
AD-RI36 555 A CRAY-CLASS MULTIPROCESSORSSIMULATOR(U) MICHIGAN UNIV 1/2
ANN ARBOR SUPECCOMPUTERARLGORITHM RESEARCH LAB

SUMMERS ET AL. 81 SEP 83 SARL-i AFOSR-RR-83-1246

UNCLASSIFIED AFOSR 80-8158 F/ 9/ 2 L

mmmEmmmmm
EmmmmmmEmmEm

mEmhhmhEEEEEEElIlEEEEEIII~hlE
IllllIEEEIIEEE

SlflflflflIIIIIIlfl.

IIIIIEEEIIEII

1.0

11125 * 1.6

[MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

I'"

4.

N~N.

FO -TR- 8 3 1 4 6 Report SARL #1

A CRAY-class Multiproessor
Simulator

'P.M. SUMMERS
D.A. ORBITS

I

September 1, 1983

I

I Sponsored by the
Directorate of Mathematical & Information Sciences
Air Force Office of Scientific Research

Supercomputer Algorithm Research Laboratory JAN 4 1984

LDepartment of Electrical & Computer Engineering

D

I~~ ~ ~ ~~ i-, ,, ro a I "" 1

84 0.1.'.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wfhe, Da e-nored, _ ____ _____

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM -

1. REPORT NUMBER 12. GOVT ACCESSION NO, 3. R.CIPIENT'S CATALOG NUMBER

TI~Tn 3 246 / t _1:::::. .
4. TTE(.d ubti) S. TYPE OF REPORT A PERIOD COVERED

A CRAY-CLASS MULTIPROCESSOR SIMULATOR TECHNICAL

S. PERFORMING O1G. REPORT NUMBER .

7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(s) -"..'

P.M. Summers and D.A. AFOSR-80-0158

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK .. '
AREA & WORK UNIT NUMBERS - .

Department of Electrical and Computer Engineering -.
University of Michigan PE61102F; 2304/A3 *. -- '.-

Ann Arbor MI 48109
Ii. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Mathematical & Information Sciences Directorate 1 SEP 83
Air Force Office of Scientific Research/f. ,. NUMBER OF PAGES
Bolling AFB DC 20332 /:.

14. MONITORING AGENCY NAME & AODRESS(I
r

differmit from Controlling Office) IS. SECURITY CLASS. (at this report)

UNCLASSIFIED
13a. DECL ASS$ F1CATION/ DOWNGRADING

SCH EDU LE ,..'..'

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abotraci entered in Block 20, it different from Report)

,, SUPPLEMENTARY NOTES

1. KEY WORDS (Continue on reveree aide it neceesry mid identify by block number)

Supercomputers; parallel processors; vector processors; simulation.

0. AGSTRACT (Continue on reverse side if necesary and identify by block number)

A logical-timing instruction-level simulator is described for a hypothetical
multiprocessor consisting of CRAY-l's connected to a common memory. It is " . .,
useful for gaining insight into the design of multiprocessor algorithms and
for developing high performance algorithms for CRAY processors with instruction

sets similar to the CRAY-I.

DO IJA473 1473 EDITION OF I NOv 5 is OBSOLETE .CLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

'-V--1 -.-'-

A Cray Class Multiprocessor Simulator

Paul M. Summers
D. A. Orbits

5 SuperComputer Algorithm Research Laboratory

University of Michigan

Ann Arbor, Michigan 48109

September 1, 1983

O~~-rCA - -Jo

I
Acoessi.on For
NTIS GRA&I
DTIC TAB
Unannounced 0
Justificat ion

Distribution/Coe-
Availabil ity Codes

Avail and/or ,
Dist Special

AIR~ F Yl 'Y - SCIEN~TIFIC RES-AMv'T- (AYS0,
l NOTI E uT1' LT DT1C

Chio , To iic. i rnformattonDivision

I

Abstract

A logic-timing simulator is described for a hypothetical

multiprocessor consisting of CRAY-I's connected to a common mem-

ory. This simulator is written in Fortran-IV and IBM assembly to

execute on an Amdahl 5860 machine, operating under the Michigan

Terminal System.

The simulator provides extensive reporting of individual

CRAY-I processor resource usage and resource conflicts and inter-

processor communication. By calling the simulator as a subroutine

the user may flexibly use program simulation within a larger pro-

blem environment. Extensive interactive debugging features make

the CRAY multiprocessor simulator a useful tool for (1) gaining

general insight into the design of multiprocessor algorithms, and

(2) the development of assembly language programs for CRAY processors
with instruction sets similar to the CRAY-I.

,.?;.

4

Table of Contents Page

Preface. i

1. Introduction1

2. Simulator Features 3

2 .1 Command Language 4

2.2 Exceptional Conditions.......................... 11

2.3 Su~broutine Interface.15

2. 4 CRAYEX Exit Dispatcher 19

2. 5 Report Generation............................... 21

2.6 Inconsistencies with the Cray-l56

3. Simulator Command Descriptions 57

4. Simulation Costs 97

5. Bibliography ... 99

Appendices

A. Summary of Cray-l Timing Information 100

B. Simulator 1/0Device usage105

C. Simulator Common Block Usage106

D. Establishing the Simulator on MTS 107
E. CRAY-M Shared Registers and Semaphor..................108

F. Simulator Error Messages and Error Stops110

G. Program Availability Information...................... 112

V H. Sample Simulator Exit Dispatche r113

I. Sample Simulator Calling Program........................ 115

J. L.oad Module Formats 119

K. Task Definition File Description..................... 120

L. Example Use of Cross-Assembler and Simulator 122

VO0A a

Pref ace

I The simulator described in this report was developed to
support general vector multiprocessor algorithm studies. It

was felt to be of sufficient general interest and utility that

this documentation was prepared.3The simulator accepts machine code from a cross assembler
developed at the University of Michigan and described in SEL

Report #120 and in the Appendix of this report.

Both the cross-assembler and the simulator will be avail-

able from Professor D. A. Calahan -in January, 1984.

VU

I

1. Introduction

The original University of Michigan Cray-i (uniprocessor)

simulator was written during 1977-78 by D. A. Orbits. The de-

cision to build a simulator was motivated by the following consid-

erations:

(1) At the time, access to a Cray-i for the purposes of

algorithm design and code development was often very difficult and

access on any continuing basis for research purposes was not pos-

sible.
(2) Even with access to a Cray-i, it was often quite difficult

to analyze algorithm performance. There was no hardware instrumen-

tation on a Cray computer to permit a study of CPU resource usage

£and conflict. The Cray-1 simulator provided a detailed report of

CPU activity.

(3) For algorithms which must be carefully designed and coded,

the programmer could use the simulator to analyze instruction delays

and re-order instructions as necessary to minimize conflicts.

(4) When debugging programs, it was useful to have interactive

control of program execution. Through the use of break-points, at-

points and command files, the simulator lends considerable flexibil-

ity to the debugging process. (Note: The CTSS operating system now

provides many of these capabilities.)
(5) With simulation it was possible to study the impact of archi-

tectural modifications on algorithm performance.

A somewhat similar situation exists with respect to the Cray

XMP and other presently unannounced Cray multiprocessors. Availabil-

ity is currently restricted. Although the significance of assembly

language (CAL) coding may be reduced in future machines, there is a new

requirement to study the organization and efficiency of various task-

ing strategies on kernels, scientific libraries, and entire applica-

tion programs.

The simulator described in this report is intended to support
such study. It contains two major extensions of the CRAY-I simulator

(a) A number (p, - 4 but alterable) of CRAY-i's are connected to

the same common memory. Each processor has the instruction

set and timings of the CRAY-l. This is, of course, a hypo-

. ..-

7

thetical or paper machine. Intraprocessor but not

interprocessor bank conflicts are modeled.

(b) Hardware semaphores and shared registers have been

added to the CRAY-1 architecture (see Appendix L) ,

and assembly instructions are included similar in format

to those of the Cray XMP, to assist in program develop-

ment for this machine. However, the timing of these

instruction executions is different from the Cray XMP,

and may be changed as we feel appropriate. Thus, the

timings produced by this simulator are advisory, visa

vis the precise timings of the parent Cray-l simulator.

In this report, the designation Cray-l will be used to denote one

of the processors or its instruction set; the term Cray-M will de-

note the entire simulated multiprocessor.

In summary, this software can, at a minimum, yield insight

into the interplay of hardware and algorithms by direct control

from CAL of the hardware multitasking facilities. Beyond this, it

may be that certain high-performance library routines and other
algorithms requiring complicated tasking and sub-tasking strategies

can be best implemented with the simulator, analagously to the CAL HYPAC

linear algebra library developed by the Cray-I simulator.

2

3 2. Simulator Features

This section of the user manual has been divided into

six sub-sections, each devoted to a particular aspect of the

Cray-l simulator. No attempt has been made to describe the

architecture of the Crayl itself. The bibliography lists

several sources for this information.

The following is an overview of the material covered in this
section:

(1) Sub-section 2.1 is an introduction to the simulator

command language and the running of simulated programs.

(2) Sub-section 2.2 covers the exceptional conditions that

may arise when using the simulator.

(3) Sub-section 2.3 covers the subroutine interface through

which a Fortran program may call the Cray-i simulator. This is

useful for simulating only a portion of a program, while retaining

the rest of it in Fortran-IV for either cost or convenience reasons.

(4) Sub-section 2.4 covers the simulator exit processing.

Through the Cray-I Exit instruction the user may have the simulated

program call a user provided subroutine to perform functions that

might be provided by the operating system or the subroutine3 libraries in an actual Cray-i environment.

(5) Sub-section 2.5 covers the report generation facilities

of the simulator. This reporting is controlled by the CPACT, STAT,

TACT, and TRACE commands.

(6) Sub-section 2.6 covers inconsistencies between the
simulator and the Cray-i computer that are presently known.

Unimplemented instructions are discussed here along with other

minor incontistencies such as data formats, timing inaccuracies,

etc.

I

1

' -, - ¥ ¢ . Z ¢, .; ; *..*. ;-. _,.?--- :: § . .> -. ...-.. 2 ..-< -.,

2.1 Command Language
The coimmand language provides the user interface to the

Cray-H simulator. Through the command language, the user control.

and monitors the progress of the simulated program. The user has
considerable flexibility in controlling input to and output from
the simulator. This section is organized into the following three-

sub-sections:
(1) Command language input control

(2) Command language output control

(3) Running programs on the Cray-H simulator

2.1.1 Command Language Input Control
Upon initiation, the simulator will prompt for terminal input

by typing a period. The user may then enter a command or redirect
the command input stream to read from a file via the USE command.
The filename parameter on the USE command directs the simulator to
open that file and begin reading commands. Upon an end-of-file
condition the input stream is switched back to the terminal.

More than one USE command may be issued, allowing nested

command files to be built by the user. The simulator command
language maintains a command stream input stack which controls
the issue of nested USE commands.

The command stack is also used when the simulator is called
an a subroutine (see section 2.3). For subroutine usage, the

caller supplied command string is split at the command separator

character (a semi-colon) and each command is written to a scratch

file. This scratch file is termed the call-file. The call file
is terminated with a RETURN command, so that after execution of
the caller commands automatic return is made from the simulator

to the caller. After creating the call-file, the subroutine

interface pushes the call-fl I~e onto the command stack causing

subsequent commuands cc- from the call-file.

4

Another use of the command stack arises from the use of AT

points that may be set by the user. An AT point is similar to aU break point, in that each is set at some instruction address in
the user's program. Upon hitting a break point, program simulation

o. is halted and control reverts to the terminal allowing the user to

monitor the program's behavior. An AT point differs, in that when

it is created the user may also enter one or more simulator commands
that will be automatically executed when the AT point is hit. These

commands are saved in a scratch file and then, during simulation

when the AT point is hit, the simulator pushes the AT point's scratch

file onto the command stack causing subsequent commands to come from

the AT file. A RUN command is automatically placed at the end of the
AT file, causing simulation to resume uninterrupted after the AT com-3 mands have been processed. AT commands are useful for automatically
displaying register or memory locations at selected points in a pro-

gram. In cases where the user wishes to display various locations

and then regain control for other purposes, entering the command

USE *MSOURCE* will switch command input to the terminal during AT

command processing. Any end-of-file condition

will terminate input from the top entry of the command stack,

causing the stack to be popped and input to continue from the pre-

vious source. In the case of an AT file with a 'USE 14XSOURCE*

command in it, an end-of-file condition from the terminal will resume

simulation. In fact, when a break point is hit, the simulator auto-

matically issues an implied 'USE *MSOURCE* command which reverts

control to the terminal.

The command stack is fifteen levels deep with the base entry

preset to *MSOURCE* which can never be popped. Only one AT or BREAK

Upoint can be hit at any time, therefore a subsequent RUN command will

pop the command stack through the last AT or BREAK entry on the stack.

Upon a RETURN command the command stack will be popped through the

last call-file entry on the stack.

Occasionally due to an error condition the message "Command3 Stack Reset" will be printed. This means that the command stack has

been cleared to the base entry which is preset to USE *MSOURCE*. This
assures that the error condition will return input control to the user.

5

* . , c ... l:* - .. ,. .. t C

4.4

However, this means that any commands not yet executed in any out-

standing call-files, AT files or USE files have been lost.
A keyboard attention interrupt will cause the command stack

to be reset. This is useful to stop a USE file or prevent sub-

sequent commands in the call-file from being processed.

2.1.2 Command Language Output Control
Normal output from the simulator (informational messages, DIS-

PLAY output, etc.) can be sent to another I/O unit by using the SET
command to switch the output device. For example, SET OUTPUT = -Fl.

would route the output to file "-Fl".

Error messages are output on a different unit number and always
go to *MSINK*. If an error situation arises causing the message

"Command Stack Reset" to appear, the output device will be switched

back to *MSINK*, if it was diverted elsewhere. Also, a keyboard

attention will switch the output back to *MSINK*. i
2.1.3 Running Programs on the Cray-M Simulator

Before a program may be run on the simulator, it must first be
translated to a format acceptable for loading into the simulator.

This translation is typically done via a Cray-M cross assembler.

This assembler generates absolute or relocatable load modules that
can be loaded by the simulator LOAD command. The format of the

load module is described in appendix I.

When designing a Cray-M program to be simula'-.ed, consideration

must be given first to the nature of the algorithm under study. If
the program requires some initialization which will not be written in

Cray-I assembly language, then perhaps the simulator should be called
as a subroutine. It is possible for the calling program and the

simulator to both share the Fortran common block that is used for the

simulated Cray-M memory. In fact, the user may increase the size of

the simulated Cray-M memory beyond the 4096 IBM double-words that i

are presently allocated.

6

2.1.4 Simulator Control

To keep the simulator from running away from the user a keyboard

attention interrupt can be signalled which has the following effects:

(1) Resets the command input stack to read from *MSOURCE* (the

terminal), losing any outstanding command files.

(2) Resets the output device back to *MSINK* (the terminal)

(3) Performs the following command dependent actions:

3.1) For a DISPLAY command, an attention will terminate

the output. This is useful if a long display region was

accidently displayed.
3.2) For a HELP or STAT command, an attention will term-

inate the output.

3.3) For a RUN command, an attention will stop the simula-

tion and print the parcel address of the next instruction

to be executed. Simulation may be resumed without any loss

of timing information by just entering a "RUN" command. No

parcel address should be supplied on the RUN command, as

j this always forces a buffer fetch which will make the timing

inaccurate.

4) if for any reason the simulator seems to be looping and

not responding to attentions, two attentions will return

control to MTS.

Attention trapping is only enabled while control is inside the

simulator or the command language. That is, if the simulator is

called as a subroutine, attention trapping is enabled only while a

call to the CRAyl interface subroutine is active.

£ 7

...

I W W..

If the algorithm under study requires the use of intrinsic

functions, such as SQRT, SIN, COS, etc, which would be supplied by

some Cray-M subroutine library, the user may provide these functions

through the use of Cray-M simulator EXIT instruction dispatcher.

The EXIT instruction (assembler mnemonic EX exp) contains a

9 bit expression field. If this field is non-zero the simulator

will call a subroutine called CRAYEX, passing the value of the

expression field and several register arguments to it. The user

may write a CRAYEX subroutine to process these EXIT codes and per-

form any function he wishes to define. For example, an EXIT code of

one could be defined to perform a square root operation. This EXIT

feature avoids the expense of simulating Cray-M code for such in-

trinsic functions by allowing them to be programmed directly on the

host machine. See section 2.4 for a complete discussion of the

EXIT dispatcher.

Several other differences between a Cray computer and the

simulator arise due to the nature of the IBM 370 architecture upon

*.. .which the simulator runs.

To speed the simulation of arithmetic, all the arithmetic is

done using the IBM 370 arithmetic instructions. The alternative

wudbe to simulate Cray arithmetic, further raising the

simulation cost. As a consequence of using host machine (IBM 370)
arithmetic, the floating point data format is different. on the
Cray-l the sign and exponent field is 16 bits wide whereas on the IBM
370 it is only 8 bits wide. Further, the Cray-l exponent is a base

2 exponent whereas the IBM 370 exponent is base 16. Figure 2.1.1

shows the different formats.

8

BINARY POINT

0 1 15 16 65
- ~ ~ cay-1 16formatJ

SIGN EXPONENT COEFFICIENT

Long Floating-Point Number

370 S Characteristic 14-Digt Fractionfo:mt 1 7

01 8 63

Figure 2.1.1 - Cray-i vs. IBM 370 Floating point

data formats

The simulation of the instruction computation is done in its
.14 entirety when the instruction issues. The pipeline data flow in the

Cray-i is not simulated. This means that upon hitting a BREAK or
AT point, all results of ptior instructions are available for inspection

or modification. The instruction where the BREAK or AT point is set

has not yet been executed.

There are three methods for controlling the simulation of a
Cray-M program:

.(l) BREAK points

(2) AT points

* (3) An instruction issue limit parameter.

BREAK and AT points may be set at a specified parcel address
in the simulated program. Setting BREAK or AT points do not change

the instruction at that location, rather, BREAK and AT points are

*detected by monitoring the P address register. This permits BREAK

and AT points to be set before the program is loaded or reloaded.

~..2 - % % * ,

When a BREAK point is hit, control goes to the terminal. When

an AT point is hit, a predefined command file is processed which was

created when the AT point was set. Control will not go to the ter-

minal when an AT point is hit if no command causes this to happen.

An instruction issue limit may be provided as an optional Para-

meter on the simulator RUN command. For examiple, the following RUN

command would begin execution at the current program counter loca-

tions and cause control to return to the command language after 2500

*Cray-i instructions have been issued in at least one processor (unless

an EXIT instruction or error condition occurred).

RUN #2500

The issue limit parameter is a decimal number prefixed by a pound

'S' sign. If no issue limit is specified the remaining amount of a pre-

vious limit is used (in the case of a BREAK or AT or attention). If

* there is no remaining amount, a default value of 1000 is used. To
sinlestep through a program use the command:

RUN #1

While in the commnd language, the user may display or change
registers and memry locations by using the DISPLAY and'CHANGE commands, -

See Section 4 for command descriptions of all simulator commands.

The cost of simulating Cray-M programs is an important factor.
The simulator provides three levels of cost control:

-~ Level 1 -Result computation only, which allows debugging but

eliminates the cost associated with timing the Cray-i

instructions.

41Level 2 -Timing enabled, allowing the timing ofA- the simulated

program at a cost of about 5 times the level one

cost, per processor.

