AD-A136 567 EFFECTS OF ASSUMING INDEPENDENT COMPONENT FAILURE TIMES 7y
IF THEY ARE ACTUA..(U) OHID STATE UNIV RESEARCH
FOUNDATION COLUMBUS M L MOESCHBERGER ET AL. 26 OCT 83
UNCLASSIFIED AFOSR-TR-83-1278 AFOSR-82-0307 F/G 12/1 NL




| 3
N
o0
N
[%,]

el 1 ““2.0
s =

\\\\\
flizs flis \\\\;=__6-

mél

MICROCOPY RESOLUTION TEST CHART
NALGNAL BUREAU 1h STANDARES Diee &

diblusenaiamtine.




wam ss.0s . @

RF Project 763265/714837
Annual Report

EFFECTS OF ASSUMING INDEPENDENT COMPONENT FAILURE TIMES,
IF THEY ARE ACTUALLY DEPENDENT, IN A SERIES SYSTEM

Melvin L. Moeschberger
Department of Preventive Medicine !

and

John P, Klein
Department of Statistics

A136567

For the Period
September 1, 1982 - September 30, 1983

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

=1 ECTE
Bolling Air Force Base, D.C. 20332 JANOA‘\QM 1
Grant No. AFOSR 82-0307 ‘

““thu;nbn' reloass}

Wy October 26, 1983 ‘
|y

The Ohio State University
Research Foundation
1314 Kinnear Road

Columbus, Ohio 43212

Cxne X .\ Jeo

84 01 04 098

DRI
e

. 4




i::
hd H
: . WL ASSIFIED
: SECURITY CLASSIFICATION OF THIS PAGE ) L,
A
: REPORT DOCUMENTATION PAGE
] .
: ta REPORT SECURITY CLASSIFICATION 1o. RESTRICTIVE MARKINGS :
IMCLASSIFIED :
2e SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPCRT ‘
Approved for public release; dictribution ’
b, DECLASSIFICATION/DOWNGRADING SCHEDULE unlimited.
4. PERFCRMING ORGANIZATION REPORT NUMBERI(S) 5. MONITORING ORGANIZATION REPORT NUMBERI(S)
A AFOSR-TR- 83-1278 :
6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL | 7a. NAME OF MONITQRING ORGANIZATION
. (1f applicable) . . . .
. e Air Force Office of Scientific Research
Ohic State University ARV
8c. ADORESS (City, State and Z2IP Code) = . * : To. ADORESS (City, Stale and ZIP Code} .
‘Départment of Pre¥éntive ‘\Kedlcme . "t | Directdrate of, Mathematfcal & Infomation
and Department of Sfatlsties ' o Sciences, Bolling AFB DC 20332
i Columbus OH 43212 ... - ¢
j 8s. NAME OF FUNDING/SPONSORING .1 |so. OFFICE SYMBOL |9 PROCUREMENT ms-rnuusur :oemmcnnon NUMBER
, onc.maunon 1w ; (If applicable) . .« BAIAY V- i o e X -
:g!s._‘.:‘- _‘.‘- - “:"Qe*’k Paswas G :A:.L",- s Y .
B ppolRediTds ; N | APOsRE82=0303 R T ;
8c Aooasssrcn,_ State canl'('odl‘ T, e T 10 SOURCE OF FUNDING NOS. : s - . :
DI - U . PROGRAM * _PROJECT TASK WORK UNIT :
Bolling AFB DC 00332 .. - ELEMENT NO. NQ, NO. NO. 4
11. TiTLE /Inciude Security Ciassification} ’ ‘
1 ZE_REMARKS Back) 61102F 2304 A5 :
12. PEASONAL AUTHOR(S) )
Melvin L. Moeschbergzr and John P. Klein
13a TYPE OF REPORT 136 TIME COVERED 14. DATE OF REPORT (Yr, Mo.. Dey) 15. PAGE COUNT
ﬂnnva( FROM 1/ 9 /80 10 .30/9/83 26 OCT 83 26
16. SUPPLEMENTARY NOTATION
1?7 COSAT!I CODES 18. SUBJECT TERMS (Continue on reverse tf necessary and idenlify by bluck number)

SIELD croue | SuB_GAR Modeling series systems; System reliabill-y; coempeting ricwosg
b-varia ez exponential distributions; test for independenc.;
conntoorney o4 the npedieot 1imis et ionae e (OOHITIMR] ]

. 19 ABSTRALCZT 1Cuntinue on rererse if necesso™ and identify by dblock number)
: > The o-irall objective «f this propocal is tLu investigate *he robustnecs to departurss

rm lndependence of methods currently in use in reliability studics when competing
failure nudes or cenpeting causes of failure associated with a single mcde are present
in a zeries system, The first specific aim is to examine the error ono makes in modeling
2 serics system by a modcel which assumes statistically 1ndependent compruent lifetimes
when in fact the componnt lifetimes follow some multivariate dictritution. The seond
specific aim is to assuss the :ffects of the independence assumption on the error n
eztimating compcnent parameters from life tests on series systems. In both cases,
i estimates of such errors will be determined via mathematical analysis. A graphical
display of the errors for repreucntative distributions will be made avallable to |
researchers who wish to assess the possible erroneous assumption of independent competing

risks, A third aim is to tighten the bounds on estimates of component reliability whien

the ricks belong to a general drpendence class of distributions (fer cxample, \ (CONTINGED) 1
20 DISTRAIBUTION. AVAILABILITY OF ABSTRACT 21. ABSTAACT SECURITY CLASSIFICATION o 54

- r
- ar Al -
uncLasSIFED unu i TED K same as mer Z ovic users O UNCLASSIFIED :
228. NAME OF AESPONSIBLE INDIVIDUAL 220 TELEPHONE NUMBER 22¢ QFFICE SYMBOL B
tinciude Aree Code

Dr. Robert T. Smythe 1202) 767-5008 W

DD FOFPM 1473, 83 APR eg14~ OF 1 AN 7315 OBSOLETE e e e eerey
. e ate i oo ——— ———
‘o . o Gt et o ' A 2N S PR N e

L3

e




[

o s sy Ay e

UNJLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

ITEM #.1, TITLE: EF{ECTS OF ASSUNMING INDEPENDENT CONPONENT FAILURE TIMES, IF THEY ARE
ACTUALLY DEPENDENT, IN . S&RIES 5YSTEM

ITEM #18, CONTINUED; depund-nt risks; estimation of component life.

ITEM #19, CONTINUED:  positive quadrant dependence, positive regression dependence, etc.).

Major decisions involving reliability studies, based on competing risk methodology, have
been made in the past and will continue to be made in the future. This study will provide
the user of such techniques with a clearer understanding of the robustness of the analyses

to departures from independent risks, an assumption commonly made by the methods currently
in use,

- O———-

b+

Wi YRR T

’3 RPN

by




b ——

Annual Report for the
Air Force Office of Scientific Rescarch

by
The Ohio State University Research Foundation
1314 Kinnear Road .
Columbus, Ohio 43210
for

Melvin L. Moeschberger
Associate Professor of Preventive Medicine

and

John P. Klein
Assistant Professor of Statistics

Title: Effects of Assuming Independent Component Failure Times,
if They are Actually Dependent in a Series System

Period Covered: September 1, 1982 to September 30, 1983

Principal Investigators: Melvin L. Moeschberger and John P. Klein

Phone: (614) 421-3878 or (614) 422-4017

Business Contact: Ralph M. Metzger, III or Charles C. Hall

Phone: (614) 422-2655 or (614) 422-3730

Date of Submission: October 26, 1983

[ —
Accesslion For )
NTIS GRA&I g »
DTIC TA3 ATR POR"3 oo
Unnanounned . NOTICE o o I:‘E 0” SC'IENTIpv SR
Jastifiontis————oy This tom roar o, pr1a LYY ( )

— - approvei . ' ‘. ot RORS RN t\nn
AN nre P
23— Dl’trithf oo s FCLOa € TAW /U"'fi 1‘9 ! and is
pistribntion/ TTHEWJ'v ‘ ““limited X o~12,

e

Availnbility Codes
" aAvail and/or
pist | Special

Chior 7
echnioa) Infomtlon Diveng
8ion

A-|




Moeschberger, Melvin L.

A. Table of Contents
Topic Pages \
b
Technical Section ‘
Abstract 3 '
Specific Objectives 4
Introduction to Problem and Significance of Study 5- 7
Progress Report on First Year's Work 8
Methods 9
Literature Cited 10-12 L

Appendices A, B, C and D 13

o

Sl supe




l Moescihiberger, elvin L.

I B. TECHNICAL SECTION

I. Abstract

| The overall objective of this proposal is to investi-
gate the robustness to departures from independence of methods
currently in use in reliability studies when competing failure W
modes or competing causes of failure associated with a single i
mode are present in a series system. The first specific aim P
is to examine the error one makes in modeling a series system =
by a model which assumes statistically independent component
lifetimes when in fact the component lifetimes follow some
multivariate distribution. The second specific aim is to assess
the effects of the independence assumption on the error in
estimating component parameters from life tests on series
systems. In both cases, estimates of such errors will be deter-
mined via mathematical analysis and computer simulations for
several prominent multivariate distributions. A graphical dis-
play of the errors for representative distributions will be
made available to researchers who wish to assess the possible
erroneous assumption of independent competing risks. A third
aim is to tighten the bounds on estimates of component relia-
bility when the risks belong to a general dependence class of
distributions (for example, positive quadrant dependence, posi-
tive regression dependence, etc.). Major decisions involving b
reliability studies, based on competing risk methodology, have
been made in the past and will continue to be made in the future. ‘
This study will provide the user of such techniques with a *
clearer understanding of the robustness of the analyses to de- |

{
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partures from independent risks, an assumption commonly made
by the methods currently in use.
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II. Specific Objectives

The overall objective 1is to investigate the robust-
ness to departures from independence to methods currently in
use in reliability studies when competing failure modes or com-
peting causes of failure associated with a single mode are
present in a series system. We shall also refer to such com-
petitive events as competing risks. The apprcocach will be through
the investigation of certain aspects of specific parametric multi-
variate distributions or by classes of distributions which are
appropriate in reliability analyses when there are competing
risks present.

