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ABSTRACT

4 The reliability of a structural system at a particular time

depends on the damage level in the system. When the damage level

exceeds a critical value, then failure occurs. Therefore, it is

important to track the damage in a structure. In the present

investigation some basic models are proposed for the study of

damageable structure response. The models are: (1) a higher

order linear differential equation with constant coefficients,

and (2) a second order linear differential equation with time

varying coefficients. Using a digital computer a blast is simu-

lated, and the response of an inelastic structure is computed.

Noise signals are added to these and the results are used to

simulate measured input and response. Next, using the simulated

input and response, the parameters of the linear models are iden-

tified and the linear structure responses are computed. Mea-

sures of these responses, incuding peak displacement and energy
dissipated are compared to the simulated response. It is shown

4 that the models accurately simulate inelastic structure

response. Moreover, the results of some experiments are

included. The experiments show that the energy dissipated in a

material specimen is related to the damage level.
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CHAPTER 1

1.0 Introduction

When a structure is excited by an external force, it exe-

cutes a response determined by the characteristics of both the
input and the structure. We could predict the exact response of

a structure, characterized by its geometry and its mutual proper-

ties, if we could predict inputs exactly; if we had a perfect

model for the structure; and if our mathematical computations

were correct. However, since inputs are random, we cannot per-
fectly characterize complex structures, and since mathematical

* models are not perfect, we can only estimate the response of a

structure.

In structural analysis we wish to assess the response of a
structure to dynamic loads, such as blasts and earthquakes. This
procedure, of course, requires the *use of a dynamic model which

will permit us to predict the response of a structure accu-
rately. These structural models are generally chosen to fit

experimental data and to simplify mathematical computations.

Most existing structures were designed based on a static

model, and although dynamic properties may be considered in their
design, the designed parameters may be inadequate to predict the

response to dynamic load correctly. Considerable work has been

performed on identifying the parameters of mathematical models

4,.. from dynamic experimental data, and various approaches have been
proposed for predicting system parameters based on experimental

data.

These identified parameters can be used to predict the

dynamic response of a structure to a different excitation than

that used to test it. The identified parameters also can be used

to calculate the energy dissipation in a hysteretic structure

caused by strong excitation.



The energy dissipated by a structure during a strong motion

response is an indication of the structural damage. It is impor-

tant to predict how much damage occurs in a structure due to

strong motion because the level of damage is related to the like-

lihood of structural failure. When damage does occur, it can

appear in different forms, such as cracks, permanent deformation,

or change in characteristic frequency.

While damage may be located through visual inspection, such

an inspection may not accurately estimate either its magnitude or

exact location. Consequently, it is difficult to assess whether

7; the structure would survive normal design conditions or another

severe excitation. By visual inspection, it may be possible to

locate the damage area. When damage occurs it is desirable to

estimate its magnitude and locate it, if possible.

1.1 Literature Review

Part of the energy dissipated by a structure is dissipated

due to hysteretic behavior of the structural material. The equa-

tion governing the hysteretic response of a lumped mass system is

a second-order, nonlinear, ordinary differential equation with

history-dependent stiffness term. Two models which may approxi-

mate the nonlinear system will be proposed in this report. These

are:

1. High-order equivalent linear system;I

2. Time-varying parameter linear system.

The first model considered in this paper is a high-order

equivalent linear system. It is assumed that the nonlinear hys-

4teretic system is approximately governed by a high-order equiva-

lent system. This model is motivated by studies summarized in

the literature. For example, Lutes and Hseih [1] used a third-

order linear system to approximate a single-degree-of-freedom

(SDF) oscillator with bilinear hysteretic yielding behavior,

excited by stationary white noise. In the linear system, certain

2
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parameters were chosen so that the rms displacement and velocity

matched empirical values for the nonlinear system. They showed

that the third-order system gives a better overall prediction of
response buildup than does either the linear SOF system or a

two-mode system.

Lutes [2] used a different type of equivalent linear system
to approximate the nonlinear system. All the methods Lutes con-

sidered defined the equivalence either in terms of response dis-
placement level, velocity level, frequency, or a combination of

these. He found that a particular equivalent linear system can
generally only be expected to match a limited number of response

statistics of a particular nonlinear system with a particular

type of excitation.

Wen [3], and Wen and Baber [5, 6] have used the equivalent
linearization method to approximately represent the response of a
hysteretic SOF system. They showed that the third order, linear,

differential equation provided a satisfactory representation of

the inelastic, hysteretic systems. This closed form lineariza-

* tion is relatively simple to formulate which allows ready exten-

sion to multi-degree-of-freedom (MDF) systems. They showed that

the equivalent linearization method gives satisfactory results at

all response levels for response analysis of MOF deteriorating or

N non-deteriorating systems under random excitation.

Another study by Wafa [7] demonstrated that the peak

response for an hysteretic SDF system excited by random inputs is

V. closely predicted by a third order, linear, equivalent system.
'.9. Recent work [8) has also shown that the high-order linear equiva-

lent model provides a good approximation to the hysteretic system
* when the energy dissipated and frequency shift are concerns.

Significantly, the results established that the parameters of a
higher order system can be identified by using a frequency domain

method even when noise is present both in the forcing and

response signals. In contrast, the time domain approach yields

3



poor results in the presence of noise. Because of the frequency

domain's preferable application, it will be used to do the

analysis.

The second model is motivated by the fact that structures

may exhibit time-variant nonlinear response to strong motion.

This implies that structure deterioration was in progress during

the large amplitude motion. Such a phenomenon has been recog-

nized and studied in the past. For example, Udwadia and Trifunac

[9] and lemura and Jennings [10] carried out an analysis to char-

acterize such behavior in terms of a quasi-time-variant linear

formulation based on the data obtained from the San Fernando

earthquake of February 9, 1971.

In another study Townsend and Hanson [11] demonstrate time-

varying hysteretic loops by the experimental test of reinforced

concrete beam-column and T-shaped specimens under different load-

ing conditions. In addition, Uzumeri [12] has also shown the

same behavior for an experimental study of cast-in-place rein-

forced concrete beam-column joints subjected to simulated seismic

loading.

Based on the above referenced investigations involving

time-varying parameters system, we anticipate that the time-vary-

ing parameter model will provide a good representation of a hys-

teretic system.

1.2 Objective

The determination of the system parameters from suitable

experimental observations is a fundamental problem in engineer-

ing. Obtaining a good representation of a system requires all

the proper information, such as well measured data and a suitable

model.

4
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The objective of this study is to justify two possible mod-

els to characterize the behavior of a system. The relative mer-

its of each model are discussed. Extensive numierical experimen-

tation using simulated data is also presented in order to inves-

tigate their feasibility and accuracy. This study will demon-

strate how well the system parameters can be identified with and

without noise in the measurements. Once the parameters are

known, the energy dissipated by the system can be computed.

Based on the computed results, one can compare how well the mod-

els performed for a given set of data. The ultimate goal of this

study is to establish structural models useful for other pur-

poses, such as prediction, design, control, and damage

assessment.

* The present research has been aimed at the analysis of dam-
age accumulation in concrete structures. It is assumed that when
a concrete structure dissipates energy, it accumulates damage.
To justify this assumption some physical experiments have been

* performed. Specifically, concrete cylinders have been subjected

to cyclic loading. The energy dissipated in each cylinder was

measured and the level of residual strength in each cylinder was

determined after the load cycling was completed. The residual

strength was plotted versus energy dissipated. When the reduc-
tion in strength is taken as a measure of damage, this plot
reveals the damage caused by energy dissipation.

.4.6



CHAPTER 2

HIGH ORDER EQUIVALENT LINEARIZATION

2.1 Model

The differential equation governing the response of a

single-degree-of-freedom (SOF) system is

n + U = f (2-1)

where m is the mass of the structure, f is the forcing function,

z is the displacement response, dots denote differentiation with

respect to time, and u is the restoring force of the structure.

Equation (2-1) can be used to model the actual system in which u

can be a very complicated function. In the present study, the

hysteretic restoring force, u, is modeled by using the equation

JM

cju(J)= CM+1I + z (2-2)

where the cj, J = 0, 1, ... , M+1 are the constants governing

the system restoring force characteristics, where u(J) denotes

the jth time derivative of u, and M is a constant denoting the

order of approximation provided by the linear system. The reason

for using this model to represent the hysteretics system is that

it displays a hysteretic character that can be made to match the

character of an inelastic structure.

Consider the case where M is equal to 0. The model in Equa-

tions 2.1 and 2.2 becomes

mz + z + z =f (2-3)
co co

6
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This is simply the second-order linear differential equation

governing the SDF system. However, when the response of the

actual system is linear and damping is viscous, the model of

Equation (2-3) represents the actual system. The restoring force

function for this system is u = (clco)z + (1/c o)z. This model

displays the hysteretic behavior as shown in Figure (2.1).