Level 3 -CPACT (clock period activity report) enabled, increases

the cost to about 2 0 times the level one cost, per

processor.

Section five treats the cost issue further.

10

_ . . _ ,. .. . o - . " - * - - -
- '

- , - - . , . ..

2.2 Exceptional Conditions

While executing a Cray-M program, the simulator may en-
counter any of several exceptional conditions which will halt the
simulation. The four possible exceptional conditions are listed
below followed by a discussion of each one:

1) Error exit
2) Program range error

3) Operand range error

4) Invalid instruction executed

An occurrence of any exceptional condition will reset the com-
mand stack and switch OUTPUT back to the terminal if it was diverted
elsewhere. The name of the routine being executed will be displayed,

if possible.

2.2.1 Error Exit

An error exit is caused when the Cray-i executes a zero op-code.
The simulator signals this condition by printing the message:

£ ERROR EXIT AT - p-addr

where p-addr is the parcel address of the error exit instruction.
Since memory is initialized with zeros when the simulator is started
up, a bad or missing branch could cause an error exit.

2.2.2 Program range error

A program range error is caused by a branch instruction which
attempts to jump outside the limits of the currently defined simulator
memory. If used stand-alone, 4096 words of simulator memory are

available. A program range error is signalled by the message,

PROGRAM RANGE ERROR.

BRANCH AT bch-p-addr
TARGET ADDRESS WAS tar-p-addr

MEMORY SIZE IS msize

-rwrw..rT' -7 "77 . .-...

The parcel address of the offending branch instruction is

given by the bch-p-addr field. The invalid target address of the

offending branch instruction is given by the tar-p-addr field.

The memory size (msize) is printed in octal for comparison with

the invalid target address and to inform the user of the current -

memory size. -

If the user has tried to extend the size of the simulated

Cray-M memory by loading a longer common block, he must inform

the simulator of this by setting the MEMStZ word in the MSIZE common

block to the correct size of the Cray-M memory (see section 2.3). If

the user forgets to do this a size of 4096 is assumed which may cause

the program range error.

2.2.3 Operand range error

An operand range error is caused by an operand load or store

that exceeds the limits of the currently defined simulator memory.

If used stand-alone, 4096 words of simulator memory are available.

An operand range error is signalled by the message,

OPERAND RANGE ERROR AT P = p-addr

MEMORY SIZE IS msize

The parcel address of the offending memory reference instruction

is given by the p-addr field. The memory size (msize) is printed ""

in octal to inform the user of the current memory size. The comments

above (under program range error), about user extension of Cray-M

memory, apply here as well.

A vector load or store to memory can cause an operand range

error in several ways:

1) The base address may be out of range

2) The operand increment may be too large

3) The vector length may be too large. .

12
+ 12

2.2.4 Invalid instruction executed

The monitor mode Cray-i instructions are not implemented on
the simulator. When one of these is executed, the simulator will

print the message,

** ATTEMPT TO EXECUTE INVALID INSTRUCTION AT p-addr

will be printed and the simulator will return to the command lang-
uage. The offending instruction's parcel address (p-addr) is printed
to aid in finding the instruction.

2.2.5 Floating point interrupt

The floating point interrupt exception is handled differently
by the simulator than it is on the Cray-i. This discussion will deal
with the simulator response to a floating point interrupt. See the
Cray-i Reference Manual for the Cray-i response.

The simulator response to a floating point interrupt is a
consequence of the behavior of the IBM 370 architecture. Three
types of floating point interrupts may occur:

1) Exponent overflow

2) Exponent underflow

3) Division by zero.

All three types of floating point interrupt may be suppress
if the floating point interrupt bit in the Cray-i mode register
clear. When the simulator starts up, this mode register bit is

f9 thereby enabling all three types of floating point interrupts.
setting of this mode register bit may be controlled by the user

* two ways:

1) Through the SET EFI w (ON/OFF] command, the user may

enable or disable floating point interrupts.
2) Through the Cray-i instructions EFI and DFI, the program

may enable or disable floating point interrupts.

Only one floating point interrupt is detected for each inst
simulated. This means that if a vector instruction causes 20 exp
overflows, only one will be detected. After the instruction has
finished executing the simulator will announce the floating poin

'exception (if the EFI mode bit is set) and return to the command

language.

13

I "

When an exponent overflow occurs, the following message is

printed:

** EXPONENT OVERFLOW **

FLOATING POINT ERROR AT P = p-addr

When an exponent underflow occurs, the following message is

printed:

** EXPONENT UNDERFLOW **

FLOATING POINT ERROR AT P = p-addr

When a division by zero occurs, the following message is

printed:
** FLOATING POINT DIVIDE CHECK *

FLOATING POINT ERROR AT P = p-addr

For each of the three messages the parcel address (p-addr)

of the instruction causing the interrupt is printed.

2.2.6 Attention interrupt

To stop the simulation or regain control during command
file

processing, the NTS terminal user may issue a keyboard
attention

by." hitting the break key or a control-E. This attention interrupt

will reset the command stack and halt simulation if in progress. If

sgi-ulation was in progress the message,

** SIMULATOR ATTN AT P - p-addr **

will be printed, where p-addr is the instruction to execute next

if simulation is continued. An attention will cause no info mation

to be lost and simulation may be resumed, as if never interrunted,

by entering a RUN comiand without a p-addr parameter.

14.

S 7 . T. 7 ---7 - -- ---

2.3 Subroutine Interface

The Cray-M simulator may be called as a subroutine from a

user Fortran-IV program. Three benefits provided by this inter-
face are:

1) Being able to convert only a portion of a Fortran pro-

gram to Cray-1 assembly language allows you to simulate

the converted portion while leaving the remaining in Fortran

to run more efficiently on the host machine.

2) Being able to enlarge the amount of simulated Cray-i

memory by extending the memory common block in the

user's calling program and loading this program first.

This avoids the need for recompiling the simulator.

V 3) When studying a given algorithm for application to the

Cray-M, it is convenient to perform any housekeeping and

initialization functions in the user's Fortran program.

4Therefore, only the algorithm need be coded in Cray-i
assembly language.

I This section will discuss the protocol used to communicate with
the simulator from a calling program. This communication has two

aspects to it: (1) the subroutine interface used to pass commands

and control to the simulator and (2) the shared Cray-M memory inter-

face used to pass data to and from the simulator.

2.3.1 Simulator subroutine call

To access the simulator as a subroutine the following Fortran

subroutine call is used:

CALL CRAYl('cmd[;cmd] ... !',echosw)

The first argument is a literal string enclosed by apostrophes
which may be composed of one or more simulator commands. Each com-

mand follows the same syntax as the commands described in section 4.

To specify multiple commands with a single call to

TO the simulator, separate the commands with a semicolon. The entire

command string must be terminated with an exclamation point and may

not exceed 200 characters.

15

WWa - -1 . -t k A A ..

The second parameter (echosw) is a logical constant or variable. -

This parameter controls the echoing of the commands passed in the

first argument. If echosw is .TRUE., the commands will be echoed

to the current simulator output device as they are processed. If

echosw is .FALSE., command echoing is suppressed.

If the user wants to give control to the terminal at some point

in the cmand string sequence, the command USE *MSOURCE* will allow

additional commands to be read from the terminal. For example, the
call ,-

CALL CRAY1('LOAD TRIDEC;USE *MSOURCE*;RUN #2000!',.TRUE.)

will cause the file TRIDEC to be loaded into the simulator memory

after which,the USE command will cause control to go to the user's

terminal, allowing breakpoints to be set, etc. An end-of-file con-

dition at the user's terminal (via ENDFILE, control-c, etc.) will

terminate the USE command permitting the "RUN #2000" command to

be executed. When the last command in the command string is executed

an automatic return is made to the caller of the simulator. By set-

ting the echosw parameter to .TRUE., the three passed commands will

be echoed to the simulator output device as they are processed.

In order to call the simulator as a subroutine, the user's pro-

gram must first get control. To accomplish this, two things must be

done:

1) The user program must be set up as a main program.

2) The user program must be loaded before the simulator is

loaded.

This is a consequence of the following two facts:

1) When NTS starts up a Fortran program (via the MTS $RUN

command), control is given to the main program.

2) When the MTS loader encounters more than one main program
it ignores all but the first one.

The simulator has a small internal main program which gets control if

the simulator is run stand-alone. But, if the user writes a main
program and loads it before the simulator is loaded, the simulator's

main program is ignored by the loader. Therefore, when loading is

finished NTS will give control to the user's main program.

