
AWAM ~PRINCETON VLSI PRO.JECTIL11 PRINCETON UNIV NJ DEPT orELECTRICAL ENGINEERING ANt) C(U'TR SCIENCE R .J LPION
NC: ASII T 983 N00014 82 K- 0549 / 5 N

I hhEEhl111111111
111111KHUE

.0.0I II I ,=___0_o
_

MICROCOPY RESOLUTION TEST CHART
NATOAL 336EAU 0' 5T&NOA*OS-'63-

L

1~

PRINCETON VLSI PROJECT: Semi-Annual Report

) PERIOD ENDING: November 15, 1983

R.J. Lipton - Principal Investigator

EECS Department

CPrinceton University

FACULTY Contract N00014-82-K-O 549

B. W. Arden
D. Dobkin
H. Garcia-Molina
P. Honeyman
A. LaPaugh
K. Steiglitz

Q, -DTIC
0 SELECTE.

JAN 5 1984

D

83 12 09 092
A D

Approved for public releiase,
Distribution Unlimited

V - 2-

1. Introduction
--- There are three major aspects to our project. The first concerns the

development of a procedural approach to the layout of VLSI circuits. The second
is the continuing investigation of the census language. Finally, the third is in the
area of testing of VLSI circuits. .

2. Procedural Approach to VLSI

2.1. ALI2 [LaPaugh, Mata]
A complete version of ALI2 is now operational. It includes a variety of sup-

port packages. These include a library of basic cells and a switch-level simulator
that is "built" into ALI2. This simulator is novel in that it can detect a number
of "problems" in circuits such as race conditions.

ALI2 is now being used and evaluated by a number of VLSI designers at
Princeton. It is also being used in a beginning VLSI course at Princeton. We
hope to get feedback from these users shortly on AL12 and the procedural ap-
proach to VLSI design.

Already work is under way on improvements to ALI2. One area of improve-
ment is the elimination of any need for design rule checkers. Layouts generated
by AL12 are usually design rule correct but this is not guaranteed by the system.
It appears possible to modify AL12 slightly to make all generated layouts design
rule correct.

2.2. Clay [Lipton, Lucas, North, Souvaine]
Clay, another procedural approach to VLSI .Jesign, is now operational. We

are currently using it in several design projects. Indeed, a number of simple
designs have completed successfully the full design-fabrication cycle. We have
also just made Clay available to other institutions and have a number of users
outside Princeton.

2.3. Layout Algorithms [Huang, North, Steiglitz]
The layout algorithms used by AL12 and Clay are quite prone to "thrash-

ing" the paging system of the VAX. For this reason a number of independent
projects are underway to improve on the current implementations. Clay uses a
hierarchical approach. Clay allows the user to break their layout up into several
pieces that can be separately compiled into layouts. This still preserves the total
flexibility of Clay layouts. Another more theoretical approach is based on a new
algorithm for layout. For an important class of layout problems, this algorithm
can guarantee few (relatively) page-faults. Work is now underway to implement
and evaluate this new algorithm.

o 00
013. oo

0 4 ! 4
+ 4

j9PV~ 0 1cu -... 4
" o M a ca W0

F.-4 > 4 ~ l 1

-3-

2.4. Referee [Lipton]

Referee is a new program for circuit comparison. It uses a new definition of
when two circuits are the same. This definition is more "forgiving" then the usu-
al definition based on graph isomorphism. Referee also has a guaranteed running
time that is linear in the size of the circuit. We are planning in the future to in-
tegrate it into the ALI2/Clay systems.

2.5. Applications of Clay

2.5.1. Graphics Engine [Dobkin, Field, Souvane)
Progress on the design of a VLSI engine for doing graphics has concentrated

on the design of custom chips for scan conversion of lines. Using Clay adders of
various types have been designed. These can be combined to yield complete cir-
cuits for both Bresenham's algorithm and Field's algorithm for anti-aliased scan
conversion of lines, scenes, and cubic curves.

Work has begun on interfacing these circuits to other portions of our graph-
ics system. The goal is to have the pseudo-triangle as the basic building block.
This structure consists of the interconnection of three vertices via curves of arbi-
trary degree (<4). Circuits to compute these functions are lacking in even high-
end state of the art graphics systems.

2.5.2. Recursive Layout [Lucas, Souvane, Steiglitz]
Clay has been used to design a number of recursive circuits. These include:

(1) comparers, (2) tally circuits, (3) various adders, and others.
The advantages of using Clay for such designs are several. First of all, once

the basic cells have been described, the entire layout is generated by a single re-
cursive function call. Since, in Clay, the calls remain flexible until the layout is
complete, proper interconnections among the cells is assured. Moreover, by
changing a single parameter, an 8-bit, a 16-bit, a 128-bit, or any size layout may I
be generated.

Equally important, however, is the ease with which we can resize transistors
in order to improve speed. A number of layouts have used this feature and Cry-
stal to dramatically improve their performance: one chip was speedup from
200us to 53ns by just such a resizing which is trivial with Clay. We are now
working on automating this whole resizing step.

3. Census

There are two main projects under way here.

3.1. Top/Down [Lopresti, North]

This project is investigating the use of the census approach to parallel com-
* putation as a way to speed up a large class of computations. The essential idea

is that rather than speeding up the inner loop of a computation as is usual, we
plan to take a top-down approach. Here, the problem is decomposed at a high

0

-4-

level into independent (or nearly) computations oni loosely coupled processors.
We are currently investigating the classes of problems that match this approach.

3.2. AP [Garcia-Molina, Honeyman, Lipton]
This project is investigating a new approach to the design of a super com-

puter: we propose to interconnect large number of memories with a very small
number of processors. Our central thesis is that a machine with a hugh amount
of physical memory, in the tens of billions of bytes, can outperform other super-
computers on many important tasks. The project has already found a new novel
way to implement such a machine which we call ESP. Work is now underway to
develop and expand our understanding of the issues involved in building such a
machine.

4. Testing
Work on VLSI testing is continuing along two basic lines.

4.1. Structured Testing [Steiglitz, Vergis]
Work here has recently found large classes of regular layouts that are easily

testable. These include many important classes of systolic arrays.

4.2. Bipartite Testing [LaPaugh, Lipton]
Work continues on this approach to design for testability. The earlier

methods have now been extended to CMOS circuits. Work also is continuing on
building test circuits.

In addition, a new but related approach to testing is now being developed.
It uses a special nand gate that is similar to that used in the Bipartite Method.
However, it avoids the potential doubling of the number of gates found in the Bi-
partite Method. The additional cost is the number of test vectors is no longer
constant but in worst case is linear in the size of the circuit. The key, however,
is as before it is computationally easy to find the test vectors that guarantee
100% coverage.

6. Papers

MelftS Ck,'i A Mammal hr Gob Cl. Laou$ Laua

s.ph~m C. Nora

VLSIMgMO 3
iky Is

Molding Clay: A Manual for the Clay Layout Language

Stephen C. North

Department of Electrical Engineering and Computer Science
Princeton University

Princeton, New Jersey 08540

Bell Laboratories
Murray Hill, NJ 07974

The Clay VLSI Design Language

Clay is a procedural language for NMOS VLSI layout design.t A layout in Clay is created

by writing a program which describes the devices and wires in the layout, and where they are

placed. The Clay system translates the algorithmic description into CIF (Caltech Intermediate

Format).

There are several advantages of a programming language over a graphical editor for VLSI

design. A programming language provides a means for controlling the complexity of the design

task. For instance, a structured design language can help make large layouts managable by top-

down decomposition, similar to the way large programs can be written. A language, as opposed

to an editor, also provides a vehicle for implementing VLSI layout algorithms, and allows the

designer to write generic, parameterized cells (such as transistors, inverters, PLAs, channel

routers, etc.) and then instantiate them many times.

A disadvantage to our approach is that the designer cannot see his design as be is writing

the layout program, except by going through the translate-layout-plot cycle. So he must have a

mental (or physical) picture of the design he is trying to create, and then express it as statements

in the programming language. This is primarily a problem in writing low-level cells, which

STie fundamental design of Clay i independent of the fabrication technology; as extesion for CMOS is
planned

1

.2-

contain many random objects and which often must be optimized for small area. Higher level

structures tend to be more regular and are more naturally described algorithmically. Neverthe-

less, we have had satisfactory experience with designing low-level cells, and since Clay can handle

arbitrary CIF objects, it is very easy to access tells created by other layout tools such as a graphi-

cal editor.

Clay was written as a package of C data types and functions. Before trying to write a Clay

program, the designer should already know C. We those C as a base language because we did not

want to try to re-invent all the features of a structured programming language not related to the

layout task and C is flexible enough to support the data types and function interfaces we need.

Further, the Unix C compiler is efficient enough to support large layouts.

Clay adds two new data types to C: wires and symb ols. Wires are horizontal or vertical

runs of some layer (metal, polysilicon, or diffusion). Wires declared in a Clay program are of fixed

width but variable length. The length is determined by the Clay system itself as part of the

translation into a layout. A wire can be thought of as a stretchable line segment with a fixed-

width field around it. A symbol is a small rigid piece of CIF, such as a transistor or contact.

Symbols interconnect wires. Thus, a layout consists entirely of stretchable wires meeting at sym-

bols. It is intentionally not possible to place any object at an absolute location. This flexible

placement of objects, similar to stick diagrams, is an important feature of Clay.

The Clay language primitives (which we will describe in detail later) create wires and sym-

bols and control their placement in the layout. The execution of a Clay program produces, not

the CIF layout, but a list of the wires and symbols it created, and constraintse on their placement.

A program called the solver converts these into CIF.

To get started, consider the following simple Clay program illustrating the basic primitives

(line numbers are not part of the program).

f

.3.-3.

1: #Include "/va/clay/lib/header.h"
2: mes0
3: (
4: whretype w;
5: symboftype s;
6: w = wIre(POLYNMN);
7: s - symbol("mpcontact");
8: ordered(LR);
9: place(s, NULL,NULL,w,NULL);
10: place(s, w,NULL,NULL,NULL);
11: leaveorderedo;
12:)

Line (1) is the include needed for the definition of Clay data types. Every Clay program must

have this. Line (4) is the declaration of a wire variable. A wire variable takes on actual wires as

values. A call to wire creates a new wire in the layout, but does not say anything about where

to place it, nor how long it is. Thus, the call to wire in line (6) sets w to a new minimum width

wire of polysilicon. In NMOS, the legal layers are POLY, METAL, and DIFF. Widths larger

than MIN can be given as multiples of the predefined constant LAMBDA, for instance:

w = wh.e(METAL,10 * LAMBDA);

To conform with the convention that CIF dimensions are given in centimicrons for 2.0 micron

NMOS, LAMBDA is currently defined as 200. For a different fabrication process or CIF scaling

factor, LAMBDA can be redefined. The width of a wire is the maximum of the user-supplied

width and the process minimum. That is, a wire can't be narrower than the design rules allow,

but it can be wider.

Line (5) is the declaration of a symbol variable. As described before, a symbol is a rigid

object that can be placed under the control of a Clay program. A symbol variable is set to such

an object by a call to symbol, as in line (7). The argument to symbol is the Unix name of a

CIF file. Clay uses a symbol as a template, to be copied and placed. The call to symbol does

not put anything in the layout, but merely sets the value of a symbol variable so the symbol can

be referenced later. Since symbol opens, reads, and closes the CIF file to get the symbol

definition, it is better to et symbol variables once at the start of a program, rather than within a

loop.

I

.4.

An important concept in Clay is that wires and symbols are placed inside ordered contexts.

The ordered primitive creates a new context. Its argument specifies the kind of context to be

created: TB for top-to-bottom, BT for bottom-to-top, LR for left-to-right, and RL for right-to-

left. A context is a virtual box in the layout. A context's scope extends until a matching

leaveordered primitive appears. In our example, the left-to-right ordered context created in line

(8) continues until line (11). Usually, ordered and leaveordered will enclose a block of code,

but since they are executable primitives (and not syntactic delimiters of a static scope) a Clay

program can create new contexts dynamically.

Within a context, the place primitive places wires and copies of symbols. The general form

of this primitive is:

place(sym,a,b,c,d);

The first argument is a symbol; the other four are wires or the constant NULL. The call to place

has several effects. First, it forces the wires to meet at a point: a must enter from the left, & must

enter from the top, c must enter from the right, and 4 must enter from below (see Fig. 1).

Second, it places a copy of the symbol or top of this point. Third, the symbol is constrained to

lie entirely within the current context. Fourth, symbols are ordered as they are placed. It is this

interplay between ordered and place that gives Clay its power. The user need never explicitly

constraint the position of any wire or symbol. The positions are implied by the sequence of primi-

tives that appear in an ordered context.

b

d CF

Figurc I

If a wire argument to place is NULL, then there is no wire entering from that direction.

Note that the four wire arguments need not be distinct: if a wire goes through a symbol, not ter-

minating inside it, then it can enter from both top and bottom, or left and right. The symbol

argument can also be NULL, which forces the wires to meet and orders the point in the current

context, but does not create a copy of a symbol. Note that a symbol cannot be used where the

wires do not meet at a point (see Fig. 2). Cases like this can be created by a Clay function.

_JI L
Figure 2

Once a Clay program (foo.c) has been written, it can be translated into a CIF file by the fol-

lowing commands:

% cl foo.c

% a.out

% solve

cl compiles the source program and loads it with the Clay runtime library. Cl is a sightly

modified version of the cc compiler, with the same options. The execution of a.out creates the

constraint files. These are put in the current directory as dot files since usually the programmer

need never refer to them. Since their names are fixed (for instance: .xconstraint, .yconstraint,

.definitions) each Clay program should reside in its own directory. Finally, solver reads these files

and outputs a file named eet.cif containing the layout. The plot of the example program is given

in Fig. 3.

-W-

Figure 3

Correcting Errors

Syntax errors are detected by the compiler.

Run time errors are sometimes self-explanatory and sometimes aren't. If the run time sys-

tem complains about a "negative constraint," a Clay primitive has written a constraint which

that the right endpoint of a wire is to the left of its left endpoint. Also, CIF symbols not in the

special format described later will be rejected. The run time system can core dump for the same

reasons an ordinary C program does, such as referencing an uninitialized wire or symbol variable.

*db can be used to track down some of these errors.

The most common diagnostic from solver is the infamous "cycle error." This means that the

Clay program wrote an inconsistent set of constraints; there is no possible layout satisfying them.

For example: a cycle error occurs if the Clay program states that wire A is both above and below

wire B. Look for incorrect place and ordered commands, and misuse of wires that are function

arguments. Referencing an uninitialized wire variable may also cause the solver to give -, warning

about a "coordinate variable number out of bounds."

Many runtime or solve errors can be diagnosed with the aid of the trace package. The trace

writes a log of the Clay primitives called (with indentation according to the nesting of ordered

contexts) on stderr. settrace(level) turns the trace on or off. The level can be TRNOTRACE,

TRPARTIAL, or TRTRACEALL. If enabled, trace also checks for dangling wires at the end of

the program run. These are wires with one end unconstrained. Since the solver tries to move the

-7-

endpoints of wires as far down and to the left as possible, the free end will stretch to the boun.

dary of the layout, even if it crosses over the other endpoint ("snaps back"- see Fig. 4). The

solver gives warnings about wires that are degenerate or snap back and does not place them in

the layout. If a wire is created by a call to extwre, rather than wise, its external name will be

printed in the trace. The format of the call is ett_wre(layer,width,external name) where

external-name is a string.

Finally, the solver can generate illegal CIF if there is a bad symbol file.

Figure 4

More Primitives

Although ordered and primitive are powerful enough to describe most Clay designs, other

primitives are provided for access to internal data structures, efficiency, or flexibility.

drop(rym,a,b,c,d) takes the same arguments as place. drop glues up to four wires

together in a point, and puts in a symbol over this point, but does not write any other con-

straints. drop is appropriate when symbols are being dropped in over a regular structure which

has already been constrained. For instance, a PLA can be created by first laying out a grid of

wires, and then dropping in contacts and transistors where needed to define its functions. Because

of the risk of design rule violations, drop should be used carefully.

override(i) changes the default separation of wires and symbols in an ordered context. The

default separation is the maximum imposed by any design rule, which is 3 * LAMBDA in the

V
ii

' I i m~ =in , | I III

I|

-8-

current NMOS version of Clay. This means that Clay is not very smart about bow close the

design rules allow objects to be packed; it assumes the worst case. override is intended for

hacking low-level cells, where lambdas count. Its integer argument is in centimicrons, but it can

be given as a multiple of LAMBDA. Obviously it is possible to create layouts with design rule

violations if override is used incorrectly. Note that the argument is the change in separation-

negative to decrease it, positive to increase it.

layer(w), width(w), and direction(w) have wiretype variable arguments. layer returns

the layer of the wire. direction returns its direction. (TB, LR, BT, or RL). width returns the

width of the wire in multiples of LAMBDA. These primitives can be helpful when writing a func-

tion that needs to find out the type of its wire arguments.

posltion(w,type) constrains wires to run outside the layout (the outermost context). w is a

wiretype variable; type is one of the following: enter_ left, enter right, entertop,

enter_bottom, thruLR, or thruT1. enter forces one end of the wire to be outside and

the other end inside; thru forces both ends of the wire to be outside.

freewlre(w) frees the storage allocated by a call to wire. This is 28 bytes per wire in the

current version of Clay. freewre can be called when the memory requirement of a Clay pro-

gram becomes excessive due to the creation of many wires.

mark(w,string) is a symboltype-valued function. The one-line CIF symbol it returns puts I
the string argument as a label on the same layer as the wire, using a Berkeley extension to stan-

dard CIF. Placing this symbol somewhere on the wire will label it in the plot. Note that some

CIF tools (such as the cryltal timing simulator) will not recognize a label as being on a wire if it

is placed on its endpoint. Instead, the wire should pass through the symbol.

eonnect(a,b,c,d) forces up to four wires to meet at a point and also places the appropriate

symbol to electrically connect them. connect is usually preferable to place since it automati-

cally creates symbols when needed, and therefore is easier than creating them by hand and less

error-prone.

t _

Useful Things to Know

The functions startup and endup are automatically called by the Clay runtime system at

the beginning and end of its execution. These primitives should not be called by the user; we

mention them only so their names can be avoided.

If the environment variable claypath is defined, the symbol primitive will use this to search

for symbol files. claypath should contain the name of one or more directories, separated by

colons. These directories are searched in order if the initial open of the file in the current direc-

tory fails.