When the constant M is chosen as 1 in equation 2-2, the

model becomes

Is

mz + u =f

COU + CU= C2Z+ Z (2-4)

Combining these equations results in

z£ mz + mz + 4i Z = f +i (2-5)
coCo cO co

The parameters of the system in Equation (2-5) can be chosen so

that the model represents the hysteretic system as well as

possible.

For example, Figure (2.2) shows the hysteretic properties

for an SDF system by plotting the restoring force versus dis-

placement. The parameters for the system and the forcing input

are given in Figures (2.2). This study will consider both the

equations (2-3) and (2-5).

The parameters can be identified by using the least-square
identification criterion. Since most observed data include a

certain percentage of noise, the frequency domain approach will

be used to perform the parameter identification. However, a

practical problem of accuracy arises in the parameter identifica-

tion problem for high-order linear systems. Therefore, the

9.9



high-order systems, for M > 1, will not be considered in the
following discussion. It is anticipated that in some cases, the

third-order linear approximation (Equation 2-5) provides a

better representation of the hysteretic system than the second-

order linear system (Equation 2-3).

2.2 Identification of Parameters

The problem of parameter identification can be posed as one

class in the broader topic of optimization. The object of param-

eter identification is to make inferences about the real world

and mathematical models on the basis of measured input data. The

measured data in this study were assumed available, and were

simulated to represent the field data.

First, it is assumed that there is no noise present in the

measured data. Then, noise data are introduced. Note that the

measured response data are given as acceleration values. This is

realistic since the structural response acceleration is often the

measured quantity in an experimental test.

2.2a Second Order System
Now, consider the second-order model, Equation 2-3, Equa-

tion 2-3 carn be simplified by taking

ao, al =C- (2-6)

The equation governing motion of the system becomes

mz: + aiz + aoz =f (2-7)

Fourier transform both sides to obtain

.2m(iw) Z(w) + al(iw)Z(cw) + aoZ(w) =F(w) (2-8)

where

10
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Z(W) - f z(t) e- i ut dt -< < g

F(w) = ff(t) e- iwt dt -< < - (2-9)

are the Fourier transforms of z(t) and f(t), respectively. This

equation can be rearranged and combined with Z(w) and F(w) terms

on one side of the equation to obtain

(-mw 2 + ao + aliw) = F (2-10)

Multiply each side of the equation by its complex conjugate to

obtain the modulus squared.

m 2 + ao + al = (2-11)
;." IZ12

Evaluate the left side and let 1F1 /IZ12 equal Q(w) to obtain

(aO- mw)+ (aw)2 = Q(w) (2-12)

This equation can be used to identify the parameters of second-

order linear system. However, this equation is exactly satisfied

if and only if: 1) the system under consideration is linear; 2)

all measurements are noise free; and, 3) the Fourier transforms
'a

of z(t) and f(t) used in Equation (2-12) are exact. When these

requirements are not satisfied, Equation 2-12 will include an

error term (or noise term). This practical case is usually the

Jone that needs the most attention.
74

When noise is present on the measured input and response,
% Equation 2.12 can be written as

(ao - mw ) + (aw) = Q(w) + £(w) (2-13)



Note from Equation 2-7 that ao is the equivalent stiffness and

a, is the equivalent damping for the second-order linear system.

Therefore, ao is greater in magnitude than a,. In view of this

and the form of Equation 2-13, ao can be estimated by noting the

frequency where Q(w) + e(w) is a minimum whenever the equivalent

damping factor is much less than 1 (say less than 0.2). This

will be true in most civil engineering systems.

Denote the frequency where Q(w) + c(w) is a minimum by

um. Equation 2-13 shows that, approximately,

ao = mwm2  (2-14)

since the first term on the left is approximately zero when

Q(w) + e(w) is a minimum. Substitute Equation 2-14 into Equation

2-13; this yields

m2(m 2 . 2) + (a1w) 2 = Q() + C(W) (2-15)

Now, it is necessary to find the coefficient a, which minimizes

the e(w).

The coefficients a1 can be evaluated using a least-squares

approach, where the integral of e2(w) over a specific range of

frequencies is minimized. Based on Equation 2-15, set

13ai2 2 + m2 ( 2  2) - Q() dw = 2() (2-16)

W a

where wa amd wb are lower and upper bound frequencies,

respectively. This frequency band is chosen so that the system

response behavior can be fully characterized. It is anticipated

"I1
-..

- 12
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that the frequency band includes the natural frequency for a

linear or slightly non-linear system. For a highly nonlinear

system, the characteristic frequency, wm, will shift. However,

the frequency band can be located by finding the frequency where

Q(w) + e(w) is a minimum, and selecting the frequency band around

this frequency.

In general, the lower frequency, wa, is located at a point

where its corresponding Q(wa) + £(wa) value is about 5 times

as great as the minimum value of Q(w) + e(w); and wb is the

higher frequency where Q(wb) + £(wb) is about 5 times greater

than the minimum value of Q(w) + e(w). This method is used to

select wa and wb based on an approximate linear analysis.

When wa and wb are chosen in this manner, the interval (wa,

wb) will be approximately the half power bandwidth of the sys-

tem. This frequency interval reflects the characteristics of the

system.

Take the first partial derivative of £2 with respect to

al2, and set it equal to 0. The result is

ae 2 = 2  m (wi2 2  d = 0 (2-17)
aal

wa

Simplify this to obtain

al2  f w4 dw= ]w(Q(W) -im2 (w 2 w 2 2  dw (2-17a)
"n /

'4 .b a

* Integrate the equation where possible to get

13
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a 1  2. .. 5 5-f b W.2  (W) dw - m 2[ .  ( _• -4- b "3

Le .=3 5 (b 5  W La 5) + 1 (wb7  W a 7 ) (2-18)

Let wa = qa (2-19)

where qa is a coefficient less than one and qb is a

coefficient greater than one. This equation can be further

simplified

2 m2

a2= 2 m 5 Q(W) dw + m - (qb3 -q
3

b a M -a

+ 2(qb5 - q) - (qb7 _ q7 (2-20)

This equation provides the value of al. This is the best esti-
mator in the least-squares sense. All the parameters in this

equation are known except the integral of the w2Q(w) term which

can be evaluated nunerically.

2.2b Third Order Equation

The second-order linear ordinary differential equation may

not be considered an accurate representation of the hysteretic

system. It is hoped that the third-order linear system may

improve the accuracy in some sense.

Equation 2-5 can be simplified by taking

-1 C2  C

a0 = a0 , - = a2  (2-21)

14



Then Equation 2-5 becomes

ma2 z + mz + a1z + a0z = f + a2f (2-22)

Fourier transform both sides to get

ma2 OiWa) 3 + m(iw)2 + a, (iw)+ ao F

( - (2-23)
(i + a2 (i ))

The symbols used in this equation have the same meaning as in

earlier equations. Multiply each side of the equation by its

complex conjugate to yield the modulus squared

- ima 2w mw +  ialw + a2 =11+i2m2 = (2-24)

11 + ia2 W1 Iz
Evaluate the left hand side and let 1F12/1Z12 be replaced by

Q(w) to obtain

(a0 - mw 2) + W2 (a -m 2a2)(a2_______ )2______ - Q (w) (2-25)

1 + (a2w)
2

This equation governs a third-order linear system in the fre-

quency domain. Measured data can satisfy this equation exactly

if and only if: 1) the system under consideration is linear; 2)

all measurements are noise free; and, 3) the Fourier transforms

used to define Q(w) are exact. These conditions, however, are

not usually met. In fact, the purpose of this investigation is

to use the higher-order linear system to represent an hysteretic

system. Therefore, measured data do not usually satisfy the

15
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above equation. To account for this explicitly, Equation 2-25 is

written

2 2
(ao -mw 2 ) + W2(al - mw2a 2)

+(a2 ) 2= Q() + (W) (2-26)
1 + (~)

-(w) is a noise term which must be minimized by the proper choice

of system parameters. This equation can be used to identify the

system parameters following several approaches. Two of these are

summarized below. One approach approximates certain terms in
4Equation 2-25 to obtain estimates for the system parameters,

while the other approach uses a search technique to estimate

system parameters.