16

~~~~~~~~~~~~~~~~.. .... -... ...-...-.. .......-........-.-................ -.........-..-.. , ......-..... -: -'--..



%I- A-7 7- --

As an example, suppose the user wrote the following Fortran

main program and compiled it into the MTS file MAIN.O.

CALL CRAY1('USE *SOURCE*.,,.FALSE.)

STOP

END

To use this main program and have it get control first, use the

following MTS run command:

$RUN MAIN.O+CRAYI

Although most user main programs would be more complicated than

this one, this main program is in fact the small internal main

program used by the simulator.

2.3.2 Simulator memory sharing

The simulated Cray-M memory can be shared both by the simulator
and the user's calling program. This is accomplished by having the

user include in his program the Fortran common block declaration usedU by the simulator to allocate the Cray-M memory space. This commom,

block declaration appears in the simulator as follows:

DOUBLE PRECISION MEM

COMMON /MEMORY/ MEM (4096)

qCOMMON /MSIZE/ MEHSIZ
INTEGER IMEM(2,l)

EQUIVALENCE (MEM(l), IMEM(l,l))

The MSIZE common block contains the single word MEMSIZ whose

value is the current size of Cray-M memory. MEMSIZ is used to per-

form bounds checking on branches and memory references made by the

simulated Cray-M instructions. When the simulator is called for

the first time some once-only initialization is done which includes

zeroing all of Cray-M memory (MEM). Therefore, MEMSIZ must be init-

ialized properly before the first call to CRAYl. Further since the

once-only initialization will zero Cray-M memory, the very first
call to CRAY1 must be made before the user's calling program initializes

any of MEM. It is suggested that this first initialization call be
made as follows:

17



5

CALL CRAYl('INIT.',.FALSE.)

The MEMORY common block contains the array MEM, which is used
as the Cray-M memory by the simulator. This is declared in the

simulator to be 4096 double words long. The user may extend this
common block to enlarge the Cray-M memory. This is done by writing

a Fortran main program which includes the common declaration state-

ments shown above, but with the 4096 constant replaced with a larger

value as needed. Then by loading the user main program first (see

section 2.3.1), the user's main program not only replaces the simu-

lator's main program, but the user's enlarged version of the MEMORY

common block replaces the simulator's version.

To pass data to and from the simulator Cray-M memory, the user

need only read and write data to the MEM array. However, because the

Cray-M memory address starts at location zero and Fortran arrays are

indexed beginning at one, the user must formulate the index into MEM

by using the Cray-M memory address and adding one to it. For example,

Cray-M memory location 3 is MEM(4).

The following example is the skeletal structure of a user main

program which extends Cray-l memory to 8192 words.

DOUBLE PRECISION MEM
COMMON /MEMORY/ MEM(8192)

COMMON /SIZE/ MEMSIZ

INTEGER IMEM(2,i)

EQUIVALENCE(MEM a) ,IMEM (1,1))

C

C .... SET UP MEMSIZ WITH THE NEW MEMORY SIZE.

MEMSIZ - 8192

C

C .... DO SIMULATOR ONCE-ONLY INITIALIZATION

CALL CRAYl('INITI',.FALSE.)

User initialization of Cray-l memory

CALL CRAYI('LOAD UPROG;USE *MSOURCE*! ',.TRUE.)

* User prints out results of simulated computation

STOP

END

See section 3.2 for a more complete example of accessing the smulator
as a subroutine.

18



2.4 CRAYEX Exit Dispatcher

As discussed in section 2.3, it is often useful to allow the

Cray-M simulation to be embedded as a portion of a larger Fortran

program. Conversely, it is also useful to be able to call a Fortran
program from within the simulated Cray-M program. This transfer

of control from the Cray-M program to a Fortran program is accomplished

through the use of the Cray-i exit instruction.

The Cray-i assembly language mnemonic for the exit instruc-

tion is shown below:

EX ijk

The exit code field (ijk) is a nine bit field within the exit in-

struction. Exit codes may range from zero to 511 decimal. When

the simulator encounters an exit instruction, it checks the exit
code field (ijk) for a non-zero value. If ijk is zero, a normal

Cray-1 program exit is performed. If ijk is non-zero, the simula-

tor will call the subroutine CRAYEX. If the user supplies a CRAYEX

subroutine and loads it first (see section 2.3.1), the user's
CRAYEX routine will get control. If no user CRAYEX routine is
provided, the simulator will perform a normal Cray-i program exit.

If the user provides a CRAYEX routine the sinulator will call it with

the following Fortran subroutine call statement:

CALL CRAYEX(IJK, AREG, SREG, VREG, VL, EXSW)

The arguments passed by the subroutine call are discussed below:

IJK - This input parameter is an integer which contains the value
of the ijk field in the exit instruction. It may be used

as a dispatchparameter, allowing different exit codes to per-
form different functions.

AREG - This parameter is an eight element integer array used to
pass the Cray-i A-register contents of the CPU that executed

the EX instruction to CRAYEX. This allows arguments to be

provided and results returned through the A-registers. Cray-

1 register AO corresponds to AREG(i).

19 1



,I

SREG - This parameter is an eight element double precision array

used to pass the S-register contents of the CPJ that execut-

ed the EX instruction to CRAYEX. This allows arguments to be

provided and results returned through the S-registers. Cray-

1 register SO corresponds to SREG(1).

VREG - This parameter is a double precision array, dimensioned

as (64,8), used to pass the vector register contents of the

CPU that executed the EX instruction to CRAYEX. Arguments

may be provided and results returned through the vector

registers. Cray-i vector register VO corresponds to VREG
(-,i) .""

VL - This parameter is an integer which contains the value of

the vector length register of the CPU that executed the EX

instruction. On entry to CRAYEX, VL will always be between

1 and 64. VL may be changed by CRAYEX and this change will

be reflected in the Cray-i vector length register. On

return from CRAYEX to the simulator VL must be in the range

of 1 to 64.

In addition to the CRAYEX calling parameters, the CRAYEX pro-"

gram may access Cray-M memory by sharing the memory common block

as described in section 2.3.2. This permits the CRAYEX routine

to perform major computation, I/O etc., directly to the Cray-M

memory.

20,

20 .



The following example is a skeleton CRAYEX dispatcher.

I.SUBROUTINE CRAYEX(IJK, AREG, SREG, VREG, VL, EXSW)
LOGICAL EXSW

INTEGER AREG (8), VL

DOUBLE PRECISION SREG(8), VREG(64,8)

C

C ... DISPATCH ON THE EXIT CODE.

GO TO (100, 200, 300, ... ), IJK

C

C • EXIT CODE UNDEFINED - TREAT AS NORMAL EXIT

EXSW = .TRUE.

RETURN

C

C ... EXIT CODE = 1.

.. 0 100
do exit code 1 processing.

S RETURNS C
-( C ... EXIT CODE = 2~~200

" do exit code 2 processing.

INRETURN

END

S.The user may define exit code one to be a SQRT function, exit

code 2 to be COS function, etc. Arguments and results may be passed

* through the registers or memory providing considerable flexibility

in the algorithm design and implementation.

- 2.5 Report Generation

The Cray-M simulator produces five kinds of report outputs.

STAT. CPACT° TRACE, TACT and TACT STAT. The STAT report is a sum-

mary report of the program's use of Cray-M resources, i.e., across

all Cray-i processors. The CPACT report is a detailed report of

individual Cray-i resource usage at each clock period of the program's

21



execution. The TRACE reoort is a flowtrace which, for each exe-

cuted instruction, displays for each CRAY-i the instruction mnem-

onic, the instruction address, and the contents of the storaqe

locations that the instruction affects. The TACT report shows

which task each CPU is executing at constant clock period inter-

vals, analogous to the CPACT clock-level report for each processor.

The TACT STAT report is a summary report of all task activity,

analogous to the STAT clock-level summary. For p processors, a

total of 2p + 3 reports can be generated for each run.

2.5.1 STAT report

The STAT report summarizes clock-level activity across all

processors and consists of three sections:

1) Vector Usage Counts

2) Floating Point Result Counts

3) Data Traffic Counts

Timing must be enabled only for the Vector Usage Counts section.

The Vector Usage Counts section reports the program's use of
a Cray vector unit resources. Figure 2.5.1, below, shows the

Vector Usage Counts table.
*1"

U OF N CRAY-M SIHULATOR (UR138)

VECTOR USAGE COUNTS

CUB. TIRING PP ADD FP IUL FP DIV LOG. SHIFT I* ADD VLOAD V-STOB

TIME BUSY (CP) 5882 7705 67 67 1277 0 10322 2501
% TIE BUSY 36.20% 47.42% 0.41% 0.41% 7.86% 0.0 % 63.52% 1539%

O. RESULTS 5530 7245 63 63 1201 0 9706 2316

lo. VECTORS 88 115 1 1 19 0 154 37

AVERAGE VL 62.84 63.CO 63.Cj 63.00 63.21 0.U 63.03 62.59

RON TIME (CP) = 16250
AFLOPS : 62.67
COUPOSITE ArL : 62.95
CONCURR NCY : 1.71
HIPS : 5.02

Figure 2.5.1 - Vector Usage Counts Table

Each column of the Table represents a different vector functional

unit. Left to right the units are: floating point add, floating

point multiply, floating point reciprocal approximation, logical,

shift, integer add and memory split between vector loads and vector

stores. The rows of the table represent: unit busy time, percent

unit busy of total run time, the number of results produced by the

22



unit, the number of vector instructions issued to the unit and
the average vector length processed by the unit.p Five other statistics are printed beneath the table: the

run time since the last INIT command or simulator start up, the

MFLOPS (million floating point operations per second) for

the program, the composite average vector length over all vector.units, the vector unit concurrency, and the MIPS rate.

MFLOPS is calculated over all floating point operations,
both vector and scalar. It is computed as the number of floating
point operations divided by the program run time in seconds.

Concurrency is calculated as the sum of all vector unit busy
Ia times divided by the program run time. It is a global measure of

.$, the concurrent use of the Cray-M vector units.

MIPS, millions of instructions per second, is calculated as,

the number of instructions issued divided by the program run time

in seconds.

The Floating Point Result Counts section reports the program's

use of both vector and scalar floating point operations. For each

entry in the table (Figure 2.5.2) both the number of results and

its percentage are printed.

FLOATING POINT RESULT COUNTS

ADDITION MULTIPLICATION RUCIPIOCAL TOTAL

VICTOR () 5530 (43.4) 7119 (5599) 63 (0.5) 12712 (99.9)
S.SCALAR (I) ( 0.0) 5 ( 0.0) 8 ( 0.1) 18 ( 0.1)

TOTAL (%) 5535 ( 43.5) 7124 ( 56.0) 71 ( 0.6) 12730 (100.0)

Figure 2.5.2 - Floating Point Result Counts Table

Floating point additions (and subtractions) and reciprocals are

counted directly from the instructions that perform them, but the

multiplication count requires some adjustment due to the reciprocal

approximation.

Because a reciprocation on the Cray-1 is an approximation,

two additional multiplications must be done to get a full precision

result. One of these multiplications is a reciprocal iteration and

-the other is a standard multiplication. The Cray-i instruction se-

quence below illustrates the scalar instructions used to obtain a

full precision scalar reciprocal (Sl = 1/S2).

23
...............................................................



"4 7

Si /HS2 reciprocal approximation

S2 S2*ISl reciprocal iteration

Si S2*Sl extend precision

To count these additional multiplies as part of the floating point c
operation count would overstate this count, since they really are

part of a single reciprocal operation. Consequently these two
multiplies have been deducted from the multiply count in the table.
This adjustment is made by subtracting the number of detected

reciprocal iterations from the number of standard multiplications.
A reciprocal iteration is detected through the issue of a 067, 166

or 167 instruction. The sum of all vector and scalar floating

point operations, shown in the lower right corner of the Figure

2.5.2, is used as the numerator of the MFLOPS calculation discussed

above. To receive a floating point result count report, the FULL

option must be specified on the STAT command.
The Data Traffic Counts section is the last section of the

STAT report. It is only printed if the FULL option is specified on

the STAT command. Figure 2.5.3, on the following page, is an example 0
of the Data Traffic Counts section.

This section reports the amount of data traffic on the major

data paths of the Cray-M. To aid in identifying the various data

paths for which traffic information is provided, the simulator prints

a block diagram of a Cray-i uni-processor and attaches path

labels to each of the data paths. These path labels are referenced

on the left hand side of the report preceeding a number, representing

the number of operands shipped over that path. The data paths with

arrows are uni-directional whereas the paths shown dotted are bi-

directional.

The left most column of the figure represents the Cray-I. computa- "

tional units divided into three groups; vector, scalar and address.

* The floating point functional units are assumed to be shared between

the vector and scalar groups.

The center column of the figure represents the Cray-M register

storage. Top to bottom these four register groups are the vector

registers, the scalar registers, the T and B registers and the address

registers. The vertical bi-directional communication paths (shown dotte'

24



between the four register groups are used for inter-group data

transfers.

The right hand column of the figure represents Cray-M main
memory. MEMORY is shown in four sections only for the purpose of

.~*; * ~ the figure. Any register group may reference any location in Cray-l

main memory.

The labeling scheme is defined as follows:9

1) "As' means address, "5S" means scalar and 'IV" means

vector.

2) "0"l means operands and "R" means result.

3) "X" means a bi-directional data path

S4) I'M" means the path is a memory path used by the three

register groups tied both to memory and a computational

unit. The T and B registers communicate only with

memory and other register groups.

SFor example, "SMO"' is the operand data path to the scalar registers

from memory, where "Sol' is the operand data path to the scalar corn-i putation units from the scalar registers.

Below the data path portion of the report, four other statistics

are printed:

'I1) MISC. represents the number of miscellaneous instructions

executed by the program that do not move data across any

A of the paths shown in the figure and are not branch
4 instructions. The instructions counted include: op-codes

* .4 2-4, 20-22, 40-43, 72-73.

2)BRANCHES represent the number of branch instructions

*executed by the program whether the branch is taken or not.

3) FETCHES represent the number of parcel buffer fetches

* -. incurred by the running program.

4) ISSUES represent the number of instructions issued by

the running program.

The last part of the Data Traffic Counts section shows nine
*percentage and ratio calculations. Each of these are discussed below

with their derivation.

A 25



1. Percent of vector operands supplied by cache.

The term cache refers to the eight Cray-i vector reg-

isters. This percentage reflects the dominance of the
cache over memory in supplying vector operands to the

vector units. It is defined as,

VO-VMO 1 100

2. Percent of total vector traffic supplied by cache.
.r

°

This percentage is similar to (1) above, but also includes ,.

the effect of the vector results data traffic. It is

defined as,

VO-VMO + VR-VMR * 100

VO + VR

3. Percent vector results of total results.

This percentage is a measure of the vector-scalar composi-
tion of the program's computation. This figure reflects

the percentage of all results computed in vector mode.

Because scalar and vector instructions can execute con- U
currently, this figure is not the percentage of time

spent in vector mode. This figure is defined as,

VR 100
VR + SR + AR

4. Percent vector memory traffic of total memory traffic.

This percentage is a measure of the vector-scalar composi-

tion of the program's memory usage. This figure reflects

the percentage of vector traffic to and from the main

memory. It is defined as,:

VMO + V14R 100
TMDT + FETCH

26

I , , . . . . .• . . . - . . " ' . • • . • . " . - ' . - " ' " " " ° '. , . - " ' '.*" ° ' . . - . - .- . - . - , ." ' . - . -l . . ", -.



FETCH is the number of memory words read into the instruc-

tion parcel buffers. TMDT is the total memory data traffic

and is defined as,

TMDT = VMO+VMR + SMO4+SMR + AMO+AMR + BTO+BTR

5. Ratio of computation traffic to memory traffic.

This ratio is a measure of the benefit provided by the

register portion of the Cray-i memory hierarchy in re-

ducing the main memory data traffic. If this ratio was

one there would be no benefit in having the registers,

since register traffic equals memory traffic. Typically

this ratio is in the range of two to five indicating

that the registers provide a substantial reduction in

main memory data traffic. This ratio is defined as,

VO+VR + SO+SR + AO+AR

TMDT

6. Ratio of vector memory operands to vector memory results.

This ratio is a measure of the average vector operand re-

*quirements of the program. This ratio combined with the

vector memory result rate (see 10 below) and the algorithmic

complexity of main memory usage (the computational lifetime of

data in main memory) will allow the algorithm designer

to determine the mass storage I/0 data rates necessary

to keep the vector arithmetic units constantly busy. This

ratio is defined as,

VMO

7. Ratio of vector unit results to vector memory operands.

This ratio is a figure of merit of the average value of

main memory operands in the computation. A value of two

would imply that each main memory operand precipitates

27



i

2.5.1.1 STAT Example

To illustrate the information provided by the STAT command, _

one example is presented. The code in this example is one which -

multiplies four pairs of matrices together. After running the

program with timing turned on (SET TIM=ON), the STAT FULL command

is given, producing a STAT Report containing all three sections

(Vector Usage, Floating-point Result and Data Traffic).

i

S...

p.'

K.

28

INm



I!

U OF M CRAY-M SIMULATOR (EpOll)

VECTOR USAGE COUNTS

CUM. TIMING FP ADD FP MUL FP DIV LOG. SHIFT I. ADD V-LOAD V-STOR
TIME BUSY (CP) 136 68 0 136 0 0 136 69% TIME BUSY 34.78% 17.39% 0.0 % 34.78% 0.0 % 0.0 % 34.78% 17.65%NO. RESULTS 128 64 0 128 0 0 128 64NO. VECTORS 2 1 0 2 0 0 2 1AVERAGE VL 64.00 64.00 0.0 64.00 0.0 0.0 64.00 64.00

RUN TIME (CP) : 391
MFLOPS Z 39.28
COMPOSITE AVL : 64.00
CONCURRENCY : 1.39

SHIPS 16,16

FLOATING POINT RESULT COUNTS

ADDITION MULTIPLICATION RECIPROCAL TOTAL

VECTOR (2) 128 ( 66.7) 64 ( 33.3) 0 ( 0.0) 192 (100.0)SCALAR (%) 0 ( 0.0) 0 ( 0.0) 0 ( 0.0) 0 ( 0.0)

TOTAL (M) 128 ( 66.7) 64 ( 33.3) 0 ( 0.0) 192 (100.0k

Figure 2.5.4. STAT Example

29



U
4-.,+

DATA TRAFFIC COUNTS

V U Vo V VNO m
VO : 512 E N <====-= E R <===E== E
VNO : 128 C I C E M -

T T T O 0
UR : 320 0 S ===...> 0 * ===..> R
VNR : 64 R VR R VNR Y

sxv : 9 sxv

S U So S SNO M

so 0 C N <=- C R <-- E
SMO 0 A I AE 

L T L G 0
SR 0 A S -=- > A a -==-==> R
SNR 0 R SR R SNR Y

SXT 0 * SXT

BTO : 0 • T BTO M
R <====r= E

SXA : 0 SXA I E M

6 0
B =====.> R

BTR t 0 • BTR Y

AXD : 17 * .AXB

A AO A ANO M
Ao 52 D U <---- D R <-===== E
ANto 2 D N 0 E M

R I R 6 0
AR : 26 E T -n-=-n> E an===> R
AMR : 0 S S AR S AMR Y

S S

NISC. : 13
BRANCHES : 4
FETCHES : 3
ISSUES : 79

PERCENT OF VECTOR OPERANDS SUPPLIED BY CACHE - 75.00%
PERCENT OF TOTAL VECTOR TRAFFIC SUPPLIED BY CACHE - 76.92%

PERCENT VECTOR RESULTS OF TOTAL RESULTS - 92.49%
PERCENT VECTOR MEMORY TRAFFIC OF TOTAL MEMORY TRAFFIC - 79.34%
RATIO OF CONPUTATION TRAFFIC TO MEMORY TRAFFIC - 4.69
RATIO OF VECTOR MEMORY OPERANDS TO VECTOR MEMORY RESULTS - 2.00
RATIO OF VECTOR UNIT RESULTS TO VECTOR MEMORY OPERANDS - 2.50
RATIO OF VECTOR UNIT RESULTS TO VECTOR MEMORY RESULTS - 5.00
