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Statement of Work

Random variables arising in communications, radar, photodetection, and sig-

nal processing often have moment generating functions, characteristic functions,

or probability generating functions for which formal mathematical expressions are

readily derived theoretically. Determining the probability distributions of

these variables from generating functions analytically is seldom possible. The

cumulative distribution of such a variable, important because it provides false-

alarm, detection, and error probabilities, can be expressed as a contour integral

in the complex plane whose integrand involves the generating function. It has

been found that the distribution can be accurately computed numerically if the

contour is taken through a saddlepoint of the entire integrand. We propose a

thorough study of the potentialities of this method of saddlepoint integration

for distributions of both continuous and discrete random variables of importance

in the above-mentioned fields. When the random variable results from a quadratic

functional of a Gaussian random process, the generating function involves the

Fredholm determinant of the autocovariance function of the process. Its calcula-

tion for points on the contour of integration by integrating vector Riccati equa-

tions will be investigated for processes that can be modeled as the output of a

linear system driven by white noise. A coherent signal component of the input

process can also be handled by this analysis. Acceleration of the convergence of

the numerical integration by optimum choice of the contour will be examined.

Particular applications treated in the proposal are to the detectability of

fading radar echoes, the distribution of the average power of a Gaussian random

process, the performance of the optimum and threshold detectors of a narrow-band

Gaussian stochastic signal in white noise, the distribution of the number of

photoelectrons counted when a mixture of coherent and incoherent light falls on

an emissive surface, and the distribution of the number of output electrons from

an avalanche photodiode. Still other applicatiohs will be considered if time and

resources permit.

ttF)o 4



1. Introduction

Let x be a continuous random variable with probability density function

(p.d.f.) p(x) and moment generating function (m.g.f.)

h(u) f E(e - ux ) =f p(x) e-UXdx. (1.1)

Then the p.d.f. p(x) can be recovered by the inverse Laplace transform

c+im

p(x) =f h(u) eux du/2ri, (1.2)

"c-im

in which the contour of integration runs parallel to the imaginary axis and lies

in a strip containing the origin, but no singularities of h(u). In many problems

in communications and signal processing the m.g.f. h(u) is readily determined

theoretically, but calculating the p.d.f. p(x) from it analytically may be diffi-

cult or impossible. It is usually the cumulative distribution (c.d.)

q-(x) =J p(x') dx' (1.3)

or the complementary cumulative distribution (c.c.d.)

q+(x) = 1 - q-(x) =/ p(x') dx' (1.4)

"x

that Is of interest, for these determine quantities such as the false-alarm and

detection probabilities, or the average error probabilities in a communication

system. The necessity of integrating p(x) enhances the complexity of the prob-

lem. We call q-(x) and q+(x) the "tail probabilities" and concentrate on calcu-

lating the former for x < E(x) and the latter for x > E(x), where E(x) stands for

the expected value of the random variable x. They are jiven in terms of the
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m.g.f. h(u) by the contour integrals

q-(x) f U- h(u) eUx du/2i, c > 0, (1.5)

c-iftC+ift, e
q+(x) f- h(u) e du/2wi, c < 0. (1.6)

c-iin

The principal purpose of this research is to investigate methods of compu-

ting the tail probabilities q-(x) and q+(x) by numerical integration of (1.5) and

(1.6) along a suitable contour. Ideally one would like to integrate along that

contour on which the magnitude of the integrand decreases most rapidly from its

value at the point Im u - 0 as the point u moves away from the real axis in the

u-plane, for then the number of steps required would be minimum [1]. This con-

tour is known as the path of steepest descent, and along it the integrand is

real, or equivalently the imaginary part Im 0(u) of its "phase"

0(u) = In h(u) + ux - ln (* u) (1.7)

vanishes. (Here (* u) = -u when (1.6) is being integrated and (+ u) = u when

(1.5) is being integrated.) This contour crosses the real u-axis at a saddle-

point u - u0 of the integrand, which is determined by the equation

h"(u) -1¢'u '-'" +  -  -0O, u- u0  (1.8)

(Primes stand for derivatives.) One such saddlepoint, u0 - uo-, lies between the

rightmost singularity of h(u) in Re u < 0 and the point u - 0; another, u0 M uo

lies to right of the origin, but to the left of any singularities on Re u > 0.

When (1.5) is being integrated, the contour of integration passes through uo+;

when (1.6) is being integrated, it passes through uo-. When the second

derivative 0"(u) of the phase is easily calculated, (1.8) can be expeditiously

solved by Newton's method. Otherwise one can use the secant method, which

estimates the second derivative by computing '(u) at two close points. An

alternative method for determining the saddlepoint is to solve the equation

- ------------



Im O(u0 + ic) = 0 (1.9)

by Newton's method or the secant method for a sufficiently small value of e. It

is unnecessary to determine the saddlepoint with high precision.

To trace the path of steepest descent exactly would, however, much protract

the numerical integration. When the singularities of the integrand all lie on or

near the real u-axis, the path of steepest descent often has approximately a

parabolic form, and the contour integrals can be efficiently evaluated by taking

them instead along the osculatory parabola, that is, along a parabola passing

through the saddlepoint u0 , lying symmetrically about the real u-axis, and having

at the saddlepoint the same curvature K as the path of steepest descent, which is

given by [1]

S0,"'(u )/0 ,(u0 ). ( .10)

The c.d. and the c.c.d. are then given by integrals of the form

q*(x) = Rl[(h(u) eux (T u)-1 (I - iKy)]dy/it,

0 ~(1 .11)

u = u0 + 1/2 Ky + iy,

with u0 = uo+ for q-(x) and u0 = u0- for q+(x), and for reasons given in [21 this

has been evaluated by the trapezoidal rule. One takes an initial step size of

the order of [0"(u 0 )]
-1/2, halving the step size and repeating the numerical

integration until the value of the probability stabilizes within the number of

significant figures desired.