The first method to be investigated is an approximate tech-

a nique. When a2 is small compared to the characteristic fre-

quency, wm of an SDF system, the (a2w)
2 term in the denomi-

nator can be neglected. This is usually true when nonline&;

deformation is not too large. Eliminate the (a2w)
2 term in

Equation 2-26 to obtain

2 2 2 2 2
(ao - mw ) + W (ai - mw a2) Q(W) + £(W) (2-27)

When ai and a2 are small compared to ao (which is usually the

case, the minimum of the left-hand side occurs near the frequency

w= (2-28)

As previously described, the characteristic frequency, wm, can

be found when the Q(w) + e(w) term is a minimum. In terms of

wm, ao can be written

=o mwa (2-29)

16



Expand the second term on the left side of Equation 2-27 and use

the result of Equation 2-29. Neglect the m2w4 a2
2 term. Then

Equation 2-27 becomes

m2 (wm2 - k2)2 + 2 (a 2 _ 2mw 2 ala 2 ) = Q(w) + E(w) (2-30)

Let a12 = b, and aja 2 = b2 , then (2-31)

w (bl - -2 b) Q(W) - m2(% -2 ))= (w) (2-32)

When this expression is evaluated at the discrete frequency

w= wk, the result is

2 b-2m 2b2) (Qk- m2 (Wm2  W 2) (2-33)wk -2wk(b 2) 2  =k m k (-

The system parameters, a, and a2 , can now be identified as

those which minimize the sum of the squares of the Ek terms in

Equation 2-33. Consider a sequence of discrete frequencies

uniformly spaced in the interval (wa, wb). These are wa'

wa + Aw, wa + 2Aw, etc. Define

{b} = (ba b2)T (2-34a)
=a ma4

Wa + AW - 2m( a + AW)
4

[x1] = Wa + 2Aw - 2m(w a + 2Aw)
4  (2-34b)

Lb 
- b

17
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~M2( (wfl 2al2

m2  (wi - 2 2 (2-34c)
... {~~x2} l+A.

,w a+ 2Aw - m2  (Wm2 -( a + 2 Aw)
2 )2w

.  
2

2 2 2 2
QW - (Wm W b)

+) (2-34d)
W a wa+Aw wb

Note Aw is equal to (2w/T) and T is the total duration of the

excitation. (wa, wb) defines the range of frequencies over which

the system is analyzed. As in the identification of parameters

of the second-order linear system, only a portion of the

frequency range is used in the parameter identification.

This frequency range can be chosen as before. In terms of

the matrices defined above, Equation 2-32 can be written at

discrete frequencies as

[xl] {b}- {x2} = {c} (2-35)

The vector {b} can be found by minimizing the sum of the squares

of {c}. This is s2 = {}T {c}. The vector {b} which

minimizes e2 is

{b} = ([xl]T[xl])'1 xlIT 1x2} (2-36)

When b, and b2 have been computed, a, and a2 can be found from

Equation 2-31.

a, 1 S, a2 =b 2/a, (2-37)

18
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This solution provides approximate values for the parameters in

the third-order linear system which represents the hysteretic

system.

Another approach can be used for the estimation of param-

eters in the higher order linear system. This is a search pro-

cedure which iteratively estimates the parameter values. Equa-

tion 2-26 can be rewritten

2 2
(ao - mw ) + w (a, - mw a2 )

1 + (a2 )2

This quantity is a measure of the mismatch between the measured

data, reflected in Q(w), and themodel, reflected in the second

term on the right side of Equation 2-38.

* This mismatch can be either positive or negative and can be

used to define one measure of the difference between the model

and the measured data over a range of frequencies. This measure

is

C2 (wk) (2-39)
k

where the sum is taken over those discrete frequencies in the

interval (wa, wb). This is the square error of the model.

This error is minimized, however, when the model parameters are

chosen to satisfy the sequence of equations

2 2 2
3C 0 ae(2-40)

aO aa, aa2

The parameters ao, a1 , and a2, which satisfy these equationsI
establish a model which is optimal in a least squares sense.

Equations 2-40 can be solved numerically using a search

technique. A computer program was written to solve Equation
4 1

] 19
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2-40. The program, included in the appendix, uses Newton's meth-

od to search for the solution. The analysis procedure followed

in the computer program is identical to that used in solution of

the problem summarized in the following section. The steps in

the solution procedure are listed at the end of Chapter 3.

.92

20

- .,. ....o* *



Wo. .. - -,. .. t.K.-- . .- -A _ - .

CHAPTER 3

SYSTEM WITH TIME-VARYING PARAMETERS

3.0 Time-Varying Parameters Model

Sructures may exhibit time-variant nonlinear response to

strong motion excitation. Time-varying structural properties

were not considered in the previous chapters. In this chapter, a

structure is modeled as a time variant single-degree-of-freedom

(SOF) oscillator, and a methodology is introduced to determine

its parameters using the observed data. It is important to

introduce a technique which can be applied when noise is present

in the measured data.

To demonstrate this procedure, consider an SDF linear system

with mass m. Let the damping and stiffness parameters for this

system be time varying. Its equation of motion is

mz + C(t)z + K(t) z = f (3-1)

in which z is the displacement response of the system; C(t) and

K(t) are time variant damping and stiffness function of the sys-

tem, respectively; and f is the forcing funtion. It is proposed

that this equation be used to model the behavior of a system

governed by Equation 2-1. Observe the system from time 0 to T

and assume that z(O) = 0 and z(O) = 0.

The functions (C(t) and K(t) are assumed to have the form

C(t) = (1 + at) co

K(t) = (1 + Ot) ko (3-2)

Here, co and ko are the damping constant and the stiffness con-

stant, respectively. a and 8 are consant coefficients which are

usually much less than one.
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In many practical cases, it is observed that the structure

displays an increase in damping and a decrease in stiffness when

the structure excites an inelastic response. This implies a is a

positive constant and 0 is a negative constant.

In this study, although a and 0 will be considered as small

values, they will be large enough to influence the system's prop-

erties. This permits treatment of Equation 3-1 as a perturbed

-, . differential equation. When a and 0 are both equal to 0 (unper-

turbed), the equation 3-1 is simply a second-order differential

equation with constant coefficients which can be easily solved.

The solution of Equation 3-1 can be written in the form (for

example reference 18)

z zo + a za + a za + high-order terms (3-3)

Since a and 0 are small, the high-order terms will be neglected.

Substituting Equation 3-3 into 3-1 and expanding yields

m(ZO + Qa + 0z0) +-co (1 + at) (zo +Q a + sz,)

+ ko (1 + at) (zo + az, + OZO) =f (3-4)

Moving the force term to the left side of the equation, grouping

coefficients of the terms, 1, a, and 0, then equating the coeffi-

cients to zero results in

mzo + cozo + kozo =f (3-5a)

mza + coza + koz, cotzo (3-5b)"& a

mzB + cozO + koz0  kotzo (3-5c)

These equations approximately govern the system's response when

time variation of the parameters is linear, as shown in Equation

22
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3-2. If the excitation and the system's response are known, then

these equations can be used with a time domain parameter

identification procedure to estimate the system parameters.

However, when a time-domain parameter identification approach is

used, problems arise if noise is present in the measured input

and response signals (see Reference 8).

A frequency domain approach to the identification of system

parameters is pursued. Therefore, the equations of motion are

transformed to the frequency domain.

Let

* ZO(W) =j zo(t) e- iwt dt (3-6a)

Z (W) _/ z (t) e-
imt dt (3-6b)

ZO(W) =L z8 (t) e~iWt dt (3-6c)

define the Fou-ier transforms of zo(t), z,(t), and zo(t).

And let

zo(t) = . Zo(w) e dw (3-7a)

z(t) 27 eiWt dw (3-7b)

z(t) = efwe dw (3-7c)

23
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define the inverse Fourier transforms. Then the Fourier trans-

form of Equation 3-3 is

Z(w) = Zo + aZ a + OZ 0 (3-8)

It can be shown that the Fourier transform of Equations 3-5a

through 3-5c are given by

-mw ZO(w) + co iwZO(w) + ko ZO(w) =F(w) (3-9a)

-mW2 ZQ(w) + co iwZ,(w) + koZ,(w) =co(Zo(w) + Wz' O(W))
(3-9b)

-iW2 Z,(w) + co iwZ0(w) + koZ0(w) =-i ko V'o(w) (3-9c)

Now solve the Equations 3-9 simultaneously. The result is

Zo(w) = H(w) F(w) (3-10a)

ZCL(W) = COHMw ( H(w)F(w) + w(yI'(w)F(w) + H(w)F'(w))) (3-l0b)

Z8 w) = -ikOH(w) ( H'F(w) + H(w) Fl(w)) (3-10c)

where H(wi) is frequency response function and H'(w) is its first

derivative. These can be written in the forms

H(w) = -o mw) + i(WCO)] l (3-11a)

H'w)= 2m -ico) [(ko - mw 2  + j(WCQ)] (-11b)

F(w) is the Fourier transform of f(t) and Fl(w) is its

derivative.