RATIO OF VECTOR UNIT CACHE USE TO VECTOR MEMORY CACHE USE - 4.33
VECTOR MEMORY RESULT RATE - 0.1637 RESULTS/CP

Figure 2.5.4. STAT Examnle (contd)

30
i . . . .~~.4 . . . ..- ,..-.-.. ........... ..... , ..- , . .. . . . . ... .. •.. ,.......



2.5.2 CPACT Report

The CPACT report produces a detailed clock period activity

reford of a Cray-I uniprocessor state. This is a 132 column report

suitable only for printing on a line printer. The CPACT report
can be enabled or disabled for any or all of the CPU's. Figure

2.5.4 on the following page shows the format of the report. Across.

the top of the report, the various column headings are devoted to the
Cray-i resources that may be called into use by a Cray-i instruc-

tion. Time flows down the page with each clock period of simulation

time producing an output record that describes the state of Cray-i

resources at that clock period. With vector instructions using

long vector lengths, the machine resource state may remain unchanged

for fifty or more clock periods, resulting in many identical CPACT

output records. The COMPRESS option on the CPACT command (see

section 3) may be used to suppress the printing of ten or more

identical output records. This substantially reduces simulation

cost and makes the CPACT report far more manageable. One line of

compression dots are printed in place of the suppressed records.

The CPACT report is partitioned into the following 21 Cray-i

resource fields:

j 1. ST. - The machine state field.

This field indicates the machine state at each clock

period. Three possible entries are: (1) "IS", which

means that an instruction is issuing at this clock

period, (2) blank which means that no instruction will

issue at this clock period, and, (3) "FE", which means

a parcel buffer fetch sequence is initiated at this

clock period.

N 2. TAG - The activity resource tag.

At a clock period in which a new machine activity

(instruction issue or fetch request) is initiated, the

activity is assigned a one letter activity resource

tag (A-Z, 0-9) which is used in subsequent clock periods

to identify the Cray-1 resources called into use by the

initiated activity. When a conflict occurs in the demand

A narrow versin t CT repqrt may.b.requested for printing ata ierminal see ne WATcommana aescription.

31



4 ,141M 1 4 114o

Quol of-r

S..

aOl 0mB~m ftaa.v.,r -440 00 0 0 0

we m

3

H '

p544

00d 0 ,. o o o o o

1 . 40F 0 -pp 1 0 1-1 1. .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - C4

* Ps 1I 1 Isp
I

1414

o o H iflI Ob

06 4

anu0n1gv ggU 1

C4 Cm C4' 4 A A CC-M e
H 000 C14 14 01 C

0 0

0 0

.I -O.4 .

04f

H6 or V.00

32 u



for a Cray-i resource, the tag occupying the resource

may be traced back to the initiating activity.

S -Resource conflict occurs when an activity initiated

in a past clock period,occupies a Cray-1 resource

that is now being demanded by another activity. For

example, when an arithmetic instruction issues, the

result register is reserved until the result arrives

at the register. Because the Cray-i is pipelined.

a subsequent instruction, that requires the previous

arithmetic result as an input operand, may experience

an operand register conflict, causing it to hold issue

until the previous arithmetic result arrives at the

operand register (the previous instruction's result

register). In this example the resource conflict occurs

on a register. The CPACT report will show the first in-
struction's activity tag in the report column corresponding

to the result register of the instruction. The tag will re-

main in this column until the result register reservation ex-

pires (i.e., the data has arrived). If the second instruction

4 demands the use of this result-register before the reser-

vation has expired, the result register reservation tag

will be underscored and the second instruction will hold

issue until the data arrives.

The underscoring of activity tags is used throughout the

report to highlight the resource conflicts of waiting

instructions.

3. INSTRUCTION - The mnemonic for the issuing instruction.

When a Cray-i instruction issues ("IS" in machine state

field), the assembly mnemonic for the instruction is

printed in this column.

4. P-ADDR - The parcel address of the issuing instruction.

When a Cray-i instruction issues, the parcel address

from where it came is printed in this column.

33



-"2F.7w - U- .'a -

5. CP - The simulator clock period.

This column contains the simulator clock period. The

clock period is reset to zero by an INIT command. If

the user turns timing on and off through the SET command

or the ERT, DRT instructions, the clock period is not

affected but the machine resource state is cleared.

6. +*/ >+ - The Cray-i vector functional units.

Each of these six columns represent the reservation

state of a Cray-i Vector functional unit. Left to

right the units are : floating point adder, floating

point multiplier, floating point reciprocal approxi-

mation, vector logical, vector shift, vector integer

adder. The activity tag of a vector instruction which

reserves one of these functional units will be placed

in the corresponding column.

The vector memory path can also be reserved by a vector

instruction and is shown in one of the far right columns

under the heading "BSF", which stands for block sequence

flag. This flag is set during all vector memory refer-

ences

7. V. Reg - The eight Cray-i vector registers.

Each of these eight columns represent the reservation

state of a Cray-i vector register. Vector registers
are reserved by the vector instructions which reference

them either as operand or result registers. The activity
tag of the issuing vector instruction will be placed in

the columns corresponding to the vector registers used

by the instruction. Operand registers are typically

reserved for MAX (VL,5) clock periods. Result registers

are typically reserved for MAX(VL,5) +FUT + 2 clock

periods, where FUT is the functional time of the vector

unit performing the vector operation.

34



,

If a subsequent vector instruction requires, as an

input vector, the result vector of a previous vectorh instruction, and is ready to issue when the prior

instruction's first result arrives at it's vector
ii. register (the first result will arrive in FUT + 2

clock periods after issue), then the second vector

instruction will issue only at the clock period when

this first result arrives. This is called chaining

- ., and the clock period when the first result arrives

"- is called chain slot time. If the second vector

instruction misses chain slot time, it will hold issue

S.. until all results of the first instruction have

arrived at the vector register.

If the second vector instruction chains to the first,

the activity tag of the second instruction will replace

the tag of the first instruction in the chained vector

register column. If chain slot time is missed, an

asterisk is placed in the result register field at the

chain slot time clock period, highlighting chain slot

time.

See appendix-A for a summary of Cray-1 timing informa-

P tion.

lY 8. MEMORY BANKS - The Cray-i rank registers and memory banks.

This portion represents the Cray-i scalar memory refer-

ence a-cess network and the 16 Cray-i memory banks. The

memory bank cycle time of the Cray-i is four clock per-

iods long. Consequently memory accesses to the same

bank must be at least four clock periods apart. Two scalar

memory references which could address the same bank can

. : issue two clock periods apart. This would give rise-to a

bank conflict which is resolved by the scalar rank register

access network. (I/0 access to main memory also passes

through the rank registers). The four columns to the left

of the 16 memory bank columns represent:

35



Sd - Scalar in clock period one.
RK -Rnkrgitr

RI(A - Rank register - B

RKB - Rank register - B

When a scalar memory reference issues, it's activity

tag is placed in the column SCi. It's bank address

(lower 4 bits) is then compared to the bank addresses

in rank registers A, B and C. If a bank coincidence

is detected, the memory address waits at SCi until a

clock period arrives when bank coincidence vanishes.

Meanwhile the bank addresses in the rank registers are

advanced each clock period to the next rank register.

The address in rank-C advances to it's target memory

bank and remains latched at that bank for four clock

periods. on the fifth clock period, the memory data

is gated from the bank into the SEC-DED (single error

correction - double error detection) network. Simul-Q

taneously a new memory address may be latched onto the

bank to start the next reference.

While the address is waiting in SC1, the activity tag

of the issuing instruction is placed in one of the far

right columns -labeled 11STH", which means storage hold.

While a scalar memory reference is waiting in storage

hold, subsequent scalar memory references may not issue

until the waiting scalar reference leaves the storage

hold state. This means that two scalar memory reference

instructions, accessing the same bank, may issue so as
not to block subsequent instructions from issuing. But,

if a third scalar memory reference tries to access the

same bank as the first two references, the storage hold

.4. state of the second scalar reference will block issue

* of the third scalar reference which blocks all instruc-

tion issuing.

As the memory address advances through the rank registers,

the activity tag of the issued memory reference is ad-

vanced to the right. When the tag leaves rank-C, it

36



-. p S -.- - - -97

A

will jump to its target bank and remain there for

four clock periods.

Only scalar memory references place tags in this

section of CPACT. Parcel buffer fetches, B and T-

register transfers and vector references place no

tags in this section. They do affect other columns

of the report, though.

9. ARA - The A-register access path busy flag.

There is a single store access path to the eight

Cray-1 address registers. Each clock period, one

operand may be stored into one of the eight A-registers

via this path. When an instruction tries to issue, if

the result of its computation would make use of the
'.i A-register access path at a future clock period when

the path is already reserved for use by a prior instruc-
tion, the issue will be held until the next clock period.

When an instruction uses the access path its activity

tag will appear for one clock period.

10. A. Reg - The eight Cray-i address registers.

These eight columns correspond to the eight Cray-i

A-registers. When an instruction reserves an A-register

ita activity tag will appear in the appropriate column.

11. SRA - The S-register access path busy flag.

This flag serves the same function for the eight S-registers.

* - that the ARA flag does for the A-registers.

12. S.REG - The eight Cray-1 scalar registers.
These eight columns correspond to the eight Cray-i

S-registers. When an instruction reserves an S-register

its activity tag will appear in the appropriate column.

37
•S's



13. VM - The vector mask busy flag. ""

This flag is set when a 003 instruction (VM Sj) or

a 175 instruction (VM Vj,C) is in progress. The

activity tag of the issuing instruction appears in

this column.

14. AOB - AO busy flag.

The A-register conditional branch instructions, 010- -

013, use the data in AO to make - branch decisions. -

When new data is stored AO it takes two additional

clock periods to validate the branch test flags. While

the branch test flags are invalid, the A-register con-

ditional branch instructions will hold issue. The

activity tag of the instruction storing new data into -
AO will appear in this column until the branch test

flags are made valid.

15. SOB - SO busy flag.

The same comments for AOB above apply hiere, except

the S-register conditional branch instructions (014-

017) are affected.

16. STH - Storage hold flag.

The activity tag for a scalar memory reference, whose Z.

address experiences a memory bank conflict with the |

rank registers is placed in this column until the con-

flict vanishes. Subsequent scalar memory references
will hold issue until this flag clears. See the memory
banks discussion for more details.

17. 073 - Vector mask read inhibit flag.

Execution of a 003 instruction (VM Sj) or a 175 instruc-

tion (VM Vj,C) will cause a 073 instruction (Si VM) to

hold issue until the 003 or 175 finishes. The activity

tag of the 003 or 175 instruction will appear in this column.

38

! ?m L < ¢ < . - ?. .., ..i.-..--. .°.- '' , ... .,. ...



18. BCG -The parcel buffer change flag.

When the next instruction parcel to enter the NIP

(next instruction parcel) register is not in the

current parcel buffer, due to a branch or a buffer

fall through, this column will be tagged with aniasterisk until the buffer change is completed. This
may involve a switch to one of the other parcel buffers
or a parcel buffer memory fetch may be needed. This

* flag causes all instructions to hold issue.

19. FPA - Fetch pause flag.

- - This flag is used to trigger a parcel buffer fetch

sequence. While it is up,an asterisk appears in this
column. The fetch sequence will begin when this flag

is clear.

20. BSF - The vector memory reference block sequence flag.

g When a vector memory reference (176,177) issues, this
column will be set with the activity tag of the issuing

* instruction. subsequent vector memory references will

hold issue until this flag clears.

21. BTX - The B and T register block transfer flag.

When a B or T register block transfer instruction (034-

037) issues, its activity flag will appear in this

column. No other instruction may issue while a B or T

block transfer is in progress.

39I



2.5.2 CPACT Examples

To illustrate the use of the various CPACT report fields two-

examples are presented, a scalar memory reference example and a

vector example.

2.5.2.1 Scalar Example

a The CPACT report shown in figure 2.5.5 (wide and narrow versions)

was p~roduced by the Cray-l program below

20A: S3 53,0 (B)

A3 33,0 (C)

AO 103,0 (D)

so 51,0 (E)
S6 50,0 (F)

S5 47,0 (G)

JSZ 24C (H)

24C: EX 000 MI
The labels to the left are the parcel addresses of the associated

instructions. The letters in parentheses on the right are the

activity tags for the corresponding instruction as assigned by

the CPACT report. These tags will be used to refer to the instruc-

tions in the discussion below.

When the program is first started up, no instruction parcels

are in the parcel buffers so a fetch is required. The asterisk

in the BCG field indicates a buffer change in process. When the

first instruction parcel (20A) arrives at the parcel buffer, two

pass instructions ("<BLANK>") issue which pull the parcel through

the NIP to the CIP register. Instruction B issues at clock period

17 (CP 17) and its activity tag appears in SCl to indicate a scalar

memory reference in clock period one. As time advances the B tag

propagates through the rank registers and onto memory bank 13 octalLa

(B hexadecimal). After four clock periods on the memory bank, the

B tag vanishes and appears later at clock period 27. Here the

instruction makes use of the S-register access path so the memory

data can be stored into the result register,' S3 in this case.

40



-- -~ - -YK.~ - - - - - - - -* - -- -0

I.1.I 6P .,& 69 wW
g- *14b

- - - - - - - - - -

-~. -* ---- ---- ----( ----

- -- - 0

69 u

I.- tz 0a

4 a )
a 

P.
S ag inaeaU aUQ

W. IF V. N N) fn M mmml)~

40

a0

C dc 4

31 1.1 0) .1 A .

tom dig Om .

4 4



- ~ ~,ii H' ' H'H' H H'
0I--t

rai in

WIMFZIK ~ ~ , r.,,) 77T7'. 7 .

4 - 2.141 1 4 * *1

S I. -.'

b~ in

lz 00000000000 QC

- - - - - --- U IQ -- - >

63 &

S- 0.-

40 U3 I

- - - -in-

, 0 w w0

ca

.4U

f r.

0 -UI4 U 4 U M :r

a Ln m c e L i t i -wN

04

I C go M ca M 0 %D M* L~o l

(A 44 P 4 L4'

42 SU

2 t~ C %



During the time period from instruction issue (CP 27) until the

data arrives at the result register (CP 27), the B tag appears

in the S-register 3 column showing the reservation on S3. Because

a scalar memory reference instruction is a two parcel instruction,

a <BLANK> Will issue after it. This is true for all two parcel

instructions.

When scalar reference instruction C issues, a bank conflict

with the previous instruction is detected (address 33 and 53 are

in the same bank). This causes the reference to enter the storage

hold state until the conflict vanishes, meanwhile the C tag appears

in the STH column. Scalar reference instruction D will try to issue

at CP 21, but can't because the storage hold flag is set. This

is noted by the underscore beneath the C tag in the STH column.

The subsequent four scalar references (D,E,F and G) all

reference available memory banks and issue consecutively without

conflict. Instruction E loads register SO which is needed by

branch instruction H to decide the branch outcome. Even though

the data for E arrives at CP 35, two more clock periods are required3 until the branch condition flags become valid. While the branch

flag is invalid the E tag appears in the SO busy column (SOB). Once

the SOB flag clears, the branch instruction issues at CP 38. This

branch instruction has an in-buffer target address. While the

buffer change is in progress, the instruction causing the change

will place its tag in the BCG column. Once the change is complete,

BCG is cleared and two blanks issue to load the CIP register.

43



2.5.2.2 Vector Example

This example illustrates the CPACT report with vector instruc-

tions. All vector lengths are seven. Figure 2.5.6 is the CPACT

report generated by the following program:

20A: AO 50 (B)

Al 7 (C)

VL Al (D)

S1 43,0 (E)
VO AO,l (F)

V1 AO,l (G)

V2 Vl+VO (H)

VM V2,Z (I)

So VM (J)
JSN 40A (K)

40A: EX 000 (M)
As in the scalar example, the simulation begins with a fetch

sequence. The first vector instruction (F) loads a vector from

memory into VO. Rank-B and rank-C busy are hold issue conditions

for this vector load and are shown underscored. Once the vector

load issues, it places its tag both in the VO busy and the block

sequence flag (BSF) columns. Vector instruction G is also a vector

memory load, but it must hold issue until BSF clears. The asterisk

in the VO column at clock period 33 represents the chain slot clock

period for instruction F. If a vector instruction using VO as an

operand was placed after instruction F and it meets all other con-

ditions at CP 33, it will issue at CP 33, and be chained to F. At

CP 35 BSF clears, allowing instruction G (a second vector memory
load) to issue.

Instruction H is a vector integer add with vector registers Vl
and VO as operands. Consequently, the busy state of Vl and VO are

hold issue conditions for H. The functional unit time for the vector

load (G) is seven clock periods, so at CP 44, (issue time) + (functional..K

unit time) + (2), chain slot time will occur and the vector add

issues. The tag for the chaining instruction (H) replaces the result

tag (G) on the chained register.

44

. . . * . . . , --



I k. I- w r- w-.Vh W W N '% 4 -

I.,o
* 01 IC

V- ae
.9 on enWi
1-0-----------------

- - - - - - - - - - - - - - - - - -

042

00

. 4'4

* 04

4% a

aa I

D SO-

a. du )

N .

-------------------------------------------------------------

144

vy -

45U
4



494

b..3
- - - - - - - - - - - - - - - - -

AZ

CN4

--

V 0
on 0

IC u

Jr .0

64 l .C4

as W Ei

U-4 x
- - - - - - - - - - - - - - - - -

W* A

an In% ,i lmU n 0% )a% ,%0 ' - r -r -

U A-N
4 N a

A AC h

0 4 
U

* 46



1Instruction I chains in a similar way to the result of instruc- 2
tion H. The vector mask register is reserved by I and its tag isU placed in the VM column.

~ sInstruction J will hold issue until the 073 inhibit flag clears.
Sisused as data for branch instruction K which does a branch out

of buffer, causing a fetch sequence.

.1

)-A .47



2.5.3 TRACE Report

The TRACE report is an instruction-by-instruction flowtrace

of the program being executed. As each instruction issues, its

instruction affects are displayed. The TRACE report can be enabled

or disabled for any or all of the CPU's. The TRACE report, unlike

the STAT report, is independent of the TIMING switch. The format