If, on the other hand, the integrand also possesses singularities above and

below the real u-axis, and the path of steepest descent consequently possesses

many branches, it may not be feasible to integrate along other than a straight

line, possibly vertical, possibly inclined at a suitable angle to the vertical.

In what follows we shall describe -ur progress in this investigation, treat-

Ing in Sec. 2 the evaluation of radar detection probabilities and in Sec. 3 the
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cilculation of the cumulative distribution of the average power In a Gaussian

random process. Similar methods can be used for computing the cumulative distri-

bution of a positive integer-valued random variable, and these are described in

Sec. 4 and applied to distributions of the number of electrons at the output of a

photomultiplier.

5II IIi p =- " . . . 1 ;I: . .. . .



2. Quadratic Detection of Radar Signals.

(a) Signals of Fixed or Random Strength

The input to a radar receiver is passed through a filter matched to the

shape of the expected echo signal, and the output of the filter is applied to a

quadratic rectifier. The noise in the input iswhite and Gaussian; echoes from

a target may also be present. The sampled outputs of the rectifier in a

particular range bin are summed in M successive interpulse intervals to produce a

detection statistic of the form

M

Z = 1/2 E r i, (2.1)
J-1

where r 2 is the output of the rectifier in the J-th interval. When suitably

normalized, Z has a chi-squared distribution with 2M degrees of freedom under

hypothesis HO that no signal is present; its moment generating function (m.g.f.)

is

-uZ -M
h0 (u) = E(e HO) = (1 + u) -

. (2.2)

Under hypothesis HI that a target is present, an echo is received in the

J-th interval with energy Ej and signal-to-noise ratio dj2 . 2Ej/N, 1 < j ( M,

where N is the unilateral spectral density of the white-noise background. Then

the m.g.f. of Z is

M

hl (u) =E(e -' z  H1 ) 
= (1 + u) "d exp (- r ' ),

S -11D
2  - 12 Z dk2 _ET/N 

(2.3)

k-i

where Er is the total received energy. The probability Qd of detection is given

by the M-th order Q-function,

Qd Pr (Z > Z01 H) %(D, r2Z0 ), (2.4)

6e



where Z is the decision level with which the statistic Z is compared [3, pp.

215-2191. The false-alarm probability

- Q(O Z2Z0  (2.5)

can be expressed in terms of the incomplete gamma function. A saddlepoint

approximation was applied in [41 to the calculation of the decision level Z0 and

the probability Qd of detection for large numbers M of pulses integrated; typical

results are tabulated there and compared with the exact probabilities.

When the radar echoes fade, the distribution of the statistic Z must be

averaged with respect to the distribution of signal amplitudes. It is simplest

to average the m.g.f. in (2.3) and invert it to calculate the cumulative

distribution of Z and thence the average probability of detection. Four typical

distributions of the fading amplitudes were enounced by Swerling [5], and we list

them here with the resulting m.g.f.'s of Z:

Case I: D - ADO, where A has a Rayleigh distribution,

p(A) = (A/A0 2) exp (-A 2/2A 0 2), A > 0, (2.6)

yields the m.g.f.

hl(u) (1 + u) - ( M- I ) [ 1 + (BI+ 1)u]-I

12 (2.7)B- = 1(D2)- = /N,

(.)indicating an average with respect to the distribution of signal amplitudes.

Case II: dj - A d0. Yj, where the Ai are statistically independent and have

Rayleigh distributions like that in (2.6), yields the m.g.f.

7J
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h2 (u) [1 + (1 + B2 )u]-M
' B2 - /2(d 1

2 ) , Z
2 ( 2 i (E)N B, /M. (2.8)

The distribution of the statistic Z is a scaled chi-squared distribution with 2M

degrees of freedom.

Case III: D = ADO , where A has the density function

p(A) - (A 3/2A0
2 ) xp (-A 2/2Ao2), A > 0, (2.9)

yields the m.g.f.

h3 (u) = (1 + u)-( +-(1 + B )U-

(2.10)

B3 - 1/4 (D2) ( (ET)/ 2 N.

Case IV: d1  Ado, VJ, where the Aj are statistically independent and have the

distribution of Case III, yields the m.g.f.

h4 (u) (1 + u) [1 + [1 + B4)u]-21

B4  1 1/4 (d 2  = (E )/2N - B3/M.

The distributions of the sum Z arising from these "Swerling cases" are given

by di Franco and Rubin [6, ch. 113. For cases III and IV the cumulative

distributions are quite complicated, involving hypergeometric functions of orders

depending on M. For case IV, for instance, calculating the detection probability

% requires summing M terms, each containing an incomplete gamma-function of
order H + k - 1, 0 < k 4 M.

In general, if -

S+



G(u) - E(e-Su ) = p(S) e uS dS (2.12)

is the m.g.f. of the positive-valued random variable S, representing the-total

strength of the fading echoes, the m.g.f. of the random variable Z in (2.1) is,

by (2.3),

h(u) = (1 + u)_M G( (2.13)

Its singularities will always lie in the left halfplane. In particular, if tile

signal strength has a gamma distribution, of which Swerling's cases I - IV are

special instances,

p(S) = [r(k)]-1 (k/S)k Sk -1 ekS/S, (2.14)

where S is the mean total signal-to-noise ratio, then

G(u) = (1 + Su)-k (2.15)k

and the m.g.f. of Z is

k-M -k
h(u) = (I + u) (1 + bu) - , b = 1 + S/k. (2.16)

For cases I - IV, k - 1, M, 2, 2M respectively.