The CIF for a symbol must be in the following canonical format. The first CIF command

must be a comment containing two numbers which give the size of the symbol (x and y) in cen-

timicrons. The size is measured as distance from (0,0). So the first line of a symbol of size 1000 x

1000 centered over the origin would be "(SOD 500);". The next section is a list of macro

definitions. The last section is a list of macro calls and box creation commands. Note that some

CIF extensions which affect scanning the CIF file, such as the Berkeley CIF include command, are

not supported. Also, when a symbol is placed, the CIF origin (0,0) is centered over the point. At

present, symbols must be symmetric, that is, the boundaries of the symbol cannot be off-center,

although the contents of the symbol can be arbitrary.

A major annoyance in the current release of Clay is that there is a, way to change orients-

tion. For instance, separate symbols for horizontal and vertical pass transistors are needed. Like-

wise, if you have written a channel router in Clay with the channels running horizontally, you

cannot easily obtain from this a router with channels running vertically except by editing a copy

of the function, making the necessary changes. We intend to correct this deficiency in a future

version of Clay.

In addition to TB, LR, BT, and RL, contexts may be NONE ordered. The initial context of

a Clay program, before the first ordered call, is NONE ordered. Symbols placed in a NONE

ordered context are constrained to lie inside it, but are not constrained with irespect to each other.

Im m m
m m

mmm mm mmm m m

* 10.

Solving Constraints

To write low-level primitives or modify the Clay system, you must understand how Clay

generates the CIF layout. The layout is contained entirely within the first quadrant of the Carte-

sian coordinate plane. When a symbol, wire, or context is created, it is assigned coordinate vari-

ables. Since a symbol is placed over a point, it has two coordinate variables (an x coordinate and

a y coordinate). A wire has three coordinates: a horizontal wire has two x coordinates associated

with it, and a y coordinate; similarly a vertical wire has one x coordinate and two y coordinates.

The bounding box of a context has two x coordinates and two y coordinates. The Clay primitives

can then control the positions of objects by stating constraints on the values of their coordinate

variables. For instance, let vertical wire a have x coordinate variable 4, and wire 6 have x coordi-

nate variable 12. (Coordinate variable names are non-negative integers. x variables are even; y

variables are odd.) If the Clay program states that the center line of b is at least 5 LAMBDAs to

the right of the center line of a, where LAMBDA is defined as 200, then the execution of the Clay

program creates the constraint:

212 z4 +1000

In fact, all constraints generated by Clay are of the form:

V,> v,+d

Constraints on x coordinate variables are written in binary in the file .xconstraint. Constraints on

y variables are written in .yconstraint. Also, since endpoints of wires can be glued together, as by

drop or place, the Clay program writes a list of commands in .unionfind which force two coordi-

nate variable numbers to be synonyms. In addition, a list of the wires and symbols created is put

in .creation, and a list of symbol definitions is put in .definitions.

To obtain a CIF layout, the solver first reads .unionfind and builds a union-find tree. Next

on separate passes it processes .xconstraint and .yconstraint to find a layout having smallest total

area, using a finear-time algorithm based on topological sort. Finally, solver writes a CIF file by

loading the CIF macros for symbols (using .definitions) and writing box creation commands for

wires and macro calls for symbols (using .creation).

For dynamic storage allocation in the solver, the maximum internal coordinate variable

number and symbol numbers referenced by the Clay program are written in maxpofile, along

with the coordinate variable numbers of the outermost context. These coordinate numbers are

needed for hierarchical solving, described in the next section.

Hierarchical Solving

In the Clay examples given so fas, an entire layout was described by a single Clay program,

and all the constraints were solved in one run of the solver, If a Clay program creating a large

layout generates many objects and constraints, the run time of the solver may become excessive

and its memory requirements may cause page thrashing. To help avoid this, and for top-down

refinement of Clay designs, we allow hierarchical partitioning of Clay layouts into cells, or non-

overlapping sections of a layout. A hierarchical layout has a main cell, the parent, containing one

or more child cells. Each cell is described by a separate Clay program. This containment is

recursive, so a child cell may itself have children. A parent and child cell usually have wires they

share that cross the boundary between themi, called parameter wires. The parameters wires and

the outermost context of a child cell are its ezternslly visible point.

Since each Clay program must reside in its own directory, we need a separate directory for

each cell. The logical hierarchy of cells must be reflected in their directory names. For instance,

if alu and control are children of mjichip, there is a directory ,nychip with subdirectories eta and

control.

We also allow rigid CIF cells to be children. A rigid cell cannot have its own children.

In a hierarchical layout, the parent and child cells are solved separately. A child may affect

the layout of its parent, since it has area and imposes a minimum distance between its parameter

wires. Likewise, a parent may affect its child by stretching the distance between parameter wires.

To obtain a hierarchical layout, we first compile and execute the Clay programs for all the cells to

get constraint files. Then, starting with the lowest-level children (those with no children of their

own) we solve to get a layout of the child cell, and append constraints on its size and position of

parameter wires to %,be constraint files of its parent. Then we solve the parents of these cells, on

- 12-

upward in the hierarchy, until we have solved all the way up to the top~most cell (the root) which

has no parent of its own. Then we can solve back down the hierarchy, exporting constraints from

parents to their children, and at the same time getting out.cffiles for the individual cells. When

we have solved all the leaf cells on this downward pass, the concatenation of all the out.cif files

yields the complete layout. The cifen| command concatenates CIF files with macro renumbering

and handles the CIF End command so the resulting file is palatable to most CIF tools. The argu-

ments to eifcst are names of files to be concatenated, and it writes to its standard output (which

can be redirected).

The solver works on only one cell in the hierarchy at a time. That is, in the directory of

any cell, we can run sole -u to solve up, exporting constraints to the parent, solve -d to export

constraints to children and get an eut.cif file, or a simple solve to get out.cif without affecting

children. Since the solver must be invoked more than once on a hierarchical layout, you may

want to write a shell script to make this more convenient.

Next we will explain how to define parameter wires in a Clay program and describe the

hierarchy of parent and child cells. Parameter wires and child cells are identified by name. The

primitive for creating parameter wires is ext_wire(layer,width,name), described previously. The

external name of a wire is returned by the name(w) primitive. If w was created by wire, not

ext wbre, then name returns NULL. Each wire created by a call to ext-wire has an entry in

.symtab with its coordinate numbers. I
et_ordered(direction,name) creates a context for a child cell. The context is an exter-

nally visible object with an entry in .symtab. Parameter wires can be placed between

ext_ordered and leaveordered. The parameter wires between a cell and its parent should be

constrained by calls to position.

A floorplen in a patent cell directory tells the solver the names of children and the names of

the parameter wires. The floorplan has an entry for each child cell. The Arst line of each entry is

of the form:

.6

-13-

type childname directory

Type is either flezible or rigid. Flexible cells are those described by the constraint lies of a Clay

program execution; rigid cells are in CIF. Aildname is the name given in the extdordred call.

direetory is the name of the subdirectory containing the child. For sanity's sake, this should usu-

ally be the same as childname. Remember that there must be a separate directory for each child,

even if they are identical copies of the same layout. For instance, if your layout has 8 input pads,

there must be a separate directory for each instance of an input pad.

Following this comes a list of the child cell's parameter wires, which we call a walk. The

walk must totally order all the externally visible wire coordinates. The x-coordinate walk comes

first (implicitly beginning with the left side of the cell and ending with the right), then the y-

coordinate walk (which likewise implicitly begins with the bottom and ends with the top of the

cell). The walk is given simply by listing the wire coordinates, terminated by a 0. A wire coordi-

nate is one of the following:

x(wirename) x-coordinate of vertical wire
xl(wirename) left x-coordinate of horizontal wire
x2(wirename) right x-coordinate of horizontal wire
y(wirename) y-coordinate of a horizontal wire
yl(wirename) lower y-coordinate of vertical wire
y2(wirename) upper y-coordinate of vertical wire

where wirename is the name given to the wire in the call to ext..wire. For instance, the

floorplan entry of the flexible cell in Fig. 5 is shown below: f
flexible onebitadder onebitadder
x2(gnd) x2(cin) x(sum) x(datal) x(data2) xl(cout) xl(vdd)

y(gnd) y2(datal) y2(data2) y(cin) y(cout) yi(sum) y(vdd)

Since the floorplan walk imposes a total ordering on the parameter wires, even if they are not

otherwise related to each other in the Clay program, you may need to fine-tune a loorplan entry

if the ordering causes the cell to stretch unnecessarily. For instance, in the boorplan entry for

onebitadder, the y-walk forces cost to be at the same y-value or above sin, even though the Clay

program may allow them to lost. If the cell stretches badly because of this, y(cout) should

appear before y(cin) in the loorplan.

o14-

.MI data2

Figure 5

The walk for a rigid CIF cell is slightly different, since we also need to specify the exact

separation of parameter wires measured between wire centers, and the wire types and widths.

These are given in centimicrons (not LAMBDAs). The walk begins and ends with the separation

from the cell boundary. The entry for each wire is the wire coordinate, its type ('m', 'p', or 'd'),

and its width. The s6paration appears between the wire entries. The floorplan entry for the rigid

cell of Fig. 6 is given below:

rigid datacell dat3cell
0 x24Yv) m 1600 0 x2(g) m 1600 20000 x(in) p 400 10000 xl(out) d 400 0
0

0 y2(in) p 400 800 y(v) m 1600 6000 y(out) d 400 20000 y(g) m 1600 800
0

The CIF for a rigid child cell must be placed in the file in.cif in its directory. During solve up,

the constraints implied by the rigid cell's walk are exported to its parent. Then, during solve

down, rather than exporting constraints, the parent checks that it has not tried to change the

separation of the rigid cell's parameter wires, and writes eul.cif in the child directory by translat-

ing in. rif to its position in the layout. in.eq must be in the canonical format described earlier for

symbols.

- 15-

s- 4A

1OO)k

datacdll

out
-

d

meal 8x -----
- IX

IO SS

pdy 2X

200 c micms

Figure 6

' II

- 16.

There are two other Clay primitives written for separate compilation.

arrayna~e(name,sumber) simply concatenates the string conversion of numier to name, for

convenience in giving names to array* of parameter wires. For instance, arrayname("dat",S)

is "data&". puti..l celloame,ciffile,oorpanheader) makes it easier to incorporate rigid cells

in Clay programs. Its arguments are string pointers. The first is the name of an ext ordered con-

text. The second is the same of a CIF file, and the third is the name of a file containing the

floorplan header (X and Y walks). putin elf creates a subdirectory for the child cell (if needed),

copies the named CIF fle to in.eif, and appends an entry for the rigid cell to the floorplan in the

current directory. Since the Boorplan is modified every time putnW.clf is called, you will need

to make a backup of floorplan and restore it whenever the Clay program is run. Otherwise,

put_in_clf will append multiple copies of the same entry to floerpan.

A Simple Router in Clay

As another Clay example, consider the following function which is a one-sided channel

router using a greedy allocation strategy. Metal wires enter from the top; the router connects the

nets on poly. The function call is gcroute(n,a,w) where n is the number of wires, a is the connec-

tion list given as an array of n integers, and v is an array of n wires, already separated left to

right. a[i gives the index in u of the next wire to the right of uwil to be connected in the net, or

-1 if uJi is the rightmost wire in the net.

The router has two phases. In the first phase it assigns channels to the nets. To do this, it

works from left to right in the net list, assigning the lowest-numbered channel available. The

variable poe stores the current position in the left-to-right scan for wire nets.

cAnnelnumber~posi stores the channel number (0 is topmost) chosen for the connection of the

net whose leftmost terminal is at po. ckmnjsl stores the index of the rightmost wire in the

currnt net connected on channel i. When po>han[j4, the itb channel can be reused. No

actual layout is done during the first phase.

During the second phase, the router works from top to bottom, laying out each channel.

Since the wires in v are assumed to be previously separated from each other, each channel is

J

-17-

ordered(NONE). The router then looks through the channeLnumber array to find wires which

are the leftmost members of nets running on the channel, and connects the net via a poly wire.

All dynamically allocated data structures are freed before the function exits.

1: /,
2: * greedy one-sided channel router
3: * metal wires enter from top and nets are connected by horizontal
4: * poly runs.
5: * n is the number of wires
6: * a is the connection list. alil gives the index of the next wire
7: * to the right of w~i] in the net or -1 if it is the rightmost.
8: * w is an array of wires to be connected. they must already be
9: * constrainedin left to right order!
10: "1
11:
12: nclude "/vb/clay/lib/header.h"
13: #Include <stdio.h>
14: #define NClANNELS 10 /*max number of channels route can have*/
15:
16: gcroute(n,a,w)
17: Int n,a[l;
18: wietype w[];
19: (
20: Int chan[NCHANNELS]; /srightmost terminal connectede/
21: It nextavail I= 0; /*next available channel (lowest numbered)*/
22: Int i,j,k,pos,prev;
23: lut *phase,*channeLnumber;
24: lt maxused = -1; /*highest channel number actually used*/
25: wfretype c;
26:
27: /*phase keeps track of which wires have been connected*/
28: phase - (kIt s) maUoc(n * 6izeof(int));
29: for (i = 0; i < n; i++) phaselil - 0; /*mark everyone as not seen yet*/
30: /*channel-number remembers to which channel the leftmost wire I
31: in a net list has been connected*/
32: channel.number = (lst *) malloe(n * sizeoqlnt));
33: for (i - 0; i < n; i++) channel_numberli] = -1; /*mark as not used yet*/
34: for (i = 0; i < NCHLANNELS; i++) chan/i/ -- 1; /*not used yet*/
35:
36: /*first phase is to compute connections to channels*/
37: pos m O;
38: while (pos < a)
39.:
40: If (alpos < - pos) /*can't go from right to left in the net list*/
41: fpriatf(stderr,"route: attempt to connect term %d to %dO',pos,
42: ajpool);
43: channel_numberipos] - nextavail;
44: i a "pose;
45: phase/pos -1;
46: while (alil !- -1) /scan middle contacts*/
47: (
48: phaselij - 1;

-18.

49: i - a[ij;

51: phaselil = 1; /rightmost contacts/
52: chanlnextavail] = i; /*mark how far we used*/
53: /*move to next position and find nextavail channels/
54: while ((phaselpos]) && pos < m) poo++;
55: If (pos =-- n) break; /*all done*/
56: prey = nextavail;
57: for (nextavail - 0; nextavail < NCHANNELS; nextavail++)
58: If (chan[nextavail] < pos) break;
59: If (nextavail =- NCHANNELS)
60: {
61: fprlnt(stderr,"couldn't route in %d channels0',NCHANNELS);
62: exlt(.);
63. }
64: If (nextavail > maxused) maxused ow nextavail; /*remember max*/
65:
66:
67: /Psecond phase is to create layout*/
68: ordered(TB); /*go by channels*/
69: for (i = 0; i <= maxused; i++)
70:
71: ordered(NONE); /*use ordering of wil within channels*/
72: /Pcould speed up by having a list per channel; not worth the trouble*/
73: for (- 0; j < n; j++)
74: 4
75: If (channeLnumberlil != i) continue; /*ignore if not leftmost*/
76: /*do leftmost terminal*/
77: c = wre(POLYMIN); /poly wire for channel*/
78: connect(N'U1.L,wIj,€c,NULL);
79: k -= aljj;
80: whlle(alkJ != -1) /-do middle terminals*/
81: (
82: eonnect(c,w[kJ,e, NULL);
83: k -= alk];
84: "
85: /*do rightmost terminals/
86: eonnet(,wk),NULL,NLL);
87: freewlre(c); I
88: }
89: leaveordered();
90:
91: leaveordered(;
92: free(phase);
93: free(channel-number);
94:)

A plot of a layout created by this function is given in Fig. 7.

m um n mmnunammm mnmlunlnlll
mm

I~
m m

• I
m

t ul

Figure 7

Acknowledgments

The Clay primitives and solver were written by R. I. Lipton and S. C. North. Our first

users, J. Lucas and D. Souvaine, wrote many of the library functions and helped greatly to debug

and refine the system. Support for R. J. Lipton, J. Lucas, and D. Souvaine was provided under

DARPA contract N00014-82-K-0549. S. North was supported by Bell Laboratories. The trace

package was written by Tom Freeman.

AL12: A VLSI Layout System

(Draft)

J. Mobp G. Vijavan

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, NJ 08&40

1. Introduction

In this paper we describe the main features and usage of a language designed at Princeton
to automate the layout of 'VLSI circuits. The language is called AL12 and has been operational
for some months at Princeton. The language ALII, also developed at Princeton was a forerunner
to ALI2.

The main thesis in the ALI project is that VLSI design can be profitably thought of as a
programming task, as opposed to a geometric editing task. We believe that making layout design
similar to software design has many advantages and that much is to be gained by consciously
attempting to apply our knowledge about programming to this new activity. We have thus tried
to create tools for the VLSI designer that incorporate many useful features of the software
development tools that we are familiar with.

The main feature of AL12 as a layout language is that it allows its user to design layouts at
a conceptual level, in which only the topological relations between the layout components can be
specified. Absolute positions of layout components cannot be specified.

£ 3. An overview of AL12

AL12 programs are compiled by first translating the AL12 statements into standard Pascal.
Partly as a consequence of this arrangement and partly for aesthetic reasons, AL12 programs look
very much like Pascal programs.

The objects manipulated by AL12 programs can be classified naturally into two categories:
those that a normal Pascal Program Can manipulate (which will be called Pascal objects) and
those that are specific to AL12 (ALMt objects). There are three AL12 objects: cello, boze.,, and
wires. AL12 programs can also manipulate aggregates of wires, just as Pascal programs can mani-
pulate aggregates of variables using structured types. Although AL12 programs w'ill typically
manipulate all three kinds of AL12 objects, the final product of an AL12 program is a layout con-
sisting entirely of wires. Cells and boxes are simply used as ways to express the relations between
groups of wires in a structured and systematic way.

A cell in ALI2 is a prototype for a rectangular section of a layout. In a cell definition, the
user describes a prototype of a rectangular layout piece. In a cell creation, also called instantia-
tion, the user requests the insertion of an instance of a previously defined cell in a given environ-
ment. Multiple instances of a prototype can be created. It is possible to define a cell prototype
whose content and structure depends on the values of parameters which will be supplied to the
prototype at run-time. The sizes and shapes of actual instances of a given cell will then vary

£ according to the "actual parameters" provided when the instance is created. Thus, AL12 Cells are
very much like the familiar parameterized procedures and functions.

