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B. TECHNICAL SECTION

I. Abstract

The overall objective of this proposal is to investi-
gate the robustness to departures from independence of methods
currently in use in reliability studies when competing failure
modes or competing causes of failure associated with a single
mode are present in a series system. The first specific aim
is to examine the error one makes in modeling a series system
by a model which assumes statistically independent component
lifetimes when in fact the component lifetimes follow some
multivariate distribution. The second specific aim is to assess
the effects of the independence assumption on the error in
estimating component parameters from life tests on series
systems. In both cases, estimates of such errors will be deter-
mined via mathematical analysis and computer simulations for
several prominent multivariate distributions. A graphical dis-
play of the errors for representative distributions will be
made available to researchers who wish to assess the possible
erroneous assumption of independent competing risks. A third
aim is to tighten the bounds on estimates of component relia-
bility when the risks belong to a general dependence class of
distributions (for example, positive quadrant dependence, posi-
tive regression dependence, etc.). Major decisions involving
reliability studies, based on competing risk methodology, have
been made in the past and will continue to be made in the future.
This study will provide the user of such techniques with a
clearer understanding of the robustness of the analyses to de-
partures from independent risks, an assumption commonly made
by the methods currently in use.
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II. Specific Objectives

The overall objective is to investigate the robust-
ness to departures from independence to methods currently in
use in reliability studies when competing failure modes or com-
peting causes of failure associated with a single mode are
present in a series system. We shall also refer to such com-
petitive events as competing risks. The approach will be through
the investigation of certain aspects of specific parametric multi-
variate distributions or by classes of distributions which are
appropriate in reliability analyses when there are competing
risks present.

The specific objectives are:

1) to assess the error incurred in modeling system
life in a series system assumed to have indepen-
dent component lifetimes when in fact the com-
ponent lifetimes are dependent.

2) to assess the error in estimating component param-
eters (i.e., component reliability, mean com-
ponent life, etc.) in a series system employing
either parametric or nonparametric models which
assume independent component failure times when
in fact the lifetimes are dependent and follow
some plausible multivariate distribution.*

3) to derive bounds on component reliability when
the failure modes are dependent and fall in a
particular dependence class (e.g., positive quad-
rant dependence, positive regression dependence,
etc.).

4) to develop tests of independence, based on data
collected from series systems, by making some
restrictive assumption about the structure of the
systems.**

* A plausible parametric multivariate distribution will be
one that satisfies one of the following conditions:

i) the distribution of the minimum of the component
failure times closely approximates widely accept-
ed families of system life distributions.

or ii) the marginal distributions closely approximate
the distributions of component failure times in
the absence of other failure modes.

**This objective has been added to the original objectives be-
cause it answers a natural question raised by our preliminary
investigation.
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III. Introduction to Problem and Significance of Study

Alvin Weinberg (1978) in an editorial comment in the
published proceedings of a workshop on Environmental Biologi-
cal Hazards and Competing Risks noted that "the question of
competing risks will not quietly go away: corrections for com-
peting risks should be applied routinely to data." The problem
of competing risks commonly arises in a wide range of experi-
mental situations. Although we shall confine our attention
in the following discussion to those situations involving
series systems in which competing failure modes or competing
causes of failure associated with a single mode are present,
it is certainly true that we might just as easily speak of
clinical trials, animal experiments, or other medical and bio-
logical studies where competing events interrupt our study of
the main event of interest (cf. Lagokos (1979)).

Consider electronic or mechanical systems, such as
satellite transmission equipment, computers, aircraft, missiles
and other weaponry consisting of several components in series.
Usually each component will have a random life length and the
life of the entire system will end with the failure of the
shortest lived component, We will examine two situations more
closely in which competing risks play a vital role.

First, suppose we are attempting to evaluate system life
from knowledge of the individual component lifetimes. Such
an evaluation will utilize either an analysis involving math-
ematical statistics or a computer simulation. At a recent
confrence on Modeling and Simulation, McLean (1981) presented
a scheme to simulate the life of a-missile which consisted of
many major components in series, The failure distribution asso-
ciat6d with each component was assumed to be known (usually
exponential or Weibull.) To arrive at the system failure dis-
tribution, the components were assumed to act independently of
each other. Realistically, this may or may not be the case.
If the component lifetimes were dependent for any reason, the
computed system failure distribution (as well as its subsequent
parameters such as system mean life and system reliability for
a specified time) would only crudely approximate the true
distribution. The first specific aim of this proposal is to
ascertain the error incurred in modeling system life in a
series system assumed to have independent component lifetimes
(i.e., risks) when, in fact, the risks are dependent.

Second, suppose we wish to evaluate some aspect of the
distribution of a particular failure mode based on a typical
life test of a series system. The response of interest is the
time until failure of a particular mode of interest. Frequently
this response will not be observable due to the occurrence of
some other event which precludes failure associated with the
mode of interest. We shall term such competing events which
interrupt our study of the maii failure modes of interest as
competing risks.

.. " -



-. . . °- "- - - liii_

6

Moeschberger, Melvin L

Competing risks arise in such reliability studies when

1) the study is terminated due to a lack of funds or the
pre-determined period of observation has expired
(Type I censoring).

2) the study is terminated due to a pre-determined number
of failures of the particular failure mode of interest
being observed (Type II censoring).

3) some systems fail because components other than the
one of interest malfunction.

4) the component of interest fails from some cause other
than the one of interest.

In all four situations, one may think of the main event of
interest as being censored, i.e., not fully observable. In the
first two situations, the time to occurrence of the event of
interest should be independent of the censoring mechanism. In t
such instances, the methodology for estimating relevant reliabili-
ty probabilities has received considerable attention (cf. David
and Moeschberger (1978), Kalbfeish and Prentice (1980), Elandt-
Johnson and Johnson (1980), Mann, Schafer, Singpurwalla (1974)
and Barlow and Proschan (1975) for references and discussion).
In the third situation, the time to failure of the component of
interest may or may not be independent of the failure times of
-other coaponents in the system. For example, there may be
common environmental factors such as extreme temperature which
may affect the lifetime of several components. Thus the question
of dependent competing risks is raised. A similar observation
may be made with respect to the fourth situation, viz., failure
times associated with different failure modes of a single com-
ponent may be dependent. For a very special type of dependence,
the models discussed by Marshall-Olkin (1967), Langberg, Proschan
and Quinzy (1978), and Langberg, Proschan, and Quinzy (1981)
allow one to convert dependent models into independent ones.

If no assumptions whatever are made about the type of
dependence between the distribution of potential failure times,
there appears to be little hope of estimating relevant component
parameters. In some situations, one may be appreciably misled
(cf. Tsiatis (1975), Peterson (1976)). However, as Easterling
(1980) so clearly points out in his review of Birnbaum's (1979)
monograph

"'there seems to be a need for some robustness
studies. How far might one be off, quantita-
tively, if his analysis is based on incorrectassumptions?*

The second specific aim will address this important
issue. First if a specific parametric model which assumes

Ow °ii
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independent risks has been used in the an , it would
be of interest to know how the error in estifiation: is
affected by this assumption of independence. That is, if
independent specific paranmtric distributions are assumed
for the failure times associated with different failure
modes when we really should use a bivariate (or multivariate)
distribution, then what is the .magnitude of the error in
estimating component parameters? Secondly, one may wish to
allow for a less stringent type of model assumption, and ask
the same question with regard to the estimation error. That
is, if a nonpaxzametric analysis is performed, assuming in-
dependent risks, when some types of dependencies may be
present, then what is the magnitude of the estimation error?

The third specific aim will attempt to obtain bounds on
the component reliability when the failure times belong to
a broad dependence class (e.g., association, positive quadrant
dependence, positive regression dependence, etc.). more
details will be presented in the methods section.

In summary, competing risk analyses have been performed
in the past and will continue to be performed in the future.
This study will provide the user of such techniques with a
clearer understanding of the robustness to departures from
independent risks, an assumption which most of the methods
currently in use assume.