The method of integration along a parabolic contour, as in (1.11), has been

successfully applied to evaluating the tail probabilities for both unfading

signals and signals having random strengths described by distributions p(S) of

the form in (2.14). A bound has been derived for the truncation error incurred

by cutting off the integration in (1.11) at a finite value of y. In most

instances it suffices to stop the numerical integration when the absolute value

of the integrand falls below a fraction c of the accumulated sum times the step

size Ay, whereupon the relative truncation error will be less than c. The number

of steps of numerical integration required to attain a certain accuracy is more

9
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or less independent of the number M of signals processed by the radar receiver.

(b) Detection in Noise of Unknown Level

When the radar is being jammed by a transmitter of Gaussian noise spread

over a frequency band much wider than that of the target echoes, the receiver is

faced with the problem of detecting them in noise of unknown and random spectral

density. A strategem that is often-adopted utilizes K samples rt2 of the

quadratically rectified output of a narrowband pass filter tuned to the same

frequency as that of the echoes, or to a nearby frequency; these samples are

taken at times when no signals are expected to be present, and it is presumed

that they have the same probability distribution as the noise components of the

terms r 2 in (2.1). The strength of that noise is then, within an inessential

constant of proportionality, estimated by the value of the statistic

K

Z 1/2 r r 2  (2.17)
j=1

When these samples r32 indeed represent noise alone, the statistic Z' has a

scaled chi-squared distribution with 2K degrees of freedom and is independent of

Z in (2.1). The decision level with which the statistic Z is compared in order

to decide whether any radar echo is present is made proportional to Z', or

equivalently, the receiver forms the statistic

X = Z - OZ', (2.18)

and it decides that a signal is present whenever X > 0. The constant 8 is

selected to achieve a pre-assigned false-alarm probability

Qo Pr (X > 01 H0 ), (2.19)

10



and one wishes to calculate the probability

Qd0; S) = Pr (X> 01 H) (2.20)
d

of detecting a sequence of M radar echoes of total signal-to-noise ratio S.

If the signal to be detected has a fixed, known strength, as in (2.3), the

statistic X has the m.g.f.

n(u) = E(e-u') (1 +-u)-4(l - Ou)-K exp ( u) (2.21)

with S the signal-to-noise ratio defined in (2.3). The probability of detection

is then given by

F--KSu du, (.2

Qd( 8 ; S) (I + u) -(1 - Ou) -K  exp (- S-u d(

where C_ is a contour parallel to the imaginary u-axis and passing between the

origin and the essential singularity of the integrand at u = -1. One evaluates

(2.22) when the signal strength S is so small that the expected value of

X = Z -OZ' is negative; here

E(X) = S + M - OK. (2.23)

When E(X) > 0, on the other hand, one evaluates

1 (0; S) (1+ u)-(l - Su)K exp Su (2.24)

along a contour lying in 0 < Re u < 1/8.

The prescription, "Choose the alternative hypothesis H, when X -

Z -OZ' > 0," is equivalent to the F-test of the analysis of variance, and the F-

statistic is

11



F = KZ/MZ'. (2.25)

The false-alarm probability-Q0(a) is related to the central F-distribution, and

the detection probability QO(B; S) to the noncentral F-distribution, the signal-

to-noise ratio S playing the role of the noncentrality parameter. In [71 the

computation of the noncentral F-distribution by integrating (2.22) or (2.24)

numerically along a straight vertical contour was treated, and a bound on the

error incurred by truncating the range of numerical integration was presented.

It was shown that the simple rule that the summation be stopped when the absolute

value of the integrand falls below a fraction c of the accumulated sum times the

step size Ay suffices to bound the relative error in the computed probability

within that same fraction c.

If the radar echoes are fading as described in part (a), the average

detection probability is obtained by averaging the integrals in (2.22) and (2.24)

with respect to S,

S) . (1 + u)"M(l - Bu)-K G( -- u ) d, (2.26)

Q C + u duri

1 - Qd(B; =1(1 + u)(MI - Bu)K u(2.27)

where 3 is the average total signal-to-noise ratio and G(u) is the m.g.f. of the

distribution of the random signal-to-noise ratio S, as in (2.12). Again it is

possible to evaluate these probabilities by numerical integration along a

vertical straight line or other suitable contour. Bounds on the truncation error

when the m.g.f. is given as in (2.15) have been determined and will be presented

in a paper under preparation.

12



3. The Average Power of a Random Process

We seek the probability distribution of the average power

V - T-1  f[z(t)]2 dt (3.1)

0

of a Gaussian random process

z(t) = x(t) + s(t), 0 < t < T, (3.2)

in which x(t) is a stationary Gaussian random process of mean zero and

autocovariance function

(t - s) - E[x(t) x(s)], (3.3)

and s(t) is a deterministic signal. This problem was first treated by Slepian

[81, who assumed s(t) - 0; references to other work are given in the proposal

(9]. Our approach is to calculate the cumulative distribution q-(x) - Pr (V < x)

and its complement q+(x) = Pr (V > x) by numerical integration of the contour

integrals

q -(x) =f u-1 h(u) e'x du/2xi, (3.4)

q+ W -/ u-1 h(u) eux du/2 wi, (3.5)

C

where C and C+ are suitable contours obtained by deforming the straight vertical

contours in (1.5) and (1.6). The contours pass to the right of any singularities

of the moment-generating function (m.g.f.) h(u), which in this problem lie on the

13
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negative real axis of the u-plane. The contour C_ lies to the left of the

origin, C+ to the right.