The specific objectives are:

1) to assess the error incurred in modeling system
life in a series system assumed to have indepen-
dent component lifetimes when in fact the com-
ponent lifetimes are dependent.

2) to assess the error in estimating component param-
eters (i.e., component reliability, mean com-
ponent life, etc.) in a series system employing
either parametric or nonparametric models which
assume independent component failure times when
in fact the lifetimes are dependent and follow
some plausible multivariate distribution.*

3) to derive bounds on component reliability when
the failure modes are dependent and fall in a
particular dependence class (e.g., positive quad-
rant dependence, positive regression dependence,
etc.).

4) to develop tests of independence, based on data
collected from series systems, by making some
restrictive assumption about the structure of the
systems, **

* A plausible parametric multivariate distribution will be
one that satisfies one of the following conditions:

i) the distribution of the minimum of the component
failure times closely approximates widely accept-
ed families of system life distributions.

or ii) the marginal distributions closely approximate
the distributions of component failure times in
the absence of other failure modes.

**This objective has been added to the original objectives be-
cause it answers a natural question raised by our preliminary
investigation.
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III. Introduction to Problem and Sighificance of Study

Alvin Weinberg (1978) in an editorial comment in the
published proceedings of a workshop on Environmental Biologi-
cal Hazards and Competing Risks noted that "the question of
competing risks will not quietly go away: corrections for com-
peting risks should be applied routinely to data." The ptoblem
of competing risks commonly arises in a wide range of experi-
mental situations. Although we shall confine our attention
in the followzng discussion to those situations involving
series systems in which competing failure modes or competing
causes of failure associated with a single mode are present,
it is certainly true that we m;ght just as easily speak of
clinical trials, animal experiments, or other medical and bio-
logxcal studies where competing events interrupt our study of
the main event of interest (cf Lagokos (1979)).

Consider electronic or mechanical systems, such as
satellite transmission equipment, computers, aircraft, missiles
and other weaponry consisting of several components in series.
Usually each component will have a random life length and the
life of the entire system will end with the failure of the
shortest lived component, We will examine two situations more
closely in which competing risks play a vital role.

First, suppose we are attempting to evaluate system life
from knowledge of the individual component lifetimes. Such
an evaluation will utilize either an analysis involving math-
ematical statistics or a computer simulation. At a recent
conference on Modeling and Simuilation, MclLean (198l1) presented
a scheme to simulate the life of a-missile which consisted of
many major components in series., The failure distribution asso-
ciated with each component was assumed to be known (usually
exponential or Weibull.) To arrive at the system failure dis-
tribution, the components were assumed to act independently of
each other. Realistically, this may or may not be the case.
If the component lifetimes were dependent for any reason, the
computed system failure distribution (as well as its subsequent
parameters such as system mean life and system reliability for
a gpecified time) would only crudely approximate the true
digtribution. The first specific aim of this proposal is to
ascertain the error incurred in modeling system life in a
series system assumed to have independent component lzfetimes
(i.e., risks) when, in fact, the risks are dependent.

Second, suppose we wish to evaluate some aspect of the
distribution of a particular failure mode based on a typical
life test of a series system. The response of interest is the
time until failure of a particular mode of interest. Frequently
thig response will not be observable due to the occurrence of
some other event which precludes failure associated with the
mode of interest. We shall term such competing events which
interrupt our study of the majin failure modes of interest as
competing risks.
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Competing risks arise in such reliability studies when

1) the study is terminated due to a lack of funds or the
pre—-determined period of observation has expired
(Type I censoring).

2) the study is terminated due to a pre-determined number
of failures of the particular failure mode of interest
being observed (Type II censoring).

3) some systems fail because components other than the
one of interest malfunction.

4) the component of interest fails from some cause other
than the one of interest.

In all four situations, one may think of the main event of
interest as being censored, i.e., not fully observable. In the
first two situations, the time to occurrence of the event of
interest should be independent of the censoring mechanism. 1In
such instances, the methodology for estimating relevant reliabili-
ty probabilities has received considerable attention {(cf. David
and Moeschberger (1978), Kalbfeish and Prentice (1980), Elandt-
Johnson and Johnson (1980), Mann, Schafer, Singpurwalla (1974)
and Barlow and Proschan (1975) for references and discussion) -
In the third situation, the time to failure of the component of
interest may or may not be independent of the failure times of

‘other components in the system. For example, there may be

common environmental factors such as extreme temperature which
may affect the lifetime of several components. Thus the question
of dependent competing risks is raised. A 'similar observation
may be made with respect to the fourth situation, viz., failure
times associated with different failure modes of a single com-
ponent may be dependent. For a very special type of dependence,
the models discussed by Marshall-Olkin (1967), Langberg, Proschan
and Quinzy (1978), and Langberg, Proschan, and Quinzy (1981)
allow one to convert dependent models into independent ones.

If no assumptions whatever are made about the type of
dependence between the distribution of potential failure times,
there appears to be little hope of estimating relevant component
parameters. In some situations, one may be appreciably misled
(c£. Tsiatis (1975), Peterson (1976)). However, as Easterling
(1980) so clearly points out in his review of Birmbaum's (1979)
gonograph

"there seems to be a need for some robustness
studies. How far might one be off, gquantita-
tively, if his analysis is based on incorrect
assumptions?"”

The second specific aim will address this important
issue. PFirst if a specific parametric model which assumes




7

Moeschberger, Melvin L.

independent risks has been used in the analysis, it would

be of interest to know how the error in estimation: is
affected by this assumption of independence. That is, if
independen* specific parametric distributions are assumed
for the failure times associated with different failure
modes when we really should use a bivariate (or multivariate)
distribution, then what is the magnitude of the error in
estimating .component parameters? Secondly, one may wish to
allow for a less stringent type of model assumption, and ask
the same question with regard to the estimation error. That '
is, if a nonparametric analysis is performed, assuming in-
dependent risks, when some types of dependencies may be
present, then what is the magnitude of the estimation error?

The third specific aim will attempt to obtain bounds on
the component reliability when the failure times belong to
a broad dependence class (e.g., association, positive quadrant
dependence, positive regression dependence, etc.). More
details will be presented in the methods section.

In summary, competing risk analyses have been performed
in the past and will continue to be performed in the future.
This study will provide the user of such techniques with a
clearer understanding of the robustness to departures from
independent risks, an assumption which most of the methods
currently in use assume.

e - e e P
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v, Progress Report on First Year's Work

We believe that substantial progress has been made in
dealing with the first two objectives as outlined on page 4. We
have examined the consequences of erroneously assuming independence
when the true multivariate distribution of component lifetimes
follows either a Gumbel (1960) bivariate exponential model or the
well-known Marshall-Olkin (1967) bivariate exponential model.
These bivariate distributions model two series systems which have
guite different failure mechanisms. The former has the flexibility
of allowing either positive or negative correlation /not due to
simultaneous failure) between two component lifetimes in a series
system. The latter allows dependency to enter via simultaneous
failure of the components. Results associated with both models
have been submitted for publication. (See Appendices A and B for copies of
these papers.) The paper dealing with the Gumbel model has recently
been substantially revised for Technometrics. In addition to clarifying
certain aspects of the paper as originally submitted, we have investi-
gated how well the Mann-Grubbs (1974) confidence intervals perform
for varying degrees of correlation among the components and for various
sample sizes. The Gumbel results were presented in an invited talk
at the Applied Statistics Conference in Newark in December, 1982,
The Marshall-Olkin results were presented at the joint ASA-IMS-Biometric
Society meetings in Toronto in August, 1983. Also, some aspects of
these results were given in an invited session on Survival Analysis
at the AAAS in Detroit in May, 1983.

We also have examined, in a related issue, the asymptotic
bias of the Kaplan-Meier product limit estimator under dependent
competing risks and have evaluated the magnitude of this for some
specific bivariate distributions, These results have also been
submitted for publication. (See Appendices for a copy.)

Work is near completion with respect to evaluating, the
consequences of erroneously assuming independence when modeling system
re-liabilicy from complete component information. This work includes, in addition
to the above models, Downton's bivariate exponential, two additional
Gumbel models, and the bivariate model propcsed by Oakes (1982).

A natural question, which arose from our investigation
into the effects of dependence on modeling system reliability and
in estimating component parameters from system data, is how can
one test, statistically, the assumption of independence? A test
of independence, based on data collected from series systems, 1is
not possible, unless some restrictive assumptions are made, due
to the nonidentifiability problem. That is, for any set of ob-
servahle information coming from a series system with dependent

T

e e
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component lifetimes there exists a system with independent com-
ponent lives which has the same observable quantities (c.f. Tsiatis
(1975), Rose (1973), Basu and Klein (1982)). By making some
restrictive assumptions about the joint distribution of the com-
ponent lifetimes or about the net component lifetimes it may be
possible to test for independence in this restrictive setting.

An approach which makes some assumptions about the
marginal component lifetimes and then uses the information to
modifv the standard nonvarametric test for independence is preseated
in another paper in the Appendix D. The thrust of our future
efforts will be to study further aspects of the test system
reliabilities under various conditions. In conclusion, we believe
that we are on target with respect to dealing with the objectives
as outlined in our original proposal as well as the one added
objective which serves to enhance the overall effort.