F(w) =ff(t) e- iwt dt (3-12a)
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F'(w) = -if tf(t) e-iWt dt (3-12b)

Substitute the results from Equations 3-10 into Equation

3-8. This yields

Z(w) = H(w)F(w) + aco H(w)(H(w)F(w) + w(H'(w)F(w)

+ H(w)F'(w))+ (-ikoo) H(w) ( H'(w)F(w) + H(w)F'(w)) (3-13)

This is the approximate frequency domain expression for the solu-
tion of Equation 3-1. It is considered accurate when both a and

a are small. The displacement response also can be obtained by

inverse Fourier transformation of the Equation 3-13. Equation

3-13 is used in the identification process. Its use will finally

lead to the estimation of the parameters from a sequence of mea-

sured data.

3.1 Identification Procedure

The method described above provides the solution for the

Equation 3-1 in the frequency domain. When the measured values

of f(t) are used to estimate F(w) and the result is used in Equa-

tion 3-13 to obtain Z(w), this Z(w) will not, in general, match

the Z(w) estimated from the measured Z(t). Moreover, the

calculated IZ(w)I will not match thefZ(w)l obtained from measure-

ment. The reasons for this mismatch are that (1) noise is inevi-

tably present in the measured input and response. (2) the mathe-

-.-,: matical model is linear, yet the measured data come from non-

*. linear structures and (3) the discrete Fourier transform of a

time series is used to represent the continuous Fourier trans-

form. In the following, a brief theoretical background is pre-

sented together with the simple description of the procedure for

finding the unknown parameters.

.
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An equation defining the mismatch between the measured data

and the model of Equation 3-1 can be established. Let

Iz(m)(w)l be the modulus of the Fourier transform of the

measured structural response data. Let IZ(w)l be the modulus of

the function obtained when the Fourier transform of the measured

input data is used in Equation 3-13. The difference between

these function is defined

C(W) = Iz(W)I - Iz(W)(m)I (3-14)

When the discrete Fourier transform is used to approximate
the continuous Fourier transform of a measured or theoretical

signal, it is defined at a discrete set of frequencies,

wk = kAw, k = 0,1,...,n-1. Here n and aw relate to the time

signal z(t) and its discretization. It is assumed that z(t) is

available on the interval (0, T) and is represented by the

discrete set of values zj, j=0,.../n-1. Thus, n is the number

of points where the signal is represented. Aw is given by 2w/T.

At a particular frequency w = wk, Equation 3-14 becomes

Ck: IZk(w)I --Zk()(w)l (3-15)

Ck can be positive or negative. A quantity which is

always non-negative and which summarizes the differences between

the measured, 1Zm) 1, and the theoretical, IZkI, structural

responses in the frequency domain over a range of frequencies is

given by

C 2 2 (3-16)

*This is the square error between measured data and the

model. This error can be minimized by properly choosing the

parameters, ko, co, a, and S. A method that chooses the

parameters this way is a least squares method.
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The range of index values, k, over which the above sum is

taken, is not specified in Equation 3-16. Equation 3-16 need not

be summed from 0 to n. Rather, the summation should be carried

out over the range of freuencies which includes those values of

Zk containing significant information on the behavior of the

system. In general, this is the band of frequencies surrounding

the characteristic frequency of the system.

Now, one can choose ko, co, a, and s, as those constants

which satisfy

a .2  a 2 2  0 (3-17)

7k0  -3 ' 7 o o a 01

The ko, co, a, and 8, can be located using a search technique.

To simplify the analysis, Newton's method is used to minimize

c2 with respect to ko, co, a, and 8.

Newton's method converges very rapidly once an iterate is

fairly close to the solution. The formal simplicity and its

great speed are the reasons why Newton's method is used in this

study.

To assure convergence in the numerical analysis, it is

important to choose the initial iterate properly. A more

detailed discussion of the numerical procedures will be presented

later, in the numerical examples.

The steps in the numerical analysis are as follows:

1. Make the initial guesses at the parameter values, ko v

co, , and 8.

2. Choose the computation increments Ako, Aco, Aa, and AB.

3. Choose the desired accuracy measure (used to judge

convergence).
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4. Compute the partial first and second derivatives of e2

with respect to ko using central difference formulas.

5. Use Newton's method to minimize e2 with respect to

* ko.

6. Repeat steps 4 and 5, this time minimizing with respect

* to co, then a, then s.

7. Check the result to convergence.

a. If convergence has occurred, then stop the

analysis.

b. If convergence has not occurred, then repeat steps 4

through 6.

A computer program to execute the procedure described above

has been written. This proqrai is named PUR and a listing is

included in the Appendix.
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CHAPTER 4

EXAMPLES

4.0 Numerical Examples

In this chapter, numerical examples are presented to demon-

strate the use of the previously described analytical proce-

dures. Two examples demonstrating the frequency domain approach

to parameter identification are summarized. Both solutions

employ the same excitation input. The response signals identi-

fied were drawn from two sources. One source was a bilinear hys-

* - teretic response while the other was a time varying linear sys-

tem. Use of these two sources may provide improved understanding

of the feasibility of the identification procedure for specific

measurements. The examples show the identifications of the

parameters for linear and hysteretic, single degree of freedom

structures, when measurement noise is and is not present.

The input used to excite the SDF system in all numerical

examples is a decaying exponential, oscillatory function. It is

generated using the formula

f(t) = e- cos(wjt - 0j) 0 < t < T (4-1)

Where a, cj, j=I,...,N, and wj, j=I,...,N are constants. 0j,
J-I,...N, are phase angles which are random variable realiza-

tions; these random variables are independent and uniformly

distributed on the interval (0, 2w). a is a decay rate. The

cj, j=O,...N, are constants which determine the amplitudes of

the excitation. All the values of cj are taken as equal to c

in all cases for the examples. wj, j=I,...N, are the frequen-

cies where the excitation has power. wj, j=I,...,N, are

equally spaced in the interval including the characteristic

frequency of the system being analyzed.

The forcing function defined above was generated at discrete

times. Specifically, f(t) was evaluated at the times t=tt=ZAt,
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l=0,...,N-1. A computer program, named FORCE, which generates

the excitation of Equation 4-1 was used in these numerical

examiples.

Two distinct signal types were identified in the numerical

examples. The first example used a computer program, named
BILIN, to compute linear and nonlinear response. BILIN can be

used to find the displacement, velocity, and acceleration
response of a given bilinear hysteretic system to an arbitrary

input. It also computes the energy dissipated by the structure

during the response. The second example used a computer program,
named TIMEVA, to compute the response. This program computes a
linear time dependent response defined by Equations 3-1 and 3-2

with a, 8, co, and ko, constants.

White noise was used whenever measurement noise was added to
the signals. The white noise is normally distributed, N (O,a n
Asubroutine named NOISE was used to generate the noise sinl

The noise signals were added to the generated input and response

signals in the following manner. First, the excitation and

response signals were generated using programs FORCE and BILIN or
TIMVA. Then noise/signal ratios were selected and used to obtain
the variances of the noise signals. The noise signals were

generated as sequences of independent random variables, and
directly added to the excitation and response. These noisy

.signals w.,-e then used as inputs to do the identification. Note,
no filtering procedure was used on the simulated measured signals

during the identification process.

Three basic models to represent the hysteretic system were

pursued in this study. All the model parameters were identified

in the frequency domain. The identification procedures and
formulations were described previously. Different identification
approaches may be applied for the same model. Three computer
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programs, FREQID, PUR3 and PUR, were written to execute the

parameter identifications.

FREQID performs approximate frequency domain parameter iden-

tification for second and third order linear models. It accepts

both an input signal from FORCE and a response signal from BILIN

or TIMEVA. When desired, the white noise signals are added to

the corresponding input data. Then FREQID performs the necessary

Fourier transforms and other data operations. Following this,

the parameter identification is executed. One operation

required in the parameter identification is estimation of the

characteristic frequency. This can be done simply by searching

Q(w) + e(w) for a minimum value. However, a more precise method

for determining the minimum value of Q(w) + e(w) defined in Equa-

tion 2-13 and 2-16 involves use of a least square method. In

this improved method, Q(w) + c(w) terms are fit into a polynomial

model where frequency is the only variable. Once the coeffi-

cients for this equation are estimated, the equation representing

the Q(w) +e(w) is used to identify the characteristic frequency

and other parameters.

An important assumption was made for the third-order model,

Equation 2-26. In particular, it was assumed that a2 is small

in value. This assumption was used in FREQID. The parameters of

this model may be identified, without the assumption that a2 is

small, by the search technique. The computer program PUR3 was

written for this purpose. A detailed description of this method

was given in Chapter 3.

