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Yy iﬁ Abstract
’ A logic-timing simulator is described for a hypothetical
! multiprocessor consisting of CRAY-l's connected to a common mem-
. ory. This simulator is written in Fortran-IV and IBM assembly to
: &é execute on an Amdahl 5860 machine, operating under the Michigan
' Terminal System.
ﬁ The simulator provides extensive reporting of individual

CRAY-1 processor resource usage and resource conflicts and inter-
processor communication. By calling the simulator as a subroutine
the user may flexibly use program simulation within a larger pro-

A

blem environment. Extensive interactive debugging features make

Pt

the CRAY multiprocessor simulator a useful tool for (1) gaining
general insight into the design of multiprocessor algorithms, and

(2) the development of assembly language programs for CRAY processors
with instruction sets similar to the CRAY-1.
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Preface

The simulator described in this report was developed to
support general vector multiprocessor algorithm studies. It
was felt to be of sufficient general interest and utility that
this documentation was prepared.

The simulator accepts machine code from a cross assembler
developed at the University of Michigan and described in SEL
Report #120 and in the Appendix of this report.

Both the cross-assembler and the simulator will be avail-
able from Professor D. A. Calahan in January, 1984.
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1. Introduction

The original University of Michigan Cray-1 (uniprocessor)
simulator was written during 1977-78 by D. A. Orbits. The de-
cision to build a simulator was motivated by the following consid-
erations:

(1) At the time, access to a Cray-l1l for the purposes of
algorithm design and code development was often very difficult and
access on any continuing basis for research purposes was not pos-
sible.

(2) Even with access to a Cray-l, it was often quite difficult
to analyze algorithm performance. There was no hardware instrumen-
tation on a Cray computer to permit a study of CPU resource usage
and conflict. The Cray-1 simulator provided a detailed report of
CPU activity.

(3) For algorithms which must be carefully designed and coded,
the programmer could use the simulator to analyze instruction delays
and re-order instructions as necessary to minimize conflicts.

(4) when debugging programs, it was useful to have interactive
control of program execution. Through the use of break-points, at-
points and command files, the simulator lends considerable flexibil-
ity to the debugging process. (Note: The CTSS operating system now
provides many of these capabilities.)

(5) With simulation it was possible to study the impact of archi-
tectural modifications on algorithm performance.

A somewhat similar situation exists with respect to the Cray
XMP and other presently unannounced Cray multiprocessors. Availabil-
ity is currently restricted. Although the significance of assembly
language (CAL) coding may be reduced in future machines, there is a new
requirement to study the organization and efficiency of various task-
ing strategies on kernels, scientific libraries, and entire applica-
tion programs.

The simulator described in this report is intended to support
such study. It contains two major extensions of the CRAY-1l simulator

(a) A number (p, = 4 but alterable) of CRAY-1's are connected to

the same common memory. Each processor has the instruction
set and timings of the CRAY-1l. This is, of course, a hypo-
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thetical or paper machine. Intraprocessor but not
interprocessor bank conflicts are modeled.
(b) Hardware semaphores and shared registers have been
added to the CRAY-1l architecture (see Appendix L),
and assembly instructions are included similar in format
to those of the Cray XMP, to assist in program develop-
ment for this machine. However, the timing of these
instruction executions is different from the Cray XMP,
and may be changed as we feel appropriate. Thus, the
timings produced by this simulator are advisory, visa
vis the precise timings of the parent Cray-l simulator.
In this report, the designation Cray-1l will be used to denote one
of the processors or its instruction set; the term Cray-M will de-
note the entire simulated multiprocessor.

In summary, this software can, at a minimum, yield insight
into the interplay of hardware and algorithms by direct control
from CAL of the hardware multitasking facilities. Beyond this, it
may be that certain high-performance library routines and other
algorithms requiring complicated tasking and sub-tasking strategies
can be best implemented with the simulator, analagously to the CAL HYPAC
linear algebra library developed by the Cray-1l simulator.
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2. Simulator Features

This section of the user manual has been divided into
8ix sub-sections, each devoted to a particular aspect of the
Cray-l simulator. No attempt has been made to describe the
architecture of the Cray-l itself. The bibliography lists
several sources for this information.

The following is an overview of the material covered in this
section:

(1) Sub-section 2.1 is an introduction to the simulator
command language and the running of simulated programs.

(2) Sub-section 2.2 covers the exceptional conditions that
may arise when using the simulator. .

(3) Sub-section 2.3 covers the subroutine interface through
which a Fortran program may call the Cray-l simulator. This is
useful for simulating only a portion of a program, while retaining
the rest of it in Fortran-IV for either cost or convenience reasons.

(4) Sub-section 2.4 covers the simulator exit processing.
Through the Cray-1l Exit instruction the user may have the simulated
program call a user provided subroutine to perform functions that
might be provided by the operating system or the subroutine
libraries in an actual Cray-1l environment.

(5) Sub-section 2.5 covers the report generation facilities
of the simulator. This reporting is controlled by the CPACT, STAT,
TACT, and TRACE commands.

(6) -Sub-section 2.6 covers inconsistencies between the
simulator and the Cray-l1l computer that are presently known.
Unimplemented instructions are discussed here along with other
minor inconsistencies such as data formats, timing inaccuracies,
etc.
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2.1 Command Language

The command language provides the user interface to the
Cray-M simulator. Through the command language, the user controls
and monitors the progress of the simulated program. The user has
considerable flexibility in controlling input to and output from
the simulator. This section is organized into the following three
sub-sections: ‘

(1) Command language input control
(2) Command language output control
(3) Running programs on the Cray-M simulator

2.1.1 Command Language Input Control

Upon initiation, thé simulator will prompt for terminal input
by typing a period. The user may then enter a command or redirect
the command input stream to read from a file via the USE command.
The filename p&rameter on the USE command directs the simulator to
open that file and begin reading commands. Upon an end-of-file
condition the input stream is switched back to the terminal.

More than one USE command may be issued, allowing nested
command files to be built by the user. The simulator command
language maintains a command stream input stack which controls
the issue of nested USE commands.

The command stack is also used when the simulator is called
as a subroutine (see section 2.3). For subroutine usage, the
caller supplied command string is split at the command separator
character (a semi-colon) and each command is written to a scratch
file. This scratch file is termed the call-file. The call file
is terminated with a RETURN command, so that after execution of
the caller commands automatic return is made from the simulator
to the caller. After creating the call-file, the subroutine
interface pushes the call-f:le onto the command stack causing
subsequent commandgs “- ¢¢ . from the call-file.




Another use of the command stack arises from the use of AT
points that may be set by the user. An AT point is similar to a
break point, in that each is set at some instruction address in

the user's program. Upon hitting a break point, program simulation
q is halted and control reverts to the terminal allowing the user to
monitor the program's behavior. An AT point differs, in that when

Y q it is created the user may also enter one or more simulator commands
4
: -~ that will be automatically executed when the AT point is hit. These
) §3 commands are saved in a scratch file and then, during simulation

when the AT point is hit, the simulator pushes the AT point's scratch
" file onto the command stack causing subsequent commands to come from
b - the AT file. A RUN command is automatically placed at the end of the

AT file, causing simulation to resume uninterrupted after the AT com-

% mands have been processed. AT commands are useful for automatically
displaying register or memory locations at selected points in a pro-

1 2 gram. In cases where the user wishes to display various locations

_; : and then regain control for other purposes, entering the command

) ii USE *MSOURCE* will switch command input to the terminal during AT
command processing. Any end-of-file condition

Ej ) will terminate ihput from the top entry of the command stack,

causing the stack to be popped and input to continue from the pre-
vious source. 1In the case of an AT file with a 'USE ®MSOURCE*

. g command in it, an end-of-file condition from the terminal will resume
* simulation. In fact, when a break point is hit, the simulator auto-
, ,‘3 matically issues an implied 'USE *MSOURCE* command which reverts

- control to the terminal.

. 33 ’ The command stack is fifteen levels deep with the base entry

= preset to *MSOURCE* which can never be popped. Only one AT or BREAK
z point can be hit at any time, therefore a subsequent RUN command will
pop the command stack through the last AT or BREAK entry on the stack.
Upon a RETURN command the command stack will be popped through the
last call-file entry on the stack.

Occasionally due to an error condition the message "Command

Stack Reset” will be printed. This means that the command stack has
been cleared to the base entry which is preset to USE *MSOURCE*. This
assures that the error condition will return input control to the user.
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However, this means that any commands not yet executed in any out-
standing call-files, AT files or USE files have been lost.

A keyboard attention interrupt will cause the command stack
to be reset. This is useful to stop a USE file or prevent sub-
sequent commands in the call-file from being processed.

2.1.2 Command Language Output Control

Normal output from the simulator (informational messages, DIS-
PLAY output, etc.) can be sent to another I/O unit by using the SET
command to switch the output device. For example, SET OUTPUT = -Fl.
would route the output to file "-F1".

Error messages are output on a different unit number and always
go to *MSINK*. If an error situation arises causing the message
"Command Stack Reset" to appear, the output device will be switched
back to *MSINK*, if it was diverted elsewhere. Also, a keyboard
attention will switch the output back to *MSINK*.

2.1.3 Running Programs on the Cray-M Simulator

Before a program may be run on the simulator, it must first be
translated to a format acceptable for loading into the simulator.
This translation is typically done via a Cray-M cross assembler.

This assembler generates absolute or relocatable load modules that
can be loaded by the simulator LOAD command. The format of the
load module is described in appendix I.

When designing a Cray-M program to be simula“ed, consideration
must be given first to the nature of the algorithm under study. If
the program requires some initialization which will not be written in
Cray-1l assembly language, then perhaps the simulator should be called
as a subroutine. It is possible for the calling program and the
simulator to both share the Fortran common block that is used for the
simulated Cray-M memory. In fact, the user may increase the size of
the simulated Cray-b!memory beyond the 4096 IBM double-words that
are presently allocated.
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2.1.4 Simulator Control

To keep the simulator from runhing away from the user a keyboard
attention interrupt can be signalled which has the following effects:

(1)

(2)
(3)

4)

Resets the command input stack to read from *MSOQURCE* (the
terminal), losing any outstanding command files.

Resets the output device back to *MSINK* (the terminal)
Pexforms the following command dependent actions:

3.1) For a DISPLAY command, an attention will terminate
the output. This is useful if a long display region was
accidently displayed.

3.2) For a HELP or STAT command, an attention will term-
inate the output.

3.3) For a RUN command, an attention will stop the simula-
tion and »rint the parcel address of the next instruction
to be executed. Simulation may be resumed without any loss
of timing information by just entering a "RUN" command. No
parcel address should be supplied on the RUN command, as
this always forces a buffer fetch which will make the timing
inaccurate.

If for any reason the simulator seems to be looping and

not responding to attentions, two attentions will return
control to MTS.

Attention trapping is only enabled while control is inside the
simulator or the command language. That is, if the simulator is
called as a subroutine, attention trapping is enabled only while a
call to the CRAY1l interface subroutine is Qctive.
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¥, If the algorithm under study requires the use of intrinsic

R functions, such as SQRT, SIN, COS, etc, which would be supplied by -
~ some Cray-M subroutine library, the user may provide these functions .
7> through the use of Cray-M simulator EXIT instruction dispatcher.
1 :% The EXIT instruction (assembler mnemonic EX exp) contains a -
v 9 bit expression field. If this field is non-zero the simulator -
will call a subroutine called CRAYEX, passing the value of the -
:. expression field and several register arguments to it. The user

E": may write a CRAYEX subroutine to process these EXIT codes and per-
g form any function he wishes to define. For example, an EXIT code of

oA one could be defined to perform a square root operation. This EXIT “n
’LS‘C feature avoids the expense of simulating Cray-M code for such in- >
'\3,'_ trinsic functions by allowing them to be programmed directly on the
3 host machine. See section 2.4 for a complete discussion of the I~ |
525 EXIT dispatcher. .
gi"j Several other differences between a Cray computer and the e
'::, simulator arise due to the nature of the IBM 370 architecture upon .
ieid which the simulator runs. ‘i
*j To speed the simulation of arithmetic, all the arithmetic is i
3'-:-‘,;' done using the IBM 370 arithmetic instructions. The alternative w
}"3 would be to simulate Cray arithmetic, further raising the )
71 simulation cost. As a consequence of using host machine (IBM 370) )
ER arithmetic, the floating point data format is different. On the N
f.:‘. Cray-l the sign and exponent field is 16 bits wide whereas on the IBM <
3{‘5 370 it is only 8 bits wide. Further, the Cray-l exponent is a base "‘i
Sy 2 exponent whereas the IBM 370 exponent is base 16. Figure 2.1.1
2Ry shows the different formats. | “
2 =
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BINARY POINT
v
cr 1 0 | 15 18 63
ay-
format rf]ii
SIGN - EXPONENT COEFFICIENT
Long Floating-Point Number
IBM 370. S| Characteristic 14-Digit Fraction
format /4

01 8 I 63

Figure 2.1.1 - Cray-1l vs. IBM 370 Floating point
data formats

The simulation of the instruction computation is done in its
entirety when the instruction issues. The pipeline data flow in the
Cray-1l is not simulated. This means that upon hitting a BREAK or
AT point, all results of prior instructions are available for inspection
or modification. The instruction where the BREAK or AT point is set
has not yet been executed.

There are three methods for controlling the simulation of a
Cray-M program:

(1) BREAK points

(2) AT points

(3) An instruction issue limit parameter.

BREAK and AT points may be set at a specified parcel address
in the simulated program. Setting BREAK or AT points do not change
the instruction at that location, rather, BREAK and AT points are
detected by monitoring the P address register. This permits BREAK

and AT points to be set before the program is loaded or reloaded.
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When
an AT point is hit, a predefined command file is processed which was

When a BREAK point is hit, control goes to the terminal.
created when the AT point was set. Control will not go to the ter-
minal when an AT point is hit if no command causes this to happen.

An instruction issue limit may be provided as an optional para-
meter on the simulator RUN command. For example, the following RUN
command would begin execution at the current program counter loca-
tions and cause control to return to the command language after 2500
Cray-1l instructions have been issued in at least one processor (unless

an EXIT instruction or error condition occurred).

RUN #2500

The issue limit parameter is a decimal number prefixed by a pound
sign.
vious limit is used (in the case of a BREAK or AT or attention).

If no issue limit is specified the remaining amount of a pre-
If
there is no remaining amount, a default value of 1000 is used. To

single step through a program use the command:

RUN #1

While in the command language, the user may display or change
registers and memory locations by.gsing the DISPLAY and CHANGE commands.

See Section 4 for command descriptions of all simulator commands.
The cost of simulating Cray-M programs is an important factor.
The simulator provides three levels of cost control:
Level 1 - Result computation only, which allows debugging but
' eliminates the cost associated with timing the Cray-1

instructions.

Level 2 - Timing enabled, allowing the timing of the sinmulated
program at a cost of about 5 times the level one
cost, per processor.

Level 3 - CPACT (clock period activity report) enabled, increases

the cost to about 20 times the level one cost, per
processor.
Section five treats the cost issue further.
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2.2 Exceptional Conditions

While executing a Cray-M program, the simulator may en-
counter any of several exceptional conditions which will halt the
simulation. The four possible exceptional conditions are listed
below followed by a discussion of each one:

1) Error exit

2) Program range error

3) Operand range error

4) Invalid instruction executed

An occurrence of any exceptional condition will reset the com-
mand stack and switch OUTPUT back to the terminal if it was diverted

elsewhere. The name of the routine being executed will be displayed,
if possible.
2.2.1 Error Exit
An error exit is caused when the Cray-1l executes a zero op-code.
‘The simulator signals this condition by printing the message:

ERROR EXIT AT - p-addr

where p-addr is the parcel address of the error exit instruction.
Since memory is initialized with zeros when the simulator is started
up, a bad or missing branch could cause an error exit.

2.2.2 Program range error

A program range error is caused by a branch instruction which
attempts to jump outside the limits of the currently defined simulator
memory. If used stand-alone, 4096 words of simulator memory are
available. A program range error is signalled by the message.

PROGRAM RANGE ERROR.
BRANCH AT bch-p-addr
TARGET ADDRESS WAS tar-p-addr
MEMORY SIZE IS msize
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The paicel address of the offending branch instruction is
given by the bch-p-addr field. The invalid target address of the
offending branch instruction is given by the tar-p-addr field.
The memory size (msize) is printed in octal for comparison with
the invalid target 2d4ress and to inform the user of the current
memory size.

If the user has tried to extend the size of the simulated
Cray-M memory by loading a longer common block, he must inform
the simulator of this by setting the MEMS1IZ word in the MSIZE common
block to the correct size of the Cray-M memory (see section 2.3). If
the user forgets to do this a size of 4096 is assumed which may cause
the program range error.

2.2.3 Operand range error

An operand range error is caused by an operand load or store
that exceeds the limits of the currently defined simulator memory.
If used stand-alone, 4096 words of simulator memory are available.
An operand range error is signalled by the message,

OPERAND RANGE ERROR AT P = p-addr
MEMORY SIZE IS msize

The parcel address of the offending memory reference instruction
is given by the p-addr field. The memory size (msize) is printed
in octal to inform the user of the current memory size. The comments
above (under program range error), about user extension of Cray-M
memory, apply here as well.

A vector load or store to memory can cause an operand range
error in several ways:

1) The base address may be out of range
2) The operand increment may be too large
3) The vector length may be too large.
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2.2.4 1Invalid instruction executed

The monitor mode Cray-1 instructions are not implemented on

the simulator. When one of these is executed, the simulator will
print the message,

** ATTEMPT TO EXECUTE INVALID INSTRUCTION AT : p-addr

will be printed and the simulator will return to the command lang-
uage. The offending instruction's parcel address (p-addr) is printed
to aid in finding the instruction.

2.2.5 Floating point interrupt

The floating point interrupt exception is handled differently
by the simulator than it is on the Cray-l. This discussion will deal

with the simulator response to a floating point interrupt. See the
Cray-1l Reference Manual for the Cray-l response.

The simulator response to a floating point interrupt is a
consequence of the behavior of the IBM 370 architecture. Three
tyves of floating point interrupts may occur:

1) Exponent overflow
2) Exponent underflow
3) Division by zero. .

All three types of floating point interrupt may be suppress-
if the floating point interrupt bit in the Cray-~l mode register
clear. When the simulator starts up, this mode register bit is
thereby enabling all three types of floating point interrupts.
setting of this mode register bit may be controlled by the user
two ways:

1) Through the SET EFI ™ (ON/OFF] command, the user may
enable or disable floating point interrupts.

2) Through the Cray-~l1l instructions EFI and DFI, the program
may enable or disable floating point interrupts.

Only one floating point interrupt is detected for each inst
simulated. This means that if a vector instruction causes 20 exp
overflows, only one will be detected. After the instruction has
finished executing the simulator will announce the floating poin
exception (if the EFI mode bit is set) and return to the command

language.
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When an exponent overflow occurs, the following message is
printed:

** EXPONENT OVERFLOW **
FLOATING POINT ERROR AT P = p-addr

When an exponent underflow occurs, the following message is
printed:

** EXPONENT UNDERFLOW **
FLOATING POINT ERROR AT P = p-addr

When a division by zero occurs, the following message is
printed:
** PLOATING POINT DIVIDE CHECK **
FLOATING POINT ERROR AT P = p-addr

For each of the three messages the parcel address (p-addr)
of the instruction causing the interrupt is printed.