The moment-generating function

h(u) = E(e-UV) (3.6)

of the random variable V was shown in the proposal [9] to be given by

h(u) - [D(2u/T)]- 1 /2 exp [- L- J(2u/T)], (3.7)

where D(u) is the Fredholm determinant

D(u) = H (1 + X u) (3.8)

j=1

associated with the homogeneous integral equation

xf(t) = j (t - s) f(s) ds, (.9)

whose kernel is the autocovariance function (t - s) and whose eigenvalues X are

denoted by , , .... The function J(u) is given by

2

J(u) = 1/2 I-9+-u (3.10)

J-1

where

SJ = s(t) fM(t) dt (3.11)

0

are the coefficients of a Fourier series for the signal s(t) in terms of the

eigenfunctions f (t) of (3.9). As indicated in the proposal 191,

14
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IT
D(u) - exp h(t, t; u; t) dt (3.12)

"0

in terms of the solution h(r, t; u; r) of the integral equation

T

h(r, t; u; r) + u /f (r - v) h(v, t; u; T) dv = uo(r - t), (3.13)
0

0 < (r, t) < T,

and

IT J(u) = 1/2- o(t; u)2 dt (3.14)

with

ft

O(t; U) h(t, v; u; t) s(v) dv. (3.15)

0

(a) Application to RLC Noise

In order to test various methods of calculating the m.g.f. h(u) needed in

(3.4) and (3.5) and of carrying out the subsequent numerical evaluation of those

contour integrals, we took the process z(t) - x(t) to be Gaussian RLC noise of

spectral density

S(W) 4 2 2 (3.16)
(W2 _-O ) + 4 pA 2

and unit variance, for which the autocovariance function is

*(s) - - T2)- n, exp (-nlIsI) - r2 exp (-r2IsI)], (3.17)

with

- J + (P2 _ 002)1/2 r2 2 _ 2 )1/2. (3.18)

The signal s(t) was assumed zero. For this process the m.g.f. h(u) was worked

15



out by Slepian [8) and can be written

h(u) -er(A2 - 2 )-1/2

A = [(g + 1)2 erg - (g 1) 2 e-rg]/4g,

B = v(er g " - e-rg)/4g' ,

v - 2u/r, r = vT = woT/2Q,

g- (1-v)1/2 2 1/2 (3.19)g _1v , g,'=(t-v_4Q2) /

with Q the usual quality factor of the RLC circuit, Q - w0/2p.

The cumulative distributions for the average power V of this RLC noise were

computed for various values of r = UT and Q and are plotted in Figs. 1 and 2.

The contours C+ and C_ were, as discussed in Sec. 1, taken as parabolas passing

through saddlepoints uo+ and u0  respectively; u0+ > 0, and u0 - < 0, u0- lying

to the right of the leftmost singularity of the m.g.f. h(u). The integral in

(1.11) was evaluated by the trapezoidal rule. The size of the segments Ay into

which the integration variable y is divided was taken initially as

by [20"(u0)]-1/2, (3.20)

and it was successively halved until the value of the integral ceased changing in

the number of significant figures sought. The integration was stopped when the

absolute value of the integrand fell below 10-7 times Ay times the accumulated

sum.

The method used here has the advantage over Slepian's [81 of not requiring

prior computation of the eigenvalues A of (2.9); for a large time-bandwidth

product r - UT the number of significant eigenvalues A is of the order of r and

also large, and Slepian's method entails an overlong computation. In ours the

number of steps of numerical integration remains of roughly the same order of

16
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magnitude over the entire range of values of r - VT.

The results plotted in Figs. 1 and 2 show that the distribution of V is

insensitive to the value of Q unless r = UT is of the order of 1 or -less. For

r - 4 and r - 8 the curves for Q - 0 and Q = - lie so close that curves for

intermediate values of Q could not be exhibited.

(b) Kre~n-Levinson Method

When, as we assume in this report, the noise process x(t) is stationary, the

functions D(u) and J(u) needed for the m.g.f. in (3.7) can in principle be

calculated by the Krern-Levinson method described by Kailath et al. [101, and we

have begun to investigate this possibility.

We define

A u(T, r)ff h(r, r; u; T) (3.21)

in terms of the solution of (3.13). It obeys the integral equation

A u(T, r) + uf A (T, v) *(v - r) dv - u*(r - r), 0 < r < r, (3.22)

which is obtained by setting t - T in (3.13) and using

h(r, t; u; T) - h(t, r; u; T).

In terms of this function, (3.12) and (3.15) become

IT
D(u) - exp] A (t, t) dt, (3.23)

a(t; u) " o (t, v) s(v) dv. (3.24)
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As shown in (101, this function Au(t, r) obeys the Sobolev identity

+ A (t, r) - -Au(t, 0) A (t; t -r,(3.25)
at r u u

and that paper suggests solving (3.22) by a numerical method based on this

identity and on the equation (3.22) with r 0,

it

A u (t, 0) + u A(t, v) *(v) dv - u(t). (3.26)

Taking small steps of size A in the variables t and r, one writes these

approximately as

A (k+TA, ":iTA) = A(kA, JA) - AA (kA, O)A (kA, 'i"jA) (3.27)uu u

and k
(kA, 0) = uf(kA) - uA E Au(ka. JA) 4(JA).

JA) *JA).(3.28)

J-

Starting with the initial condition

A (0, 0) - u(0) - u, (3.29)u

one determines A (A, A) from (3.27) and then A u(A, 0) from (3.28). Continuing,
uu

one has at stage k the values of A u(kA, JA), 0 r j 4 k, and uses them in (3.27)

to compute A u(kA, j+1A), 0 4 j 4 k. These are then used in (3.28), with k

replaced by k+1, to determine A ( W, 0). This method goes by the name of theu

"Krern-Levinson algorithmt " [101. The integrals in (3.23), (3.24), and (3.14),

replaced by numerical quadrature formulas, can be used simultaneously to compute

D(u) and J(u). This whole computation is carried out for each point u on the

contour of integration, which we are taking to be the parabola figuring in

(1.11).