Program PUR performs parameter identification for second-

order time varying linear systems. The approach is based on the

procedure described in Chapter 3. The program accepts the inputs

and responses generated in the programs FORCE and BILIN or

TIMEVA, with or without noise. Four parameters, namely ko, c,
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;odandt s are identified. The program employs a search tech-
nique; teitalestimators can be chosen by using the identi-

fiedparmetrs btanedfrom any of the methods.

Once the parameters have been estimated, the energy dissi-

pated by the model is computed. This result together with the

predicted response is compared to both the energy dissipated and

the response of the actual system. The energy and response

computations are performed in program ENER2 and ENER3 for the
second and third order system, respectively.

From the above description, the methods used in the deter-

mination of the system parameters can be summarized as follows:

Method 1. Performs parameter identification for the

second-order system in the frequency domain

utilizing Equation 2-20. No fitting equation for

Q(w) + e(w) is applied.

Method 2. Performs parameter identification for the third-
* order system in the frequency domain utilizing

the equations from 2-32a to 2-35. No fitting

equation for Q(w) + e(cn) is applied.

Method 3. Performs parameter identification using the same
approach as Method 1 except the input data

Q(w) +- ew are replaced by the fitted polynomial

equation. This additional analysis is done in a

subroutine called FIT.

Method 4. Performs parameter identification using the same
approach as Method 2 and using the same proce-

dure described in Method 3.

Method 5. Performs parameter identification for the third-

order system using the search method described in

Chapter 3. The operation is executed in a pro-

gram called PUR3. Prior estimates obtained from

the above methods are used.
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Method 6. Performs parameter identification for the

second-order time-varying parameter system in the

frequency domain. The search method described in

Chapter 3 is used. This method also requires

prior estimators which can be obtained from the

information supplied in Methods 1 through 5.

All the methods described above can be used to estimate the

parameters for the linear and nonlinear systems even when noise

is present. The duration of the excitation must be long enough

to characterize the system parameters.

In the following numerical examples, four basic problems are

solved. These cases involving different degrees of nonlinearity

in the system response are summarized below.

Case 1. An input excitation is generated using Equation

4-1. The input is used to excite a linear SDF sys-

tem with viscous damping. The excitation and linear

response are used to identify the model parameters.

Noise signals can be added to the generated input

and response, if required.

Case 2. An excitation input is generated as in Case 1, but

here the repsonse of a bilinear hysteretic system is

computed. Yielding occurs in the response. The

degree of nonlinearity was designed using a compari-

son between the yield displacement of the bilinear

system and the maximum displacement of the linear

system. Let the yield displacement of the bilinear

system be zy. Let the maximum displacement of the

linear system be zmax. In this case, zmax is

taken as 6.7 and zy is equal to 6.0.

Case 3. Same as Case 2, but zy is equal to 5.0.

Case 4. Same as Case 2, but zy is equal to 4.0.
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*Case 5. An input excitation is generated as in Case 1. The
input is used to excite a linear SOF system with
time varying damping and stiffness. The excitation
and response are used to identify the model param-

* . eters. Noise signals are added to the simulated

input and response when required.

4.1 Example 1

This example carries out the parameter identification using
the methods described above. Specifically, methods 1 through 6

are used to identify the parameters. The parameters of the input

excitation are listed in Table 4.1. The notation for the param-
eters was specified above.

TABLE 4.1. PARAMETERS OF THE FORCING FUNCTION

a= 0.1 N = 50 cj =10.0 j 19-9,50

wj = (1.8 + O.OO8j)r ,j =1,...50

At = 0.05 n = 1024

A typical forcing function history generated by using these

p arameters is shown in Figure 4.1. Actual forcing functions

measured in the field usually contain a certain amount of noise.

Inputs witli noise to signal ratios of six and eight percent are
shown in Figures 4.2 and 4.3, respectively.

The response of some SDF systems to the forcing input were

computed. The energy dissipated in each structure is listed

with the structural parameters in Tables 4.1A and 4.1B. All
cases were described above. The notation of the system paramn-

eters is as follows: k is the initial stiffness; c is viscous
damping; k y is the yield stiffness; z y is the yield displace-

ment; zmax is the maximum displacement of an SOF system; m is

the mass of the SOF structure.
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Figure 4.3 Signal used to simulate the measured
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TABLE 4.1A. SYSTEM PARAMETERS

k =39.48 c = 1.257 m = 1.0

Zmax 6 .7  k y=O.0 At =Q0.5 nl 1024

TABLE 4.1B. ENERGY DISSIPATION FOR CASE 1 THROUGH CASE 4

Cases Zy Damping Energy Spring Energy Total Energy

Dissipated Dissipated Dissipated

Case 1 11028.20 0.0 11028.2

Case 2 6 10199.30 405.21 10604.0

Case 3 5 8364.27 1186.74 3551.0

Case 4 4 6300.53 1924.48 8225.0

First, the response of a linear system (case 1) was corn-

puted. Then, a slightly nonlinear response of an SDF structure

* was computed for analysis in case 2. The displacement response

versus time for case 2 is plotted in Figure 4.4. The spring
restoring force versus displacement is shown in Figure 4.5. A

small plastic deformation is shown. The total restoring force

versus displacement is plotted in Figure 4.6. The measured

responses for Case 2 with a certain amount of noise are plotted

in Figures 4.7 and 4.8. Figure 4.7 shows a measured signal with

six percent noise to signal ratio. Figure 4.8 shows a measured

signal with ten percent noise to signal ratio. Two more severe

nonlinear responses were computed for analysis in cases 3 and 4.

The displacement response versus time for case 4 is plotted

in Figure 4.9, and the measured response for case 4 with ten per-

cent noise to signal ratio is shown in Figure 4.10. The spring

restoring force versus displacement is shown in Figure 4.11. A

* considerable permanent set is evident in Figure 4.9. Figure 4.11

shows that plastic deformation occurs in the structure in both

directions of motion.
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Using the forcing function input, described above, and the

computed responses, the parameters of the structures were identi-

fied. The results of the parameter identification are given in

Tables 4.2 through 4.5. These results provide the identified

parameters in the noise-free case. The energy dissipated by the

identified system is listed next to the identified parameters.

For method 6, the parameters a0, a,, a2, and Q3 identify with the

parameters ko, 8, co, and a, respectively.

TABLE 4.2. IDENTIFIED PARAMETERS AND ENERGY

DISSIPATED FOR CASE 1.

Method a0  a, a2  a3  Energy

1 39.17 1.26 11210.0

2 39.17 1.28 0.0 11090.0

3 40.01 1.28 10720.0

4 40.01 2.48 0.0236 9270.0

5 39.50 1.26 0.0 11200.0

6 39.33 0.0 1.274 0.0 10741.0

TABLE 4.3. IDENTIFIED PARAMETERS AND ENERGY

DISSIPATED FOR CASE 2

Method a0  a 1  a2  a3  Energy

1 33.27 1.45 7968.0

2 33.27 3.98 0.05 7028.0

3 35.84 1.28 10500.0

4 35.84 3.57 0.042 7690.0

5 34.27 3.68 0.062 10370.0

6 36.56 0.001 1.094 0.022 10077.0
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TAL 4. .4w.. IDNIFE PAAETR AN ENERGY -

4r

Metho ao a, a2 a Eeg

Meho 32.5 a.9 a.02  a 83Energ

1 33.27 1.35 7802.0

2 33.27 2.98 0.032 703.0

3 35.32 1.41 9482.0

4 35.32 2.74 0.027 788.0

5 32.54 2.98 0.042 8324.0

6 40.21 - 0.0013 1.58 0.018 9686.0

SetABL 4.5. IDENntIIed PhaRAETR ANDn tehgeNrer iea
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is apparent from this diagram why the use of a curve-f it provides
better results.

Figures 4.14 through 4.16 show comparisons between the

responses of the identified systems computed by different meth-

ods, and the actual response of the bilinear hysteretic system in

case 2. The- responses of the identified systems match the

response of the actual system so closely that it is difficult to

distinguish the two responses in these figures. More identified

responses for case 4 are shown in Figures 4.17 through 4.19. The

model responses do not match the actual response as closely when

residual deformation exists in the actual structure since the

models cannot accumulate permanent deformation. However, peak

responses in the models match the actual system response quite

well.

In this example, noise was added to the forcing function and
*response signals; then the system parameters were identified.

The results are summarized in Tables 4.6 and 4.7.

