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ABSTRACT

The reliability of a structural system at a particular time
depends on the damage level in the system. When the damage level
exceeds a critical value, then failure occurs. Therefore, it is
important to track the damage in a structure. In the present
investigation some basic models are proposed for the study of
damageable structure response. The models are:r’?IY‘a higher
order_linear differential equation with constant coefficients,
and (2) a second order linear differential equation with time
varying coefficients. Using a digital computer a blast is simu-
lated, and the response of an inelastic structure is computed.
Noise signals are added to these and the results are used to
simulate measured input and response. Next, using the simulated
input and response, the parameters of the linear models are iden-
tified and the linear structure responses are computed. Mea-
sures of these responses, incuding peak displacement and energy
dissipated are compared to the simulated response. It is shown
that the models accurately simulate inelastic structure
response. Moreover, the results of some experiments are
included. The experiments show that the energy dissipated in a
material specimen is related to the damage level.
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CHAPTER 1

f |
Wy .
53 1.0 Introduction

j; When a structure is excited by an external force, it exe-

2’ ) cutes a response determined by the characteristics of both the .
] input and the structure. We could predict the exact response of i
'q ) a structure, characterized by its geometry énd its mutual proper-

\ ties, if we could predict inputs exactly; if we had a perfect
‘4 model for the structure; and if our mathematical computations

e oumEEmEge - i . : s e

were correct. However, since inputs are random, we cannot per-

éf fectly characterize complex structures, and since mathematical

N models are not perfect, we can only estimate the response of a

- structure. i
f In structural analysis we wish to assess the response of a !
’g structure to dynamic loads, such as blasts and earthquakes. This :
g} procedure, of course, requires the use of a dynamic model which E
- will permit us to predict the response of a structure accu- i
LY rately. These structural models are generally chosen to fit :
_? experimental data and to simplify mathematical computations. ;
gj Most existing structures were designed based on a static E
‘ model, and although dynamic properties may be considered in their !
§¥ design, the designed parameters may be inadequate to predict the .
;: response to dynamic load correctly. Considerable work has been f
oy performed on identifying the parameters of mathematical models ;
:' from dynamic experimental data, and various approaches have been !
fs proposed for predicting system parameters based on experimental :
\; data. .
:f . These identified parameters can be used to predict the -
}{ dynamic response of a structure to a different excitation than g
fi that used to test it. The identified parameters also can be used '
2? ) to calculate the energy dissipation in a hysteretic structure |
;5 caused by strong excitation. i
f‘ M .
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The energy dissipated by a structure during a strong motion
response is an indication of the structural damage. It is impor-
tant to predict how much damage occurs in a structure due to
strong motion because the level of damage is related to the like-
lihood of structural failure. When damage does occur, it can
appear in different forms, such as cracks, permanent deformation,
or change in characteristic frequency.

While damage may be located through visual inspection, such
an inspection may not accurately estimate either its magnitude or
exact location. Consequently, it is difficult to assess whether
the structure would survive normal design conditions or another
severe excitation. By visual inspection, it may be possible to
locate the damage area. When damage occurs it ié desirable to
estimate its magnitude and locate it, if possible.

1.1 Literature Review
Part of the energy dissipated by a structure is dissipated
due to hysteretic behavior of the structural material. The equa-

tion governing the hysteretic response of a lumped mass system is
a second-order, nonlinear, ordinary differential equation with
history-dependent stiffness term. Two models which may approxi-
mate the nonlinear system will be proposed in this report. These
are:

1. High-order equivalent linear system;
2. Time-varying parameter linear system.

The first model considered in this paper is a high-order
equivalent linear system. It is assumed that the nonlinear hys-
teretic system is approximately governed by a high-order equiva-
lent system. This model is motivated by studies summarized in
the literature. For example, Lutes and Hseih [1] used a third-
order linear system to approximate a single-degree-of-freedom
(SDF) oscillator with bilinear hysteretic yielding behavior,
excited by stationary white noise. In the linear system, certain

SO NN ) O
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parameters were chosen so that the rms displacement and velocity
matched empirical values for the nonlinear system. They showed
that the third-order system gives a better overall prediction of
response buildup than does either the linear SDF system or a
two-mode system.

Lutes [2] used a different type of equivalent linear system
to approximate the nonlinear system. Al1l the methods Lutes con-
sidered defined the equivalence either in terms of response dis-
placement level, velocity level, frequency, or a combination of
these. He found that a particular equivalent linear system can
generally only be expected to match a limited number of response
statistics of a particular nonlinear system with a particular
type of excitation.

Wen [3], and Wen and Baber [5, 6] have used the equivalent
linearization method to approximately represent the response of a
hysteretic SDF system. They showed that the third order, linear,
differential equation provided a satisfactory representation of
the inelastic, hysteretic systems. This closed form lineariza-
tion is relatively simple to formulate which allows ready exten-
sion to multi-degree-of-freedom (MDF) systems. They showed that
the equivalent linearization method gives satisfactory results at
all response levels for response analysis of MDF deteriorating or
non-deteriorating systems under random excitation.

Another study by Wafa [7] demonstrated that the peak
response for an hysteretic SDF system excited by random inputs is
closely predicted by a third order, linear, equivalent system.
Recent work [8] has also shown that the high-order linear equiva-

lent model provides a good approximation to the hysteretic system
when the energy dissipated and frequency shift are concerns.
Significantly, the results established that the parameters of a
higher order system can be identified by using a frequency domain
method even when noise is present both in the forcing and
response signals. In contrast, the time domain approach yields
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poor results in the presence of noise. Because of the frequency
domain's preferable application, it will be used to do the
analysis.

The second model is motivated by the fact that structures
may exhibit time-variant nonlinear response to strong motion.
This implies that structure deterioration was in progress during
the large amplitude motion. Such a phenomenon has been recog-
nized and studied in the past. For example, Udwadia and Trifunac
[9] and lemura and Jennings [10] carried out an analysis to char-
acterize such behavior in terms of a quasi-time-variant linear
formulation based on the data obtained from the San Fernando
earthquake of February 9, 1971.

In another study Townsend and Hanson [11] demonstrate time-
varying hysteretic loops by the experimental test of reinforced |
concrete beam-column and T-shaped specimens under different load-
ing conditions. In addition, Uzumeri [12] has also shown the
same behavior for an experimental study of cast-in-place rein-
forced concrete beam-column joints subjected to simulated seismic
loading.

Based on the above referenced investigations involving
time-varying parameters system, we anticipate that the time-vary-
ing parameter model will provide a good representation of a hys-
teretic system.

1.2 Objective

The determination of the system parameters from suitable
exper imental observations is a fundamental problem in engineer-
ing. Obtaining a good representation of a system requires all
the proper information, such as well measured data and a suitable
model.




7@ The objective of this study is to justify two possible mod-

; els to characterize the behavior of a system. The relative mer-
S its of each model are discussed. Extensive numerical experimen-
E; tation using simulated data is also presented in order to inves-
W tigate their feasibility and accuracy. This study will demon-

strate how well the system parameters can be identified with and
without noise in the measurements. Once the parameters are

3 known, the energy dissipated by the system can be computed.

M Based on the computed results, one can compare how well the mod-
X els performed for a given set of data. The ultimate goal of this
i study is to establish structural models useful for other pur-

;S poses, such as prediction, design, control, and damage

, assessment.

. The present research has been aimed at the analysis of dam-
35 age accumulation in concrete structures. It is assumed that when

. a concrete structure dissipates energy, it accumulates damage.
To justify this assumption some physical experiments have been

. performed. Specifically, concrete cylinders have been subjected
to cyclic loading. The energy dissipated in each cylinder was

»
e

measured and the level of residual strength in each cylinder was
determined after the load cycling was completed. The residual

»
o

z strength was plotted versus energy dissipated. When the reduc-
i tion in strength is taken as a measure of damage, this plot

i reveals the damage caused by energy dissipation.
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CHAPTER 2
HIGH ORDER EQUIVALENT LINEARIZATION

-_‘j
;
é

2.1 Model
The differential equation governing the response of a
single-degree-of -freedom (SDF) system is

mz+u=f* (2-1)

where m is the mass of the structure, f is the forcing function,
z is the displacement response, dots denote differentiation with
respect to time, and u is the restoring force of the structure.
Equation (2-1) can be used to model the actual system in which u
can be a very complicated function. In the present study, the
hysteretic restoring force, u, is modeled by using the equation

= CyyZ * 2 (2-2)

By
(2]
[
=
—
[ &)
g
1

where the cj, J = 0, 1, ..., M1 are the constants governing

the system restoring force characteristics, where u(j) denotes
the jth time derivative of u, and M is a constant denoting the
order of approximation provided by the linear system. The reason
for using this model to represent the hysteretics system is that
it displays a hysteretic character that can be made to match the
character of an inelastic structure.

Consider the case where M is equal to 0. The model in Equa-

N tions 2.1 and 2.2 becomes
5 .
- " ﬂ. —1 - .
m+dz 4otz f (2-3) Eﬂ
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This is simply the second-order linear differential equation
governing the SDF system. However, when the response of the
actual system is linear and damping is viscous, the model of
Equation (2-3) represents the actual system. The restoring force
function for this system is u = (c1/co)z + (1/co)z. This model
displays the hysteretic behavior as shown in Figure (2.1).