Vi. Methods

We refer to pages 8052 of the original proposal for a
discussion of the general methodology.

i
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Abstract

This paper ianvestigates the consequences of
departures from independence when the component
lifetimes in a series system are exponentially [
distributed. Such departures are studied when
the joint distribution is assumed to follow a
Gumbel bivariate exponential model. Two distinct
situations are considered. First, in theoretical
modeling of series systems, when the distribution
of the component lifetimes is assumed, one wishes
to compute system reliability and mean system
life. Second, errors in parametric and nonpara-
metric estimation of component reliability and f
component mean life are studied based on lifetest
data collected on series systems when the assump-
tion of independence is made erroneously.

Keywords: competing risks, component life, modeling
series systems, robustness studies, system
reliability, Gumbel bivariate exponential




1. INTRODUCTION

Consider a system consisting of several components linked
in series. For such a system the failure of any one of the
components causes the system to fail. Common assumptions made
in modeling and analyzing data from such a system are that the
component lifetimes are independent and exponentially distri-
buted. Many authors have considered the problem of analyzing
a series system with exponential component lives. For example,
confidence bounds for system reliability assuming independent
exponentially distributed component lifetimes were presented
in Mann(1974) and Mann and Grubbs (1974). (cf., see Mann,
Schafer, and Singpurwalla (1974) for a more comprehensive review.)
More recently, work invoking the assumption of independent
exponentially distributed lifetimes has been presented by Chao
(1981) and Miyamura (1982). Estimation of component parameters
from series system data has been treated by Boardman and Kendell
(1970) in the context of independent exponential component lives.
Some authors suggest a nonparametric alternative to the estima-
tion of component reliability based on series system data (cf.
Kalbfleisch and Prentice (1980) and Lawless (1982)).

The assumption of independence is essential to these analyses
and also an important concern. Several authors have shown that

this assumption, by itself, is not testable since, based on data

from a series system, there is no way to distinquish between an




2.
independent and dependent model. (See Tsiatis (1975), Peterson
(1976), and Basu (198l) for a discussion of nonidentifiability
results.,) In many situations one may be appreciably misled by
the independence assumption.

Lagakos (1979), in a study of the effects of various types
of dependence among component lifetimes, has noted that most
methods of analysis have assumed noninformative models of which
independence is a special case. He pointsout, "it is important
to be aware of the possible consequences of making this assumption
when it is false." Furthermore, Easterling (1980) states in his
review of Birnbaum's (1979) monograph on competing risks "there
seems to be a need for some robustness studies. How far might
one be off, quantitatively, if his analysis is based on incorrect
assumptions?"

In this paper we consider the consequences of departures from
independence when the component lifetimes are exponentially dis-
tributed. Such derirtures from independence may be related to
some common environmental factor, only present when the components
are linked together in series. The load each component is subject
to is either reduced or increased according to the age of the
system. To study such departures we have selected a model pro-
posed by Gumbel (1960). Gumbel's model retains the assumption
of exponentially distributed component lifetimes while allowing

the flexibility of both positive or negative mild correlation

between component lifetimes.




3.
The effects of a departure from the assumption of independent
component lifetimes in a series system will be addressed in two

distinct situations. The first situation arises in modeling the

i performance of a theoretical series system constructed from

components whose lifetimes are exponentially distributed. Here,

§ based on testing each component separatély or based on engineering
design principles, it is reasonable to assume that the components

are known to be exponentially distributed with known parameter

e e e —

values. Based on this information we wish to calculate parameters

such as the mean system life or system reliability of a series

system constructed from these components, In Section 2 we describe
how the values of these quantities are affected by departures

from independence when the component parameters are completely

-

specified. In Section 3 we study the performance of the Mann- !
Grubbs (1974) confidence bounds on system reliability for small

sample sizes and for varying dearees of correlation.when the component
parameters are estimated from component data.

The second situation involves making inferences about compo-
nent lifetimes distributions, component reliabilities, and compo-

i nent mean lives, from data collected on series systems. Commonly,

data collected on such systems are analyzed by assuming a constant-
sum model of which independence is a special case (cf. Williams

and Lagakos (1977) and Lagakos and Williams (1978). 1In Section 4

s i e et

e

we study the properties of the maximum likelihood estimators of
component parameters calculated under an assumption of independent
exponential component lifetimes when the component lifetimes are

i Gumbel bivariate exponential. Because of the usage of nonparametric

|
3
{




4. |

estimates of component reliability, we also study the estimation
error of the Kaplan-Meier (1958) estimator when the assumption

of independence is made erroneously.

2. MODELING SYSTEM RELIABILITY FROM COMPLETE 5
* COMPONENT INFORMATION |

Consider a two component series system with component life-
lengths Xl, Xz. Suppose that xi has an exponential survival )

function

F, (t) = P(X;>t) = exp (-A;t),

Ao t>0, i =1,2.
This assumption is made on the basis of extensive testing of
each component separately or nn knowledge of the underlying
mechanism of failure. The value of Xi 1s assumed known. If
(xl,xz) are independent, then the time to system failure has

an exponential distribution with failure rate A=Xl+\2, and

the system reliability is given by 1

FI (t) =P min(xl,xz)>t[independenc§]= exp (-ait). (2.1)

Suppose that the actual joint distribution of (xl,xz) has

the form proposed by Gumbel (1960), namely,

P(X)>X;,Xy>X,)

=[exp (=3 %, =0,%,)} [14a (l-exp (=1;x,)) (l-exp (-1,%x,))) (2.2)
and the joint probability density of (xrxi is
£(x),x5) =2 2, [exp (-Alxl-xzxz)] [1+a(2 exp (-2;%))-1) 2 exp (-1 %) 1) (2.3)

where in both (2.2) and (2.3), xl,xz,xl, A2>0,-liail. This
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g distribution has marginal survival functions equivalent to those
for the independent model which, in part, is the reason for
choosing it. The correlation between (Xl,Xz) isp =a/4 and o=0
is equivalent to (xl,xz) being independent. For p »0 (<0) the
components are positively (negatively) quadrant dependent (cf.
Barlow and Proschan (1975)). Furthermore, the conditional
expectation of X,, given Xy=X%y, is .

E(xl|x2=x2)= %1E+20~4oexp(->\2lej .
If (X;,X,;) have the joint distribution (2.3) then the true
system reliability, is
Fy (t) = P[@in(xl,xz)>t[dependence:]
= exp(—xt)[§+4p(l—exp(-xlt)) (l-exp(-xzt)i]. (2.4)
From (2.1) and (2.4) we can easily see the amount of error
in modeling system reliability is

A(t) F (t)- F (t)
’4p[l -exp(=2A t{}L}-exp( A t{] expL_(Al+x )%] (2.5)

Note that |A(t)| increases as |[p| increases, for fixed A;sXy, and t.

} The magnitude of A(t), of course, depends upon Xprdge t, and .

When \;=A;=¢. one can show that a(t) is maximized at -

[}n 2:]/b(fixing p and ¢ ). The value of |At)| at this point

; is |p|/4 which is at most 1/16. Representative values of ?D(t) for

Al=l,x2

The curve with o =0 corresponds to the system reliability if the

=1.5 and p=-.25,-.125,0, .125, .25 are plotted in Figure 1.

assumption of independence is true. Since most applications of
interest involve reliabilities of .75 or greater, we plot in Figure 2
the ratio of the 100 pth upper percentiles under dependence and

independence vs. the correlation. From Figure 2, it appears that,

-1

~’a R s + LR




Figure 1.
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when the predicted system reliability under independence is

greater than .90, misspecifying the dependence parameter has
little effect. However, in the range where the predicted system
reliability under independence is less than .75, misspecifying
the dependence parameter may lead to errors exceeding 6%.
Maximum values of [aA(t)| are tabled in Table 1, for Al=l and
various values of Aye

The mean time to system failure based on (2.1), assuming
independence, is

My = l/(Al+A2) (2.6)

and that based on (2.4) is

-
1 j 3 1 1
U= +4 - - (2.7)
D- A +X,) D[f“lﬂz) (Zx +1, (x1+2A2)J
The amount of error in modeling system mean life is
) _ 6pA1A2
¥pHr (A FX,) (2X;+X,) (A +2X,)
. {
GOXlRZUI " (2.8)

(2A1+A2) (Al+2A2)

whose absolute value obviously increases as |p| increases. If
A1=Agr this error reduces to 2puI/3 which has a maximum absolute
value of uI/G.

It is apparent from Table 1 and equations (2.5) and (2.8)
that the error in modeling system reliability and mean system

life, based on independence, increases as |p| increases and is a

function of the relative sizes of N and 5. In particular, when

the mean life of one component is substantially greater than the
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mean life of the second component, then the behavior of the
system is well-approximated by the behavior of the shorter-

lived component acting alone. This can be seen in (2.4) and

(2.7) by letting Al* 0. 1In this instance, we see also, from (2.5)
and (2.8), that the amount of error incurred by assuming indepen-

dence is negligible.

3. ESTIMATING SYSTEM RELIABILITY FROM COMPONENT DATA

A common practice in predicting system reliability is to
test each of the components independently and then to use the
data to obtain confidence bounds on system reliability. These
bounds, obtained by Mann and Grubbs (1974), assume that the
component lifetimes are exponential, and that the components
act independently when linked in series. 1In the bivariate case
the bounds are computed as follows: for the jth component suppose

that nj prototypes have been tested until (rjinj) failures occur.

Let Zj be the total time on test for the jth component. Define
= - -1/ 3}{ - 2} 1
Mr=E(r,-1)/2,+ {i(rj /2] ffge-ns2s) Gl
2 ) 4 2
= .- . .- h .- . §e 3,2
ve=gies-1) /22 [gorg-wad A 1>/zj} (3.2)

and

An approximate y level lower confidence level for system reliability
at time t_ is

m

exp[-t M* {1-v*/(9m*2)+ny(v*)’5/(3m*)} 3], (3.3)

where n, is the 100Y percentile of a standard normal random variable.