1.
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IV. Progress Report on First Year's Work

We believe that substantial progress has been made in
dealing with the first two objectives as outlined on page 4. We
have examined the consequences of erroneously assuming independence
when the true multivariate distribution of component lifetimes
follows either a Gumbel (1960) bivariate exponential model or the
well-known Marshall-Olkin (1967) bivariate exponential model.
These bivariate distributions model two series systems which have
quite different failure mechanisms. The former has the flexibility
of allowing either positive or negative correlation (not due to
simultaneous failure) between two component lifetimes in a series
system. The latter allows dependency to enter via simultaneous
failure of the components. Results associated with both models
have been submitted for publication. (See Appendices A and B for copies of
these papers.) The paper dealing with the Gumbel model has recently
been substantially revised for Technometrics. In addition to clarifying
certain aspects of the paper as originally submitted, we have investi-
gated how well the Mann-Grubbs (1974) confidence intervals perform
for varying degrees of correlation among the components and for various
sample sizes. The Gumbel results were presented in an invited talk
at the Applied Statistics Conference in Newark in December, 1982.
The Marshall-Olkin results were presented at the joint ASA-IMS-Biometric
Society meetings in Toronto in August, 1983. Also, some aspects of
these results were given in an invited session on Survival Analysis
at the AAAS in Detroit in May, 1983.

We also have examined, in a related issue, the asymptotic
bias of the Kaplan-Meier product limit estimator under dependent
competing risks and have evaluated the magnitude of this for some
specific bivariate distributions. These results have also been
submitted for publication. (See Appendices for a copy.)

Work is near completion with respect to evaluating, the
consequences of erroneously assuming independence when modeling system
r'.iability from ccnlete component information. This work includes, in addition
to the above models, Downton's bivariate exponential, two additional
Gumbel models, and the bivariate model proposed by Oakes (1982).

A natural question, which arose from our investigation
into the effects of dependence on modeling system reliability and
in estimating component parameters from system data, is how can
one test, statistically, the assumption of independence? A test
of independence, based on data collected from series systems, is
not possible, unless some restrictive assumptions are made, due
to the nonidentifiability problem. That is, for any set of ob-
servable information coming from a series system with dependent
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component lifetimes there exists a system with independent com-
ponent lives which has the same observable quantities (c.f. Tsiatis
(1975), Rose (1973), Basu and Klein (1982)). By making some
restrictive assumptions about the joint distribution of the com-
ponent lifetimes or about the net component lifetimes it may be
possible to test for independence in this restrictive setting.

An approach which makes some assumptions about the
marginal component lifetimes and then uses the information to
modify the standard nonparametric test for independence is presented
in another paper in the Appendix D. The thrust of our future
efforts will be to study further aspects of the test system
reliabilities under various conditions. In conclusion, we believe
that we are on target with respect to dealing with the objectives
as outlined in our original proposal as well as the one added
objective which serves to enhance the overall effort.

VI. Methods

We refer to pages 8052 of the original proposal for a
discussion of the general methodology.

VI
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Abstract

This paper investigates the consequences of
departures from independence when the component
lifetimes in a series system are exponentially
distributed. Such departures are studied when
the joint distribution is assumed to follow a
Gumbel bivariate exponential model. Two distinct
situations are considered. First, in theoretical
modeling of series systems, when the distribution
of the component lifetimes is assumed, one wishes
to compute system reliability and mean system
life. Second, errors in parametric and nonpara-
metric estimation of component reliability and
component mean life are studied based on lifetest
data collected on series systems when the assump-
tion of independence is made erroneously.

Keywords: competing risks, component life, modeling
series systems, robustness studies, system
reliability, Gumbel bivariate exponential



1. INTRODUCTION

Consider a system consisting of several components linked

in series. For such a system the failure of any one of the

components causes the system to fail. Common assumptions made

in modeling and analyzing data from such a system are that the

component lifetimes are independent and exponentially distri-

buted. Many authors have considered the problem of analyzing

a series system with exponential component lives. For example,

confidence bounds for system reliability assuming independent

exponentially distributed component lifetimes were presented

in Mann(1974) and Mann and Grubbs (1974). (cf., see Mann,

Schafer, and Singpurwalla (1974) for a more comprehensive review.)

More recently, work invoking the assumption of independent

exponentially distributed lifetimes has been presented by Chao

(1981) and Miyamura (1982). Estimation of component parameters

from series system data has been treated by Boardman and Kendell

(1970) in the context of independent exponential component lives.

Some authors suggest a nonparametric alternative to the estima-

tion of component reliability based on series system data (cf.

Kalbfleisch and Prentice (1980) and Lawless (1982)).

The assumption of independence is essential to these analyses

and also an important concern. Several authors have shown that

this assumption, by itself, is not testable since, based on data

from a series system, there is no way to distinquish between an
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2.

independent and dependent model. (See Tsiatis (1975), Peterson

(1976), and Basu (1981) for a discussion of nonidentifiability

results.) In many situations one may be appreciably misled by

the independence assumption.

Lagakos (1979), in a study of the effects of various types

of dependence among component lifetimes, has noted that most

methods of analysis have assumed noninformative models of which

independence is a special case. He points out, "it is important

to be aware of the possible consequences of making this assumption

when it is false." Furthermore, Easterling (1980) states in his

review of Birnbaum's (1979).monograph on competing risks "there

seems to be a need for some robustness studies. How far might

one be off, quantitatively, if his analysis is based on incorrect

assumptions?"

In this paper we consider the consequences of departures from

independence when the component lifetimes are exponentially dis-

tributed. Such depirtures from independence may be related to

some common environmental factor, only present when the components

are linked together in series. The load each component is subject

to is either reduced or increased according to the age of the

system. To study such departures we have selected a model pro-

posed by Gumbel (1960). Gumbel's model retains the assumption

of exponentially distributed component lifetimes while allowing

the flexibility of both positive or negative mild correlation

between component lifetimes.
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The effects of a departure from the assumption of independent

component lifetimes in a series system will be addressed in two

distinct situations. The first situation arises in modeling the

performance of a theoretical series system constructed from

components whose lifetimes are exponentially distributed. Here,

based on testing each component separately or based on engineering

design principles, it is reasonable to assume that the components

are known to be exponentially distributed with known parameter

values. Based on this information we wish to calculate parameters

such as the mean system life or system reliability of a series

system constructed from these components. In Section 2 we describe

how the values of these quantities are affected by departures

from independence when the component parameters are completely

* specified. In Section 3 we study the performance of the Mann-

Grubbs (1974) confidence bounds on system reliability for small

sample sizes and for varying degrees of correlation.when the component

parameters are estimated from component data.

The second situation involvez making inferences about compo-

nent lifetimes distributions, component reliabilities, and compo-

nent mean lives, from data collected on series systems. Commonly,

data collected on such systems are analyzed by assuming a constant-

sum model of which independence is a special case (cf. Williams

and Lagakos (1977) and Lagakos and Williams (1978). In Section 4

we study the properties of the maximum likelihood estimators of

component parameters calculated under an assumption of independent

exponential component lifetimes when the component lifetimes are

Gumbel bivariate exponential. Because of the usage of nonparametric

I = - I * " "
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estimates of component reliability, we also study the estimation

error of the Kaplan-Meier (1958) estimator when the assumption

of independence is made erroneously.

2. MODELING SYSTEM RELIABILITY FROM COMPLETE

COMPONENT INFORMATION

Consider a two component series system with component life-

lengths X1 , X2. Suppose that Xi has an exponential survival

function

Fi (t) = P(Xi>t) = exp (-Ait),

Xi' t>O, i = 1,2.

This assumption is made on the basis of extensive testing of

each component separately or nn knowledge of the underlying

mechanism of failure. The value of A. is assumed known. If1

(X 1,X2 ) are independent, then the time to system failure has

an exponential distribution with failure rate X=Xi+N2 , and

the system reliability is given by

FI (t) = P[Min(X,1 X2)>tlindependencej= exp (-xt). (2.1)

Suppose that the actual joint distribution of (XIX 2 ) has

the forn proposed by Gumbel (1960), namely,

P(X1 >XIX 2 >x 2 )

['--PXP (-AX x XAx )Irf (l-exp (-AX 1 )) (1-exp (-x x )) (2.2)

and the joint probability density of (XrX) is

f(x 1x 2 )=A 1 A2 [exP (-Alxl-A 2x2 3J[1+a(2 exp (-X Ix 1)1) (2 exp (-X 2 x2)-ID (2.3)

where in both (2.2) and (2.3), X 11X2 ,A I , X2 >0,-l<Mcl. This

.. ' -- , "- '
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distribution has marginal survival functions equivalent to those

for the independent model which, in part, is the reason for

choosing it. The correlation between (XIX 2) isp =a/4 and a=O

is equivalent to (XI,X2) being independent. For p>0 (<0) the

components are positively (negatively) quadrant dependent (cf.