-2-

Each cell instance is enclosed in a cel 6ounding bor, cells are thus restricted to have rec.
tangular shape. Cell boundaries may not overlap, nor may they be crossed by any wires. Wires
will either be entirely contained within a given cell instances, or lie entirely outside it. Cell boun-
daries therefore impose a strict hierarchy on the arrangement of wires in a layout.

Wires are rectilinear objects which lie on a specific layer, have a given uidih, and carry a
specified #ignal. Wires are used to interconnect cells and must have both of their endpoints lying
on cell boundaries.

Fig. I - Four separate cells and the result ot conuecting them

The entire layout generated by an AL12 program is itself actually an instance of a single cell
defined by the program. An AL12 program produces a set of linear inequalities involving the coor-
dinates of the endpoints of the wires and boxes in the layout as variables. These inequalities,
which embody the relations between the wires and boxes of the layout, are then solved to gen-
erate the positions and sizes of the layout elements. The program also produces connectivity
information about the wires in the layout. This information can then be used by a switch level
simulator that predicts the behavior of the circuit as laid out without having to perform the usual
"node extraction" analysis on the resulting layout.

-

FrIl - Lain os produed b? aI AII2 program

- - - - --- -- - ~ - -- - - - .

.-

Chip shqftreqilae (output).

-. wlretype polywire - wire (poly. 2d8abda, flullsignalis
dltfwtre* a wire (diff. Vlambdee. mUllstgnalls
metalwire* wire liwetal.46avbda. nullaignalla
fivewires hIr. layer) - bus WI: polywlre*;

WZ: meetalwir.;
w3i wire Ole, ainwidtf(Il, iwullstgnal)t
Ud 4:setalwire,

v:polywies;

wfrevar 11. rr fivewires (poly rd

cell contact (left 1, wire: top t: wire; right ro wire; bottom be wire):
begin
create syscontect (Ill. Itt. Or$. IbI false)

and;

call Inverter (left 1: ffvewires; right ra fivewirem 1:
wirovar diffl. diffZ. dIff3: diffwire;
begin

ordered ttob do begin,
create contact (l.Wl. nuitwire. r.w). flulvifre 3C
create contact i .wZ. nullwlre. r.wZ. diffl); N
create syspullurp (nulilist. Idiffil. Ir.w21. Idiff2l) (4);
create systransetor (1.v3l. idiff~l. nulillet. Id~ff~i (false):
create contact 1 l.i4. @iff3. r.w4. aullwire)t
create contact (I l..S. nullwire. r.wS. nuiilwire 1;

on d torderec');
end;

cell ci.)I (*9 1: fivewires: rifht P: ffwewires)
wirev- poly!. voly2 poiywire:

Ciffl: dltfwi-e;

me tI Metalwire;
begin
oret-d ttot do begin

create contact Iw.1 nuliwire. r.wj. pcolyl I
CesItt SayC0'tAI:t i II .W2I. IPClY:I. lr-WZi, . poly

2
I P(true);

orcered)to- do lbecin
crez'-e rctate'l>C Sys'.-xrsistr, (lpoly2l. Idiffli. nullist. Il.w3I (falsne):
c-ee.e crts:. (cl#'. mull.e, nuol'wirt. met))

crerte cc'nt~ct I rwlwire. met]. r.v''. nuliwiri I

create ccr-:t I .wz. rn.VIwie. r.wt, nullwir.)
en le c-c t Iw.nulie 'wnlwr

end:

co 02 ci *eft 1: five,-re: rig-it ri fivewires I

diff. 'e;

beT:n
oCe-ed ttct dc k:'r

cre..e c-r :ct l .w.'. n..,lwre. r-2,Z *'ulli.re
0Ce-e- !to, cc Lf-r
e*:-.ercet~ syrtav-rstc- ipo'y2I. [l.w?,. nuillist. IdIffII (fate*):

cr~z: dccf n..ll-re. riuliwire, Matt I

create cc'tzct nu'..1e. wetI.r. nu.llwire I
cCt:t t-.St:FtE:t 1 l1-1. lpcl ,I. Irwil. Ipolyli (true);
"a at~e czrntact 1 vS. golyl. r ut. nullwire I

cell 91',ft 't ,fivewiref: rIght rr, ffvewlres 1;

bes4,f-: e e El
'

C>CtCre-te 1 11. Mir] I

cle't
1

e: -e. m,^ C.r

clezte C . r,;

Ce*" W~t~te t inbus: fivewIree: right outbus: fiuevires I (esgtht Integerl:
wrsm,r terig.: fivewires (pv'yk,

10)ength . I the-

*Caszte Shift I Inbus. outbus
lS* begir
create tift (inbus. temp I
create sciftregirter (temv. outbwei length IP
.n (f)

end:

create shtregister (11. rr I (3

end.

FUg. a8- Am ALIS pregram

-4.

3. Main Features of AL12

3.1. Type Structure

The wires manipulated by AL12 are declared by stating their name and their tLype. Wires
can be of a simple type (a single wire) or of a structured type (a group of wires).

AL12 is a strongly typed language. The AL12 compiler will perform type checking just as
compilers for conventional languages do. Type checking can be effective in catching certain errors
very early during the design phase. For example, cells can be designed to accept only certain
types of wires, and any violation will be reported during compilation time even before the layout
is actually produced.

Wire types in AL12 are parametric types. Parametric types are designed to make type
checking more selective or weaker as the user wishes.

In AL12 there is just one predefined wire type called wire. This parametric type has three
parameters corresponding to the three attributes of a wire:

wire (1: irelayer; w: integer; s: signal)

The types iretayer and signal are predefined scalar types. The parameter w stands for the width
of the wire.

Other parametric types can be defined by pseudo-calls to the type wire . For instance, the
following type definition

polyu'ire (w: integer) - wire (poly, w, nullignal)

creates a new parametric type polyuire. All wires of this new type will have poly as their layer
and nulltignal as their signal. The following wirevar declaration

mywire. polyu'ire (t*lambda)

creates a poly wire with width fslambda.

The values used as actual parameters can be arbitrary expressions of the appropriate type.
These expressions will be evaluated at run time. Thus if k is a variable of type integer defined in
the current scope, the following would have been a legal type declaration:

localpoly = polywire ((2*k -])*lambda) I

Thus the actual parameters of the parametric types of AL12 are bound at run time. This allows
for a great deal of flexibility and permits the construction of dynamic types within a cell.

There are three composite wire types in AL12: bus, bundle and list. The types bus and bun-
dle are roughly analogous to the array and record types of Pascal, and r?present, respectively
aggregates of wires of the same type and aggregates of wires of different types. The type lipt is
peculiar to ALI2. A list is either the nulllist or an aggregate of one or more wires, each of any
type whatsoever. This type is intended to facilitate the writing of general-purpose cells which
accept a variable number of wire parameters.

The accessing of the elements of bundles and buses is done as in Pascal. Accessing of lists is
similar to that of bundles. AL12 also provides the user with a number of predefined functions
that take composite or simple wires as parameters and return various interesting attributes of the
wires like layer, width, number of elements, etc.

! -5-

3.2. Cell Mechanism

Perhaps the most powerful feature of AL12 is its procedure-like mechanism for the definition
and creation of cea. The cell mechanism permits the users of AL12 to introduce hierarchical
information into their programs, and therefore into the layouts they describe.

A cell is a collection of related wires enclosed in a rectangular area. Wires that are inside a
cell are of two types: local which are invisible to the outside, or parameter# which can interact in
a simple and well defined manner with wires outside the cell.

A cell is defined by specifying its local objects, its formal parameters and the relations
among all of them. Once a cell has been defined, it can be inataniiated as many times as desired
by specifying the actual parameters for the instance, much the same way as one invokes a pro-
cedure or function in a procedural language. The result of instantiating a cell is to create a brand
new copy of the prototype described in the cell definition with the formal parameters connected
to the actual parameters.

The body of a cell will contain Pascal and AL12 statements. Cells can be defined to be
'external' cells and separately compiled. Cells can also be 'rigid' cells to indicate that the cell
definition is not given textually as part of the AL12 program but instead the actual layout pro-
duced by a previous instantiation of the cell is to be used.

Cells are instantiated by the create statement, and the parameter list of the cell contains
both wire parameters and other parameters.

The cell mechanism helps in the automatic generation of constraints in many ways: local
wires and cells are put inside the cell bounding box, wire parameters are separated, and cells that
share a parameter are automatically separated.

The cell mechanism gives the AL12 user the ability to describe layouts in a truly hierarchi-
cal manner. A proper AL12 design, very much like a well structured program, will consist of a
hierarchy of cell instances with only a small amount of information at a given level (the parame-
ters of the cell instances at that level) being visible from the immediately higher level. Cells can
be written and debugged separately and then put together with the least effort to obtain more
complicated cells.

Much of the power and generality of the cell mechanism of AL12 comes from the absence of
absolute positions and sizes in a layout specification. We believe that no cell mechanism can be
said to be truly general unless the sizes of its parameter wires and local wires, as well as the rela-
tive distances between them are determined at the time the cell is instantiated.

The primitive cells in ALI2 are the predefined cells. These are the cells that appear at the
leaves of the hierarchy of cells. In fact, the whole layout can be viewed as a collection of primitive
cells joined together by straight line wires. The higher level cells are just rectangular regions
enclosing subsets of these primitive cells.

The primitive cells in AL12 are called yeytranoistor, eysconfact and eyepullup. These are
quite general cells that implement the transistor, contact, and pullup of nMOS. Each of these

primitive cells have four parameters: four lists of wires, one for each side of the cell. The con-
tents of an instance of a primitive cell will depend on the attributes of the actual parameter wires
used in that instance. So, these cells are 'smart' cells which do a large amount of processing
internally.

There are also some non-wire parameters to these cells, which also contribute to the con-
tents of an individual instance. The systransistor cell has a boolean parameter which determines
whether the transistor is implanted or not. The pullup ratio is a parameter to the syspullup cell.
The syscoutact cell has a boolean parameter which determines whether all the wires are to be
electrically connected at the contact, or only the wires on independent layers are to be connected
to each other.

The reason for making these primitive cells general and thus having fewer number of these
cells, is to keep the number of technology dependent features of the language small. However, the
user can define simpler versions of these cells to facilitate their repeated invocation. As

-8-

mentioned earlier, all the technology dependent features of ALl2 are hidden inside the design
rules table, the primitive cells, and a few reserved identifiers. Even in the design ruile table only
the separation and width rules are stored, because the other design rules are enforced inside the
primitive cells. AL12 currently supports only aMOS primitive cells. Design of cells for other tech-
nologies is currently under investigation.

3.3. Placement

Placement is specified implicitly by create statements, or explicitly by the ordered and the
separate statements. These statements are used to relatively place the various objects (wires and
bounding boxes) in the layout.

The ordered statement is given a direction of separation, and a list of creations of objects,
and its effect is to place the created objects in the order in which they are created,

ordered linr do

<bounding bo:I>
< bounding bo 2>
ordered tiob do r

besg z-
e bounding box 3 > - . ,
<bounding box4> .

end;
< bounding box 5 >

end

Fig. 4 - ordered statement

The actual objects that are ordered within an ordered statement are really bounding boxes
Each ordered statement or cell create statement is associated with a rectangular bounding box
The bounding box created for an ordered statement will enclose the bounding boxes created for
the statements within its scope, and in addition these bounding boxes will be separated in the
given direction.

Since AL12 is an extension of Pascal, repetition statements of Pascal can be used within an
ordered statement to create a succession of objects that are separated as specified

The ordered statement matches quite well with the notion of loor-plans of layouts. Once
the AL12 user has a rough sketch of the floor-plan of his layout, he can quickly translate the
sketch into a series of nested ordered statements. He can then refine each of his regions in the
loor-plan in a similar manner.

Both the cell structure and the ordered statement contribute to the hierarchy in the la out
description. However, there is a fundamental differcnce in the hierarchies created by the cel'3 and
the ordered statement: wires cannot straddle the bounding box of a cell, but the same is rat true
for an ordered statement. Thus, wires are subject only to the hierarchy defined by the c,.11 boun-
daries. The combination of strict hierarchy of the cell structure and the lenient hierarc ,y of the
ordered statement seems to give the AL12 user the right mixture of rigidity sad lexibilit. that he
needs.

The other placement statement - the separate statement - is used to separpte a given list
of bounding boxes and wires in a given direction of separation. Unlike the ordered statement, the
separate statement is not a structured statement. Its analogy in programming languages is the go
to statement. An AL12 program can be written without using the separate statement, but it may
be used to make small local changes in the layout to avoid rewriting major portions of the AL12
program.

4. Layout Issues Addressed In A1L12
A sample of the main issues that we tried to address with AL12 are the following:

" The creation of an open ended loot. Most layout design tools require the specification of abso-
lute sizes and positions, thus making the creation of a general purpose library of cells a hard
task, since information about the sizes and positions of the cell elements that can interact with
the outside world has to be apparent to the user of the library. The absence of absolute sizes
and positions makes this problem much less severe in AL12. AL12 has been built on top of Pas-
cal, and is a full-fledged programming language baving all the powers of Pascal, thereby making
it easily extensible. The generation of tools to automate the layout process, such as simple
routers or PLA generators, involves writing Pascal routines to solve some abstract version of the
problem and having done so invoke AL12 cells to generate the layouts.

" Facilitating the ditision of Isbor. Large layouts have to be produced by more than one
designer. If the piece produced by each designer is specified in absolute positions, serious prob-
lems are likely to arise when the different pieces are put together. AL12 allows the partitioning
of tasks in such a way that the designer of a piece of the layout does not need to know any-
thing about the positions or sizes of other pieces of the complete layout.

" Facilitating hierarchical design. In ALI2, the information about a given level of the hierarchy
needed at the level immediately above is reduced by the absence of absolute sizes and positions,
to topological relations among the layout elements of the lower level visible to the higher one.

" Facilitating easy update of layouts. Successful designs seem to be more or less continuously
updated as improved processes become available during their lifetime. Therefore, layout tools
must be easily amenable to changes in the technology or design rules. The technology depen-
dent part of AL12 is confined to a few design rules tables and primitive cells and only these
have to be rewritten in order to update ALI2 to a new technology. Future versions of AL12 will
give its user the flexibility of writing one AL12 programn to describe a layout, and then produc-
ing different layouts for different processes by just setting certain appropriate Blags when invok-
ing the AL12 system.

* Allowing parametric design. Having a layout design which produces different layouts for
different values of a set of parameters is extremely useful. This is especially true for cell designs
which are used repeatedly. These parameters will allow decisions about the detailed charac-
teristics of the cell in a layout to be delayed until later in the design phase. In ALI2, the cell
mechanism has been designed so that the number as well as the attributes of the wires connect-

f ing to a cell can be parameters of the cell. In addition, the cells can have other parameters that
affect the insides of the cell. AL12 offers all the wealth of a full-fledged programming language,
such as do-loops, conditional statements etc., which can be used to exploit the availability of
these parameters.

" To allow easye modification of layouts. The fact that absolute sizes and positions are absent in
an AL12 specification makes modification of a layout a very simple task. Such modifications are
actually being made to a program, which is a much easier task compared to making changes in
the final layout.

5. The AL12 System

The AL12 program takes as input an ALI2 program, with precompiled cells or rigid cells,
and produces the layout in CIF (Caltech Intermediate Form) code, or alternatively a precompiled
cell or a rigid cell, and connectivity information for simulation. There is a switch-level simulator,
described in I111l. The CIF code is then used to interface with other CAD) tools, like Berkeley NILSI
Tools 191. There is also a program that takes a CIF code and transforms it into a rigid cell, to be
used by any ALl program. Also, the node information for simulation can be obtained from the
CIF code.

1

-8-

I C C-2

,r . " "" F- .,.

Fia. - The ALIS System

There are 6 steps in going from the text of an ALI2 program to a layout in CIF:

1- Translation. The AL12 program is translated into Pascal.

2- Compilation. The Pascal program is compiled, producing an object lie.
3- Loading. The object Ale generated by the pie "us step plus several other standard object

modules are made into a single executable Ale.

4- Executlon. The executable Ile is executed, producing a lie of linear constraints, and
optionally connectivity information.

- Solving. The set of linear constraints is run through the solver program, and an internal
representation of the layout is produced.

6- Generating CV. The internal representation (in lambda units) is converted to CIF (cen-
timicron units).

The whole system is implemented under Berkeley UNIX, and the system is very efficient.
The transitor was written using YACC. The compiler is the Berkeley Pascal Compiler. Execution
doesn't take too much time, since its basic operation is to write down constraints every time a cell
is instantiated. The solver takes lines time relative to the number of constraints. CF generation
is straightforward. So, what takes most of the time is read/write operations, specially for large
layouts.

, Am.'--. A

0. Example
One of the chips designed using AL12 wasn a r-bit parallel adder, and it is being semt for

fabrication. The parallel algorithm used for addition was borrowed from 1131.

fl

Lr
IIMF

ITI

Fig. 6 A S-bit adder

This design ilustrates the utility of several features of AL12:
1- General purpose cells such a the sartay cell Jil1, that was used to generate Weisberger type

cells, can be written and used very elfectively.
2- It is easy to parametrize cells.
3- AL12 has the power of a conventional programming language such as recursion, iterative

statements and functions.
4. It is quite simple to divide a layout task amng several designers.
6- An AL12 program serves as a good documentation of the design of the layout.

Acknowledgements
The ALI2 system resulted of the work of many people, especially Prof. Jacobo Valdes and

Prof. Richard Lipton. We would like to mention the contributions of Roo Kahn and Steve North.

This work was supported in part by DARPA under ONR N00014412-K..0549.

-10-

7. Referenesa

III Hennessy, J., Elmquist, H. The Design and Implementation of Parametric Types in Pascal.
Software - Practice and Experience, vol. 12, 1982.

121 Jensen, K., Wirth, N. Pascal User Manual and Report. 2nd ed., Springer-Verlag.
131 Johnson, S. C. YACC: Yet Another Compiler- Compiler. Unix Programmer's Manual, Janu-

ary 1979.

141 Kalin, R. L., Valdes, J. Language Overview. AL12 Documentation and Implementation
Guide.

151 Lipton, R. J., Sedgewick, R., Valdes, J. Programming Aspect* of VLSI. Proc. of the Ninth
Annual ACM Symp. on Principles of Programming Languages, 1982.