TABLE 4.6. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED

FOR CASE 1 WITH TEN PERCENT NOISE TO SIGNAL RATIO

Method a0  a, a2  a3  Energy

-%1 39.17 1.37 11022.0

2 39.17 1.45 0.003 10900.0

3 39.93 1.42 10300.0

4 39.93 2.44 0.022 9497.0

5 34.30 2.98' 0.051 11710.0

6 38.44 0.0 1.286 0.0 10929.0
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for Case 2
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TABLE 4.7. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED

FOR CASE 4 WITH TEN PERCENT NOISE TO SIGNAL RATIO

Method ao a, a2  a3  Energy

1 33.27 1.89 7092.0

2 33.27 1.42 0.021 9980.0

3 32.02 1.95 6476.0

4 32.02 2.60 0.021 6803.0

5 34.46 2.70 0.043 11400.0

6 32.83 0.0026 1.543 0.011 7016.0

These results show that the parameter identification procedure is

still effective when noise is present.

4.2 Example 2

In this example, a parameter identification problem is
solved using the frequency domain approach. The methods used to

identify the parameters were described in section 4.0, namely

methods 1 through 6. The same forcing function as illustrated in

Example 1 is used. The only difference in this example is that
the response was simulated by a second-order time varying param-

eter system. Unlike the responses simulated in Example 1, this

example is a linear system with time dependent stiffness and

damping. The parameters of the system and total energy dissi-

pated are listed in Table 4.8.

TABLE 4.8. SYSTEM PARAMETERS FOR CASE 5

=o 39.48 co = 1.257

8 -O0.01 a = 0.01

*Total Energy = 9799.0

The definitions of the symbols are the same as in Equation 3.2.

This case was described in section 4.0 as case 5.



The displacement response versus time for case 5 is shown in

Figure 4.20. The total restoring force versus displacement for

this case is illustrated in Figure 4.21. Note that the major

axis of the loops depicted in the diagram have different slopes.

This occurs because the system stiffness diminishes with time.

The parameters identified using methods 1 through 6 together with

the total energy dissipated in the corresponding systems are

shown in Table 4.9.

TABLE 4.9. IDENTIFIED PARAMETERS AND ENERGY

DISSIPATED FOR CASE 5

Method a0  a, a2  a3  Energy

1 34.70 1.36 9266.0

2 34.70 3.25 0.039 7883.0

3 37.15 1.29 10960.0

4 37.15 2.82 0.031 9074.0

5 34.31 2.97 0.05 11160.0

6 37.56 -0.006 1.23 0.019 9120.2

It is shown that methods 1 through 6 can also be used to identify

model parameters when noise is present. The results obtained

V.., when the measured signals contain noise are shown in Table 4.10.

.e

TABLE 4.10. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED

FOR CASE 5 WITH SIX PERCENT NOISE TO SIGNAL RATIO

Method ao a, a2  a3  Energy

1 34.70 1.38 9419.0

*2 34.70 2.75 0.03 8623.0

337.34 1.31 11180.0

4 37.34 2.24 0.021 10280.0

5 34.32 2.49 0.038 11040.0

6 38.30 -0.007 1.254 0.025 9245.6
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Figure 4.20 Displacement response of second-order
time varying parameter system to force
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Figures 4.22, 4.24, and 4.25 compare the identified system

responses to the response of the actual system. The simulated

and actual responses match quite well in all cases. The model

including time parameters provides the best match. Figure 4.23

shows the total restoring force versus displacement. A change in

slope of the major axis of the loops is observed. This behavior

matches the real system behavior shown in Figure 4.21.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

The objective of this study was to develop approximate

linear models for the simulation of inelastic system response and

the measurement of damage accumziulation in a structure. It was
assumed that energy dissipated is related to the accumulation of

*damage. The model parameters were identified; then the energy

* .dissipated during a strong motion was calculated. The displace-

ment response and the energy dissipated in each model were com-
pared with the displacement response and energy dissipated in the

actual structure.

Three basic models were considered in this study. These are

second and third order linear models with constant coefficients,

and a second order linear model with time-varying parameters.
The frequency domain approach was used in all the parameter iden-

tification computations.

Several numnerical examples were solved. The results

obtained lead to the following conclusions:

1. Linear and nonlinear hysteretic SOF systems can, in some
respects, be accurately modeled using second- and

third-order linear differential equations with constant

coefficients, and a second-order linear differential
equation with time-varying coefficients. Specifically,

the models provide accurate simulations when displace-

ment response and energy dissipated criteria are used.

2. The frequency domain approach can be used to identify
model parameters of all three models when the force and
response measuements are noisy.

3. The second order model with time-varying coefficients
provides the best simulation of system response and

energy dissipated among the three models considered.
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While the procedures developed in this investigation provide

means for the simulation of response and the estimation of damage

in inelastic structures, some improvements can be made. Th e
systems considered in this study are SDF; future investigations
should include multi-degree-of-freedom structures. The models

- used in this study do not permit the accumulation of plastic
deformation; future investigations should consider models that

allow plastic deformation to accumulate. The tests that are

summarized in the appendix show that material damage is related

to energy dissipated; further experiments should be performed,
and a mathematical model characterizing the results should be
developed. Finally, analyses should be performed to establish
the special distribution of energy dissipated in actual

structural members.
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APPENDIX A

ENERGY DISSIPATED RELATED TO CONCRETE DAMAGE

* Introduction
This presentation describes and evaluates an experimental

study of the strength reduction and behavior of plain concrete
subjected to cyclic loading. It is recognized that concrete is

damaged by application of stresses lower than the ultimate

stress. The concrete fracture process begins at very low stress

* and is continuous.

The damage caused by loading to small stresses is slight and

each subsequent loading over the same stress range produces a

negligible increase in damage. However, as the loading stress is
increased, more damage occurs. Stresses with peak values in the

range of 40 percent to 100 percent of the ultimate stress produce
considerable damage and subsequent loading over the same range

- cannot be neglected. In practical situations, when a severe

excitation is applied to a structure, it is not uncommon for the

- peak stress to go beyond the 50 percent level of ultimate

stress.

When loading is repeated, damage accumulates in a concrete

specimen; consequently it no longer retains its original

strength. This concept suggests that it might be useful to

1 attempt a quantitative evaluation of damage occurring in concrete
during the cyclic loading. The objective of this study is to

demonstrate that concrete damage and strength reduction are
related to energy dissipation under repeated loading.

When energy is dissipated during loading and unloading, an

hysteresis loop is formed in the stress-strain curve as shown in
Figure Al. The area enclosed represents the total energy dissi-

pated during one cycle of loading. This dissipated energy may be

classified into two parts, namely, damage and damping energy
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dissipation. However, the total accumulated energy dissipation

is of primary interest in this experimental study. A more

detailed discussion of the energy dissipation mechanism is given

in Reference [14].

There are many methods that can be used to detect and assess

* - damage in concrete. Among the most frequently used techniques

are those which assess change in initial elastic modulus, and

those which measure acoustic emissions, change in pulse velocity,
and energy dissipation. In the present study, the dissipated

energy method will be adopted. Attention will be focused on this
means for measuring damage because of its intuitive relationship

with the energy dissipation of an hysteretic structure under

dynamic loads. Other methods may be considered as in References

[14, 15, and 16].

In the present investigation a sequence of physical experi-

ments was performed. In each experiment a concrete cylinder
(specifications given below) was loaded in uniaxial compression.

The load applied to each cylinder was a cyclic load, and the

energy dissipated was calculated. This was done by plotting the

stress versus strain diagram and by determining the area enclosed

within the hysteresis loops. Varying amounts of energy were

dissipated in the various test specimens, and upon completion of

cyclic testing each specimn was loaded to failure in order to

*9 determine its residual strength. For each test specimen, dissi-

pated energy and residual strength were recorded and the relation

between these quantities was established.

More details of the testing procedure are given below,

together with fresh concrete properties observed during the mix-
ing. These may provide a useful reference for the concretes used

in the test.
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The concrete specimens tested in this investigation have the

mix details and plastic properties of fresh concrete as shown in

Table Al.

TABLE Al.

Concrete Mix Details

Aggregate Ratio of Maximum
Cement Coarse:Fine Aggregate

Type of Cement W/C Ratio Ratio Aggregate Size
(in)

Type 1 A 0.53 4.8 60:40 3/4

Plastic Properties of Fresh Concrete

Room Unit
Mix No. Slump Air Temperature Weight

(in) % (degrees C) lb/ft j

2 WE 4 3.5 27 145.8

3 WE 4 1/4 4 30 148.96

The specimens were all cast in 6-in x 12-in steel cylinder

molds. The concrete mix proportions were constant for all the

specimens. The specimens were tested at a consant loading rate

of 1000 lb/sec in a RIEHLE compression testing machine. The

force versus strain results of each test were plotted with an x-y

electronic recorder. This recorder was attached by an electronic

compressometer which is properly designed for this specific

purpose as shown in Figure A2. The test machine was properly

calibrated before the test.