Barlow and Proschan (1975)). Furthermore, the conditional

expectation of X1, given X2=x 2 , is

E (Xl X2=x 2 )= 1 +2p-4pexp(-X 2 x 2 .1

If (Xl,X2) have the joint distribution (2.3) then the true

system reliability, is

FD (t) = PLmin(XlX 2) >tldependenceI

= exp(-Xt) l+4P(l-exp(-xlt)) (l-exp(-X2 t)). (2.4)

From (2.1) and (2.4) we can easily see the amount of error

in modeling system reliability is

A(t)=FD(t) -Fi(t)

=4pEl-exp(-x 1 t ] L-exp(-X2t ) exp[-(Xl+x2 )tj. (2.5)

Note that IA(t)I increases as Ipl increases, for fixed XIX 2, and t.

The magnitude of A(t), of course, depends upon x1 ,X2 , t, and p.

When x,=X2 = : one can show that 6(t) is maximized at

t = I1n 2 (fixing p and 0 ). The value of IA(t)I at this point

is Ipl/4 which is at most 1/16. Representative values of FD(t) for

X =iX2 =1.5 and p=-. 2 5 ,-.12 5 ,0, .125, .25 are plotted in Figure 1.

The curve with o =0 corresponds to the system reliability if the

assumption of independence is true. Since most applications of

interest involve reliabilities of .75 or greater, we plot in Figure 2

the ratio of the 100 pth upper percentiles under dependence and

independence vs. the correlation. From Figure 2, it appears that,



Figure 1. SyStem Reliability for Gumbel's Model
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Figure 2. Ratio of 100p thpercentile under dependence and
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when the predicted system reliability under independence is

greater than .90,misspecifying the dependence parameter has

little effect. However, in the range where the predicted system

reliability under independence is less than .75,misspecifying

the dependence parameter may lead to errors exceeding 6%.

Maximum values of 1, (t) are tabled in Table 1, for Al=l and

various values of X2.

The mean time to system failure based on (2.1), assuming

independence, is

)I = 1/(X 1 +X2 ) (2.6)

and that based on (2.4) is

V 1  +4L3 1 (2.7)

D- (X1i+X2) 2(Xi+2) (2 1+X2  (A1+2X2 )J

The amount of error in modeling system mean life is

6PXl 2

P (X +- 2 ) (2X +X2 ) (Xi+2X2 )

6___ 1_A_2_ _I (2.8)

(2X 1 +I 2 ) (Xi+2X2)

whose absolute value obviously increases as ipl increases. If

Xi=X2 , this error reduces to 2pUi/ 3 which has a maximum absolute

value of pi/6.

It is apparent from Table 1 and equations (2.5) and (2.8)

that the error in modeling system reliability and mean system

life, based on independence, increases as IpI increases and is a

function of the relative sizes of A, and . In particular, when

the mean life of one component is substantially greater than the
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mean life of the second component, then the behavior of the

system is well-approximated by the behavior of the shorter-

lived component acting alone. This can be seen in (2.4) and

(2.7) by letting X 0. In this instance, we see also, from (2.5)

and (2.8), that the amount of error incurred by assuming indepen-

dence is negligible.

3. ESTIMATING SYSTEM RELIABILITY FROM COMPONENT DATA

A common practice in predicting system reliability is to

test each of the components independently and then to use the

data to obtain confidence bounds on system reliability. These

bounds, obtained by Mann and Grubbs (1974), assume that the

component lifetimes are exponential, and that the components

act independently when linked in series. In the bivariate case

.ththe bounds are computed as follows: for the j component suppose

that nj prototypes have been tested until (rj.nj) failures occur.

Let Z. be the total time on test for the jth component. Define

M*= rj-1)/Z.+ /(r.-I/'z /[(rj-l)/Z2), (3.1)

and V*= (rj-l)/Z?+ rj_1/Z /g(rj-l)/Z Q (3.2)

An approximate y level lower confidence level for system reliability

at time tm is

exp[-t MM* 1-V*/(9M* )+n y(V*) /(3M*)3l (3.3)

where n. is the 100Y percentile of a standard normal random variable.



Table 1. Maximum values of Jt6(t)l for X =1 and various

values of x2

A2 Max jA(t)j

2' .056
4 .041

8 .025
16 .014



When the system being evaluated has dependent components thuQc,

bounds may be misleading. The problem is that component data is

independent, since the components are tested separately, but when

put together into a system some interdependence may develop. Of course

such dependence is not detectable, in the absence of some system

data, since the data on components we see are independent. To study

the performance of the bound (3.3) when the correct system model is

the Gumbel model (2.2) a simulation study was performed. For each

simulated sample ai observations from exponential populations with

man i/ , j=1,2, were simulated. The two samples were generated inde-

pendently. The confidence bound (3.3) was obtained. This was then

compared to the true system reliability at various P's obtained

from (2.4). Ten thousand such bounds were simulated for each set

of parameter values. The results for nl=n2 =3,5,10,Xl=l.OX 2 =l.5,

at tm=0.1 are reported in Table 2. Here the system reliability

ranges from .7684 at P=-.25 to .7891 at P=.25 with a value of .7788

at P=O.

The results in Table 2 show that at high negative correlations

the coverage probabilities are significantly lower than claimed

under independence, while for a high positive correlation the intervals

are conservative. This trend becomes more exaggerated as nln 2

increase. This is due to the fact that as n1,n2 increases the

bound approaches the reliability under independence. As seen

in Section 1, the true reliability at t is an increasing

function of P so that asymptotically coverage probabilities

approach 0(orl) for p<0(>0). On the practical side, while the



Table 2. Estimated Coverage Probabilities for Mann-Grubbs Bounds

I=l.0, X2= 1.5

Correlation

nI  n2  -.25 -.15 -.05 0 .05 .15 .25

3 3 .95 93.41- 94.11- 94.74 95.05 95.27 95.80+ 96.22+

3 3 .90 87.40- 88.42- 89.32- 89.78 90.20 91.18+ 92.15+

3 3 .75 71.03- 72.53- 74.13- 74.88 76.58 77.34+ 78.81+

5 5 .95 93.19- 94.04- 94.90 95.26 95.62+ 96.17+ 96.81+

5 5 .90 87.12- 88.48- 89.85 90.39 91.10 92.13+ 93.14

5 5 .75 69.68- 72.02- 74.10- 75.13 76.14+ 78.32+ 80.03

10 10 .95 92.03- 93.42- 94.58 95.08 95.51+ 96.42+ 97.14

10 10 .90 85.93- 87.70- 89.34- 90.21 91.05+ 92.56+ 93.93

10 10 .75 67.77- 70.90- 74.12- 75.63 77.05+ 79.87+ 82.56

+ At least two standard errors above specified level

- At least two standard errors below specified level

Note: Standard errors of above estimates are approximately:

.2 for .95 level, .3 for .90 level, .4 for .75 level
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estimated coverage probabilities for .-'0 are statistically

significantly lower than expected for small sample sizes, they

are not of sufficient magnitude to cause great concern, especially

at Y=.95.

4. ESTIMATING COMPONENT PARAMETERS

In this section we are interested in examining how the

independence assumption affects the magnitude of the estimation

error in estimating component reliability and mean life from

data collected on series systems. That is, for each system

put on test we observe its failure time and an indicator variable

which tells us which component caused the system to fail. We

are interested in how varying degrees of dependence affect the

bias and mean squared error of either parametric or nonparametric

estimators of component survival and mean life which were obtained

by assuming independent component lifetimes.

4.1 Parametric Approach

Consider, first, the problem of parameter estimation in a

two component series system. We assume the two components'

survival functions are Fi(t) = exp(-Xit), i = 1,2, and a life

test is conducted by putting n systems on test. We observe ni

systems to fail due to failure of the ith, i = 1,2, component.