Table 1. Maximum values of |a(t)]| for A;=1 and various

values of xz.

A, Max |a(t) |
2- .056

4 .041

8 .025
16 .014
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When the system being evaluated has dependent components thuzoe

bounds may be misleading. The problem is that component data is

independent, since the components are tested separately, but when
“ put together into a system some interdependence may develop. Of course |

such dependence is not detectable, in the absence of some system

data, since the data on components we see are independent. To study
the performance of the bound (3.3) when the correct system model is

the Gumbel model (2.2) a simulation study was performed. For each
simulated sample n, observations from exponential populations with

mean Lﬂ&. j=1,2, were simulated. The two samples were generated inde-

pendently. The confidence bound (3.3) was obtained. This was then
compared to the true system reliability at various p's obtained

from (2.4). Ten thousand such bounds were simulated for each set

S U

of parameter values. The results for nl=n2=3,5,10,A1=l.0,x2=l.5,
at tmfo.l are reported in Table 2. Here the system reliability

ranges from .7684 at p=-.25to .7891 at o=.25 with a value of .7788

at 0=0.
The results in Table 2 show that at high negative correlations
the coverage probabilities are significantly lower than claimed

under independence, while for a high positive correlation the intervals

are conservative. This trend becomes more exaggerated as a;.0,

T Ty T, T T T T e e e = —

increase. This is due to the fact that as n,,n, increases the
bound approaches the reliability under independence. As seen
in Section 1, the true reliability at t is an increasing

function of o so that asymptotically coverage probabilities

approach 0(orl) for p<0(>0). On the practical side, while the




Table 2. Estimated Coverage Probabilities for Mann-Grubbs Bounds
=1.0, r,=1.5
Correlation
n n Y -.25 -.15 -05 0 .05 .15 .25
3 3 .95 93.41- 94.11- 94.74 95.05 95.27 95.80+ 96.22+
3 3 .90 87.40- 88.42- 89.32- 89.78 90.20 91.18+ 92.15+
3 3 .5 71.03-~ 72.53- 74.13- 74.88 76.58 77.34+ 78.81+
5 5 .95 93.19- 94.04- 94.90 95.26 95.62+ 96.17+ 96.81+
5 5 .90 87.12- 88.48- 89.85 90.39 91.10 92.13+ 93.14
5 5 .75 69.68- 72.02- 74.10- 75.13 76.14+ 78.32+ 80.03
10 10 .95 92.03~- 93.42- 94.58 95.08 95.51+ 96.42+ 97.14
10 10 .90 85.93- 87.70- 89.34- 90.21 91.05+ 92.56+ 93.93
10 10 75 67.77- 70.90- 74.12- 75.63 77.05+ 79.87+ 82.56
+ At least two standard errors above specified level
- At least two standard errors below specified level
Note: Standard errors of above estimates are approximately:

.2 for 95 level,

e £ T et mam— =

.3 for 90 level,

.4 for .75 level
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estimated coverage probabilities for +<0 are statistically

significantly lower than expected for small sample sizes, they
are not of sufficient magnitude to cause great concern, especially

at vy=.95.
4. ESTIMATING COMPONENT PARAMETERS

In this section we are interested in examining how the
independence assumption affects the magnitude of the estimation
error in estimating component reliability and mean life from
data collected on series systems. That is, for each system
put on test we observe its failure time and an indicator variable
which tells us which component caused the system to fail. We
are interested in how varying degrees of dependence affect the
bias and mean squared error of either parametric or nonparametric
estimators of component survival and mean life which were obtained

by assuming independent component lifetimes.

4.1 Parametric Approach

Consider, first, the problem of parameter estimation in a
two component series system. We assume the two components'
survival functions are fi(t) = exp(-xit), i=1,2, and a life
test is conducted by putting n systems on test. We observe n;
systems to fail due to failure of the ith, i = 1,2, component.
Let T denote the sum of all n failure times. From Moeschberger
and David (1971) the maximum likelihood estimator of A is,
assuming independence,

-~

so the estimator of component mean life, pinA;l, is

-~

wy = T/ni if ni>0. 4.1)
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Now suppose that we are in fact sampling from the Gumbel
distribution (2.3). For this model, component mean life is
the same as in the independent case. The random variables (ni,T)
are independent (the conditional distribution of T given n, is

free of ni) and n; is binominal with parameters n and

p; < P(min(xl,xz) = Xi). For this model
4o (r,=A,) A
1 1 72772
Py, = P(X,<X,)=x,{ + }
1 1 72 1l kl+A2 (A1+A2)(2kl+xz)(xl+2A2) (4.2)

with p2=l—pl. From Mendenhall and Lehman (1960) approximations

to the moments of l/ni, conditional on ni>0, are

E(/n|n;>0) = A2, 4.3)
2 (n-2) (n-3)

E(l/n.%|n.>0)= !
o n?(a-1) (a-2) (4.4)

where a = (n-l)pi.
The expected value of T is given by nug where ¥p is given by
(2.7) and

2, _ 2+10p 1 1 2
R (ereo P L N (M*“zuz}* nln=ilup -

(4.5)

Thus the bias and MSE of My conditional on ni>0, under this model

are
- - (n-Z)uD
B(Ui) = E(ui‘ui) (n-l)pi-l)_] "Uir (4.6)
- 2 2 2y (n=2)up, 2
and MSE(ui) = E(T") E(l/ni|ni>0) - t(—ﬁ_-_f).{)::ﬁ +ui ’ (4.7)

for i = 1,2.

e e o=

ey
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We note that for large samples

9

. ~ _ D _u
lim B(ui) = 5. i (4 .8)
n + « 1
lim MSE(ui) = ( lim B(ui))2 (4.9)
n -+ o n - o

for i = 1,2.

For A1=A2 from (4.6), we see that

- U 2(n=2)pun
B(p,)= +2(n-2)o/3 ,, _ "1 L

i'T Ty 1 =553 Y 3oy - (410

A similar expression holds for B(;z). Note that (4.10) consists

of two terms. The first term, reflecting sampling error, is
positive for all n and dominates the bias expression for small

n. The second term, reflecting modeling error, takes on the

same sign as the correlation and dominates for large n, approaching
the limit of Zpul/3.

For Al# AZ’ the bias can again be expressed as the sum of a
term reflecting sampling error and a term reflecting modeling error.
The sampling error depends upon the expected number of component 1
failures, npl. From (4.2) we note that Py increases as 1increases
if A1%h, and decreases if A\ <X,. The modeling error is reflected in
the asymptotic bias which is an increasing function of p. A typical
representation of the bias of ;1’ as a function of sample size and

p, is in Figure 3 whexe x1=1, x2=1.5.

Comments similar to those pertaining to the bias may be made
for the mean squared error of Hye Figure 4 depicts the ratio of

the MSE (uy|p) and MSE (u;[e=0) as a function of sample size and

=1.5.

for x1=1,x

2

e —

...*Mv__.__._____.A
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4 .2 Nonparametric Approach
A second approach to the problem of estimating component

parameters is via the nonparametric estimator proposed by

Kaplan and Meier (1958). The product limit estimator, assuming
independent risks, is constructed as follows. As before
Suppose n systems are put on test at time 0 and n; systems

fail d i i
ue to failure of component i. Let xi(l)"“'xi(ni)

denote the ordered times at which these n; events occur

and let ril’ ceer T be the ranks of those ordered survival
i

times among all n ordered lifetimes. The component relia-

bility for the ith component at time x may now be estimated
by the product of the individual conditional survival

probabilities, namely by
N

F.(x) = [1 if X<x

i (1)

j(ilx)
jgl (n—rijy(n-rij+l) X>xi(l)’

where j(i, x) is the largest value of j for which xi(j)<x.

A special note is needed to cover the case of xl(ni) not

being the largest observed death or removal time. To avoid
this problem we shall define %i(x) = 0 for x greater than
the largest observed failure time.

If the component lifetimes, in fact, follow the Gumbel
bivariate exponential, Klein and Moeschberger (1983) have
shown that the Kaplan-Meier estimator is not consistent.
For i = 1, the Kaplan-Meier estimator is not estimating
fl(t) but rather another survival function, ﬁl(t) given by

kzu -xlu

Ll+4o(l-e- ) (L-2e Y]
= ~ du}, t>0 (4.11)
Hy(€) = expl=2) 17 [lagp(1-e7 1% (1-e7*24)]

—\
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Note that equation (4.11) simplifies, if A1=A2=¢, to

- -— - 1
iy (e) = e [lego(1-e vty 2] (4.12)
N
which is increasing in o . Similarly, Fz(t)is actually
estimating ﬁz(t), which is defined analogously.
N

Measures of the error in estimating (t) by ?i(t) are

again the bias and mean squared error of (t) computed

F.
i
x
F.
i
under the dependence model. Under this model the Kaplan-
Meier estimator is equivalent to the estimator one would
obtain based on n observations from an independent system

with component survival distributions ﬁi given by (4.11)

or, if xl=x2, by (4.12). Hence from Kaplan and Meier (1958)

4"
Thus the bias and MSE of fl(t) are, from (4.11) and 4 .13)

N
and MSE(F, (£)) = (i (t)-F. (£))2 + i, (£)2 £BHy (@) £50
i i i A J — "(4.15)
On Hi (u)

n,
The estimator is not consistent since B(?i(t)) is

independen* of n, and not necessarily zero. Also
N
MSE(?i(t)) consists of a factor which depends only on the model

error and is free of sample size, and, a term which tends to 0

as n tends to infinity.
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Note that in the casc of equal component lifetimes,

A;=A,=¢ the bias determined from (4.12) and (4 .14) simplifies

v
to  B(F (1) = e—¢t{l+4 (1—e'”)2]%-1}. (4.16)

In the general case, the integral in (3.11) needs to be

evaluated numerically. The bias of the Kaplan-Meier estimator
was calculated for various values of Ai and p. A representative
plot of the bias appears in Figure 5, where )

=1,x,=1.5, and

1 2
|o[=0, .125, .250. It is apparent that the bias is largest
for values of t in the neighborhood of an interval which captures
the mean component lifetimes. The absolute value of the bias
ranges from 0 to .1ll, in this example.