of the TRACE command, which is somewhat complicated, will not be

discussed here -- see instead Chapter 3 of this report. Here will

be presented some examples of the use of the TRACE command, the sample

code used is the same as was used in the STAT example (section 2.5.1.1).

The TRACE report produces, for each instruction, one or more.4.

printed lines. The output for each instruction is divided into three
fields: address, mnemonic and display; the fields are separated by

colons. The address field contains the parcel address of instruction,

and the mnemonic field contains the CAL (Cray-l Assembly Language)

instruction mnemoni.c of the instruction. Thus, looking at (1) in

the figure, we cse that at parcel address 20B is the CAL instruction

A2 7750, AO (opcode 10h). Note that all constants displayed in both

address and mnemonic fields are octal constants, regardless of what

BASE pseudo-op was used for assembly of the source code. Therefore, i

since 77508 = 407210, the memory reference will not exceed the ad-

dress space (409610 words) provided that -407210 s AO 5 2310.
The third field in the TRACE output line (or lines) is the dis-

play field. In the display field is printed the contents of storage U

locations affected by the instruction. The results displayed are

results after the instruction has exectued; that is, the results

which the instruction produced. In (1), this means that AO=0 and

that the word stored in A2 after being fetched from memory is also

zero. For every instruction, the result register is displayed unless

the instruction is a cache transfer instruction (opcodes 025 and 075),

in which case the contents of the A or S register transferred into

the B or T cache is displayed rather than the actual S or T result

register. As an example, see (2); here the contents of A4 rather
than the contents ._. B05 are displayed.

All displayed results are decimal integers or decimal floating

point numbers. In (3), the result is shown to be 2023 10 Exceptions a

to the decimal-display rule are the following:

48



* .. * 1)S registers are displayed as both decimal integers and -

decimal. floating-point numbers unless the instruction

p is a logical instruction (shift, mask, AND, etc.) in which

case the result is displayed as a 64-bit octal constant.

'. .~,2) V registers are displayed as octal constants for logical

IP instructions, and decimal floating-point numbers otherwise

(contrast (4) and (5) )

Vector instructions display a number of elements which is equal

to the minimum of VL and the number specified by the optional LEN

parameter on the TRACE command. Note that in (4) and (5) all 64

elements are printed since VL=64 and no LEN parameter was supplied.

(6) illustrates a TRACE command with a LEN parameter given; since a
LEN is given, (7) (which is the same instruction (4)) displays

only four elements of the vector result register.

499

42'



'VA

* MAP
MODULE LOCATION LENGTHMMUL 20A 202.'

- TRACE ON

# RU #25
20A: AO 00 : AO= 0

, 20B : A2 7750PAO : AO= 0 A2= 0 a-
20D : A4 7751PAO : AO= 0 A4- 0

. - 21B : 005 A4 : A4= 04-
21C: A4 A4*A2 : A4-0

- 21D : A7 3747 : A7- 2023,0-Q"
229 : 002 A7 3 A7= 2023
22C I A7 5747 : A7- 3047
23A : 004 A7 : A7- 3047
233: AS 01 AS-I
23C B20 A5 AS- I
23D : v A A4 : VL-64
24A: Al 00 A1= 0
249: B07A1 : A1-0

- 24C I V3 S0%V4 1 VL-64
V3( O)- 0'0' V3( 1)= 0"0' V3( 2)= 0'0"
V3 3)w O'0O V3( 4)= 0"0' V3( 5)= 0"00
V3( 6)- 0'0' V3( 7)= 00' V3( a)= 0"0,
V3( 9)- 0'0' V3(10)= O'oo V3(11)= 00'
V3(12)- 0"0' V3(13)= 0'0" V3(14)= 0'0'
V3(15)- 0"0" V3(16)= 0'0' V3(17)= 0"0"
V3(18)= 0"0' V3(19)- O"0' V3(20)= 0"0"
V3(21)= 0"0' V3(22)w 0'0" V3(23)= 0"0'
V3(24)- 0"0" V3(25)= 0'0" V3(26)= 0'00 U
V3(27)- 001 V3(28)o 0"0' V3(29)=O'0'
V3(30)= 0'0' V3(31)0 00' V3(32)- O0
V3(33)- 0"00 V3(34)w 0'0" V3(35)- 0"0"
V3(36)- 0"0" V3(37)- 00, V3(38)- 00.* V3(39)- 0"0" V3(40)- 0"0" V3(41)- 0' 
V3(42)- O'0 V3(43)0 O'0 V3(44)m 0"0"
V V3(45)= 0"0 V3(46)- 0'00 V3(47)- 0"0"
V3(48)n 0'0 V3(49)0 0'0" V3(50)- 0'00
V3(51)- 0"0' VS(52)0 0"0" V3(33)- 0'0'
V3(54)- 0'0' V3(55)- 0'0' V3(56)= O00
V3(57)- 0"0' V3(56)- 0"0" V3(59)- 0"0"
V3(60)a 0"0' V3(61)- 0"0" V3(62)- O'0
V3(63)- 0"0'

-- 24D V VO SO+FV3 I VL-64
VO( 0)- 0.0 VO( 1)- 0.0 VO( 2)n 0.0
VO( 3)- 0.0 VO( 4)- 0.0 VO( 5)- 0.0
VO( 6)= 0.0 VO( 7)- 0.0 VO( 8)" 0.0 .
VO( 9)w 0.0 VO(1O)- 0.0 VO(11)- 0.0
VO(12)= 0.0 V0(13)- 0.0 VO(14)- 0.0
VO(15)= 0.0 vo(16)- 0.0 VO(17)- 0.0
VO(18)- 0.0 VO(19)- 0.0 VO(20)w 0.0
V0(21)- 0.0 VO(22)- 0.0 VO(23)- 0.0
V0(24)w 0.0 V0(25)- 0.0 VO(26)- 0.0
VO(27)n 0.0 O0(28)n 0.0 VO(29)w 0.0
VO(3O)n 0.0 VO(31)- 0.0 VO(32)- 0.0
V0(33)- 0.0 VO(34)- 0.0 VO(35)- 0.0V0(36)- 0.0 VO(37)- 0.0 VO(38)- 0.0
V0(39)- 0.0 VO(40)w 0.0 V0(41)w 0.0

Figure 2.5.8. TRACE Example

50



V0(45)w 0.0 'JO(46)- 0.0 VO(47)- 0.0VO(48)m 0.0 VO(49)- 0.0 VO(50)- 0.0
VO(5l)- 0.0 VO(32)- 0.0 VO(53)- 0.0
VO(54-0 0.0 V0(53)- 0.0 VO(56)- 0.0I;VO(57)m 0.0 VO(S9)- 0.0 V0(59)- 0.0
VO(60)- 0.0 VO(61i)- 0.0 V0(62)- 0.0

25A : A6 B02 : A6- 2023253 : A6 Ad+A4 : A6- 2023
25C A7 AO-AO A7.-l%J~'25D AO 4+A6 AO- 22

4'26A VI PAOPA7 3 AO- 2023 A7-1l VL-64
4,V1( 0). 0.0 V1( 1)- 0.0 V1( 2)- 0.0

ViC 3)m 0.0 VIA 4)- 0.0 VIA 5)- 0.0
V1( 6)- 0.0 V1( 7)- 0.0 ViC 8)= 0.0
VI( 9)- 0.0 V1(10)- 0.0 Vili1.). 0.0NVl(12)- 0.0 Vl(13)- 0.0 VI(14)- 0.0
V1(15)- 0.0 Vl(16)n 0.0 V1(17)- 0.07"VI~lS)- 0.0 Vl(19)- 0.0 V1C20)- 0.04 ., V1(21)- 0.0 Vl(22)- 0.0 VI(23)- 0.0
VI(24)- 0.0 Vl(25)- 0.0 Vl(26)- 0.0
VI(27)- 0.0 Vl(28)- 0.0 VI(29)m 0.0
YI(30)- 0.0 V1(31)- 0.0 Vl(32)m 0.0
VI(33)- 0.0 Vl(34)- 0.0 Vl(35)- 0.0

' .VI(36)m 0.0 V1(37)- 0.0 VI(38)m 0.0
VI(39)- 0.0 VI(40)- 0.0 VI(4l)- 0.0
VI(42)- 0.0 V1(43)- 0.0 VX(44)- 0.0
Vl(45)- 0.0 V1(46)- 0.0 VI(47)m 0.0
%)1(48)n 0.0 Vl(49)- 0.0 Vl(50)- 0.0
V1(51)- 0.-0 VI(52)- 0.0 VI(53)a 0.0
VI(54)- 0.0 VI(55)= 0.0 Vl(56)a 0.0
vI(S7)- 0.0 vl(58um 0.0 V1(59)ft 0.0
VI(60)- 0.0 V1(61)- 0.0 Vl(62)- 0.0Vl(63)- 0.0
263 3 02 A6 * A6- 2023
26C : A3 01 : A31
260 1 A7 1747 3 A7- 999
2733 t303A7 : A7m 999

**INSTRUCTION ISSUE LIMIT EXCEEDED AT 27C
*TRACE OFF

TRACE ON LEN-4 A: 2

20D A 7751PAO 1 AC- 0 A40 0
213 : 905A4 t A4O
21C A 4 AA*A2 I A4m 0
210 : A7 3747 : A7- 2023

.p2239 3 02A7 A7- 202322C 2 A7 5747 6 7- 3047
23A3 3 04 A7 3 A7m 3047
2333t A5 01 A5- I
23C t 320 A5 A3 ASI
235 3 VI A4 t VLw64
24A IAl 00 Alm-C
2433 t 07 Al Alm-C

Figure 2.5.8. TRACE Example (cont'd)

51.



V3( 0)- 0"0" VV 1)- 0"0, V3( 2)- 0"0"
V3( 3)- 0101

240 : VO 80+FV3 : VL-64
VO( 0)- 0.0 VO( 1)- 0.0 VO( 2)- 0.0
VO( 3)- 0.0

25A : A6 B02 : A6- 2023
5 253 : A6 A6+A4 : A6- 2023

25C : A7 AO-AO A7--1
25D : AO AO+A6 : AO- 2023
26A : VI ,AOA7 : AO- 2023 A7--I VL-64

VI( 0)- 0.0 V1( 1)- 0.0 V1( 2)- 0.0
V( 3)n 0.0

263 : 302 A6 A6- 2023
26C t A3 01 : A3- 1
26D : A7 1747 A7- 999
273 : 903 A7 : A7- 999

I INSTRUCTION ISSUE LIMIT EXCEEDED AT 27C
* TRACE OFF

5"

Figue 25.8. TRAE Exmpl (cot'd

52* *4



N, 2.5.4 TACT STAT Report

The Task ACTivity STATistics report is a condensed table of

all tasking activity since tasking was turned on (SET TASK=ON).

Each column of the report shows how much time (in clock periods)

each CPU spent executing each task. The percentage of the total

time since timing was turned on is shown beneath the number of

clock periods. The last column, labelled 'TOT', is the total

amount of processor time spent in each task.

Each row of the report shows the time each processor spent

executing a particular task. The last row depicts the time each

'1 CPU spent executing the tasks. The last entry in the last row

represents the overall task concurrency. If all the CPU's spent

all of their time executing defined tasks, this figure would be

b the number of clock periods multiplied by the number of CPU's.

For example, if three CPU's spent forty percent of their time

executing defined tasks, the total concurrency percentage would

be %120 out of a total possible of %300.

Figure 2.5.7.1 is a TACT STAT report from simulation of a

four-processor sparse matrix triangular factorization.

TASK STATISTICS

TASK CPU1 CPU2 CPU 3 CPU 4 TOT

FAMi8 0 0 0 86
S1.28 0.0 %. 7. 0.0 % 1.28%

JOIN1 369 0 0 0 369
5.50, 0.0 7. 0.0 7. 0.0 7. 5.507.

MUL2 0 0 0 0 0
0.0 %. 0.0 % 0.0 % 0.0 % 0.0O

325N4 is 0 0 0 32
0.27% 0.0 % 0.0 % 0.0 . 0.277.

JOIN" 0 0 0 0 0
0.0 7 0.0 7 0.0 % 0.0 7. 0.0

OL I 3 = 0 0 o 32=

4.84%. 0.0 %. 0.0 %. 0.0 7. 4.84%

M~l.: o o o ~o 0 o
0.0,.% 0.0,,. 0.07% 0.07* 0.0, %.

.MJ'IL 0 0 ,, 0 a -

,,0.0 X 0.0 %, 0.0 %, 0.0 7Z 0.0 ."

SOL 1310 1310 1310 1310 5240
19.52% 19.5X 19.52% 19.527. 7.07.

FAC 380 co 0 380 i
0.0 %' 5. "%7 0.0 X. 0.0 %* 5.. -,%

TOTA'L 2100 1490 131.) 1310 6418 "

31.41% 25.17. 19.52% 19.52. 95.637

TOTAL CLOCKS: 6711

Figure 2.5.7.1: Saiple TAC'r STAT Report

53



2.5.5The TATReport

A task is an identified group of instructions. It must have

unique entry and exit point. A name is associated with each task

that is defined. When a processor passes through a task entry point,

the name of the task is placed in that processor's column on the

TACT report. The name of the task remains in the processor' s column

until the processor passes through the exit point of that task, at ...

which point the column entry is cleared.

The Task Activity Report is a detailed listing of all tasking

activity, similar to the CPACT Report. The TACT Report can be

thoughtof as a macro CPACT Report, the CPU's representing functional

units and tasks representing instructions.

To enable task information collection, the command "SET TASK=ON"

is issued from the command language. The simulator then prompts for

.4 a file containing the task definitions f,-r the programs being simu-

lated (for a sample task definition file, see Appendix K). To enable

TACT Reporting, the command "TACT filename" is then issued where
"filename" is the name of the file to receive the TACT report output.

The program is then run in the usual fashion. ..

The sample report shown in Figure 2.5.7.2 is for a blocked

randomly sparse symmetric matrix factorization.

54



> TASK ACTIVITY REPORT

> "8X8 SPARSE
>

P > CP CPU I CPU 2 CPU 3 CPU 4

> -- . - - - - - - -- - - - - - -

> 21501 1
> 22003OIN4 I 1
> 22181 1

Y > 22501 2 1 1
* > 23501 IF

> 2389FAC1 IC 1
> 24O01NFC1 I I 2
>" 24751 1 1 .

> 2515 N IFAC I I
> 2550:N IFAC I 1
> 29503IOIN1 IFAC I I
> 27501JONI I I I
> 2501JINI1 1F2C

> 2943201.1N IFA I I I

"'> 28951JOINI I I I

> 2942 1 1 1
> 2943ISGL1 I I
> 2950ISOLI I I

V! > 30501SOLI I I I I
> 30601 2 2 1

> 30901 ISOL I I
> 3150,.1 ISOL I I I
> 315:L ISM I

*% ,~.>. 32501SOLI 1901 2
I > 32551 ISOL I

> 32951 ISOL ISOL '
> 33501 ISOL ISOL 
> 33611SOL1 ISOL ISOL I I
> 34271 ISOL ISOL 2 1
> 34501 ISOL ISOL 2 2
> 3468 ISOL ISOL ISOL I
> 3533ISOL1 ISOL ISOL ISOL I
> 3550!SL1 ISOL !SOL ISOL I
> 35951 ISOL ISOL ISOL I
> 36502 ISOL :SOL ISOL 1
> 37501 ISOL ISOL ISM I
> 38501 ISOL ISOL ISOL I
> 39501 ISOL ISOL ISOL 2
> 399051L ISOL ISOL ISOL I
> 40501SOL ISOL ISO. ISOL 2
> 4150.SOL ISOL ISOL SOL I
> 42501SOL ISOL ISOL ISOL I
> 43502SOL ISOL ISOL ISOL I
> 44001SOL I ISOL. ISOI> 44501S9L I I90L IB I

> 45501SOL I ISOL ISOL
> 46052SOL I I ISOL I
> 46501SOL I I ISOL I
> 47501SOL I I ISOL 2
> 47781SOL I I 2
> 4850ISOL I 1 I
> 49501 SOL.
> 50501SOL I I I
>. 51501SOL I I I
> 52501SOL I I I
> =00 I I

Figure 2.5.7.2 Sample TACT Report

55



. d

2.6 Inconsistencies with the Cray-i

In this section, simulator behavior that is known to be i
inconsistent with the Cray-i will be discussed.

1) The simulator does not simulate Cray-i I/O.
2) No Cray-1 monitor instructions are simulated. I

3) The Cray-i exchange mechanism is not simulated.-

4) Recursive use of vector registers is not supported

5) The simulator floating point format (IBM 360/370)

differs from the Cray-1 format. (See section 2.1.3)

6) The 071X2X instruction (Si +AK) produces a normalized

result in the simulator. Not so on the Cray-i.

7) Though the timing of sizeable algorithms has been close-*s

to the Cray-i timing, with an error in the 1/2% range,

it is not exact. /

'56

,.j

56

II



7-77 7 ---

.. Simulator Command Descriptions

fl* This section describes each of the simulator commands in detail.

Each command may be abbreviated and the minimum acceptable abbrevia-

~ tion is underlined. Each command description has the following format:

(1) Purpose - The function of the command.

(2) Prototype - The parameter syntax for the command.

(3) Description - A detailed description of the command.

- (4) Examples.

The following syntax is used to describe the commands:

Upper case characters must appear exactly as shown.

Lower case characters represent generic parameter names which

must be replaced with the actual parameters.

Where blanks appear one or more blanks must appear.

Square brackets are used to denote optional parameters.

* Ellipsis notation (...) is used to denote the repetition of a

3parameter list.
Vertical bars are used to separate parameter alternatives.

All commands must be less than or equal to 80 characters in

length. However, a simulator subroutine call may pass a segmented

set of commands whose combined length may not exceed 200 bytes. Each

individual command though may not exceed 80 bytes.

57



Command Summary

AT p-addr (skip-cntl

BREAK p-addr [skip-cnt]
CALCULATE expression
CHANGE symbol new-value
CLEAR [p-addr ... ]
COMMENT any text

COST
CPACT [fdname [COMPRESS I NOCOMPRESS] [WIDE I NARROW]]
DEFINE symbol constant(,wI,pI,v]
DISPLAY [@fmt-code] symbol [,length]
DUMP (module name]

ENDFILE
HELP command-name
IDENT module-name

INIT
LOAD (s.a.1 fdname ...
MAP [XREF]
MTS mts-command
REMOVE symbol

RETURN
RUN [p-addr] [#issue-limit]
SET lhs=rhs ..
STAT [FULL]
STOP .
TRACE ONIOFF (fdname] [LEN = VLltrace length]
USE fdname [NOECHO]

$MTS-command

CPU CPU number 3
ENABLE CPU list
DISABLE CPU list
TACT STATl fdname

58

0 5N . .. ............... . .............. ... ........ ... . .



AT
Command Description

Purpose : To set an AT point at a selected parcel address

Prototype : AT p-addr [skip-count]

: commands to process when the AT point is hit.
END

Description:
An AT point is set at the specified parcel address. This address

may be in modified octal format, which is the octal word address folloi

ed by a parcel code A,B,C, or D, or may be a symbol with parcel addres!
attribute defined by the assembly language program. After the AT com-

mand is entered, the command language will read more command input.

These commands are written, unprocessed, into a scratch file. ' A

maximum of 9 commands can be accepted. To terminate input, enter

the string "END" on a single line. AT points set at the lower parcel

of a two parcel instruction are ignored.

When the AT point is hit, the scratch file will be opened and
subsequent commands read from that file. The AT file is terminated

with a RUN command which will resume the simulation automatically.

To regain control when the AT point is hit, you must enter the
coiwand USE"*MSOURCE* ' when setting up the AT point.

An optional skip-count may be provided when first setting the

AT point. This is a positive decimal number which indicates the

number of times the simulator is to ignore the presence of this AT

%9 point. When this count expires, the AT point will be recognized

and processed as above.

When the AT point is hit, the instruction at the p-addr, where
it is set, will not have been executed.

Examples:

AT 21A

DISPLAY SO AO M(33)

END

When the AT point is hit, registers SO AO and memory

location 33 octal are displayed.

59 AT Command
Aft. - * ~ ~



I

AT 245B 31

D M(0),1Q

USE *MSOURCE*

END

An AT point is set at location 2.45B. The first 31 (decimal)

times the instruction is executed, the AT point is skipped. Befor

the instruction is executed again the AT point takes control and

displays memory locations through 10 (octal). Control is then

given to the user terminal.

AT SUBRI

CHANGE A5 A7

END

This has the effect of patching a new instruction (A5 A7)

- at location with label SUBRI (i.e., A7 is-stored into AS).

Error Responses:

Invalid p-addr -

The p-addr is unrecognizable or out of range of the current
memory size.

Undefined Symbol -

The symbol specified is not defined in the current (IDENT)

module.

Symbol does not reference a parcel address -

The symbol has word address or value attribute.

Invalid Skip count -
Skip count unrecognizable or negative.

No room for more Break or At points -

Only forty Break or At points may be set at any one time.

Break or At point already set here -

A Break or At point is already set at this p-addr.

Can't open AT point file -

The command language was unable to open the AT file for

saving the commands. This could occur if the MTS scratch

file character is changed from a minus sign.

AT COMMAND

60



.~77.

BREAK

Command Description

-P Purpose To control program flow by setting break points.

Prototype : BREAK p-addr (skip-cnt]

Description:

A break point is set at the indicated parcel address. The parcel

address may be specified in a modified octal format: an octal word add-

ress followed by a parcel code A,B,C or D, or may be a symbol with par-

cel address attribute. An optional decimal skip count may be specified

and will cause the break point to be ignored the indicated number of times.

The effect of hitting a break point is equivalent to issuing

the command "USE *MSOURCE*". Continuation from a break point is accom-

plished by entering a RUN command. An end-of-file condition from the

terminal (by $ENDFILE or control-c) will cause the command stack (see

i section 2.1.1) to be popped. This allows further commands to come

from a prior USE command or a subroutine call command string. If a

RUN command is entered without any parameters, the remaining issue

j limit is used and simulation continues with the broken instruction.

No timing information is lost and no additional time is required. If

a p-addr is specified on the RUN command, an instruction buffer fetch

is forced and this will alter the timing.

*When the break point is hit, the broken instruction has not been
executed. Break points do not modify the Cray-i memory, so they may

be set before the program is loaded. A maximum of forty BREAK and AT

points may be set. Break points on the lower parcel of a two parcel

instruction are ignored. The user is not notified of this.

4' EXamples:

BREAK 25A

4 BR 13B 18

B LABI

:. Error Responses:

Invalid p-addr -

The p-addr is unrecognizable or out of range of the current

memory size.

61



7 . - o.

Invalid skip count -

Skip count unrecognizable or negative.

No room for more BREAK or AT points -

Only forty BREAK or AT points may be set at any one

time.

Break or At point already set here -

A BREAK or AT point is already set at this p-addr.

Undefined Symbol -

The symbol specified is not defined in the current (IDENT)

module.

Symbol does not reference a parcel address -

The symbol has word address or value attribute.

.4'I

i'

ad

ft,'.

.t.

62,-.

NO . . . . . . . . . . . -t-f - .



CALCULATE

Command description

Purpose : To calculate integer offsets for memory displacements

Prozotype : CALCULATE <symbol><op><symbol>... <op><symbol>

Description:

The integer expression is evaluated strictly left to right. Only

four operators (<op>) are allowed: *,+,-,/. The result is displayed

.*. in decima] octal, and modified octal. The operands (<symbol>) may be

replaced with any pre-defined or user defined symbol (see the DISPLAY

command) or a constant as follows

nnn - for an octal integer constant

O'nnn'- for an octal integer constant

D'nnn'- for a decimal integer constant.

- All operands are interpreted as integers with only the lower 32 bits

of any 64 bit (e.g., S-registers) symbol taking part in the computa-g tion.

Examples:

" CAIC O'131'+D'387'

CALC Al*D'50'+ B.RI3 CALC M(32)+S4

Error Responses:
Calc unable to recognize operator -

Bad operator seen in expression.

Calc unable to recognize operand -

Bad operand or invalid pre-defined symbol seen in expression.

*E

CALCULATE command

*.63



CHANGE

Command Description

Purpose : To alter Cray-i storage locations in the simulator

Prototype : CHANGE symbol new-value

Description:

The CHANGE command allows any program accessible storage loca-

tion in the Cray-1 simulator to be changed. The symbol parameter may

be replaced with any of the predefined symbols which may be changed.

See the DISPLAY command description for a list of the valid symbols.