To ensure a uniform displacement of the specimens, thin sul-

fur caps on the two end surfaces of the specimens were employed

and were allowed to harden before testing. Specimens were cured

in water in the curing tank at 25"C for 14 days and 28 days.
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In assessing the energy dissipated and residual strength,

specimens were subjected to a series of cycles of loading and

unloading. The specimens were loaded up to a value in the range

of stress, 90 - 94 percent of the ultimate stress. This ensured

that danage occurred for every cycle of loading. At the end of

each cylce of loading and unloading, the testing machine was

returned to a rest position, and reloading was commenced immedi-

ately. To ensure that concrete characteristics would be as

nearly uniform as possible, all the tests in each sequence were

run in one day.

Discussion of Results

Numerous physical experiments were conducted in this inves-

tigation and characteristics of concrete accumulating damage can

be derived from the individual tests and all the tests, jointly.
In the following section the characteristics of individual tests

are discussed first; then damage characteristics related to the

entire test sequence are discussed.

A typical stress-strain diagram obtained during one experi-

ment is shown in Figure A3. A number of characteristic features

- can be extracted from this result. On the initial cycle the

specimen was loaded to a stress near its ultimate (95 to 98 per-

cent). It can be seen that the most significant change in behav-

ior between consecutive loading cycles occurs between the first

and second cycle.

The first loading curve shows more curvature than the fol-

lowing reloading curves in which curvature tends to diminish.

The reloading curves show progressively decreasing slopes. This

may be attributed to structural degradation of the specimen.

Another measure of degradation can be established by plot-

ting the initial elastic modulus for a particular cycle versus

energy dissipation prior to that cycle. This is shown in Figure

A4. As the energy dissipated gradually increases, the initial

elastic modulus diminishes.
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The above discussion was based on one typical sample. A

similar discussion could be given for the other samples. Figures

A5, A6, and A7 show the stress-strain curves for some other spec-
imens tested during this investigation.

Some general characteristics of the accumulation of damage

* in concrete specimens can be derived from the entire collection

of results. A total of 24 concrete specimens were tested in this

investigation.

As noted earlier, the specimens were subjected to cyclic

loadings inducing different amounts of energy dissipation in the

various cylinders. Not all specimens were cycled to failure. At

least, three of the specimens were tested for the determination

of the ultimate strength. Other specimens, however, were cycled

till failure. The remainder of the specimens were cycled till a

certain amount of energy was dissipated; then these were loaded

to failure in order to find their residual strength.

Using these data, a characteristic of the specimens can be
extracted. The total energy dissipated by each particular speci-
men was plotted against the residual strength of the specimen as

shown in Figure A9. Another result can be illustrated by plot-

ting the total energy dissipated versus percentage of decrease inA strength as shown in Figure A8. Both diagrams show a decrease in
strength as the total energy dissipated is increased. Since only

a limited number of specimens were tested, no direct mathematical

expression relating the residual strength to the total energy

dissipated was obtained. While such a relation could be estab-

lished, further testing is required to derive a general relation-

ship. However, the pesent results provide the information needed
to conclude that energy dissipation is truly related to the

residual strength.
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Figure AS. Typical stress-strain diagram for a con-
crete test specimen under cyclic load.
Peak stress 90 percent of failure stress
for Batch #3 (14 days curing)
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Figure A6. Typical stress-strain diagram for a
concrete test specimen under cyclic
load. Peak stress 90 percent of
failure stress for Batch #2
(28 days curing)
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Figure A7. Typical stress-strain diagram for a
concrete test specimen under cyclic
load. Peak stress 90 percent of
failure stress for Batch #3
(14 days curing)
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Figure A8. Percent decrease in residual strength
versus energy dissipated in concrete
specimen (1-4 day curing)
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Figure A9. Residual strength versus energy dissipated
in concrete specimens (28 day curing)
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The experimental technique described above provides an

approach for the estimation of damage in concrete. Based on the

physical experiments, the following conclusions can be made:

1. The most significant change in the properties of the
concrete occur between the first cycle and second cycle

when loading in the first cycle is severe.

2. The initial elastic modulus of the specimens gradually

*1.~diminishes as energy is dissipated. This implies that

the damage ofl concrete under cyclic loading occurs

progressively.

3. The energy dissipated in a concrete specimen is

adversely related to residual strength. As the energy
* dissipated increases, the residual strength decreases.

Therefore, energy dissipated may be used to predict the

damage of a structure under a severe loading. Moreover,

total energy dissipated may be considered as an

indicator of the degree of damage in an hysteretic

structure.

Some restrictions apply to the above conclusions. The work

is limited to beha~ior in uniaxial compression. Other types
of loading are possible and further tests are required to

characterize damage under general loading. It has been assumied
that the creep effect is small enough to be neglected in this

investigation.

73



APPENDIX B

COMPUTER PROGRAM PUR

C
C ************PROGRAM NAME "PUR"I************
C
C THIS PROGRAM IDENTIFIES THE PARAMETERS OF A
C TIME VARYING SECOND-ORDER LINEAR MODEL BY
C USING THE PERTURBATION METHOD AND ITERATIVE
C NEWTON- RAPHSON PROCEDURE. IT MAY ALSO USE
C THE POLYNOMIAL FITTING APPROACH.
C

COMPLEX FF(1024),FD(1024)
COMPLEX ZZ(1024),HD,Z(1024),HABS(512)
DIMENSION DD(1024),F(1024),HMOD(512),HZ(512)
DIMENSION EK(3),COE(4),S(9), INDEX(9),AS(9)
COMMON/ARRAY/FF,FD
CALL OPSYS('ALLOC','FD1',10)
CALL OPSYS('ALLOC','RHI',7)
CALL OPSYS('ALLOC','NFL',4)
EXTERNAL MAT INV

C

C SM : SYSTEM MASS
C ALPHA : DAMPING COEFFICIENT
C BETA : STIFFNESS COEFFICIENT
C ZETA : DAMPING RATIO
C Cl : INITIAL GUESS 'DAMPING'
C C2 : INITIAL GUESS 'ALPHA*C1'
C C3 : INITIAL GUESS 'STIFFNESS'
C C4 : INITIAL GUESS 'BETA*C3'
C ESLON : ACCURACY MEASURE(FOR ESLON1-ESLON4)
C WI-W4 : ACCURACY MEASURE FOR NEWTON METHOD
C DAI-DA4 INCREMENT VALUES
C

SM=1.0
CI=1.5
C2=0.02
C3=37.5
C4=-0.O1
ZETA=O.1
ESLON1O .02
ESLON2=O.02
ESLON3=0.02
ESLON4=0.02
WN=SQRT(C3/SM)DA1=0.01 "

DA2=0.00]
DA3=1.0
DA4=0.01
Wl=0.01
W2=0.01
W3=0.01
W4=0.01
PI=3.1415926535
DT=0.05
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M=10
N=2 **
NT=N/8
TT=DT *N
DW=2. *PI/TT
NS=N/2
CA=P I/NS

C
C READ IN THE TIME DOMAIN RESPONSE
C

READ(1O,80) (F(I),DD(I), I=1,N)
C

C

DO 3 1=1,NS
IM=N-I+l
CMULT=0.5*(1.O-COS( (I-1)*CA))
F( IM)=CMULT*F( IM)
DD( IM)=CMULT*DD( IM)

3 CONTINUE
C
C FFT THE INPUT AND RESPONSE

DO 8 I=1,N
FF( I )CMPLX(F( I), O.O)*.T
~ZZ( I)=CMPLX(DD( I) ,0.0)*TT

8 CONTINUE
CALL FFT1(FE,M,N,-1.O)
CALL EFT1(ZZ,M,N, -1.0)

C
C FIND-'THE MOD(H)
C

* DO 9 I=1,NT
FA=CABS(FF( I))
ZA=CABS(ZZ(I))
HMOD( I)=ZA/FA

i.~ C 9 CONTINUE

C CALCULATE THE DERIVATIVE OF FF

DO 12 I=1,N
TC=(I-1)*DT
F( I)=F( I)*TC
FD(I)=CMPLX(F(I) ,O.O)*TT

12 CONTINUE
CALL FFT1(FD,M,N,-l.)
DO 13 I=1,N

13 FD(I)=FD(I)*CMPLX(0.0,-1.)
C
C FIND THE NUMBER OF PTS NEEDED IN THE BAND
C

NC=(1. O*ZETA*WN)/DW
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NW=WN/DW
NS=NW-NC
NF=NW.NC
AAl C 1
AA2 =C2
AA3=C3
AA4=C4