Let T denote the sum of all n failure times. From Moeschberger

and David (1971) the maximum likelihood estimator of Xi is,

assuming independence,

Ai = ni/T, i = 1,2

-l
so the estimator of component mean life, pi-x i , is

i  T/ni if n.>0. (4.1)
li.. ...- 1r

. -.-.
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NOW suppose that we are in fact sampling from the Gumbel

distribution (2.3). For this model, component mean life is

the sane as in the independent case. The random variables (ni ,T)

are independent (the conditional distribution of T given n. is1

free of ni ) and n. is binominal with parameters n and

Pi = P(min(Xl1 X2 ) = Xi)" For this model

P1 = P(X<X )=X{ 1 + 4p(xI-A 2 ) X2
1 +2 (" 1 +X2 ) (2X 1 +A2 ) (Xl+2X 2 ) (4.2)

with P2=l-Pl. From Mendenhall and Lehman (1960) approximations

to the moments of I/ni, conditional on ni>0, are

E(i/nini>0 ) = n-2 (4.3)i ~n(a-l)'
E~l/i 2lniO)= (n-2) (n-3)

E(1/ni2n n>)l2(a-l)(a-2)(44

where a = (n-l)pi.

The expected value of T is given by nuD where PD is given by

(2.7) and
2 r2+10p_(IX )  2 X+1)1 )

E(T2 = +- 8p((2X12) + 1 + n(n-)u2 . (4 .5)

Thus the bias and MSE of i conditional on ni>0 , under this model

are

(n- 2 ) 'D
B(u i ) = E(i-vi) = n)pi-li (4.6)

=T
2  2 2 i (n-2) u. 2

and MSE(i= E(T E(l/nini>0) - On- )pi- + (4.7)

for i = 1,2.



11.

We note that for large samples

lim B(U i ) = - (4 .8)

lim MSE(i) (lim B()) (4.9)
n nn - n -*

for i = 1,2.

For X =X from (4.6), we see that
1 2

_____i- 2 (n-2) l 4.0
l+2(n-2)p/3 i= + ((41)0

1 (n-3) 1 (4.n0)

A similar expression holds for B( 2 ) . Note that (4.10} consists

of two terms. The first term, reflecting sarpling error, is

positive for all n and dominates the bias expression for small

n. The second term, reflecting modeling error, takes on the

same sign as the correlation and dominates for large n, approaching

the limit of 2ppl/3.

For # X2' the bias can again be expressed as the sum of a

term reflecting sampling error and a term reflecting modeling error.

The sampling error depends upon the expected number of component 1

failures, npl. From (4.2) we note that p1 increases as increases

if X1 >X2 and decreases if 1<X 2* The modeling error is reflected in

the asymptotic bias which is an increasing function of p. A typical

representation of the bias of Il as a function of sample size and

p, is in Figure 3 where X1--1, X2=1.5.

Comments similar to those pertaining to the bias may be made

for the mean squared error of PI . Figure 4 depicts the ratio of

the MSE (L1Ip) and MSE (LlIP=0) as a function of sample size and

for 2.5.

I



Figure 3. Bias of 11Under Gumbel's Model for A=I. and A=.
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Figure 4 . Mean Squared Error of for Gumbel's Model A.and X~15
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4 .2 Nonparametric Approach

A second approach to the problem of estimating component

parameters is via the nonparametric estimator proposed by

Kaplan and Meier (1958). The product limit estimator, assuming

independent risks, is constructed as follows. As before

suppose n systems are put on test at time 0 and ni systems

fail due to failure of component i. Let Xi(l) ,...,Xi(n

denote the ordered times at which these n. events occur

and let ri., ... , r. be the ranks of those ordered survival
in

times among all n ordered lifetimes. The component relia-

bility for the ith component at time x may now be estimated

by the product of the individual conditional survival

probabilities, namely by

F i(x) = 1 if x<x i(1)

(x) x)

(n-r ij(n-r i+1) x>xi(1),.1=
where j(i, x) is the largest value of j for which xi(j)<x.

A special note is needed to cover the case of X(ni) not

being the largest observed death or removal time. To avoid

this problem we shall define F (x) = 0 for x greater than

the largest observed failure time.

If the component lifetimes, in fact, follow the Gumbel

bivariate exponential, Klein and Moeschberger (1983) have

shown that the Kaplan-Meier estimator is not consistent.

For i = 1, the Kaplan-Meier estimator is not estimating

F1(t) but rather another survival function, H1 (t) given by
- 2u -

t [l+40(l-e ) (1-2e 0 du), t>0 (4.11)
H1 1(t) [l+4P(l-e-AlU) (l-e- 2 u)]



13.

Note that equation (4.11) simplifies, if xi=A2= , to

HI(t) = e- t +4P(l(-e-t)2] (4.12)

which is increasing in P . Similarly, F2 (t)is actually

estimating H 2 (t), which is defined analogously.

Measures of the error in estimating Fi (t) by Fi (t) are

again the bias and mean squared error of Fi (t) computed

under the dependence model. Under this model the Kaplan-

Meier estimator is equivalent to the estimator one would

obtain based on n observations from an independent system

with component survival distributions Hi given by (4 .11)

or, if X1i= 2, by (4.12). Hence from Kaplan and Meier (1958)

it follows that the variance of Fi(t) is given by

= Hi(t)2 ftjdRi(u)

V(F(t))0 n (u)2 (4.13)

Thus the bias and MSE of F. (t) are, from (4.11) and 4 .13)

B(Fi (t))=Hi (t) - F i(t), t > 0, (4.14)

and MSE(Fi(t)) = (Hi(t)-Fi(t)) + Hi(t) t Hi(u) ,t>0.
1 I - 2 (4.15)

0 n Hi (u)

The estimator is not consistent since B(Fi (t)) is

independent of n, and not necessarily zero. Also

MSE(Fi (t)) consists of a factor which depends only on the model

error and is free of sample size, and, a term which tends to 0

as n tends to infinity.

i11
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Figure 6A. MSIE of Kaplan-meier Estimate F i(t),)rl1., A2 =1..5, n=10
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Figure~ 6!3. MSE of Kaplan-Mu.ier Estimate, P 1 (t), ~~''n5

C~)

00 _

+- --- CORM.-O.OOQ

x ---CDAR.=O. I25
~ -CORR.-D.250

LO

-40

-,0

uJ

LA

0l

0

0'

C)

TIME0f 051.00 15 2?.00 2.50 3.00

T~ I..

-. Ax



14.

Note that in the case of equal component lifetimes,

i=X 2= the bias determined from (4.12) and (4 .14) simplifies

% ) e - t  o(- -t) 2] 1  _

to B(Fi(t)) = etl+4 (1-e-1. (4.16)

In the general case, the integral in (3.11) needs to be

evaluated numerically. The bias of the Kaplan-Meier estimator

was calculated for various values of A. and p. A representative

plot of the bias appears in Figure 5, where X1 =i,X2 =1.5, and

jp1=0, .125, .250. It is apparent that the bias is largest

for values of t in the neighborhood of an interval which captures

the mean component lifetimes. The absolute value of the bias

ranges from 0 to .11, in this example.

MSE(Fi (t)) was calculated for various values of Xi, n, and p.

Its magnitude is typified in Figures 6 A and 6B, where Xi =1X2=1.5

and n=10, 50,respectively. For X1=I,X2=1.5, and n=- MSE(F (t))

may be obtained by squaring (4.14) or by squaring the ordinate

values in Figure 5. The mean squared error of the Kaplan-Meier

estimator may be quite large for small sample size n and moderately

large for "large" p, the former being a more crucial factor than

the later.
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ABSTRACT

A common assumption made in modeling and analyzing data from

series systems is that the component lives are statistically

independent. This study investigates the magnitude of the

errors one may incur by erroneously assuming the component life-

times have independent exponential distributions when in fact

the lifetimes follow the bivariate exponential distribution of

Marshall and Olkmn (1967).

Key Words: System Reliability; Competing Risks; Marshall-

Olkin Bivariate Exponential; Series System.
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1. INTRODUCTION

Consider a two component system where the components are

linked in series. Such a system will function

properly provided both components function properly. Suppose

that, if the two components are tested separately, the

respective times to failure are, XI, X2 . A common assumption

made in life testing is that these component failure times

follow exponential distributions (cf. Epstein and Sobel (1954),

Boardman and Kendall (1970), Mann (1974), Chao (1981), etc.).

Often, when modeling a system linking two components in

series, the assumption that X1 , X2 are statistically independent

is invoked. In general such an assumption is not testable due

to the identifiability dilemma (see Basq and Klein (1983) for

a discussion and references). This assumption is important in

both theoretical modeling of the resulting system and in

obtaining estimators of component parameters from data collected

on series systems.