(61 Lipton, R. J., North, S. C., Sedgewick, R., Valdes, J., Vijayan, G., ALI: a Procedural
Language to Describe VLSI Layouts. Proc. of the 19th Design Automation Conference, June
1982.

[71 Lipton, R. J., No~et, S. C., Sedgewick, R., Valdes, J., Vijayan, G. VLSI Layout as Pro.
gramming. ACM Trans. of Programming Languages and Systems, July 1983.

18] Mata, J. M. An Array Generator in ALI2. Department of Electrical Engineering and Com-
puter Science, Princeton University, 1983.

11 Mayo. R., et al. 1958 VLSY Tools. Report No. UCB/CSD 83/115, University of California.
Berkeley, March 1983.

1101 Mead, C., Conway, L. Introduction to VLSI Systems. Addison-Wesley, 1980.
1111 Ramachandran, V. An improved switch-level simulator for MOS circuits. Proc. of the 20th

Design Automation Cont erence, June 1983.

1121 Vijayan. G. Design, Implementation, and Theory of a VLSI Layout Language. Ph.D. Thesis,
Princeton University, August 1983.

113] Vuillemin, J., Guibas, L. On Fast Binary Addition in MOS Technologies. Proc. of the IEEE
International Conference on Circuits and Systems, September 1982. I

A HIERARCHICAL COMPACTION ALOORIXTI VIM LOW
PAGE-FAULT COMPLEMU t

MNow-Deh A Hu"i id Kenne~th Stseglas
Department of Electrical Engineering and Computer Science

Princeton University. Princeton. New Jersey 0544

ABSTRACT In the case where the set of constraints consists of aim-The problem of VLSI layout compaction is often pie linear inequalities plus simple equalities, the prob-
reduced to finding optimal solutions to systems of aim- lea can be stated as follows:pie linear inequalities and equalities. The commonly (2) UZ CompacU Given a net of simple linear ins-used algorithms take only linear time and space by the qualities I zk+dw a ; j and a set of simple squais-usual worst case complexity measures, but serious ties I =it a . find a solution such thatproblems of page thrashing often occur when the algo- max (z.) - min (z,) is minimized.
rithms are run on systems with large sets of con-
straints. Page faults must be taken into account if the We call a set of simple linear inequalities an SYperformance of such algorithms is to be predicted real- Istem. and a set of simple linear inequalities and sim-
istically, ple equalities an SLIESyutem.

In this paper, we first discuss page-fault complexity Both problems have efficient algorithms in terms ofin the setting of paged dogs. We then extend the discus- the usual time and space complexity measures. For SLIsion to the case of constraint systems that are compaction, the well known PERT algorithm runs inhierarchically organized, We present algorithms tha' linear time and space. For SLIE compaction, we make a
find optimal solutions to hierarchical constraint sys- substitution of variables to reduce the problem to com-terns wit, strict bounds on the number of page-faults paction for an SLI system. However, when an SLI orThese algorithms also run in linear time and space by SLIE system generated from a VLSI layout specification.the usual complexity measures is too large to fit into the working space of a computer.

the system is often partitioned and stored in several
pages. Page-thrashing in execution of the PERT algo-

. Introduction rithm then becomes a serious problem, often dornunat-As VLS logical design problems et more and more ing the rest of the computation. Experiments indicatethat as the size of the constraint set grows larger andcomplex, there is a trend toward hierarchiceal design larger, the problem of page*-thrashing becomes moremethodology Several languages (e.g ALI [LSV]. CLAY and ore significant. Therefore, we mut take page-[N). HILL [LM]. SLIM (D]) have been developed for layout faults into account in any meaningful measure of thespecification in which the relative geometric relations complexity of algorithms for thee problems.
and interconnections am ong the geom etric objects in a O e ay o a voi d par thes iroblems.layout are specified instead of the absolute positions of One way to avoid page thrashing is to fnd algo-these objects. and the layout can be specified in a rithes that are efficient in the length of the layouthierarchical way. Usually a layout specification is specfeiation, which is usually much shorter than that ofstated formally as follows, the completely generated constraint set. lAngauer [L]showed that this is possible in some, but not all. cases() BU Cioupatie Given a et of simple linear inc In this paper, we adopt a different approach. We

max t) - m (at) is minimized, assume that the generated constraints are stored exph-
citly in the secondary memory. which is divided into
poges of fixed size. We will @how that when the con-

t -hi work was rippoied in W. by NSF Gmm RCS*8IM0. straist systems are hierarchically organized, page-s p A-zy Resec O.;ce-_,-h*.r. Grant DAAG .94-K-O. swapping can be controlled in such a way that theand lDARPA C o"€iC NOOO44kt-.0614 number of page-faults is strictly bounded. This ins prac-

tical since we can often organize the generated con-

-3-

straints in a way that reflects the hierarchical Damintle Suppose blocks V3.Vg are both members of
specification of a VLSI circuit, block V. When there is a constraint relating a variable

In Section 2. we define hierarchical SLl and SUaE &I in V, and a variable zein Va. we may that zs and z,
systems In Section 3. we discuss pae-fault complexity am moar4meriles of V, and Yg raspoctivuly.-
in the general setting of paged-dags. In Section 4. the Note that the outer-varables of a block are the
basic ideas presented in Section 3 are applied to variables that interact with variables of other blocks at
hierarchical SI. and SUE systems. We present new the same level Usually. the number of outer-variables
algorithms that find optimal solutions to hierarchical is small compared to the total number of variables.
SLI and SUE systems in a hierarchical way, with strict Before going further, we present a slightly modified
bounds on the number of page-faults. These algorithms version of the PERT algorithm and point out bow page-
run in linear time and space, which is also best possible thrashing may occur. Let us extend slightly the
by the usual time and space complexity measures definition of an SUJ system to include, besides a set of

simple Linear inequalities, a set of constraints I
Aii ao G , is a variable. sic is a constant 1. We call such

2. Hierarchical SJ and EK 9yoLtems an extended system a precofadtiosed SI system. The
We assume that the simple linear inequalities and following modified version of the algorithm PERT solves

simple equalities in an SL or SUE system are stored in the compaction problem for a preconditioned SI sys-
the following way: for each variable z,. there is a list of tem in a way similar to topological sorting [K]
tuples (zj,d). where z,+4 a z, is a constraint, a list of
tuples , where z&+d a x, is a constraint, and a Algorithm MPLz PMRT
list of elements Z where zi = x, is a constraint. We kiput: a set of simple linear inequalities together with a
assume throughout that 4 > 0. and the constraints are met I Za at Bic Ixs a variable. Bi is a constant J
acyclic. Output: I t(z) FIs is a variable (comment an optimal

solution to the preconditioned SIJ system where 9 (z) isWe also assume that the storage structure consists the value for variable z)
of a fast memory, which we call the mtin ineroi, (or begin
the -worlng space), and a slower memory, which we call i(z) := 0. p(zt) = zlo. for all i;
the seco dl ry memory The secondary memory is par- 4--(,) :: Iz& 'lt+.d a z, is a constraint t
tit:oned into pages where each page has a fixed amount 5 :z empty queue;

(comment initialization)
o' space Suppose now a set of constraints is stored in Find all a, where tn(z,) = 0. put z, in S;
several pages and each page stores a disjoint subset of while S is not empty do begin
variables with their adjacency lists. We may think of Pop a variable s, from S;
each page as representing a subset of variables, and the t (z) := p (,):
union of these subsets is the whole set of variables We for 2j such that s, +du a zj is a constraint do begin

(Z'j :-ax (p zj). f (2,) d,)
call an SLI or SLIE system stored in this way a poaged SL %?V(a) : i (Z') - 1;
or SLIE system. if in (xs) = 0. then put z, in S

A paged SLI or SLIE system can be organized end
hierarchically. More formally, let V be the set of vari- ond
shIes of an SUE or SLY system. Let Pc I Reern ..P P. si
be a partition of V. We call each subset V, of V a block Referring to SIMPLE PERT, we see that whenever

at level 1. A block at level I corresponds to a page. a variable in a page different from that of the current B,
Now we can simuarly partition P into subsets of blocks is referenced. a page fault occurs. In practice. for large

at level I and call each subset a block at level 2 A problems. this can happen quite often, as illustrated by
block at level 2 thus contains several blocks at level I the following simple example of an SLI system This

as members This process can be continued to higher example also motivates the basic ideas that will be used
levels. We stop when we get to a block that contains all later on.

of V. and such a hierarchy can be represented by a Ilmmple 3.1 The set of variables |
tree. The root is the block at the highest level, the s, I I ai a 3. 1 sj an I is partitioned into 3 disjoint
leaves are the blocks at level I. which correspond to the blocks.
pages. When a paged SUE (or SLI) system is hierarchi-
cally organized, we call it a hwierirchcal SUE (or SI)
system. Viz Zo. l .. t

.. . ---I. .m .. . ml~ u mmm l- i

.3-

Val, | 3 sl.... Iso the predecessors of xrm and sm that are external to Vs

are already determined. Finally, an and an are
We assume that each block is in one page. The con- deleted from H (Fig. .5). we fetch V, and the values for
straints are the following, where d is a positive integer: t. can be computed. In this way. only 4 page-

xvd axgig~it. t - 1.2. 3: j * 1. (fu-t). buits occur. *

We call the dags on the outer-variables constructed

in Example 2.1 the ouer-dgs associated with the SLI
&a+ d a . systems. The example illust rates the fact that the
x-+ a outer-dags contain information that is useful for

arranging the page-fetching to reduce the number of

Representing a constraint z+d ix' by x-.s'. we poge-faults.

obtain a dag 0 as shown in Figure 2.1. In Figure 2.1. the In the algorithms we will present later on. elgo-

variables are arranged so that the rows correspond to rithm SIMPLE PERT will only be used locally within a
the blocks, and the columns represent the successive page. We observe that algorithm SIMPLE PERT is
configurations of the queue S when SIMPLE PERT is essentially topological sort on the variables with

applied. From the picture, we see that 3n page-faults respect to the partial order induced by the inequality

occur when SIMPLE PERT is applied. Although this constraints. In the hierarchical situation this approach
example exhibits bad behavior using a FIFO queue. simi- will be extended (1) to exploit useful partial orders on

lar examples can be contrived for IFO and other list- the outer-variables or interesting sets of outer-variables

management disciplines, that are induced by the constraints; (2) to find efficient

Now we examine the example more closely and methods for computing such partial orders.

show how page-faults can be reduced. The interaction
among the blocks can be represented by a dag H on

the outer-variables sic. x15 . i = 1, 2. 3. as shown in Fig- 3. Page-fault Compleoity for Coemputatiomal Dgs

ure 2.2. The dg H actually represents the dependency In this section. we will discuss page-fault complex-
relation among the outer-variables. In H. there is an ity in the setting of ped comnpifadstofal dos. which
arc from an outer-variable to another if the latter is correspond in a natural way to paged SU, systems We

'reachable from the former in G without passing through consider a general computational problem that car be
any other outer-variable. If an outer-variable has no characterized by a dog G = (Y.E). A node represents a

predecessor in H. then it does not depend on any vari- computational step and the al-c set E represents the

able external to the block it is in. Therefore we can dependency relation on the computational steps. That
compute the value for it if the block it belongs to is is if (V.U)EE. then the computation u cannot be done

fetched to the working space. After the value of an before v. We suppose V is partitioned into subsets
outer-variable is computed, we delete it from H. It V1. V,. and call each subset a block. We may think of
then holds inductively that at any point of the algo- a block with the adjacency lists of its nodes being
rithrr.. an outer-vaLriable with no predecessors in the stored in a page and therefore we call a dag G = (yE)
remaining part of dg H is one whose predecessors in G with a partition V V -..... .. .I a
that are external to the block It belongs to are all com- Mod compscofonail dog. or simply paped dog If

puted Therefore we can compute such a variable if the (U.U') E E with U E V. u' C Vj. and t 0, then we say u

block it belongs to is fetched next. is an o aer-node of V, and u' is an outrei -,ode of V1 .

In the beginning, since sic has no predecessor in In the sequel, we will always use "" to denote tran-

H, we can fetch V, and compute the value for z10. After sitive closure.
we compute si0. we can compute z1 since si. its only DfnciUoc For u,w cV we say u -v when (uv)cE. So

predecessor, is computed. However. z*g cannot be s-.v if and only if vi is reachable from u. For outer-

computed since it depends on sc which is external to nodes as,u', we say U <6U' when u ' is reachable from u
V,. Since the value of sic is computed, we delete it without passing through any other outer-node. *
from H (Fig. 2.3). Now that si0, the only predecessor to aflniUo Let U be the set of outer-nodes. We define a

the outer-variables of Vt. is computed, we can compute directed graph H on U as follows. R a (U.E.), and E.
alU the variables in V t in the order *s . z. Now a (st) Iu <.v and usv . It to clear that H is a

we delete z and zx from H (Fig. 2.4); then we see that dog We call R thi mde-eo assoitd with G.
we can fetch Vg and compute 90, xsi. since all

9 -

.4-

DefiniUon Let C a (V.9). P I V,. V, I be as page-faults is simply the lengitb of the sequence. We
described before. Let 6- (.2) where call a sequence of blocks a page equence. call a page
t I (Vs.J,)Ithere are outer-nodes u(V 1 . VcYV. sequence that corresponds to a full computation of the
(u .,)cE (. We call C the su~ps -i ph sasocatted with G paged deg a legal page equens.
and r When Cis a dat. we call it a er-da" * Suppose that an outer-node is deleted from the

In particular, for an SLI system. the correapondmg outer-dag once it is computed. Then an outer-node
computational dig is G a (V.E) where V is the set of becomes exposed exactly when aKl its precedent outer-
variables, a node represents the determination of the nodes are computed and deleted. Now let H be the
value of the variable in it. and E i I (z,.z,) I there is a current outer-dag with all the co.puted outer-nodes
constraint z+d, s I In this case, a paged dag is just deleted at the time the i-th page-fault occurs, and let
a paged S1I system, and a block corresponds to a page V. be the outer-nodes of Vs. When the i-tb page-fault
of the SLI system The outer-nodes are just the outer- occurs and Va is fetched to the working space, the
variables in Y. For variables zip x,. zi-,j if and only if exposed outer-nodes in have all their precedent
there is a constraint z,+dq a zi. For outer-variables outer-nodes already computed. Therefore they car. be
z. x. is C. zj it and only if z,-.z, and there is no
outer-variable a5 such that z,-.*z and z -'z s Note computed and deleted before the (i 1)-st page-fault
that for every paed da C z (V.E) with partition . occurs After they are computed and deleted, therethatforevey pgeddegG z V.E wih prtiionmay be new outer-nodes in Vs that become exposed
there is a paged SLIJ system whose corresponding paged at

dag can be represented by G and . Similarly, they can also be computed and deleted from
Le before the next page-fault occurs. Inductively. weDexiniton Let GC= (v.') be a da For iscY. define
see that the outer-nodes in V, that can be computedI (t) = 1 it v has no predecessor. else

1(t,) = ne 1(u)' is is a predecessor ofu in G (and deleted are exactly those that would be deletedCall L() the ue ie of v in G. * when proced ire DELETE is applied to Hf and U
Therefore, the following is true:

DefiniUon Let G (VE) be a dag A node v in G is said
to be exposed if and only if indegree(t) = 0. that 1sL.L Lemma 3.1 Let < V0, > be a page sequence Let Ls. be
har no predecessor * the outer-nodes of the block V,. Let H be the outer-

Given a dag C = (VE) and a subset W of Y. the fol- dag with all the computed outer-nodes deleted at the
* lO.ng procedure reCQrsIvely deietes the exposed nodes time the i-tb page-fault occurs Then (1) between the
which belong to W We will use this procedure later on i-th and (i + 1)-st page-faults. the outer-nodes of b!ock

Procedure DELETE, G.) that can be computed are exactly those the', are
deleted when procedure DELETE is applied to H and(comment G V. (,E) is agraph, WV L3sasubset of 11)(co nt Ve[, (2) between the i-tb and (&+1)-st page-faults. the

begin
while there is a node u in W that is exposed do nodes %, in V., that can be computed are exactly those
begin

G G - u. v in YV whose precedent outer-nodes u, where u -.
d ':= W - U, are deleted before the (i+ 1)-st page-fault occurs.

end.
end. -Lemma 3.1 shows that the computational effect

between two page-faults can be described by a process
In carrying out the computational steps of a paged that recursively deletes the exposed outer-nodes of a

dagC a(l/E. e asum tht oly ne loc isallwed block from the outer-dng To illustrate this idea, let. us
to reside in the working space at one time When a lok at e 3.1.

block is fetched to the working space, some nodes in

the block can be computed. When it is not possible to Example 3.1 A paged dae G and its associated outer-

proceed any further, a new block must be fetched into dag H are depicted in Figure 3.1, where zl,'s are in

the working space and the original block stored back in block V. zt 1 's are in block Vs .

the secondary memory, in which case a page-fault A legal page sequence is 1. V , 1. Let us examine
g occurs, the action taken with each page-fault.

* Let <V,>. = 1.... k, be the sequence of page- V, is fetched to the working space (see Figure 3.2):

faults that occur in the course of a computation. That
is. when the t-th page-fault occurs, block V,, is fetched

to the working space, and V-4 0 v aV.1 " The number of

L7m mmaei mm m

-node z a is deleted from H. then atI. Now we turn our attention to (2). first fnding a

-the remaining part of G when the deletion process legal page sequence.

is applied is shown in Figure 3.2. Suppose G a (VE) is a paged deg with the associ-

Vg is fetched to the working space (see Figure 3.3): ated partition P on V. Suppose the associated outer-
dag H = (U.X9) has been determined; then the following
procedure will And a leg a

page sequence for 0.

-all nodes in V, will be deleted.