When the constant M is chosen as 1 in equation 2-2, the
model becomes

m; +u=f

Cou + Clu = C2Z2 + 2 (2-4)

Combining these equations results in

]
cl 1) " CZI 1 Cl
—mz +m+==2z+—=z=f+=>f 2-5
Co Co Co 0 (2-5)

The parameters of the system in Equation (2-5) can be chosen so
that the model represents the hysteretic system as well as
possible,

For example, Figure (2.2) shows the hysteretic properties
for an SOF system by plotting the restoring force versus dis-
placement. The parameters for the system and the forcing input
are given in Figures (2.2). This study will consider both the
equations (2-3) and (2-5).

The parameters can be identified by using the least-square
identification criterion. Since most observed data include a
certain percentage of noise, the frequency domain approach will
be used to perform the parameter identification. However, a
practical problem of accuracy arises in the parameter identifica-
tion problem for high-order linear systems. Therefore, the
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ﬁ:f high-order systems, for M > 1, will not be considered in the )
y following discussion. It is anticipated that in some cases, the ‘
_* third-order linear approximation (Equation 2-5) provides a )
}ﬁ better representation of the hysteretic system than the second-

'[3 order linear system (Equation 2-3).

2.2 Identification of Parameters

Zﬁg The problem of parameter identification can be posed as one !
ﬁ: class in the broader topic of optimization. The object of param- 1
3§ eter identification is to make inferences about the real world

x5 and mathematical models on the basis of measured input data. The

3;: measured data in this study were assumed available, and were

%E simulated to represent the field data.

- First, it is assumed that there is no noise present in the

measured data. Then, noise data are introduced. Note that the

measured response data are given as acceleration values. This is

Ty realistic since the structural response acceleration is often the
measured quantity in an experimental test.

a
2 2.2a Second Order System

jg Now, consider the second-order model, Equation 2-3, Equa-
d tion 2-3 can be simplified by taking

0N To ap, a1 = o (2-6)

P

- The equation governing motion of the system becomes

5 .

o mz + a1z + agz = f (2-7)

o

:T - Fourier transform both sides to obtain

o m(i0)22(w) + a1(iw)Z(s) + aoZ(w) = F(w) (2-8)

: where

- 10
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L(w) = /ﬁ z(t) e'iwt dt -2 w (e
Fluw) = _f fit) e ™ gt wcwce (2-9)

are the Fourier transforms of z(t) and f(t), respectively. This
equation can be rearranged and combined with Z(w) and F{w) terms
on one side of the equation to obtain

2

(-mu® + ag + ajiw) =-§ (2-10)

Multiply each side of the equation by its complex conjugate to
obtain the modulus squared.

2 2
-mo? + ag + aj 1w| s 1512 (2-11)
|Z|

Evaluate the left side and let |F|§/‘Z|2 equal Q(w) to obtain

2
(ap - m?) + (a10)? = Q(w) (2-12)

This equation can be used to identify the parameters of second-
order linear system. However, this equation is exactly satisfied
if and only if: 1) the system under consideration is linear; 2)
all measurements are noise free; and, 3) the Fourier transforms
of ;(t) and f(t) used in Equation (2-12) are exact. When these
requirements are not satisfied, Equation 2-12 will include an
error term (or noise term). This practical case is usually the
one that needs the most attention.

When noise is present on the measured input and response,
Equation 2.12 can be written as

2

(a0 - m) + (a10)2 = Q(u) + (w) (2-13)

11

w
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Note from Equation 2-7 that ap is the equivalent stiffness and
a; is the equivalent damping for the second-order linear system.
Therefore, ago is greater in magnitude than a;. In view of this
and the form of Equation 2-13, ag can be estimated by noting the
frequency where Q(w) + e(w) is a minimum whenever the equivalent
damping factor is much less than 1 (say less than 0.2). This
will be true in most civil engineering systems.

Denote the frequency where Q(w) + e(w) is a minimum by
wy. Equation 2-13 shows that, approximately,

ag = muy ° (2-14)

since the first term on the left is approximately zero when
Q(w) + e(w) is a minimum. Substitute Equation 2-14 into Equation
2-13; this yields

(a2 - f) + (a10)? = Qu) + e(u) (2-15)

Now, it is necessary to find the coefficient a; which minimizes
the e(w).
The coefficients a; can be evaluated using a least-squares

approach, where the integral of ez(w) over a specific range of
frequencies is minimized. Based on Equation 2-15, set

% 2 )
/ (alzmz +ni(q? - ud) - om) do = e(w)  (2-16)

“a

where wy amd w, are lower and upper bound frequencies,
respectively. This frequency band is chosen so that the system

response behavior can be fully characterized. It is anticipated




that the frequency band includes the natural frequency for a
linear or slightly non-linear system. For a highly nonlinear
system, the characteristic frequency, wy, will shift. However,
the frequency band can be located by finding the frequency where
Q(w) + e(w) is a minimum, and selecting the frequency band around

\

this frequency.

In general, the lower frequency, w,, is located at a point
where its corresponding Q(wa) + €(w,) value is about 5 times
as great as the minimum value of Q(w) + e(w); and w, is the
2 higher frequency where Q(wp) + €(wy) is about 5 times greater
than the minimum value of Q(w) + €(w). This method is used to
select wy and wy based on an approximate linear analysis.
When w; and w, are chosen in this manner, the interval (wa,
wp) will be approximately the half power bandwidth of the sys-
tem. This frequency interval reflects the characteristics of the

YRPSdred e )

.

system.

Take the first partial derivative of €2 with respect to
a12, and set it equal to 0. The result is

2 #b 2\ 2
aiz = 2/ <312w2 + mé (wm2 - mz) - Q(m)>m dw =0 (2-17)

) w
o a

Simplify this to obtain

Ua w
2
a2 / o dw = f <Q(w) - (0l . >w2 dw {2-17a)
- m

4 W, [
: b a

Integrate the equation where possible to get
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“b 4
612 = —-5———-5-5 / mz A w) dw - m2 l:wm (wb3 - wa3)
Y T Y w,
"é Qns (“bs “as) * %'(“b7 N “a7)] (2-18)
Let wy = g3 uy (2-19)

where q5 is a coefficient less than one and qy is a
coefficient greater than one.
simplified

This equation can be further

5 5 5 7 7
*2q” ~q) -7 (g - q )J (2-20)
This equation provides the value of aj. This is the best esti-
mator in the least-squares sense. All the parameters in this
equation are known except the integral of the ©2Q(w) term which

can be evaluated numerically.

2.2b Third Order Equation

The second-order linear ordinary differential equation may
not be considered an accurate representation of the hysteretic
system. It is hoped that the third-order linear system may
improve the accuracy in some sense.

Equation 2-5 can be simplified by taking

1 _ C2 Ci _
o gt Tt (2-21)
14
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Then Equation 2-5 becomes

]
mas z +mz + a;z + agz = f + a,f (2-22)
Fourier transform both sides to get

(ma2 (1) + m(iw)? + a; (i) + ao) < F
[+ 2 (fo)) z (2-23)

The symbols used in this equation have the same meaning as in

earlier equations. Multiply each side of the equation by its
complex conjugate to yield the modulus squared

- ima2w3 - ma? + faw + a2'2 2
F
- 1H (2-24)

1+ da, wf® 2|

Evaluate the left hand side and let IF'%/?Z'Z be replaced by
Q(w) to obtain

2
(ag - mmz) + m2 (a; - mwzaz)2
7 = Q (u) (2-25)

1+ (azm

This equation governs a third-order linear system in the fre-
quency domain. Measured data can satisfy this equation exactly
if and only if: 1) the system under consideration is linear; 2)
all measurements are noise~free; and, 3) the Fourier transforms
used to define Q(w) are exact. These conditions, however, are
not usually met. In fact, the purpose of this investigation is
to use the higher-order linear system to represent an hysteretic
system., Therefore, measured data do not usually satisfy the

15
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¥ above equation. To account for this explicitly, Equation 2-25 is .
b written ) )
: i
2.2 2 2 2 .
4 (ag - mu") + w®(a) - mu"az) :
% > = Q(w) + &(w) (2-26) :
] 1 + (azw)

o

;} e(w) is a noise term which must be minimized by the proper choice

j of system parameters. This equation can be used to identify the

system parameters following several approaches. Two of these are
: summarized below. One approach approximates certain terms in

N Equation 2-25 to obtain estimates for the system parameters,

N while the other approach uses a search technique to estimate

: system parameters.