This algorithm was tried for RLC noise, and it was found inaccurate even

when the interval (0, T) was divided into one hundred steps, A - O.O1T. The
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approximation of (3.25) by (3.27) is simply too crude. Improved accuracy, yet

with fewer subintervals A, resulted from replacing the integral equation (3.22)

by its approximation by the trapezoidal rule,

A (kA, iA) + uA Au(kA, 0) *(ia)

k-!

+ A (kA, jA) (jA) + A AkA, kA) V-iA
J=l

u *(k-ij) (3.30)

which constitutes a set of (k + 1) linear simultaneous equations for

A U(kA, iA), 0 4 1 4 k. These were solved approximately by three iterations of

the conjugate-gradient method [111, starting with an approximate solution

obtained from (3.27) and (3.28).

In order to evaluate the contour integral (1.11) by numerical integration

along a parabolic contour through the saddlepoint uo, it is necessary first to

find the saddlepoint by solving (1.8) for u = u0 and then to calculate the

curvature o from (1.10), and this entails computing the first three derivatives

of the phase *(u) of (1.7) with respect to u and evaluating them at the

saddlepoint uo, which is real. In order to avoid the iteration involved in

solving (1.8) for u - uo, we picked the value of u0 at the start and used (1.8)

to determine the corresponding value of the level V = x at which the cumulative

distribution or its complement is evaluated.

From (3.7), (1.7), and (3.23) the phase of the integrand is

*(u) = D(2u/T) + ux - ln (+ u)

-f A ,(t, t) dt + ux - 1n (* u), u' - 2u/T. (3.31)

0

The derivatives of the phase O(u), therefore, involve the partial derivatives of

Au(t, r) with respect to the real parameter u, and these partial derivatives of
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Au(t, r) obey integral equations obtained by differentiating (3.22) with respect

to u. The Sobolev identity (3.25) can likewise be differentiated with respect to

u. The resulting integral equations for the partial derivatives of Au(t r), u

u0, were also solved by the conjugate-gradient method, using the derivatives of

(3.27) and (3.28) with respect to u to provide starting values. Because the

second and third derivatives are not needed to great accuracy, fewer iterations

of the conjugate-gradient algorithm suffice.

This scheme succeeded quite satisfactorily, but further study and refinement

are necessary. The solution A (i, r) of (3.22) contains a term of the form
U

-_lu(l + -ru) , 0 < r < T, which dominates when uT << 1, p the damping constant in

(3.16-.18). When the imaginary part of u is large, that is, when the point u is

far out on the parabolic contour of integration, this term results in a rapid

initial gyration of the solution as a function of T, and this cannot be

accurately followed by the numerical algorithm unless very small step sizes A are

utilized. The ensuing inaccuracy is not serious, for the value of the integrand

of (1.11) is by then quite small. Nevertheless, an attempt will be made to

subtract this term from A U(T, r) at the beginning and to solve only for theu

residual portion of that function numerically.

(c) Chandrasekhar Equations

Alternative methods of computing the m.g.f. h(u) are available when the

process x(t) can be considered as the output of a linear system driven by white

noise. Under our continuing assumption that the process x(t) is stationary, the

system can be taken as time invariant and to be in the steady state. It is then

necessary to know an n x n dynamical matrix f, an n-element column vector 4, and

an n-element row vector Q such that the process can be represented as

x(t) - C X(t) (3.32)
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wi th

dx
-t = Fx + G w(t), (3.33)

where X is an n-element state vector and w(t) is white Gaussian noise with

spectral density R. The steady-state variance equation

FA + AF+ +RG = 0 (3.34)

is solved for the steady-state variance matrix j, and the known value of

*(0) CAC+  (3.35)

establishes the required value of R.

As indicated in the proposal [9], the Fredholm determinant D(u) can be

calculated from the solution C of the matrix Riccati equation

d- =FE + uF+ - uC+C + u RGG + 0 < t < T, (3.36)

with initial condition

(0) - uA(0); (3.37)-u

u is in general a complex variable and stands for a point on the contour of

integration. Then

D(u) exp CT + dt • (3.38)

Furthermore, the function a(t; u) in (3.14) is given by

O(t; U) = Au(t), .(3.39)
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where Lu(t) is the solution of the vector differential equation

di
-, Fi + (t) C+[s(t) - o(t; u)l (3.40)dt £ [st)

in terms of the solution of (3.36).

The RLC noise treated in part (a) can be generated by a second-order system

with dynamical matrix

F=[ 2  _w2] (3.41)

and with

C. (1 0). (3.42)

The matrix ! is then ordinarily 2 x 2, but when as here u is complex and one

wishes to use standard routines for solving systems of first-order differential

equations, it is necessary to consider the real and imaginary parts of the four

elements of Eu(t)separately, and six first-order differential equations for the

distinct elements of this complex matrix need to be solved. Simultaneously,

(3.38) is integrated after conversion to a differential equation,

dE
-C& (t + 0(<t <T, E(0) - 0, (.3

D(u) - exp E(T). (3.44)

Since E(t) is also complox, this adds two more equations, making eight in all.

In general, for an n-th order system, the number of differential equations to be

integrated amounts to n2 + n + 2.

By using the DVERK routine in the MSL Library of computer routines we were

able to integrate the Riccati equation (3.36) along with (3.43), and we obtained

values of the Fredholm determinant D(u) in agreement with those calcAated from
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(3.19) directly. Somewhat cumbersome precautions had to be taken, however, to

ensure that the initial steps At in the time variable were small enough to

maintain stability.