MSE(%i(t)) was calculated for various values of Ai‘ n, and op.
Its magnitude is typified in Figures 6 A and 6B, where x1=ILA2=l.S
and n=10, 50, respectively. For xl=l,A2=l.S, and n=e MSE(F (t))
may be obtained by squaring (4.14) or by squaring the ordinate
values in Figure 5. The mean squared error of the Kaplan-Meier
estimator may be quite large for small sample size n and moderately

large for "large" o, the former being a more crucial factor than

the later.
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ABSTRACT

A common assumption made in modeling and analyzing data from
series systems is that the component lives are statistically
independent. This study investigates the magnitude of the
errors one may incur by erroneously assuming the component life-
times have independent exponential distributions when in fact
the lifetimes follow the bivariate exponential distribution of

Marshall and Olkin (1967).

Key Words: System Reliability; Competing Risks; Marshall-
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1. INTRODUCTION

Consider a two component system where the components are
linked in series. Such a system will function
properly provided both components function properly. Suppose
that, if the two components are tested separately, the
respective times to failure are, Xl’ X2. A common assumption
made in life testing is that these component failure times
follow exponential distributions (cf. Epstein and Sobtel (1954),
Boardman and Kendall (1970), Mann (1974), Chao (1981), etc.).

Often, when modeling a system linking two components in
series, the assumption that Xl, x2 are statistically independent
is invoked, In general such an assumption is not testable due
to the identifiability dilemma (see Basu and Klein (1983) for
a discussion and references). This assumption is important in
both theoretical modeling of the resulting system and in
obtaining estimators of component parameters from data collected
on series systems.

The purpose of this study is to investigate the effects
of departures from this independence assumption on both the

modeling and estimation problem. The specific form of
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departure from independence which we shall assume is that the
joint distribution of Xl, X, is the bivariate exponential
distribution of Marshall and 0Olkin (1967). This distribution has

joint survival function
P(Xp>xp, Xp7x)) = exp(=dyx)=Ayx,=} ), max(x),X,))
for Al’ AZ > 0, XlZ > o, X, X, > 0, (1.1)

The marginal distributions of Xl and X2 are exponential with

parameters O, = Xi + 2 = 1, 2. This distribution can be

i 120 4

derived from both a fatal and non-fatal shock model. It has a
singular component when A12 is nonzerc which reflects the
possibility of the system receiving a shock of sufficient
magnitude to simultaneously destroy both components. The
distribution reduces to that of independent exponentials when
AlZ = 0.

In Section 2 we examine the effects of assuming the

components to have independent life-lengths in modeling series
systems, on the system reliability, system mean life and crude

system life, when in fact the distribution of lifetimes follows

the bivariate exponential distribution (1.1). 1In Section 3 we

investigate the effects of the independence assumption on
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estimating component parameters when in fact the bivariate

exponential is the correct model.

2. MODELING SERIES SYSTEMS

2.1 System Reliability

Suppose that, based on testing each component separately,
an investigator knows that the marginal distributions of the
component lifetimes are given by P(Xi > X) = exp(-(xi+K12)x),
i =1, 2. Also, suppose the investigator believes, for the
purpose of modeling system life, that the components are
statistically independent when in fact the joint distribution
is the bivariate exponential (1.1). Under the assumption of
independence the system reliability at a mission time t is

give by
P(min(Xl, X)) > ¢ | Independence) = fI(t) = exp(-(3+llz)t),

where A = A1+A2+A12, while under the bivariate exponential model

we have
P(min(X,, X,) > t | BVE) = Fy(t) = exp(-At).
The amount of error made in assuming independence is

FD(:) - FI(c) = exp(-At) (I-exp(-1},,t)) (2.1.1)

5
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which is always non-negative so that the system is more

reliable then one would expect under independence.

Fo; Al’ Xz, AlZ fixed the maximum difference between
?D(t) and fI(t) occurs at t = AI; ln[l+l12/X] and the
magnitude of this difference is :(l+c)_l/o/(1+p) where
ol XIZ/A is the correlatiocn between Xl and XZ. This maximum
difference approaches 1/4 as p increases to one.

Alternatively, an investigator modeling system life,
based on component knowledge, may wish to assess the error
(2.1.1) at some fixed mission time. Consequently, for Xl’ XZ'
and t > 0 fixed, the maximum deviation between ?D(t) and FI(t)
occurs at 112 =(In2)/t and this maximum difference is
.25 exp(-(Rl+X2)t). In the range of values of t where ?I(t)
is less than 0.5 the magnitude of this difference is fl(t)

itself so that the true system reliability is twice as large

as that predicted v:ing the erroneous assumption of independence.

2.2 System Mean Life

Under the assumption of independent component lifetimes
the mean time to failure of the series system is by o= (1+}»12)—1
while under the correct bivariate exponential model the mean

system life is uD=\-1. Clearly Hp=Hp = Alzlx(x+klz) = P

——

!
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which is always non-negative. The largest difference between

Wp and by occurs when A, = (K1+X2)//§ and the magnitude of this
difference is (3-2v7)/(}\1+X2) - ,1716/()_1+)\2)_ Again as in the
case of system reliability one may be appreciably misled when

,; £ is not zero.

2.3 P(X1 < Xy)
Investigators working with series systems would like to

know the value of P(Xl < Xz) s0 that they can determine the

dominant cause of system failure and hence concentrate their

efforts on improving the reliability of that component. Under

the assumption of independence we have

HI = P(Xl < leIndependence) = (A1+R12)/(X+X12) while under the
dependence model we have ﬂD = P(Xl < XszVE) = Al/X. The
difference between ™, and T is Klz(l-ll)/(k(k+xlz)) =
p(l-nD)/(l+o) which is an increasing non-negative function of

P with a supremum of 1/2 as p goes to unity. Similar results

hold for P(X; > X,). .

2.4 Crude System Life
An observable quantity in series systems is the crude
system life given by Qj(t) = P(min(xl, X2) > t, min(xl,X2)=Xj),

J =1, 2. For the jth component this is the observable

survival function for systems where the jth component fails




where T

first, Under the assumption of independence we have

Qj(tlIndependence) = Q§I)(t) =((Xj+A12)/(A+X12))exp(-(k+klz)t)
while under the correct bivariate exponential model we have
Qj(tlBVE) = Q§D)(t) = (Xl/X)exp(-Xt). Hence we have

A (A+A )
o -0 @) = exp(-rer i - a—lyé— exp(-}150)}.

For AlZ not zera the crude survival curve under independence
crosses the curve computed under dependence once from above at
ty = —AIE ln[kj(A+x12)/(k(xj+xlz))]. In the range t < t, the
maximum difference between QgI)(t) and Q}D)(t) occurs at the
origin and is the same as the difference between the respective
probabilities that the jth component fails first. In the

range t > to the maximum deviation between the two curves is

at ¢, = -RI; ln[Aj/(kj+A12)] and this maximum deviation is

A, VAL A o™ 7
12 M2 Y o2 Ty Ty 1se
T Xeove) G R Ao

772 "pj

the bivariate exponential model.

D is the probability the jth component fails first under
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3. ESTIMATING COMPONENT RELIABILITY

A second area where the assumption of independence plays a
key role is in estimatingcomponent parameters from data collected
on series systems. Continuing in the same vein as in Section 2,
we assume the components have exponentially distributed lifetimes

with unknown failure rates @1, ?2. We put n systems on test

and for each system we observe the failure time, ti’ and an

indicator variable which tells us which component caused the

system failures.

If the data is from systems whose components are independent

then the sufficient statistics for Oi are T = Eti and M, the

1

number of systems where the first component failed first. The

maximum likelihood estimator of @j is @

~

1= M1/T and
OZ = (n-Ml)/T. David and Moeschberger (1978) show that the
estimators 8j = ((n—l)/n)éj are the best unbiased estimators of
Gj and that for m > 2 the variance of Bj is
v<oj> [(n=1)9,(0,+0))+05}/ (n(n-2)).

Now suppose an investlgator carrys out the above analysis,
believing the component lifetimes are independent, when in fact
the joint distribution of the component lifetimes is bivariate

exponential. If the data is from a bivariate exponential

series system there is a positive probability that the two

components failed simultaneously. In such a case, suppose




the investigator, due to his strong belief in the independence

assumption where such simultaneous failures are impossible,
records this occurrence as a failure from component 1 with
probability ¢ and a failure from component 2 with a probability
1~¢. Such action is done independently of the system under
consideration and this probability is constant from one system
to another. In this setting the parameters of interest are

Oj = Aj+A12’ j =1, 2, For the ith system, let Xli’ x2i be the

unobservable component lifetimes. The recorded statistics are

now T = I min(Xli, xZi) and M, = Zw(Xli, XZi) where
w(xli, XZi) = 1 if Xpq <Xy or X4 = X,4 and Y, = 1
0 otherwise

where the Yi's are independent and identically distributed
Bernoulli random variable with P(Yi = 1) = 9.