$ The first method to be investigated is an approximate tech-
fi nique. When az is small compared to the characteristic fre-
HE quency, wy Of an SDF system, the (azw)2 term in the denomi-

y nator can be neglected. This is usually true when nonlinesr
& deformation is not too large. Eliminate the (azw)2 term in
¥ Equation 2-26 to obtain
3

A

2 2 2. |2

: (ag - me®) + w® (a1 - mu®az) = Q(w) + e(w) (2-27)
&

:; When ai and a2 are small compared to ag (which is usually the

;ﬁ case, the minimum of the left-hand side occurs near the frequency

3 = o230 -

. ‘ w = (2-28)
oA
f? As previously described, the characteristic frequency, wg, can
i be found when the Q(w) + €(w) term is a minimum. In terms of

4

A wp, ap €an be written

-

5, ap = mmmz (2-29)

s L
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Expand the second term on the left side of Equation 2-27 and use
the result of Equation 2-29. Neglect the m2m4a22 term. Then

Equation 2-27 becomes

2
n? (0% - ) +u? (a)f - amelaga,) = Qo) + elw) (2-30)

Let a12 = b; and aas = by, then (2-31)

2
o (b) - 2nu’by) ( Qw) - m(uy” - o) ) clw)  (2-32)

When this expression is evaluated at the discrete frequency

w = wg, the result is

2
w? (b - 2na 2b,) ‘(Qk - P ? - 0 f) ) e, (2-33)

The system parameters, a; and a,, can now be identified as
those which minimize the sum of the squares of the gy terms in
Equation 2-33. Consider a sequence of discrete frequencies
uniformly spaced in the interval (wa, wb). These are w,,
wy + Aw, wy + 24w, etc. Define

b} = (by by)T (2-34a)
F“‘a - mea“ m
wy + 4w - Zm(wa + Aw)4
[x1] = | wy * 20w - 2m(w, + 200)* (2-34b)
“% - 2*"“’;4
o d

17




i . 2
: 0 _mz( (mz_mz))

- ( U)a m a 5 \
» q Cn? (o - (agre)?) (2-34c)
’\8" {x } = u)a+Afn
I 2

-_4 2

2 2y

i‘ < Qma+ 200 =M (wmz - (ma + 20w) ) >
5. .

" 2

: 2 2

-m -

2 k me (mm ) ) ,}
\ [e} = (e“’a ewa+Am""€wb) (2-344d)
o Note Aw is equal to (2n/T) and T is the total duration of the

ff excitation. (ma, wb) defines the range of frequencies over which
':c - the system is analyzed. As in the identification of parameters

i of the second-order linear system, only a portion of the
i frequency range is used in the parameter identification.

2
g'j This frequency range can be chosen as before. In terms of
‘gé the matrices defined above, Equation 2-32 can be written at

. discrete frequencies as

[x] B} - B} = {e) (2-35)
- The vector {b} can be found by minimizing the sum of the squares
oo of {e}. This is €2 = {e}T {e}. The vector {b} which

;: minimizes €2 is
- - T

N - b} = (xy1Txq 1) 7 0xq1T {x,) (2-36)
2?} When b; and by have been computed, a; and ap can be found from
= Equation 2-31.

o

'-EZ; a; = /by, az = ba/a; (2-37)
TN




This solution provides approximate values for the parameters in
the third-order linear system which represents the hysteretic
system,

Another approach can be used for the estimation of param-
eters in the higher order linear system. This is a search pro-
cedure which iteratively estimates the parameter values. Equa-
tion 2-26 can be rewritten

2 2
(ag -mw ) +w (a; - mw ap)
) = Qw) - — — (2-38)
1+ (azw)

This quantity is a measure of the mismatch between the measured
data, reflected in Q(w), and the model, reflected in the second
term on the right side of Equation 2-38.

This mismatch can be either positive or negative and can be
used to define one measure of the difference between the model
and the measured data over a range of frequencies. This measure
is

el =% () (2-39)

where the sum is taken over those discrete frequencies in the
interval (wz, wp). This is the square error of the model.

This error is minimized, however, when the model parameters are
chosen to satisfy the sequence of equations

r )

_3_8_ =0 = 3¢ = QL (2-40)

O . DR

The parameters ag, a;, and aj, which satisfy these equations '
establish a model which is optimal in a least squares sense. i.

Equations 2-40 can be solved numerically using a search
technique. A computer program was written to solve Equation

........................................
..............
.............



2-40. The program, included in the appendix, uses Newton's meth-
od to search for the solution. The analysis procedure followed
in the computer program is identical to that used in solution of
the problem summarized in the following section. The steps in
the solution procedure are listed at the end of Chapter 3.
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{
‘33 SYSTEM WITH TIME-VARYING PARAMETERS
‘ 3.0 Time-Varying Parameters Model
- Sructures may exhibit time-variant nonlinear response to
;hﬁ ) strong motion excitation. Time-varying structural properties
;? were not considered in the previous chapters. In this chapter, a
jif structure is modeled as a time variant single-degree-of-freedom
o (SDF) oscillator, and a methodology is introduced to determine
.zf its parameters using the observed data. It is important to
LS
(o introduce a technique which can be applied when noise is present
.\-_“
o in the measured data. '
fti To demonstrate this procedure, consider an SDF linear system
f‘% with mass m. Let the damping and stiffness parameters for this
A s . . . .
NI system be time varying. Its equation of motion is
o mz + C(t)z + K(t) z=°f (3-1)
:( in which z is the displacement response of the system; C(t) and
': K(t) are time variant damping and stiffness function of the sys-
, :; tem, respectively; and f is the forcing funtion. It is proposed
?ﬁ that this equation be used to model the behavior of a system
" .
o governed by Equation 2-1. Observe the system from time O to T
& and assume that z(0) = 0 and z(0) = O.
if The functions (C(t) and K(t) are assumed to have the form
2
X
-l C(t) = (1 +at) co
TR K(t) = (1 + Bt) ko (3-2)
X
:; Here, co and ko are the damping constant and the stiffness con-
5& stant, respectively. a and B are consant coefficients which are

L usually much less than one.
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In many practical cases, it is observed that the structure
displays an increase in damping and a decrease in stiffness when
the structure excites an inelastic response. This implies a is a
positive constant and 8 is a negative constant.

In this study, although a« and B will be considered as small
values, they will be large enough to influence the system's prop-
erties. This permits treatment of Equation 3-1 as a perturbed
differential equation. When a and B are both equal to O (unper-
turbed), the equation 3-1 is simply a second-order differential
equation with constant coefficients which can be easily solved.

The solution of Equation 3-1 can be written in the form (for

example reference 18)

z =29+ a2z, + Bz + high-order terms (3-3)

Since a and B are small, the high-order terms will be neglected.
Substituting Equation 3-3 into 3-1 and expanding yields

m(;o + a;a + 8;6) + co (1 + at) (éo + aéa + 858)

+ ko (1 + 8t) (z0 + az + Bzg) = f (3-4)

g)
Moving the force term to the left side of the equation, grouping
coefficients of the terms, 1, a, and B, then equating the coeffi-
cients to zero results in

mzo + cozo + kozo = f (3-5a)
" ] ]

mz, + cozy + koz, = - cotzo (3-5b)

mzB + cozé + kozg = - kotzo (3-5¢)

These equations approximately govern the system's response when
time variation of the parameters is linear, as shown in Equation

22
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3-2. If the excitation and the system's response are known, then
these equations can be used with a time domain parameter
jdentification procedure to estimate the system parameters.
However, when a time-domain parameter identification approach is
used, problems arise if noise is present in the measured input
and response signals (see Reference 8).

D - SN U -3 YOI

A frequency domain approach to the identification of system

parameters is pursued. Therefore, the equations of motion are
transformed to the frequency domain.

Let
Zo(a) =[ zoft) €M ot (3-62)
Z (w) f[ z (1) 7% gt (3-6b)
| Z,(w) =J: 2,(t) e”" dt | (3-6¢)

define the Fou#ier transforms of zg(t), z4(t), and zg(t).

And Tlet
zo(t) =-2% ‘: Zo(w) elut 4y (3-7a)
2 (t) = 5t /: 2 (o) e™t g (3-7b)
24(t) = 5 °zs(w) e'ut 4y (3-7¢)
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define the inverse Fourier transforms. Then the Fourier trans-
form of Equation 3-3 is -

I(w) = Zo + aZ  + BZg (3-8)

It can be shown that the Fourier transform of Equations 3-5a
through 3-5¢ are given by

-ma?Zo(w) + co iuZo(w) + ko Zo(w) = F(uw) (3-9a)

-mwzza(w) + co iwZ (w) + koZ,(w) = co(Zo(w) + wZ‘o(w))
(3-9b)

-mwzzs(w) + co juZg(w) + koZg(w) = -7 ko Z'o(w) (3-9c¢)

Now solve the Equations 3-9 simultaneously. The result is

Zo(w) = H(w) F(w) - (3-10a)
Za(w) = cgH(w) (H(w)F(w) + m(H‘(m)F(m) + H(w)F'(w))) (3-10b)
Zg(u) = -ikgH(w) (H'F(w) + H(w) F'(w)) (3-10c)

where H(w) is frequency response function and H'(w) is its first
derivative. These can be written in the forms

-1
H(w) = [(ko - mw?) + i(uco)] (3-11a)

-2
H'(w) = (2me - ico) [(Ko - M) + i(wco)] (3-11b)

F(w) is the Fourier transform of f(t) and F'(w) is its
derivative.