For this reason we turned instead to the so-called Chandrasekhar

equations. As shown by Kailath [121, the matrix Riccati equation can be replaced

by the vector equations

dKu

-y Y C+ (3.45)

dY
-- (F- K C) Y, (3.46)
dt

with initial conditions

+
K u(0) = Y (0) uAC. (3.47)

When u is complex, and we include the two differential equations arising from

(3.43),

dE = ' CK ) E(O) = 0, (3.48)
dt u

the Chandrasekhar method requires solving 4n + 2 first-order differential

equations, which amount for a second-order system to ten instead of eight as with

the matrix Riccati equation. For a third-order system both methods require

solving fourteen equations, and for n > 3 the Chandrasekhar method involves fewer

equations than the Riccati method.

When we tried the Chandrasekhar method for RLC noise, instability arose only

when the imaginary part of the complex parameter u was large, that is, at points

far out on the parabolic contour of integration in (1.11). This appears to be

related to the term u(l + Tu)- that causes an initial sharp gyration in the

function A (Y, r) treated in part (b). Indeed, A (T, T) - C K (T), 0 < T < T.
u u
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We shall have to investigate whether it is possible to subtract out what

corresponds to that term in order to make the Chandrasekhar method also efficient

for all values of u at uhich the function D(u) is needed.
= +

Since (3.40) depends on only through K = , the Chandrasekhar method

will also suffice for calculating the function J(u) in (2.7) and hence can be

applied even when the process z(t) contains a deterministic signal s(t), but this

has not yet been studied.

The derivatives of the phase O(u) of the integrands of (3.4) and (3.5),

defined as in (1.7), can also be calculated by the Chandrasekhar method. The

necessary equations are obtained by differentiating (3.45), (3.46), and (3.48)

with respect to u. These derivatives are needed only for real values of u. For

RLC noise we calculated the first three derivatives of O(u) at the saddlepoint by

integrating the fifteen simultaneous first-order differential equations that

arise by this process, using them as described at the end of part (b) to

determine the level V = x by (1.8) and the curvature K of the path of integration

by (1.10). The results agreed well with those calculated by the exact m.g.f. in

(3.19). A detailed comparison of the methods of parts (b) and (c) remains to be

carried out. The former requires only the autocovariance function *(t - r) of

the process x(t); for the latter a state-space model must be constructed, but

standard routines for integrating systems of first-order differential equations

can then be applied.
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4. Photoelectron Counting Probabilities

(a) Introduction

Let x be a positive integer-valued random variable with a probability dis-

tribution

Pr (x =Q)= k k 0 , 1, 2, ..

cumulative distribution (c.d.)

n-i

Qn Pr (x < n) Z Pk' (4.1)

k=O

and complementary cumulative distribution (c.c.d.)

0!

Qn+ = Pr (x > n) = I - Qn = Pk" (4.2)

k=n

In the applications we usually have in mind, x is the number of electrons counted

during a specific interval (0, T) at the output of some photoelectric device.

The c.d. and the c.c.d. can be computed from the probability generating function

(p.g.f.)

h(z) = E(zX) =  pk (4.3)

k=O

by the contour integrals

Q z-n h(z) dz
2 (4.4)

+ f z h(z) dz (5

C
+
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in which C_ and C+ are circles centered at the origin z = 0; C+ also encloses the

point z - I, C_ does not; and the contours enclose no singularities of the p.g.f.

h(z), all of which lie outside the unit circle.

As shown in [13], the numerical evaluation of these integrals is most effi-

cient when the contours pass through saddlepoints of the integrand, that is,

through points z0 that are solutions of

h'(z) n 1
Y'(z) =h(z) z - 1 0, (4.6)

where

Y(z) = In h(z) - n In z - ln[(z - 1)] (4.7)

is the "phase" of the integrands, *(z - 1) standing for 1 - z when (4.4) is inte-

grated and for z - 1 when (4.5) is integrated. One such saddlepoint, z0 = z0,

lies in 0 < z < 1, the other lies on the real z-axis between z = 1 and the left-

most singularity of h(z). The saddlepoint can ,,sually be most expeditiously

located by solving (4.6) by Newton's method or the secant method. Alternatively,

the equivalent of (1.9) can be used.

The circular contours in (4.4) and (4.5) often suffer the disadvantage that

the integrand is oscillatory along them, so that too many steps may be needed in

order to obtain an accurate value of +or Q by numerical integration. The

value of the integrand decreases most rapidly from its value at the saddlepoint

when the contour is taken as the path of steepest descent through the saddle-

point. Along that path Im Y(z) - 0. Determining the path of steepest descent,

however, would much protract the evaluation of the contour integral. In many

cases it has been found that the path of steepest descent, which lies symmetri-

cally about the real axis, has nearly a parabolic form, and it is then expedi-

tious to use instead its osculatory parabola, that is, a parabola passing through

the saddlepoint z0 and having the same curvature
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=- Y"'(Zo)/V"(z o) (4.8)

at the point z = z0. (Primes indicate differentiation.) Along this parabola

2z = z0 + 1/2 Ky + iy, (4.9)

and the integral to be evaluated numerically is

S= f(z [h ) (I - iKy) dy. (4.10)

The initial step size is taken as

]~-1/2

Ay= [I"(z) (4.11)

and successively halved until the values of the probability stabilize to the

number of significant figures desired. The trapezoidal rule is used for reasons

described by Rice [2].