2.2.6 Attention interrupt

To stop the simulation or regain control during command file
processing, the MTS terminal user may issue a keyboard attention
by hitting the break key or a control-E. This attention interrupt
will reset the command stack and halt simulation if in progress. If
gimulation was in progress the message,

#* GSIMULATOR ATTN AT P = p-addr **

will be printed, where p-addr is the instruction to execute next

if simulation is continued. An attention will cause no information
to be lost and simulation may be resumed, as if never interrupted,
by entering a RUN command without a p-addr parameter.
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§ 2.3 Subroutine Interface
: ' The Cray-M simulator may be called as a subroutine from a
Ry - user Fortran-IV program. Three benefits provided by this inter-
f:
3 face are:

bl

5 5R3
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1) Being able to convert only a portion of a Fortran pro-
gram to Cray-1l assembly language allows you to simulate
the converted portion while leaving the remaining in Fortran

=3

to run more efficiently on the host machine.

2) Being able to enlarge the amount of simulated Cray-1
memory by extending the memory common block in the
user's calling program and loading this program first.

LIS
A

This avoids the need for recompiling the simulator.
3) When studying a given algorithm for application to the
Cray-M, it is convenient to perform any housekeeping and

' .-—;yﬁg’ }‘i ’“'
e

-

initialization functions in the user's Fortran program.
Therefore, only the algorithm need be coded in Cray-1

R ATV
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assembly language.

. i This section will discuss the protocol used to communicate with

'2:; i, the simulator from a calling program. This communication has two }
# “.f' aspects to it: (1) the subroutine interface used to pass commands !
o and control to the simulator and (2) the shared Cray-M memory inter-

% !,; " face used to pass data to and from the simulator. |
- |
" ~,} 2.3.1 Simulator subroutine call ;
e To access the simulator as a subroutine the following Fortran i
e :53 subroutine call is used: \
A CALL CRAYl('cmd([;emd] ... !',echosw) :
* % The first argument is a literal string enclosed by apostrophes i
, which may be composed of one or more simulator commands. Each com- |
1K) mand follows the same syntax as the commands described in section 4,
1 x To specify multiple commands with a single call to
f. ret the simulator, separate the commands with a semicolon. The entire :
. H command string must be terminated with an exclamation point and may ‘
ﬁ not exceed 200 characters. ‘
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The second parameter (echosw) is a logical constant or variable.

This parameter controls the echoing of the commands passed in the :
first argument. If echosw is .TRUE., the commands will be echoed
to the current simulator output device as they are processed. If
; echosw is .FALSE., command echoing is suppressed.
If the user wants to give control to the terminal at some point
"-3 in the camand string sequence, the command USE *MSOURCE* will allow N
?-3 additional commands to be read from the terminal. For example, the :
2 7 call g

CALL CRAY1('LOAD TRIDEC;USE *MSOURCE*;RUN #2000!',.TRUE.) ~

o

will cause the file TRIDEC to be loaded into the simulator memory
after which,the USE command will cause control to go to the user's
terminal, allowing breakpoints to be set, etc. An end-of-file con-
dition at the user's terminal (via ENDFILE, control-c, etc.) will

[ - M

: terminate the USE command permitting the "RUN #2000" command to Isj:
be executed. When the last command in the command string is executed -
e an automatic return is made to the caller of the simulator. By set- i
ting the echosw parameter to .TRUE., the three passed commands will

%‘hg : be echoed to the simulator output device as they are processed. =
h. In order to call the simulator as a subroutine, the user's pro- ’
RZ gram must first get control. To accomplish this, two things must be -
o done: o
.lg 1) The user program must be set up as a main program.
5;’: 2) The user program must be loaded before the simulator is =
- . loaded. .
X This is a consequence of the following two facts:
:.3 1) wWhen MTS starts up a Fortran program (via the MTS S$RUN
:f’ command), control is given to the main program. a
= 2) When the MTS loader encounters more than one main program

}% it ignores all but the first one. R
Z‘E’ The simulator has a small internal main program which gets control if

3 the simulator is run stand-alone. But, if the user writes a main a

program and loads it before the simulator is loaded, the simulator's
main program is ignored by the loader. Therefore, when loading is
finished MTS will give control to the user's main program.
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As an example, suppose the user wrote the following Fortran K
main program and compiled it into the MTS file MAIN.O.

CALL CRAY1('USE *SOURCE*!', .FALSE.)
STOP
END

To use this main program and have it get control first, use the
following MTS run command:

$RUN MAIN.O+CRAY1l

Although most user main programs would be more complicated than
this one, this main program is in fact the small internal main
program used by the simulator.

2.3.2 Simulator meﬁoryﬁsharing

The simulated Cray-M memory can be shared both by the simulator
and the user's calling program. This is accomplished by having the
user include in his program the Fortran common block declaration used
by the simulator to allocate the Cray-M memory space. This commom
block declaration appears in the simulator as follows:

DOUBLE PRECISION MEM

COMMON /MEMORY/ MEM (4096)
COMMON /MSIZE/ MEMSIZ

INTEGER IMEM(2,1)

EQUIVALENCE (MEM(1), IMEM(1,1))

The MSIZE common block contains the single word MEMSIZ whose
value is the current size of Cray-M memory. MEMSIZ is used to per-
form bounds checking on branches and memory references made by the
simulated Cray-M instructions. When the simulator is called for
the first time some once-only initialization is done which includes
zeroing all of Cray-M memory (MEM). Therefore, MEMSIZ must be init-
jalized properly before the first call to CRAYl. Further since the
once-only initialization will zero Cray-M memory, the very first :
call to CRAYl must be made before the user's calling program initializes ,
any of MEM. It is suggested that this first initialization call be

made as follows:




¥ a
by
A CALL CRAY1('INIT!',.FALSE.) -
o The MEMORY common block contains the array MEM, which is used -
;§§ . as the Cray-M memory by the simulator. This is declared in the
;;12 simulator to be 4096 double words long. The user may extend this -
‘ common block to enlarge the Cray-M memory. This is done by writing -
a Fortran main program which includes the common declaration state- T
ﬁg; ments shown above, but with the 4096 constant replaced with a larger
f” value as needed. Then by loading the user main program first (see
section 2.3.1), the user's main program not only replaces the simu-
lator's main program, but the user's enlarged version of the MEMORY o
common block replaces the simulator's version. "

To pass data to and from the simulator Cray-M memory, the user )

need only read and write data to the MEM array. However, because the §f
Cray-M memory address starts at location zero and Fortran arrays are

indexed beginning at one, the user must formulate the index into MEM &‘

by using the Cray-M memory address and adding one to it. For example,"

Cray-M memory location 3 is MEM(4). -

." The following example is the skeletal structure of a user main .

program which extends Cray-l memory to 8192 words.

’
& ea s

DOUBLE PRECISION MEM
COMMON /MEMORY/ MEM(8192) m
COMMON /MSIZE/ MEMSIZ w4
INTEGER IMEM(2,1) .
EQUIVALENCE (MEM (1) , IMEM (1,1)) o
C .

. C .... SET UP MEMSIZ WITH THE NEW MEMORY SIZE. 3

oy MEMSIZ = 8192 | ~

?g” ‘ c 2

& C .... DO SIMULATOR ONCE-ONLY INITIALIZATION o

o CALL CRAY1('INIT!',.FALSE.)

‘g' 5 :

5%@ . User initialization of Cray-l1l memory

A :

© % .

B CALL CRAY1 ('LOAD UPROG;USE *MSOBRCE*!',.TRUE.)

: . . User prints out results of simulated computation

ﬁi’j : .

X "

,ﬂ% STOP .

I END

See section 3.2 for a more complete example of accessing the s.mulator “
as a subroutine. R
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2.4 CRAYEX Exit Dispatcher

As discussed in section 2.3, it is often useful to allow the
Cray-M simulation to be embedded as a portion of a larger Fortran
program. Conversely, it is also useful to be able to call a Fortran
crogram from within the simulated Cray-M program. This transfer
of control from the Cray-M program to a Fortran program is accamplished
through the use of the Cray-1 exit instruction.

The Cray-l assembly language mnemonic for the exit instruc-
tion is shown below:

EX ijk

The exit code field (ijk) is a nine bit field within the exit in-
struction. Exit codes may range from zero to 511 decimal. When
the simulator encounters an exit instruction, it checks the exit
code field (ijk) for a non-zero value. If ijk is zero, a normal
Cray-l program exit is performed. If ijk is non-zero, the simula-
tor will call the subroutine CRAYEX. If the user supplies a CRAYEX
subroutine and loads it first (see section 2.3.1), the user's
CRAYEX routine will get contfol. If no user CRAYEX routine is
provided, the simulator will perform a normal Cray-l program exit.

If the user provides a CRAYEX routine the similator will call it with
the following Fortran subroutine call statement:

CALL CRAYEX(IJK, AREG, SREG, VREG, VL, EXSW)

The aréuments passed by the subroutine call are discussed below:

IJK - This input parameter is an integer which contains the value
of the ijk field in the exit instruction. It may be used
as a dispatchparameter, allowing different exit codes to per-
form different functions.

AREG - This parameter is an eight element integer array used to
pass the Cray-l A-register contents of the CPU that executed
the EX instruction to CRAYEX. This allows arguments to be
provided and results returned through the A-registers. Cray-
1l register AO corresponds to AREG(1l).
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SREG - This parameter is an eight element double precision array

W

used to pass the S-register contents of the CPU that execut-

o
B’ 3

x ed the EX instruction to CRAYEX. This allows arguments to be
‘é provided and results returned through the S-registers. Cray-
Tﬂ 1 register SO0 corresponds to SREG(1l).
1
-
3, VREG - This parameter is a double precision array, dimensioned -
2 as (64,8), used to pass the vector register contents of the -
¥ CPU that executed the EX instruction to CRAYEX. Arguments 2
may be provided and results returned through the vector i
X registers. Cray-l vector register V0 corresponds to VREG T

B PP,

('ll)-

VL - This parameter is an integer which contains the value of

the vector length register of the CPU that executed the EX
On entry to CRAYEX, VL will always be between
VL may be changed by CRAYEX and this change will
On
return from CRAYEX to the simulator VL must be in the range
of 1 to 64.

instruction.
1 and 64.
be reflected in the Cray-1l vector length register.

AP
K S

S
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In addition to the CRAYEX calling parameters, the CRAYEX pro-%
gram may access Cray-! memory by sharing the memory common block B
as described in section 2.3.2. This permits the CRAYEX routine

to perform major computation, I/O0 etc., directly to the Cray-M
memory.
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The following example is a skeleton CRAYEX dispatcher.

SUBROUTINE CRAYEX(IJK, AREG, SREG, VREG, VL, EXSW)
LOGICAL EXSW

INTEGER AREG(8), VL
DOUBLE PRECISION SREG(8), VREG(64,8)

C ... DISPATCH ON THE EXIT CODE.
GO TO (100, 200, 300, ...), IJK

C ... EXIT CODE UNDEFINED -~ TREAT AS NORMAL EXIT
EXSW = .TRUE.

RETURN

(o]

C ... EXIT CODE = 1.

100 .
S do exit code 1 processing.
RETURN

C

C ... EXIT CODE = 2

200 .
E do exit code 2 processing.
éETURN
END

The user may define exit code one to be a SQRT function, exit
code 2 to be COS function, etc. Arguments and results may be passed
through the registers or memory providing considerable flexibility
in the algorithm design and implementation.

2.5 Report Generation

The Cray-M simulator oroduces five kinds of report outputs.
STAT, CPACT. TRACE, TACT and TACT STAT. The STAT report is a sum-
mary report of the program's use of Cray-M resources, i.e., across
all Cray-l processors. The CPACT report is a detailed report of
individual Cray-l resource usage at each clock period of the program's

21
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execution. The TRACE revort is a flowtrace which, for each exe-
cuted instruction, displays for each CRAY-1l the instruction mnem-
onic, the instruction address, and the contents of the storage
locations that the instruction affects. The TACT report shows
which task each CPU is executing at constant clock period inter-
vals, analogous to the CPACT clock-level report for each processor.
The TACT STAT report is a summary report of all task activity,
analogous to the STAT clock-~level summary. For p processors, a
total of 2p + 3 reports can be generated for each run.

2.5.1 STAT report
The STAT report summarizes clock-level activity across all

processors and consists of three sections:

1) Vector Usage Counts
2) Floating Point Result Counts
3) Data Traffic Counts
Timing must be enabled only for the Vector Usage Counts section.
The Vector Usage Counts section reports the program's use of
a Cray vector unit resources. Figure 2.5.1, hbelow, shows the
Vector Usage Counts table. ' '

-

U OF B CBAY= M SIMULATOR (Unt38)
VECTOR USAGE COUNTS

cun. TIMING PP ADD FP MUL PP DIV LOG. SHIFT 1I. ADD V-LOAD V~STOR
BUSY (CP 5882 77058 67 67 1277 0 10322 2501

:Iggnx BUS§ ) 36.20% 47.42% 0.41% 0.81% 7.86% 0.0 % 63.52% 15.39%

N0, RESULTS 5530 7245 63 63 1201 0 9706 2316

¥O. VECTORS 88 115 1 1 19 G 158 37

AVERAGE VL 62,84 63.C0 63.CY 63.00 63.21 0.U 63.23 62.59

RON TINE (CP) : 16250

BPLOPS : 62,67

CONPOSITE AVL : 62.95

CONCURRRNCY : ;.;;

Figure 2.5.1 - Vector Usage Counts Table

Each column of the Table represents a different vector functional
unit. Left to right the units are: floating point add, floating
point multiply, floating point reciprocal approximation, logical,
shift, integer add and memory, split between vector loads and vector
stores. The rows of the table represent: unit busy time, percent

unit busy of total run time, the number of results produced by the
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unit, the number of vector instructions issued to the unit and
the average vector length processed by the unit.

Five other statistics are printed beneath the table: the
run time since the last INIT command or simulator start up, the
MFLOPS (million floating point operations per second) for
the program, the composite average vector length over all vector
units, the vector unit concurrency, and the MIPS rate.

MFLOPS is calculated over all floating point operations,
both vector and scalar. It is computed as the number of floating
point operations divided by the program run time in seconds.

Concurrency is calculated as the sum of all vector unit busy
times divided by the program run time. It is a global measure of
the concurrent use of the Cray-M vector units.

MIPS, millions of instructions per second, is calculated as,-
the number of instructions issued divided by the program run time
in seconds.

The Floating Point Result Counts section reports the program's
use of both vector and scalar floating point operations. For each
entry in the table (Figure 2.5.2) both the number of results and

its percentage are printed.

FLOATING POINT BSESULT COUNTS
ADDITION MULTIPLICATION RECIPROCAL TOTAL

VECTOR (% 5530 43.4) 7119 ( 55.9) - 63 ( 0.5) 12712 ( 99.9)
SCALAR z‘; 5 { 0.0 S ( 0.0) 8 ( 0.1) 18 (¢ 0.7
PTOTAL (%) 5535 ( 83.5) 7124 ( 56.0) 71 ( 0.6) 12730 (100.0)

Figure 2.5.2 - Floating Point Result Counts Table

Floating point additions (and subtractions) and reciprocals are
counted directly from the instructions that perform them, but the
multiplication count requires some adjustment due to the reciprocal
approximation.

Because a reciprocation on the Cray-1l is an approximation,
two additional multiplications must be done to get a full precision
result. One of these multiplications is a reciprocal iteration and
the other is a standard multiplication. The Cray-l instruction se-
quence below illustrates the scalar instructions used to obtain a
full precision scalar reciprocal (Sl = 1/S52).

-------
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S1 /HS2 reciprocal approximation
S2 S2*151 reciprocal iteration
S1 8S2*s81 extend precision

To count these additional multiplies as part of the floating point
operation count would overstate this count, since they really are
part of a single reciprocal operation. Consequently these two
multiplies have been deducted from the multiply count in the table.
This adjustment is made by subtracting the number of detected
reciprocal iterations from the number of standard multiplications.
A reciprocal iteration is detected through the issue of a 067, 166
or 167 instruction. The sum of all vector and scalar floating
point operations, shown in the lower right corner of the Figure
2.5.2, is used as the numerator of the MFLOPS calculation discussed
above. To receive a floating point result count report, the FULL
option must be specified on the STAT command.

The Data Traffic Counts section is the last section of the
STAT report. It is only printed if the FULL option is specified on
the STAT command. Figure 2.5.3, on the following page, is an example
of the Data Traffic Counts section. |

This section reports the amount of data traffic on the major
data paths of the Cray-M. To aid in identifying the various data
paths for which traffic information is provided, the simulator prints
a block diagram of a Cray-l uni-processor and attaches path
labels to each of the data paths. These path labels are referenced
on the left hand side of the report preceeding a number, representing
the number of operands shipped over that path. The data paths with
arrows are uni-directional whereas the paths shown dotted are bi-
directional.

The left most column of the figure represents the Cray-Mh computa-
tional units divided into three groups; vector, scalar and address.
The floating point functional units are assumed to be shared between
the vector and scalar groups.

The center column of the figure represents the Cray~-M register
storage. Top to bottom these four register groups are the vector
registers, the scalar registers, the T and B registers and the address
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registers. The vertical bi-directional communication paths (shown dotte'
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=~ between the four register groups are used for inter-group data
transfers.

_- The right hand column of the figure represents Cray-M main

memory. MEMORY is shown in four sections only for the purpose of

the figure. Any register group may reference any location in Cray-1l

main memory.

-! The labeling scheme is defined as follows:

1) "A" means address, "S" means scalar and "V" means

o vector.

VI CS N S L
»

<. 2) "O" means operands and "R" means result.
3) "X" means a bi-directional data path

T

il

M 2 4) "M" means the path is a memory path used by the three
- register groups tied both to memory and a computational
g unit. The T and B registers communicate only with '
memory and other register groups.
:ﬁ For example, "SMO" is the operand data path to the scalar registers
v from memory, where "SO" is the operand data path to the scalar com-
i putation units from the scalar registers.
Below the data path portion of the report, four other statistics
=~ " are printed: ;
1 ﬁ: 1) MISC. represents the number of miscellaneous instructions ;
3 executed by the program that do not move data across any i
! of the paths shown in the figure and are not branch . 1‘
) instructions. The instructions counted include: op-codes ﬁ
i o 2-4, 20-22, 40-43, 72-73. 3
b - 2) BRANCHES represent the number of branch instructions i
,52 executed by the program whether the branch is taken or not.lg
K2 3) FETCHES represent the number of parcel buffer fetches ﬁ
: incurred by the running program. "
hi ' 4) 1ISSUES represent the number of instructions issued by i
the running program.
The last part of the Data Traffic Counts section shows nine '
percentage’ and ratio calculations. Each of these are discussed below ;
with their derivation. i




1. Percent of vector operands supplied by cache.

I

The term cache refers to the eight Cray-1 vector reg- A
<y isters. This percentage reflects the dominance of the )
b . .