The purpose of this study is to investigate the effects

of departures from this independence assumption on both the

modeling and estimation problem. The specific form of

3
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departure from independence which we shall assume is that the

joint distribution of X1 , X2 is the bivariate exponential

distribution of Marshall and Olkin (1967). This distribution has

joint survival function

P(XI1>x I , X 2>x 2 ) =exp(- l1X -2x2- 12 max(xl,x,))

for Al. 2 > O, A12 > 0, X1 , x2 > 0. (1.1)

The marginal distributions of X and X are exponential with1 2 aeepnnilwt

parameters i = i + 12' i = 1, 2. This distribution can be

derived from both a fatal and non-fatal shock model. It has a

singular component when A12 is nonzero which reflects the

possibility of the system receiving a shock of sufficient

magnitude to simultaneously destroy both components. The

distribution reduces to that of independent exponentials when

A12 = 0.

In Section 2 we examine the effects of assuming the

components to have independent life-lengths in modeling series

systems, on tne system reliability, system mean life and crude

system life, when in fact the distribution of lifetimes follows

the bivariate exponential distribution (1.1). In Section 3 we

investigate the effects of the independence assumption on

a'j



estimating component parameters when in fact the bivariate

exponential is the correct model.

2. MODELING SERIES SYSTEMS

2.1 System Reliability

Suppose that, based on testing each component separately,

an investigator knows that the marginal distributions of the

component lifetimes are given by P(Xi > x) = exp(-(Xi+X1 2)x),

i - 1, 2. Also, suppose the investigator believes, for the

purpose of modeling system life, that the components are

statistically independent when in fact the joint distribution

is the bivariate exponential (1.1). Under the assumption of

independence the system reliability at a mission time t is

give by

P(min(XI, X2) > t I Independence) = FI(t) = exp(-(.+X12)t),

where X = A1+A2+X12, while under the bivariate exponential model

we have

P(min(Xl, X2) > t I BVE) - FD(t) exp(-Xt).

The amount of error made in assuming independence is

FD(t) - Fi(t) - exp(-At)(l-exp(-X1 2t)) (2.1.1)
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which is always non-negative so that the system is more

reliable then one would expect under independence.

For Al. 2, A12 fixed the maximum difference between

FD(t) and Fl(t) occurs at t = 1 ln[l+ 12/X] and the

magnitude of this difference is -(l+-) -//(l+;) where

X X12 /X is the correlation between X and X2 . This maximum

difference approaches 1/4 as p increases to one.

Alternatively, an investigator modeling system life,

based on component knowledge, may wish to assess the error

(2.1.1) at some fixed mission time. Consequently for Ai' 2

and t > 0 fixed, the maximum deviation between FD(t) and F1 (t)

occurs at X12 =(in2)/t and this maximum difference is

.25 exp(-(Al+X 2 )t). In the range of values of t where F (t)

is less than 0.5 the magnitude of this difference is F (t)
I

itself so that the true system reliability is twice as large

as that predicted L-ing the erroneous assumption of independence.

2.2 System Mean Life

Under the assumption of independent component lifetimes

the mean time to failure of the series system is I ( +I2)-

while under the correct bivariate exponential model the mean

system life is D . Clearly D- = I 12 /X(X+Xl2 ) =

systemw
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which is always non-negative. The largest difference between

and )p occurs when =2 and the magnitude of this
12

difference is (3-2,2)/(X1+X2) .1716/().+A 2 ). Again as in the

case of system reliability one may be appreciably misled when

P is not zero.

2.3 P(XI < X2)

Investigators working with series systems would like to

know the value of P(XI < X2) so that they can determine the

dominant cause of system failure and hence concentrate their

efforts on improving the reliability of that component. Under

the assumption of independence we have

RI = P(XI < X2 lndependence) = +A12)/(X+A12) while under the

dependence model we have -.r= P(X1 < X21BVE) = A1/X. The

difference between T I and TD is X12 (,-x1)/(X(X+ 12)) =

P(I-1D)/(I+P) which is an increasing non-negative function of

P with a supremum of 1/2 as p goes to unity. Similar results

hold for P(X1 > X2).

2.4 Crude System Life

An observable quantity in series systems is the crude

system life given by Q(t) - P(min(X,, X2) > t, min(XiX 2 )=Xj),

j - 1, 2. For the Jth component this is the observable

survival function for systems where the jth component fails
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first. Under the assumption of independence we have
Q.(tllndependence) = Q(l)(t) -((x+x12)/(X+X12))exp(-(X+ 12)t)

while under the correct bivariate exponential model we have

Q (tIBVE) = Q(D)(t) = (X/X)exp(-Xt). Hence we have

() ( 12Q(1)(t)-Q (t) exp(-Xt){ - exp(-X 1 2t)}
- 12

For A12 not zer6 the crude survival curve under independence

crosses the curve computed under dependence once from above at

to  -12 ln[X (X+A1 2 )/(X(x+X 1 2))]. In the range t < to the

maximum difference between Q1)(t) and Q (D)(t) occurs at the

origin and is the same as the difference between the respective

probabilities that the jth component fails first. In the

range t > t the maximum deviation between the two curves is
0

at t1 = -A-' ln[A A+
12 n 12)] and this maximum deviation is

AA 1
1F12 Xi 1= 'D7J 'TJ)/

a [7L12 ( + 12)]

where 7 DJ is the probability the jth component fails first under

the bivariate exponential model.
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3. ESTIMATING COMPONENT RELIABILITY

A second area where the assumption of independence plays a

key role is in estimatingcomponent parameters from data collected

on series systems. Continuing in the same vein as in Section 2,

we assume the components have exponentially distributed lifetimes

with unknown failure rates 0l' 12. We put n systems on test

and for each system we observe the failure time, ti, and an

indicator variable which tells us which component caused the

system failures.

If the data is from systems whose components are independent

then the sufficient statistics for 0. are T = Et i and MI the

number of systems where the first component failed first. The

maximum likelihood estimator of 0. is 01 = M1 /T and

02 - (n-M1 )/T. David and Moeschberger (1978) show that the

estimators 0. = ((n-l)/n)O. are the best unbiased estimators ofJ

0 and that for n > 2 the variance of 0. is

V(0? = [(n-l)0j(0+( 2+02]/(n(n-2)).

Now suppose an investigator carrys out the above analysis,

believing the component lifetimes are independent, when in fact

the joint distribution of the component lifetimes is bivariate

exponential. If the data is from a bivariate exponential

series system there is a positive probability that the two

components failed simultaneously. In such a case, suppose
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the investigator, due to his strong belief in the independence

assumption where such simultaneous failures are impossible,

records this occurrence as a failure from component 1 with

probability and a failure from component 2 with a probability

1-0. Such action is done independently of the system under

consideration and this probability is constant from one system

to another. In this setting the parameters of interest are

0j X i+X12 j = 1, 2. For the ith system, let Xl , X2 be the

unobservable component lifetimes. The recorded statistics are

now T = E min(Xli, X2 i) and M1 = Ep(X i, X2 1) where

(Xli, X21) 1 if Xli < X' or Xli = X 2i and Yi 
= 1

0 otherwise

where the Y i's are independent and identically distributed

Bernoulli random variable with P(Yi = 1) = .

Under the bivariate exponential distribution T has a gamma

distribution with parameters n and X so E(T-' ) - X/(n-1),

E(T- 2) 2/[(n-1)(n-2)] if n > 2. Also E(M) -n(X1+ 12)/X

and E(M2) - nC(X+ Xl2)/X+(n-) n[+ 12 /X2  Also T is

independent of MI. Thus the bias of 01. under this model is

0(1 ) - E(%I-0I ) - X12 (1-0) and B( 2 ) - A1 2 0. In both cases

the bias is an increasing function of the correlation P so



that the more correlated the components the greater the magnitude

of the estimation error. The respective mean squared errors are

MSE(eI [(n-I)X(Ai+0A12)+(Ai+(PA12 
/ [n (n- 2 )j+ (l-0) 2

and

2 2x2
MSE(a2 )

which are quadratic functions of P. As n goes to infinity both

mean squared errors tend to nonzero constants so the estimators

are inconsistent.
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1. INTRODUCTION

Competing risks arise in a wide range of life testing

problems. Typical areas of application are the study of

series systems in the engineering sciences and biologica!

systems in the medical sciences. An important area o:

application is the analysis of censored data where some

systems or individuals are lost or withdrawn from a study

prior to observing the endpoint of interest. Competing

risks are often modeled by a vector T = (TI, ... , T D) of

nonnegative random variables representing the pctential

times to failure from each of the p :auses. We cannot

observe T directly but instead we see the system failure

time Y min(Ti, i = 1, ... , p) and the failure pa-tern

I such that Y = Ti for ie: and Y < T. i I, where

Idz the set of all subsets of 1, ..., D Based cn this

information we wish to estimate the marginal survival

probabilities SI(t) = P(min(T4 , iel) > t), t > 0, Icz.