(b) Single-Stage Photomultiplication

The contour-integration method has been applied to finding the distribution

of the number of electrons at the output of a photomultiplier with a single stage

of multiplication [141. Light striking a photoelectrically emissive surface

ejects a number k of photoelectrons during an interval (0, T) with

probability 1 . The p.g.f. of this distribution is

f(z) - Zk .  (4.12)

k-0

Each such "primary" electron is accelerated by an applied voltage, impinges on a

second metallic surface, and ejects from it a random number of secondary
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electrons. Let p(s) be the probability that a given primary electron ejects m

secondary electrons; the p.g.f. of this distribution is

g~z) p(S) m

g(Z) Z z (4.13)
iOm

Then the p.g.f. of the total number of secondaries during (0, T) is

h(z) Zn f(g(z)), (4.14)nn

n=O

where Pn is the probability that n secondary electrons appear at the output of

this device.

In this work it was assumed that the distribution of the number of secondary

electrons per primary has the Poisson form, so that

g(z) = eG(z-i) (4.15)

where G is the gain. The output distribution can then be computed from

Pn fi  .(kG )n e-kG /n (4.16)

k=1

with cumulative distribution determined as in (4.1) by addition. Alternatively,

one can use the finite relations

P0  f(e -G)

P G" fk S(n, k) e
-kG a >0, (4.17)

k-i

where

287



dk
fk k d f(z) Go (4.18)

dz z-e

and where S(n, k) are modified Stirling numbers of the second kind and obey the

recurrent relations

(1, 1) =1, S(k, n) = 0, k > n,
(4.19)

"(n + 1, k) = [(n, k - 1) + k(n, k)]/(n + 1).

+
These formulas were used to compute exact values of the probabilities Qn and Q

for comparison with those computed by our approximation methods. They involve

lengthy computations when the number n is large, and round-off error introduces

large relative error into the c.c.d. Qn + = I - n when n is computed as in

(4.1).

Three types of primary distribution IIk} were treated: (i) that arising

when the incident light has a Lorentz spectral density, and for which the proba-

bilities Hk can be calculated by a method given by Bddard [15]; (ii) the nega-

tive binomial distribution

r(M + k) M k
"k k!r(M) (1 - v) v , v = Np/(Np +M), (4.20)

with Np the mean number of primary electrons, and M the number of temporal modes

or "degrees of freedom", given roughly by the product of the bandwidth W of the

incident light and the duration T of the counting interval; and (iii) the Poisson

distribution

= Np exp (-Np)/k!, (4.21)

for which the output distribution possesses the Neyman Type-A form.

For primary distributions of type (i) and, for M an integer, of type (ii),

the p.g.f. f(z) possesses poles zk lying on the positive real z-axis to the right
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of z 1, whereupon the output p.g.f. h(z) possesses poles at the points

(r) 1 + G-1 (in zk + 2rri), (4.22)Ck k

for all positive and negative integral values of r, including r 0. The contour

integral (3.5) can then be evaluated as a residue series with terms corresponding

to each point of this doubly infinite lattice of poles. For the negative-binomi-

al primary distribution, the array shrinks to a vertical column of multiple poles

of order M at the points

Cr - I + G- l (- I n v + 2rri). (4.23)

When the number n of output electrons is of the order of or greater than the

expected value

E(n) - N G, (4.24)
p

only a very few of the poles above and below the real axis contribute signifi-

cantly to the residue series. The number of columns of the lattice that need to

be included under case (i) (incident light with a Lorentz spectral density) is of

the order of the time-bandwidth product WT. Formulas for computing the residues

and numerical examples are given in [141. Unless WT is very large, this residue

+
method is most efficient for computing the c.c.d. Qn with n > E(n).

Consideration was given to using the contour integrals in (4.4) and (4.5)

for computing the c.d. and the c.c.d. of the number of output electrons. The

path of steepest descent is now too complicated to be utilized or even approxima-

ted, for it consists of a number of hairpin-like curves opening to the right and

passing around each of the poles of h(z). We therefore used instead a straight

vertical path of integration passing through the saddlepoint of the integrand

lying on the real z-axis; the one lying in 0 < z'< 1 was used for Qn and the
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one lying in 1 < z < C 0) was used for Qn+ , these having been determined by solv-

ing (4.6) by Newton's method. A bound on the error incurred by truncating the

numerical integration was worked out. Values of Qn- and Qn+ over a broad range

of values of n could be accurately computed in this way without requiring more

than one hundred or so steps of numerical integration. Details are given in Sec.

4 of [14]. This method does not require that the number Y in (4.20) be an inte-

ger. The contour-integration method can be used for all three types of primary

distribution.

On each branch of the path of steepest descent of the integrand in (4.4) and

(4.5) there is a point zk at which the magnitude of the integrand is maximum;

this is a saddlepoint of the integrand. The contribution of each branch to an

integration of (4.4) or (4.5) along its path of steepest descent can be crudely

approximated by assuming that in the neighborhood of each saddlepoint zk the

integrand has a Gaussian form, and this leads to the formula

On t [2n"(Zk)-/2 exp [(zk)], (4.25)

where Y(zk) is the phase of the integrand as in (4.7) and '(zk) is its second

derivative evaluated at the k-th saddlepoint [4]. For the most part two or three

saddlepoints on each side of the principal one z0 on the real z-axis are all that

it is worth taking into account; often the one at z0 alone suffices. Improved

accuracy was obtained by evaluating the contribution of the principal branch of

the path of steepest descent, which crosses the real axis at zo, by means of the

uniform asymptotic expansion described in [16] and [171. The details of this

method are to be found in Sec. 5 of [14].
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(c) Multistage Photomultiplier

A photomultiplier usually has not one, but several stages of electron multi-

plication. We number the stages, each associated with an electrode called a

"dynode", from the last. A single electron striking the k-th dynode ejects n

secondary electrons from it with probability p (k); the collection of these proba-
n

bilities constitutes the k-th "single-stage" distribution and has a p.g.f.