3:‘; cache over memory in supplying vector operands to the .
\,"
2

vector units. It is defined as, ha

)
VO-VMO . 3.0 :
Vo
2. Percent of total vector traffic supplied by cache.
This percentage is similar to (1) above, but also includes -
the effect of the vector results data traffic. It is B
defined as, ‘ .
VO-VMO + VR-VMR , ., %
"y
VO + VR
>
3. Percent vector results of total results. ‘

This percentage is a measure of the vector-scalar composi-
tion of the program's computation. This figure reflects
the percentage of all results computed in vector mode.
Because scalar and vector instructions can execute con- a
currently, this figure is not the percentage of time
spent in vector mode. This figure is defined as,

4
VR % . -
VR ¥ SR + AR = 100 '.
4. Percent vector memory traffic of total memory traffic. -5
-

This percentage is a measure of the vector-scalar composi-
tion of the program's memory usage. This figure reflects j3

the percentage of vector traffic to and from the main

memory. It is defined as, <
L
VMO + VMR, ;4q ~
TMDT + FETCH
o
o~
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FETCH is the number of memory words read into the instruc-

tion parcel buffers. TMDT is the total memory data traffic
and is defined as,

TMDT = VMO+VMR + SMO+SMR + AMO+AMR + BTO+BTR

5. Ratio of computation traffic to memory traffic.

This ratio is a measure of the benefit provided by the
register portion of the Cray-l memory hierarchy in re-
ducing the main memory data traffic. If this ratio was
yaié one there would be no benefit in having the registers,

' since register traffic equals memory traffic. Typically
this ratio is in the range of two to five indicating
that the registers provide a substantial reduction in
main memory data traffic. This ratio is defined as,

: .
v o

¢
la_‘l.

=
r Y
3 \
= VO+VR + SO+SR + AO+AR
i TMDT
Q ¢
NI 6. Ratio of vector memory operands to vector memory results. K
N el “
f;'J This ratio is a measure of the average vector operand re-
[ | quirements of the program. This ratio combined with the
s e vector memory result rate (see 10 below) and the algorithmic
% . camplexity of main memory usage (the computational lifetime of
S . . . .
’:'5 data in main memory) will allow the algorithm designer
- - ' to determine the mass storage I/0 data rates necessary
;if; to keep the vector arithmetic units constantly busy. This
3 ratio is defined as,
1 5
8.
- VMO i
s MR
LI )
R §
by
: 7. Ratio of vector unit results to vector memory operands.
‘ ﬁ This ratio is a figure of merit of the average value of !
3 - main memory operands in the computation. A value of two
N
$: would imply that each main memory operand precipitates
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2.5.1.1 STAT Example -
To illustrate the information provided by the STAT command, -
one example is presented. The code in this example is one which =4
multiplies four pairs of matrices together. After running the
program with timing turned on (SET TIM=ON), the STAT FULL command
is given, producing a STAT Report containing all three sections
N (Vector Usage, Floating-point Result and Data Traffic). "
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UODF M CRAY-M SIMULATOR (EPO11)

VECTOR USAGE COUNTS

CUM. TIMING FP ADB FP MUL FP DIV LOG. SHIFT I. ADD V-LOAD V-~STOR
TIME BUSY (CP) 136 48 0 136 0 0 1364 -34
% TIME BUSY 34,78% 17.39% 0.0 X 34,78% 0.0 % 0.0 X 34.78% 17.,65%
NO. RESULTS 128 64 0 128 0 0 128 64
NO. VECTORS 2 1 0 2 0 0 2 1
AVERAGE VL 64,00 44,00 0.0 64,00 0.0 0.0 64,00 64.00
RUN TIME (CP) @ 391
WFLOPS ¢ 39.28
COMPOSITE AVL : 64.00
CONCURRENCY H 1.39
MIPS ¢ 16,16
FLOATING POINT RESULT COUNTS

ADDITION MULTIPLICATION RECIPROCAL TOTAL
VECTOR (X) 128 ( 66.7) 64 ( 33.3) 0 ( 0.0) 192 (100.0)
SCALAR ¢%) 0 ¢ 0.0) 0 ¢ 0,0 0 ( 0.0 o ¢ 0.0)
TOTAL (%) 128 ( 64.7) b4 ( 33.3) 0 ¢« 0.0) 192 (100.0)

Figure 2,5,4, STAT Example
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Figure 2.5.4, STAT Examnle (contd)
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2.5.2 CPACT Report
The CPACT report produces a detailed clock period activity
reford of a Cray-1 uniprocessor state. This is a 132 column report

suitable only for printing on a line printer.* The CPACT report
can be enabled or disabled for any or all of the CPU's. Figure
2.5.4 on the following page shows the format of the report. Across.
the top of the report, the various column headings are devoted to the
Cray-l1 resources that may be called into use by a Cray-l instruc-
tion. Time flows down the page with each clock period of simulation
time producing an output record that describes the state of Cray-1l
resources at that clock period. With vector instructions using
long vector lengths, the machine resource state may remain unchanged
for fifty or more clock periods, resulting in many identical CPACT
output records. The COMPRESS option on the CPACT command (see
section 3) may be used to suppress the printing of ten or more
identical output records. This substantially reduces simulation
cost and makes the CPACT report far more manageable. One line of
compression dots are printed in place of the suppressed records.

The CPACT report is partitioned into the following 21 Cray-1l
resource fields:

1. ST. - The machine state field.

This field indicates the machine state at each clock
period. Three possible entries are: (1) "IS", which
means that an instruction is issuing at this clock
period, (2) blank which means that no instruction will
issue at this clock period, and, (3) "FE", which means
"a parcel buffer fetch sequence is initiated at this
clock period.

2. TAG - The activity resource tag.

At a clock period in which a new machine activity
(instruction issue or fetch request) is initiated, the
activity is assigned a one letter activity resource

tag (A-zZ, 0-9) which is used in subsequent clock periods
to identify the Cray-l1l resources called into use by the
initiated activity. When a conflict occurs in the demand

-
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for a Cray-1l resource, the tag occupying the resource

L

&

may be traced back to the initiating activity.

D 1
'-
A

Resource conflict occurs when an activity initiated

. ¥
AN

in a past clock period,occupies a Cray-l resource

that is now being demanded by another activity. For

example, when an arithmetic instruction issues, the

result register is reserved until the result arrives

at the register. Because the Cray-1 is pipelined.

a subsequent instruction, that requires the previous
arithmetic result as an input operand, may experience

an operand register conflict, causing it to hold issue

until the previous arithmetic result arrives at the

operand register (the previous instruction's result
register). 1In this example the resource conflict occurs

on a register. The CPACT report will show the first in-
struction's activity tag in the report column corresponding
to the result register of the instruction. The tag will re-
main in this column until the result register reservation ex-
pires (i.e., the data has arrived). 1If the second instruction
demands the use of this result.register before the reser- :
vation has expired, the result register reservation tag

will be underscored and the second instruction will hold
issue until the data arrives.

The underscoring of activity tags is used throughout the !

report to highlight the resource conflicts of waiting
instructions.

3. INSTRUCTION -~ The mnemonic for the issuing instruction.

When a Cray-l instruction issues ("1S" in machine state
field), the assembly mnemonic for the instruction is
printed in this column.

4. P-ADDR - The parcel address of the issuing instruction.

When a Cray-1l instruction issues, the parcel address
from whereit came is printed in this column.

...............
............
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5. CP - The simulator clock period.
This column contains the simulator clock period. The ’.
i;f clock period is reset to zero by an INIT command. If
}i‘ the user turns timing on and off through the SET command -j
f& or the ERT, DRT instructions, the clock period is not B
affected but the machine resource state is cleared. -
5 ":0 s
AR
$324 6. +*/¢>+ - The Cray-1 vector functional units. .
-G8 -
éﬁ‘ Each of these six columns represent the reservation x
i state of a Cray-1l Vector functional unit. Left to
;23 right the units are : floating point adder, floating ;3
}:ﬁ point multiplier, floating point reciprocal approxi-
g%i . mation, vector logical, vector shift, vector integer ~)
adder. The activity tag of a vector instruction which
14p
j\é reserves one of these functional units will be placed -
NV in the corresponding column.
% )
S The vector memory path can also be reserved by a vector i
oy instruction and is shown in one of the far right columns )
'ﬁﬂ under the heading "BSF", which stands for block sequence .
N -
- : flag. This flag is set during all vector memory refer-
Wins :
s ences
jtj 7. V. Reg - The eight Cray-1l vector registers.
s N
%;; Each of these eight columns represent the reservation ~
o state of a Cray-l vector register. Vector registers
3 are reserved by the vector instructions which reference .
N
35 them either as operand or result registers. The activity
‘fﬁ tag of the issuing vector instruction will be placed in :ﬂ
P

the columns corresponding to the vector registers used
4 by the instruction. Operand registers are typically -

':.'q reserved for MAX (VL,5) clock periods. Result registers >
ﬁ are typically reserved for MAX(VL,5) +FUT + 2 clock

periods, where FUT is the functional time of the vector

unit performing the vector operation.
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If a subsequent vector instruction requires, as an
input vector, the result vector of a previous vector
instruction, and is ready to issue when the prior
instruction's first result arrives at it's vector
register (the first result will arrive in FUT + 2
clock periods after issue), then the second vector
instruction will issue only at the clock period when
this first result arrives. This is called chaining
and the clock period when the first result arrives
is called chain slot time. If the second vector
instruction misses chain slot time, it will hold issue
until all results of the first instruction have
arrived at the vector register.

If the second vector insfruction chains to the first,
the activity tag of the second instruction will replace
the tag of the first instruction in the chained vector
register column. If chain slot time is missed, an
asterisk is placed in the result register field at the
chain slot time clock period, highlighting chain slot
time.

See appendix-A for a summary of Cray-l1 timing informa-
tion.

8. MEMORY BANKS - The Cray-1l rank registers and memory banks.

This portion represents the Cray-l scalar memory refer-
ence a~cess network and the 16 Cray-1l memory banks. The
memory bank cycle time of the Cray-l1 is four clock per-
iods long. Consequently, memory accesses to the same

bank must be at least four clock periods apart. TwoO scalar
memory references which could address the same bank can
issue two clock periods apart. This would give rise to a
bank conflict which is resolved by the scalar rank register
access network. (I/0 access to main memory also passes
through the rank registers). The four columns to the left
of the 16 memory bank columns represent:

35
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SCl - Scalar in clock period one.

. RKA - Rank register - A b
RKB - Rank register - B i
RKC ~ Rank register - C

When a scalar memory reference issues, it's activity

tag is placed in the column SCl. 1It's bank address =
(lower 4 bits) is then compared to the bank addresses 1
in rank registers A, B and C. If a bank coincidence
is detected, the memory address waits at SCl until a
clock period arrives when bank coincidence vanishes.
Meanwhile the bank addresses in the rank registers are
advanced each clock period to the next rank register.
The address in rank-C advances to it's target memory
bank and remains latched at that bank for four clock
periods. On the fifth clock period, the memory data
is gated from the bank into the SEC-DED (single error
correction - double error detection) network. Simul-
taneously a new memory address may be latched onto the
bank to start the next reference.

L,

l[f,'.

L

While the address is waiting in SCl, the activity tag
of the issuing instruction is placed in one of the far

right columns labeled "STH", which means storage hold. .
While a scalar memory reference is waiting in storage R
hold, subsequent scalar memory references may not issue fi
‘until the waiting scalar reference leaves the storage .
hold state. This means that two scalar memory reference ??
) instructions, accessing the same bank, may issue so as B
not to block subsequent instructions from issuing. But, ,
if a third scalar memory reference tries to access the =

same bank as the first two references, the storage hold ..
state of the second scalar reference will block issue D
of the third scalar reference which blocks all instruc-

tion issuing. "-‘
As the memory address advances through the rank registers, .
the activity tag of the issued memory reference is ad- Zf
vanced to the right. Wwhen the tag leaves rank-C, it
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Yoo will jump to its target bank and remain there for
~ four clock periods.

:q S Only scalar memory references place tags in this
52 . section of CPACT. Parcel buffer fetches, B and T-
i N .

o register transfers and vector references place no
2%

tags in this section. They do affect other columns
of the report, though.

9. ARA - The A-register access path busy flag.

There is a single store access path to the eight
SIS Cray-1 address registers. Each clock period, one

T operand may be stored into one of the eight A-registers
ot s via this path. When an instruction tries to issue, if

a the result of its computation would make use of the
“ A-register access path at a future clock period when
the path is already reserved for use by a prior instruc-
. tion, the issue will be held until the next clock period.
. When an instruction uses the access path its activity
” tag will appear for one clock period.

10. A. Reg - The eight Cray-l1 address registers.

28

These eight columns correspond to the eight Cray-1
A-registers. When an instruction reserves an A-register
3 itd activity tag will appear in the appropriate column.
. ""

ri 11. SRA - The S-register access path busy flag.

This flag serves the same function for the eight S-registers.
o that the ARA flag does for the A-registers.

- 12. S.REG - The eight Cray-l1 scalar registers.

These eight columns correspond to the eight Cray-1
- S-registers. When an instruction reserves an S-register
, ﬁ its activity tag will appear in the appropriate column.

37
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VM - The vector mask busy flag.

This flag is set when a 003 instruction (VM Sj) or
a 175 instruction (VM Vj,C) is in progress. The
activity tag of the issuing instruction appears in
this column.

AOB - A0 busy flag.

The A-register conditional branch instructions, 010-
013, use the data in A0 to make . branch decisions.
When new data is stored A0 it takes two additional
clock periods to validate the branch test flags. While
the branch test flags are invalid, the A-register con-
ditional branch instructions will hold issue. The
activity tag of the instruction storing new data into
A0 will appear in this column until the branch test
flags are made valid.

SOB - S0 busy flag.

The same comments for AOB above apply here, except
the S-register conditional branch instructions (014-
017) are affected.

STH - Storage hold flag.

The activity tag for a scalar memory reference, whose
address experiences a memory bank conflict with the
rank registers is placed in this column until the con-
flict vanishes. Subsequent scalar memory references
will hold issue until this flag clears. See the memory
banks discussion for more details.

073 - Vector mask read inhibit flag.

Execution of a 003 instruction (VM Sj) or a 175 instruc-
tion (VM Vj,C) will cause a 073 instruction (Si VM) to
hold issue until the 003 or 175 finishes. The activity

¥ 48 .

tag of the 003 or 175 instruction will appear in this column.
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BCG - The parcel buffer change flag.

When the next instruction parcel to enter the NIP

(next instruction parcel) register is not in the
current parcel buffer, due to a branch or a buffer

fall through, this column will be tagged with an
asterisk until the buffer change is completed. This
may involve a switch to one of the other parcel buffers
or a parcel buffer memory fetch may be needed. This
flag causes all instructions to hold issue.

FPA - Fetch pause flag.

This flag is used to trigger a parcel buffer fetch
sequence. While it is up,6an asterisk appears in this
column. The fetch sequence will begin when this flag
is clear.

BSF - The vector memory reference block sequence flag.

When a vector memory reference (176,177) issues, this
column will be set with the activity tag of the issuing
ingtruction. Subsequent vector memory references will
hold issue until this flag clears.

BTX - The B and T register block transfer flag.

When a B or T register block transfer instruction (034-
037) issues, its activity flag will appear in this
column. No other instruction may issue while a B or T
block transfer is in progress.
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2 2.5.2 CPACT Examples

‘i" To illustrate the use of the various CPACT report fields two -l‘—l

P examples are presented, a scalar memory reference example and a T

s vector example.

A

ﬁ 2.5.2.1 Scalar Example

The CPACT report shown in figure 2.5.5 (wide and narrow versions) :l

:. was groduced by the Cray-1 program below

o 20A: S3 53,0 (B) 5

5% A3 33,0 (c) '

e AQ 103,0 (D) -

P S0 51,0 (E)

i S6 50,0 (F)

g S5 47,0 (G) -

34 JS2Z 24C (H) 5

£ 24C: EX 000 (1) o

;\1 The labels to the left are the parcel addresses of the associated _

’ instructions. The letters in parentheses on the right are the -.'

» activity tags for the corresponding instruction as assigned by

: the CPACT report. These tags will be used to refer to the instruc- =

2% tions in the discussion below. -

& When the program is first started up, no instruction parcels n

% are in the parcel buffers so a fetch is required. The asterisk

.-'.‘:\‘i in the BCG field indicates a buffer change in process. When the ..

5’;: first instruction parcel (20A) arrives at the parcel buffer, two -

.f: pass instructions ("<BLANK>") issue which pull the parcel through

:_z the NIP to the CIP register. Instruction B issues at clock period -

23 17 (CP 17) and its activity tag appears in SCl to indicate a scalar )

3 memory reference in clock period one. As time advances the B tag -

RS propagates through the rank registers and onto memory bank 13 octal s

K7 (B hexadecimal). After four clock periods on the memory bank, the

:1. B tag vanishes and appears later at clock period 27. Here the

‘;4 instruction makes use of the S-register access path so the memory .

"' data can be stored into the result register, S3 in this case. -'-
Ry
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During the time period from instruction issue (CP 27) until the
data arrives at the result register (CP 27), the B tag appears

in the S-register 3 column showing the reservation on S3. Because
a scalar memory reference instruction is a two parcel instruction,
a <BLANK> Will issue after it. This is true for all two parcel
instructions.

When scalar reference instruction C issues, a bank conflict
with the previous instruction is detected (address 33 and 53 are
in the same b;hk). This causes the reference to enter the storage
hold state until the conflict vanishes, meanwhile the C tag appears
in the STH column. Scalar reference instruction D will try to issue
at CP 21, but can't because the storage hold flag is set. This
is noted by the underscore beneath the C tag in the STH column.

The subsequent four scalar references (D,E,F and G) all
reference available memory banks and issue consecutively without
conflict. 1Instruction E loads register S0 which is needed by
branch instruction H to decide the branch outcome. Even though
the data for E arrives at CP 35, two more clock periods are required
until the branch condition flags become valid. While the branch
flag is invalid the E tag appears in the S0 busy column (S0B). Once
the SO0B flag clears, the branch instruction issues at CP 38. This
branch instruction has an in-buffer target address. While the
buffer change is in progress, the instruction causing the change
will place its tag in the BCG column. Once the change is complete,
BCG is cleared and two blanks issue to load the CIP register.
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2.5.2.2 Vector Example

This example illustrates the CPACT report with vector instruc-

tions. All vector lengths are seven. Figure 2.5.6 is the CPACT R
report generated by the following program: ]
20A: A0 ¢ 50 (B) o
- Al 7 (c) i
vL Al (D) =
l' sl 43,0 (E) -
? Vo 20,1 (F) = g
vl a0,1 (G) = I
i V2 V1+V0 (H) o
' VM v2,2 (1) ]
X ) VM (3) .
. JSN ~ 40A (K) H a
40A: EX 009 (M) .
~" As in the scalar example, the simulation begins with a fetch \3_ 3
,1 sequence. The first vector instruction (F) loads a vector from B ]
< memory into V0. Rank-B and rank-C busy are hold issue conditions i I
for this vector load and are shown underscored. Once the vector -
:': load issues, it places its tag both in the V0 busy and the block ]
;; sequence flag (BSF) columns. Vector instruction G is also a vector 7
. memory load, but it must hold issue until BSF clears. The asterisk -~
& in the V0 column at clock period 33 represents the chain slot clock B ’
4 period for instruction F. If a vector instruction using V0 as an
operand was placed after instruction F and it meets all other con-
e ditions at CP 33, it will issue at CP 33, and be chained to F. At ' '
. CP 35 BSF clears, allowing ir}struction G (a second vector memory ° 1
:: load) to issue. ‘ N _ 0
:’- Instruction H is a vector integer add with vector registers V1
Y and V0 as operands. Consequently, the busy state of V1 and VO are =
N hold issue conditions for H. The functional unit time for the vector -
‘ - load (G) is seven clock periods, so at CP 44, (issue time) + (functionalzi},
unit time) + (2), chain slot time will occur and the vector add .
issues. The tag for the chaining instruction (H) replaces the result ;
tag (G) on the chained register. -
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Figure 2.5. 7 - CPACT Vector Example
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o Instruction I chains in a similar way to the result of instruc-
. tion H. The vector mask register is reserved by.I and its tag is
ey placed in the VM column.
,?,‘:3 eR Instruction J will hold issue until the 073 inhibit flag clears.
¥ XIRE SO0 is used as data for branch instruction K which does a branch out
of buffer, causing a fetch sequence.
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2.5.3 TRACE Report

The TRACE report is an instruction-by-instruction flowtrace
of the program being executed. As each instruction issues, its
instruction affects are displayed. The TRACE report can be enabled
or disabled for any or all of the CPU's. The TRACE report, unlike
the STAT report, is independent of the TIMING switch. The format
of the TRACE command, which is somewhat complicated, will not be
discussed here -- see instead Chapter 3 of this report. Here will
be presented some examples of the use of the TRACE command, the sample

code used is the same as was used in the STAT example (section 2.5.1.1).