Finally. V, is fetched to the working space: Procedure SMQUNC]

-node z14 is deleted. Iipuf: H. the outer-dag associated with a paged dag G

.all nodes in V, will be deleted. - Output: a legal page sequence S.
S := empty sequence H : the input outer-dag (cow-

Ideally, given a paged dag, we would like to minim- ment intialization)

ize the number of page-faults for a full computation of begi

the dg. That is. we would like to find a legal page while H is not empty do been
choose an exposed node u in H:

sequence that has minimum length for the paged dag. if u is from block Y. then apply procedure

Unfortu.nately, this problem is NP-complete. Namely, DELETE on H and the subset of outer-nodes ofV,;
we ha,•. the following result: append V, to the end of the sequence S

Theorem S.1 The following problem is NP-complete: end

given a paged dag and an integer k. are k page-faults
sufficient for computing the paged dag? Let fn be an upper bound on the number of outer-

The proof of Theorem 3.1 can be found mn [ij. it nodes a block can have and p be the number of blocks

uses reduction from feed-back vertex set. Theorem 3.1 Then the length of the legal page sequence deterrined
implies that to achieve the minimum possible page- by procedure SEQUENCE aIVz rp.

faulting is practically infeasible, assuming of course Instead of actualy constructing the outer-dag and
P or NP. However, we have the following result: applying procedure SEQUENCE. we will describe an

Theorem 3.2 algorithm for computing a computational dag that wiL
(aresult in the same legsl page sequence as is determined

-(1 In the worst case, for a paged dag of p blocks and rr, by procedure SEQI'E.%CE The algoritbrr is based on
outer-nodes in every block, at least enp page-faults are the argument that was used to prove Lemrnme 3.1
necessary for computing the paged dag.

Civen a set of newly computed nodes in a block V.
(2' There is an algorithm that computes a paged dag of the following procedure LOCAL will compute as many
p blocks with no more than en outer-nodes in every nodes in I as possible In this procedure as well as in
b:ock in linear time and space, with the number of

the algorithrm we will describe, S(V) wiLl denote a se t of
page-fauls no more than p computed nodes in V, vt(s.) will denote the in-

Theorem 3.2 will be established in several steps, degree of v for a node t.

and an algorithm for (2) will actually be constructed Procd L(CAU SM. V)

We prove (1) first by constructing paged-dags for begin
which the worst case occurs, given p. the number of d4o until S(V is empty begin
'blocks. and m. the maximum number of outer-nodes in pop a node % from S(V):

for u such that (v., u)is an are doe begin
a block Choose positive integers a and b such that in Ut) :=ii() in
a+b =p. We form a dag H = (LE.) so that level 2t+ ifi i(u) = 0 then do begin
of H, t z 0,... m-I. consists of a nodes u, k = 1i.. u s V. then put u in (V);
level 2, consists of b nodes uM. k = al... p. I. v, 5UU for some j then put u in
i I ! n. and for node u. ' in H, (u. U) is an arc if s

and only if (IL) =(i)-1. It is easy to construct a dag end.
G with partition P= |V , V I on V such that for end
k = 1.p. the uis's are in V&, and the associated end.

outer-dag is the same as H. By Lemma 3.1 and the way Notice that So (V,) is small since it is a subset of U,.
H is defined, any legal page sequence for G has length We may aesume that these S.(V,) are kept in the main
k U mp This proves (1). memory throughout the computation The following

algorithm computes a computational deg G with the

-8-

same page sequence determined by procedure The SU systems we are interested in in this section

SEQLENCE. are those for which every block has an aecyclic super-

Algorithm COMPUTI DAG graph. For sUch an SI system. the associated super-
]begin grapb of every block V at any level Cv, (V v). is a

for each block Vido begin dag. and therefore ty defines a partial order <v on
.5(V) :Ie V wi(w) a Namely, we put 4 <v vj if and only if(a..)c-.
LOCAL(SMV. V);
end. Let V.' be two blocks at the same level. If there

do until all S.(V) are empty begin ar x V. s' E W. such that, 4z.', then we say V is a

foron-e ptyS.(V)doLXAl(S. (), '): preceding block of V. We say a block is computed if all

ond the variables in it are computed

We can see by induction that between two page- For a block V at the bottom level, If all the preced-

faults, procedure LOCAL computes the nodes which are ing blocks of V have been computed. then all outer-

characterized by Lemma 3.1. And the execution of variables i external to V such that x r, z' for some

algorithm COMPUTEDAGwiI result in the same number z' c V have been computed. Therefore, V can be corn-
of page-faults as is deterrmned by procedure puted next. We see that this holds inductively for
oEQf pe' CE, which is bounded by rp. Finally, the total blocks at all levels. Based on this idea, the following

running time and space is linear in the number of arcs, algorithm will determine the values for all the variablcs

as is clear from the algorithm. * of a block V by proceeding from one member block or V

to another in an order that is consistent with the partial
From the above discussion, we see that the outer- order <v, assuming that the preceding blocks of block

dogs associated with the paged-dogs play an essential
role in studying the page-fault complexity. The ideas

presented in this section will be extended in the next
section to deal with the general hWerarchcal situation. Algorithm (HIERARCHICAL LOCAL PET

InO lt:a set of simple linear inequalities on the variables
Our goal is to obtain an analog of (2) of Theorem 3.2 for of a block V. G. = (V Lv) the associated super-dag, a
the general case of hierarchical SUE systems, where set Pre(V) containing inequalities of the forms • & xc

equality constraints are also involved where x is an outer-variable of V and zo is a constant.
and simi:arly a set Pre(%,) contaung ineqial:ties
x x xc where z is an outer-variable of t, for each L, C P

Output: t(z) xCV (comment t(z) it the value ofthe
variable x in V)
begin

4 Hierarchical Compaction for SIand MJE systems for z E V. t(z) := 0; p() := 0: (comment initialization)

In this section, we will extend the ideas presented be Vis a bottom level block thenbeginI

in the last section to deal with hierarchical SU, and SUE p(a) = max ox a a is in Pre(V) J. for every outer-

systems. All the algorithms presented in this section variable x of V,

run in total linear time and space with a strict bound on SIMPLE PERT on V;
end.

the- number of page faults. In Section 4.1. we discuss an If Vis not a bottom level block than
important subclass of SL systems that are character- begin

ized by an scyclic property. In Section 4.2. we discuss Select the member blocks of V in az order the' is cor-

the general case of hierarchical SUE systems. sistent witb.the partial order cs. on V, for each selected
block s in V do

4.1 Hierarchical Local Pert for Acyclc SJ Systems begin
(z) := max l . a is inPre(,) for every

First let us extend the defintion of super-graph to outer-variable z of vs,:

hierarchical SL systems. HIERARCHICAL LOCAL PERT on v.

DefiltUo Let V be a block in a hierarchical SL sys- for s,, such that (vsT) Ldo
tern, and let V= I, . . . v. I be the set of member is a constraint with x c vs. zj v.

blocks of V. Define the directed graph P = (I f,) end.

where t v (z .) there are outer- and

variables Z, of u,. Z, of v, such that s(,, . Call &v end.

the uper 1-guph associated with V When & is a dag To find an optimal solution to an acyclic SWI sys-

call it a supirr-d g tem. we first construct the super-dags 6, for all the

blocks This takes linear tame and space and p page-

faults where p is the total number of pages. We then From the definition of <,, we see that <. must be
apply Hierarchical Local Pert on the outer-most block V acycic. For every block V, we can construct an outer-
with Pre(V) = z sx i an outer-variable in Vl. It is dag on the outer-variables Z(V) with respect to <. as

easy to see that every page is fetched to the main before. Indeed for SI! systems, the method that
memory once Therefore, we have the following: worked for paged dags in Section 3 can be extended in a

PropoeiUCo 4.1 For a hierarchical SLI system with acy- simple way to work for hierarchical SLI systems. Eow-

cic super-graphs for all the blocks at all levels, an ever. for SUE systems. some complications arise due to

optimal solution can be found in linear time and space, the presence of equality constraints. For instance in

causing the number of page-faults 2p where p is the Example 3 of Section 3. if we add the following con-

number of pages.- straints: z i = xto. z 1 = t,. and Z54 = Z24 then
4.2 Compaction for General Herarchics MJ and S zc <z zi. and the outer-dag H becomes as shown in42Ctems fcgure 4.1. We now cannot apply procedure DELETE to

determine a legal page sequence. For example,
In this section, we discuss a hierarchical algorithm although xic is exposed in H, we cannot compute it

for finding an optimal solution to a general hierarchical immediately, for otherwise, since sc = xs2 . we would
ELIE system. This algorithm also applies to SL) systems have been able to compute zec without looking at block
since SIJ 2ystems are also SUE systems. Vs . The existence of an equality z = z' implies that
Deflnition Denote by the relation Rl(zl.z) (or zsRizg) when one of the two variables is computed, so is the
the condition where there is a constraint X5 +d1 s; x5. other. To take this fact into account, we need to con-
and by R2(zi.z) (or ziRs) the condition where there sider the equivalence classes on the outer-variables
is a constraint , =Z 2 . We say z-z' if there are formed with respect to the equalities.
Zs. Z 2 . CD,. o. l.. ak with a, C 1, 2 1. such Defini~ton We partition the set of variables in an SUE
that R R(.i). R,(i.sX) . - R.(zk.z'). and there is system into equivalence classes with respect to R2. the

exactly one i such that a, = 1. relation defined by equalities. We write [z] for the

The relation -. just defined can actually be viewed equivalence class [z] is in, and call [z] an
as the extension of the relation - defined for paged equalifj class,.
dag_ n Section 3. The relation - on the variab:es has Clearly, [Z'] = [221 if and only ifZR 2 "z2
th fo;lowing interpretatior The value of a variable z Dedution e say a block V tores [: if
cannot bc computed until all the variables z such that [r) Z() Pv 0. In th;s case, we let [z], be
z -'z are computed It is clear that - must be acyclc, r) - Z(V), and call [z), the estrtOwn of [z) to V.
others :55 the SLJt system is unsot

;eble. (Recall Ut sJ"Z ',adcl z tersratono s oVWhen a block V is specified, we sometimes write [X: or
WE assume d, > 0 for inequality constraint [zJ v Vfor [ly.-

Suppose V is a block of an SL] system. t(We note that if for every variable x, in an equality
b Suh pose oV th oearblb s of tem e ter boks class [z), the values of alI variables z, such that zi-'s,

be the set of the outer-variables of the member blocks are computed. then the value t[z] of all the variables in
of I' We now define the relation <, on the outer- [z) can be computed as follows
variables in Z(V)]

Definition Let V be a block of an SUE system. and let (I)p(z,) max I t(. ,)+cj Izct+ jc is a constraint [

z. be two outer-variables in Z(V). We say• z <. (in (2) t[zl- max Ip(z, .)szr[z] J.

V") if and only if z-s' or there exist variables z .. m Now we extend the definition of <, to the equality
in 11 such that s-i. x .sz,,-." and none of z1, classes.

.= .. m. is an outer-variable in Z(V)* Defitition Let [zl]. [zs] be two equality classes that

Note that the definitions of - and <, when res- touch a block V.
tricted to the SLU systems are consistent with the ones (1)lf V is a bottom-level block, then write [z 11<0[' (in
defined in section 3. For an SLUE system, if we disre- V) if and only if there are Zs[Z,]. Z' 5[5] such that
gard the equality constraints, we get an SLU system z<,z in V.
which we calr the SI.J subsystem of the orwinal ScllE Sys- (2)If Via not a bottom-level block, then write [z]<. [si
term When we restrict - to the S subsystem, we cal it (in V) if and only if there are *[xs]. z'c[] such that-t uth respect to the SLJ sbsVsternY, and likewise for either Rl(zr*) or [Esz)Jc<ts.. where u is a member

block of Vthat touches both [xs] and [xs].

1 I_____________

lamia 4.1 Let V be a block in a hierarchical SUE sys- bottom-level block. choosing one representative for
tern. Then each class, and substituting all the variables in a class

(1) the relation <. defnes a partial order on the equal- by the representing one.
ity classes that touch V. The main procedure LOCAL EQ-PERT is described

(2) if z.z are two outer-variables in V. then 24 <z" below. It takes two arguments Vend Y(V). where V is a
implies [z]<. "[ZI block, Y(V) is a set of newly computed variables if V is

at the bottom level, and a set of newly computed equal-
ity classes otherwise. It will compute as many variables

Without loss of generality. we assume that there is and equality classes in V as possible. starting from the
at least one outer-variable in each block so that every given Y(V). In the procedure as well as in the algo-
block touches at least one equality class rithe, t1() will denote the current lower bound on a

Part (1) is clear from the definition. Part (2) we variable z, t[s] will denote the current lower bound on
prove by induction on the level of V in the hierarchy. an equality class [z]. The final values of t (r) and t [z]

For V at the bottom level, the assertion follows will be the values of r and [z] respectively Also. Vc will
immediately from the deftnition Suppose V is not at denote the highest-level block.
the bottom leve. If z.z are in the same member block Procedure LOCAL EQ-PRT (Y(V), V)

u of V, then by induction, z<.'z z> [z].<.'[z'].. and Begin
therefore [z]."[z]If V is at bottom level then while Y(Y) is not empty do

therfore[z]<'[zbeen

If z. a are in different member blocks, say zcsl 0 . forz E Y(V) 6o begIn
'Et.. putting z c xc. z' a z2. then z<.'z' implies foraconstraintz + dszI dobeg

t(z 1) := max(I(zi). t(z) + d);
that there are member blocks of V. s1. . . -I and tn (z) := t (z) - 1;
ou'er-variable! z,,. z,2 2 , i = 0..... i such that if is(zi) = 0 then if z is not an outer-
Z 1<.'Za Z 2 Ri T(-1 for t = 0 m-I Now by variable then put z in a(V) eledo begin
induction z,<.*z, => 0 M => t[z, := max(-~zj; t(z 2)
[z,; .*[z.] Also az,2 P ,.2 => [Zs].[Z(.)i. f in [x] = 0 then put [:1 in Y(Vc):

I = 0,..... m - Therefore. [z]<. [z J . end.
end.Bqy Lemnm.a 4.:. for every" block, we can form a da£ end.

on the equality classes with respect to <.. From and.
Lerm..s 4 1. we also see that for a block V and an equal- if V is not at bottom level then fo- each member b'ock

it~ las : tat ou~es V ifall quaityclases sJ u that touches at least one equality class in Y(i doit clas rz,'tha to che 11 ifa]!equlit clsse 1zbegin
su. .

that [z]<.[z] have been computed, then the Y(U):= }[XL [z] E Y(v)
number max t (z,) + d% z,*d sz.z% cVI can be corn- LOCAL EQ-PERT . Y (u).).
p.uted 1kher. V is the highest-level block then this end.

va!ue is exactly the value for all the variables in [z] ndl

Therefore we car, proceed from equality class to equal- Now we describe the algorihmn
ity ciass in an orcer that is consistent with the partial Algorithm COMPUTE SUJE
order <,. begin

9 (z) 0 for all variables z:
As in Section 3. we need not construct the dag that t[z) := 0 for all equality class [z];

is delined with respect to the partial order C. As a for each bottom-level block V do begin
preparation stage, we need only compute the equality fr variable z in V such that In(z) = 0 do begin

if z is not an outer-variable then put z in
classes. This can be done by applying breadth-first- fi.)e
search hierarchically, treating an equality z a z as an if z,.i) an ouer-variable and infirs = 0 then
edge (a. z') We also compute it[z] which is the sum put T n Y(l.0

of in (z) for z C [z 1. where n (z) denotes the number of LOCAL EQ-PERT (Y(V).).

z" so that there is a constraint * + d i z All these enl.
computations can be done by examining each bottom- do until Y(V O) is empty begin
level block once. To simplify the presentation, we also LOCAL EQPERT (Y(Vc), Vc I
assume that within each bottom-level block, there are end.

only inequality constraints binding variables In that
block. This can be achieved by forming equivalence Let p be the number of pages in a hierarchical SUE

classes with respect to equality constraints within each system The preparation stage for computing equality

.7 ,, ,mI ri.

-9-

classes takes p page-faults. Other than that. algorithm

COMPUTE SUJE examines each bottom-level block no G
more than wi times, where en is a bound on the number -.Xp Xi

'' in " ,
of outer-variables in a bottom-level block. We therefore

have fina!ly,

Theorem 4.1 Algorithm COMPUTE SLIE runs in time
.

- Va
0(N) where N is the total number of constraints, "

--
.

causes a number of page faults no greater than (in + 1)p
where p is the number of pages, and m is the maximum

number of outer-variables a page (that is, a bottom 8 2 1

level block) can have. a

Reference

[AIEU]A.V Aho, JE. Hopcroft, J.D. ULlman, The Du tn H
and Analyis of of Cbenputer Algorathms. Addison- - X.
Wesley. Reading. Mass. (1974). 378-387.

[D]A.E.Dunlop, "SLJM - The Translation of Symbolic Lay-
outs into Mask Data," Proc 171h IEEE Design Au -a-X,16 XS1z X50 Xjj
t Conference (1980). 595-602

[GJj].R. Garey. D.S. Jobnson. Computers and Intracte-

b6tha A Guide to The Th yovi of NP-Cb ,petetness. Free- A&g 22 ig 2.3

man (1979;

[F]M A. Fuang. thesis in preparation

(KID E Knuth. The Art of Computer Programing, Vol.
1. Addson-Wes'ey Read:ng. Mass (1965).

Lipton. R Sedgewick. J. Valdes. "Program,.g

Aspects of VLSI , 'o: 91h ACM-POPL Conference
(9 2.5--65 - i

[i TLergaaer, K Meh:horn. "FILL - Fierarchica! Lay-

out, Languae.e A CAD System for VLSI Design.' TR /

A5Z '30. FB ID. Unversiti" des Saarbricken. West-

German) (1952)

I L1 Lengauer. "The Complexity of Compacting
F-erarchically Specified Layouts of Integrated Circuits .
Pro: IEEE Cbnference on Foundatowns of Cowmputer

Science (1982). 355-355

[N]S C North. 'Molding Clay A Manua! for the CLAY Lay-
out Language'. VLSI meno#3. Princeton University.