The new-value parameter may be replaced with any pre-defined

symbol or one of the following constants:

nnn - for an octal integer

O'nnn'- for an octal integer constant.

DOnnn'- for a decimal integer constant
nnn.nnnDnn - for a double precision floating point constant.

Examples:

CHANGE Al 0'377'

CH M(55) 2.5D$"

CH V3(14) 2.32D27

CH M (50) M (100)
CH B.BREG T.TREG

CH M(l) D'-1234567890123'

Error Responses:
Change unable to modify symbol -

See the DISPLAY command for a list of the symbols that

may not be changed.

Change unable to evaluate symbol -

The symbol is not a legitimate symbol

CHANGE command
64



CLEAR

Command description

Purpose : To clear break points and at points

Prototype : CLEAR [p-addr ... I

pDescription:

The CLEAR command is used to remove any break points or at

points that have been previously set. If no parcel address para-

meters are specified, then all break and at points will be cleared.

If one or more parcel addresses are supplied as arguments to the

CLEAR command, then the break or at points set at these locations

will be cleared.

Examples:

CLEAR

CL 2lA 35C 74D LOOP].

Ni Error Responses:

Invalid p-addr -

The p-addr is invalid or out of range.

No break or at points are set-

Nothing set at this address -

Undefined Symbol -

The symbol specified is not defined in the current (IDENT)

module.

Symbol does not reference a parcel address -

The symbol has word address or value attribute.

CLEAR command

65



COMMENT

Command description

Purpose : To provide documentation about a simulator session
Prototype COMME-NT any text string

Description:

The COMMENT command is useful for documenting a terminal session
or for generating advisory notices from AT command files or subroutine

call-files. With AT command files, the commands are not echoed to th-..
output device, however, COMMENT commands will echo. Also, on a sub-
routine call to the simulator COMMENT commands in the subroutine com-.

mand string will echo regardless of the value of the echo parameter.

Both of these features are useful to remind the user of any critical

information. a

Examples:

COMMENT ANY TEXT STRING MAY BE SUPPLIED.

CO THIS AT POINT ALTERS S3.

CO DON'T FORGET TO SET UP LOCATION 34

Error Responses:

None

66 "
COMMENT command



7 .7 - C

COST

Command description

Purpose : To print out processing costs.

Prototype : COST

Description:
The COST command will display simulator processing cost

information. The cost figures cover the period from program

start-up or the last INIT command to the present.

The following information is displayed:

SIMIJLATTCN COS"*S S!NICF LAST INI - R!SLV

OTC : 0
4 INSTRo ISsiISn : 12
H ST COU TIME : 0.3'-2 S=C
4CS T C' s : 0.074" LOW oqrlRITY
PRINTINr. COS-'S : , 0.0 FOR 0 LINZES 0 PAG9S

INSTRUCT!CN - : =?.5 IS'r../SFC
INSTRUCTION COST : 0.2?0 / 1000 INSTR.
HOST / CAY-1 T.!MS : 0.0

1) The number of simulation clock periods.

2) The number of instructions issued.

* 3) The host (machine on which simulator is running)

0.- cpu time.

e, 4) The host dollar cost and job priority.

5) The printing costs (useful for CPACT output).

6) The simulation rate in issued instructions per host

cpu second.

7) The simulation cost in dollars per thousand issued

instructions.

8) The ratio of host cpu time to the Cray-i cpu time

using the number of simulation clock periods multi-

plied by 12.5 ns.

' Examples:
COST

l Error Responses:

None.

67 COST command

... * ...... .. . . . S * - . . ... . . .. . . . . . .. ....



CPACT

Command description

Purpose To control the generation of the clock period

activity report.

Prototype : CPACT [fdname [COMPRESS I NOCOMPRESS] [WIDE I NARROW]]

Description:

The CPACT command enables and disables the clock period activ-

ity report. If the fdname (MTS file or device name) is supplied,

CPACT is enabled and the report is directed to the specified fdname.

If no fdname is supplied CPACT is disabled. It should be noted that

enabling CPACT will increase the simulation cost over the non-timing

simulation mode by roughly a factor of forty to fifty. If timing
is off (see the SET command) when CPACT is enabled, CPACT will turn

TIMING on.

Since one line of output is generated for each clock period of

simulation time, quite a-bit of output can be generated fairly fast.

To keep cost to a minimum, under MTS, CPACT should be sent directly

to *PRINT*. If COMPRESS is specified, identical hold issue lines

will be suppressed. COMPRESS is the default,

The normal CPACT report is suitable for printing on 132 column

printers. If NARROW is specified or fdname corresponds to the user's

terminal, the report will be condensed to 80 columns.

The report produced by CPACT is described in more detail in sec-

tion 2.5.

Examples:

CPACT *PRINT*

CP

CP *SINK* NARROW

Error Responses:

CPACT already enabled -

CPACT with an fdname was given when CPACT was already
enabled.

CPACT command
68



CPU
Command Description

Purpose: To specify the indicated CPU as the current CPU

Prototype: CPU cpu number

Description:

The CPU command is Used to change the current cpu to the

specified cpu. The current cpu is the cpu to which all commands
issued apply (specifically TRACE, CPACT, DISPLAY and CHANGE).

The CPU command can be thought of as a global scope specifying

command. Instead of specifying to which CPU each command per-

tains, a global CPU number is specified, and all subsequent

applicable commands pertain to the specified CPU.

To enable instruction tracing on CPU 3, the commands "CPU

I 3" and "TRACE ON" are given. To change the program counter of
CPU 1 (i.e., prior to a RUN command) the commands "CPU 1" and

"CH P MAIN" are given.

3 Examples:
CPU 2

CPU 4

Error responses:

Invalid CPU number-

Issued when an incorrect value is specified for

"R the CPU number.

69 CPU command

.......... ~* *.. . - - - .. ..
......... . . . . . .



-. N --.- - -.1- 7

DEFINE
Command Description

Purpose : To define a new symbol

Prototype DEFINE symbol constant[WIPIVI

Description: %

The DEFINE command adds a new symbol to the symbol table.

It may then be used by other simulator commands. .. -

The value of the symbol will be the constant. If the con-

stant is octal, the type of the symbol will be word address.

If the constant is modified octal, the type will be parcel

address.

The default type may be overridden by specifying w, P, or
V. If this is done, the symbol will be defined as type

word address, parcel address, or value, respectively.

The symbol is added to the symbol table of the current IDENT;

if there is no governing IDENT, then an error will result. The user "

must issue at least one IDENT command before using the DEFINE command.

Examples:

DEFINE START 22B

DEF ARAYI 100

DEF BNAME 77V

-o_

DEFINE command

70

..b



- % -A '7n.. *-- .

DISABLE
Command description

Purpose: To deactivate a cpu.

Description:

The DISABLE command is used to "turn off" a cpu. Any cpu

except the current cpu can be specified by the command.

Examples:

DISABLE 234

DISA 3

Error responses:

Cannot disable current cpu -

i issued when trying to disable the cpu last
specified by the CPU command

Invalid cpu number -

Issued when an incorrect value is specified in

the CPU list.

.7

LI -o

~~DISABLE command :

71



WY -1.7 7 %V -- 77 .3

.&

DISPLAY

Command Description

Purpose To allow the user to examine the registers and memory of

the simulated Cray-i.

Prototype : DISPLAY[@fmt] symbol[,length] ...

Description:

The DISPLAY command provides a facility through which the user may

examine Cray-i registers and memory. The location to be displayed (sym-

bol) is represented by any of the predefined symbols shown in the table

below, or a user defined symbol. -Subsequent contiguous locations can be

displayed by providing a length parameter, separated from the symbol name

by a comma. The length parameter may be a symbol name (e.g., VL) or a

decimal integer constant. Also noted in this table is whether or not the

CHANGE command will alter the symbol.

Each symbol has a default display format associated with it. The

default may be overridden for all symbols on the command by appending

display format codes (fmt) to the command name. The format codes string

is prefixed with "@". These format codes are defined as follows.

FORMAT DISPLAY
64' 24' 16'

Code Meaning Operand Operand Operand

E Floating pt. Floating pt. N.A. N.A.

F Fixed pt. 64' integer 24' integer 16' integer

0 Octal 64' octal 24' octal 16' octal

P Parcel 4 octal parcels N.A. 16' octal

M Modified Octal 4 M. octal parcels 24' M. octal 16' M. octal

I Instruction 4 Instr. Mnemonics N.A. Instr. Mnemonic

S Symbolic Symbol Symbol Symbol

User defined symbols are those symbols defined by the assembly lan-

guage program and contained in a relocatable load module. These symbols

may be one of three types: parcel address, word address or value. A

parcel address symbol is treated as a 16 bit operand, and names a parcel

DISPLAY command



memory location. A word address symbol is treated as a 64 bit operand,

and names a word memory location. A value symbol may be used to name

an A,B,S,T or V register.

The only user defined symbols which may be referenced are those

in the current module. See the IDENT command.

For the operand - format code combinations which are not applicable,

no value will be displayed.

Pre-Defined Symbol Table

Cray-i RegionI Symbol storage length Change
name location allowed? allowed?

Vn(elt) Vector registers Yes Yes

Sn Scalar registers Yes Yes

Tnn T-registers Yes Yes

An Address registers Yes Yes

Bnn B-registers Yes Yes

M(addr) Memory, words Yes Yes

IM(p-addr) Memory, parcels Yes Yes

P P-register No Yes

CIP Current instruction parcel No No

NIP Next instruction parcel No No

LIP Lower instruction parcel No No

E VM Vector mask register No Yes

VL Vector length register No Yes

RTC Real time clock No Yes

XP Exchange package No No

IBn(elt) Instruction buffers Yes No

RF Relocation factor No Yes

FLAGS FLAGS register No No

LA Limit address register No No

BA Base address register No No

MSIZ Value of memory size No No

MODE Mode register No Yes

7 3 DISPLAY command
I73



-Nit -- To .- : -- -u 7;.

n or nn is a register number

elt is an element index within a register

addr is a word address, may be an expression

p-addr is a parcel address, may be an expression

Examples:

DISPLAY Al S3 A.LOOPCNTR V.ROW1 SUBRTN1

D@O A0, 8

D@PI IM(p),I0 MAIN, LEN$

D@EFO VO(O),VL

Error responses:

Invalid format code -

see format code list on page 64.

Invalid symbol

Invalid integer

7I Y m

74 DISPLAY command

- - - '' '- 9',-" ' . :" - "- ",.-','.-"'. -" , '.**" *-.- ..' * --.- " , '''



DUMP
Command description

* Purpose :To display the contents of all data areas of memory.
Prototype DUMP [module-name]

Description:

The DUMP command displays the contents of memory addressed by
all symbols of type word address. The memory locations are displayed

Sin floating and fixed formats.

if a module-name is specified, only the module with corresponding
SIDENT name is dumped.

~Examples:

d DUMP
DU SUBRI

Error Responses:

Module not loaded-

The specified module-name is not the name of any loaded module.

75 DUMP command

.................... 7. .



ENABLE

Command description

Purpose: To activate other CPU's for multi-tasking

Prototype: ENABLE cpu list

* Description:

The ENABLE command is used to "turn on" a cpu. The RUN

command applies to all CPU's activated by the ENABLE command.

Any or all of the CPU's can be specified by the activate command.

up to four CPU's (1, 2, 3, 4) can be enabled in the current ver-

sion of the simulator; this can readily be changed in the source

code.

Examples.

ENABLE 2 3 4

ENA 3 4

Error response:

cpu already enabled-

-~ Issued when a cpu specified in the list is already

activated

Invalid cpu number-

Issued when an invalid number is specified in the

CPU list

76ENBL.cmmn



47%-i ' . - - .- -7-0 VV.~~* - -- -

14 ENDFILE

Command description

Purpose : To signal an end-of-file condition to a USE command

Prototype : ENDFILE

Description:

This command terminates the effect of the current USE command.

It pops the command stack causing input to be read from the previous

source. See section 2.1.1 for more information about command input

control. If a USE command is not in progress, ENDFILE is a no-op.

That is, ENDFILE will not terminate a call-file or an AT-file.

Examples:

ENDFILE

E

I'

I'
I

77
ENDFILE command



HELP
Command description

Purpose To provide on-line information about command syntax

and function.

Prototype : HELP [cmd-name ...]

Description:

The HELP command takes as parameters the simulator command

names. For each command name (cmd-name) given, a brieif description

is printed. A keyboard attention may be used to abort the HELP

ft. output. If no command name is provided a list of the legal commands

is printed.

Examples:

HELP DISPIAY CHANGE

HELP

H HELP

Error Responses:

I can't help you -

The file containing the HELP responses doesn't exist or

couldn't be accessed.

Error during HELP -

An error occurrec! during I/0 to the output device.

ft-

HELP command

78

i:.7.



IDENT

Command description

- Purpose : To determine the subset of user defined symbols

which may be referenced by other commands.

Prototype : IDENT module-name

Description :

Relocatable modules loaded by the simulator contain the defin-

itions of all symbols defined in the assembly language program. Since

assembly programs can be assembled and loaded independently, these

symbols may not be unique. Only those symbols defined within a single

module may be used at any given time.

The name field on the IDENT command must be the name contained on
the IDENT record of one of the loaded modules. Only the symbols con-

tained in that module will be available for use by other commands.

Examples:

IDENT MAIN
ID SUBROUTN

Error Responses:

Module not loaded -

The name specified did not appear on the IDENT card of any

loaded module.

ii

I IDENT command

79



INIT

Command Description

Purpose: To re-initialize the simulator

Prototype: INIT [STATI

Description:

The INIT command allows re-initialization of the simulator

state between runs of a program. It has the following effects:

1. All timing information is initialized.

2. All report information is initialized.

3. The simulator state is cleared.

4. The CPU clock is cleared.

5. The CIP, NIP, LIP, and instruction buffers are invali- k
dated.

INIT will not alter the A,B,S,T,V,VL,MODE,P, and VM registers or

simulator memory.
If the STAT parameter,is specified, then only the timing in-

formation and the CPU clock are initialized.

Examples:

INIT

I STAT

i

INIT command

80



A__ . ._A -- A . '-. . .-.. . - -. . -.. .- _ . . . . . . . . .

LOAD

Command description

Purpose : To load programs into the simulated CRAY-I memory.

Prototype : LOAD (s.a.] fdname

Description:

The LOAD command opens the file or device (fdname) and reads

one or more load modules from it. The load modules may be absolute

or relocatable. See appendix K for a discussion of load module

formats.
Absolute load modules are loaded at the address specified in

the module. The octal starting address (s.a.), if specified, pre-
ceding the fdname, is ignored.

Relocatable modules are loaded at the first available 16 word

boundary, unless an octal starting word address (s.a.) is specified.
Modules will be relocated and linked by the loader.

Examples:

LOAD OBJ

LOAD 30 FILE1

LOAD *SOURCE*

Error responses

Unresolved externals exist-

A relocatable module references a module which is not loaded.

II The user will be prompted for more loader input.

1LD-.

81LOAD command [[
81A



MAP

Command Description

Purpose To display the locations of all loaded modules

Prototype : MAP

Description :

The MAP command will display the names, starting locations, aid

lengths of all loaded modules-

Examples:

MAP

MA

i

82 MAP COMMAND82J
-I""L "" " "", , '";""r . -"" "- "-".-"" "' ' " '. '"' - - , ."",",-"".-- "''-



MTS

Command description

Purpose To provide a command interface between the

simulator and MTS.

Prototype 1. MTS [mts-command]

2. $mts-command

Is Description:

The MTS command allows the user to pass commands to MTS

without stopping the simulator. In the first prototype an

optional MTS command may be supplied. Return is made to MTS

with MTS processing the command. The user may restart the

simulator with the $RESTART MTS command. The second prototype

allows the issuing of a one-shot MTS command. That is, the

command is passed to MTS but control returns to the simulator

automatically when the command finishes. Any command input

Ito the simulator that is prefixed with a dollar sign is treated

as one-shot MTS command.

U
Examples:

aMTS

M DIS VMSIZE

$EMPTY -RPT

$EDIT TRIDEC

$SDS

Error Responses:

!None.

MTS command

183



REMOVE

Command Description

Purpose: To remove a symbol from the simulator's symbol tables.

Prototype: REMOVE symbol

Description:

The specified symbol is removed from the symbol table of

the current IDENT (set via tile IDENT corumand) . If an

IDENT command has not been previously given, the issue of a REMOVE

command will cause an error.

Examples:

REMOVE START

REM ARRAYl

Error Response:

symbol is not defined.

" 'i

.

84
REMOVE command



RETURN

Command description

Purpose :To allow the simulator to return to its caller.

.1 ~ Prototype : RETURN

Description:

The RETURN command is used to force the simulator to return

* to its caller. Normally, when the simulator is called as a sub-

routine, the CRA-i-- interface subroutine will automatically place

a RETURN command at the end of the call-file after all other user

commands. As the call-file is processed this RETURN will eventually

be executed. To cause an early return to the caller, the user may

issue a RETURN command, thereby skipping the remaining commands in

the call-file.

A RETURN command issued when running the simulator stand-alone

tyhl is equivalent to a STOP command.

Examples:

RETURN

6 Z

85RTR omn



RUN
Command Description

Purpose: To begin simulation of a Cray-M assembly program

Prototype: RUN (*issue limit]

Description:

The RUN command is the only simulator command that actually

begins the simulation. All active CPU's begin execution at their

current program counter locations.

Before the initial RUN command is given, the program counters

of all the active cpu's must be given initial values. The start-

ing location must be specified by using the CHANGE command:

CPU cpu number

CHANGE P <Start address>

This alters the program counter for the specified cpu. An error

message is issued if an active CPU has an uninitialized program

counter when a RUN command is given.

The optional issue limit parameter can be used to control the

simulation. This must be a positive decimal number prefixed by a

pound sign (#) and is used to prevent run-away programs or to allow

single stepping through a program. If an issue limit is not pro-

vided, the remainder of a previous issue limit is used or if no

remainder is left, a default value of 1000 is supplied.

There are many conditions that can arise to stop the simulation.

Normally, a run command will terminate when an EX instruction (004000)

is executed and this is the usual procedure to stop a program. Other

conmn conditions that stop simulation are breakpoints, at-points, or

issue limit expired. The exceptional conditions that halt simulation

are discussed in section 2.2.

Examples:
Run #5000j
RUN
R
R #1

86
RUN command



'- The last example illustrates how the user would single step through

the program, executing one instruction at a time.

Error response:

CPU program counter not set -

Issued when a CPU's programcounter has not been

initialized.

Invalid issue limit -

Issued when an incorrect issue limit is specified.

,|

S87 RUN command



SET

Command Description

Purpose : To permit alteration of user setable switches

Prototype : SET lhs=rhs

Description:

The SET command allows the user to control some of the feat- ;
ures of the simulator. Each parameter is composed of a left hand

side (lhs), an equal sign and a right hand side (rhs). The left
hand sides are the keyword names and the right hand sides are