Fla) = [ £(t) e 1% at (3-12a)

ke
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F'iw) = -if tf(t) e"""'C dt (3-12b)

Substitute the results from Equations 3-10 into Equation
3-8. This yields

Z(w) = H(w)F(w) + aco H(w) (H(w)F(w) + w(H' (0)F(w)
+ H(w)F' (0)) + (-1ko8) H(w) (H'(w)F(w) + H(w)F'(w))  (3-13)

This is the approximate frequency domain expression for the solu-
tion of Equation 3-1. It is considered accurate when both « and
g are small. The displacement response also can be obtained by
inverse Fourier transformation of the Equation 3-13. Equation
3-13 is used in the identification process. Its use will finally
lead to the estimation of the parameters from a sequence of mea-
sured data.
3.1 Identification Procedure

The method described above provides the solution for the
Equation 3-1 in the frequency domain. When the measured values
of f(t) are used to estimate F(w) and the result is used in Equa-
tion 3-13 to obtain Z(w), this Z(w) will not, in general, match
the Z(w) estimated from the measured Z(t). Moreover, the
calculated |Z(m)| will not match thelz(w)| obtained from measure-
ment. The reasons for this mismatch are that (1) noise is inevi-
tably present in the measured input and response. (2) the mathe-
matical model is linear, yet the measured data come from non-
linear structures and (3) the discrete Fourier transform of a
time series is used to represent the continuous Fourier trans-
form. In the following, a brief theoretical background is pre-
sented together with the simple description of the procedure for
finding the unknown parameters.
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An equation defining the mismatch between the measured data
and the model of Equation 3-1 can be established. Let
IZ(m)(m)I be the modulus of the Fourier transform of the
measured structural response data. Let ‘Z(“)I be the modulus of
the function obtained when the Fourier transform of the measured
input data is used in Equation 3-13. The difference between
these function is defined

VN RRTOR._J B

]
ii
E
L

elw) = [2(w)] - 'Z(w)(m)l (3-14)

When the discrete Fourier transform is used to approximate
the continuous Fourier transform of a measured or theoretical

D
a5

signal, it is defined at a discrete set of frequencies,

w = kaw, k = 0,1,...,n-1. Here n and Aw relate to the time
signal z{t) and its discretization. It is assumed that z(t) is
available on the interval (0, T) and is represented by the
discrete set of values zj, j=0,.../n-1. Thus, n is the number
of points where the signal is represented. Aw is given by 2n/T.
At a particular frequency w = wyg, Equation 3-14 becomes

k= |Zk(w)| - (2™ (w)| (3-15)

ek can be positive or negative. A quantity which is
always non-negative and which summarizes the differences between
the measured, 'Zém) |, and the theoretical, ,Zk" structural
responses in the frequency domain over a range of frequencies is
given by

- 52 =§: ﬁ<2 (3-16)

This is the square error between measured data and the
model. This error can be minimized by properly choosing the
parameters, kg, Cg, @, and 8. A method that chooses the
parameters this way is a least squares method.
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The range of index values, k, over which the above sum is
taken, is not specified in Equation 3-16. Equation 3-16 need not
be summed from O to n. Rather, the summation should be carried
out over the range of freuencies which includes those values of
Iy containing significant information on the behavior of the
system. In general, this is the band of frequencies surrounding
the characteristic freaquency of the system.

Now, one can choose kg, Cp, a, and B, as those constants
which satisfy

352 _ 8e2 _ 362 - aez

kg “xg da 38 -0 (3-17)

The kg, Cg, o, and B, can be located using a search technique.
To simplify the analysis, Newton's method is used to minimize
€2 with respect to kg, Cp, @, and 8.

Newton's method converges very rapidly once an iterate is
fairly close to the solution. The formal simplicity and its
great speed are the reasons why Newton's method is used in this
study.

To assure convergence in the numerical analysis, it is
important to choose the initial iterate properly. A more
detailed discussion of the numerical procedures will be presented
later, in the numerical examples.

The steps in the numerical analysis are as follows:

1. Make the initial guesses at the parameter values, kg,
Cg» @, and B.

2. Choose the computation increments Akg, ACp, Aa, and A8.

3. Choose the desired accuracy measure (used to judge
convergence).

27




.::. 4
'.':.' 4
e 4. Compute the partial first and second derivatives of el ]
{“ with respect to kg using central difference formulas. !
. 5. Use Newton's method to minimize €2 with respect to ;
:: ko- ]
R

‘ 6. Repeat steps 4 and 5, this time minimizing with respect {
5 to cg, then a, then 8. :
it

1ON 7. Check the result to convergence.

K

a. If convergence has occurred, then stop the
analysis.

b. If convergence has not occurred, then repeat steps 4
- through 6.

A computer program to execute the procedure described above

..
a-e‘a
S bttt it

has been written, This program is named PUR and a listing is

P

included in the Appendix.
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CHAPTER 4

EXAMPLES
4.0 Numerical Examples

In this chapter, numerical examples are presented to demon-
strate the use of the previously described analytical proce-
dures. Two examples demonstrating the frequency domain approach
to parameter identification are summarized. Both solutions
employ the same excitation input. The response signals identi-
fied were drawn from two sources. One source was a bilinear hys-
teretic response while the other was a time varying linear sys-
tem. Use of these two sources may provide improved understanding
of the feasibility of the identification procedure for specific
measurements. The examples show the identifications of the
parameters for linear and hysteretic, single degree of freedom
structures, when measurement noise is and is not present.

The input used to excite the SDF system in all numerical
examples is a decaying exponential, oscillatory function. It is
generated using the formula

N
f(t) = e docjcoslot - 65)] 0 LT (4-1)
j=1

Where a, cj, j=1,...,N, and W j=1,...,N are constants. ¢j’
j=1,...N, are phase angles which are random variable realiza-
tions; these random variables are independent and uniformly
distributed on the interval (0, 2n). a is a decay rate. The
Cj» j=0,...N, are constants which determine the amplitudes of
the excitation. All the values of cj are taken as equal to ¢
in all cases for the examples. wjs j=1,...N, are the frequen-
cies where the excitation has power. wj, j=1,...,N, are
equally spaced in the interval including the characteristic
frequency of the system being analyzed.

The forcing function defined above was generated at discrete
times. Specifically, f(t) was evaluated at the times t=tj=2at,
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1=0,...,N-1. A computer program, named FORCE, which generates
the excitation of Equation 4-1 was used in these numerical
examples.

Two distinct signal types were identified in the numerical
examples. The first example used a computer program, named
BILIN, to compute linear and nonlinear response. BILIN can be
used to find the displacement, velocity, and acceleration
response of a given bilinear hysteretic system to an arbitrary
input. It also computes the energy dissipated by the structure
during the response. The second example used a computer program,
named TIMEVA, to compute the response. This program computes a
linear time dependent response defined by Equations 3-1 and 3-2
with a, B, Cg, and kg, constants.

White noise was used whenever measurement noise was added to
the signals. The white noise is normally distributed, N (0’°§)
A subroutine named NOISE was used to generate the noise signal.
The noise signals were added to the generated input and response
signals in the following manner. First, the excitation and
response signals were generated using programs FORCE and BILIN or
TIMVA. Then noise/signal ratios were selected and used to obtain
the variances of the noise signals. The noise signals were
generated as sequences of independent random variables, and
directly added to the excitation and response. These noisy
signals weve then used as inputs to do the identification. Note,
no filtering procedure was used on the simulated measured signals
during the identification process.

Three basic models to represent the hysteretic system were
pursued in this study. All the model parameters were identified
in the frequency domain. The identification procedures and
formulations were described previously. Different identification
approaches may be applied for the same model. Three computer
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programs, FREQID, PUR3 and PUR, were written to execute the

{“\ parameter identifications.

;;3 FREQID performs approximate frequency domain parameter iden-
:E . tification for second and third order linear models. It accepts
\i' both an input signal from FORCE and a response signal from BILIN
;?3 or TIMEVA. When desired, the white noise signals are added to
ﬁiﬁ the corresponding input data. Then FREQID performs the necessary
is? Fourier transforms and other data operations. Following this,

the parameter identification is executed. One operation

{;- required in the parameter identification is estimation of the
EES characteristic frequency. This can be done simply by searching
'ii Q(w) + e(w) for a minimum value. However, a more precise method
- for determining the minimum value of Q(w) + e(w) defined in Equa-
:g tion 2-13 and 2-16 involves use of a least square method. In
752‘ this improved method, Q(w) + e(w) terms are fit into a polynomial
,:§ model where frequency is the only variable. Once the coeffi-
cients for this equation are estimated, the equation representing

'fﬁ the Q(w) +e(w) is used to identify the characteristic frequency
;gs and other parameters.
'ié An important assumption was made for the third-order model,
ﬁ', Equation 2-26. In particular, it was assumed that ap is small

:3 in value. This assumption was used in FREQID. The parameters of
Eii this model may be identified, without the assumption that ap is
A small, by the search technique. The computer program PUR3 was

. written for this purpose. A detailed description of this method
E&E was given in Chapter 3.
3% Program PUR performs parameter identification for second-
‘ . order time varying linear systems. The approach is based on the
j{: procedure described in Chapter 3. The program accepts the inputs
F&} ) and responses generated in the programs FORCE and BILIN or
:33 TIMEVA, with or without noise. Four parameters, namely kg, a,




F
‘.

-

Sibels ate
L
3 % 1leTes

N e Yo b

. i .
a .
et LA h

A
e lal

F ) LI )

‘s "‘ ‘e ‘s

- §
L I

- | AU,

A

(8

<

Cg, and g are identified. The program employs a search tech-
nique; the initial estimators can be chosen by using the identi-
fied parameters obtained from any of the methods.

Once the parameters have been estimated, the energy dissi-
pated by the model is computed. This result together with the
predicted response is compared to both the energy dissipated and
the response of the actual system. The energy and response
computations are performed in program ENER2 and ENER3 for the
second and third order system, respectively.

From the above description, the methods used in the deter-
mination of the system parameters can be summarized as follows:

Method 1. Performs parameter identification for the
second-order system in the frequency domain
utilizing Equation 2-20. No fitting equation for
Qw) + e(w) is applied.

Method 2. Performs parameter identification for the third-
order system in the frequency domain utilizing
the equations from 2-32a to 2-35. No fitting
equation for Q(w) + e(w) is applied.