[MC)C Mead. L Conway. Mttroducfton to VLSI Systew.,
Addison-%esley. Reading. Mass. (1980)

[VI Vijayan. Design Iwplevniteftwn amd 7theoor of a

1151 LAyout Latguage. Ph.D Thesis. Princeton Univer-

sity. (1983)

F-D

I

X.2.

e
1 4 ItI ,

H X,16-

'x3~
v 44 X~

~3.2

Testability Conditions
for Biateral Arrays of Combinational Cells

Aniasasdio *vgW and Kerawth StoVgtx

Department of Electrical Engineering and Computer Science
Princeton University. Princeton. Now Jersey 06544

ABSTRACT Cell I at Lime f +1 wilil produce left and right outputs
Two note of conditions are derived that make one- 10-10 +1). v''(t +l).

dimensional bilateral arrays of combinational cll Figure 2 shows the space-ftme tvrraformatin [2]
testable for single faulty tells. The test sequences aire of the array in Fig. Ia. Each row represents the array
preset and, in the worst case, grow quadratically with at each time unit. This makes the operation of the
the size of the array Conditions for testability in Unsar array easier to visualize. Note that this transformation
Limie are also derived. The basic cell can operate at the maps the one-dimensional synchronous bilateral array
bit or at the word level. An implementation of FIR into a two-dimensional asynchronous unilateral array.
Alters using (systolic) one-dimensional bilateral arrays If iIs a subset of L. define gp(v. a. 1 0) z Re.
of cells, which can be considered combinational at the where Re is the met I #j(v. a. 1) 11 cLgi. If Re contains
word level, ts presented as an example. just one element r'. we write gr(v. a. LO) a r (instead

of fr'j). Similarly for Vua(R, .1), pr(r.Z. 1). and simi-

I. Inruti.C itoa caraso dniclslsi larly for ygs*
If rvCR. donine R, a R -j. Similarly L% a L- 111.

The use oitrtvarasoidniacalin An input or output labeled v/RO. where Rc0 ,R. and r
current VLSI technology to becoming more frequent due does viol belong to Re, means normal input or output r.
to their many advantages. like ese of design. fabrica- and faulty input or output some member of Ra. If Re
tion, and testing Moreover, many problii.rs are contains just one element r'. we write P/v . Some-
offejiently solved with the use of 'systolic arrays,. which times, when no confusion arises. vIRo will also be
are highly iterative structures operating synchronously. sailed a jauU. For simplicity rv/f., will sometimes be
An important problem associated with these structures written as , s
is fault detection, that is, derivation of test input W lo dfn ~av,3)*v/g I
sequences to the array, such that the output sequences w lo dne rrr/* .1 "Tl i

ofthe normal and any faulty array (under some fault 9(i3.)av and #Uag. e,8)arve avid rjoV v.
t 'l 0 r's. We define similarly gjt(v. a. I I t) a U / 1ass9umptions) are different In this paper we give somse n iial o t Aohr dfnto s

testability conditions for a special class of arrays and siia)l o nterdfnto s
(defined below) that improve upon the oondition pjr'a / e. m.1var/ R' If I(r. a. 1) a r'. and
reported in [3] Derivation of the test Input sequences Sj(Ri a.1) cR a Similarly for #R(v. a. S/LI) and for
is also described. #I- tNote that #N(v/ Rea. 1) is not uniquely defined.

since Re may be any superset of pjp(Rea. s1). not con-
IL Assumpt~ions. Deflaltis ad Noaintainuig v.) If. according to the above, the input of a

Figre . sowsa blatralarry o cobintioal cell is a fault v/ Re and its output is v/Reo we may that
Figue t shws abilterl aray f cmbint~lnal this @0ellppgates the fault r/Re. Notice that accord-

sells The basic sell tosehown in Figure lb. At each Unit Ing to our convention rv does not belong to R*.. so we
unit It produces left and right outputs. dependi n Its can distinguish between the normal and the faulty out-
left. right and vertical Inputs. put.

let M be the met of night-moving signals. L the met In the sequel. p denotes the total number of cells
of left-moving signals and Z the met of vertical sell in the array.
inputs. Let #g,.RxZaL -R be the right-moving signal
mapping. and #&:RxZNL4L be the left-moving signal .Doee General Testability Caditiesse
mapping Lat V be the following set of conditions:

A 1ilt in a particular sell alters #ga, #L- or both for C:freeyvNteeeitvR a uhta
one or more argauments (r. a. 1). However, we assume I o vr a trseitra.ac uhta
that the sell remains combinatienal. R&(v a. L) a s.

We assume initially that to test a sell completely, C: for every RaL there eslst fle.oe a such that
we must apply all input combinations RxZxL to that I*t(. 0' a 1.
call. This assumption makes tosting of the sells 01: for every Vt.r~m R with v~ u s. there exist

* independent of bow they are realised and independent Icl. Bat such thatta(vi, a.) 0 1g(v,. a. a).
of the fault model for permanent faults [I). We $hall DO: for every It. to CL with 1~ 0 &g. there exist
examine later the ease when only a subset of PxtaL eR. eat mush that Ij(v. a. i,)a Ut (v * . .
suffices to test the basic sell. We further assume that Iae :Aybltrlaryo obntoa
to test the array completely (for single faulty sells), we %em :Aybltrlaryo obntoa
must test completely every cell in the armay. ells that sate onditions V is testable for aingle

The left vertical and right inputs of *oillI at time t bulty calls.
are denoted as 0J(l). o#(t). 0'(1) respestlvely. Banc..

23i2 ZXI7 ruter~iA? Cnfereno. on camuter DeesVpmfP.iii C'a ~sters,
&00. New, Yrk, October 1-Nov. 5, 1013.

The proof is similar in spirit to the proof of the Input, and due to a fault- It may Output the expected
next theorem. and it Is actually simpler. go it is outputs 1. r. Under this worst cue scenario the two
omited. We only mention that. under conditions V. to faults will be masked and we will get the expected
test the entire array completely we md observable outputs 16(2p) and 9rP*(3p- 2 +1) (assum-
p(p.+l) m(IRi.lLI) IRIIZIILI tests. lngJa(p 1)/2). Thisis avoided as foUows:

Let V be the following let of conditions (we Figs. 3 First. to propagate the fault /* to the rightmost
and 4): output, using condition 01 we And s5

'(2p-j) much
Cl: for every rCR there exist r'CR. acZ such that that Oell j+1 on Input s 4 '(2p-j.1)/* outputs

g(r0, 8a.) rri vl*l(2p-J+2)/6; inductively we propagate this fault to
the rightmost output (rV(3p-21-1)/9). Similarly. we

C2: for every IcL there exit 'L. ocZ.rVR such propagate the fault sm(2p-m)/" for
thatgL(r'. sXf) . and gmj+IJ+2, . p. Notice that the potential previ-

01: for every r ER there exist sEZ such that ous fault v
5
'1(2p-2w1+y+1)/6 of cell j has been

S, L) • •'• "automatically" propagated to cell as rm (2p-in)/
02: for every I I, C.L with 1101 g . there exist by the strong part of condition C2 "when" we were solv-

acRs CZ such thatyL('. a. 13) o# g(v. sit). Ing the controllability problem. So, if cell I outputs

Conditions W bold if 1) the basic cell just transmits somethi-g diferent from v
1
'(2p-Zmopvi). we shallnt t t i)(RZL) 3) detect it at the rightmost output by getting something

different from the expected •V*t(3p-m.1). This
for any two different rlht inputs there exist , that solves the observability problem.
produce two different left outputs. This is a quite rea-
sonable aet of assumptions. The above procedure is repeated for every 7 in 4:then we have tested call Y for input (ro. so. 10). This is

Theorem It Any bilateral array of combinational thnwhaettdcllfoipu(v.s L)Thss
calls t s ybatisfisV is testable for single repeated for every (r. a. a) in RxZxL: then we have

cells that satisfes conditions tested cellJ completely. a

Aty sseea ttte fThe testing time shown in Fig. 5 is Op. Hence toP tooe: Assume we want to test cope e for inputs
(r o . cc. 10). These test inputs will be applied at time test cell j for input (r o. so. 1,) we need 2p I L,) tests.
t a2p- y it th e test be ins at tim e f l. H ence hence JR - Z1 te t , n to test com pletely th w e

v• ©= l(2pv-j). Isc 1,i(2p-j). so- e*(2j) (see Fig. 5. 4 ILIIRIIZ? tests, ad to test completely the
shadedcell). .array we need pe ILIR'IRi IZI tests. Note that it

somecell in the space-time transformation is -used at
First we must make the left input of ell j at time time t. it is never used at time t*+1. hence the obvious

2p-j be rem r1)(24 -,) Condition CI guarantees the pipelining reduces the testing time to one-half of the
existence of 1 'a(2p-j-1), e'(2p-j-l) such that above number of tests
7'(2p-j) = Rvi2--) i(p--)L~hence
it suffices to apply r1 " (2p-j-l). a- 1(2p-j-1) an left 4. One-eepToetablity
and vertical inputs to cell j-I (at time p-j-1).
Inductively, apply v1-1(2P-j-2). el(2p-j 2) to cell Parthasarathy and Reddy [4] introduced the notion
j-2, etc., until we reach the leftmost cell. The tricky of onestep testability for uniateral arrays 'e extend
part is to apply right input to l(2p-Y) to cellj. Con- ts notion to bilateral arrays as follows.
dition C2 guarantees the existence of 0'*(2p-j-1), Deflrifitot : A cell in a bilateral array of combina-
l''(2p-j-l), e'l(2p-j-l) such that J(Up -J) a tional cells is one-step testable for input (r. f. 1) if the
g,(2 (,- 3 -1). e i(2 p-, 1 -), 1 1'l(2p-j-)). and number of time units needed to test this cell for input
gpe(v 1o'(2 p-j-1)/0, eJ"(2p-j-1), l'(2p-j-)) = (r. a. i) is independent of IR I. IL I.
vj.t(2p-1)/ . Hence it suffices to apply input Deflnition: A cell in a bilateral array of combina-
(•I'(2p0 --), a1'(2p-j-1), e2l(2= -j-l)) to coll j+l ional cells is one-step testable if it Is one-step testable
(at time Zp-j-1). Left input rf*(p-j-1) and right for allinputs (r. a. 1) in RKZxL.
input lli(2 p-.-1) can be applied (recursively) In the Deflnitio: A bilateral array of combinational cells
same way we applied inputs re and it to cell j (using is one-step testable If all its cells are one-step testab:e.
Cl). This solves the controllability problem.

We have not yet used the strong part of condition The notion of ons-step testability is important for

C2. namely the fact that of(?'/ 0, a. I') i, The the following reason: if an array is one-step testable, the
usefunesyf this willcome pat .ent in)

te @e. time needed to test It is greatly reduced since, if the
usefulness of this wll become apparent in the sequel expected output of a cell under test is. may. C, it is not

Assume that the normal right and left outputs of necessary to apply different test inputs for eacb fault
cell J (on input (rv. s o. 1s)) are r and I respectively; &1 C L-I[.
assume that we test for the error a/Iin the left output. The following conditions are useful for one-step tes-
We can simultaneously test for all errors r/5 in the Labiity (see Fi. 8):
right output. Propagation of the error a/I to the left-
most output is done using 02 and CI. 0STI: for every rCR there exist I.L. aCZ such that

We have not yet discussed the "southeast" portion fig("R/,. a. 1). a'/R,
of Fig. 5, that is the portion below the right-o-left diag- OST2: for every A CL there exist 9CR. a CZ such that
onal that passes through the shaded cell. First we have 81(, a. 8/14) aof'/..
to propagate the fault r/• (a "''(Up-j0l)/e) to the Let OST be conditions 09SI and 05T2 together. et
rig;tmost output. But Cell I may fail to function V-OST (W-OS0

) be conditions V (W) and OST together.
correctly at any previous time. to for instance (tee Fig, I W-OST bold. instead of testing for the fault I/! for
5) cell I on Input r1(2p-29i j) (for some on in each 7 in 4 as in the proof of theorem 2, we can test for
y + I1. j +2. • • • . p 1). may not output the fault I/Lo. Thus, to test cell I for input (ro. to. Is).

ri*1(2p-Zm.j+l). so call in may not output we only need Ip time units. Therefore. if we want to
'SI(Zp -m 1). hence ell may not receive o as right test all cells for inputs a subset I of RxZaL. we need

film ____lmii ___m___i__mm____m__mm m mm0m

3

Ep
t
I1 time units. If V-OST bold, similarly as above. by en group are not faults that have to be propagated, &s

testing for all output faults simultaneously (on a given for the first, third etc. groups in Fig. 0.
input). we need p +p1) 111 tests if we want to test all For the Art p-2 left diagonal groups their left
cells for a subset I of RXZXL. inputs are "inside" the array, so we have the additional

problem of how to generate them. Condition CI of V
5. CoodiUons for Te tabiity in IJaeer Time takes care of this. (as in theorem 2).

Let Lbe the following set of conditions (see Fig. 7): If each ell requires T tests. (T1+)-p is the
OCI: For every rg. re CR with r ,,r8 and for awry ACL number of inputs that have to be applied to the left

there exists r CL and a CZ such that boundary of the array (see Fig6); additionally. p-I
g,(r,. a. I') gi. a. ') And FL(ri. a. V') a . time unite are required for the propagation to the right

0C2: For every 11. is CL with Ilots and for every nCER boundary of the faults in the leftmost cell Hence the

there exists "CR and acZ such that entire array can be tested in In (T+I)pp-I time
iA', el) V A(r. a. L) and g,(r', €. 1)m .units. Again, the obvious pipelining saves about half of

these time units. a
Theorem M Condition C1 of V and L is a sufficient

set of conditions for testability of the entire array in a. S. ConditUoc for One-etep Testabtity in lAno.z I7me
number of time units proportional to the length of the jet us consider now one-step testable arrays. It

arry,. turns out that It suffices to replace the fault ri/ra
Proofq: We shall give a constructive proof. To keep (romp. %f/I,) in conditions L by the fault r/6 (resp

things simple, we shall work on an example; the gen- 1/ 0). This wy we obtain the foUowing set of conditions
oralization is straightforward. Consider the space-time L-OST.
transformation of an array of 6 cells as in Fi. I. OCi: For every rCR and for every IEL there exists
Assume that each cell must undergo 2 tests, that is it VCL and EZ such that gp(a. I) 2

must be tested for inputs (r,. 1,) (:1,2) for faults
v',/,. ',/t (i.e. "'s, 1 are the normal outputs and , .)/ and f(. e. 1)31.

r, /, are the faulty outputs). In Fig. 8 cells under test OC2: For every ICL and for every rER there exists

are depicted as full squares; so the inputs and outputs r'CR and *CZ such that DL(.e.L/)3
of these cells are "given". #L(n '. ,)/ and pj(r'., a. 1) z T.

Let's group the cells of the space-time transforma- Theorem 4: Condition CI of V and 1,-OST is a
tion diagonally, forming different groups on the left and sufficient set of conditions for one-step testability of the
right of the cells under test, as in Fig. S. Call these entire array in a number of time units proportional to
groups left and right diagonal groups. Note that each the length of the array.
left diagonal group of c cells has one left input, one Proo/* Analogous to the proof of theorem 3. If
right output, c right inputs and c left outputs. Its right each cell is tested for a subset I of its inputs. the
inputs will typically be faults that have to be pro- number of time units required is (IIl+)p+p-l.u
pagated to its left outputs. Fig. 9 shows a left diagonal
group containing cells k through in, at time units t Remark; Al the above results are easily general-

through t +m -k. Assume that the faults ized for the case when 9p. gI are not identical for every

1"'(t i)/?'(4.) for in0.l. em-k are given and cell. that is we have gA. ul for the t-th cell. it suffices to
have to be propagate . to its left outputs; also output replace the conditions for p. pL by conditions for #k.

.*(m -1 +) must be generated. Wa shall ahow how #1 for every t.
to find its left input ,h(9) that does that. Using condi-
tion OCI we can find input rs(t+m-k) that propagates .AppliaacUos
the fault L'(t+,-h)/'Q+m-k) and generates the Figure 10 shows the basic cell of a two-way pipeline
output ., (t.+n-&+1). Now n(t +k-m) has to be systolic array used for FIR fltering 15]. [6). For this cell
generated. so inductively we can find ri (1). Hence each we have 12 1 (no s-inputs), #p(r. 1) a r.
left diagonal group can propagate to Its left outputs any ,L(r,) a l+.r. This array can be considered as a
faults on its right inputs and, at the same time, it can bilateral array of combinational cells at the word level
generate any right output. Entirely symmetrical things (the basic time unit is the time required to produce the
hold for each right diagonal group. outputs). It easy to see that conditions W-OST are

We apply the construction stated above. starting atisfied. (Here we have the case when ga. I depend
from the left diagonal group at the top of Fig U (which on the cell.) Therefore. If a subset I of RxL suffices to
contains just one cell); that is. we And its left input co test the basic cell. '. Ill tests suffice to test the
that the fault r'l/;' is propagated, and output iIs gen- array. Also, if we Ignore overflow problems assuming
orated Then. for the next left diagonal group (second for all r. 81 +a re1tLi r for 11 er,. conditions L-0ST

from the top). we know the faults thaL It has to pro- bold; hence for this case O(p Ill) tests suffice to test
pagate. If we were testing the leftmost cell for one he array. Note that the inequality above does not have
more input, we would also know the output that has to to bold for all r. I,. Is: obviously, it suffices to hold for
be generated by this diagonal group; since this is not the signals that appear as inputs or outputs in the test
the case here, we can choose It arbitrarily. Therefore, described in the proof of theorem 3.
we can apply again that construction to find Its left
input that does this. We proceed this way, from top to ACXNOWLEDGEMENT
bottom. (InducUvely, each diagonal group will have to This work was supported In part by NSF Grant ECS-
propagate some faults and generate an output; as we I120037. U. S. Army Researeb-Durbam Grant DAAGC2-
proved above, there exists an input that does this.) We Si-X-O095. and DARPA Contract N100014-2-K-0549
repeat the same procedL.re for the right diagonal
groups, proceeding again from top to bottom. Obviously
It does not hurt if sowe of the left inputs of a right dia-

REFE.rNCES
[1] M. A. Breuer and A. P Friedman, Dca rts and

Reluabls Dfvon of Di-al Slstma. Computer Sci-
ance Press. 1976.

[2] F. C. Hennie. ileae Arrays of Lo gcaZ Circuts.
Camnbridge. Uk MIT Press. 1961. .6. .. "

[3] F. G. Gray, and P. A. Thomson. "Fault Detection

in Bilateral Arrays of Combinational Cells." IEEE
TVwas Cwipjd. vol. C-27. pp. 1206-1213. 1978. . %.

[4) R. Partbessrathy and S. u. Reddy. "A Testable
Design of Iterative Logic Arrays." IEEE firsinsCobmpuf.. vol. C-30. pp. 533-541. 1981. •

(51 H. T. Kuni "Let's Des ig n Algorithms for VLSI Sys- %
terns." Proc. Clon oR Wry Largs Scale ntsre-
tio Architecture. Destgn. fabricfthon, California
Institute of Technology. Jan. 1979. pp 65-90. 0 % ~

[8) 11. T. Kung and C. E. Leiserson. "Algorithms for 1,10"0
VLSI Processor Arrays," in Introduction to VLSI '

S3stsins. C. Used and L Conway. Addisen-Vesley. " " • "

1980. ,) % % - ""

Fig (a) A synchronous bWlatera aray (b) The basic cell -On, "J) %

Fi 5 The test described in thmx 2 (wertical inputs

are not show. for simplicitv)

4

Om O

Fig 2 Space-time transformation into
asynchronous unilateral array

* ~ /*I~i..~- ~ .Fle 9 A left diabonia) group

(a)~d~O~ L .

r4. (a) conition OST. re 7 is) Condition OCI iL Calls under test are depicted as full sqdAares
(b) Condition OM' b) Condition OC2 of L thie other cels are depicted as points

L!