the new keyword values. The table below lists the legitimate

left hand sides followed by a discussion of each one.

Kevword Keyword values Default

EFI ON, OFF ON

ISLIMIT positive integer 1000

MACHINE CRAYI, CRAYI-A CRAYl
MEMORY SECDED, PARITY SECDED

OUTPUT any fdname *MSINK*

TIMING ON, OFF OFF

TASK ON, OFF OFF -I

EFI default: ON

The EFI (enable floating point interrupt) keyword allows
user control of interrupts caused by:

1) Exponent overflow

2) Exponent underflow

3) Floating point division by zero.

If EFI is ON, the above three conditions will stop simulation. If

EFI is OFF, these three conditions will be ignored when they occur.
When the simulator starts up EFI is on by default. EFI is a mode

bit in the Cray-i mode register and the Cray-1 instructions EFI and

DFI can also set or clear this bit.

SET command

a r . •° . .



ISLIMIT Default: 1000

The ISLIMIT keyword allows the user to change the default
instruction issue limit. If no issue limit is specified on the

RUN command and no remaining issue limit exists from previous

run commands, the default instruction issue limit is used. A

positive decimal integer must be specified on the right hand

side. When the simulator starts up this keyword has a default

value of 1000. Setting ISLIMIT to one is useful for single stepping

through the program.

MACHINE Default: CRAY1

i 6This keyword is intended for selecting the use of experimental

architectural modifications to the Cray-i simulator. The current

legitimate keyword values are "CRAYl" and "CRAYl-A", with default

being "CRAYl". When CRAYl is selected, normal Cray-i timing is

in force. Currently, selecting CRAYl-A invokes only one Cray-i

architectural modification: that of improved memory bandwidth.

With CRAYl-A, the data rates (in words per clock period) for block

transfers (instructions 034-037, 176, 177) to and from main memory

are shown in the table below. These data rates are a function of

the address increment (K) used by the block transfer (one for 034-

037, (Ak) for 176, 177).

K mod 16 Data Rate (wds/cp) K mod 16 Data Rate (wds/cp)

0 .25 8 .5

1 4 9 4

2 2 10 2

3 4 11 4

4 1 12 1

5 4 13 4

6 2 14 2

7 4 15 4

When CRAYl-A is selected, chaining a vector arithmetic instruction.

off of a vector memory load (176) is disallowed. This is because

of the possible imbalance in data rates between the two instructions. '

In general, this should not be a hardship since a reordering of

vector instructions usually allows one to stagger the vector memory

references to run in parallel with the arithmetic vector instruc-

tions.

SET command
89



.'~- - ~ - - . -

MEMORY Default: SECDED

The first Cray-i built by Cray Research Inc. has a memory

which is protected by parity checking only. This was later found
to be unsatisfactory and subsequent machines were built with SEC-
DED (single error correction - double error detection) memory

protection. By introducing SEC-DED on the memory, the access

path to memory is one clock period longer than on the parity checked

memory. This timing difference is user selectable n he simulator.

By setting MEMORY to the value PARITY (e.g., SET ME'ORY=PARITY),

timing with the parity checked memory is possible. When the simu-

lator starts up the default memory timin. is SECDED.

OUTPUT Default: *MSINK*

The OUTPUT keyword controls the file or device to which the

simulator sends all normal output (i.e., not prompts or error mess-

ages, which always go to the terminal). Normal output includes in-
formational messages, DISPLAY, HELP, and STAT output. When the

simulator starts up OUTPUT is set to *MSINK* (the terminal). With 5
the SET command OUTPUT may be set to another file or device. A key-

board attention will switch the output back to *MSINK* automatically.

TIMING Default: OFF
The TIMING keyword controls simulator resource timing. If

4TIMING is off, only the results of instruction execution are com-

puted. If TIMING is on, resource timing, reservation and issue con-

straints are simulated. By default, TIMING is off when the simulator

starts up. Setting TIMING on increases the simulation cost by a

factor of eight to ten. TIMING may also be enabled and disabled

by the ERT and DRT instructions respectively. See section 5 for

more explanation on ERT and DRT. Timing must be enabled to produce

the CPACT report. However, the enabled or disabled state of CPACT

is independent of the setting of TIMING. That is, turning TIMING

on and off won't affect the enabled state of CPACT. However, the
CPACT report is not producted while TIMING is disabled, but it will

be resumed when TIMING is turned back on.

90 SET command

-. ..I. * * * * ... .-.- . . -. *."** -'s..



,D -Ri36 555 A CRAY-CLASS MULTIPROCESSORSSIMULATOR(U) MICHIGAN UNIY 2/2
ANN ARBOR SUPECCONPUTERAALGORITHM RESEARCH LAB
P M SUMMERS ET AL. 01 SEP 87 SARL-i AFOSR-RR-83-i246

UNCLASSIFIED AFOSR-80-Oi58 F/G 9/2 NL

mhhmmmmhmhiuN
ElEIIII~hhEE



&aI 1 .8 Q

MICROCOPY RESOLUTION TEST CHART
1 NATIOAL BUREAU OF STANDARDS-1963-A

B..



i TASK
II _

The TASK keyword controls gathering of task statistics.

Setting TASK equal to ON also enables resource timing (TIM=ON),

which increases simulation cost by a factor of 8 to 10. The

default state of TASK is OFF. When TASK is turned on, the

simulator prompts for the name of a file containing task de-

finitions. The contents of the file control the format of the

TACT Report as well as the definition of tasks is simulator

memory.

A task is a section of code that has a unique entry and

exit point. When a cpu enters the task, the task's name is

entered that cpu's column in the TACT Report. When the cpu

passes through the exit point, the task name is removed from the3 Icpu's column. Upon entry and exit from a task, timing information

is recorded for later use in the TACT STAT report. For a detailed

description of the Task Definition file, see Appendix K.

VikI9

i

i

I
9 *'' ' : .I, , , ,, ': '' •' ' , , :' 91



Id

STAT

Command description

Purpose : To print out Cray-I resource usage statistics

Prototype : STAT (FULL]

Description:

This command will print on the current output device a sum-

mary report of Cray-i resource usage. This report is composed .7.

of the following three sections:

1. Vector Usage counts
2. Floating point result counts

3. Data traffic counts

The vector usage counts section is a timing measure of the

program's vector use of the Cray-i vector functional units. The

data for this section is only collected when TIMING is ON. If

TIMING is OFF when the STAT command is issued, this section will

not be printed since, most likely, it would all be zero. ".

The floating point result counts section is a measure of the

program's use of floating point computation. Floating point add-

ition, multiplication and reciprocal operations are tabulated for

both vector and scalar instructions. The data for this section

is always collected reqardless of the state of TIMING.

The data traffic counts section is a measure of the data

(operands & results) flow throuqhout the Cray-1. Each major Cray-i

data path is illustrated on a fiqure, that is part of the report,

alonq with the amount of traffic on each path. Also included in

this section are some calculations of ratios and percentaqes

based on the data traffic statistics. The formulas used for each

calculation are printed beyond column 80 of the line containinq

the calculated number. Normally, these formulas won't appear on

an 80 column terminal, but will be printed if the STAT output is

diverted (via SET OUTPUT-*PRINT*) to the line printer.

The data for this section is always collected regardless of

the state of TIMING. This section will not be printed unless the

FULL option is specified on the stat command. The INIT command

will reinitialize the STAT data collection.

STAT command
92

%............... ........... * . . . .



This discussion is intended as a brief command description.I For a detailed discussion of both the STAT and CPACT reports

see section 2.5.

Examples:4

STAT

STAT FULL

SET OUTUT*PRNT*

STAT
SET OUTPUT-*M INK *

Error responses:3 Extraneous parameter on STAT command-
This occurs if FULL is misspelled or improperly abbrev-5 . iated.

93*A omn



STOP

Command description

Purpose : To terminate execution of the Cray-i simulator.

Prototype : STOP

Description:

The STOP command terminates execution of the simulator, re-

leases virtual memory used by the simulator and returns to MTS.

Examples:
STOP

Error Responses:

None.

STOP command

94



TRACE
Command Description

Purpose : To control the generation of the trace output report,

a report of data transfers for each instruction.

Prototype : TRACE ONIOFF [fdname] [LEN = VLjtrace length]

Description:

The TRACE command enables and disables the trace output report.

The trace output report consists of the instruction parcel address,

instruction mneumonic, and the contents of relevent registers. If

fdname is not specified the output is sent to the fd specified by

the SET OUTPUT = fd command (the default is *MSINK*).
When "LEN = VL" is specified all results produced by vector

operations will be displayed. In the case of B and T block transfers

all elements transferred will be displayed. If "LEN - n"

(0 1 n I 64,o) is specified n elements are displayed on vector opera-

tions. The minimum of n and the block transfer length will be dis-

played for B and T block transfers. (The default value is LEN = VL).

iThe trace length may also be set using the SET command: "SET

LEN - trace length". The following page shows a trace output example.

EXAMPLES:

TRACE ON

T ON -A L-10

T ON L-VL

T ON LEN-20

T OFF

ERROR MESSAGES:

ERROR - INVA-ID RIGHT HAND SIDE: rhs (e.g. LEN - - 1)
ERROR - INVALID LEFT HAND SIDE: lhs (e.g. LENT 1 10)

'"".** INVALID TRACE COMMAND PARAMETERS

• INVALID TRACE COMMAND FDNAME

95 TRACE command

U95

' " . .. "" '"W el, " " " .. .. " .. .. " . .. . .. . .. " "' " . .. "' "-' . . .. '" '"



USE

Command description

Purpose : To switch the command input stream to a file.

Prototype : USE fdname [NOECHO]

Description:

This command allows the user to put a long or frequently used

command sequence in a file and have the simulator process those

commands from that file. The fdname parameter is replaced with the

name of an MTS file or device from which the simulator will read

subsequent c imands. Commands read from the file will automatically

echo onto the current output device unless the optional NOECHO

parameter is specified.

Any end-of-file condition or an ENDFILE command will terminate

the USE command. This will pop the command stack causing input to

resume with the previous source. The command stack is fifteen levels

deep, allowing the user to nest USE commands as desired.

A keyboard attention may be used to abort any and all outstanding

USE commands by resetting the command stack. This will cause the

terminal to be current input device.

Examples:

USE DISPFILE

USE *MSOURCE* - to read from the terminal

U CMDS NOECHO

EZrror Responses:
USE command unable to open file -

The given fdname doesn't exist or access not allowed.

FDUB command stack overflow-

Attempt to nest more than 15 USE commands.

USE command

,46



4. Cray-M Simulation Costs

Because instruction-level simulation is admittedly costly,

-Wit is important to utilize only the level of simulation (numerical

versus timing) and the reporting level appropriate to the need.
Fortunately, the interactive nature of the simulator makes it

possible to switch these levels on and off during a run; the most

costly levels are rarely required for an entire simulation.

Table 1 gives the costs of running 1000-5000 instructions with

a variety of simulation and reporting levels. (Note that semaphores

and shared registers rotate without timing on (see Appendix E)).

Among the figures given, the most significant appears to be

(a) a 8970:1 speedown of uniprocessor CRAY-l time to Amdahl

time; the simulation costs increase approximately linearly

with the number of processors.

(b) a 3.3:1 ratio of costs between simulation with timing on

and timing off, per processor; this ratio has been found

to be as high as 5:1 for highly vectorized code.

As a benchmark case, a million clock, 4-processor run costs

approximately $100 at minimum rates (4-7 am) and $500 at regular

rates.

I

i"i

97

-|.']
I.



Number of Processors Units
1 2 4

TIM-OFF 1.52 1.32 1.30 /kiloinstruction*

TIM-ON 2.07 3.88 9.23 /kiloclock

8970 17200 37500 Amdahl time/CRAY-1 time
TRACE ON+A 88 63 46 4/kiloinstruction*

CPACT1 72 130 250 /kiloclock

* Instructions summed across all processors

+ TIM-OFF

Printing costs not included

Table 1. Simulation costs; minimum rates used

(20% normal rates), approximately 19¢/sec; ap-

proximately 2.4 clocks/(instruction issue) (33

MIPS) per processor in code used.

98

98



I
I

* 5. Bibliography

1) A CRAY-I Simulator, publication No. 118, Systems Engineering

Laboratory, University of Michigan by D. A. Orbits, 1978.

2) Cray-i Hardware Reference, publication No. 2240004,

by Cray Research Inc., 1980.

3) Cray-i Fortran Reference Manual, publication no.

2240009, by Cray Research Inc., 1980.

4) Cray-1 External Reference Specification, publication

no. 2240011, by Cray Research Inc., 1976.

5) Cray-1 Fortran Mathematical Subprogram Library Reference

Manual, publication no. 2240014, by Cray Research Inc., 1977.

6) Cray-i Reference Card, publication no. SQ-0003, by Cray

Research Inc., 1981.

7) Cray-i CAL Assembler Reference Manual, publication no.

SR-0000, 1980.

8) Introduction to Vector Processing on the Cray-i Computer,

publication no. 2240002, 1975.

9) The Cray-I Computer System, CAcM, by Richard M. Russell,

Cray Research Inc., January 1978, pp. 63-72.

9
U
I
I

I"

I1

I

* 9 . C C C C. ,tC~ *9 & 7



Appendix A.

Summary of Cray-i Timing Information

This material has been borrowed from the Cray-i Reference

Manual, publication number 2240004, by Cray Research, Inc.

When issue conditions are satisfied an instruction completes in a fixed
amount of time. Instruction issue may cause reservations to be placed

on a functional unit or registers. Knowledge of the issue conditions,
instruction execution times and reservations permit accurate timing of
code sequences. Memory bank conflicts due to I/O activity are the only
-elemt of unpretlctabity...

SCALA INS1MCIONS

Four conditions must be satisfied for issue of a scalar instruction:

1. The functional unit must be free. No conflicts can arise with other
i C scalar instructions, however vector floating point instructions S

reserve the floating point units. Memory references my be delayed
due to conflicts.

2. The result register must be free.

3. The operand register must be free.

4. Issue is delayed 1 clock period if a result register group input path
coflict would exist with a previously issued Instruction. One input

path exists for each of the four register groups (A, 8, 1 and T).

Scalar instructo.s place reservations only on result registers. A result
register is reserved for the execution tite of the Instruction. No
reservations are placed on thd functional unit or operand registers.

A transmit scalar mask instruction to Si (073) instruction is delayed
by (VL) + 6 clock periods from the issue of a previous vector mask .-

(175) instruction, and is delayed by 6 clock periods from'the issue

of a preceding transmit (SJ) to Vw (003) instruction.

100

w w - , - -5. *.



Execution times in clock.periods are given below. An asterisk indicates

that issue may be delayed because of a functional unit reservation by a

vector instruction. Memory may be considered a functional unit for timing

considerations.

(A-A register, M=Memory, B-8 register, S=S register, I=Immediate, C-Channel.)

24-bit resul ts:

A-IM 1* A C 4
M A1 A-" A+A 2
A 8 1 A -- AxA 6
B -A 1 A-s-pop(S) 4
A-S 1 A I- lzc(S) 3
A-- 1 1 VL -A 1

64-bit results:

S 1 S -"- S+S 3
M S "1* S inS f.aJd)S 6*S -*-T 1 S -*-- S f mul t) S 7*
T S 1 S --- S(r.a.) 14*
S 1 1 S-V 5
S S-'S(log.)S 1 V"S 3
S -,--S(shi ft) I 2 S VM 1
S -s-S(shift)A 3 S -- RTC 1
S mS(mask)1 1 SA 2RTC -S 1 VM S--

Issue may be delayed because of a functional unit reservation by a
vector instruction. Memory may be considered a functional unit for
timing considerations.

VECTO.R INSTRUCTIONS

Four conditions must be satisfied for issue of a vector instruction:

1. The functional unit must be free. (Conflicts may occur with vector
operations.)

2. The result register must be free. (Conflicts may occur with vector

I operations.)

3. The operand registers must be free or at chain slot time.
4. Memory must be quiet If the instruction referemces memory.

Vector instructions place reservations on functional units and registers

for the duration of execution.

1. Functional units are reserved for VL+4 clock periods. Memory is
reserved for VL+5 clock periods on a write operation, VL+4 clock

periods on a read operation.I

101



I ° .

2. The result register is reserved for the functional unit time

+(VL+2) clock periods. The result register is reserved for the

functional unit +7 clock periods if the vector length is less than

5. At functional unit time +2 (chain slot time) a subsequent

instruction, which has met all other issue conditions, may issue. This a

process is called "chaining." Several instructions using different

functional units may be chained in this manner to attain a sionificant

enhancement of processing speed.

3. Vector operand registers are reserved for VL clock periods. Vector I
operand registers are reserved for 5 cl6ck periods if the vector

length is less than 5. The vector register used in a block store to . -

memory (177 instruction) is reserved for VL clock periods. Scalar

operand registers are not reserved.

Vector instructions produce one result per clock period. The functional ( :
unit times are given below. The vector read and write instructions

(176, 177) produce results more slowly if bank conflicts arise due to

the increment value (Ak) being a multiple of 8. Chaining cannot occur

for the vector read operation in this case.

If (Ak) is an odd multiple of 8t results are produced every 2 clock

periods.

If (Ak) is an even multiple of 81, results are produced every 4 clock

periods.

Functional unit Time (c.p.)

.Logical 2

Shift 4

Integer add 3

Floating add 6

Floatino multiply 7

Reciprocal approximation 14

Memory 7

t Multiple of 4 for 8-bank phasing; refer to section 5.

102

i i i ~ mii i di~~~d(W -- "- ' . '"-' . ."-"It," . ."- ,le..a," -..-.- -,-



Memory must be quiet before issue of the B and T register block copy

instructions (034-037). Subsequent instructions may not issue for 14+ (Ai)

clock periods if (Ai) O and 5 clock periods if (Ai)=O when reading

data to the B and T registers (034,036). They may not issue for 6+(Ai)

clock pLeriods when storing data (035,037).

The B and T register block read (034,036) instructions require that there

* be no register reservation on the A and S registers, respectively, before

issue.

Branch instructions cannot issue until an AO or SO operand register has

been free for one clock period. Fall-through in buffer requires two

clock periods. Branch-in-buffer requires five clock periods. When an
"out of buffer" condition occurs the execution time for a branch

instruction is 14 clock periods.

A two parcel instruction takes two clock periods to issue.

Instruction issue is delayed 2 clock periods when the next instruction

parcel is in a different instruction parcel buffer. Instruction issue is

delayed 14 clock periods if the next instruction parcel is not in an

instruction parcel buffer.

HOLD MEMORY

A delay of 1, 2, or 3 CP will be added to a scalar memory read if a bank

conflict occurs with rank C, B, or A, respectively, of the memory access

network. A conflict occurs if the address Is in the same bank is the

address in rank C, B, or A. Conflicts can occur only with scalar or I/O

references. The scalar instruction senses the conflict condition at

issue time + 1 CP. The scalar instruction address enters rank A of the

memory access network at issue time + 1 CP. The scalar instruction

address enters rank B at issue + 2 CP. The scalar instruction address

enters rank C at issue + 3 CP.

t 18 clock periods for 8-bank phasing option; refer to section 5.

* 103



*-