The TRACE report produces, for each instruction, one or more

printed lines. The output for each instruction is divided into three

fields: address, mnemonic and display; the fields are separated by
colons. The address field contains the parcel address of instruction,
and the mnemonic field contains the CAL (Cray-l Assembly Language)
instruction mnemonic of the instruction. Thus, looking at (1) in
the figure, we c=2e that at parcel address 20B is the CAL instruction
A2 7750, A0 (opcode 10h). Note that all constants displayed in both
address and mnemonic fields are octal constants, regardless of what
BASE pseudo-op was used for assembly of the source code. Therefore,
since 7750g = 40727, the memory reference will not exceed the ad-
dress space (409619 words) provided that -407219 = A0 = 23,,.

The third field in the TRACE output line (or lines) is the dis-
play field. 1In the display field is printed the contents of storage
locations affected by the instruction. The results displayed are
results after the instruction has exectued; that is, the results
which the instruction produced. In (1), this means that A0=0 and
that the word stored in A2 after being fetched from memory is also
zero. For every instruction, the result register is displayed unless
the instruction is a cache transfer instruction (opcodes 025 and 075),
in which case the contents of the A or S register transferred into
the B or T cache is displayed rather than the actual S or T result
register. As an example, see (2); here the contents of A4 rather
than the contents .c B05 are displayed.

All displayed results are decimal integers or decimal floating
point numbers. In (3), the result is shown to be 2023_ . Exceptions

10
to the decimal-display rule are the following:
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bt s =
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4
e . . . . "
R 1) S registers are displayed as both decimal integers and B
by t.." - 3 . - s L] "'
t decimal. floating-point numbers unless the instruction j

. is a logical instruction (shift, mask, AND, etc.) in which
X % case the result is displayed as a 64-bit octal constant.

B 2) V registers are displayed as octal constants for logical
instructions, and decimal floating-point numbers otherwise
: ? (contrast (4) and (5) ).
f . Vector instructions display a number of elements which is equal
'3 : to the minimum of VL and the number specified by the optional LEN
parameter on the TRACE command. Note that in (4) and (5) alil 64
2 elements are printed since VL=64 and no LEN parameter was supplied.
; ” (6) illustrates a TRACE command with a LEN parameter given; since a
..} LEN is given, (7) (which is the same instruction (4)) displays

only four elements of the vector result register.
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HODULE

- 24C
V3( 0)=
VU3l =
V3( 4)=
V3( 9)=
V3(12)=
V3(19)=
V3(18)=
V3(21)=
V3(24)=
V3(27)=
Y3(30)=
V3(33)=
V3(36)=
Y3(39)=
V3({42)=
V3(4S)=
V3(48)=
V3(S51)=
V3(S54)=
V3(57)=
V3(460)2
V3(43)a

-y 24D
Vo( O)=
Vo( 3)=
Vo( &)=
VO( 9)m
VO(12)=
VO(1S)=
vVo(18)=
Vo(21)=
VO(24)=
Vo(27)=
VO(30)=
VO(33)=
VO(34)a
VO(3I9)=

1AL 2R o

LOCATION LENGTH
204 202
025
200 5 A0 00 :  Ao0= 0
208 ¢ A2 7750,A0 ¢  AO= 0 aA2= 0 «—— (D
20D : A4 7751140 ¢ A0= 0 A4= O
21B ¢ BOS A4 P Ad= gw— (D
21C ¢ A4  A4xA2 : Ad= 0
21D ¢ A7 3747 ¢ A7= 2023 «—
22B : BO2 A7 : A7= 2023
22€ ¢ A7 5747 :  A7= 3047
23A ¢ BO4 A7 t  A7= 3047
23B ¢ AS 01 : AS= 1
23C ¢ B20 AS TR
230 ¢ VL A4 ! UL=44
244 ¢ A1 00 ¢ Al= 0
24B ¢ BO7 At : al=o0
$ VU3 S01v4 T UL=264 e—
0°0° VU3¢ 1)= 070’ V3( 2)= 00’
0°0° V3( 4)= 070’ U3( 5)= 00
0°0° VU3( 7)= 0°0‘ U3( 8)= 0’0’
0°0° V3(10)= §‘0‘ V3(11)= 0’0’
0°0° V3(13)= 070’ V3(14)= 0’0’
0°0° V3(16)= 00’ VU3(17)= 0’0’
0°0’ V3(19)= 0°0‘ V3(20)= 0’0’
00’ V3(22)= 070’ U3(23)= 00’
0°0° V3(25)= 0°0’ V3(26)= Q’0’
0°0‘ VY3(28)= 00’ U3(29)= 0’0’
00’ V3(31)= 070’ V3(32)= 00’
0°0° U3(34)= 0/0‘ V3I(3S)= 070’
070’ V3(37)= 0/0‘ U3(38)= 070’
0°0° VU3(40)= 0/0° VU3(41)= 00’
00’ V3(43)= 00’ y3(44)= 00’
070 V3(46)= 00’ V3(47)= 0/0*
0°0’ U3(49)= 0°0‘ VU3(50)= 0’0’
0°0’ VU3(52)= 00’ V3(53)= 00’
070’ V3(S55)= 0°0‘ V3(Sé)= 00~
00’ V3(58)= 00/ V3(59)= 00’
0°0° V3(61)= 070/ U3I(42)= 00’
00’
VO SO+FV3 t yL=ss =— (D)
0.0 UO( 1)m= 0.0 VO( 2)= 0.
0.0 Yo( 4)= 0,0 VOo( S)= [+
0.0 VO( 7)= 0.0 vo( 8)= 0,
0.0 V0(10)= 0,0 vo(i1)= 0,
0.0 VO(13)= 0.0 vo(14)= o,
0.0 VO(16)= 0.0 vVo(17)= 0,
0.0 V0(19)= 0.0 V0(20)= 0,
0.0 VO(22)= 0.0 vo(2a3)= o0,
0.0 VO(25)= 0.0 Vo(24)= 0,
0.0 v0(28)= 0.0 vo(29)= 0,
0.0 VO(31)= 0.0 vo(32)= 0,
0.0 VO(34)= 0.0 vo(35)= 0,
0.0 Vo(37)= 0.0 vo(38)= 0,
0.0 VO(40)= 0.0 vo(a1)= 0,

Figure 2.5.8.
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Figure 2.5.8. TRACE Example (cont'd)

VU L4Lr= v VeV VU 44 )=
Vo(4%5)= 0,9 0.0 Vo{a7)= 0.0
Vo(48)= 0.0 0.0 V0(50)=
VO(51)= 0.0 0.0 VO(S3)= 0.0
VO(54)= 0,0 0.0 VO(56)= 0.0
V0(57)= 0,0 0.0 Vo(59)=
Vo(s0)= 0,0 0.0 Vols2)=
Vo(63)= 0,0
254 ¢ A6 BO2 ! Aé= 2023
25B ¢ A6 AL+A4 ! Aé= 2023
25C ¢ A7 A0-AO P A7=-q
25D ¢ A0 KO+AS ¢ AO= 2023
264 ¢ V1 5A0sA7 $ AO= 2023 A7=~1 VyL=44
Vi¢ 0)= 0.0 0.0 Vi( 2)= 0.0
Vi¢ 3= 0.0 0.0 Vi( 5)= 0.0
Vi¢ )= 0.0 0.0 Vi( 8)a
V1( 9)= 0.0 0.0 Vi(i1)=
vi(12)= 0.0 0.0 Vi(i4)=
Vi(15)= 0,0 0.0 V1(17)=
V1(18)= 0.0 0.0 V1(20)= 0.0
V1(21)= 0,0 0.0 V1(23)= 0.0
vi(24)= 0,0 0.0 V1(26)= 0.0
V1(27)= o, 0.0 V1(29)= 0.0
Vi(30)= 0,0 0.0 V1(32)= 0.0
V1(33)= 0,0 0.0 V1(3%)= 0.0
V1i(36)= 0,0 0.0 V1(38)= 0.0
V1(39)= 0,0 0.0 Vi(41)= 0.0
Vica2)= 0.0 0.0 Vi(44)= 0.0
V1(4S)= 0,0 0.0 V1(47)= 0.0
Vi(a8)= 0.0 0.0 V1(50)= 0.0
V1(51)= 0,0 0.0 V1(S3)= 0.0
V1i(54)= 0,0 0.0 V1(56)= 0.0
V1(S7)= 0,0 0.0 V1(59)= 0.0
V1(60)= 0,0 0.0 Vi¢62)= 0.0
V1(63)= 0,0
25 3 BO2 A& 3 Aé= 2023
26C 1 A3 o1 ! A3 g
26D 1 A7 P A7= 999
278 1 BO3 A7 $  A7= 999
*% INSTRUCTION ISSUE LIMIT EXCEEDED AT 27¢
+ TRACE OFF
+ TRACE ON  LEN=4 w— (O
+ RU 204 325
204 ¢ A0 00 ! a0= 0
208 ¢ A2 8 A0= 0 A2= 0
20D ¢ A4 P AO= 0 A4= 0
21B t BOS A4 ! A4= 0
21C ¢ A4 A4xA2 ! A4m= 0
21B ¢ A7 t  A7= 2023
228 i BO2 A7 :  A7= 2023
2C 3 a7 i A7= 3047
234 ¢ BO4 A7 i A7= 3047
23B 3 AS o1 ! AS= g
23C ¢ B20 AS o AS= 3
230 ¢ VL A4 I UL=é4
24A 3 A1 00 ! A= o0
248 5 BO7 A1 ! A= o0




ne ’
.".a,
AL
3
K —> 24C ¢ VU3 S0IV4 $ ULess —— (D .
Pt V3( 0)= 070’ V3( 1)= 00’ V3( 2)= 0’0’
g3 v3( 3)= 00

. 24D ¢ VO SO+4FU3 ! UL=é4
o Vo< 0)= 0.0 vVo( 1)= 0.0 vVo( 2)= 0.0 .
Xy . vo¢ 3)= 0,0 :
N 25A ¢ Aé BO2 $  Aé= 2023
N2 25B : Aé As+A4 ! Aé= 2023
NN 25C 3 A7 A0-AOQ $ A7=-1 o
B3 23D I A0 AO+AS ¢ AO= 2023
XM 26A ¢ V1 sA0sA7 i A0= 2023 A7=-1 VUL=64 -

Vi< 0)= 0.0 Vi( 1)= 0.0 Vi( 2)= 0.0

s Vi< 3)= 0.0 .
e 26B 3 BO2 Aé t  Aé= 2023 -
RN 26C ¢t A3 01 ! A3s i
% 26D ¢ A7 1747 ¢ A7= 999
jgge 278 ¢ BO3 A7 T A7= 999
A *% INSTRUCTION ISSUE LIMIT EXCEEDED AT 27¢ . -
& + TRACE OFF ™
o ;
el x
an -
.‘qs'I
3
A WP

&
’
y |

~
.I & DS
o , Figure 2.5.8. TRACE Fxample (cont'd) A
‘fx,;‘ .
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2.5.4 TACT STAT Report

The Task ACTivity STATistics report is a condensed table of
all tasking activity since tasking was turned on (SET TASK=ON).
Each column of the report shows how much time (in clock periods)

each CPU spent executing each task. The percentage of the total
time since timing was turned on is shown beneath the number of
clock periods. The last column, labelled 'TOT', is the total
amount of processor time spent in each task.

Each row of the report shows the time each processor spent
executing a particular task. The last row depicts the time each
CPU spent executing the tasks. The last entry in the last row
represents the overall task concurrency. If all the CPU's spent
all of their time executing defined tasks, this figure would be
the number of clock periods multiplied by the number of CPU's.
For example, if three CPU's spent forty percent of their time
executing defined tasks, the total concurrency percentage would
be %120 out of a total possible of $300.

Figure 2.5.7.1 is a TACT STAT report from simulation of a
four-processor sparse matrix triangular factorization.

TASK STATISTICS

TASK CPU1 CPU2 CPUS CPU 4 TOT
FAC1 846 (4] Q [»] [-1]
1.28%2 0.0 % 0.0 %Z 0.0 % 1.28%
JOINt 349 (4] ] ] 369
S.30% 0.0 Z 0.0 % 0.0 7% S.S0%
M2 o [»] 0 ] -]
0.0% 0.0% 0.0%Z 0.0% 0.01%
JOING 18 o] [ [+] 18
0.27% 0.0 % 0.0 %4 0.0 % 0.27%
JOINS o [o] 0 ] ]
0.0%Z 0.0% 0.07% 0.0% 0.0 %
soLL 325 Q Q Q 328
4.947 0.0 % 0.0 %Z 0.0 %Z 4.84%
MUL: 4 Q v ] [+]
0.0 2 0.0% 0.0% 0.0% 0.0 %
ML [\ Q < [+] 0o
0.0 % 0.0% 0.0% 0.0% 0.0 %

soL 1310 1310 1319 1310 S240
19.52% 19.352% 19.327% 19.32% 78.08%

FAC 0 3a0 [ (] 380
0.0 % 3.66% 0.0 % 0.0 % S.66%

TOTP L 2108 1690 1312 1310 6418
31.417 23.10% 19.327 19.52% 95.63%

TOTAL CLOCKS: 4711

Figure 2,5.7.1: Saple TACIT STAT Report
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2.5.5 The TACT Report

A task is an identified group of instructions. It must have
unique entry and exit point. A name is associated with each task
that is defined. When a processor passes through a task entry point,
the name of the task is placed in that processor's column on the
TACT report. The name of the task remains in the processor's column
until the processor passes through the exit point of that task, at
which point the column entry is cleared.

The Task Activity Report is a detailed listing of all tasking
activity, similar to the CPACT Report. The TACT Report can be
thoughtof as a macro CPACT Report, the CPU's representing functional
units and tasks representing instructions.

To enable task information collection, the command "SET TASK=ON"
is issued from the command language. The simulator then prompts for
a file containing the task definitions f»or the programs being simu-
lated (for a sample task definition file, see Appendix K). To enable
TACT Reporting, the command "TACT filename" is then issued where
"filename" is the name of the file to receive the TACT report output.
The program is then run in the usual fashion.

The sample report shown in Figure 2.5.7.2 is for a blocked
randomly sparse symmetric matrix factorization.
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rf: > TASK ACTIVITY REFORT
; >
o > . 8X8 SPARSE
. >
L >
BN > CP CPULl CPU2 CPUS3 CPU 4
N >
ggg > . .
! > . .
= > . .
! > 21501 ! ! ] !
< > 22001J0IN4 1 ] 1 1
L XN > 22181 ] ] ! !
e L > 22%0i ] ] ! !
NG > 23s01 ! : : {
e, :$ > 2389iFACL | ] ! ]
AJS > 24S0IFAC1 ! ! ! !
S > 247%1 ] ! ] !
(] > 2815 iFAC ! ! !
RO > 25301 IFAC ! ! :
X > 25731J0IN1 {FAC | ! ]
> 26%01JOINI {FAC | ] ]
b > 27%0:1JOIN1 FAC | ! !
2y o > 28%0!1JOIN1 tFAC | ! :
{;, > 289%1JOINL | ! | !
B8 . > 29421 t | ] 1
> 2943180L1 ! t ] |
- . > 2930isoL1 ! ! t !
BN > 3030iS0L1 | 1 ! ]
XK > 30601 ] : ] !
o (i > 30901 isoL ¢ ! 1
&y > 3150t isoL | ! ]
AN > 3173:80L1  iSOL ¢ t 1
e Y >. 3250is0L1 iso. ! ! !
> 3233 isoL ¢ ! t
. > 3295 isoL  isoL ¢ !
oy > 3350% isoL  isoL ¢ ]
oy > 3361!S0L1 iSOL  isoL ! :
34 AL > 3427! isoL  isoL ! ]
e > 34501 isoL  isou ¢ ¢
e > 3468 isoL isoL  isDL
> 3533is0L1 !sOL 1SOL 1SoL !
i > 3550iS0L1 1sOL  isOL  isoL |
i > 35951 isoL  isoL  isoL |
> 36301 iso.  isoL  isoL !
e > 37%01 1soL  iso.  isoL |
S > 38501 ISOL  iSOL  isoL
5 A 'S- > 39501 isoL  isoL  1soL !
ey A > 3990iS0L iSOL  isOL  1SOL !
o > 40501SOL  isSOL  (SOL  iSOL |
‘ > 41%0isOL isOL  isoL isOL |
. > 42%0!SOL  isOL  isOL  isoL !
Tl > 4350:s0L 1S0L 1S0L IsaL P
{" ’ > 4400iS0L ¢ isaL  tsoL |
A, > A4soispL i isoL  isoL ¢
bealy £y > A4%%0isOL ¢ 1SoL  tsoL ¢
Y Ty > 4603:S0L 1 ] 1soL |
ALEEA > A46%01S0L t isoL |
—— > 47S0isOL | t 1so. !
> 4778is0L ! ! !
P T > 4850:80L ¢ ) ] i
§j > 49s50is0L ! ! s :
> SosoisoL 1 ! ! :
>. %1801s0L | ] ] !
L > S5230180L | t ! 1
i > 83001 1 ! : !

e
13

L
i :3
[ 12

Figure 2.5.7.2 Sample TACT Report
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2.6 Inconsistencies with the Cray-1l
In this section, simulator behavior that is known to be ;
inconsistent with the Cray-1l will be discussed. N
1) The simulator does not simulate Cray-1 I/O. v
2) No Cray-l monitor instructions are simulated.

3) The Cray-~l exchange mechanism is not simulated.-

4) Recursive use of vector registers is not supported

5) The simulator floating point format (IBM 360/370)

differs from the Cray-l format. (See section 2.1.3)

6) The 071X2X instruction (Si +AK) produces a normalized

result in the simulator. Not so on the Cray-l.
7) Though the timing of sizeable algorithms has been close

y
&
to the Cray-l timing, with an error in the 1/2% range, |

it is not exact. / -
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3. Simulator Command Descriptions ;
This section describes each of the simulator commands in detail. i
Each command may be abbreviated and the minimum acceptable abbrevia-
tion is underlined. Each command description has the following format:
(1) Purpose - The function of the command.
(2) Prototype - The parameter syntax for the command.
(3) Description - A detailed description of the command.
(4) Examples.