Method 3. Performs parameter identification using the same
approach as Method 1 except the input data
Q(w) + ew are replaced by the fitted polynomial
equation. This additional analysis is done in a
subroutine called FIT.

Method 4. Performs parameter identification using the same
approach as Method 2 and using the same proce-
dure described in Method 3.

Method 5. Performs parameter identification for the third-
order system using the search method described in
Chapter 3. The operation is executed in a pro-
gram called PUR3. Prior estimates obtained from
the above methods are used.

.......................



.....

‘..
)

Method 6. Performs parameter identification for the

W hh ":':'n
Do he oo 4w B

{ second-order time-varying parameter system in the
~ frequency domain. The search method described in ;
Chapter 3 is used. This method also requires :
S prior estimators which can be obtained from the

information supplied in Methods 1 through 5.

A1l the methods described above can be used to estimate the
b parameters for the linear and nonlinear systems even when noise
is present. " The duration of the excitation must be long enough
to characterize the system parameters.

-l aN et a

In the following numerical examples, four basic problems are

ALK

solved. These cases involving different degrees of nonlinearity

. ;‘5).'

in the system response are summarized below.

Case 1. An input excitation is generated using Equation
4-1. The input is used to excite a linear SDF sys-

APELA AT R

tem with viscous damping. The excitation and linear
" response are used to identify the model parameters.
) Noise signals can be added to the generated input
and response, if required.

‘4‘.'

Case 2. An excitation input is generated as in Case 1, but -
here the repsonse of a bilinear hysteretic system is

a4
)

%

2EL TS

computed. Yielding occurs in the response. The
degree of nonlinearity was designed using a compari-
son between the yield displacement of the bilinear
system and the maximum displacement of the linear
system. Let the yield displacement of the bilinear
system be zZy. Let the maximum displacement of the :
- linear system be zpax. [n this case, zpzx is >
taken as 6.7 and Zy is equal to 6.0.
koo Case 3. Same as Case 2, but zy is equal to 5.0.

..
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Case 4. Same as Case 2, but Zy is equal to 4.0.
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}5? Case 5. An input excitation is generated as in Case 1. The
Ej input is used to excite a linear SDF system with
ﬁti time varying damping and stiffness. The excitation
ﬁ?ﬁ and response are used to identify the model param-
o eters. Noise signals are added to the simulated
D input and response when required.
a

- 4.1 Example 1

§S§ This example carries out the parameter identification using
s the methods described above. Specifically, methods 1 through 6
I~ are used to identify the parameters. The parameters of the input
jf%j excitation are listed in Table 4.1. The notation for the param-
':;3 eters was specified above.

s

o TABLE 4.1. PARAMETERS OF THE FORCING FUNCTION

10 =01 N=50 cj=100 j=1,..,50

N wj = (1.8 +0.008j)r ,j =1,...50

N

At = 0.05 n = 1024

o A typical forcing function history generated by using these

'iﬂ? parameters is shown in Figure 4.1. Actual forcing functions

" measured in the field usually contain a certain amount of noise.
_éy Inputs with noise to signal ratios of six and eight percent are
j%:: shown in Figures 4.2 and 4.3, respectively.

RN

I3§ The response of some SDF systems to the forcing input were

computed. The enerqgy dissipated in each structure is listed

o) with the structural parameters in Tables 4.1A and 4.1B. Al1l
352 cases were described above. The notation of the system param-
é:; eters is as follows: k is the initial stiffness; ¢ is viscous
TR damping; ky is the yield stiffness; z, is the yield displace-
e ment; Zpax 1S the maximum displacement of an SDF system; m is
-Eﬁ - the mass of the SOF structure.

%

0%
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Figure 4.2 Signal used to simulate the measured
input. (Includes 6% noise)
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TABLE 4.1A. SYSTEM PARAMETERS

k=39.48 c=1.25 m=1.0
Znax = 6.7  ky, =0.0 At =0.05 n = 1024

TABLE 4.1B. ENERGY DISSIPATION FOR CASE 1 THROUGH CASE 4

Cases zZy Damping Energy Spring Energy Total Energy

Dissipated Dissipated Dissipated
Case 1 o 11028.20 0.0 11028.2
Case 2 6 10199.30 405.21 10604.0
Case 3 5 8364.27 1186.74 3551.0
Case 4 4 6300.53 1924.48 8225.0

First, the response of a linear system (case 1) was com-
puted. Then, a slightly nonlinear response of an SDF structure
was computed for analysis in case 2. The displacement response

versus time for case 2 is plotted in Fiqure 4.4. The spring
restoring force versus displacement is shown in Figure 4.5, A
small plastic deformation is shown. The total restoring force -
versus displacement is plotted in Figure 4.6. The measured 5
responses for Case 2 with a certain amount of noise are plotted
in Figures 4.7 and 4.8. Figure 4.7 shows a measured signal with
six percent noise to signal ratio. Figure 4.8 shows a measured
signal with ten percent noise to signal ratio. Two more severe
nonlinear responses were computed for analysis in cases 3 and 4. \

The displacement response versus time for case 4 is plotted
in Figure 4.9, and the measured response for case 4 with ten per-
cent noise to signal ratio is shown in Figure 4.10. The spring X
restoring force versus displacement is shown in Figure 4.11. A
considerable permanent set is evident in Figure 4.9. Figure 4.11
shows that plastic deformation occurs in the structure in both
directions of motion.
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Figure 4.9 Displacement response of nonlinear system
to the force in Figure 4.1 for Case 4
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Figure 4.10 Displacement response (Case 4) plus
10% noise
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Using the forcing function input, described above, and the

a
PR e

(~ computed responses, the parameters of the structures were identi-
ﬁ{ fied. The results of the parameter identification are given in
gﬂ Tables 4.2 through 4.5. These results provide the identified
'ﬁi g parameters in the noise-free case. The energy dissipated by the
identified system is listed next to the identified parameters.
; - For method 6, the parameters ag, a1, 32, and a3 identify with the !

parameters kg, B, Cg, and a, respectively.

; TABLE 4.2. IDENTIFIED PARAMETERS AND ENERGY |
R DISSIPATED FOR CASE 1.

Eiﬁ Method ag a az as Energy

o8 :
= 1 39.17 1.26 11210.0 .
}? 2 39.17 1.28 0.0 11090.0 -
53 3 40.01 1.28 10720.0

i 4 40.01 2.48  0.0236 9270.0

‘ 5 39.50 1.26 0.0 11200.0 !
\-; 6 39.33 0.0 1.274 0.0  10741.0

:3 TABLE 4.3. IDENTIFIED PARAMETERS AND ENERGY ]
e DISSIPATED FOR CASE 2 ‘
o,

é% Method ag a aj a3 Energy

2 1 33.27 1.45 7968.0

o 2 33.27 3.98  0.05 7028.0

o 3 35.84 1.28 10500.0

2 4 35,84 3.57  0.042 7690.0 i
2 5 34.27 3.68  0.062 10370.0 :
= 6 36.56 0.001 1.094 0.022 10077.0 ‘
b 1
? i
8 '
1

.
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TABLE 4.4. [IDENTIFIED PARAMETERS AND ENERGY
DISSIPATED FOR CASE 3

Method ag a) as as Energy

) 1 33.27 1.35 7802.0
2 33.27 2.98  0.032 7368.0

) 3 35.32 1.41 9482.0
4 35.32 2.74  0.027 8185.0

5 32.54 2.98  0.042 8324.0

6 40.21 - 0.0013 1.589 - 0.018 9661.0

TABLE 4.5. [IDENTIFIED PARAMETERS AND ENERGY
DISSIPATED FOR CASE 4

Method ag a; as as Energy
1 33.27 1.67 7376.0 i
2 33.27 2.28  0.014 7053.0
3 34.61 1.75 7703.0
; 4 34.61 2.50  0.018 7486.0
5 30.30 3.95  0.066 7598.0
6 40.26 - 0.0018 1.708 0.001 8186.5

Section 4.0 demonstrated that when the higher order linear
model is used to simulate the actual system behavior, the param-
eter ap must be estimated first in the identification procedures,
methods 1 through 4. The estimation of this parameter can be
executed either by simply searching for a minimum in Q(w) + e(w),
or by using a curve-fit to Q(w) + e(w), and then finding the
minimum of the curve. Figure 4.12 shows a realization of Q(w)

~ for a specific case. This is the ratio of the Fourier transform
moduli of the structure input and response. An example of the
quantity Q(w) + e(w) is shown in Figure 4.13. It
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o is apparent from this diagram why the use of a curve-fit provides
£}4 better results. '
‘fzi Figures 4.14 through 4.16 show comparisons between the
o responses of the identified systems computed by different meth-
ods, and the actual response of the bilinear hysteretic system in
S case 2. The-responses of the identified systems match the
tzi response of the actual system so closely that it is difficult to
f; distinguish the two responses in these figures. More identified
= responses for case 4 are shown in Figures 4.17 through 4.19. The
'gzj model responses do not match the actual response as closely when
;{ﬁ residual deformation exists in the actual structure since the
'SSZ models cannot accumulate permanent deformation. However, peak
'ff' responses in the models match the actual system response quite
f} well.
;jﬁ ~ In this example, noise was added to the forcing function and
o response signals; then the system parameters were identified.
” The results are summarized in Tables 4.6 and 4.7.
:23 TABLE 4.6. [IDENTIFIED PARAMETERS AND ENERGY DISSIPATED
ﬂﬁ FOR CASE 1 WITH TEN PERCENT NOISE TO SIGNAL RATIO
Vf: Method ag a) as as Energy
3 1 39.17 1.37 11022.0
=] 2 39.17 1.45  0.003 10900.0
i 3 39.93 1.42 10300.0
4 39.93 2.44  0.022 9497.0
- 5 34.30 2.98°  0.051 11710.0
6 38.44 0.0 1.286 0.0 10929.0
|
o
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TABLE 4.7. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED

(ih FOR CASE 4 WITH TEN PERCENT NOISE TO SIGNAL RATIO
X2
s%% Method ag a, as as Energy
N 1 33.27 1.89 7092.0
2 33.27 1.42  0.021 9980.0
;EJ" 3 32.02 1.95 6476.0
f:j 4 32.02 2.60 0.021 6803.0
5 5 34.46 2.70 0.043 11400.0
S 6 32.83 0.0026 1.543 0.011 7016.0
K
E:S' These results show that the parameter identification procedure is
{ % still effective when noise is present.
o 4.2 Example 2
o In this example, a parameter identification problem is
&;E solved using the frequency domain approach. The methods used to
',

identify the parameters were described in section 4.0, namely

xR methods 1 through 6. The same forcing function as illustrated in
T Example 1 is used. The only difference in this example is that
j{ the response was simulated by a second-order time varying param-

;’ eter system. Unlike the responses simulated in Example 1, this
3 2 example is a linear system with time dependent stiffness and
‘"i damping. The parameters of the system and total energy dissi-
-':;1;: pated are listed in Table 4.8.
g TABLE 4.8. SYSTEM PARAMETERS FOR CASE 5

ot
N kg = 39.48  cq = 1,257

._::
2 g = - 0.01 a = 0.01

o Total Energy = 9799.0

i

,2; The definitions of the symbols are the same as in Equation 3.2.
;¥j This case was described in section 4.0 as case 5.
ON
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The displacement response versus time for case 5 is shown in

Figure 4.20. The total restoring force versus displacement for
this case is illustrated in Figure 4.21. Note that the major
axis of the loops depicted in the diagram have different slopes.
This occurs because the system stiffness diminishes with time.
The parameters identified using methods 1 through 6 together with
the total energy dissipated in the corresponding systems are
shown in Table 4.9,

TABLE 4.9, IDENTIFIED PARAMETERS AND ENERGY
DISSIPATED FOR CASE 5

Method ag a) as az Energy
1 34.70 1.36 9266.0
= 2 34.70 3.25  0.039 7883.0
o 3 37.15 1.29 10960.0
R 4 37.15 2.82  0.031 9074.0
5 34,31 2.97 0.05 11160.0
a1 - 6 37.56 - 0.006 1.23 0.019 9120.2
?EE It is shown that methods 1 through 6 can also be used to identify
o model parameters when noise is present. The results obtained
Q#t‘ when the measured signals contain noise are shown in Table 4.10.
i; TABLE 4.10. [IDENTIFIED PARAMETERS AND ENERGY DISSIPATED
2N FOR CASE 5 WITH SIX PERCENT NOISE TO SIGNAL RATIO
! Method ag a; a as Energy
o
& 1 34.70 1.38 9419.0
. 2 34.70 2.75 0.03 8623.0
N 3 37.34 1.31 11180.0
0 4 37.34 2.24  0.021 10280.0
2 5 34.32 2.49  0.038 11040.0
6 38.30 - 0.007 1.254 0.025 9245.6
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Figures 4.22, 4.24, and 4.25 compare tHe identified system
responses to the response of the actual system. The simulated
and actual responses match quite well in all cases. The model
including time parameters provides the best match. Figure 4.23
shows the total restoring force versus displacement. A change in
slope of the major axis of the loops is observed. This behavior
matches the real system behavior shown in Figure 4.21.
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o CHAPTER 5
h SUMMARY AND CONCLUSIONS
:i The objective of this study was to develop approximate
é: linear models for the simulation of inelastic system response and
#f ) | the measurement of damage accumulation in a structure. It was

: assumed that energy dissipated is related to the accumulation of
i%: ‘ damage. The model parameters were identified; then the energy
f: dissipated during a strong motion was calculated. The displace-
?; ment response and the energy dissipated in each model were com-
pared with the displacement response and energy dissipated in the
actual structure.

. Three basic models were considered in this study. These are
b second and third order linear models with constant coefficients,

L

and a second order linear model with time-varying parameters.
The frequency domain approach was used in all the parameter iden-
tification computations.

D
LAY M

vty !

Several numerical examples were solved. The results
obtained lead to the following conclusions:

-7 1. Linear and nonlinear hysteretic SDF systems can, in some
b respects, be accurately modeled using second- and
L third-order linear differential equations with constant

coefficients, and a second-order linear differential

& equation with time-varying coefficients. Specifically,
the models provide accurate simulations when displace-

ment response and energy dissipated criteria are used.

" 2. The frequency domain approach can be used to identify
;j. model parameters of all three models when the force and
T response measuements are noisy.

3. The second order model with time-varying coefficients
provides the best simulation of system response and
= energy dissipated among the three models considered.
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s s

% While the procedures developed in this investigation provide

M- means for the simulation of response and the estimation of damage
y “"’ 3 - 3 (3

:3 in inelastic structures, some improvements can be made. The

b~ W .

- systems considered in this study are SDF; future investigations

‘f should include multi-degree-of-freedom structures. The models
used in this study do not permit the accumulation of plastic

,fi i deformation; future investigations should consider models that
;;% allow plastic deformation to accumulate. The tests that are
e summarized in the appendix show that material damage is related
o to energy dissipated; further experiments should be performed,
3£§ and a mathematical model characterizing the results should be
‘3 developed. Finally, analyses should be performed to establish
‘59 the special distribution of energy dissipated in actual

- structural members.
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APPENDIX A
ENERGY DISSIPATED RELATED TO CONCRETE DAMAGE
Introduction

This presentation describes and evaluates an experimental
study of the strength reduction and behavior of plain concrete
subjected to cyclic loading. It is recognized that concrete is
damaged by application of stresses lower than the ultimate
stress. The concrete fracture process begins at very low stress
and is continuous.

The damage caused by loading to small stresses is slight and
each subsequent loading over the same stress range produces a
negligible increase in damage. However, as the loading stress is
increased, more damage occurs. Stresses with peak values in the
range of 40 percent to 100 percent of the ultimate stress produce
considerable damage and subsequent loading over the same range
cannot be neglected. In practical situations, when a severe
excitation is applied to a structure, it is not uncommon for the
peak stress to go beyond the 50 percent level of ultimate
stress.

When loading is repeated, damage accumulates in a concrete
specimen; consequently it no longer retains its original
strength. This concept suggests that it might be useful to
attempt a quantitative evaluation of damage occurring in concrete
during the cyclic loading. The objective of this study is to
demonstrate that concrete damage and strength reduction are
related to energy dissipation under repeated loading.

When energy is dissipated during loading and unloading, an
hysteresis loop is formed in the stress-strain curve as shown in
Figure Al, The area enclosed represents the total energy dissi-
pated during one cycle of loading. This dissipated energy may be
classified into two parts, namely, damage and damping energy
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;;f dissipation. However, the total accumulated energy dissipation

ﬂ\d is of primary interest in this experimental study. A more

{fﬁ detailed discussion of the energy dissipation mechanism is given

i:i . in Reference [14].

:f? There are many methods that can be used to detect and assess

ot - damage in concrete. Among the most frequently used techniques

;Sf are those which assess change in initial elastic modulus, and

335 those which measure acoustic emissions, change in pulse velocity,

s and energy diésipation. In the present study, the dissipated

‘e energy method will be adopted. Attention will be focused on this

f%ﬁ means for measuring damage because of its intuitive relationship

&Ej with the energy dissipation of an hysteretic structure under

A dynamic loads. Other methods may be considered as in References

g? [14, 15, and 16].

2; In the present investigation a sequence of physical experi-

5:: ments was performed. In each experiment a concrete cylinder

(specifications given below) was loaded in uniaxial compression.

}2 i The load applied to each cylinder was a cyclic load, and the

?ié energy dissipated was calculated. This was done by plotting the

b stress versus strain diagram and by determining the area enclosed

\; within the hysteresis loops. Varying amounts of energy were

ﬁ@ dissipated in the various test specimens, and upon completion of

153 cyclic testing each specimn was loaded to failure in order to

?i determine its residual strength. For each test specimen, dissi-
, pated energy and residual strength were recorded and the relation

i between these quantities was established.

%z% More details of the testing procedure are given below,

- together with fresh concrete properties observed during the mix-

ﬁgi ‘ ing. These may provide a useful reference for the concretes used

LR

in the test.
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The concrete specimens tested in this investigation have the
mix details and plastic properties of fresh concrete as shown in
Table Al.

TABLE Al.
Concrete Mix Details

Aggregate Ratio of Max imum

Cement Coarse:Fine Aggregate
Type of Cement W/C Ratio Ratio Aggregate ?izi
in
Type 1 A : 0.53 4.8 60:40 3/4

Plastic Properties of Fresh Concrete

Room Unit
Mix No. Slump Air Temperature Weigh
(in) % (degrees C) 1b/ft

2WE 4 3.5 27 145.8
3WE  41/4 4 30 148.96

The specimens were all cast in 6-in x 12-in steel cylinder
molds. The concrete mix proportions were constant for all the
specimens. The specimens were tested at a consant loading rate
of 1000 1b/sec in a RIEHLE compression testing machine. The
force versus strain results of each test were plotted with an x-y
electronic recorder. This recorder was attached by an electronic
compressometer which is properly designed for this specific
purpose as shown in Figure A2. The test machine was properly
calibrated before the test.