Total Fault Testing usig the Bipartite TransformaUon

Andres S. ImPaugh
Richard J. Lipton

Department Of Electrical Engineering end Computer Science
Princeton University
Princeton. N.J. 08544

Abstract: IL %ba Apprmh
We present a method of creating circuits which are Our approach is based on the ease with which any

easily tested for all single stuck-at fto-Its using a con- wire in a bipartite circuit can be controlled to the value
stant number of test vectors. The method is the combi- 0 or 1. A bipartite circuit is a combinational logic circuit
nation of a number of techniques. It uses special "con- whose gates can be colored black and white such that no
trolleble" logic gates and latches. It requires that com- two gates of the same color are connected Given such a
binational logic subcircuits be bipartite, which is coloring of the gates, the wires can also be colored so
achieved by transformation if necessary. The method that each wire inherits the color of the gate to which it is
was previously presented for nMOS combinational logic. input. Circuit output wires inherit the opposite color of
In this paper, we extend this method to both CMOS and the gate from which they are output.
to sequential circuits. We also discuss alternate methods Call a logic gate dnvevtin if it has output I when
of achieving bipartiteness during testing presented with all O's s input and 0 when presented with

all 's as input. Inverter. NAND. and NOR gates are
inverting. If a bipartite circuit consists of inverting logic
gatas, then every wire can be forced to the values 0 and
I using just two input vectors. (This was observed for

1. Iboductio NOR-equivalent circuits by Akers (Ak74].) The property
In [LA83], we presented a new approach to the pro- is central to our approach we call it the pavityp nciple

duction testing of VLSI circuits. This approach gives
1O0 single stuck-at fault coverage of circuits using a Plrity Principle: I.rel et a the black input u,,irss
constant number of test vectors. It also covers many of an wertuing I., biphpatite coruit to the value V and
multiple faults. Generating test vectors is very fast; in all the MU"e iput tiuires ojf the ctrcu to the valuse V,
fact, it does not require any searching, only a one pass then ell black (respectueil Atite) iusies take on the
analysis of the circuit. Our method has tremendous valuhe V (fiapectieily).
advantages over traditional methods in getting
guaranteed high fault coverage without the high costs of We use the stuck-at fault model [Dr?6] in which each
searching for good test vectors and applying large sets of input to a logic gate and each output from a logic gate
test vectors. One of its great advantages is that the set may be independently stuck-at 0 or stuck-at 1. This
of test vectors is small enough to be stored on-chip. giv- model includes stuck on or stuck off faults for a NOS
ing deterministic self-testing. The approach does have transistor since these ae equivalent to stuck-at 0 or
penalties - primarily in circuit area but also in speed. stuck-at I faults on the gate (control input) of the
However, we believe the advantages will outway the costs transistor.
in many situations. To urs the parity principle in a test strategy. two

Our approach is the combination of three tech- test vectors are apphd. one with all white input wires
niques which, in fact. could be used separately. The first set to 0 and all black input wires get to I and the other
is the use of circuits with the property of being bipartite; with these values reversed. These will excite any stuck-
the second is the use of special controllable logic ale- at fault at the output of a logic gate. However. note that
ments. the third is the use of small amounts of logic to in a fault-free circuit, all inputs to an individual logic
observe the values of internal nodes. Originally, the gate will be equal. Thus not alJ stuck-at faults at the
approach wee presented for nMOS technology and pri- inputs of logic gates wi be tested. Tor example. given a
marily combinational logic. The purpose of this second (two input) NOR gate. to detect an individual input
paper is to give extensions of the method to sequential stuck-st 0 requires that value I be applied to the stuck-
logic and to CMOS. Also, we will explore variations of the at input and 0 be applied to the other input. Therefore.
method which address tradeoffs in fault ooverage, area, uing the parity principle to test bipartite inverting logic
speed, and fault tolerance We are particularly con- circuits allows one to check that each logic late output
cerned with providing alternatives when the area penalty can take on the values 0 and 1 but does not catch each
of our basic technique is too costly. stuck-at fault in a transistor or at an input.

To catch all stuck-at faults in a bipartite inverting
logic circuit, we replace each logic gate with a special
gate. This gate urns extra global control inputs to catch
all stuck-at faults for the gate. In [L&93]. an nMOS two
input NOR gate was presented for use in circuits contain-
ing only NOR gates and inverters. An IOS NKMD for
NAND/inverter circuits is similar and NOR and NAIND

To be presented at International Test Conference, Oct. 1983.

L. 1

-2-

&ets (requiring more control varlables) for use In mixed
NAND/NOR circuits are extensions of these. In the next ou tpu.

Sectio. we present a controllable NOR for CMOS. Psah 2 7 Ci Co Cermct Feuty

Given a circuit of controllable gates, the number of ma 0 0 I 0 I 0
test vectors increases as a function of the number of glo-
bal control inputs used. For a circuit consisting only of Sh 0 1 1 1 0 0 1
controllable two Input NOR gates (inverters we created
by using an NOR gate with both inputs the same). the C, IM I 1 0I 0 1 0

number of test vectors increases from two to five. The
purpose of the five test vectors will become clear in the 11 0, I I 0 0 1

- - net~ section when the CMOS NOR is presented in dotal
Because combinational circuits are fodback-free, any 0 @P5 fA 1 0 0 I 0 I b.-

faulty circuit will have at least one gate whose inputs
come from fault-free gates but whose output as SA0 1 1 1 0 0 *o*

incorrect. This is detected by observing the output of
every Sate. D pJ fS 0 0 1 0 I Aw.

Normally, observing the output of every gate would @A 0 l 1 1 o a dben
be an impossible task for a LSI or VLSI circuit. There are
far too few pins available, and mechanical probing is C, ar 1w Sh 1 3 1 0 0 1 1e6.1
difficult. A scanning electron microscope can be used
for such observation [Ki82]. but its use is not practical 9A 0 1 1 1 0 0 ae
tor production testing of a large number of chips and
prohibits field testing However, in our approach there C, ~ IIA I I 1 0 0 I dies
are very few events. i.e. combinations of values of gate
outputs. that we wish to observe. The basic technique A 0 1 1 1 0 0 sho-
using a bipartite circuit with controllable NOR gates
requires the observation of three events: all white gates TABLE I
output 0 and all black gates output 1; all white gates out- for V faults and Cg faults, reverse values on C, and Ce with
put 1 and all black gates output 0 all gates output 1. same resuits

Handling special inpuL pads and sequential logic will principle holds and gates can be tested simultaneously -
increase the number of events by two, white and black gates being tested for opposite faults

Because there are so few events using our approach, To test stuck-at I faults at C, or Co. both are set to 0. In
we can add extra circuitry to observe these events, this case. the normal iputs and outputs of all gates
Each event is observed by using a large fan-in AND to should be 1; agaln, all gates can be tested simultane-
observe all outputs which should be I and a large fan-in ously.
OR to observe all outputs which should be 0. By physi- Table I shows that each single transistor fault in the
cally distributing these large ftan-in gates, we can keep CMOS gate results in the gate output being either electri-
the increase in circuit ares small. Note that the number Willy isolated, denoted Yloat . or on a path from VDD to
of such large fan-in gates needed is proportionally to the IaS, denoted s&ofl. In nMOS. because the logic is
number of distinct events to be observed. Most test ratioed. a short provides a valid logic 0 [MeO]. However,
methods require the observation of a large number of in CMOS. this may not be the case. Also, in nMOS a float
events. Thus. although the observation circuitry could can occur only if the depletion mode pullup transistor
be added to any circuit, the amount of circuitry needed which is normally on is stuck off. In CMOS however. all
would be prohibitive for most test methods. This method the individual stuck off faults for transistors cause float-
of observing internal values can be used with other test Ing outputs. This Is necessarily the case in ratioless
methods requiring the observation of only a few events CMOS soe for each input combination, there should be
(e.g. [1574. S674]). either a path from VDD or a path from VSS to the output

3. The Approach for CKS of a gate. To detect a stuck off transistor, such a path
.h o must be broken, causing a floating output Similarlv.

The CMOS controllable NOR gate is a modifioation of any Single transistor stuck on will cause a VDD-VSS short
the standard ratoless pullup-pulldown CMOS NOR [Ho83] To detect a short, we may choose in the design of
shown in Figure li. F.Wure lb shows the new gate with the controllable gate to size tranastors so that Such
additional inputs C, and Co. This gate is used in circuits aborts appear as a valid logic value. This may cause
consisting only of inverters and NOR9, the inverter is some transistor faults to be undetectable. The most
creating by using a NOR with both inputs the same. desirable such ratioing is to make the p-type C, and Cg
Inputs C, and Cg are global to the circuit - every gate in transistors with high resistance and the n-type C, and Cp
the circuit contains them. For normal operation. C, and transistors with low resistance. This is also desirable for
Cg have the value 1. Table I hove the values to be used good performance of the logic gate in normal operation.
to excite each possible stuck-at fault in the gate. Note Te remaining transistors are auted so that any short
that an n-type (respectively p-type) transistor stuck on leaves the output at a logic 0 (as fir nMOS). Then, on n-
is equivalent to Its input stuck-at I (respectively stuck- type transistor stuck on will be detected as yielding an
at 0): and n-type (respectively p-type) transistor stuck Incorrect logic value; a p-type transistor stuck on will
off is equivalent to its input stuck-at 0 (respectively ive the correct logic value but at a higher voltage wihi
stuck-at 1). the allowable range

In Table 1, note that whenever one of C, and C, Uizins transistors to handle aborts negates One of
takes on the vlue 0 and the other takes on the vailue I. a the great advantages of ratioless CMOS - the ability to
fault-free gate Is inverting with respect to normal inputs design logic gates so that transitions to both 1 and 0 are
a and iv. Thus, for these values of CI and Co,. the parity at approximately the same speed. if a VDD-VSS short

Im, o mom i mm-•-

-3-

car oe detected by detecting high leakage current on sequential circuit with bipartite combinational subcir-
tht power bus [M&82. AcS3]. this siing an be elim- stlls, a scan path technique [Wili) could be used to gain
Seated. The controllable gate can be designed for access to the latches. Our technique coIld be used for
optimum fault-free performance. This is the method of the combinational portions by loading and unJoading the
choice for detecting short& latches through the scan paths. The sequential loading

To detect erroneous but logically valid outputs and and unloading of the latches is slow. Even worse, for
Basoting outputs, we must observe the values of each out- CMOS where the sequence of test vectors is important,
put gate. Possible distributed AND and OR configurations the sequential loading may ceause serious problems in
for CMOS are shown in Figure 2. These are similar to cir- testing for flosting output nodes. 1b exact design of the
cuits which may be used in ndOS. In CMOS we use only scan path latch will determine what is feasible However.
n-type transistors and propagate only logic 0 through there is an alternative. If a special controUable latch is
them. To use either type of observation circuit, we hold use in place of the simple latch, sequential circuits with
all circuit inputs at a test value while doing the following, bipartite combinational subcircuits can be tested using
The observation logic output is set to logic 1 by a our approach without the use of scan path circuitry
separate source while holding the observation logic input The testing of sequential circuits using the controld-
at 1. Then, the separate source is disconnected and the able latch breaks up the circuit into controllable combi-
observation logic input is set to 0. For the AND national pieces just as scan path techniques do. How-
configuration, this 0 will propagate to the output if all ever. instead of loading the latches with values during
wires being observed are correctly at value 1. For the OR testing, each controllable latch has special test modes
configuration, the 0 will propagate to the output if some In each test mode, the outputs of a latch are the specific
wire being observed is incorrectly at value 1. Figure 2 values needed for the current test, regardless of the
shows the basic construction. In practice, drivers may stored value. Thus, in addition to the data input and
be needed so that the observation logic does not have latch signal, the controllable latch will have mode inputs.
too severe a delay. Note that this delay only affects the In the most general case, the latch output may be con-
time to test the circuit - the observation logic is not nected to both black and white gates. In this case, the
used during normal operation. Since there are very few latch will have five modes: (i)all outputs equal to last
test vectors to be applied, we can afford a longer delay stored input (normal), (ii) all outputs equal to 1. (ii) all
for each test vector than If we were using a method in outputs equal to 0, (iv) all outputs to white gates equal to
which thousands of test vectors were applied. This delay 0 and outputs to black gates equal to 1. (v) all outputs to
is a disadvantage in that it may prohibit "at speed" test- white gates equal to I and outputs to black gates equal
ing of the circuit. to 0. (Note that for a NOR/inverter circuit mode (iu) is

To detoct floating outputs, we use the fact that such not needed, but in a NOR/NAND/inverter circuit it would
an output will hold it's old value for several circuit be.) Modes (ii) through (v) are test modes and ignore the
delays We sequence the test vectors so that the correct value actually stored in the latch. During testing the
values of gate outputs alternate between D and 1. Thus. outputs (black and white) of the controllable latch are
when a gate output is floating. it will hold an old value observed in the same fashion as the output of a logic
difterent from the expected value. Note that there are in gate. Figure 3 gives one possible design for such a gate
fact only five test vectors in aMOS.

Black White The test sequence using controllable latches is as
Vector Inputs Inputs C, C, follows:

01 1. Test combinational logic. Set the modes using (ii)
through (v) above as appropriate to test the combi-

s8 1 0 1 0 national logic pieces. Observe that correct test
values are on outputs of each latch.

V3 0 1 0 1 11. Test latching of input. The data input to each latch
is either white or black: we call the latch white or

1 1 0 0 1 black accordingly. Since the combinational logic
has been tested, we can use it to set a known value

I 1 0 0 in each latch.
AL Using mode (iv). set the inputs to all white

If we use the sequence iii, . log. V4, v,,
5 e sv s. vs. then latches to 0 and the inputs to all black latches

the outputs of black gates should take on the sequence to 1. Raise all latch signals so these values
of values l.O.l.O.l.l and the outputs of white gates should be stored.
should take on the sequence of values 0,0,10. I,1.. In B. Lower all latch signals. Use mode (i) to pro-
this case. for each gate, each test vector is applied at pagate latched values to observable outputs
least once when the previous output of the gate is oppo- Repeat A and R using mode (v) in A and again using
site from the expected output for the test vector, mode (iv) in A. For each latch, this will test the
4 transition from storing a 0 to storing a I and the

g4. Sequential Lgic transition from storing a 1 to storing a 0. In B. only
We have described our approach as applied to com- the values at latch outputs are observed since the

binational circuits. We now consider sequential circuits distinction between white and black wires is not
composed of bipartite combinational logic oubcircuits maintained at this etop. This introduces two new
separated by simple latches We will consider only events to observe.
latches with one data input, one output, and me latch Note that to execute 11. the latch signals of al
signal When the latch signal is high. the value of the data latches must be controllable sdripeadenf of the values
input is stored. The output is equal to the last input in the circuit under test. In many circuits this will hap-
value stored and Is always available. Given such a pen naturally - the control signals and data are received

4

, t

and manipulated separately. If this independence does produce a bipartite circuit (color all precbarged gates
not bold. there are several alternatives. The most direct white and all standard inverters black).
is to modify the latch signal logic so that under test the The transformation presented in (LaS53] is advanta-
latch signals can be oontrolled directly. Note that only geous because it does not increase the fan-out or lengths
one latch signal can be used within a latch, otherwise the of paths of the circuit. Thus it does not increase the two
latch will not be completely testable. Of course, the major sources of delay. However. the area penalty for a
logic creating the modified latch signal must be tested. particular circuit can be very large. A circuit may be
Another alternative is to teat only some latches at a "almost" bipartite in one of two ways. Its transforms-
time For exanple, there may be two sets of latches. tion may require only a small number of extra gates. or
with the latch signals and data inputs for each depen- there may be a black/wbite coloring for it in which few
dent on the output of the other but the latch sigoals and edges go between gates of the same color (offending
data inputs for each latch in a given set Independently edges). Note that the latter does not Imply the former,
controllable. Then we can test one net at a time by as shown in Figure 5. We would like a circuit with few
appropriately setting the outputs of the other set Such offending edges to have a low cost moifcation to a
a method requires careful analysis of the dependencies bipartite vrelon, but it may not under the original
of the circuit and brings us once a4ain to the problems tranformation. In the remainder of this section we dis-
of test vector generation. Thus, it is not in keeping witt cuss ways of modifying such a circuit at the offending
the spirit of our approach However, It may prove to be edges so that the parity principle can be used. These
a desirable method, especially if there are very few techniques will not incur the area cost but have other
groups of latches which interact cots It should be noted that both finding a minimum

.Finding Upt Circuits z transformed circuit and finding a coloring w-ith a
minimum number of offending edges are computation-

Our approach requires that the combinational logic ally difficult (Le.NP-.omplete [GeVD, GaB2]). Therefore.
sections of a circuit be bipartite In [IAB3]. we have we do not expect to solve either problem optimally but
shown that any circuit can be transformed into a bipar to And good solutions
tite version by at worst doubting the number of gates In each of the techniques, we will conceptually
This transformation does not increase the fan-out or the insert an extra gets on each offending edge during test
length of input./output paths. We also require the use of so that the edge is split into two and the cirtuit becomes
controllable input pads similar to the controllable latch bipartite. The most straightforward solution ts to actu-
described above In test mode. a controllable input pad ally do this as shown in Figure Ba This introduces an
allows black wires and white wires from the pad to take extra delay during normal operation of one pass transis-
on opposite values tor (transmission gate) on each offending edge Even