Under the bivariate exponential distribution T has a gamma
distribution with parameters n and A so E(T™Y) = A/(n-1),
E(T"?) = A%/[(n=1)(a=2)] if n > 2. Also E(M;) = n(A;+$X;,)/)
and E(Mi) - n(kl+¢112)lk+(n-l) n[kl+¢A12]2/A2. Also T is

v

1° Thus the bias of Oj, under this model is

B<51) = E(gl-el) = X12(1-¢) and B(gz) = X12¢. In both cases

independent of M

the bias is an increasing function of the correlation p so




that the more correlated the components the greater the magnitude

of the estimation error. The respective mean squared errors are
n,

MSE(9)) = [(a=1)ACA[+0A,,)+(A +01) 1/ [n(n-2) ]+(1-6) *A],
and

MSE(":’JZ) = [(n—l)X(/\2+(1-¢)A12)+(X2+(1—¢)Alz)zl/(n(n-2)1+¢zki2

which are quadratic functions of ¢. As n goes to infinity both
mean squared errors tend to nonzero constants so the estimators

are inconsistent.
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1. INTRODUCTION

Competing risks arise in a wide range of life testing
problems. Typical areas of appliéation are the s=udy o7
series systems in the engineering sciences and biological
systems in the medical sciences. An important area of ‘
application is the analysis of censored data where some
systems or individuals are lost or withérawn from a study i;
prior to observing the endpoint of interest. Ccmpeting
= (T

risks are often modeled by a vector Tys ones T,) of

N
nonnegative random variables representing the pctential
times to failure from each of the p zauses. We cannot
observe E directly but instead we see the system falilure
time Y = min(Ti, i=1, ..., p) and the failure pattern
£(T) = I such that Y = Ti for iel and Y < T; i£I, where |
Ier the set of all subsets of 1, ..., p . Basec cn this
information we wish to estimate the marginal survival é
probabilities S;(t) = P(min(T;, ieI) > t), t > 0, Ier. }
A common assumption made in analyzing competing risk
experiments is that the T.'s are indepencent random
variables. Such an assumption is not testable due toc the
identifiability dilemma (see Basu (198l)). Under an
assumption of independent risks a consistent estimator
of SI(t) is the Kaplan and Meier (1958) product limit
estimator. In Section 2 we show that, if the risks are

dependent, then the product limit estimator may be an




i

inconsistant estimatoeor of SI(t). The quantity to which

this estimator converges 1s obzained sc that cne may
investigate the estimator's robustness tc departures
from independence. In Section 3 we illustrate such
robustness cornsiderations for some well-known bivariats

exponential distributions.

2. INCONSISTENCY CF THE PRODUCT LIMIT ESTIMATOR

The Kaplar and Meier product limit estimatcr Is
icte £ . t = Y < < ... <Y
censtructad as follows Let 0 () $ ¥y < <Y

denote the ordered system failure times of n sysTems put 2n

test. The product-iimit estimatsr of S.(%) is
E

SI(C) = Hi[(n-i)/(n-i*l)] (2.%)

where the product is over the ranks I of those crdered

observations g(.), 1 <1ic<n, such that %,., < t and ¥
i -5 = (i) (
3

corresponds to a death from the simultaneous cause(s)

iy

JnlI#a2. gr(t) is undefined for t > T(,) if the largest
failure time corresponds to causes in J where J 2 I = 2.

If the assumption of independence 1s correct and ths
crude probability functions defined by F(t, I) = 2(Y > ¢,
§(7) = I) have no common discontinuities then Langberg,
Proschan and Quinzi (1981) [LPQ(1981l)] have shecwn that the
product limit estimator is consistent. They also show that
if the F(t,I)'s have no ccmmon discontinuities then for a
very particular form of dependence structure the prcducs
limit estimator is consistent. We note in the follcwing
theorem, that their results can be used to stucdy the robus%-
ness of the preduct limit estimator to departures from in-

dependence and that, in general, if the risks are dependent

then the product limit estimator (I.1) is inconsistent.




“HECREM 1. Let T = (T ce., T. Se a vector of rnon-
e ———— ~ l’ -
negative ‘random variables with system life ¥ = min(Tl, ceey TD)

and failure pattern
g(fY = I, ifY = T,, iel and ¥ < Ty, I4I (2.2)
3, otherwise

Define F(t) = P(Y > t), F(t, I) = B(Y < t,6(F)1 = I, Iel,

t > 0, and let a(P) = {t:f(t) > 0} be the support of F.
For IelI define I, = {JeI: J I # 8}. Based on a random
sample of size n let §I,n(t) Se the product limixt
estimator (2.1). If the functions F(°,I) have no common

discontinuities on {0, a(?)] then

S. (£} - 1 8;(t)  a.s. (2.3)
JeII '

where

§;¢t) = [F(a)/Fla)lexpl-fT(dr®(.,7)/MH1, 0 ¢ v < al(F),
a<t 0

(g 42
where the product is over the set of discontinuities of

F(*,J) and Fc(',J) is the continuous part of F(+,J).

PROOF. The proof follows directly by applying the -
results of Langberg, Proschan and Quinzi (1978) [LPQ(1¢878)]
and LPQ(1981). By Theorem 4.1 of LPQ(1978) T = Lp H where
H is a vector of (2P-1) independent comporents indexed
lexicographically by Ief with P(H; > t) = GI(t) given by
Q..
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Let Ei 2 (Tli’ vy T:i)’ i=11, ..., n be independent and
identically distribured as E. Replace T and T(°,3) in (2.%)
- n
} by their empirical counterparts ?n(t) = ;7 xi¥, > ¢}/n and
- n is=l z
Fa(z,J) =} «{¥. < ¢, §(T.) = J}/n,tocktain 5. _(3)., Here '
i=1 L - A~ Ly .
x(A) is the indicatror function of the ser A. ;
By Theorem 4.7 of LPQL1981] & _{t) ~ §;(t) a.s. for 1
?
J €I . Routine algebraic minipulation shows that
~ ~
St %) = n GJ (t) so the result now follcws | | .
] ,n ‘e
Je:II

In general, as saen in the examples in the Zollowing

PRSI

saction, 1 GJ(:) # Sp(t) sc that an ipvestigatcr may be
JelI,

seriously misled by incorrectly assuming That the ccmporent

lifetimes are independent, This has been noticed by Fisher
and Kanarek (1374) in the problem of analyzing clinical
trials with censored data. Theorem 1 allows an Investigator
to quantify the effects of the independence assumption by
computing the right hand side of (2.3) for some plausille

dependent models.

e e e i e e -

LPQ(1981) have shown that for a special type of

dependence the estimator S; n(t) is censistent. We state -
3

their result, without proof, as a corollary.
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COROLLARY 1., Assume that the conditicns ¢f Theorem 1
£l
hold. Then SI,n(tl - SICt) a,s. if and only if the

following two conditions held.

1) S;@)/syC@™) = F(a)/F(a”), a discontinuity peint of
JE(G,J), where the sum. is
over Jer

= 1 , ©otherwise,

ii) PGmin(T;, ieI')>t|min(T;, iel)=t)

= P(min(T,, iel')>t|ain(Ty, icT)>t)

-y

I

I.

(Y]

where I' is the complimen: ¢

EXAMPLES

In this section we present some representaticon examples of the

use of Theorem 1 in determining the 2ffects, cn estimating marginal

4

survival, of the independence assumption for some bivariate expen-
ential 1ife distributicns. Let (Tl’Tz) denote the time tc failure
from components 1 and 2, respectively, in a series system.

Let F(tl, t,) be the joint survival function of (T;, T,)

and Si(t) = P(Ti >t), 1 = 1, 2 the marginal survival func=tions.
Let §i(t) be the estimato; (2.1) of Si(t), and let (),
J2(1},{2},{1,2} be given by (2.4). Then §;(tX8(;;()&(; ,}(t)as
by Theorem 1, if the functions F(t, I) have no ccnmmon

discontinuities. Note that if P(T, = T,) = 0 then G{l,z}(t)=1

for all t. We now give some examples

Pl I
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EXAMPLE 1. (Block and Basu (3197u))

Let P(tl, :2)

EX/(A1+A2)Jexp(-xl Ti=X, tz-klzmax(:l,tz)]

[An/(xl*kg)]exp(-lmax(:l,tz)), fer

- A 12
Here Si(t) = TTI:XET exp(-(xi+klz)t) - TTITT;T exp(—lt),

Tt > 0, bux

by theorem 1

a i - - v
Si(t) - exp(-tx?¢757 t), a.s. t >0, i =1, 2.

EXAMPLE 2. Gumbel (1250)

Let P(tl, ty) = exp(=iit; = AT, = ALt t,) ¢

2
Aty > 0, Ay, 2 0.

Here Si(t) z exp(-kit), t > 0 but by Theorem 1
S;(t) ~ exp(=A;t = A, t2/2), a.s. fort >02, 1= 1, 2.

EXAMPLE 3. Gumbel (1960) )

Let P(tl, t,) = exp (=Xt =Ayt ) [1+A

-X,(exp(=2 ;) + exp(=A, 2,007,

+ Ajgexp(=A;ty-d,t,)]

Ty, Ty, > 0, Vs Ay 20, Ay, 20

-

L TW




Here §;(x) = exp(-kit) Sut by Theorem 1

“A.tT “At
[1+x12(1-e 4 )(1-2e )]

dt where

(2

T
i(u.) - exp{-)‘iof

M+r,.(lee ‘ Wl-e 3 )

12

3 is the compliment of i in {1, 2}.

EXAMPLE 4. Marshal-Olkxin (1967)
Tys Ty > 0, 2, 4, 20, klZ > 9.