A common assumption made in analyzing competing risk

experiments is that the Ti's are independent random

variables. Such an assumption is not testable due to the

identifiability dilemma (see Basu (1981)). Under an

assumption of independent risks a consistent estimator

of SI(t) is the Kaplan and Meier (19S8) product limit

estimator. In Section 2 we show that, if the risks are

dependent, then the product limit estimator may be an
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inconsistztestimator of S (t). The quantity to which

this estimator converges is obtained so that one may

investigate the estimator's robustness to departures

from independence. In Section 3 we illustrate such

robustness considerations for some well-known bivariate

exponential distributions.

2. INCONSISTENCY OF T1E PRODUCT LIMIT ESTIMATOR

The Kaplan and Meier product limit estimator is

constructed as follows. Let 0 = Y - y( .. n)

denote the ordered system failure times of n systems put on

test. The product-limit estimator of S,(t) is

S 1 (t) : i[(n-i)/(n-il)] (2.1)

where the product is over the ranks i of those ordered

observations t(i)' 1 < i < n, such that < t and Y(i)

corresponds to a death from the simultaneous cause(s) j

J n 1 9 2. S ICt) is undefined for - > ( if the largest

failure time corresponds to causes in . where J I i = 3.

if the assumption of independence is correct and the

crude probability functions defined by F(t, Z) > t,

I) have no common discontinuities then Langberg,

Proschan and Quinzi (1981) [LPQ(1981)] have shown that the

product limit estimator is consistent. They also show that

if the F(t,I)'s have no common discontinuities then for a

very particular form of dependence structure the product

limit estimator is consistent. We note in the follcwing

theorem, that their results can be used to study the robust-

ness of -he product limit estimator to departures from in-

dependence and that, in general, if the risks are dependent

then the product limit estimator (Z.1) is inconsistent.
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TRECREM! 1. '-et 17 (T, T_.., be a vector of non-

negative'random variables with system lif--e Y mlin(T 1 l..,T

and failure patlern

Z, if Y ZTi, ieI and < T;, 111 (2.2)

0, otherwise

Define :T(t) PCY > t), F(t, 1) = (Y < t, (-1 1), rc,q

t > 0, and let a(r) = t:r(t) > 0} be the support of ~

For lex define I. = Jer: J 1 0}Oi. Based on a random

I ~ sample of size n let Sin(r) b'e the product limit

estimator (2.1). Z_"' the functions F(*,I) have no common

discontinuities on CO, a(C7)J -then

IS (t Jc' () a~.0r3

where

~~t) a<t0

where the product is over the set of discontinuities of

F(-,J) and FC(-,J) is the continuous part of FC&,J).

PROOF. The proof follows directly by applying the

results of Langberg, Prosc'nan and Quinzi (1978) [LPQ(1978)J

and LPQ(1981). By Theorem 4.1 of LPQ(1978) T =LP H where

H is a vector of (2P-1) independent components indexed

lexicographically by Iez with P(H1 I t) = ~Ct) given by

iL
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Let (T 1I' .. , Ti), i -, .. , n be independent and

identically distributed as T. Replace 7 and F(',J) in (2.)

by their empirical counterparts n(r) = ' k'Y > t}/r. and

F(,J) {Y < t (T.) J}If,tOottain .,(:). Here
i z l 1 'n" ..

X(A) J the indicator function of the set A.

By Theorem 4.7 of LPQ[!981] "t) - Gj(t) a.s. for

J e . Routine algebraic minipulation shows that

Si,n(t) rt j,n(t) so the result now follcws L

In general, as seen in the examples in tne _follcwing

section, - j(-:) 0 SICt) so that an invrestigat:r may be

seriously misled by incorrectly assuming .ha- the ccmpcnen-

lifetimes are independent. This has been no.zied by Fisher

and Kanarek (19T) in the problem of analyzing clinical

trials with censored data. Theorem 1 allows an investigator

to quantify the effects of the independence assumption by

computing the right hand side of (2.-3) for some plausi-le

dependent models.

LPQ(1981) have shown that for a special type of

dependence the estimator Si,n(t) is consistent. We state

their result, without proof, as a corollary.
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COROLLARY 1. Assume that the conditions of Theorem 1

hold. Then Si,nctl - SiCt) as. if and only if the

following two conditions hold.

i) SCa)/S Ca-) (a1/T'(a-), a discontinuity Doint of

JF(G,J), where the sum. is

over Jc I

1 , otherwise.

ii) P(mi-nCT i, ieI')>t Imin(T i , iCI)=t)

where I' is the compliment of I-- Z.

EXAMPLES

In this section we present some representation examples Of the

use of Theorem 1 in determining the effects, on estimating marginal

survival, of the independence assumption for some bivariaze exprn-

ential life distributions. Let (T!,T2 ) denote the time to fai:.ure

from components 1 and 2, respectively, in a series system.

Let T 1r', t2 ) be the joint survival function of (Ti, T2 )

and Si(t) = P(T i >t), i = 1, 2 the marginal survival functions.

Let Si(t) be the estimator (2.1) of Si(t), and let (t),

J-(l},{2},(l,2} be given by (2.4). Then Si(t {it) 1 , 2 }(t)a.s

by Theorem 1, if the functions F(t, I) have no common

discontinuities. Note that if P(T = T2) 0 then

for all t. We now give some examples

4
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EXAMPLE 1. (Block and Basu (1974))

Let '(Ct, :2) [A/CA(,+A 2 )]exp(-A t l_2 t2_x12max(it2) ]

- [,A/(A ,)]exp(.;max(- , ,,)), (, Sr

"i' 2 > 0

122xi s _2 > 0 A _12 10 2 1 + X2 + X12.

Here S (t) = x ex(-C\.+A2 )t) - 12 exp(-At),

z > 0, bu:.

by theorem I
AlX

S (t) - exp(- 2)  c), a.s. t > 0, i = 1, 2.

EXAMPLE 2. Gumbel (19260)

Let N(t1 t2 ) exp(-AXt 1 - X2 2 - x!2 zi:2) t,, t2 > 0,

x1+2 > 0, x12 > 0.

Here Si(t) = exp(-Xit), t > 0 but by Theorem I

t) expC-A t - x1 2 t /2), a.s. for t > 0, i 2., 2.

EXAMPLE 3. Gumbel (1960)

Let r(t1, t2 ) = exp(-lltl-x 2 2 )[l+Xl2

-Al2 (exp(-lt2 ) + exo(- '.

+ XI 2exp(-Xlt2 x2t2 ) A

' t) > 0, NJ, X1 > 0, X 12 > 0

Ilk
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Rare Sc) exp(-Ai t) hut by Theorem

Sit expi... f jt~ze
0 LIei x;

e

4 s the compliment off i in (1, 2}.

EXAMPLE 4. Marshal-Ol.cin (1-967)

Let 7(t., t2 ) =exp(-X1 r 2 7 A 2 t 2 - X2.2 Maxc:1], t 2 )),

tl, t2 > 0, X1 , X,) > ' 1 N - 0

Here S (t) = exp(-(X + Xh )t.Z his case the conditions

of Corollary 1 are met so Si(t) -~S,.C) a.s.
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Abstract

The problem of testing for independence of the component lifetimes

when the components are linked in series is considered. To avoid the

problem of nonidentifiability the marginal component lifetimes are assumed

to be known. In this setting a modified version of Kendall's Tau is

proposed. This test statistic is obtained by replacing those component

lifetimes which cannot be observed, due to system failure, by conditional

probabilities computed under independence. A small scale simulation study

of the power of this test shows the test has reasonable power for relatively

small sample sizes.

Key Words: Series Systems; Test for Independence; Kendall's Tau;
Exponential Distribution.
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1. INTRODUCTION

A conmon assumption made in modeling series systems is that the

component lifetimes are statistically independent. This independence

assumption is also routinely made in analyzing data collected from series

systems. Recently, Klein and Moeschberger (1983) and Moeschberger and

Klein (1982) have shown that one may be appreciably misled by erroneously

assuming the independence of component lifelengths in modeling and estimating

the parameters of certain bivariate exponential series systems. Thus it

is desirable to have a test of this assumption of independence based on

data from series systems.