The following syntax is used to describe £he'¢omménds:

'3 B3 Upper case characters must appear exactly as shown.

Y . Lower case characters represent generic parameter names which
b

ﬂ : must be replaced with the actual parameters.

- Where blanks appear one or more blanks must appear.
fﬁf Square brackets are used to denote optional parameters.
1 Ellipsis notation (...) is used to denote the repetition of a
parameter list.
Vertical bars are used to separate parameter alternatives.

3 All commands must be less than or equal to 80 characters in
length. However, a simulator subroutine call may pass a segmented

5 set of commands whose combined length may not exceed 200 bytes. Each

individual command though may not exceed 80 bytes.

3
5
g




AT
BREAK

CALCULATE
CHANGE

CLEAR

COMMENT

cosT

CPACT

DEFINE

B;SPLAY [@fmt-code]
DoMP -
ENDFILE

HELP

IDENT

INIT

LOAD

MAP

MTS

REMOVE

RETURN

RUN

SET

STAT

sTop

TRACE

USE

$MTS~-command

CrU

ENABLE

DISABLE

TACT

Command Summary

p-addr ([skip-cnt]
p-addr [skip-cnt]
expression

symbol new-value
{[p-addr ...]

any text

[fdname [COMPRESS | NOCOMPRESS] [WIDE | NARROW]]
symbol constant{,w|,p|,v]

symbol [,length]

[module name]

command-name

»
»

module-name e

§.0 #2002
ala a4 o

| 4%

he
(s.a.] fdname ... : .l‘
[XREF]
mts-command

symbol

[p-addr] [#issue-limit)
lhs=rhs ...
[FULL]

ON|OFF [fdname] [LEN = VL|trace length]
fdname [NOECHO]

CPU number '
CPU list Tl
CPU list '
STAT| fdname
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AT
Command Description

Purpose :+ To set an AT point at a selected parcel address
Prototype : AT g—addr [skip-count]
E commands to process when the AT point is hit.
- END
Description:

An AT point is set at the specified parcel address. This address
may be in modified octal format, which is the octal word address follos
ed by a parcel code A,B,C, or D, or may be a symbol with parcel addres:
attribute defined by the assembly language program. After the AT com-
mand is entered, the command language will read more command input.
These commands are written, unprocessed, into a scratch file., A
maximum of 9 commands can be accepted. To terminate input; enter
the string "END" on a single line. AT points set at the lower parcel
of a two parcel instruction are ignored.
When the AT point is hit, the scratch file will be opened and
subsequent commands read from that file. The AT file is terminated
with a RUN command which will resume the simulation automatically.
Tc regain control when the AT point is hit, you gpst enter the
command USE'"*MSOURCE* ' when setting up the AT point.
An optional skip-count may be provided when first setting the
AT point. This is a positive decimal number which indicates the
number of times the simulator is to ignore the presence of this AT
point. When this count expires, the AT point will be recognized
and processed as above. N
When the AT point - is hit, the instruction at the p-addr, where ;
it is set, will not have been executed. y

Examples: =
AT 21a 7
DISPLAY SO0 A0 M(33) i
END _-jj

When the AT point is hit, registers S0 AO and memory w

location 33 octal are displayed.

‘ AT
R . Command

AN e e




&l

:j AT 245B 31 )
\?'7 .
i D M(0),10

A)
i ' USE *MSOURCE* r
. END ke
73’&1»'1

&

An AT point is set at location 245B. The first 31 (decimal)
times the instruction is executed, the AT point is skipped. Befor
the instruction is executed again the AT point takes control and

5

*3 displays memory locations thrcugh 10 (octal). Control is then -
:;g given to the user terminal.
&g AT SUBRI
CHANGE A5 A7
END 2
This has the effect of patching a new instruction (A5 A7) ‘
at location with label SUBRI (i.e., A7 is stored into AS). o
]
Error Responses: 7
Invalid p-addr - g
The p-addr is unrecognizable or out of range of the current -
memory size. |
Undefined Symbol - .
The symbol specified is not defined in the current (IDENT) :i
module. ' -
Symbol does not reference a parcel address - l|
The symbol has word address or value attribute. -
Invalid Skip count - -yi
Skip count unrecognizable or negative. o
No room for more Break or At points - -
Y Only forty Break or At points may be set at any one time. N
YR Break or At point already set here -
?ﬁi A Break or At point is already set at this p-addr. ;5
Can't open AT point file -
The command language was unable to open the AT file for x
saving the commands. This could occur if the MTS scratch :
file character is changed from a minus sign. H
' =
| AT COMMAND <
~ 60 ii

--------------------
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BREAK
Command Description

Purpose : To control program flow by setting break points.
Prototype : BREAK p-addr [skip-cnt]

Description: _

A break point is set at the indicated parcel address. The parcel
address may be specified in a modified octal format: an octal word add-
ress followed by a parcel code A,B,C or D, or may be a symbol with par-
cel address attribute. An optional decimal skip count may be specified
and will cause the break point to be ignored the indicated number of times.

The effect of hitting a break point is equivalent to issuing
the command "USE *MSOURCE*". Continuation from a break point is accom-
plished by entering a RUN command. An end-of-file condition from the
terminal (by $ENDFILE or control-c) will cause the command stack (see
«.ﬁ ﬁ section 2.1.1) to be popped. This allows further commands to come

;}3 from a prior USE command or a subroutine call command string. If a
fi .. . RUN command is entered without any parameters, the remaining issue
' limit is used and simulation continues with the broken instruction.
§£ ; No timing information is lost and no additional time is required. 1If

a p-addr is specified on the RUN command, an instruction buffer fetch
is forced and this will alter the timing.

When the break point is hit, the broken instruction has not been
executed. Break points do not modify the Cray-l memory, so they may
be set before the program is loaded. A maximum of forty BREAK and AT
points may be set. Break points on the lower parcel of a two parcel
instruction are ignored. The user is not notified of this.

o .
52” Examples: -
i BREAK 252
N
e o BR 138 18

B - LABI

s
£ald

Error Responses:

S Invalid p-addr -
The p~addr is unrecognizable or out of range of the current
memory size.

|
e
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33 . .
& : Invalid skip count -
« Skip count unrecognizable or negative. ;
25 No room for more BREAK or AT points - "
\1“ .
Y Only forty BREAK or AT points may be set at any one
it .
;ﬂ time.
Break or At point already set here -
> X . s =
i A BREAK or AT point is already set at this p-addr. o
¢ Undefined Symbol - .
o The symbol specified is not defined in the current (IDENT)
module.
ﬁﬁ Symbol does not reference a parcel address - N
W3 . o
) The symbol has word address or value attribute. R
-/
1 .
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CALCULATE
Command description

A
Y

Purpose : To calculate integer offsets for memory displacements

AN S

Pretotype : CALCULATE <symbol><op><symbol>...<op><symbol>

Description:

e |

KA

The integer expression is evaluated strictly left to right. Only
four operators (<op>) are allowed: *,+,-,/. The result is displayed
in decimal, octal, and modified octal. The operands (<symbol>) may be
replaced with any pre-defined or user defined symbol (see the DISPLAY
command) or a constant as follows

]
Ya'e

X

nnn - for an octal ihteger constant
O'nnn'- for an octal integer constant
D'nnn'- for a decimal integer constant.

of any 64 bit (e.g., S-registers) symbol taking part in the computa-
tion. ’

:i All operands are interpreted as integers with only the lower 32 bits
Examples: )

CAIC 0'131'+D'387'
* CALC Al*D'50'+ B.R1

N
"

CALC M(32)+s4

Exrror Responses:
Calc unable to recognize operator -
Bad operator seen in expression.

ved U7

Calc unable to recognize operand -
Bad operand or invalid pre-defined symbol seen in expression.

(X

RS
m)’

:

[N N

CALCULATE command

3
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1 : CHANGE

o . Command Description -
E g
E}' Purpose ¢ To alter Cray-1l storage locations in the simulator

E Prototype : CHANGE symbol new-value -

Description: =

-3:.3 The CHANGE command allows any program accessible storage loca-

EH tion in the Cray-l simulator to be changed. The symbol parameter may B

Lx "be replaced with any of the predefined symbols which may be changed. -
b See the DISPLAY command description for a list of the valid symbols.

The new-value parameter may be replaced with any pre-defined i

symbol or one of the following constants: ’

nnn - for an octal integer .

o'nnn'~ for an octal integer constant |

D'nnn'- for a decimal integer constant .
nnn.nnnDnn - for a double precision floating point constant. :E:Z

Examples:
CHANGE Al 0'377' _ gﬁ
CH M(55) 2.5D9 )
CH V3 (14) 2.32D27 . “
CH = M(5@) M(149)
CH ' B.BREG T.TREG .

cH M(1) D'-1234567890123" e

Error Responses: -
Change unable to modify symbol - =

See the DISPLAY command for a list of the symbols that
may not be changed.

Change unable to evaluate symbol -
The symbol is not a legitimate symbol E

64 CHANGE command

p . L L T AT S L MU S D . - - - - . ~ -~ - . e
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CLEAR
Command description

Purpose : To clear break points and at points

PRI A
walaa

& o

Prototype : CLEAR ([p-addr ...]

g Description:
& The CLEAR command is used to remove any break points or at
. points that have been previously set. If no parcel address para-
if meters are specified, then all break and at points will be cleared.
- If one or more parcel addresses are supplied as arguments to the
g; CLEAR command, then the break or at points set at these locations
will be cleared.
IR
L Examples:
3 CLEAR
ﬁ CL 21A 35C 74D LOOPl

Error Responses:
Invalid p-addr -
The p-addr is invalid or out of range.

¥
&

No break or at points are set -

Nothing set at this address -
Undefined Symbol -
The symbol specified is not defined in the current (IDENT)

e 2

o
d oo module.-
! Symbol does not reference a parcel address -
 !55 The symbol has word address or value attribute.

|

CLEAR command
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. routine call to the simulator COMMENT commands in the subroutine com-ji
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COMMENT
Command description

Purpose : To provide documentation about a simulator session
Prototype : COMMENT any text string

Description:

The COMMENT command is useful for documenting a terminal sessionlg
or for generating advisory notices from AT command files or subroutine
call-files. With AT command files, the commands are not echoed to th-: |

-3

output device, however, COMMENT commands will echo. Also, on a sub-

mand string will echo regardless of the value of the echo parameter. A
Both of these features are useful to remind the user of any critical

information. -

Examples: ﬁ-
COMMENT ANY TEXT STRING MAY BE SUPPLIED.
co THIS AT POINT ALTERS S3. i
Cco DON'T FORGET TO SET UP LOCATION 34

Error Responses: -
None

[ e

» N
»

-

66

COMMENT command
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Purpose :
Prototype :

.

Description:

AT

[ 72

information.

B

RTC

7

HCST COsT

U

1)
2)

f’«:" N 47 'z

v 4)
E 5)

g§ 6)
: 7
§§
8)
&
Examples:
COST

3%

None.

# INSTR. ISSUED
HAST CPUy TIME

PRINTING (CrISTS
INSTRUCTICN RATS

INSTRUCTION COST
HOST / CFAY=1 TIME

!! - 3)

S G
PATRT R RS 3 SO W NI AT OR. 1

COST
Command description

To print out processing costs.
COSsT

The COST command will display simulator processing cost

The cost figures cover the period from program

start-up or the last INIT command to the present.
The following information is displayed:

STMULATICM CAS™S SINCF LAST INIT - TRISLV

ea2,5 INSTR,/8EC

0.22Q0 ¢ / 1000 INSTR.
0.0

: 0

: 315

: 0.342 SEC

T s 0.074 LOW PRIDRITY

: ¢ 0.0 FOR 0 LINES 0 PAGFES

The number of simulation clock periods.

The number of instructions issued.

The host (machine oa which simulator is running)
cpu time.

The host dollar cost and job priority.

The printing costs (useful for CPACT output).
The simulation rate in issued instructions per host
cpu second.

.

The simulation cost in dollars per thousand issued
instructions.

Error Responses:

.......

o
A
-

v .
"o
..

A
.
.
* e
.
.

p

The ratio of host cpu time to the Cray-l cpu time
using the number of simulation clock periods multi- o
plied by 12.5 ns. L
o
9
t\'
67 COST command E
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CPACT
Command description

Purpose To control the generation of the clock period

activity report.
Prototype : CPACT [fdname [COMPRESS | NOCOMPRESS] [WIDE | NARROW] ]

Description:

The CPACT command enables and disables the clock period activ-
ity report. If the fdname (MTS file or device name) is supplied,
CPACT is enabled and the report is directed to the specified fdname.
If no fdname is supplied CPACT is disabled. It should be noted that
enabling CPACT will increase the simulation cost over the non-timing
simulation mode by roughly a factor of forty to fifty. If timing
is off (see the SET command) when CPACT is enabled, CPACT will turn
TIMING on.

Since one line of output is generated for each clock period of
simulation time, quite a.bit of output can be generated fairly fast.
To keep cost to a minimum, under MTS, CPACT should be sent directly
to *PRINT*. 1If COMPRESS is specified, identical hold issue lines -
will be suppressed. COMPRESS is the default.

The normal CPACT report is suitable for printing on 132 column
printers. If NARROW is specified or fdname corresponds to the user's
terminal, the report will be condensed to 80 columns.

The report prdduced by CPACT is described in more detail in sec-
tion 2.5.

Examples: -

CPACT *PRINT¥*

CP

CP *SINK* NARROW
Error Responses:

CPACT already enabled -
CPACT with an fdname was given when CPACT was already
enabled.

CPACT command
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CPU
Command Description

Purpose: To specify the indicated CPU as the current CPU
Prototype: CPU cpu number

Description:

The CPU commznd is used to change the current cpu to the
specified cpu. The current cpu is the cpu to which all commands
issued apply (specifically TRACE, CPACT, DISPLAY and CHANGE).
The CPU command can be thought of as a global scope specifying
command. Instead of specifying to which CPU each command per-
tains, a global CPU number is specified, and all subsequent
applicable commands pertain to the specified CPU.

To enable instruction tracing on CPU 3, the commands "“CPU
3" and "TRACE ON" are given. To change the program counter of
CPU 1 (i.e., prior to a RUN command) the commands "CPU 1" and
"CH P MAIN" are given.

Examples:
CPU 2
CPU 4

Error responses:
Invalid CPU number -
Issued when an incorrect value is specified for
the CPU number.

CPU command
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DEFINE
Command Description

Purpose : To define a new symbol
Prototype : DEFINE symbol constant[W|P|V]

Description:

The DEFINE command adds a new symbol to the symbol table.
It may then be used by other simulator commands.

The value of the symbol will-be the constant. If the con-
stant is octal, the type of the symbol will be word address.
If the constant is modified octal, the type will be parcel
addre;s. . A

The default type may be overridden by specifying W, P, or
V. If this is done, the symbol will be defined as type
word address, parcel address, or value, respectively.

The symbol is added to the symbol table of the current IDENT;
if there is no governing IDENT, then an error will result. The user
must issue at least one IDENT command before using the DEFINE command.

Examples:
DEFINE START 22B
DEF ARAY1 100
DEF BNAME 77V

DEFINE command
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DISABLE
Command description

Purpose: To deactivate a cpu.
Prototype: DISABLE cpu list
Description:

The DISABLE command is used to "turn off" a cpu. Any cpu
except the current cpu can be specified by the command.

Examples:
DISABLE 2 3 4
DISA 3

Error responses:
Cannot disable current cpu -
issued when trying to disable the cpu last
specified by the CPU command
Invalid cpu number -
Issued when an incorrect value is specified in
the CPU list.

DISABLE command
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DISPLAY

H Command Description E
Purpose : To allow the user to examine the registers and memory of .
the simulated Cray-1l. :j
. |
Prototype : DISPLAY[@fmt] symbol[,length] ... o
-

Description:

The DISPLAY command provides a facility through which the user may
examine Cray-l registers and memory. The location to be displayed (sym-
bol) is represented by any of the predefined symbols shown in the table .
below, or a user defined symbol. -Subsequent contiguous locations can be "
displayed by providing a length parameter, separated from the symbol name

by a comma. The length parameter may be a symbol name (e.g., VL) or a =~
decimal integer constant. Also noted in this table is whether or not the 1
CHANGE command will alter the symbol. X

Each symbol has a default display format associated with it. The 2
default may be overridden for all symbols on the command by appending -
display format codes (fmt) to the command name. The format codes string .

is prefixed with "@". These format codes are defined as follows. K
FORMAT DISPLAY
. 64° 24" 16" R
35 Code Meaning Operand operand Operand
E Floating pt. Floating pt. N.A. N.A. P
“h F Fixed pt. 64' integer 24' integer 16' integer ﬂ
O Octal 64' octal 24' octal 16' octal
P Parcel 4 octal parcels N.A. 16' octal q
; M Modified Octal 4 M. octal parcels 24' M. octal 16' M. octal .
1’!* I  Instruction 4 Instr. Mnemonics N.A. Instr. Mnemonic J
S Ssymbolic Symbol Symbol Symbol

o -5
’\3 R
‘52 User defined symbols are those symbols defined by the assembly lan-

guage program and contained in a relocatable load module. These symbols ﬁ
b may be one of three types: parcel address, word address or value. A
‘ parcel address symbol is treated as a 16 bit operand, and names a parcel

i  . DISPLAY command .

............................................




memory location. A word address symbol is treated as a 64 bit operand,
and names a word memory location. A value symbol may be used to name
an A,B,S,T or V register.

B

The only user defined symbols which may be referenced are those
in the current module. See the IDENT command.

- ¥
A Yy

£
2

For the operand - format code combinations which are not applicable,
no value will be displayed.

;
¢
aCat

Pre-Defined Symbol Table

7

AW R e
¥

DISPLAY command

~ o

?f} Cray-1 Region
q Symbol storage length Change
; name location allowed? allowed?
’ii Vn(elt) Vector registers Yes Yes
: Sn Scalar registers Yes Yes
5§3 Tnn T-registers Yes Yes
z An Address registers Yes Yes
Bnn B-registers Yes Yes
g ! M(addr) Memory, words Yes Yes
: IM(p-addr) Memory, parcels Yes Yes
,: g P P-register No Yes
CIp Current instruction parcel No No
gs NIP Next instruction parcel No No by
: = LIP Lower instruction parcel No No %
B VM Vector mask register No Yes E:
. & VL Vector length register No Yes ¥
{5 RTC Real time clock No Yes ;
i) XP Exchange package No No '.
' - IBn(elt) Instruction buffers Yes No
RF Relocation factor No Yes i
1 FLAGS FLAGS register No No a
:.% LA Limit address register No No
- BA Base address register No No ..Z:
ﬁ MSIZ Value of memory size No No i
MODE Mode register No Yes .,
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n or nn is a register number
elt is an element index within a register
addr is a word address, may be an expression

p-addr is a parcel address, may be an expression

Examples:
DISPLAY Al S3 A.LOOPCNTR V.ROW1 SUBRTN1
DeO AO,8
D@PI IM(p),10 MAIN, LENS
DEEFO VO0(0),VL

Error responses:

Invalid format code -

see format code list on page 64.
Invalid symbol
Invalid integer

DISPLAY command
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9. DUMP
' Command description
1; A
S:éi Purpose : To display the contents of all data areas of memory.
13 Prototype : DUMP [module-name]
h Description:
S EX The DUMP command displays the contents of memory addressed by
73 A all symbols of type word address. The memory locations are displayed
?fgg‘ in floating and fixed formats.
. 1f a module-name is specified, only the module with corresponding
4 Fﬂ IDENT name is dumped.
kYt
§
: Examples:
& -
' DUMP
DU SUBRI

Ry

Error Responses:
Module not loaded -

55 s ]
* e

The specified module-name is not the name of any loaded module.
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ENABLE
Command description ..-.
“;3 Purpose: To activate other cpu's for multi-tasking o
5 Prototype: ENABLE cpu list
Bt Description:
The ENABLE command is used to "turn on" a cpu. The RUN -
command applies to all cpu's activated by the ENABLE command. )
Any or all of the cpu's can be specified by the activate command. ;l
Up to four cpu's (1, 2, 3, 4) can be enabled in the current ver- -
X sion of the simulator; this can readily be changed in the source ",
i code. o
s
R~
¥
s Examples: P
ENABLE 2 3 4
ENA 3 4

Error response:

s cpu already enabled -
Issued when a cpu specified in the list is already
activated

Invalid cpu number -

;%g Issued when an invalid number is specified in the -
¥
gl cpu list
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ENDFILE
Command description

Purpose : To signal an end~of-file condition to a USE command

. I
Sl y

Prototype : ENDFILE

Description:

|

)

PR
;s .