t4

Scalar instruction timing (no conflict):

CP n Issue, reserve register

CP n+1 Address rank A, sense conflict

CP n+2 Address rank 8 'S

CP n+3 Address rank C

CP n+9 Clear register reservation

CP n+1O Issue

HOLD ISSUE

A delay of issue results if a 100 - 137 instruction is in the NIP register

and a hold memory condition exists. The delay will depend on the hold

emory delay.

A delay of issue results if a 100 - 137 instruction is in the NIP register

and a 100 - 137 instruction In process senses a conflict with rank A, B,

or C.

An additional 1 CP delay is added to a hold memory condition if a 070

instruction destination register conflict is sensed.

-10

104 r



. Appendix B.

Cray-i Simulator I/0 Device Usage

I/0 in the Cray-i simulator is done in two ways:

1) Through the use of standard Fortran data set

reference numbers (DSRN) and,

2) Through the use of an MTS environment file or device

usage block (FDUB).

The following I/0 is done through DSRNs:

- All error messages use I/0 unit 0.
- All CPACT and TACT output uses I/0 units 30 through 64.

- All LOAD module input uses I/0 unit 2.

- All normal Terminal output (echoing, etc.) uses I/0

unit 3.

- All memory to memory I/0 used for number conversion, etc.,
uses I/0 unit 20.

The following I/0 is done through MTS provided FDUBs:

- All command input, whether from a call-file, an AT-file,

a USE-file or the terminal is read using FDUBs. The command

*input stack is implemented wita FDUBs.

- All HELP file responses are read from a file using a FDUB.

- The simulator driver tables are loaded at start up time
using a FDUB.

The user should not use DSRNs 0, 1, 2, 3, 20 and 30 through 64.

105



Appendix C.
Cray-i Simulator Common Block Usage

The Cray-i simulator currently uses 30 Fortran named common
blocks. Except for /MEMORY/ and /MSIZE/ the user should not de-
fine symbols (subroutines or named common blocks) that conflict '
with common block names used by the simulator. These common
block names are listed below:

ACTFLG QCODES

BRKCOM QCOMI"
COM$F REG

CONTRL REPORT
CTABLE SETABL
DECTBL STATE

DEV SYMTBj
DRVTBL SYXTB2

INSTRX TRAPAR
LIP TRKBELK
LOAD UNITS 

-'

EMORX- USAGE
MSFLAG XCHANG

MSIZE NEW

TASKS

106

106

' ' -, . % '* ."* .,,' , .. ,- . . ,r 
°

. . .. "• " ... • "- - - ',.' % -",,.%"- ",



Appendix D.

Establishing the 3imulator on MTS

In addition to the object module which contains the Cray-1

simulator, three additional files and one initialization program3 are part of the simulator.

The initialization program (TABINIT) process the instruction

driver table used by the simulator. TABINIT converts the driver

table from a character format to an internal binary format which

may be quickly read by the simulator when it starts up. This

program is only needed if one changes the driver table.

The three additional files are:

1) OPFILE : The character format driver table used

as input to TABINIT. (Not directly

necessary to use the simulator.)

2) TABLES.DAT: The binary file which is output by

TABINIT. This file is needed to run

the simulator.5 3) HELP : This file contains the help responses.

It is not essential to use the simulator.

If TABLES.DAT and HELP are available under the CCID that is '

running the simulator, they will be read as they are needed.3 Alternatively, one can recompile the subroutine OPFDUB (open

fdub), after modifying the CCID defined in a DATA statement. This

CCID should point to an alternate MTS catalog where TABLES.DAT and

HELP can be found.

107



APPENDIX E A,
CRAY-M instructions to simulate

shared registers and semaphores *

In developing the CRAY-M simulator, we decided that some means

of close communication between the processors should be provided.

We therefore added eight shared T registers, eight shared B registers

and sixty-four semaphore registers. There are three instructions

for manipulating 64 semaphore registers, two instructions for the

shared T registers and two instructions for the shared T registers

and two instructions for the shared B registers.

To avoid conflict, access to the semaphores and shared

registers "rotates" between the active CPU's. This rotation is

based on the Aeal Time clock register when timing is enabled, and

on the number of instructions issued when timing is disabled. It

should be noted that this difference in rotation methods may cause

different results in tightly coupled algorithms.

All timings and protocol (such as rotation and the phasing

of shared registers) are the author's choices and do not necessarily

reflect behavior of a product of Cray Research, Inc.

SMjk 0 Clear semaphore jk. Semaphore register jk is set

to 0. Instruction will take from 1 to 4 clocks to

complete.

SMjk 1 Set semaphore jk. Semaphore register jk is set to

1. Instruction will take from 1 to 4 clocks to

complete.

SMjk I,TS Test and set semaphore jk. If semaphore register

Jk is 0, set it to 1 and continue. If semaphore

register jk is l, hold issue on this instruction

(i.e., until a different cpu sets the semaphore

to 0).

SJ STX Enter Sj with STk (shared T register k). This in-

struction will take from 1 to 4 clocks to complete,
-but is phased to execute immediately following a

semaphore instruction.

108



- -i .--..,. . ..-- - - - - --. o--. ..-

o.,

STj Sk Enter STj (shared T register j) with Sk. This in-

struction will take from 1 to 4 clocks to complete,

but is phased to execute immediately following a

semaphore instruction.
Aj SBk Enter Aj with SBk (shared B register k). This in-

* struction will take from 1 to 4 clocks to complete,

but is phased to execute immediately following a

3g semaphore instruction

..

109%

3 .•%

I'.T

Akip~~ ~ ~ .'.- - *.

L09-.'
w~qf~.- ° -



Appendix F

Cray-M Simulator Error Stops q
This appendix discusses possible simulator error stops.

These error stops are caused by internal simulator errors that

could adversely affect simulation results if simulation were

allowed to proceed.

Some error stops print an error message prior to halting,

other stops only indicate a stop code. The list of error stops

below is separated into two groups: those that print a message

and those that indicate a stop code. The subroutine in which the

stop appears is also noted below. .

Error Stops with Messages

Subroutine Stop Message

GETCMD END OF FILE ON BATCH INPUT STREAM.

DECODE INTERNAL ERROR. DECODE TABLES CLOBBERED.

SDM6UM SIMBRK CALLED BUT BRKSET .LE. ZERO.

SIMBRK SIMBRK CALLED BUT BREAKPOINT NOT IN TABLE.

WINST INTERNAL ERROR. DECODE TABLES CLOBBERED.

Error Stops with Stop Codes

Stop
Subroutine code ¢ ts

MSW 101 Invalid bit code in MSW.

MSW 102 Invalid argument to MSW.

SMCTRL 103 Unimplemented action code used.

SMCTRL 164 0 a .

QPROC 105 Invalid queue action code.

QWRITE 106 Queue space exhausted.

QWRITZ 107 Invalid queue pointer. ,

SETMSK 108 Invalid bit code in SETMSX.

BLDMSK 109 Invalid hold issue code..

DECODE 113 Bad instruction format code.

OINST 113 Bad instruction format code.

SMCTRL 114 Invalid action code used.

110



I

RESERV 115 Invalid reservation code.

ACTION 116 Action held and Queue empty

QWRITE 118 Invalid clock period argument.

RESGOO 200 Invalid G-field dispatch code.

RESG01 201 of

RESG02 202

3 RESG03 203

RESG04 204 " "

RESGO5 205 5

RESG06 206 " "

RESG07 207 " " " "

RESG14 214 " " "

RESGI5 215 r " "

RESG16 216 " " N

RESG17 217 " " " N

TRACK 300 Invalid track command code.

ENTRAP 400 Floating point interrupt process failure.

ENTRAP 401 " N " " "

ENATTN 402 Attention process failure.

ENATTN 403 " "

RESG07 1071 Invalid J-field dispatch code.

U

I

i

I ." ' ' ' ' , .;:., . , , , :.. : . . .;.i.: '. .. ........ -,% -



• ,L • "" -

Appendix G
Program Availability Information

Name: Cray-* Simulator ,

Language: IBM Fortran-IV

IBM Assembly Language

Operating
System
Requirements: The only system subroutines needed are those

provided by the standard IBM FORTRAN IV Sub-

routine. Library (e.g.., MAX0, MINO, etc.).

All 1/O is done via FORTRAN READ and WRITE

statements with record lengths of 80 bytes

or less. Hence, the simulator should run on

any IBM-based operating system.

Availability: Source code for the simulator is available on

9-track E.CDIC tapes. Tapes can be made ac-

cording to any blocking format, can be labelled

or unlabelled, and can be made at 800, 1600, or

6250 BPI. The entire Simulator/Cross-Assembler

package is approximately 300,000 bytes long.
Contact:

Professor D. A. Calahan
Dept. of Electrical and Computer Engrg.
University of Michigan
Ann Arbor, MI 48109
(313) 763-0036

f12



Appendix H.

Sample Simulator Exit Dispatcher

SYTIPO a"'v 1 C'RY!!(IJK, ASP, SIr, V38, VT., LUS)

ULOGICAL ENSI, MONS/. TPIY-./

!P.X~ 33R(P) , VIP (64,9), DS

".)UI VALE!C?(PTC(1) nfS)

C *.TW'TS ET FR('CTSSOR IS ISYD 3Y A r'7ILL MHATIX LU FACTORIZATIONI C OROGR&!1. IVO MTI !TCIS ARE PICYIDID:
C
C OTI - INITIALI'T!S THE S0QU&32! ATRIX IN CRAY-i MEMORY.

C REGISTER 11 P0ITS TO THE qIRX.
C 1VGTS '!% %? COUIT'I5 THE. .AII SIZ7.

C
C TY 2 - PRINTS OU TW 'M! PO TlIM? &If,) TEUE IATRTX S'IZE.
C PEISTER V CONTI"TS THE 'qATX! SIZE.
C P!GISIM S7 CONTAINS THE R!TAL TIM! CLOCK VALUE.
C

C ~O~'!'ONLLY, TIP ' LOGIC&L TIP-11BLE 'UCANS' IS .?ILSL,
C THIN THE "EX 2" 9=L ALSO PRINT THE MATRIX SOLUTION.

CI C C0 HON SLOC9 ?Or CE&Y-1 !!OPT.
C

I ~~CO!MHflW /HSIZE/ lIE"!lZ HE(1

C

C *** TSPAT~ CY THEI!EXIT CODE (!JK)
C

GO TO(100,200), IJK
?lSia ."R!Y!.

C .. C092=1 TVrTILIZ7 'ATRIX (Al->BASE, A2=SIZE)

SIADY)R- AY.

rpm 1f4') TJNl1

ME'1(1ADD)P+1) a K

1 13



C~~~j- .. ... .. 1P I4 V-'.( 7 KX PI T LS U 11-

200 OS = IS'R(7*1)

Do 25') w!

1 101) POWqAT (1?, 10F'7.3)

11



App~endix I.

sample Simulator Calling Program

C

S C 2.F XI ~LOCA"!S T CLLS THORY CI CR- STHE T..AT I k USOALS ND

C" SII. LO AL THEEE4 OrY- T RI-D -DOA L DECOPOSTIOS 7 O~N 64 IDC

C AlI" s IlI-~I THE C1LllROFPL LEL StYS!TERS TO ASOLVE SS. IS

C 5.GVES -OW"RELT TW1'1?O USER CI IN T E AC TUL TRCOIAN L AE

C 2. %TLOATN P TRT O C TI? STUA'OPCP T1 T31 E IAGONSTLS ANDTI

NC 3.CIALLiT TE STMS.

C (t. LOADS 'THE. CIAT-S1 TTAO4% IT]- DECOMPOSITIS AOTND ITIALE S
'AVIM CWALTI v R'H I!I;PPAELRSI N DRWISLS

8. AGAIN AIE RCONTROL T THE USER C PRUN HE R0GM
C -

C S. 4TISQ Col".PO TP~O TN! USEMUATEE PR IU , 0017'N LH YT ANGUGE
C ~ALLWNGTE 11S" T? O ?NT-SSGSS.T3-A OITEC

C
C TH. MOO *'At P?0ES TIPLC SIM S~ULATOTOTT'-'S T' I RGAD SIC

CASLCAE THEST '1T OLSO NID H IUATRMNR O8

C IT AT119kA" "s

C
~~ .. 9 1""1 'o RfuI ;'" IS 1 '! TESI ULAT0 R THEN OUTY- SIHIP, SYSOI.AN

5 UQIVLCnA!-TE TOS

C *..T PI IGWATORT 1" SLIZE Ov CRBY! STRLOR.3I PORM IC
C ~~ tTT CDnFRS.T LOETND H TUAORMMR O89

CAL WORS(INT',.PT1.15C



C

C ?RI flISTAMCF, itETWSP DIXGOXXL ELEM 1"TS.

C .. 7 "1 J 3 lC''TI1 INC
C TIE DISTANCE~ SET!4 PIBALL1?L EIEN1ENTS.
c
C

'S R' AD(15,1000) U'TSS ?4EOS
In'V) VQ"v"wT(T5 .15)

!?('SYS .G7. 64I) (.,, TO 910
C

TJ = NW
C
C .. SFT ARRAY E AS ES.

ABAS? = C~rASE + RSTS*'47QS
?SST= AST+ ISYS* !'Os
MT= BV~r "I 'S1S* 14 QS

TUfYBXSL + 'K .GT. MV4SIZ) GO TO 900

C .. INTTIALIZ? TTDEC CRAY NEMORY WITTT THE TRI-DAGONAL DAmA.
C
C ... LOO"? T'!RT 717 ZLE4EITS "'? AL SYST!! TO I!IITIALIZE.3

If) 11) 1 = 1,110
C
C ... LOOP "'RU ALL ?XPILL!L SYS?!'!S.

DO 10 J m 1,11STS
RIV (IIA 2? (-1 *J (T- 1) ) -=

IIE! (ARA S+(a-1) *IJ + (1- 1)) 2 1.300
'9't~S?+J-) ~3+ (T- 1)) - r/10.30

.1E(Y A S-+ (J- 1) *IJ + (T- 1)) a I'1.)C
10 CO'TV'J!
C
C .. CLEAR OT T 7! TOP np C AND TWF BOTTC'! OF B.

DO 2'1) J - 1,YSYS7
FES! (C'9A S'E (J- 1) *TJ +. (1-1)) = O.ODO
!!' (3A S+(-1) *IJ + (RO1) .'DO

2) Co NT!T M
C

1200 VnR!!AT?('CfAY-1 TRI-DAGONAL SMUMR)

* CALL "CR!CK(3, .FALSE.)

116



C
44C .. S"T U'D THI APGU'5 CALL 1!LOCX WITH ECINT!RS TO

C Th! XPIUNW S.U C
C t.~ 133 a RSYS, tOC 1 )1 = PEQS, T0C 102 = IT, LIC 103 r J,

R C LflC 1)4I = CLOCW. ( 1) CphY-1 ArD~sss 7.7po.)

I'A!v(2, 9+1) a58

14? (2, 13 + 1) 6
"T' (2 11+ 1 66

TI!E (2, 12 +1) OB~ASE-1
V w~l( 2, 13 +1) =A3ASw-1l

1 IPM (2, 14 +1) - CIASE
11?!(2, 15 +1) =0

TN!IC2,16+1) = 614
C
C SeSET rIP kRGnT7T!!T LOCAT!ONS.

TIfl ( 2,6 8 +1) 1
TNEM 0, 6 7 +1) =IJ
IN"r'(2, 66+1) I T
IN L'! (2,6 5 +1) IaE 0.1Q
INWW!(2, 64 +1) IST

C .. LAD TP.!DIC ANID ITVE sVIUrrATIR CC TICL '10 T'"? 17SER.
*CAILL CIXA?1('COll AF"'!P ?URItIC LO~ADS, PUP 211 TO START.!I'f, .F&LSE.)

CALL CRAY1('LCAD S''I",:'RTDC: USE *1SCURC2*!@, .FALSE.)

NoC 2OP lfsy * (1 +

CALL CRECN(WflPS, ."TI!.)

C .. I TTIALTZI TRISLV'S A fT,'PN" BLOCK WITH ITS POINTERS.
C

TIL! (7, 10+1) a601
V '!lw(2, 11 +1) =sgwI I'!'(2, 12 +1) -67
IN~I~l(2, 13 +1) =66

l!A T1'!It 2, 14+1) 913A~SE - I
11.1 Tl(2, 15 + ) 1 VA 9E- 1

'Zltl (,16+ ) COASE
IM" ( 2,17 +11 m 65

IVII (2, 1 q+11 - 6

C .. LOAD ?!PISLV AND 31VO SrIVJLATOR C04TIt TO US'R.
CALL CRRI1(ICCII AWPTP T!!SLV LOADS, RUN 23A TO START.!' FALSE.)
CILL C'R&11LA-) 9(9*',:TR!Wtl;f1SEL *42CUPCE*!9, .?ALSEw.)

WOPS v IfSYS * ((M!q-1)*2 + 'T0S*3)I CALI, CR~rK(N0PS, MT!"E.)
C
C

117



+ TEE LAR5EST PRODC. OF N1SYS*NEQS 11TIST BE < 1 15)

91~10 MP!T(IITBH' %'1TF B nFl PAPLLTL SYSIMiS 4AY ?JCT EYCFD 64./
I FT.5,1 7AS SPECIFIED.')

C
C

END

S7 BP0'1TT~t1 CECK(1TO!S, PTVT~)

C311!!f3% /PA~' S/ NSYS, ?IE09, ABASE, 813ASE, CBP4SE, TEASE

C C0OWM RLOCK FOR CEAT-1 VE'!ORY.
C

DOlfYI ! '!!CISIO/ ,TVq~qq

Comonn~ /MSTZZ/ 1211SIZ
VI'MrIER*2 R5fEM(32768)
IT?~! ThENR M (2.89 192)

C
P'AL 11'L0PT
LOGTCAL P?!!!

C

C .. CILC "tLois
C

'RTC 11N 24. 68+1)
NPT.OPS
T~f1TC.W!.0) mops (pops 9o3.0) /vTC

C
C .. P!!T"T TRI PES'ILTS

VP!'ITS (14, 01) 0)
00 110 T a 1rN 2QS

4-0 WR ?!(141,S'0 f) I , r I(C83?+*1- 1) ., 12 !E(13AS!.I2 )
* IhE(~l+-) t11!!(Y3ASZ+T-1)

IvfT! '1?N) VwXTS(14,6000) R-fC, 93S'3, 310!, ITOPS -

C

41),l 1FnmM L T(I PIC =1,17 t' SYSTM! 9,'13, ' S IZE 0? SYSTEMa'
4 ~ ~ ni ?3'ILOS ',12*3./' '

li



- Appendix J

Load Module Formats

1. Relocatable Modules

.~-. Relocatable modules consist of seven types of binary records. An IDEN

record, one or more TXT records, zero or more RLD, EXT, ENTR, and

SYM records, and an END record.
An IDEN record identifies the name of the module. The record

consists of the characters IDEN, followed by 4 spaces, followed by

the 8 character name of the module.
A TXT record contains the actual object code to be loaded. It

consists of the letters TXT, followed by five spaces, followed by a

fouk byte binary address of this portion of the module (relative to
the top of the module), followed by a four byte binary length. The

i actual text to be loaded is on the following card.
An RLD record identifies the locations in the module which must

-. be relocated. It consists of the letters ;.-D, followed by five spaces

followed by one or more 8 byte fields. The first 4 bytes of the field

contain the binary address (relative to the top of the module) of the

text to be relocated. The second 4 bytes contain a '+iber describing
the type of relocation to be performed. See RLD & EXT types, below.

An EXT record identifies the locations in the module which refer

to external locations. It consists of the letters EXT, followed by 5

spaces, followed by one or more 16 byte fields. The first 8 bytes of

the field contains the 8 character name of the external location re-
ferenced. The next four bytes contain the binary address (relative to
the top of the module) of the text referencing the external. The last

4 bytes contain a number describing the type of reference. See RLD &

EXT types, below.

An ENTR record identifies entry points in the module. It consists

of the letters ENTR, followed by 4 spaces? followed by one or more 12

byte fields. The first 8 bytes of the field contain the name of the

entry point, and the last 4 bytes contain the address (relative to

the top of the module) of the entry point.

119

L q,--nratat a2 ' ' - , ,' . - . '- . .. . .. ., .



;7. -

APPENDIX K

Task Definition File Description

By issuing the command "SET TASK=ON" from the simulator corn-

mand language, task timing is enabled. The simulator immediately

prompts for an input file defining the task locations in simulator

memory.

The structure of the input file is as follows:

<TACT Report Header, 1 to 40 characters>

<Clock skip> <Pagination flag> <Compression flag>

<Task name> <Task entry point> <Task exit point>

<TACT Report Header> is a title which appears at the top of every

TACT Report page. The title can be up to 40 characters in length.

<Clock skip> is the number of clocks to skip between records in?

the tact report.

<Pagination flag> is set to 1 if pagination of the TACT report is

desired (line printer), 0 if pagination is not desired (terminal).

<Compression flag> is set to 1 if tact Report compression is desired,

0 if multiple identical records are desired.

<Task name> is a 6 character identifier for the task, to be printed

on the TACT report.-

<Task entry point> is an address or label defining the starting point

of the task.

<Task exit point> is an address or label defining the ending point of

the task.

The last record can be repeated up to 30 times so that up to 30

tasks can be defined at one time. A task can begin on the same point

that another task ends, but tasks can not overlap in memory.

120



-,- - . -- - - r-------- -

> I aXe SPARSE
> 2 100 0
> 3 FAC1 B1 B2
> 4 JOIN1 B14 B15> 5 MUL2 B31 B32
> 7 JOIN4 $160 B18
>JOIN5 B16 B17
> SOL B7 B8
> 10 MUL1 B4 B5
> 11 MUL 365A 421A
> 12 SOL 270A 340A
> 13 FAC 425A 500C
*End of file

U

Listing of Sample Task Definition File

I
i 121

I. r !",' ="'',-j - '. -.- '>.,.-.-. . .• .'.-.4 .. .'. .'-.... -. .. i.',-.,- -'-.--:



APPENDIX L

Example Use of Simulator and Cross Assembler

The following pages show a sample terminal session in which the
Cross AssembDler and Simulator pcaeis used to assemble a execute

a simple CAL code using a Fortran driver.

The first part of the Fortran driver is the common block contain-

ing the simulated CRAY memory (see section 2.3.2). The next portion

initializes the simulator and loads the cross assembled object module.

Next, the values to be squared are loaded into the simulator memory

* at address 200 octal for a vector length of 100 octal (MEN array -

subscripts 129 through 192). After the object code and operands have

been loaded* all that remains is to run the simulation and retrieve

the results from simulator memory, which the next two sections of the

driver perform. The results, of course, are the squares of the first

64 integers, as we expected.

122



-p-I

-#fis r FTN.r T .Li

$ FORTRAN DRIVER FOR VEZ1*JR SQUARE
4 C,U 4 -------------------------------------------------------------------

7 IL

I:
t COMMON BL0CK FOR LRM€-l IMEMOURY'.

11 DOUBLE PRECISION MEN
12 COMMON /MSIZEi MEMSIZ
1 i NTEGER*2 HMEM (I)
14 INTEGER INEM( 2, 409)""
15 COMMON /MEMORY/ MEM(496)
16 EQUIVALENCE (MENM(), IMEMk1, 1), HEM (i))
17
183 C "

17 3 ... INITIALIZE
2.0 CALL CRAYI('INIT;LOAD CAL.O;RETURN!,'"TRUE.)

21 C
:' C ... SET UP VECTOR TO SQUARE
23 DO 10 1-1,64
24 MEM(128+I) = 1.ODO * I
25 10 CONTINUE26 C..

27. C... RUN THE CAL CODE
28 CALL CRAYI('CH P SQUARE SET TIM=OFF;RUN;RETURN!",.rRUE..

29 C
30 C ... GET RESULT

WRITE(6,100) (MEM(128+I),I=1,64)
32 100 FORMAT( ',4FI0.2)
33 C
34 C
35 STOP
36 END

$RUN *FTN SCARDS-FTN.TEST SPUNCH--O
#Ex:ecution begins 15:12:06
No errors in MAIN
Execution terminated 15:12:07 T=.039 $0.02 -p.

LNSLIST CAL.SQUARE

1 IDENT SQUARE
2 BASE 0
3 ABS
4 ORG 20
5 SQUARE *
6 Al 100 SET VECTOR LENGTH ro 64
7 VL Ai
8 AO 200 LOAD VECTOR TO SQUARE
9 VI , AO
10 V2 VI*FVI SQUARE THE VECTORE I ,AO,A0 V2 3TORE THE RESULT
12 EX"T-
13 END"

123

~% o



*$RUN SFv1:CAL CARL SCAL.0UARE =PUN'4LH=CkL. SPRl4T=*DUMN'*
*Execution begin* 15:12:...9
0E.-scution terminated 1T:.L -'- =v 5 .04
#$RUN -U+K3;50: i 1P. 4
*#E:ecution begi s 15: 12: 1Z
INIr
U.OI.A0 CAL.O _____

RETURN
CH P SQUARE
SaUARE DEFINITION USED FROM IDENT LQUARE
3ET TIiH=OFF
RUN
EXIT 0 MT 22A CPU =
RETURN

1.0 4.00 9. O0 I .c0
2E. 00 -6.00 49. O0) 4. 0
S1.00 100.00 121.00 144.-,)Q
169. O0 196.00 225.00 25. ou
Z89. 00 324.0O0 36 1. O0 400.0
441.00 484.00 529.00 57.00

625.00 676.O0 729.0 784. 0
841.00 900.00 961.00 1024.00
1089.00 1156.00 1225.00 1296.00
1369.00 1444.00 1521.00 1600.U0
1681.00 1764.00 1849.00 1936.00
2025.00 2116.00 2209.00 2304.00
2401.00 2500.00 2601.00 2704.00
2809.00 2916.00 3025.00 316.00
3249.00 3364.00 3481.00 3600.00
3721.00 3844.00 3969.00 4096.00

*Execution terminated 15:12:16 T-0.055 0.04

124

$' *$

- -.°



*AA, I' 111

14 .L - -