If no assumption about the underlying distribution of the component

lifetimes is made it is impossible to test for independence due to the

identifiability problem (see, e.g. Tsiatis (1978), Miller (1977) or

Basu and Klein (1982)). That is, given any set of observable information,

collected from a series system with dependent component lifetimes, there

exists a series system with independent component lifetimes which yields

the same set of observable information. Hence, any test of independence

mast incorporate some additional information about the underlying model

to be able to detect departures from independence.

In Section 2 a modification of Kendall's (1938) test for independence

is considered. This modification assumes that the marginal component life

distributions are completely specified. This information could be obtained

by testing each component separately, as if often done in the development

stages of system design (see, e.g. Easterling and Preirie (1971), Mastran (1976),

and Miyamura (1982)). In Section 3 a small scale simulation study shows

that the test perform fairly well for relatively small sample sizes.

-CAL.
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2. THE TEST PROCEDURE

Suppose that n two component series systems are put on test. Let

x Yi denote the potential (unobservable) failure times of the first and

second components of the ith system. We are not allowed to observe

Xi Y-) directly, but instead we observe Ti = min(Xi, Yi), the system

failure time and 11 if Ti = Xi , the cause of the system failure.

Ii
0 if T = Yi

3. 1

Also suppose that the marginal survival functions of Xi and Y.' RCx) = P(Xi>x)

and !(y) = P(Y>y), i = l,...,n arze known.

If we could observe both Xi and Yi then a test of independence, due

to Kendall (1938), is to count the number of concordant pairs and the number

of discordant pairs. A pair (Xi, Yi), (X., Y. ) is concordant if X. - X.

and Yi - Y. have the same sign and is discordant if these differences have

different signs. The test statistic is then the number of concordant

pairs minus the number of discordant pairs.

If the data comes from a series system then only Ti, Ii is observed.

Suppose we consider a pair (Ti, Ii), (Tj, Ij) with Ti < T.. If Ii = 1 and

I. = 1 then we know that X = T Xj = T, and X, < Yi, Xj < Y. This

pair would be concordant, regardless of the value of YI, if T 1i < Yi 
< T.

If Yi > T. concordance or discordance depends on the value of Y.. Under the1 3 3
null hypothesis of independence, the conditional probability that the

pair is concordant is [M(Ti) - (T )J/(Ti). When Ii = 1 and I1 0 then

Ti = Xi < Yj = Tj, Xi < Yi, Yj < 1. Here if Ti < Yi < Tj the pair would

be concordant and if Yi > Tj the pair would be discordant, whatever the

value of X.. Under independence the conditional probabilities of these

two events are [f(Ti) - (T )]/(T.) and U(T.)/G(Ti), respectively. Should

~ ---..--._--
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1 0 similar probabilities, involving F, could be obtained. This

motivation suggests the following score function for Ti < T

9(Ti)-7(T )]/G (T i  if i : I. = 1

[FCTi)-F(T.)]/FCT i) if Ii : I. = 0

1T i (Ti)-21T.)]/U(Ti) if Ii  1, I 0

[F(Ti)-2f(Tj)]/(T i) if Ii = 0, I 1

and similarly for Ti > Tj.

The modified version of Kendall's test statistic is
A = n
T I I P(Tii/,T (2). (2.2)

l<i<j.<n

In the appendix we show, that under the null hypothesis of independence of

the component lifetims:

A) E:) 0

B) n(n-l)V() 2dF(x) + j-_ 2 dG(x)3 3 _

-2 f (x)- F(y)G(y) 2dG(y)dF(x)

- 2 F7(x)-i fG(y)f(y) dF(y)dG(x)

+ 4(n-2) ( 4f F(x) 3G(xdG(x) - 2 F(x)G(x)dG(x) (2.3)

- 2 f F~x) 2 G(X) 2dG(X) + 3 f' G(x) 2 F~x)dG~x)

+ F() 2 )dG(x) (x) 3 dG) , where Fx) 1 - F~x)

and G(x) = 1 - (x).

The asymptotic normality of T follows by the results of Hoeffding (1948).

Hence, a test of independence versus dependence rejects if J/6(VTh is

A .. ..... ... - .....



-5-

greater than the appropriate percentage point of a standard normal random

variable. A test of independence versus positive dependence rejects if

is too large.

The variance of T (2.3) can be expressed explicitly in several cases.

Case 1. F(x) (x). In this case (2.3) reduces to

V(^) = 4n+7 24
3 30n(n-l) (2.4)

Case 2. (Lehmann structure) f(x) = ?(x) . Here (2.3) reduces to

n(n-l)VO) = 8c[35c + nC9c +2a+9)]
3(3n +l)(3--)(2a+3)C3_+2) " (2.5)

Case 3. (X, Y exponential), F(X) = e - XX, (y) = e- ey, then (2.3)

reduces to

n(n-l)V(r) = 8Xe[35XO + n(9X 2+2Xe+9 2)]3(3X+e)(X+3)(2X+3)(3X+2e) (2.6)

3. SIMULATION STUDY

A simulation study was conducted on the AMDAHL 470 computer at The Ohio

State University. The study was performed by generating 1,000 samples of

n = 20 or 40 series systems with exponentially distributed component life times,

'(x) = e- x , and (y) = e - y , e = 1., 2. The value of Kendall's T = 0, .3, .6, .9

.as obtained by using the procedure of Johnson and Tenebein (1981).

Table 1 summarizes the results of this study. Emperical powers times

1000 of the modified test of Ho: independence versus H1 : T > 0 were

computed by comparing T/V to the ath upper percentage point of a standard

normal. The resulting emperical powers (and their. standard errors in ( )

along with the estimated expectation of T (and its standard error in C)) are

reported.

-- r' It,,I - ". ,* 1I .,.- • I.. . ..
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TABLE 1. SlIULATION STUDY OF

e n t .I a = .05 a: .025 a = .01 E()

1 20 0.0 97(9) 44(7) 17(4) 7(3) -.0039(.0027)

1 40 0.0 84(9) 42(6) 22(4) 7(3) -.0027(.0034)

! 20 0.3 356(15) 241(14) 168(12) 86(9) .0794(.0029)

140 0.3 514(15) 376(15) 275(14) 177(12) .0766(.0021)

1 20 0.6 726(14) 593(16) 461(16) 317(15) .1596(.0028)

1 40 0.6 902(9) 831(12) 734(14) 591(15) .1596(.0020)

1 20 0.9 880(10) 822(12) 733(14) 612(15) .2251(.0029)

1 40 0.9 998(3) 970(5) 951(7) 899(9) .2214(.0020)

2 20 0.0 92(9) 46(7) 20(4) 4(2) -.0028(.0027)

2 40 0.0 101(9) 55(7) 23(5) 9(3) .0009(.0019)

2 20 0.3 426(16) 319(15) 233(13) 139(11) .0952(.0030)

2 40 0.3 599(15) 463(16) 338(15) 222(13) .0891(.0021)

20 0.6 802(13) 711(14) 605(16) 478(16) .1923(.0029)

2 40 0.6 964(6) 929(8) 875(10) 784(13) .1910(.0020)

- 20 0.9 998(1) 997(2) 986(4) 950(7) .3154(.0021)

2 40 0.9 1000(0) 1000(0) 1000(0) 1000(0) .3169(.0014)

Ic te: Numbers reported are the estimates (standard error of the estimates).
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Several conclusions can be drawn from this study. First, the normal

approximation to the null distribution of c appears to hold quite well for

relatively small sample sizes like 20. Secondly, E(T) is positive for

t > .3 and in fact we conjecture this is true for T > 0. However, as

expected T is underestimating T by a substantial margin and as such is not

a good point estimator. Thirdly, T has reasonably good power when T is

large. Lastly, the power at fixed n, and T is higher when the components are

not identical. This is reasonable since in this case our test is based

on T = minimum of (X, Y) and not on the distribution of (T, I = 1) and

(T, I = 2) the crude probabilities.

4. CONCLUDING REMARKS

This article presents a technique for testing the independence of

component lifetimes based on data collected when the components are linked

in series. The problem of nonidentifiability which prohibits testing,

nonparametrically, this hypothesis of independence is circumvented, in most

cases, by assuming the marginal component life distributions are known.