.
~

This command terminates the effect of the current USE command.
It pops the command stack causing input to be read from the previous
source. See section 2.1.1 for more information about command input

controcl. If a USE command is not in progress, ENDFILE is a no-op.

) That is, ENDFILE will not terminate a call-file or an AT-file.
\
i Examples:

" ENDFILE

E

:3]

Y

t

144'
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HELP
Command description
"
Purpose : To provide on~-line information about command syntax
and function. o
Prototype : HELP [cmd-name ...]
Description: -
The HELP command takes as parameters the simulz<or command
names. For each command name (cmd-name) given, a brisi description é;
is printed. A keyboard attention mayv be used to abort the HELP
output. If no command name is provided a list of the legal commands {5
D
is printed. _ : ' -
Examples: i
HELP DISPIAY CHANGE .
HELP -
~
H HELP
Exrror Responses: -7

I can't help you -

The file containing the HELP responses doesn't exist or o
couldn't be accessed.

Error during HELP -

An error occurred during I/0 to the output device.

HELP command
78 -
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IDENT
Command description

Purpose To determine the subset of user defined symbols

which may be referenced by other commands.
Prototype : IDENT module-name
Description :

Relocatable modules loaded by the simulator contain the defin-

- itions of all symbols defined in the assembly language program. Since

assembly programs can be assembled and loaded independently, these
symbols may not be unique. Only those symbols defined within a single
module may be used at any given time.

The name field on the IDENT command must be the name contained on
the IDENT record of one of the loaded modules. Only the symbols con-
tained in that module will be available for use by other commands.

Examples:
IDENT MAIN
~ ID SUBROUTN

Error Responses:
Module not loaded -
The name specified did not appear on the IDENT card of any
loaded module.

IDENT command
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INIT
Command Description

BB

e
i
o’ N
% Purpose: To re-initialize the simulator )
Prototype: INIT [STAT] = |
;§ Description: S
E, The INIT command allows re-initialization of the simulator 2
2 state between runs of a program. It has the following effects: £
l. All timing information is initialized. _
} 2. All report information is initialized. .‘-;
3. The simulator state is cleared.
% 4. The CPU clock is cleared.
' 5. The CIP, NIP, LIP, and instruction buffers are invali- -
dated. R
INIT will not alter the A,B,S,T,V,VL,MODE,P, and VM registers or i'.:_‘
simulator memory.
If the STAT parameter,is specified, then only the timing in- i
formation and the CPU clock are initialized.
~a
Examples: W
INIT !'
I STAT ,
i 2
i
by 3

INIT command
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LOAD
Command description

Y

Purpose : To load programs into the simulated CRAY~-1 memory.

Prototype : LOAD [s.a.] fdname ...

oy AT

vy

Description:

The LOAD command opens the file or device (fdname) and reads
one or more load modules from it. The load modules may be absolute
or relocatable. See appendix K for a discussion of load module
formats.

Absolute load modules are loaded at the address specified in

the module. The octal starting address (s.a.), if specified, pre-
ceding the fdname, is ignored.

P

o
s

s ]

Relocatable modules are loaded at the first available 16 word
boundary, unless an octal starting word address (s.a.) is specified.
Modules will be relocated and linked by the loader.

e o

Examples:
LOAD OBRJ
LOAD 30 FILEL
LOAD *SOURCE*

Exrror responses
Unresolved externals exist -

e

A relocatable module references a module which is not loaded.

[ PLEP)

A

The user will be prompted for more loader input.

P
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MAP

Command Description

Purpose : To display the locations of all loaded modules
Prototyvpe : Map
e Description :
x The MAP command will display the names, starting locations, and
:?E lengths of all loaded modules.

Examples:
MAP
MA

e

e
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MTS
Command description

L'
ety

Purpose : To provide a command interface between the

F
o ¥
2

simulator and MTS. (

s

w,
Py

Prototype : 1. MTS [mts-command]
2. Smts-command ‘

wd

i Description:

?;,E The MTS command allows the user to pass commands to MTS
et = . : . .

5 ii without stopping the simulator. 1In the first prototype an

optional MTS command may be supplied. Return is made to MTS
with MTS processing the command. The user may restart the
simulator with the $RESTART MTS command. The second prototype
allows the issuing of a one-shot MTS command. That is, the
command is passed to MTS but control returns to the simulator
automatically when the command finishes. Any command input

to the simulator that is prefixed with a dollar sign is treated
as one-shot MTS command.

iy

§§ ,Examples:

MTsS

M DIS VMSIZE
$EMPTY -RPT
$EDIT TRIDEC
$SDs

B
-y

)

K Error Responses:
- None.
¥
BN ¥
7y
;@ i%
‘%
E
& %
? MTS command
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REMOVE
Command Description

Purpose: To remove a symbol from the simulator's symbol tables.
Prototype: REMOVE symbol
Description:

The specified symbol is removed from the symbol table of
the current IDENT (set via the IDELT command). If an
IDENT command has not been previously given, the issue of a REMOVE
command will cause an error.

Examples:
REMOVE START
REM ARRAY1

Error Response:
symbol is not defined.

REMOVE command
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RETURN
Command description

L Purpose : To allow the simulator to return to its caller.
> Prototype : RETURN
Description:

The RETURN command is used to force the simulator to return
to its caller. Normally, when the simulator is called as a sub-
routine, the CrRAZ-1 interface subroutine will automatically place
a RETURN command at the end of the call-file after all other user
commands. As the call-file is processed this RETURN will eventually
be executed. To cause an early return to the caller, the user may
issue a RETURN command, thereby skipping the remaining commands in
the call-file.

A RETURN command issued when running the simulator stand-alone
is equivalent to a STOP command.

Examples:
RETURN

RETURN command




RUN
Command Description

Purpose: To begin simulation of a Cray-M assembly program
Prototype: RUN [#issue limit]
Description:

The RUN command is the only simulator command that actually
begins the simulation. All active CPU's begin execution at their
current program counter locations.

Before the initial RUN command is given, the program counters
of all the active cpu's must be given initial values. The start-
ing location must be specified by using the CHANGE command:

CPU cpu number

CHANGE P <Start address>

This alters the program counter for the specified cpu. An error
message is issued if an active CPU has an uninitialized program
counter when a RUN command is given.

The optionai iésue limit parameter can be used to control the
gsimulation. This must be a positive decimal number prefixed by a
pound sign (#) and is used to prevent run-away programs or to allow
single stepping through a program. If an issue limit is not pro-
vided, the remainder of a previous issue limit is used or if no
remainder is left, a default value of 1000 is supplied.

There are many conditions that can arise to stop the simulation.
Normally, a run command will terminate when an EX instruction (004000)
is executed and this is the usual procedure to stop a program. Other
common conditions that stop simulation are breakpoints, at-points, or
issue limit expired. The exceptional conditions that halt simulation
are discussed in section 2.2.

Examples:
Run #5000

RUN command
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The last example illustrates how the user would single step through

the program, executing one instruction at a time.

Error response:

-
i ﬁg CPU program counter not set -

b e

/3 Issued when a CPU's programcounter has not been

initialized.

2
i

Invalid issue limit -

Issued when an incorrect issue limit is specified.
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SET -
4 ; Command Description -
a
- Purpose : To permit alteration of user setable switches )
Prototype : SET 1lhs=rhs o
Description: =

The SET

command allows the user to control some of the feat- 5}

ures of the simulator. Each parameter is composed of a left hand

side (lhs), an equal sign and a right hand side (rhs). The left

hand sides are the keyword names and the right hand sides are

the new keyword values. The table below lists the legitimate

left hand sides followed by a discussion of each one.

Keyword Keyword values Default ;I
EFI ON, OFF ON o
ISLIMIT positive integer 1000 .
. MACHINE CRAYLl, CRAY1-A CRAY1 =
) MEMORY SECDED, PARITY SECDED .
* OUTPUT any fdname *MSINK* i
TIMING ON, OFF OFF
TASK = ON, OFF OFF e
EFI default: OW
The EFI (enable floating point incerrupt) keyword allows .‘
user control of interrupts caused by. B
1) Exponent overflow : -
2) Exponent underflow =

-'3) Floating point division by zero.
If EFI is ON, the

above three conditions will stop simulation. If =
EFI is OFF, these

three conditions will be ignored when they occur.
When the simulator starts up EFI is on by default.

EFI is a mode .
bit in the Cray-l mode register and the Cray-l instructions EFI and

DFI can also set or clear this bit.

SET command
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2 ISLIMIT Default: 1000 ]
ﬁ;& The ISLIMIT keyword allows the user to change the default b
h i instruction issue limit. If no issue limit is specified on the 3
| RUN command and no remaining issue limit exists from previous ﬂ

~0

run commands, the default instruction issue limit is used. A

positive decimal integer must be specified on the right hand

A3

side. When the simulator starts up this keyword has a default

value of 1000. Setting ISLIMIT to one is useful for single stepping
through the program.

&)

3
o

MACHINE Default: CRAY1
This keyword is intended for selecting the use of experimental

-
‘.

architectural modifications to the Cray-l simulator. The current
legitimate keyword values are "CRAY1" and "CRAY1-A", with default
being "CRAY1l". When CRAYl is selected, normal Cray-l timing is

in force. Currently, selecting CRAY1-A invokes only one Cray-1l
architectural modification: that of improved memory bandwidth.
With CRAY1-A, the data rates (in words per clock period) for block
transfers (instructions 034-037, 176, 177) to and from main memory
are shown in the table below. These data rates are a function of
the address increment (K) used by the block transfer (one for 034-
037, (Ak) for 176, 177).

[
Tatats

| R

s

i

K mod 16 Data Rate (wds/cp) K mod 16 Data Rate (wds/cp)

0 .25 8 .5

5; 1 4 9 4

-‘ 2 2 10 2
, E} 3 4 11 4
4 1 12 1

% ﬁi 5 4 13 4
w 6 2 14 2
7 4 15 4

&

When CRAY1l-A is selected, chaining a vector arithmetic instruction-
off of a vector memory load (176) is disallowed. This is because

of the possible imbalance in data rates between the two instructions.
In general, this should not be a hardship since a reordering of
vector instructions usually allows one to stagger the vector memory

references to run in parallel with the arithmetic vector instruc-
tions.

IR =5
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MEMORY g Default: SECDED

The first Cray-l built by Cray Research Inc. has a memory
which is pfotected by parity checking only. This was later found
to be unsatisfactory and subsequent machines were built with SEC-
DED (single error correction - double error detection) memory
protection. By introducing SEC-DED on the memory, the access
path to memory is one clock period longer thanon <he parity checked
memory. This timing difference is user selectable .~ the simulartor.
By setting MEMORY to the value PARITY (e.g., SET ME . ORY=PARITY),
timing with the parity checked memory is possible. When the simu-
lator starts up the default memory timing is SECDED.

OUTPUT o Default: *MSINK*

The OUTPUT keyword controls the file or device to which the
simulator sends all normal output (i.e., not prompts or error mess-
ages, which always go to the terminal). Normal output includes in-
formational messages, DISPLAY, HELP, and STAT output. When the
simulator starts up OUTPUT is set to *MSINK* (the terminal). With
the SET command OUTPUT may be set to another file or device. A key-
board attention will switch the output back to *MSINK* automatically.

TIMING Default: OFF

The TIMING keyword controls simulator resource timing. If
TIMING is off, only the results of instruction execution are com-
puted. If TIMING is on, resource timing, reservation and issue con-
straints are simulated. By default, TIMING is off when the simulator
starts up. Setting TIMING on increases the simulation cost by a
factor of eight to ten. TIMING may also be enabled and disabled
by the ERT and DRT instructions respectively. See section 5 for
more explanation on ERT and DRT. Timing must be enabled to produce
the CPACT report. However, the enabled or disabled state of CPACT
is independent of the setting of TIMING. That is, turning TIMING
on and off won't affect the enabled state of CPACT. However, the
CPACT report is not producted while TIMING is disabled, but it will
be resumed when TIMING is turned back on.

90 SET command
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TASK

¥ The TASK keyword controls gathering of task statistics.

Setting TASK equal to ON also enables resource timing (TIM=ON),

which increases simulation cost by a factor of 8 to 10. The

default state of TASK is OFF. When TASK is turned on, the A

simulator prompts for the name of a file containing task de-

finitions. The contents of the file control the format of the

TACT Report as well as the definition of tasks is simulator ﬁ

memory. ’
A task is a section of code that has a unique entry and #

exit point. When a cpu enters the task, the task's name is .

entered that cpu's column in the TACT Report. When the cpu

passes through the exit poiht, the task name is removed from the

cpu's column. Upon entry and exit from a task, timing information

is recorded for later use in the TACT STAT report. For a detailed

description of the Task Definition file, see Appendix K.
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¢ STAT ;’
. Command description
)
. Purpose : To print out Cray-l resource usage statistics
v Prototype : STAT (FULL] b,
iy Description: N
E This command will print on the current output device a sum- -
51 mary report of Cray-1l resource usage. This report is composed "j',‘:
33 of the following three sections: ‘
:$§ 1. Vector Usage counts R
2. Floating point result counts ©
Log 3. Data traffic counts -
fé The vector usage counts section is a timing measure of the 2
f% program's vector use of the Cray-l vector functional units. The

[ $
a

2 O

data for this section is only collected when TIMING is ON. If
- TIMING is OFF when the STAT command is issued, this section will
. not be printed since, most likely, it would all be zero.

The floating point result counts section is a measure of the
program's use of floating point computation. Floating point add-
ition, multiplication and reciprocal'operations are tabulated for
both vector and scalar instructions. The data for this section
is alwavs collected regardless of the state of TIMING.

The data traffic counts section is a measure of the data

LB N

A

KL

SN

- (operands & results) flow throughout the Cray-l. Each major Cray-1 a
data path is illustrated on a fiqure, that is part of the report,

' along with the amount of traffic oneach path. Also included in i:
__ ' this section are some calculations of ratios and percentages *
based on the data traffic statistics. The formulas used for each "\":
5y calculation are printed beyond column 80 of the line containing
’ the calculated number. Normally, these formulas won't appear on

an 80 column terminal, but will be printed if the STAT output is _

, diverted (via SET OUTPUT=*PRINT*) to the line printer.

The data for this section is always collected regardless of "
"‘ : the state of TIMING. This section will not be printed unless the '

FULL option is specified on the stat command. The INIT command _-'-

. will reinitialize the STAT data collection. a

. ::

STAT command
. 92 -
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g This discussion is intended as a brief command description. N
For a detailed discussion of both the STAT and CPACT reports
l see section 2.5.

Examples: 3

STAT ,
STAT FULL y

B SET OUTPUT=*PRINT* o
STAT ‘ : .

SET OUTPUT=*MSINK* .;::;‘::

Exrror responses: hed

g Extraneous parameter on STAT command - ,«.
This occurs if FULL is misspelled or improperly abbrev- ;

: iated. / A
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STOP *}J
. Command description '

. Purpose : To terminate execution of the Cray-1 simulator.

Prototype : STOP

TS
[y Wy -
R —

Description:
The STOP command terminates execution of the simulator, re- S
leases virtual memory used by the simulator and returns to MTS.

L]
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Examples: o
STOP

ST
—

Exrror Responses:

None. a
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TRACE
Command Description

Purpose ¢ To control the generation of the trace output report,
a report of data transfers for each instruction.

Prototype : TRACE ON|OFF [fdname] [LEN = VL|trace lengthl]
Description:

The TRACE command enables and disables the trace output report.
The trace output report consists of the instruction parcel address,
instruction mneumonic, and the contents of relevent registers. If
fdname is not specified the output is sent to the fd specified by
the SET OUTPUT fd command (the default is *MSINKY¥*).

When "LEN = VL" is specified all results produced by vector

operations will be displayed. 1In the case of B and T block transfers

all elements transferred will be displayed. If "LEN = n"

(0 £nsg 6410) is specified n elements are displayed on vector opera-

tions. The minimum of n and the block transfer length will be dis-

played for B and T block transfers. (The default value is LEN = VL).
The trace length may also be set using the SET command: "SET

LEN = trace length". The following page shows a trace output example.

EXAMPLES :
TRACE ON
T ON -A L=1g
T ON L=vVL
T ON LEN=2g .
T OFF

ERROR MESSAGES:
ERROR - INVATID RIGHT HAND SIDE: rhs (e.g. LEN = = 1)
ERROR - INVALID LEFT HAND SIDE: 1lhs (e.g. LENT = 10)
-+ - #a% INVALID TRACE COMMAND PARAMETERS
##% INVALID TRACE COMMAND FDNAME

95 TRACE command
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USE
Command description

- 1

Purpose : To switch the command input stream to a file.
Prototype : USE fdname [NOECHO] R
Description: -
v This command allows the user to put a long or frequently used §§
command sequence in a file and have the simulator process those
E commands from that file. The fdname parameter is replaced with the S
o

name of an MTS file or device from which the simulator will read
subsequent ¢ wmands. Commands read from the file will automatically
echo onto the current output device unless the optional NOECHO
parameter is specified. _

Any end-of-file condition or an ENDFILE command will terminate
the USE command. This will pop the command stack causing input to
resume with the previous source. The command stack is fifteen levels
deep, allowing the user to nest USE commands as desired.

A keyboard attention may be used to abort any and all outstanding
USE commands by resetting the command stack. This will cause the
terminal to be current input device.

AR
f
Dl A

' §
SN

RS e
ad B

§1
o
Examples: |
USE DISPFILE e,
USE *MSOURCE* - to read from the terminal )
U  CMDS NOECHO 3

Error Responses: >
USE command unable to open file - ;

The given fdname doesn't exist or access not allowed.
FDUB command stack overflow-

Attempt to nest more than 15 USE commands.

USE command .
A.‘6 : .1
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4. Cray-M Simulation Costs

Because instruction-level simulation is admittedly costly,
it is important to utilize only the level of simulation (numerical
versus timing) and the reporting level appropriate to the need.
Fortunately, the interactive nature of the simulator makes it
possible to switch these levels on and off during a run; the most
costly levels are rarely required for an entire simulation.