- -

Here Si(t) = exp(-(}; + xlz)t). In this case the conditions

of Corollary 1 are met so S.(t) + S;(t) a.s. :
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Abstract

LE& , The problem of testing for independence of the component lifetimes

when the components are linked in series is considered. To avoid the

| problem of nonidentifiability the marginal component lifetimes are assumed
to be known. In this setting a modified version of Kendall's Tau is
proposed. This test statistic is obtained by replacing those component
lifetimes which cannot be cbserved, due to system failure, by conditional
probabilities computed under independence. A small scale simulation study
of the power of this test shows the test has reasonable power for relatively

small sample sizes.

Key Words: Series Systems; Test for Independence; Kendall's Tau;
Exponential Distribution.
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1. INTRODUCTION

A common assumption made in modeling series systems is that the

component lifetimes are statistically independent. This independence
assumption is also routinely made in analyzing data collected from series !
3 systems. Recently, Klein and Moeschberger (1983) and Moeschberger and R

Klein (1982) have shown that cne may be appreciably misled by erroneously ‘

assuming the independence of component lifelengths in modeling and estimating ¥
the parameters of certain bivariate exponential series systems. Thus it

is desirable tc have a test of this assumption of independence based on

data from series systems. i

If no assumption about the underlying distribution of the component

lifetimes is made it is impossible to test for independence due to the
identifiability problem (see, e.g. Tsiatis (1978), Miller (1977) or

Basu and Klein (1982)). That is, given any set of observable information, !
collected from a series system with dependent component lifetimes, there
exists a series system with independent component lifetimes which yields
the same set of observable information. Hence, any test of independence

must incorporate some additional information about the underlying model

to be able to detect departures from independence.

1 In Section 2 a modification of Kendall's (1938) test for independence
is considered. This modification assumes that the marginal component life
distributions are completely specified. This information could be obtained

by testing each component separately, as if often done in the development

stages of system design (see, e.g. Easterling and Prairie (1971), Mastran (1976), i

and Miyamura (1982)). In Section 3 a small scale simulation study shows

that the test performs fairly well for relatively small sample sizes.




2. THE TEST PROCEDURE

Suppose that n two component series systems are put on test. Let
X, Yi denote the potential (unobservable) failure times of the first and
second components of the ith system. We are not allowed to observe

(Xi’ Yi) directly, but instead we observe ’I‘i = mi.n(Xi, Yi), the system

failure time and 1 if Ti
I. =
i

Xi » the cause of the system failure.

0 if Ti

Y
Also suppose that the marginal survival functions of X, and Yi, F(x) = P(Xi>x)
and G(y) = P(Yi>y), i=1,...,n are known.

If we could observe both xi and Yi then a test of independence, due
to Kendall (1938), is to count the number of concordant pairs and the number
of discordant pairs. A pair (Xi, Yi), (Xj, Yj) is concordant if Xi - Xj
and Y, - Yj have the same sign and is discordant if these differences have
different signs. The test statistic is then the number of concordant
pairs minus the number of discordant pairs.

If the data comes from a series system then only Ti’ Ii is observed.
Suppose we consider a pair (Ti’ Ii), (Tj, Ij) with 'I‘i < Tj' If Ii = 1 and
Ij =].1:1'1enweknowtha'l‘:X:.L=Tj_<Xj =Tj,andXi<Yi, Xj <Yj. This
pair would be concordant, regardless of the value of Yj’ if T, <Y, < Tj.
If Y, > Tj concordance or discordance depends on the value of Yj' Under the
null hypothesis of independence, the conditional probability that the
pair is concordant is [&(T;) - E(Tj)]/ﬁ('ri). When I; = 1 and I, = 0 then
Ti=Xi<Yj=Tj’Xi jthepairwould
be concordant and if Yi > Tj the pair would be discordant, whatever the

value of Xj. Under independence the conditional probabilities of these

two events are [G(T,) - E(Tj)J/E'(Ti) and E(Tj)/E(Ti), respectively. Should




I; = 0 similar probabilities, involving F, could be obtained. This

motivation suggests the following score function for T, < Tj

( [G(Ti)-G(Tj)]/G(Ti) if I, = I, = 1
[F(Ti)-F(Tj)]/F(Ti) if Ii = Ij =0
¢(T:,I.,T.,I,) = ﬁ (2.1)
11373 - G i = = :
[G'(Ti) ZG(Tj)]/G(Ti) if I, =1, Ij 0
and similarly for T, > Tj'
The modified version of Kendall's test statistic is
o n
LI T¢ 35 A 2% S ¢ 0% (2.2)

1<i<j<n
In the appendix we show, that under the null hypothesis of independence of
the component lifetimes:
A) E(D) =0

B) n(n-1V(D) = % r B(x)2dF(x) + % J T(x) 246(x)

2 r'G'(x)-lr‘f‘(y)@(y)2dG(y)dF(x)
-0 x

2 r?(x)‘lf G(y)F(y) 2dF(y)dG(x)

-0 x

+ 4(n=2) {% r F(x) 2a(x)dG(x) - 2 I F(x)G(x)dG(x) (2.3)
® 2.2 = 2

-2 I F(x)“G(x)“dG(x) + 3 f G(x) “F(x)d6(x)

+ r F(x)sz(x) - r F(x)3dG(x)} , where F(x) = 1 - F(x)

and G(x) = 1 - G(x).
The asymptotic normality of t follows by the results of Hoeffding (19u8).

Hence, a test of independence versus dependence rejects if ]?NG(?)I is
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greater than the appropriate percentage point of a standard normal random
variable. A test of independence versus positive dependence rejects if
/A7) is too large.
The variance of T (2.3) can be expressed explicitly in several cases.
Case 1. F(x) = G(x). In this case (2.3) reduces to

Ay~ Hnt7
V(T) = m . (2.4)

Case 2. (lLehmann structure) F(x) = G(x)*. Here (2.3) reduces to

8a[35a + n(9a’+2a+9)]

nln-DV(T) = 3Ty (3w (2643 (3a72) (2.5)
Case 3. (X, Y exponential), F(X) = e-kx, Gly) = e-ey, then (2.3)
reduces to
2 2
Ay _ 8AB[35X8 + n(9A"+216+9867)]
n(n-1)v(r) = 0308+ n(N N8 L (2.6)

3. SIMULATION STUDY

A simulation study was conducted on the AMDAHL 470 computer at The Ohio
State University. The study was performed by generating 1,000 samples of
n = 20 or 40 series systems with exponentially distributed component life times,

Tx) = ™, and G(y) = e, 8 = 1., 2. The value of Kendall's t = 0, .3, .6, .9

v

was obtained by using the procedure of Johnson and Tenebein (1981).
Table 1 summarizes the results of this study. Emperical powers times

n R T AL,

1000 of the modified test of Hy: independence versus H: 1> 0 were

computed by comparing //(Z) to the ath

upper percentage point of a standard
normal. The resulting emperical powers (and their standard errors in ( )

along with the estimated expectation of T (and its standard error in ( )) are

reported.




TABLE 1. SIMULATION STUDY OF 1

8 n T a = .1 «=.05 a=.025 a=.01 E(T)

1 20 0.0 37(9) 44(7) 17(4) 7(3)  -.0039(.0027)
1 40 0.0 84(9) 42(6) 22(4) 7¢(3)  -.0027(.0034)
1 20 0.3 356(15)  2ul(14)  168(12) 86(9) .0794(.0029)
1 40 0.3 514(15)  376(15)  275(14)  177(12)  .0766(.0021)
1 20 0.6 726(14)  593(16)  u461(16)  317(15)  .1596(.0028)
1 40 0.6 902(9) 831(12)  73w(14)  591(15)  .1596(.0020)
1 20 0.9 880(10)  822(12)  733(1s)  612(15)  .2251(.0029)
1 w0 0.9 998(3) 370(5) 951(7) 899(9) .2214(.0020)
2 20 0.0 32(9) 46(7) 20(4) 4(2)  -.0028(.0027)
2 40 0.0 101(9) 55(7) 23(5) 9(3) .0009(.0019)
2 20 0.3 426(16)  319(15)  233(13)  139(11)  .0952(.0030)
2 40 0.3 599(15)  463(16)  338(15)  222(13)  .0891(.0021)
2 20 0.6 802(13)  711(14)  605(16)  u78(16)  .1923(.0029)
2 40 0.6 964 (6) 929(8) 875(10)  784(13)  .1910(.0020)
2 20 0.9 998(1) 997(2) 986(4) 950(7) .3154(.0021)
2 40 0.3 1000¢0)  1000¢0)  1000¢0)  1000(0) .3169(.0014)

Jcte: Numbers reported are the estimates (standard error of the estimates).
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Several conclusions can be drawn from this study. First, the normal
approximation to the null distribution of z appears to hold quite well for
relatively small sample sizes like 20. Secondly, E(T) is positive for
T > .3 and in fact we conjecture this is true for t > 0. However, as
expected T is underestimating T by a substantial margin and as such is not
a good point estimator. Thirdly, T has reasonably good power when T is
large. Llastly, the power at fixed n, and T is higher when the components are
not identical. This is reasonable since in this case our test is based
on T = minimum of (X, Y) and not on the distribution of (T, I = 1) and

(T, I = 2) the crude probabilities.
4. CONCLUDING REMARKS

This article presents a technique for testing the independence of
component lifetimes based on data oollected when the components are linked
in series. The problem of nonidentifiability which prohibits testing,
nonparametrically, this hypothesis of independence is circumvented, in most
cases, by assuming the marginal component life distributions are known.