(k)n
gk(z) = Pn zn. (4.26)

n=0

Then if there are N stages in all, the probability Pn that n electrons emerge at

the output when a single primary electron strikes the N-th dynode has a p.g.f.

SN(Z) pzm (4.27)

m=0

where

1(z) gl(z),

(4.28)
Hk(z) 9gk(Hk-l(z)), k = 2, 3, ... , N.

If the distribution of primary electrons again has the p.g.f. f(z) defined in

(4.12), the total number of output electrons has the p.g.f. f(HN(z)).

In this study we have concentrated on calculating the cumulative output

distributions, defined as in (4.1) and (4.2), for a single primary electron, so

that in (4.3)-(4.5)

h(z) - HM(z).

We assumed that all the single-stage distributions have the same negative-binomi-

al, or PolyA form, with common p.g.f.
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-1/b
gk(z) = g(z) = [1 - bG(z - 1)1 -  , b > 0, (4.29)

which corresponds to the distribution in (4.20) with

M = 1/b, v bG/ll + bG).

Again G is the gain per stage; the overall gain of the photomultiplier is

G = N (4.30)

where N is the number of stages. The Poisson single-stage distribution represen-

ted by (4.15) arises in the limit b + 0.

The singularities of the overall p.g.f. HN(z) now lie on or close to the

portion of the real z-axis lying to the right of the point z = 1, and the path of

steepest descent has roughly the form of a parabola lying symmetrically about the

real z-axis and opening to the right. This path can be replaced by its oscula-

tory parabola, whose curvature K at the saddlepoint is determined by (4.8). The

first three derivatives of the phase '(z) of the integrand, defined as in (4.7),

are computed by an N-fold set of three recurrent relations. The cumulative prob-

+
abilities Qn are then computed by numerical integration of (4.10). The results

were compared with values computed by the recurrent relations given by Prescott

[181 for N = 3 and values of n up to 100, and the agreement was excellent. The

recurrent relations require of the order of n2 operations to compute Pn or Qn+ ,

and this number is independent of the number of significant figures sought. Thus

for n - 3000 of the order of nine million operations would be required, in con-

trast to the ten or twenty steps of numerical integration of (4.10) needed for

adequate precision.

When the cumulative distributions Qn+ so calculated are plotted on a semi-

logarithmic grid for various numbers N of stages.of multiplication, the overall

gain G0 - GN being kept fixed, one finds the points lying closer and closer to
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straight lines as N increases. The results are fitted quite closely by a

geometric or "exponential" distribution,

P0 
= 1 - (I - V)Go,

2 n-i
pn - G( v) v )n >0, (4.31)

+ n-i
= GO(I - v)vn  n > 0,

in which the parameter v is given by

1), ,2(G0 - 1 )v - a/(a + 1), a - 2G(G - 1) ' (4.32)

where K2 is the second factorial moment of the single-stage distribution and G is

the gain per stage,

G - g'(1), K2 
= g"(1), (4.33)

primes denoting differentiation. This value of v is chosen so that the distribu-

tion in (4.31) has the same variance as the exact distribution,

AG0(G0 - 1) 2 2
Var n = G(G - 1) a = K2+ G - G (4.34)

A number of observers have reported approximately exponential distributions

for the number of output electrons in photomultipliers, but an adequate explana-

tion of this phenomenon seems to have been lacking 1181. In (19] the distribu-

tion in (4.31) was shown to approach the true output distribution under the con-

ditions stated: the overall gain G0 - GN is fixed, the single-stage distribu-

tions are identical, and the number N of stages increases, the gain G per stage

decreasing simultaneously toward 1.

This behavior is the counterpart for multiplicative processes of the

central-limit theorem for sums of independent, identically distributed random

variables. If N random variables have mean zero, and one scales their sum by
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multiplying by N-1 /2, the distribution of the scaled sum approaches the Gaussian

form as N increases. Furthermore, if the random variables already have a

Gaussian distribution, their- sum has exactly a Gaussian distribution. For multi-

plicative processes the geometric distribution plays the same role as the

Gaussian does for sums. If the single-stage distributions are geometric, w4 th

p.g.f.'s

Ck (z - 1)

gkz 1 1 k(z 1) (4.35)

the output distribution is also geometric as in (4.31), with p.g.f.

S0(z -1)
Sa(z - )' (4.36)

in which

N
Go  G k '

k=1

and a depends on the individual gains Gk and the coefficients ak. The operations

in (4.28) then constitute a sequence of homographic transformations of the com-

plex plane that leave the point z = 1 invariant, and such transformations form a

group. One might expect, therefore, that even if the single-stage distributions

are not of the geometric type, the output distribution would approach the geomet-

ric form in (4.31) as the number of stages increases, the overall gain Go remain-

ing fixed, and this behavior was demonstrated in (191. Unlike the limiting be-

havior predicted by the central-limit theorem for sums, however, the variance of

the output distribution of electrons continues to increase with an increasing

number N of stages, even though its mean G0 - GN remains fixed.

Although the limiting behavior of the output distribution as N increases has

been extensively treated in the literature on branching processes, the emphasis
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has been on the behavior of the random variable W = G n where n is the total

number of output electrons, and the gain G per stage is kept fixed in the passage

to the limit N + -. The type of limiting behavior described in 119]-seems not to

have been considered.
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Fig. 1. Cumulative distribution q (x) of average power of RLC noise. Inter-
mediate curves are indexed on the right with the value of Q.
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Fig. 2. Cumulative distribution q-(x) of average power of RLC noise: r.- 0.2.

Curves are indexed with the value of Q.
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