In general, this knowledge of the component distributions is not sufficient

to resolve the identifiability dilema. That is, there is a small class of

distributions, mathematically contrived, which have the given set of marginal

distributions and lead to the same observable information as a set of

independent component lifetimes. Our test will have no power to detect

these departures from independence. However, for a given set of marginals

there is a large class of joint distributions where knowledge of the marginals

and the system information is sufficient to determine independence. This

class contains the standard bivariate distributions of interest in modeling

series systems. For distributions in this class our simulation study shows

that this test performs well for relatively small sample sizes.
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APPENDIX

To show E(T) 0 and V(T) = (2.3) under H consider the pairs (TI, Il),

(T2, 12) and (T3, 13). Let A, {T1 < T2, I1  12 =i}

A2 ={T< T2,1 1  1, 12 = 01, A3  {IT < T2, I 0,12 = 0} and

= {T1 < T2, I1  0, 12 11. In terms of the unobservable component

1ifetimes, (X i ) Al = < X2 1 X.1 < Y1, X2 < Y21

A2 < =X Y21 X < Yrl Y2 < X2 1' A3 = {lY 4 Y2, Y1 < XI, Y2 < X21, and

A3 {Y < X21 Yl < X1 , X2 < Y2}. Under the null hyPothesis of independence

T1 is equally likely to be either smaller or larger than T2 so

I E ( ,,2, 2 ) dA 1  )dF(x 2 )dG(y)d2 )2)

TA3 l T ', ) = (x ?()
3 G(yl)-(Y) dF(xl)dF(x2)dG(yl)dG(y2)

A3  7(Yl (A.1)

+ fA4 F(yl)-2r(x2 ) dF(xl)dF(x2)dG(yl)dG(y2)"R FYl)

j 1 + J2 + J3 + J4 (say).

Now, consider

1 + j 2 = F {F[rG(x)-(y)]U(y)dF(y) + F[G(x)-2(y)]F(y)dG(y)}dF(x). (A.2)

Integrating the first inter integral in (A.2) by parts yields the negative

of the second inter integral so that J1 + J2 = 0. Similar computations show

that J3 + J4 0. Thus E(O(T1, I,, T2, 2)) and hence E(T) are both 0.

M*1M



FNow2

f[Gl) G(x 2)1 dx)dx)dy)dy)

rEO T I, r2,2) A, X)dF(x)dF(x 2)dG(yl)dG(y2)

2

+ dF(x1)dF(x2)dG~y1)dG~y2)(A3

+ f ~l~F 2 1 dF(xidF~x2)dG(yldG(y2)

=J +J' + J5 + J (say).

After a little simplification we have

J+ J, J F Y xZ() 2U(y)dF(y) + JEUCx)-2UCy))2Y~y)dG(y)}dF~x)

1 {f ?Cx) 2 y)7(y)dG~y) ldF~x)CA)

after integrating the first term by parts. Writing Y(y) =1 - F~y) it

follows that

JA (x 2dFx -;Y ~~Gy d~ ) (A.5)

Similarly J' + J4is of the form (A. 5) with the rolls of F and G reversed.

Hence

4( 2 (Tj, (x) 2dF(x) + ~ ~x2Gx

-2 T . fry),y 2 dGy&'Fx 2 I FG(y)ry)2 drydGx).



Now, under independence,

J E(x,2)Z(x2)) [fCx9)-(x 3)] 3(A7
It dF Nxi)dG~yi)(A7

*1 {~x1 <x 1 ,X2 ,x~ylX2 'y 2 ,x 3 'y 3

+ CX2 (,) I[-(x 3 )Zx 3d~~d~ (A.8)

f2 J Ux)7Gx~ IIx)-~ dF~x )dG(y) (A.9)

1' {x2 <x.1<x3 ,xjfyj 2<y2 ,X3<Y.3}

[r(yl)-Cy2)] [f(yl)-(y 3) 1 3
+ 12 _______ IF(xi)dG(yi) (A.10O)

Ry) y1 ) i:1

{y1<y"2 '>3 ,y1 <xj,y 2<x2 ,y3<X3 I

+ nTy)(1 JC( 3 ~y) dF~x )dG(y9 (A.11)

{y2 W3<YlJ y1 <xV y2 <x 2 ,y3<X31

+ 2 J 21 _______T dF~x.)dG(yi (A.12)

IY2<yl~y3 'yj<Xj*IY 2 <OC2 y3 'X3 I

________E~x,-7~ 3) 3
+ J~ l-gy) MIt ~y)11 dr(x idG (y) (A-13)

fx <Y2 IY 3,X 1 <y,Y 2 < 2 IY3 'c 3 }
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+ f iIdy)-r~x) [iy)2~x) C )dG(yi) (A.14)

+ 2 f. M~Y2)- C 1) 11x-~(3 ] i dF~x.i)dG(y.) (A.15)

+ r[F(yl)-2F~x2)] [F~y1)-2f~x3 )] 3

f RI dF~x )dG(y) (A.16)
T(YJ) Yj:J .~

{Y1<X2 'X3 'yl<X1 'X2<y2 'X3<Y3}

[? (P-2G~y )1E~ffx3)rG(Y) 13
+ f n~(2 ~~( 1 ]E(.)2C 1 ] I dF(x.)dG~y. (A.17)

9Cx 2) ~ 3) 2. 1

{x 2 ,x<ylylj<XV x2<y2 ,x3<Y3}

+ 2 fn11 dF(x.i)dG~y. (A.18)

{X2<yl<X3,X2'<Y2 ,y<x1,x3<y3 l

+ 2 n G~2( 3 ] 1 dF~x.i)dG(y. (A.19)

fx,±(X2 y3,x1<y1,x2<y2,y3<x31

+ 2 J fl dF(x. )dG(y.) (A.20)

(x 2 y3<xll<lY:lX 2<y2 ,y3 <X3}

ECx 2)-4(xl91 ECx1)-29Cy3)] 3
+ dF~x.)dG~yi) (A.21)

i:1 2. 2.l) i

(X 2<Xlcy3 ,x2<y2 lX~l<yly 3<X3}
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+ 2r E(X1)-GU(x 2)] £(Y(3 )-2F(x1)] rid3 .d~y)C.2
+C 2 f 1 1Fxi)Gy(.2

1~l 'F~y3 ) i1
1y3'xlx 2 ,y3<X3 'xjj/j, 2'y2 1

+ 2 ~ y)rx) 11y)~(3 JI dF~x.i)dG~y. C A.23)
f FCy1) TrCy 1) ii. 1

{yl<x 2 5'Y3 Iyl<x 2 ,Jx2 <y 2 ,y3<X3}

MN(x2 )-27GCy,)J LTCY3)-Fy 1)] 3
+ 2 nt dF(x i dG(y.) (A.24)

I CX2) 'F(y3) i1 11

{x2 ,y3<ylx 2<y22y3<x3,y1 <x1

+ 2 ~ x-2(9 rTy)~y) i dF(x.i)dG(y.) (A.25)
UN yl) i=1 1 1

{x2<y1<y3 ,x 2 <y 2 ,y1<x1 y3<x3}

+2 E(y3)-7FCyl)) ETrCyl-2-FCx 2)]1 3

{y3<yl<x2 ,Y3<X3'yl<xlj'X2<y2}

Now, by combining like term and a integation by parts one can veriffy

that

(A.7) + (A.13) + (A.19) =0, (A.10) + (A.16) + (A.23) =0,

(A.9) + (A.15) + (A.21) + (A.22) 0,

(A.12) + (A.18) + (A.25) + (A.26) =0,

(A.8) + (A.14I) + (A.20) F-:Cx)G 2(x)C2F(x)-lJ2 dF(x) (A.27)

(A.11) + (A.17) + (A.24) F-(X)F2x)2G(x) _1]2dG(x). (A.28)



Integrating (A.27) by parts and combining the result with (A.28)

we have

E(O (TI,IIT2 2)€(TI!T3,I 3):

4 F(x)3G~x)dG~x) - 2 F(x)G(x)dG(x) - 2 G(x) 2dG(x)
F2 f-1W(A.29)

+ 3 G(x) 2 FOx)dGOx) + JF(x) 2 dG(x) - f 3dG(x).

To find V(6) = E( Z 4(Ti,Ii,TjI.)/(n))2

[2E(O(TI,II,T2 ,I2)
2) + 4(n-2)E(W(T1 ,II,T2,I2)O(TI,II,T3,I3))J/n(n-1)

which is equal to (2.3) after making the substitutions (A.6) and (A.29).

- 4-- C-*
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