In general, this knowledge of the component distributions is not sufficient
to resolve the identifiability dilemma. That is, there is a small class of
distributions, mathematically contrived, which have the given set of marginal
distributions and lead to the same observable information as a set of
independent component lifetimes., Our test will have no power to detect

these departures from independence. However, for a given set of marginals
there is a large class of joint distributions where knowledge of the marginals
and the system information is sufficient to determine independence. This
class contains the standard bivariate distributions of interest in modeling

series systems. For distributions in this class our simulation study shows

that this test performs well for relatively small sample sizes.

e
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APPENDIX

To show E(T) = 0 and V(T) = (2.3) under H_ consider the pairs (T, I;),

20 *1

A2={T1<T2, Il=l, IZ=0}’A3={T1<T2’ Il=0’ I2=0}a.nd

A, = {Tl <Ty), I, 20,1, = 1}. In terms of the unobservable component
lifetimes, (Xi’ Yi)’ A = {Xl < Xgs X <Yy, Xy < Yz},

Ay = {X) < ¥y, X <Y, Y, < Xpby Ay = {Yy <Yy, ¥y <X, ¥y <X}, and

Ay = {Yl <Xy Yy <X, Xy < Y,}. Under the null hypothesis of independence

T, is equally likely to be either smaller or larger than T, so

1l
B(x,)-G(x,)
1 . v Ry
7 E(¢(Tl,Il,T2,I2)) = L\l -—G_-(—x-l-)——— dF(xl)dF(xz)dG(yl)dG(yz)
§(xl)-2C'(y2)
+ I —-—-_-—-——dI‘(xl)dF(xz)dG(yl)dG(yz)
A2 G(xl)
?(yl)-?'(yz)
+ J —— dF(xl)dF(xz)dG(yl)dG(yz)
Ay Flyp) (A.1)
f"(yl)-ﬁ(xz)
+ —_— dF(xl)dF(xz)dG(yl)dG(yz) .
A, F(yl)
= J1 tJy, v dg g, (say).
Now, consider

Jy +J, = r {r[’@(x)-ﬁ(y)]@(y)df‘(y) + r['G_(x)-Zﬁ(y)]f(y)dG(y)}dF(x). (A.2)

Integrating the first inter integral in (A.2) by parts yields the negative

of the second inter integral so that Jl +J, = 0. Similar computations show

2
that J; + J, = 0. Thus E(&(T, I;, Ty, I,)) and hence E(T) are both 0.
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Now

2 @(xl)-'G'(xz) 2
E( (Tl’Il’Tz’I2)) = [ ——— dF(xl)dF(xz)dG(yl)dG(yz)
A1 G(xl)

T

. ”‘e‘cxl)-zé‘(y2>
+ —————=| dF(x))dF(x,)d6(y; )d6(y,)

gl By

e [Fyp-Fyp)?
—_— dF(xl)dF(x2)dG(yl)dG(y2)
A i F(yl)

(A.3)

w

[Ty, )-2F(x,)
v [ | ar e arceasty sty
Al Fyp

Jy + 05 +J3 +J; (say).

After a little simplification we have

o

i+ ag = I L {rmx)-f;‘(ynza(y)dr(y) + | Bo0-28) 1PFeyastarco
-G(xy) ‘x X
(A1)

. r 1 {f 3 (y)T(y)dG(y) }E ()
-a3(x) Ix

after integrating the first term by parts. Writing F(y) = 1 - F(y) it
follows that

J]’_+J

wi

5 J 0 %aF(x) - r Z r By) 2F(y)d6ly)dF o). (A.5)
- -a3(%)’ x
Similarly J§ + JL; is of the form (A.5) with the rolls of F and G reversed.

Hence

Z z r F(x)2d6(x)

2 . 2 =, \2 2
EC(T, ,I.,T I))=-re<x>dr<)+-
$(T) 15Ty 1, - x = (A.6)

-2 r% rF(yﬁ(y)sz(y)dF(x) -2 rl r G(y)f"(y)zdF(y)dG(x).
-a5(x) ‘% '“F(X) X

e




e W

Now, under independence,

ECo (T, 1 T)s )Ty 1 T3, 1] =

J [B(x,)-6(x,)] [G(x )-G(x,
G(x)) G(xp)
(R %) 50 X <Y1 s %5 1 X5V

I dF(xi)dG(yi)

E@(xz)-ﬁ(xl)] [_G'(xa)-@(xl)]

]

@(xz)

{%55%3<%) 5 %7<Y) 5%)<Y 5, X<y 5}

[G(x,)-6(x,)] [G(x,)-G(x
X)=Bi%y * 3

3
T dF(x)d6 )

" I G(x,)

(XX <Xga Xy <Y1 %<V %3V )

I dF(xi)dG(yi)

+ J 1
F(yl)

{Y1<V53Y 397 <¥Xq 3 <X55Y 3<X3}

R dF(xi)dG(y.i)

|
?(yz)

{y2 ,Y3<yl 9Yl<x1 2Yp<¥g aY3<x3}

[F(y,)-F(y,)] [Fly)-F(y
2 1 1 3

T dF(x;)d6(y;)

v 2 [ 2
F(yz)

(Y791 V30¥) X 5¥9%pY 3 X3}

[B(x,)-2G(y,)] m<x1>-€<y3

it dF(xi)dG(yi)

§(x1)
{x1<Y2aY3 9x1<yl,Y2°‘2 ’Y3°‘3}

b dP(xi)dG(yi)

(A.T)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

WP PR T




<12-

[f(yz)-ﬁ(xl)] [?(ya)-ﬁ(xl)] 3
f = = I dF(x;)d6(y;) (A.14)
Fy,) Ely,) i=1

{y2 sY3 O{l ay2°<2 9}’3«3 ax1<yl}

[?(yz)-z'f’—(xl)] [G'(xl)-2§(y3)] 3
+ 2 j 2 1 T dF(x,)d6(y,) (A.15)
F(yz) G(xl) i=1

(¥, %) ¥ 35Y9<%0 3%y VY 3<X3}

+ [?(yl)-zf(xz)] f?(yl)-z'f(x3>] 3
f = = Il dF(x,)dG(y;) (A.16)
F(yl) F(yl) i=1

{yl<x2 3X35Y; <X; 3X5<Y o ax3<Y3}

3
— — I dF(x;)dG(y;) (A.17)
G(x2) G(xa) i=l

\ I [@(xz)-2§(yl)] [E(xa)-2§(yl)]

{X2 ’X3<y1’yl<x1 9x2<Y2 ,x3SY3}

[@(xz)-Qﬁ(yl)J [?(yl)-2?(x3)] 3
+2 [ < L m dF(x;)dG(y; ) (A.18)
G(xz) F(xl) i=1

(X)) X3%g YY) < 5X3<Y3}

I dF(xi)dG(yi) (A.19)

['G'(xl)-f;'(xz)] [§(x1)-2§(y3)] 3
2 |
@(xl) §(x.l) i=1

{3 <% 3Y 32 % <Y1 sX<YsY 3<% 3}

T g

(B(x,)-8(x,)] [(Fly,)-2F(x)] 3
zf M Cidibie! T dF(x;)dG(y.) (A.20)
G(x,) Fly,) i+

{ Xp9Y3<%) 9% <Y 9 X<Yy ,y3<x3}

[B(x))-Blx)] [Blx)-2Blyy)] 3
+2 [ 27 R g dF(x; )d6(y; ) (A.21)

g(xz) G(xl) i=1

{X<%) <Y 35X)<Y %1 <Y 5Y 3<% 3}




«l3=

xl)] 3
— — I dF(xi)dG(yi)
G(x;) F(yj) i=1

. 5 I [G(xl)-G(xz)] [F(ya)-ZF(

{Y 2<% <X 3V 2 <Xy 3 %q Vg 3X<Y 5 }
3 297373 1°292%72

[?(yl)-z'f"(xz)] [?(yl)—?(y3)] 3
2 f 1 1 I dF(x,)d6(y;)
F(yy) Fy)  i=L

{yl<x2 »Y3 ayl<xl,x2<y2 ,Y3<x3}

[8(x,)-28ty; )] [Fly,)-Fly;)] 3
‘2 f 2 T dF(x;)d6(y; )
Glxy) 'f(ys) i=1

{xz ’Y3<yl ,X2<Y2,Y3<X3 ’yl<xl}

[6(x,)-28(y,)] [Ky)-Fyp1 3
2 [ 2 L I dF(x, )d6(y,)

{x2<yl<Y3 ,X2<Y2 ’yl<xl 9Y3<x3}

f?(y3)-?(yl)l [f(yl)-ﬁ(xz)] 3
+2 [ 3 I dF(x;)de(y, ).
F(y3) T’(yl) i=]
{Y3<yl<x2 9Y3<x3 ’yl<’ﬁ_ax2<y?}
Now, by combining like terms and a integation by parts one can verify
that
(A.7) + (A.13) + (A.19) = 0, (A.10) + (A.16) + (A.23) = O,
(A.9) + (A.15) + (A.21) + (A.22) = O,

(A.12) + (A.18) + (A.25) + (A.26) = 0,

(A.8) + (A.14) + (A.20) = r B(x)G2 (%) [2F(x)-11%dF(x)

(A.11) + (A.17) + (A.24) = rf(x)Fz(x)[ZG(x)-llsz(x).

(A.27)

(A.28)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)
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Integrating (A.27) by parts and combining the result with (A.28)

we have

F(x)26(x)2dG(x)

3 f F(x)36(x)de(x) - 2 fw F(x)G(x)dG(x) - 2 f
- - - (A.29)

+3 J G(x) 2F(x)dG(x) + J F(x)2dG(x) - J F(x) 2dG(x) «

-QO -00

To £ind V(T) = ECE T ¢(T.,L.,T.,L.)/(%))2
i<i 1’71’73’ 37 e

- 2
= [2E(¢(T1,I1,T2,IZ) ) + 4(n—2)E(¢(Tl,Il,T2,I2)¢(T1,Il,T3,I3))]/n(n—l)
which is equal to (2.3) after making the substitutions (A.6) and (A.29).