To ensure a uniform displacement of the specimens, thin sul-
fur caps on the two end surfaces of the specimens were employed
and were allowed to harden before testing. Specimens were cured
in water in the curing tank at 25°C for 14 days and 28 days.

64

oL

AN




ity T T T T e T g —
< N e e T T T R R T R T I R N T R T X T T A T N T T AWML Y L S LR T WY T v v e v wi w
L A LS U A\ S Kt A ST FELTLEL e e

I
Ry
v
)
by X e
s P :.
= ”‘ o
e G '.:.i--
— LY. 4
T\ S
o A (3 LN
P YA~
-
T
B T Sl
. -t - v

65

™ et A, . e .

L SV 4 4. - - \'.. o« .t DS PR - - - . - - . . ~ . . - ‘
AN S e TeNe te e et St LI T T T e O N N L S LT
i et VCIC AN AE SR A A SR RN A S SO S  D U s S RS




-P“" PR R AN A AL e AL ALY e R R T T T T T AT e e R T TR T T R A
-

A
"Ta "
.

'_"' .l._ "T"’ :‘-{’l‘?

«

-
e

5% Sewly S, *

s ne s ok a

Can 2
AR

Q

’ ittt Y
% .*t‘f:ff

-

"y KON

L] v l'. l...
5, >

/o

als]

-~
[}
¥

’
S

\ ".'1'-." '-_'.' =3

> (‘.“.

XL

-

In assessing the energy dissipated and residual strength,
specimens were subjected to a series of cycles of loading and
unloading. The specimens were loaded up to a value in the range
of stress, 90 - 94 percent of the ultimate stress. This ensured
that damage occurred for every cycle of loading. At the end of
each cylce of loading and unloading, the testing machine was
returned to a rest position, and reloading was commenced immedi-
ately. To ensure that concrete characteristics would be as
nearly uniform as possible, all the tests in each sequence were
run in one day.

Discussion of Results

Numerous physical experiments were conducted in this inves-
tigation and characteristics of concrete accumulating damage can
be derived from the individual tests and all the tests, jointly.
In the following section the characteristics of individual tests
are discussed first; then damage characteristics related to the
entire test sequence are discussed.

A typical stress-strain diagram obtained during one experi-
ment is shown in Figure A3. A number of characteristic features
can be extracted from this result. On the initial cycle the
specimen was loaded to a stress near its ultimate (95 to 98 per-
cent). It can be seen that the most significant change in behav-
ior between consecutive loading cycles occurs between the first
and second cycle,

The first loading curve shows more curvature than the fol-
lowing reloading curves in which curvature tends to diminish.
The reloading curves show progressively decreasing slopes. This
may be attributed to structural degradation of the specimen.

Another measure of degradation can be established by plot-

ting the initial elastic modulus for a particular cycle versus
energy dissipation prior to that cycle. This is shown in Figure
A4, As the energy dissipated gradually increases, the initial
elastic modulus diminishes.
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The above discussion was based on one typical sample. A
similar discussion could be given for the other samples. Figures
A5, A6, and A7 show the stress-strain curves for some other spec-
imens tested during this investigation.

Some general characteristics of the accumulation of damage
in concrete specimens can be derived from the entire collection
of results. A total of 24 concrete specimens were tested in this
investigation.

As noted earlier, the specimens were subjected to cyclic
loadings inducing different amounts of energy dissipation in the
various cylinders. Not all specimens were cycled to failure. At
least, three of the specimens were tested for the determination
of the ultimate strength. Other specimens, however, were cycled
till failure. The remainder of the specimens were cycled till a
certain amount of energy was dissipated; then these were loaded
to failure in order to find their residual strength. |

Using these data, a characteristic of the specimens can be
extracted. The total energy dissipated by each particular speci-
men was plotted against the residual strength of the specimen as
shown in Figure A9. Another result can be illustrated by plot-
ting the total energy dissipated versus percentage of decrease in
strength as shown in Figure A8. Both diagrams show a decrease in
strength as the total energy dissipated is increased. Since only
a2 limited number of specimens were tested, no direct mathematical
expression relating the residual strength to the total energy
dissipated was obtained. While such a relation could be estab-
Yished, further testing is required to derive a general relation-
ship. However, the pesent results provide the information needed
to conclude that energy dissipation is truly related to the
residual strength.
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The experimental technique described above provides an
approach for the estimation of damage in concrete. Based on the
physical experiments, the following conclusions can be made:

1. The most significant change in the properties of the
concrete occur between the first cycle and second cycle
when loading in the first cycle is severe,

2. The initial elastic modulus of the specimens gradually
diminishes as energy is dissipated. This implies that
the damage of concrete under cyclic loading occurs
progressively.

3. The energy dissipated in a concrete specimen is
adversely related to residual strength. As the energy
dissipated increases, the residual strength decreases.
Therefore, energy dissipated may be used to predict the
damage of a structure under a severe loading. Moreover,
total energy dissipated may be considered as an
indicator of the degree of damage in an hysteretic
structure.

Some restrictions apply to the above conclusions. The work
is limited to behavior in uniaxial compression. Other types
of loading are possible and further tests are required to
characterize damage under general loading. It has been assumed
that the creep effect is small enough to be neglected in this
investigation.
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APPENDIX B
COMPUTER PROGRAM PUR

khkhkdkhkkhhhkhhkkhkkhhkdhkhkhkkbhkhrthkhkdkhkkohkkthdthkrddt

*kxxkkkk****PROGRAM NAME "PURW***kkktkkkkk
kkkhhhk kb hhkhhhhhhhhhhhhhhkrhhrhdhk
THIS PROGRAM IDENTIFIES THE PARAMETERS OF A
TIME VARYING SECOND~ORDER LINEAR MODEL BY
USING THE PERTURBATION METHOD AND ITERATIVE
NEWTON- RAPHSON PROCEDURE. IT MAY ALSO USE
THE POLYNOMIAL FITTING APPROACH.

COMPLEX FF(1024),FD(1024)

COMPLEX 2Z(1024),HD,2(1024),HABS(512)
DIMENSION DD(1024),F(1024),HMOD(512),HZ(512)
DIMENSION EK(3),COE(4),S(9), INDEX(S),AS(9)
COMMON/ARRAY/FF, ED

CALL OPSYS('ALLOC','FD1',10)

CALL OPSYS('ALLOC','RH1',7)

CALL OPSYS('ALLOC', 'NFL',4)

EXTERNAL MATINV

SM : SYSTEM MASS

ALPHA : DAMPING COEFFICIENT
BETA : STIFFNESS COEFFICIENT
ZETA : DAMPING RATIO

C1 : INITIAL GUESS 'DAMPING'
c2 : INITIAL GUESS 'ALPHA*C1'
C3 : INITIAL GUESS 'STIFFNESS'
c4 : INITIAL GUESS 'BETA*C3'

ESLON : ACCURACY MEASURE(FOR ESLON1-ESLON4)
W1l-W4 : ACCURACY MEASURE FOR NEWTON METHOD
DAl1-DA4 : INCREMENT VALUES

SM=1.0
Cl=1.5
C2=0.02
C3=37.5
C4=-0.01
ZETA=0.1
ESLON1=0.02
ESLON2=0.02
ESLON3=0.02
ESLON4=0.02
WN=SQRT (C3/SM)
DAl1=0.01
DA2=0.001
DA3=1.0
DA4=0.01
W1=0.01
W2=0.01
W3=0.01
Wa=0.01
P1=3.1415926535
DT=0.05
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'_2
XY M=10
o N=2*+M
s NT=N/8
- TT=DT*N
18 DW=2.*PI/TT
e NS=N/2
3 CA=PI/NS
Py C
. c READ IN THE TIME DOMAIN RESPONSE
y c
23 READ(10,80) (F(I),DD(I),I=1,N)
N (o
%2 c WINDOW THE DATA
- C
. DO 3 I=1,NS
, IM=N-I+1
x CMULT=0.5%(1.0-COS((I-1)*CA))
- F(IM)=CMULT*F(IM)
> DD (IM)=CMULT*DD( IM)
D 3 CONTINUE
s o]
o] FET THE INPUT AND RESPONSE
o]
DO 8 I=1,N
Py FF(I)=CMPLX(F(I),0.0)*TT
M 2Z(1)=CMPLX(DD(I),0.0)*TT
8 CONTINUE
, CALL FFT1(FF,M,N,-1.0)
‘§§' CALL FFT1(22,M,N,-1.0)
e C
S
o c FIND THE MOD(H)
5 c
i DO 9 I=1,NT
) FA=CABS(FF(1))
X 2A=CABS(22(1))
X HMOD(I)=2A/FA
A 9 CONTINUE
N c
A o] CALCULATE THE DERIVATIVE OF FF
o]
@ DO 12 I=1,N
g TC=(I-1)*DT
] F(I)=F(I1)*TC
W FD(I)=CMPLX(F(I),0.0)*TT
2. 12 CONTINUE
. CALL FFT1(FD,M,N,-1.)
' DO 13 I=1,N
< 13 FD(I)=FD(I)*CMPLX(0.0,-1.)
i’ c
A c FIND THE NUMBER OF PTS NEEDED IN TEE BAND
= o
% NC=(1.0*ZETA*WN)/DW
d
-3
%
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26