26 L1l
28 WRITE(6,89)C1,C2,C3,C4

I COUNT=2
ISTEA=ICOUNT
AC1=Cl
AC2=C2
AC3=C3
AC4=C4

C
C CALL SUBROUTINE PURT TO FIND THE MODULUS
C OF H FROM THE MEASURED INPUT
C

29 WN=SQRT(C3/SM)
NC=( 1. O*ZETA*WN)/DW
NW=WN/DW
NS=NW-NC
NF=NW+NC
CALL PURT(DW,NT,C1,C2,C3,C4,HZ)

C FIND E(ERROR MEASURE)

EE=O.O
DO 30 I=NSNF
E=HMOD( I)-HZ( I)
EE=EE+(E**2)

30 CONTINUE
EK( ICOUNT)=EE
IE(ICOUNT.EQ.3) GO TO 50

4-, GO TO (31,32,33,34),L
31 IF(ICOUNT.EQ.1) GO TO 40

4 CIClC1- DAl
ICOUNT=ICOUNT- 1
GO TO 29

-. 440 C1=AC1+DA1
ICOUNT=I STEA+ 1
GO TO 29

32 IF(ICOUNT.EQ.1) GO TO 41
C2=C2 -DA2
ICOUNT=ICOUNT- 1
GO TO 29

41 C2=AC2+DA2
I COUNT= ISTEA+ 1
GO TO 29

33 IF(ICOUNT.EQ.1) GO TO 42
C3=C3-DA3
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ICOUNT=ICOUNT- 1
GO TO 29

42 C3=AC3+DA3
ICOUNT=ISTEA+l
GO TO 29

N34 IF(ICOUNT.EQ.1) GO TO 43
C4=C4-DA4
ICOLTNT=ICOUNT- 1
GO TO 29

43 C4=AC4+DA4
I COUNT= ISTEA+ 1
GO TO 29

C
C CALCULATE THE FIRST AND SECOND DERIVETIVES
C

50 GO TO(60,61,62,63),L
60 TD=DA1

AV=AC1
W=W1
GO TO 70

61 TD=DA2
AV=AC2
W=W2
GO TO 70

62 TD=DA3
AV=AC3
W=W3
GO TO 70

63 TD=DA4
AV=AC4
W=W4
GO TO 70

70 DEK=(EK(3)-EK(l))/(2.O*TD)

C DDEK=(EK(3)-2.*EK(2)+EK(l))/(TD**2)

C DO THE NEWTON RAPHSON METHOD

ACC=AV- (DEK/DDEK)
WE=ABS ((ACC-AV )/ACC)
WDWE -W
IF(WD.LE.O.O) GO TO 87

99 GO TO(1O1,102,103,104),L
101 C1=ACC

GO TO 28
102 C2=ACC

GO TO 28
103 C3=ACC

GO TO 28
.4104 C4=ACC

GO TO 28
87 GO TO(92,93,94,95),L
92 C1=ACC
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GO TOSS5
93 C2=ACC

GO TO 85
94 C3=ACC

GO TO 85
95 C4=ACC
85 L=L+1

IF(L.EQ.5) 0O TO 100
GO TO 28

C
-IC COMPARE THE PARAMETERS
ft C

100 CD1=ABS( (AAI-C1)/C1)
CD2=ABS( (AA2-C2)/C2)
CD3=ABS( (AA3-C3 )/C3)
CD4=ABS( (AA4-C4)/C4)
IF(CDI.GT.ESLON1) GO TO 81
IF(CD2.GT.ESLON2) GO TO 81
IF(CD3.GT.ESLON3) GO TO 81
IE(CD3.GT.ESLON4) GO TO 81
WRITE(6,*) Cl,C2,C3,C4
GO TO 88

81 AA1=C1
AA2=C2
AA3=C3

a AA4=C4
GO TO 26

80 FORMAT(2E12.4)
82 FORMAT(3E13.4)
89 FORMAT(4E12.4)

150 FORMAT(2E16.6)
88 STOP

END
C
C PERTURBATION METHOD
C

SUBROUTINE PURT(DW,NT,C1,C2,C3,C4,HA)
COMPLEX EE(1024),ED(1024),HABS(512),Z(512)
COMPLEX HD,H,HDEV,H1,H2,E3,H4
DIMENSION HA(NT)
COMMON/ARRAY/FF, ED
5M=1.O
DO 14 I=1,NT
W=(I-1)*DW

HD=CMPLX((C3-SM*(W**2) ),W*C1)

HDEV=CMPLX( (2.*SM*W),-C1)/(HDM**2)
H1=H*FF( I)
H2=C2*H*(Hl+W*(HDEV*FE(I)+Hv*FD(I)))
H3=CMPLX(O.0,-C4)*H*(HDEV*FF(I)4H*FD(I))
Z( I )=H+H2+IH3

H4=HDEV+H*(FD(I)/FF(I))
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HABS( I)=H*(1.O.C2*(H+W*H4)-CMPLX(O. 0,C4) *H4)
HA( I )CABS(HABS( I))

14 CONTINUE
GO TO 10

10 RETURN
END

C
C FFT PROGRAM
C
C
C MULTIPLIED BY T WHEN USING THE FORWARD FFT
C DIVIDED BY DT FOR BACKWARD FET
C SIGN =-l. FOR DFT, SIGN1l. FOR IDFT
C
C

SUBROUTINE FET1(A,N,NB,SIGN)
COMPLEX A(NB),U,W,T

C
C DIVIDE ALL ELEMENT BY NB
C

DO 1 J-1,NB
1 A(J)=A(J)/NB

C
C REORDER SEQUENCEI

NBD2=NB/2
NBM1=NB-1
J=1
DO 4 L=1,NBM1
IE(L.GE.J) GO TO 2
T=A (J)
A (J )=A (L)
A( L) =T

2 K=NBD2
3 IF(K.GE.J) GO TO 4

J=J-K
K=K/2
GO TO 3

4 J=J+K
C
C CALCULATE FFT
C

P=3 .141592653589793
DO 6 M=1,N
U=(1.0,0.0)
ME=2**M
K=ME/2
W=CMPLX(COS(PI/K) ,SIGN*SIN(PI/K))
DO 6 J=1,K
DO 5 L=J,NB,ME
LPK=L+K
T=A( LPK) *U
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A(LPK)=A(L)-T
5 A(L)=A(L)+T
6 U=U*W
RETURN

CEND

C

AC A POLYNOMIAL FIT SUBROUTINE
C THIS PROGRAM IS PREPARED SO THAT IT CAN
C BE USED WHENEVER IT IS NECESSARY.
C

SUBROUTINE FIT(Y,MP,N,X1,X2,A)
DIMENSION XX(9,4),Y(9),X(9),XP(4.4),A(4),D(4,4) ,B(4)
DIMENSION EPS(9)
DX=(X2-X1 )/FLOAT(N-1)
DO 10 1=1,N

10 X(I)=X1+FLOAT(I-1)*DX
DO 1 I=1,N
XX( I, 1)=1.0
DO 1 J=2,MP

1XX(I,J)=X(I)**(J-1)
DO 2 I=1,MP
DO 2 J1I,MP
XP(I,J)=O.O

* DO 2 K=1,N
2 XP(I,J)=XP(I,J)+XX(K, I)*XX(K,J)
DO 3 I=2,MP
IM1I-1
DO 3 J1I,IM

3 XP(I,J)=XP(J,I)
CALL MATINV(XP,MP,D)
DO 4 1=1,MP
B (I )=0.0
DO 4 J=1,N

4 B(I)=B(I)+XX(J,I)*Y(J)
- 4 DO 5 1=1,MP
S.A (I) =0.0

DO 5 J=1,MP
5 A(I)=A(I)+D(I,J)*B(J)
RETURN

END

C MATRIX INVERSION

CSUBROUTINE MATINV(C,N,D)

C MATRIX INVERSION C-INPUT D-OUTPUT
* DIMENSION C(4,4),D(4,4)

DO 10 J=1,N
DO 10 K=1,N

10 D(J,K)0O.O
DO 11 K=1,N
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11 D(K,K)-1.0

DO 55 1l, N
P2=C(I, I)
DO 40 Jl, N
C( I,J)=C( I,J)/P2

40 D(I,J)=D(I,J)/P2
DO 51 1C=1,N
P3=-C( IC, I)
DO 50 K=1,N

21IF(IC-I)21,51,21
21C(IC,K)=C(I,K)*P.3+C(IC,K)

50 D(IC,K)=D(I,K)*P3+D(IC,K)
51 CONTINUE

P1=P2*P1
IF( (I+2)-N)55,53,55

53 DET=P1*((C(I+1,I+1)*C(I+2,I+2))
*-.(C(I+2,I+1)*C(I+1, 1+2)))

55 CONTINUE
DO 70 IT=1,N
DO 70 1S=1,N

70 C(IT,IS)=D(IT,IS)
N RETURN

END
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