Table 1 gives the costs of running 1000-5000 instructions with

a variety of simulation and reporting levels. (Note that semaphores
and shared registers rotate without timing on (see Appendix E)).
Among the figures given, the most significant appears to be

(a) a 8970:1 speedown of uniprocessor CRAY-1l time to Amdahl
time; the simulation costs increase approximately linearly
with the number of processors.

(b) a 3.3:1 ratio of costs between simulation with timing on
and timing off, per processor; this ratio has been found
to be as high as 5:1 for highly vectorized code.

As a benchmark case, a million clock, 4-processor run costs

approximately $100 at minimum rates (4-7 am) and $500 at regular
rates.

97
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g TIM=OFF 1.52
TIM=ON 2.07
4 8970
iz TRACE oN*d 88
o cpact? 72
*
+ TIM=OFF
A

Table 1.
(20% normal rates), approximately 19¢/sec; ap-

proximately 2.4 clocks/(instruction issue) (33
MIPS) per processor in code used.

2
1.32
3.88

17200
63
130

Printing costs not included

Number of Processors

4
1.30
9.23

37500
46
250

Instructions summed across all processors

W N A AT VL N (Tl T L ¥

Units

¢/kiloinstruction*
¢/kiloclock

Amdahl time/CRAY-1 time
¢/kiloinstruction*
¢/kiloclock

Simulation costs; minimum rates used

:x*aT
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Appendix A.

il

Summary of Crav-l Timing Information .

" This material has been borrowed from the Cray-l Reference ;%
Manual, publication number 2240004, by Cray Research, Inc. ~
x-;{

~ When issue conditions are satisfied an instruction completes in a fixed o
amount of time. Instruction issue may cause reservations to be placed 52

on a functional unit or registers. Knowledge of the issue conditions,

- instruction execution times and reservations permit accurate timing of 3
_ code sequences. Memory bank conflicts due to I/O activity are the orﬂy _
- om-ntefmpremtmmy S . * ﬁ
R _INST TONS 3
Four conditions must be satisfied for issue of a scalar instruction: 2
l.: The functional unit sust be free. No conflicts can arise with other i
' scalar instructions, however vector floating point instructions
reserve the floating point units. Memory references may be delayed 53
dus to conflicts. _ A
2. The result register must be free. g
3. The operand register must be free. '
4. Issue is delayed 1 clock pe'r'lod if a result register group fnput path ;i
ot
cunflict would exist with a previously issued instruction. One input =
path exists for each of the four register groups (A, B, S and T). 1
Scalar instructio.s place reservations only on result registers. A result ~ &
register is reserved for the execution time of the instruction. No it
reservations are placed on thé functional unit or operand registers. -
A transmit scalar mask instruction to Si (073) instruction {s delayed o
by (VL) + 6 clock periods from the issue of a previous vector mask 5
(175) instruction, and is delayed by 6 clock perfods from:the issue
of a preceding transmit (Sj) to VM (003) instruction. ﬁ
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Execution times in clock.periods are given below. An asterisk indicates
that issue may be delayed because of a functional unit reservation by a
vector instruction. Memory may be considered a functional unit for timing
considerations.

(A=A register, M=Memory, B=B register, S$=S register, I=Immediate, C=Channel)

24-bit results:

A-==M 11* A== 4
M-—A 1* A~ A+A 2
A-<+8 1 A -=— AxA 6
B-—A 1 A ~<—pop(S) 4
A=35§ 1 A ~—12¢c(S) 3
A1 1 VL A 1
64-bit results:
So—M ' 11~ S = S4§ 3
M-S 1> S~=S5(f.aid)S 6*
S T 1 S +—=S(f.mult)S ™
T —S$ 1 S -—S(r.a.) 14*
§ -1 1 S Yy 5
S =—5(l0g.)s 1 V-5 3
S «=S(shift)l 2 S VM 1
S =+—S(shift)A 3 S <=—=RTC 1
S —<=—S{mask)1 1 S A 2
RTC ~—§ 1 VM ~—$§ 3

* Issue may be delayed because of a functional unit reservation by a
vector instruction. Memory may be considered a functional unit for
timing considerations. '

VECTOR INSTRUCTIONS

Four conditions must be satisfied for issue of a vector instruction:

1. The functional unit must be free. (Conflicts may occur with vector
operations.)

2. The result register must be free. (Conflicts may occur with vector
operations.) '

3. The operand registers must be free or at chain slot time.

4. Memory must be quiet if the instruction referemces memory.

Vector instructions placé reservations on functional units and registers
for the duration of execution.

1. Functional units are reserved for VL+4 clock periods. Memory is
reserved for VL+5 clock periods on a write operation, VL+4 clock
periods on a read operation.
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3 2. The result register is reserved for the functional unit time iﬁ !
§ +(VL+2) clock periods. The result register is reserved for the B i
; functional unit +7 clock periods if the vector length is less than pY §
' 5. At functional unit time +2 (chain slot time) a subsequent ° Py
. instruction, which has met all other issue conditions, may issue. This E! !
% process is called "chaining." Several instructions using different ¥ E
; functional units may be chained in this manner to attain a significant = g
enhancement of processing speed. v
; 3. Vector operand registers are reserved for VL clock periods. Vector 3;‘1
§ operand registers are reserved for 5 clock periods if the vector N
7 length is less than 5. The vector register used in a block store to = ) N
B ‘memory (177 instruction) is reserved for VL clock periods. Scalar | iﬁ :
3 operand registers are not reserved. )
g Vector instructions produce one result per clock period. The functional :f %
" unit times are given below. Tﬁe vector read and write instructions !
| . (176, 177) produce results more slowly if bank conflicts arise due to ii
? the increment value (Ak) being a multiple of ét Chaining cannot occur )
? for the vector read operation in this case. ¥
If (Ak) is an odd multiple of 8% results are produced every 2 clock

‘% periods. : n
5 : If (Ak) is an even multiple of 8t results are produced every 4 clock )
u periods. S , SRR =
. Functional unit Time (c.p.) . -
2 fLogica1 2 : %j-
: Shift 4

Integer add 3 E

Floating add 6 -

Floating multiply 7

Reciprocal approximation 14 ~
Memory 7

A

————————

t Multiple of 4 for 8-bank phasing; refer to section §.

Zr E)
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Memory must be quiet before issue of the B and T register block copy
instructions (034-037). Subsequent instructions may not issue for 14+ (Ai)
clock periods if (Ai)#0 and 5 clock periods if (Ai)=0 when reading

data to the B and T registers (034,036). They may not issue for 6+(Ai)
clock periods when storing data (035,037).

et WE

o i
P e

The B and T register block read (034,036) instructions require that there

‘ 3 (}:% : -
) i be no register reservation on the A and S registers, respectively, before
. issue.
N i - .
g & Branch instructions cannot issue until an AQ or SO operand register has

been free for one clock period. Fall-througﬁ in buffer requires two
clock periods. Branch-in-buffer requires five clock periods. When an
“out of buffer” condition occurs the execution time for a branch
instruction is 14 clock periodsT

A two parcel instruction takes two clock periods to issue.

LAk

Instruction issue is delayed 2 clock periods when the next instruction
parcel is in a different instruction parcel buffer. Instruction issue is
delayed 14 clock periods if the next instruction parcel is not in an
instruction parcel buffer.

e

;
B
By 4 HOLD MEMORY

. A delay of 1, 2, or 3 CP will be added to a scalar memory read if a bank
conflict occurs with rank C, B, or A, respectively, of the memory access
network. A conflict occurs if the address is in the same bank 1s the
address in rank C, B, or A. Conflicts can occur only with scalar or I/0 -
references. The scalar instruction senses the conflict condition at
issue time + 1 CP. The scalar instruction address enters rank A of the

el

IR e

PO . § W oa e Ix b4 VK4

1

j% & memory access network at issue time + 1 CP. The scalar instruction Ny
ﬁ D address enters rank B at issue + 2 CP. The scalar instruction address ;
R enters rank C at issue + 3 CP. i
% : t 18 clock periods for 8-bank phasing option; refer to section 5. :
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Ly
: Scalar instruction timing (no conflict): T
h CP n Issue, reserve register | ‘ : 5
: CP n+1 Address rank A, sense conflict T
. Al
g CP n+2  Address rank B el
§ CP n+3  Address rank C .
! CP n+9 Clear register reservation ,_,, A

CP n+l0 Issue

l..’l"

¥ o .y
‘e
s

3 HOLD ISSUE .\ .
‘ A delay of issue results if a 100 - 137 instruction is in the NIP register i
and a hold memory condition exists. The delay will depend on the hold

memory delay. ‘ ' -‘.‘g i
A delay of issue results if a 100 - 137 instruction is in the NIP register )

and a 100 - 137 instruction in process senses a conflict with rank A, B,
3 or C.

Kk

An additional 1 CP delay is added to a hald memory condition if a 070 _
- instruction destination register conflict is sensed. o
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Appendix B.
Cray-1l Simulator I/0 Device Usage

iyt

- sl it * .~
m R

-

I/0 in the Cray-l simulator is done in two ways:

N

1) Through the use of standard Fortran data set
reference numbers (DSRN) and,

b

2) Through the use of an MTS environment file or device
usage block (FDUB).

The following I/0 is done through DSRNs:

ek

= All error messages use I/0 unit g.

All cpACT and TACT output uses I/0 units 30 through 64.
- All LOAD module input uses I/0 unit 2.

All normal Terminal output (echoing, etc.) uses 1/0
unit 3.

W o
] [}

- All memory to memory I/0 used for number conversion, etc.,
uses I/0 unit 24.

ot

The following I/0 is done through MTS provided FDUBs:

- All command input, whether from a call-file, an AT-file,
a USE-file or the terminal is read using FDUBs. The command
input stack is implemented witih FDUBs.

i)
DLAY

- All HELP file responses are read from a file using a FDUB.
- The simulator driver tables are loaded at start up time
using a FLDUB. ’

The user should not use DSRNs g, 1, 2, 3, 20 and 30 through 64.
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& Appendix C. i
e - Cray-l Simulator Common Block Usage g
:‘:& >
?{?( The Cray-l simulator currently uses 30 Fortran named common ;..:,
"‘“, blocks. Except for /MEMORY/ and /MSIZE/ the user should not de-
fine symbols (subroutines or named common blocks) that conflict "
with common block names used by the simulator. These common :
block names are listed below: ) ;
ACTFLG QCODES _
BRKCOM QcoM oy
5 COMSF REG -
b CONTRL REPORT N
. CTABLE SETABL ]
DECTBL STATE .
DEV SYMTB1 2
. DRVTBL ) SYMTB2
INSTRX TRAPAR i
.. - LIP TRKBLK '
a5 LOAD - UNITS "
£ HEMORY USAGE N
MSFLAG XCHANG
' MSIZE : NEW e
TASKS |
' _ﬁ‘
N | X
i R
)
3 %
2
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Appendix D.

Establishing the Jimulator on MTS

In addition to the object module which contains the Cray-1l
simulator, three additional files and one initialization program
are part of the simulator.

The initialization program (TABINIT) process the instruction
driver table used by the simulator. TABINIT converts the driver
table from a character format to an internal binary format which
may be quickly read by the simulator when it starts up. This
program is only needed if one changes the driver table.

The three additional files are:

1) OPFILE : The character format driver table used
as input to TABINIT. (Not directly
necessary to use the simulator.)

2) TABLES.DAT: The binary file which is output by

TABINIT. This file is needed to run

the simulator. '

This file contains the help responses.

It is not essential to use the simulator.

3) HELP

If TABLES.DAT and HELP are available under the CCID that is
running the simulator, they will be read as they are needed.

Alternatively, one can recompile the subroutine OPFDUB (open
fdub), after modifying the CCID defined in a DATA statement. This
ccip should point to an alternate MTS catalog where TABLES.DAT and

HELP can be found.
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& APPENDIX E 5_
CRAY-M instructions to simulate
shared registers and semaphores * ;3
In developing the CRAY-M simulator, we decided that some means
of close communication between the processors should be provided.
We therefore added eight shared T registers, eight shared B registers
_ and sixty-four semaphore registers. There are three instructions
3 for manipulating 64 semaphore registers, two instructions for the
N shared T registers and two instructions for the shared T registers -
' and two instructions for the shared B registers. -
To avoid conflict, access to the semaphores and shared
; registers "rotates" between the active CPU's. This rotation is
3 based on the Real Time clock register when timing is enabled, and =
on the number of instructions issued when timing is disabled. It ."

should be noted that this difference in rotation methods may cause
different results in tightly coupled algorithms.

All timings and protocol (such as rotation and the phasing i
; of shared registers) are the author's choices and do not necessarily
{; reflect behavior of a product of Cray Research, Inc.

o
i sMik 0 Clear semaphore jk. Semaphore register jk is set ™
o to 0. Instruction will take from 1 to 4 clocks to -
i complete. s
f. SMjk 1 Set semaphore jk. Semaphore register jk is set to -n
;é 1. Instruction will take from 1 to 4 clocks to i
%$ complete. o
%; sMjk 1,TS Test and set semaphore jk. 1If semaphore register af

jk is 0, set it to 1 and continue. If semaphore

register jk is 1, hold issue on this instruction !

(i.e., until a different cpu sets the semaphore E

to 0). _ ..‘-'

sJ STk Enter Sj with STk (shared T register k). This in- l
struction will take from 1 to 4 clocks to complete, . ,}i
!

|

|

|

oy

‘but is phased to execute immediately following a =
semaphore instruction.

v
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g STj Sk  Enter STj (shared T register j) with Sk. This in- b
struction will take from 1 to 4 clocks to complete,

" but is phased to execute immediately following a ;{}
» semaphore instruction. 3 i?;
Aj SBk Enter Aj with SBk (shared B register k). This in- 'j

struction will take from 1 to 4 clocks to complete, :i

but is phased to execute immediately following a Ty,

semaphore instruction £

3
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Appendix F
Cray-M Simulator Error Stops

This appendix discusses possible simulator error stops.

_ These error stops are caused by internal simulator errors that
could adversely affect simulation results if simulation were
allowed to proceed.

Some error stops print an error message prior to halting,
other stops only indicate a stop~code. The list of error stops
below is separated into two groups: those that print a message
and those that indicate a stop code. The subroutine in which the
stop appears is also noted below. E

Exrror Stops with Messages

Subroutine ' Stop Message :

GETCMD END OF FILE ON BATCH INPUT STREAM.

DECODE INTERNAL ERROR. DECODE TABLES CLOBBERED.
SIMBRK SIMBRK CALLED BUT BRKSET .LE. ZERO.
SIMBRK SIMBRK CALLED BUT BREAKPOINT NOT IN TABLE.
WINST INTERNAL ERROR. DECODE TABLES CLOBBERED.

Error Stops with Stop Codes

Stop
Subroutine code Comments
MSW 101 Invalid bit code in MSW.
MSW 102 Invalid argument to MSW.
SMCTRL 103 Unimplemented action code used.
SMCTRL 104 . " " " "
QPROC 108 Invalid queue action code.
QWRITE 106 Queue space exhausted.
QWRITE 107 Invalid queue pointer.
SETMSK - 108 Invalid bit code in SETMSK.
BLDMSK 109 Invalid hold issue code.
DECODE 113 Bad instruction format code.
WINST 113 Bad instruction format code.

SMCTRL 114 Invalid action code used.

R
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ACTION 116 Action held and Queue empty

SS RESERV 115 Invalid reservation code.
' QWRITE 118 Invalid clock period argument.

RESGO0O 200 Invalid G-field dispatch code.
RESGOl 201 " " " "o
RESGO02 202 " " " "o
RESGO3 203 " " " "o
RESG04 204 " " " .
RESGOS 205 " " " "o
RESGO06 206 " " " "o
RESGO07 207 " " " "o
RESG14 214 " " " "o
RESG15 215 " " " "o
RESG16 216 " " " "o
RESG17 217 " " " "
TRACK 300 Invalid track command code.
ENTRAP 400 Floating point interrupt process failure.
ENTRAP 401 " " " " " .
ENATTN 402 Attention process failure.
R ENATTN 403 " o "
: ‘% RESGO7 1071 Invalid J-field dispatch code.
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Name:
Language:

Operating
System

Requirements:

Availability:

Appendix G

Program Availability Information

Cray-M Simulator
IBM Fortran-IV
IBM Assembly Language

The only system subroutines needed are those
provided by the standard IBM FORTRAN IV Sub-
routine Library (e.g., MAX0, MINO, etc.).
All I/0 is done via FORTRAN READ and WRITE
statements with record lengths of 80 bytes
or less. Hence, the simulator should run on
any IBM-based operating system.

Source code for the simulator is available on
9-track E. CDIC tapes. Tapes can be made ac-

- cording to any blocking format., can be labelled

or unlabelled, and can be made at 800, 1600, or
6250 BPI. The entire Simulator/Cross-Assembler

package is approximately 300,000 bytes long.
Contact:

Professor D. A. Calahan

Dept. of Electrical and Computer Engrg.
University of Michigan

Ann Arbor, MI 48109

(313) 763-0036
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. : Appendix H.
4, Sample Simulator Exit Dispatcher

> SUTRPOMN™INY CRAYEY (IJK, ASP, SSR, VSR, VI, BXSW)
TYPLICYT TNTEGE® (A-")

LOGICAL EXSW, NOANS/.TRUZ,/

INTIG™R ASR(9), °7C(2)

"EBAL®Q S3R(R), VER (KL ,9), NS
POOTIVALENCE(RTC(1) ,NS)

¢ |
(o : |
C eee TITS EXIT PROCTSSSOR IS TSED BY A PIULL MATRIX LU PACTORIZATION
c PROGRANM, TIRO 2XIT ?NNCTICNS ARE EFCVIDED: }
(o - l
c Y 1 - INITIALIZES THE SOQOARZ MATRIX IN CRAY-1 MEMORY. }
(o4 REGISTER i1 POINTS TO THPE YMATRIX. |
 od RRGISTE® A2 CONTATINS THP MATFIX SIZV.
o4
C Y 2 = PRINTS OQUT TH® RON TIN® AND THE NATRIX SIZE.
(o REGISTER A7 CONTAINS THE MATRYX SIZE.
C RPGISTER S7 CONTAINS THE RTALl TIM® CLOCKX VALJE.
c
c QBTIONALLY, IF ™% LOGICAL VIPIABLE ' RNCANS' IS .PALSE.,
[ of THEN THE ®EXY 2" WILL ALSO PRINT THE MATRIX SOLUTION.
{of
C
C CNYNOY BLOCK TOR CRAVY-1 vEPWQRY,
C

NMUBLE ORTCISION M°Y

coumnnN /MSIZE/ ME%SIZ

mM™egTRe) aMEN (1)

IITEER TMEM (2, 8096)

COMNQY /MEWMOPY/ M2Y(4096)
POTIVALZNC® (Mey(n), Iven(,n, ENE3 (1))

c
o
c
c
C «oo DTSPATCH CN THE EXIT CODE (TJK)
C
GO TN (100,200), IJK
TXSW=,TPOT,
ST
c -

Coeee CODE=] TNITIANLIZE YATRIX (A1=D>BASE, A2=SIZE)
17 A=ASP (2+1)
YADDR=ASP (1+1)
SYADDR = WADNR
nO 149 J=1,n
K=Y
nn 139 T=1,N
MEM (MADDP+1) = X
MONR=MANNTE+ T
K= X=1
IP(X.LT.)) K=%
1300 CONTI™WM®
180  cCONTIWH®
RETTIRY

e & o m
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3 a b ¥ 4 3, %, i G T AL v i A B I vl < T ARSI TR i S R R SR 4
‘;?&;__‘ :;;
-
o
J: ¢ )
& o
: ;
A ... CONE=2 DRINT TAZ TIM®, (A7 = MATPIX SIZZ, S7 = RON TINE) pe!
S 200 DS = STR(7+1) .
e | WRIT® (6,1000) ASR(7+1), RTC(2) a
- 177  SORNAT (') €IZP=!,IS,' RTC=',IT)
¢ SXS¥ = ,TROT,
I¥ (NOANS) P®TURY ~
- - DO 250 1‘1'.‘ w4
2% WRITE (6, 1100) (VEY({ SMANDR+(J=1) %N+ ) ,J=1,%) ‘ 7
. 1107  PORAAT(1X, 10P7.3) : £z
c . &
* RETURN

nao
| 7]
—

 END
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Appendix I.
Sample Simulator Calling Program

IYPLICIT INTEGEP (A-7)

THTS YAIN OPOGRAY CAILLS THT C2AY=-1 STMUIATCR 3S A SU3ROUTINE
T~ SOLYR PARALLREL SYSTEMS OF TRI-LDIAGCNAL RQUATIONS. OP TO 64
PAPALLYL SYST®MS YAY BT SCLVID,

THIS PENGEAM ™3IRPOOMS THR °ONLLOWING FUNCTIONS:

1. 92ADS TWO INPIOT DAPANRTERS: ]
NSYS - THE YTYZER OF PARALLEL SYSTENS T0 SOLVE.
VYECS - ™2 YUNBEP OF EQUATICEYS I¥ EACH SYST™M.