29

30

31

40

41

33

i
1

=WN/DW
NS=NW-NC
NF=NW+NC
AA1=C1
AA2=C2
AA3=C3
AA4=C4
L=1
WRITE(6,89)C1,C2,C3,C4
ICOUNT=2
ISTEA=ICOUNT
ACl=C1
AC2=C2
AC3=C3
AC4=C4

CALL SUBROUTINE PURT TO FIND THE MODULUS
OF H FROM THE MEASURED INPUT

WN=SQRT(C3/SM)
NC=(1.0*ZETA*WN) /DW

NW=WN/DW

NS=NW-NC

NE=NW+NC

CALL PURT(DW,NT,C1,C2,C3,C4, HZ)

FIND E(ERROR MEASURE)

EE=0.0
DO 30 I=NS,NF
E=HMOD(I)-HZ(I)
EE=EE+(E**2)

CONTINUE

EK ( ICOUNT)=EE
IF(ICOUNT.EQ.3) GO TO 50
GO TO (31,32,33,34),L
IF(ICOUNT.EQ.1) GO TO 40
C1=C1-DAl
ICOUNT=ICOUNT-1

GO TO 29

C1=AC1+DAl
ICOUNT=ISTEA+1

GO TO 29

IF(ICOUNT.EQ.1) GO TO 41
C2=C2-DA2
ICOUNT=ICOUNT-1

GO TO 29

C2=AC2+DA2
ICOUNT=ISTEA+1

GO TO 29

IF(ICOUNT.EQ.1) GO TO 42
C3=C3-DA3
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42

34

43

50
60

61

62

63

70

99
101

102
103
104

87
92

ICOUNT=ICOUNT-1
GO TO 29
C3=AC3+DA3
ICOUNT=ISTEA+1
GO TO 29
IF(ICOUNT.EQ.1) GO TO 43
C4=C4-DA4
ICOUNT=ICOUNT-1
GO TO 29
C4=AC4+DA4
ICOUNT=ISTEA+1
GO TO 29

CALCULATE THE FIRST AND SECOND DERIVETIVES

GO TO(60,61,62,63),L
TD=DA1

AV=AC1

W=W1

GO TO 70

TD=DA2

AV=AC2

=2

GO TO 70

TD=DA3
AV=AC3

=W3

GO TO 70

TD=DA4

AV=AC4

W=W4

GO TO 70
DEK=(EK(3)-EK(1))/(2.0*TD)
DDEK=(EK(3)-2.*EK(2)+EK(1))/(TD**2)

DO THE NEWTON RAPHSON METHOD

ACC=AV- (DEK/DDEK)
WE=ABS ( (ACC-AV) /ACC)
WD=WE-W

IF(WD.LE.O0.0) GO TO 87
GO TO(101,102,103,104),L
cl=AcC

GO TO 28

c2=ACC

GO TO 28

C3=ACC

GO TO 28

C4=ACC

GO TO 28

GO TO(92,93,94,95),L
cl=AcC

.................




..........

93
94

95
85

Qaa

100

81

80
82

150
88

QQa

GO TO 85

C2=ACC

GO TO 85

C3=ACC

GO TO 85

C4=ACC

L=L+1

IF(L.EQ.5) GO TO 100
GO TO 28

COMPARE THE PARAMETERS

CD1=ABS( (AA1~C1)/C1)
CD2=ABS( (AA2~C2)/C2)
CD3=ABS( (AA3~C3)/C3)
CD4=ABS ( (AA4-C4)/C4)
IF(CD1.GT.ESLON1) GO TO 81
IF(CD2.GT.ESLON2) GO TO 81
IF(CD3.GT.ESLON3) GO TO 81
IF(CD3.GT.ESLON4) GO TO 81
WRITE(6,*) C1,C2,C3,C4

GO ToO 88

AAl1=Cl

AA2=C2

AA3=C3

AAG=C4

GO TO 26

FORMAT (2E12. 4)

FORMAT (3E13.4)

FORMAT (4E12.4)
FORMAT(2E16.6)

STOP

END

PERTURBATION METHOD

SUBROUTINE PURT(DW,NT,C1,C2,C3,C4, HA)
COMPLEX FF(1024),FD(1024),HABS(512),2(512)
COMPLEX HD,H,HDEV,H1,H2,H3,H4

DIMENSION HA(NT)

COMMON/ARRAY/FF, D

SM=1.0

DO 14 I=1,NT

W=(I-1)*DW

HD=CMPLX( (C3-SM* (W*#*2)),W*C1)

H=1.0/HD
HDEV=CMPLX( (2. *SM*W), -C1)/(HD**2)
H1=H*FF(I)

H2=C2*H* (H1+W* (HDEV*FF (I)+H*ED(I)))
H3=CMPLX (0.0, -C4)*H* (HDEV*FF(I)+H*FD(I))
2(1)=H1+H2+H3

H4=HDEV+H*(FD(I)/FF(I))




Qo000 00
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nan

14
10

HABS(I)=H*(1.0+C2*(H+W*H4)-CMPLX(0.0,C4)*H4)
HA(I)=CABS(HABS(I))

CONTINUE

GO TO 10

RETURN

END

FET PROGRAM

[ XZ XXX S X EEEEEESEE R AR SR AR SR SRR R R AR R R R R ERE RS

MULTIPLIED BY T WHEN USING THE FORWARD FET
DIVIDED BY DT FOR BACKWARD FFT
SIGN =-1. FOR DFT, SIGN=1l. FOR IDET

(X2 EXRAEXERXASESEE AR R AR RS R RS R SRR AR AR R R R EE R

SUBROUTINE FFT1(A,N,NB,SIGN)
COMPLEX A(NB),U,W,T

DIVIDE ALL ELEMENT BY NB

DO 1 J=1,NB
A(J)=A(J)/NB

REORDER SEQUENCE

NBD2=NB/2
NBM1=NB-1

J=1

DO 4 L=1,NBM1
IF(L.GE.J) GO TO 2
T=A(J)

A(J)=A(L)

A(L)=T

K=NBD2

IF(K.GE.J) GO TO 4
J=J-K

K=K/2

GO TO 3

J=J+K

CALCULATE FFT

PI=3.141592653589793

DO 6 M=1,N

U=(1.0,0.0)

ME=2 **M

K=ME /2

W=CMPLX (COS(P1/K), SIGN*SIN(PI/K))
DO 6 J=1,K

DO 5 L=J,NB,ME

LPK=L+K

T=A(LPK)*U
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A(LPK)=A(L)-T
5 A(L)=A(L)+T
6 U=U*W

RETURN

END

LEAST SQUARE POLYNOMINAL FITTING

A POLYNOMIAL FIT SUBRQUTINE
THIS PROGRAM IS PREPARED SO THAT IT CAN
BE USED WHENEVER IT IS NECESSARY.

SUBROUTINE FIT(Y,MP,N,X1,X2,A)
DIMENSION XX(9,4),Y(9),X(9),XP(4,4),A(4),D(4,4),B(4)
DIMENSION EPS(9)
DX=(X2-X1)/FLOAT(N-1)

DO 10 I=1,N

10 X(I)=X1+FLOAT(I-1)*DX
DO 1 I=1,N
XX(I,1)=1.0
DO 1 J=2,MP

1 XX(I,J)=X(I)**(J-1)
DO 2 I=1,MP
DO 2 J=I,MP
XP(I,J)=0.0
DO 2 K=1,N

2 XP(I,J)=XP(I,J)+XX(K,I)*XX(K,J)
DO 3 I=2,MP
IM=I-1
DO 3 J=1,IM

3 XP(I,J)=XP(J,1)
CALL MATINV(XP,MP,D)
DO 4 I=1,MP
B(I1)=0.0
DO 4 J=1,N

4 B(I)=B(I)+XX(J,I)*Y(J)
DO 5 I=1,MP
A(I)=0.0
DO 5 J=1,MP

5 A(I)=A(I)+D(I,J)*B(J)
RETURN
END

MATRIX INVERSION

SUBROUTINE MATINV(C,N,D)
MATRIX INVERSION C-INPUT D-OUTPUT
DIMENSION C(4,4).D(4.,4)
DO 10 J=1,N
DO 10 K=1,N
10 D(J,K)=0.0
DO 11 K=1,N
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D(K,K)=1.0

P1=1.0

DO 55 I=1,N

P2=C(I,I)

DO 40 J=1,N

c(I,J)=C(I,J)/P2

D(I,J)=D(I,J)/P2

DO 51 Ic=1,N

P3=-C(IC,1I)

DO 50 K=1,N

IF(IC-1)21,51,21
21 c(IC,K)=C(I,K)*P3+C(IC,K)
50 D(IC,K)=D(I,K)*P3+D(IC,K)
51 CONTINUE

P1=P2*P1

IF((I+2)-N)55,53,55
53 DET=P1*((C(I+1,I+1)*C(I+2,1I+2))

*-(C(I+2,I+1)*C(I+1,1I+2)))
55 CONTINUE

DO 70 IT=1,N

DO 70 1S=1,N
70 C(IT,IS)=D(IT,IS)

RETURN

AL LR R A A

END
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