern, A. Meyer, and R. Parikh. Equations between regular
terms and an application to process logic. Proceedings of the 13-th Annual
ACM Symposium on Theory of Computing, Milwaukee, Wisconsin, May,
1981, pages 384-390. '

H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, New
York, 1972.

H. Eveking. The application of Conlan assertions to the correct description of
hardware. Proceedings of the IFIP TC-10 Fifth International Conference on
Computer Hardware Description Languages and their Applications, Kaisers-
lautern, West Germany, September, 1981, pages 37-50.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analy_sis of
fairness. Seventh Annual ACM Symposium on Principles of Programming
Languages, Las Vegas, Nevada, January, 1980, pages 163-173.

M. Gordon. Register transfer systems and their behavior. Proceedings of the
IFIP TC-10 Fifth International Conference on Computer Hardware Descrip-
tion Languages and their Applications, Kaiserslautern, West Germany, Sep-
tember, 1981, pages 23-36.

M. Gordon. A model of register transfer systems with applications to microcode
and VLSI correctness. Department of Computer Science, University of Edin-
burgh, 1981.

H. W. Gachwind and E. J. McCluskey. Design of Digital Computers. Springer-
Verlag, New York, .1975.

B. T. Hailpern and S. Owicki. Verifying network protocols using temporal logic.
Technical Report 192, Computer Systems Laboratory, Stanford University,
June, 1980.

D. Harel. First-Order Dynamse Logic. Springer-Verlag, Berlin, 1879. Number
68 in the series Lecture Notes in Computer Science.

D. Harel, D. Kosen, and R. Parikh. “Process logic: Expressiveness, decidability,

completeness.” Journal of Computer and System Sciences, 25, 2 (October
1982), 144-170.

1
£
!

21. F. J. Hill and G. R. Peterson. Introduction to Swstching Theory and Logical
Design. John Wiley and Sons, New York, 1981.

22. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison Wesley, Reading, Mass., 1979.

23. G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Methuen
and Co., Ltd., London, 1968.

24. R. Kowalski. Logic for Problem Solving. Elsevier North Holland, Inc., New
York, 1979.

25. L. Lamport. “Specifying concurrent program modules.” ACM Transactions on
Programming Languages and Systems 5, 2 (April 1983), 190-222.

26. S. Leinwand and T. Lamdan. Algebraic analysis of nondeterministic behavior.
; Proceedings of the 17-th Design Automation Conference, Minneapolis, June,
? , 1980, pages 483-493.

27. 'T. M. McWilliams. Verification of timing constraints on large digital systems.
Proceedings of the 17-th Design Automation Conference, Minneapolis, June,
1980, pages 139-147.

28. Y. Malachi and S. 8. Owicki. Temporal specifications of self-timed systems.
In H.T. Kung, B. Sproul, and G. Steele, editors, VLSI Systems and Compu-
tations, pages 203-212, Computer Science Press, Inc., Rockville, Maryland,
1981.

s

- 29. Z. Manna and B. Mosskowski. Reasoning in interval temporal logic. To appear
in Proceedings of ACM/NSF/ONR Workshop on Logics of Programs, June,
' 1983.

. 30. Z. Manna and B. Mosskowski. Temporal logic as a programming language. In
preparation. o

31. Z. Manna and A. Pnueli. Verification of concurrent programs: The temporal
framework. In R. S. Boyer and J. S. Moore, editors, The Correctness Problem
in Computer Science, pages 215-273, Academic Press, New York, 1981.

32. C. Mead and L. Conway. Introduction to VLSI Systems.- Addison-Wesley
Publishing Company, Reading, Massachusetts, 1980.

33. P. Meinen. Formal semantic description of register transfer language ele-
ments and mechanized simulator construction. Proceedings of the 4-th Inter-
national Symposium on Computer Hardware Description Languages, Palo
Alto, California, October, 1979, pages 69-74.

34. J. Mick and J. Brick. Bit-Slice Microprocessor Design. McGraw Hill, New
York, 1980.

35. A. C. Parker and J. J. Wallace. “SLIDE: An I/O hardware description lan-
guage.” IEEE Transactions on Computers C-30, 6 (June 1981), 423-439.

38. D. A. Patterson. “Strum: Structured microprogram development system for
correct firmware.” IEEE Transactions on Computers C-25, 10 (October
1976), 974 985.

37. V. R. Pratt. Semantical considerations on Floyd-Hoare logic. 17-th Aannual
IEEE Symposium on Foundations of Computer Science, Houston, Texas,
October, 1976, pages 109-121, :

38. V. R. Pratt. Process Logic. Sixth Annual ACM Symposium on Principles of
Programming Languages, San Antonio, Texas, January, 1979, pages 93-100.

39. N. Rescher and A. Urquart. Temporal Logic. Springer-Verlag, New York, 1971,

40. R. L. Schwarts and P. M. Melliar-Smith. Temporal logic specification of
distributed systems. Proceedings of the Second International Conference on
Distributed Computing Systems, Paris, France, April, 1981, pages 446-454.

41, R. L. Schwarts, P. M. Melliar-Smith, and F. H. Vogt. An interval logic for
higher-level temporal reasoning: Language definition and examples. Technical

e] ”‘"”“”m

Report CSL-138, Computer Science Laboratory, SRI International, February,
‘ 1983. ‘

* 42. D.Scott. “Data types as lattices.” SIAM Journal of Computing 5, 3 (September
1976), 522-587.

43. D. P. Siewiorek, C. G. Bell and A. Newell. Computer Structures: Principles
and Ezamples. McGraw-Hill Book Company, New York, 1982.

44. L. J. Stockmeyer. The Complezity of Decision Problems in Automata Theory
and Logic. PhD Thesis, MIT, July, 1874. Available as Project MAC Technical
' Report 133.

45. J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. MIT Press, Cambridge, Masachusetts, 1977.

46. S.Y. H. Su, C. Huang, and P. Y. K. Fu. A new multi-level hardware design
[language (LALSD II) and translator. Proceedings of the IFIP TC-10 Fifth
‘ International Conference on Computer Hardware Description Languages and
their 'Applications, Kaiserslautern, West Germany, September, 1981, pages

155-169.

47. A. D. Talantsev. “On the analysis and synthesis of certain electrical circuits

5 by means of special logical operators.” Automation and Remote Control 20,
7 (July 1959), 874-883.

48. Texas Instruments, Inc. The TTL Data Book for Design Enginees. Second
edition, Dallas, Texas, 1978.

49. T. Wagner. Hardware Verification. PhD Thesis, Department of Computer
Science, Stanford University, 1977.

50. P. L. Wolper. Specification and Synthesis of Communicating Processes Using
‘ an Eztended Temporal Logic. PhD Thesis, Department of Computer Science,
i . Stanford University, 1982.

51. P. L. Wolper, M. Y. Vardi, A. P. Sistla. Reasoning about infinite computation
patha. In preparation.