2, ALLOCATES TH® C3IAY-1 ¥IMORY PCF THE THREE DIAGONALS AND THE
3TI58T HAND STDE,

3. IMITIALIZ®S THE SYSTENMS,

&, LOADS THE CRAY-1 TRI-DIAGONAL LU DECOMPOSITION RONTINE (TRIDEQ
AV INITINLIZ®S "HE CALLING PARANETERS IN AN ADDRISS LIST
. TMRECTATELY PRECEEDING THE LOACED PROGRAMN.

S. GIVES CONTRNL TO TRP USER VvIA THE STNULATOR COMMAND LANGUAGE,
ALLOVING THE OSTR TC BUN TH® ERCGEAN, SBT HREAK POINTS, ETC.

6. TP0N R®TNRN P°0Y THP SINMOLATOR, EFINT OUT THZ SYSTEM AND
CALCULATE THE YFLOPS.

7. LOADS THE RACX-SUSSTITUTTIOY CRAY-1 PRCGRAY (TRISLV) AND INITIALIZES
ITS CALLINS OARANETERS,

8. AGAIY GIVEZS CONTROL TO T™HE USER TC RON THZ PROGRAM.

9.Jh?ON ReTRY PROM THE SIMULATOE, FRINT OO0T THE SYSTEM AND
CALCULATE THE MYLOPS.

THIS P2ROGPAM TAX?S ™HE DPLACE O¥ THE STIMULATOR'S MAIY PROGRAM SINCE

IT TS LCADEM PIRST. TIT ALSO EXTENDS THE SIMOLATOR MENORY TO 8192
WoRDS,

-

CON®ON /PABMS/ SYS, NEQS, ARASE, 3BASE, CBASE, YBASE

T9® POLLONING IS AW ZXTONSION OF THE CFAY-1 SINULATEZD MEMORY.

DOMBLY® DPPCISIOY N¥2¥

CONMON /MENOPY/ ¥®Y(9112)

COMANN /MSIZ?/) WBYSIZ

TNTRGERS2 BMEY(3276R)

™MTeGPR  IvEN(2,8192)

EOMTVALENCE (MEM(1),T1EN(1,1), MEX (1))

TE2L1L THE SIWYILATOR THE N®¥ SIZ® OF CRAY-1 MEMORY.
MPNEIZ = 8192 ,
CALL CRAY1('INIT!*, ,TEOUE.)
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3
% B
y ”
3
bt
| c
e 3
»} ’ C .
o C ... IT - TH® I DI®TCTION INCOFMENT,
c THE DISTANCE 2IETWEEN DIAGONAL ELEMPNTS. 5
C eee LT - THA® J DTISPITTICY INCRTUMENT. -
c T9E DISTANCE SETWEEN PARALLSL ELEMENTS.
e o
@ c B
ke n = 1
R®AD(15,1000) NSYS, NEQS
1329 PORMATN(TIS /I5)
TP (¥SYS .GT. 68) GO TN 910 e
c -
TT = ¥EQS .
c 3
C ... SET ARRAY EASES.
C3AS® = 309
ABASE = CEASE + NSYS®NPQS .
PRAS? = ABAT® + YSYS*VTOS |'
{BAS® = REASE + MSYS*NEQS
re
! IP (YBASE + ¥#K ,GT, MEMSIZ) G0 TO 900 o
c S
. C ... INITIALIZ? TRTDEC CRAY NEMORY WITH THE TRI-DTAGONAL DA™A, o
c
C ... LOO? THRM THP ELEMEYPS "? A SYSTEM TO INITIALIZE. ﬂ
£ "M 13 I = 1,970% N
‘33 of
5 C ... LCOP T™HRU ALL 2ARALLYL SYSTENS,

k2 DO 10 J = 1,%SYS i
. MBY (CBA ST+ (J=1) *IJ (I-1) = ).1CA) .

ME™ (ABASE+ (J-1) *1J {(T-1) = 1.J040

e re

MPY (BBASE+ (J=1) *IJ + (I-1)) = I/10.9D0 -
WEY (YBASE# (J-1) *IJ + (I-1)) = I*1.9C0 “

10 CONTINNE
¢ : -
C ... CLEAR OUT THE TOP NF C AND THF BOTICM OF B. R
L )

o 293 = 1,8SYS
MEM (CBASE» (J=1) *1IJ + {(1-17)) = J.0DO

MY (BSASY+ (J=1) LT + (N2Q0S-1)) = C.D7D0 <
2) CONTINTE -
c
WRIT2 (16, 1200) -
1200 PNRMAT('1CEAY-1 TRI-DIAGONAL SOLVER') Eﬁ
c .
o CALL CRECK(J, .FALSE.)
: <
' 4
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ese SBT OO THY APGUMINYT CALL BLOCK WITH ECINTERS TO
THE® ARRUYENTS,

NEQS, TInC 132 = II, LOC 103 = IJ,

Leec 1)) = NSYs, Lor 1)1 =
(TW=% (1) = CPAY-1 ACDFESS 7TED,)

LAC 18 = CloCcw,

nanoaonNnnan

ITw (2,9+ 1)
IVPY (2,13 +1)
TP (2,11+1)
IME™(2,12+1)
IYoN(2,13+1)
IMEN (2,14 +1)
™™ (2,15+1)
INEM(2,16+1)

58

A7

66
BEBASE=-1
AJASE=-1
C3ASE
65

Al

C ... SET TP ARGUMF®T LOCATTONS,
TI?Y(2,68+1) = 9
I¥EM(2,67+1) = IJ
IN®™(2,66+1) = IT
INEY(2,65+1) = MEOS
IY®Y(2,64+1) = YSYS

ana

ees LDAD T2IDEC AND STVE STYMOLATOR CCNTRCL 10 TYE NSER.
fa) CALL C2AY1('COM AFPTER TOIDRC LOADS, FUR 213 TO START.!', .PALSE.)
CALL CRAY1('LCAD SATR:TRIDEC;USE *MSCURCE*!*, ,FALSE.)

B
i ¢

NOPS = NSYS *= (1 + (¥20S-1)%4)
CALL CHECKX (NOPS, ,TRUE,)

X%

Ny«

*’b« s C ... ITTTIALIZE TRISLTY'S ARGUYENT BLOCK WITH ITS SOINTERS.

"' c

TYEY(2,10+1) = 53

" g IPN(2,1141) = YBAS®-1

i ; TYE"(2,1241) = 67

g ™MEN(2,13+1) = 66

§ = TI®¥(2,18+1) = ABASE = 1

R 1 TP (2,15+1) = 132SE-1

¥ IYEN(2,16+1) = CBASE
e (2,17+1) = 65

F3 33 IYEN(2,19+1 = 64

iy 2

ana

& eee LOAD TRISLV AND SIV® STMULATOR CONTFCI TC USTZA.
¥ iﬁ CALL CRAY1('CCY AYPTRER TRISLV LOADS, RWN 23X TO START.!', .PALSE.)
CALL CRATI('LOAD SG™G:TRISLV;(OSE *MSCUPCE*!', ,¥ALSE.)

'y

&’«'i s WOPS = MSYS * ((NEOS-1)%2 + TPOS*I)
o CALL CR®CK(NOPS, .TFNE,)

a0

sTO®
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C ... NNT 2?YONGRH ¥YPYNDY ¥NRP TNE PIDBLEM SIZE,

919 41YDOR = (MIMSIZ - C3AST) /8 o
JIRTITT (5,9000) MAXP RS ’
) 9797 PHRYAT('ICPAY=1 MTYOPY T™NO SMALL PCF THIS PRPOPL®M SIZE.'/ -
+ ' TEE LARGEST DRODNCT OP NSYS*NEQS %0ST BE < !',IS) "
sTon
I
ﬁ

Z eee MO MANY DPARPALL®Y SYSTTME,
919 RIT2(6,9210) USYS
9317 PHRMAT(*ITHT MMAMBE® N® PAPILLEL SYST2MUS MAY NCT EXCFED 64.°'/

. * ',15,¢ 7AS SPECIFIED.')
sTo® o
c N
c
EYD .
W
STBPNNTINE CHFCX (YOPS, PTINT) e
o] INPLICIT INTEGTPR (1-7)
T COMMOYM /PAFNMS/ NSYS, NEONS, ABASE, BBASE, CBASE, YBASE -
c =
o C COMMON BLOCK PCR CRAV-1 MEYORY. - - B
: c . |
% DOMBL® PRECISION NIV \
; ! COYMAN /MZMORY, 17Y%(8192) <
.1 CONmNN /NMSTZE/ YMEWSTZ o
% INTSGER*2 HWEN (32768) !
Ly INTEGER INPW(2,8192) oy
"IQIVALENCYE (T121(1),TA®M (1,1} ,BE24(1)) "}
. c
X, RPAL YYLOPS .
3 LOGTICAL PTINE e
B c
,,’»)ﬂ L of
C «e« CALC “WLOES n
. c
4 RTC = TAEW(2,68+1) '
Y YPLOPS = 7.9
g TP (RTC, YE.0) “PLOPS = (NOPS * 80.9) /RIC
oy c
P C o.. PRIYT THE PESTLTS
WPITR (18, 8990) -
a5 DO 80 T = 1,N2QS N
» 80 WRTT2(18,5000) I,YPY(CBASE+I-1), I,PRE(ABASE+I=-1), &
a2k + I,MP8 (PRASP+T=1), I,9E% (YSASE+I-1)
'L I®(PTINT) WRITS(14,6000) RTC, ¥STS, ¥EQS, 9YFLOPS o
fi c -
- 8000 PORMAT('=?)
e (o4
é;-, S000 PORWAT( ' C(',T2,")=',R13.8, ' A(',12,')=',213.84,
e + ' B(',I2,")=',®13,48, ' Y(',I2,')s',213.4) =
c
. 6379 PoRmaT(* PIC =',I7 ,' & 3YSTEAS = ',I3, ' SIZT OY SYSTEN =¢, 2
- IS ’ T3,' 77NPLODS =1 ,p12.3,/0 1) |
. c
" pErYRYy

o EYD

PO

i e
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Appendix J

Load Module Formats

1. Relocatable Modules

Relocatable modules consist of seven tvpes of binary records. An IDEN
record, one or more TXT records, zero or more RLD, EXT, ENTR, and
SYM records, and an END record. '

An IDEN record identifies the name of the module. The record
consists of the characters IDEN, followed by 4 spaces, followed by
the 8 character name of the module.

A TXT record contains the actual object code to be loaded. It
consists of the letters TXT, followed by five spaces, followed by a
fout byte binary address of this portion of the module (relative to
the top of the module); followed by a four byte binary length. The
actual text to be loaded is on the following card.

An RLD record identifies the locations in the module which must
be relocated. It consists of the letters .I1D, followed by five spaces
followed by one or more 8 byte fields. The first 4 bytes of the field
contain the binary address (relative to the top of the module) of the
text to be relocated. The second 4 bytes contain a ™.aber describing
the type of relocation to be performed.A See RID & EXT types, below.

An EXT record identifies the locations in the module which refer
to external locations. 'It consists of the letters EXT, followed by 5
spaces, followed by one or more 16 byte fields. The first 8 bytes of
the field contains the 8 character name of the external location re-
ferenced. The next four bytes contain the binary address (relative to
the top of the module) of the text referencing the external. The last
4 bytes contain a number describing the type of reference. See RLD &
EXT types, below.

An ENTR record identifies entry points in the module. It consists
of the letters ENTR, followed by 4 séaces, followed by one or more 12
byte fields. The first 8 bytes of the field contain the name of the
entry point, and the last 4 bytes contain the address (relative to
the top of the module) of the entry point.
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APPENDIX K
Task Definition File Description

By issuing the command "SET TASK=ON" from the simulator com-
mand language, task timing is enabled. The simulator immediately
prompts for an input file defining the task locations in simulator
memory . '

The structure of the input file is as follows:

<TACT Report Header, 1 to 40 characters>
<Clock skip> <Pagination flag> <Compression flag>
<Task name> <Task entry point> <Task exit point>

<TACT Report Header> is a title which appears at the top of every
TACT Report page. The title can be up to 40 characters in length.

<Clock skip> is the number of clocks to skip between records in
the tact report.

<Pagination flag> is set to 1 if pagination of the TACT report is
desired (line printer), 0 if pagination is not desired (terminal).

<Compression flag> is set to 1 if tact Report compression is desired,
0 if multiple identical records are desired.

<Task name> is a 6 character identifier for the task, to be printed
on the TACT report.

<Task entry point> is an address or label defining the starting point
of the task.

<Task exit point> is an address or label defining the ending point of
the task.

The last record can be repeated up to 30 times so that up to 30
tasks can be defined at one time. A task can begin on the same point
that another task ends, but tasks can not overlap in memory.
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o St i aain i ine i b b e aei e S e St it e S S St A
> 1 8X8 SPARSE
> 2 100 ©
> 3 FAC1 B1 B2
> 4 JOIN1 Bi4 B1S
> o] MUL2 B31 B32
> 7 JOINA $160 B18
> 8 JOINS Blé6 B17
> 9 SOL1 B7 BB
> 10 MUL 1 B4 -BS
> 11 MUL. 365A 421A
> 12 S0L 270A 340A
> 13 FAC 42SA S00C
¥ENd of file

Listing of Sample Task Definition File
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| i APPENDIX L
) Example Use of Simulator and Cross Assembler

aal

‘é; The following pages show a sample terminal session in which the r

f%ﬁ Cross Assemblervand Simulator package is used to assemble and execute i
a simple CAL code using a Fortran driver.

3§ The first part of the Fortran driver is the common block contain- ?

% ing the simulated CRAY memory (see section 2.3.2). The next portion

3 initializes the simulator and loads the cross assembled object module.
Next, the values to be squared are loaded into the simulator memory

i at address 200 octal for a vector length of 100 octal (MEM array

;? subscripts 129 through 192). After the object code and operands have &

oy been loaded, all that remains is to run the simulation and retrieve -

the results from simulator memory, which the next two sections of the ]

driver perform. The results, of course, are the squares of the first .

\l

64 integers, as we expected. ¥
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JBBLIST FTN. TZ57 -
\‘2, o
= 1 € <
. 3 c FORTRAN DRIVER FOR VECTUR SQUARE
ey 4 c Lo
| = ¢ _ — gt
'§ 7 c =
L - s
2 c -
1 ? €  COMMON BLOCK FOR CRAY—1 MEMURY. =
. 1 C . =
Ry 11 DOUBLE PRECISION MEM I
12 COMMON /MSIZE,/ MEMSIZ W
3 13 INTEGER®*2 HHMEM (1) o
o 14 INTEGER IMEM (2, 4096)
15 COMMON /MEMORY/ MEM(4096)
- 16 EQUIVALENCE (MEM(1), IMEM{1,1), HMER (1) ) ;",
S 17 o >
- 17 2 ... INITIALIZE e
ﬁ zZ0 CALL CRAY1 (" INIT;LOAD CAL.O;RETURN'",.TRUE.) X
2 c =
\ 22 C ... SET UP VECTOR TO SQUARE -
o 23 DO 10 I=1,64 Al
K 24 : MEM(128+1) = 1.0D0 # I b
; 2 10 CONT INUE X
Zb C ---'
l 27 € ... RUN THE CAL CODE ,
- 2 CALL CRAY1('CH P SQUARE;SET TIM=0FF:RUNSRETURN! " ,.TRUE. <
= 29 c o
: 30 € ... GET RESULT
by 31 WRITE (6,100) (MEM(128+1),I=1,64) N
2 100 FORMAT(" °,4F10.2)
33 c .
) 34 c S
- 35 STOP
- 36 END %
$RUN #FTN SCARDS=FTN.TEST SFUNCH=-0 -
PE:ecution begins  15:12:06 ad
No errors in MAIN .
#Execution terminated 15012207 T=0.039 $0.02 N
LesSLIST CAL.SQUARE "
3 1 IDENT SQUARE
E 2 BASE O ' B
3 ABS s
4 ORG 20 -
s SQUARE = * 0%
6 Al 100 SET VECTUR LENGTH IO &4 o)
7 VL Al e
8 A 200 LOAD VECTOR TO SQUAKE ok
9 Vi + A0, AV . .
10 v2 VI#FV1  SGUARE THE VECTOR i~
11 AL, A0 V2 3TORE THE RESULT N
l 12 EX iy
13 END ;:-.
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#SRUN SFU1:CAL SCARDS=CAL.SOUARE SPUNCH=CAL.Q SFRINT=«OUMMY 3
#Execution begins 15312009
#Ezecution terminated 13:11238u  T=0,058 V.04
HSRUN =O+k3IS0 4. 4
34 . #Execution begirns 13312013
' INIT
__LOKD CAL.O e v
I RETURN )
CH P 3QUARE
SGUARE  DEFINITION USED FROM [DENT 3RQUARE .
3ET TIli=OFF .
RUN . .
EXIT O wT 2ZA CPU = | -
RETURN o
1.00 4.900 7.00 16.00
25,00 36.00 49,00 &84.00
81.00 100.00 121.900 144. 00 X
165 .00 196.00 225.00 250.0v 2
289.00 326.00 361.00 400, 00
441.0% 484.900 529.00 S76.00 z
525,00 &676. 00 729.00 784.00 X
84L.00 200.00 961.00  1024.00 <
1089.00 1156.00 1225.00 1296.00 .
1369.00 1444.00 1%521.00  1600.00 3
1681.00 17464.00  1849.00 1936.00 o
202%.00 2116.00 2209.00  2304.90
2401.00 2%00.00 2601.00 2704.00 N
2809.00 2916.00  3025.00  3136.00 3
3249.00 3364.00 3481.00 3600.00
I721.00 3844.00 3969.00 4096.00 .
' #Execution terminated 15:12:16 T=0,053% $0.04 a
" — o
o |
<
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