Since the cost of transforming an arbitrary combi- worse, te normal functioning of the "edge" cannot be
national circuit into a bipartite circuit may be very high. test- ' oing our approa h Thus this solution costs both
we wish to identify technologies and design metbodolo- speed and fault coverag%: but has a small area penalty
Lies which produce bipartite circuits naturally. Two com- when there are few offendina edges
mon design structures which are bipartite are the NOR- By using an inverter whose output can be isolated as
NOR and NAND-NAND PLAs (Note that each gate of a PLA shown in Figure Sb. part of the testing problem of our
may have higb fan-in, requiring a proportional number of initial -splitting" method can be alleviated This
control signals.) PLA's are in fact examples of level logic Invertar must have a pulup which will not dominate the
logic which is constructed in levels of gates so that gates pu~ldown paths within the preceding logic gate In this
in the i" level receive inputs from gates in the t-I respect, it is designed to be fault tolerant A third con-
level and send outputs to gates in the i10 level Any trol signal is required
level circuit is bipartite. It is interesting to note that to
string together PLAs. one must take care at the inputs. Two alteratives present themselves to solve the
Often. a PLA uses an input value and its complement as remaining lack of fault coverage One is to introduce a
shown in Figure 4. When the input is treated as a circuit second path for normal operation (making a double
input with a controllable pad, this does not present a edge) and through this redundancy make the construc-

problem However, if the input is to come as the output Lion fault tolerant. The layout of suh a constructicn
of some other PLA. the combined circuit may not be with redundant paths is very important, since the Lkel-
bipartite. Instead of employing the circuit transforma- bood of both paths being broken must be low This aite.--
tion. one may use a pseudo input pad between the two native increases the area penalty at each offending edge
PLAs so that the input value and its complement can be and does not improve the fault coverage
decoupled (take on the same value) during test. This The second alternative is to modify the preceding
illustrates one important theme which emerges from our logic gate so that we have further control over it Note
test approach: that the controllable NOR can be set to output a 2

Allou vaia s and their ew opvnntevi to isms separdless of the values of its normal inputs (the con-
wailues tnhrpesideslk drrisg let trotlable NAND can be set to output a 0). Suppose we

hurtber modify the NOR, using another control input. to
The usefulness of thi p theme has been noted by others all output a 0 regardless of the value of its normal inputs Ifwell (.g [Sa121). The pseudo input pad essntialy an offending edge is from such a controllable NOR. wre
breaks a "bad" edge The concept of breaking "bad" oan check that the normal connection from the gate to
edges will be expanded upon below. Note that the result the next gate is working. La. that the "edge" works
is not always fully testable. correctly in normal operation. To do this. we generate a

A design methodology which produces bipartite cir- 0 and a I as outputs of the gate independent of the
cults is domino CMOS [4o$3J In domino CMOS. each gate's normal Inputs. For each value, we select the nor-
composite gate it actually a precharded invrting gate meal connection through the edge and observe the value
followed by a standard CMOS inverter These composite of the edge beyond the test mode circuitry This test will
gates can be connected in any feedback-free fashion to introduce two new events at such edges. This alternative

-5-

requires a more complicated gate preceding em this added delay will be smaLL However, future work
offending edge, thus further Increasing the area penalty. comparing versions of circuits designed with and without
It also requires more test vectors and observation logic the testability structures is oaressary.
than the simple strategy for "splitting" an edge. Again. if The practicality of the method we have presented
few edges are involved, the area penalties may st.ll be ultimately depends on the relative values of chip fabrics-
less than using the original transformton taon cost, chip performance, and cost of faulty chips

The techniques described -above all "srplit" an reaching the field. The additional circuitry wi decrease
offending edge during testing so that the parity principle the yield Of chips designed using our method and thus
will hold. We may instead, reroute inputs so that each increase the cost of fabrication. The higher fault cover-
gate receives inputs from gates of the correct color dur- age must more than compensate for the increase in
ing test. To do this, for each offending edge. we intro- faulty chips to decrease the number of faulty chips end-
duce an alternate edge to the same input as the inil up in the field. We believe our method will prove
offending edge but from an arbitrary gate of thL -irrect advantageous when high confidence in chip correctness
color. The offending edge is selected for normal opera- is required. However further study is necessary to
Lion and the alternate edge is selected for test. This determine the actual penalties and gains of the method
involves the addition of wires and pass transistors as in various design domains.
shown in Figure 7. As for our simple splitting technique.
a pass transistor delay is added to each offending edge T. Rafereesl
and faults in the pass transistors for normal operation [AeB3] Acken, J.M.. "Testing for Bridging Faults (Shorts)
are undetected. Thif technique does not require the in CMOS Circuits.~ 20th Desn Automatt n Cbn .
addition of an inverter. If routing the alternate connec- MEE. June 1983. pp 717-718
tions is easy, very little additional area is required Note
that this techruque tests a different circuit than the one fAk74] Akers. S.B. Jr.. "Fault Diagnosis as a Graph Color-
desired, but one with the same gates. Thus all the gates Ing Problem." IEEE 71'rars on Cbmputers. C-23.
are tested but not all of the connections are tested. No. 7. July 1974. pp. 708-712

[Br76] Breuer. M.A., Friedman. AD , Dtagnos.s fnd Rile-
6. Concluding Remarks able Dangn of Digitcil Sajstems. Computer Sci-

We have presented a method of creating easily ence Press (Potomac. Md.). 1976.
testable circuits, focusing on the method as applied to [Ch83] Chiang. K-W., Vranesic, Z.C., "On Fault Detection
CMOS and sequential circuits. Our method requires in CMOS Logic Networks." Z0th Desirn Automa-
bipartite combinational logic, specially designed logic oi Cbs if. IEEE. June 1953. pp 50-56
gates and latches, and the addition of observation logic. [Ga79] Garey, M., Johnson. D. Cbrnviserx a" Itrtctabil-
The special components and observation logic could be ft A 04ide to the hesor of ,N'P-Cirbpetrriess.
used separately, but are designed to work with the bipar- W.H. Freeman and -o. (San Francisco). 1979tite properties to produce a circuit requiring very few [G%621 Caey, M., Johnson. D. private communication
test vectors. We have also presented some alternatives
to the transformation presented in [LaB3] which try to (Ha?4] Hayes, J., "On Modifying Logic Networks to
minmize the area penalty of making a circuit bipartite Improve Their Diagnosabity". IEEE P''ais on
for testing purposes, Cbwsputers. C-23. No 1, Jan. 1974, pp 56-82

We have concentrated on the stuck-at fault model. [Ho83] Hodges. D.. Jackson. H.. haahjses and Dirres of
However. in addition to all stuck-at faults, our method Dtal Jutsgted CW'c'its. McGraw-HUi (New
will catch any logic gate fault which causes the gate to York). 1983.
become non-invertng. Also, any bridging fault between s K112] nch. R. PotUe. C., "Automatic Test Generation
white wire and a black wire. causing both to take on the for Electron-Beam Testing of VLSI Circuits."
sane values, will be detected. However. such bridging Mhten.ratonal Confereuncs on Cbcts ond Cbm-
faults between wires of the same color are not detected pute'rs (ICCC). 1982. pp 548-551.
It is interesting to note that faults causing CMOS logic [(&83] LaPaugh. A.. Lipton. R.: "Total Stuck-at Fault
gates to have floating outputs are difficult to deal with in Testing by Circuit Transformation." M Dersin
conventional testing methods since a large Met of test hAma ton Conf. IEEE, June 1983. pp 713-718
vectors must be sequenced [Ch83] In our method, the
small number of test vectors allows us to easily sequence [Ma82] Malaiya. Y.K., Su, S.. "A New Fault Model and Test-
them by inspection to produce tests for these faults ing Technique for CMOS Devices," hVte,.natial
Another advantage of the method in the ability to design lhat CW . IEEE. Nov. 1982. pp 25-35.
self-testing chips using it. allowing the possibility of in- [MeSO] Mead, C.. Conway, L, Mntroduchon to VLSIS Vs-
field te:ting tel;, Addison-Wesley (Reading. Ma.). 1980

Given a circuit which has bipartite combinational [Sa?4] Saluja. K, Reddy, S., "On Minimally Testable
logic, there remain some costs in area and speed associ- Logic Networks". IEEE 7r1nz ern Cbwpiters. C-
ated with the method we have described. The controll- 23, No. 5, May 1974, pp.552-554
able gates and latches, routing of control signals, and (SaUZI Salua, IL. "An Enhancement of LSSD to Reduce
observation logic require extra area. The controllable Test Pattern Generation Effort and Increase Fault
logic gates may be somewhat slower than their standard Coverale." JfA Dsign Asdow aalft Cbvf. IEEE.
counterparts, but this penalty can be mi'urnized during June 192, pp 48-494.
gate design (normally at the expense of area) The
observation logic will present a small extra load an each ill] Williams, T, Parker. XP., "Design for Testabilty
late whose output is observed; this will also introduce - A1Survey. IZEE 71en on Cmputers. Vol C-31".
delay Consequently, we do expect a circuit designed for No 1. Jan 1982. pp 2-15
this testing method to run somewhat slower than if
designed without the testability structures. We believe

(I

I.i.m i mm m l s i ml l i i m m s mm

-6-

(o) LW)

C-- , itch
WIee

"s

VICEI?!I nGURiZ 3

(a) Standard 010S 0ll An d9MS Controllable Latch

(b) Simple Controllable O DS 011 T. Us. and % or* mode inputs

0@40 (1) 7 a, 0
m.ode (i)-(v) T - I

so* value of white output

% value of black output

lirl bil ilecl ell C

FIGURE 4

PLA Structure

me-
urn

VIn lU 2
Sasic Observation Logic for 0OS

(a) Distributed AID

(b) Distributed Oi

1I

L-
__ _ ___ _ __ _ __ _ _

a--7-

NOTeuting for Tan

()Grap fOr circuit with one offen~ding *d.

(b revsforuatier. of circuit 5 g ates becomes S.

Is~s
T

Spot

-aaI~ma. A-A * few -toot" SA be te ~sted

loti onrlle PoIi5 if 6104106 00 chat Pl

IMS Confisuratis for 5Spitzlag" afte

The Irmnpwe of Processing Techniques on Commuications,
NATO Advanced tudy Institute. M&teau de Bono.
(Gers). Frore, 11-22 July 1983

HIERARCHICAL, PARALLEL AND SYSTOLIC

ARRAY PROCESSING

Kenneth Steiglitz

Electrical En ineerin and
Computer Science Department

Princeton University
Princeton, New Jersey 08544

1. SIGNAL PROCESSING AND VLSI

Many signal processing algorithms are highly regular,
data-independent, and access the data in fixed patterns. For
these reasons the current technological advances in very large
scale integrated circuits hold especially great promise for sig-
nal processing, and in fact we now see the development of
many highly integrated processors of a more or less special-
ized nature. At one end of the spectrum, we see programm-
able signal processing chips that are really microprocessors,
with program, memory and logic separated as in a general-
purpose machine. At the other extreme, we see highly-
specialized, custom chips that perform fixed tasks; typically
the data moves through the chip along fixed, regular paths,
the arithmetic logic is distributed in space, and the "program"
is really "hard-wired" into the topology. This talk is devoted to
a study of this latter, custom variety of architecture.

The range of algorithms that are commonly used for digital
signal processing is not very great; a few very important algo-
rithms are used intensively. They fall roughly into four
categories: convolution and filtering; Fourier transforms:
matrix calculations (see, for example, [36]); and iterative

[_I

-2-

algorithms for adaptive filtering. All these applications are
characterized by two important characteristics that make
special-purpose, highly dense hardware very attractive:
a high-volume, real- or nearly real-time data-fIow require-

ments, and
a effective algorithms uith regular patterns of data access

and fixed operation sequences.
There are direct architectural consequences of these

characteristics. The regularity of the patterns of data access
and operation sequences makes possible a high degree of pipe-
lining and multiplexing. This, in turn, makes possible a high-
volume data flow. Furthermore, the regularity of the algo-
rithms is reflected in a regularity of VLSI circuit structure, so
that a hierarchical approach to layout design and specification
becomes possible, and that greatly simplifies the design and
development of large-scale, custom VLSI circuits for digital
signal processing. The rest of this talk is devoted to these
architectural consequences: In the next section we will discuss
some general aspects of parallelism, and why the need for
parallelism justifies the development of custom, single-
purpose chips. Section 3 is devoted to highly-pipelined and
systolic structures, using filtering as an example, with a review
of some useful topologies. Section 4 deals with how some of
the important structures can be combined in a hierarchical
way. We will review mathematical models of VLSI computation
and available lower and upper performance bounds in Section
5. Section 6 will deal with the practical matter of maximizing
throughput by appropriate choice of latching density.

2. PARALLELISM AND THE CUSTOM /PROGRAMMABLE DECISION

There is a general tradeoff between specialization and pro-
grammability in digital signal processing chips. The obvious
advantages of flexibility afforded by programmability must br
weighed against the higher potential throughput of a custom
chip. The choice between the two is dictated by the cost in
time and money of designing and testing a chip, and by the
need for very high-throughput real-time processing. This tra-
deoff changes with time and technology: as chip design
becomes a highly automated process, and as more real-time,
high-volume applications arise (such as in the fields of corn-
munications and robotics), we are likely to see the prolifera-
tion of very specialized signal processing chips.

lI

I -..

-3-

'Daia Ratt

lot-, 0, %Cl,.."

i0'

107

10~

o I0 IO io 10' C10*at o1 1I

Co? S/ bit)

Figure 1. Signal Processing Tasks in the intensity-rate plane
(after [7,9]).

Figure 1 shows one way of looking at the range of signal
processing applications. We plot the data rate in bits/sec as
ordinate, and the computational intensity requirement of a
given task in operations/bit as abscissa. For example, a low-
order FIR filter has a low computational intensity, whereas a
high-order filter has a correspondingly high intensity. A 50th-
order FIR filter at a sampling rate of 20,000 words/sec (a typi-
cal audio rate) and 10 bits/word, with say 100 logical opera-
tions (at the gate level) per fixed-point multiply-by-constant,
corresponds to a data rate of 2xID5 bits/sec, and a computa-
tional intensity of 5xi02 operations/bit. For a chip of fixed size
and for a given technology, the product of the two coordinates
in operations/sec is bounded from above by some constant:
the total number of operations possible if every piece of the

a_

-4-

chip were doing useful work all the time For a chip with :05
gates and a clock period of 100 nsec, this is 2012
operations/sec. This boundary is shown by a hyperbola in Fig.
1 (a straight line in log-log coordinates). At the same Lime,
there is an upper limit on the data rate, determined by the
number of 1/O pins and the speed of the I/O drivtrs.

We are thus constrained to work within the region shown.
Whenever an operation is carried out that does not contribute
directly to the processing of the signal, as counted by the
measure of computational intensity, we move away from the
boundary. Consider, for example, the operation of a pro-
grarm-nable signal processor with a stored program. Every
instruction fetch or store, every instruction decoding, and
eve:v, test for branching, is wasted in the sense that a part of
the chip is e-ing work that is not essential. Also wasted, of
course, is any part of the chip that remains idle during any
particular clock cycle.

'tc are lead to the conclusion that the most efficient use of
chip area, the dearest resource at present, should avoid pro-
grammability, and should make concurrent use of as much of
the chp .s possible. When demands on performance are very
high, at the limits of applications technology, we are lead to
th d,+sigr ol custom, single-purpose chips with fixed data-f' w
paths. Thus. some filtering tasks at audio bandwidths nay be
best i .pltniented now with programmable chips, but applica-
tions at video rates, like robot vision, demand custom designs.

In this t&lk we will use the operation of convolution for our
examples. It is no doubt the most widely-used of all the digital
signal operations and is also representative in terms complex-
ity and t~h.o' ghput requirements. We write it as

= Z = Ewz"k= (1)u.-
k I

The function wt will be called the weight sequence, and wil
usualiy be of finite duration, so that the limits of the summi-
tions in (1) will be finite. We will distinguish two situations in
which convolution is usually implemented: general convolu-
tion, where the weights % are variable on a short-term basis,
as fast as the signal zt; and filtering, where the weights wk are
fixed (or at least infrequently changed). We will make no dis-
tinction between convolution and correlation, which is simply
convoludJon with one of the signals time-reversed.

Convolution can be applied in many ways. At the bit levjel,
with Boolean product, and Boolean sum with carry, it means

1_

-5-

binary multiplication. At the signal level it means filtering or
correlation. At the logical level it means pattern matching
This observation allows us to develop highly regular VLSI topo-
logies by first developing a structure at the word level for con-
volution. A similar structure is then used recursively to build
a multiplier at the bit level. The result is a hierarchical struc-
ture that is highly regular, being uniform in topology all the
way down to the bit level. In the next two sections we carry
out just this plan.

3. SYSTOLIC AND COMPLETELY-PIPELINED STRUCTURES

Highly concurrent VlSI circuits can be characterized by
the following desirable properties [7,9]:
* Loca-Cbnnectedness : This means that computational ele-

ments are connected only to nearby neighbors.
* Flow-Simplicity: This means that each element is used only

once per elementary computation.
* Cell-Simplicity : This means that each element takes only

constant time for its computation; that is, .tE -omputation
time does not depend on the such parameters a's the
number of bits in a word, or the number of coefficients in a
filter.
Systolic arrays [21,22,27] can be characterized as thosc

that are both locally-connected and flow-simple. Wires are
short and the data flows through the structure in a smooth
way. However, each "cell" may be very complex (a multiplier,
possibly), and may take time dependent on the problem
parameters. !

Completely-pipelined circuits [7,9] are another class of
highly concurrent, pipelined circuits, characterized by the
properties of being flow-simple and cell-simple. These circuits
are more general than systolic ones in that long wires are
allowed, but more restricted in the sense that the computa-
tional cells operate in time independent of the problem
parameters (such as word-size).

In what follows we will concentrate on the simplicity and
regularity of some computational structures and ignore some
problems that are important at a practical level, but which
would obscure the presentation. For example, the question of
efficient use of area will be ignored for now, but will be dis-
cussed in Section 5. The problem of distributing power,
ground, and clock lines will likewise be ignored; some

i_

-6-

discussion of these points in the present context can be found
in [9]. We will also not worry about the signs of numbers in
describing multiplicaion, but assume that extension bits are
added to two's-complement numbers so that the answer is
always in range (see [13,31,33] for some discussion of this
issue).

3.1 Word-Serial Filtering
Figure 2a shows the conventional signal flow graph F for

lTR filtering (see '37, for example): the input signal zt is
delayed alor a chain of registers, and during each clock
period the appropriate samples are multiplied by the
corresponding weights u_ and summed. At the right we see
the computation tha* must be performed every clock cycle.
Notice that for this example of a 4-coefficient filter, not only
do we need to perform 4 multiplications and 3 additions
between clock pulses, but the input of the second addition
depends on the result of the first, and the input of the third
depends on the result of the second. This means that we can-
not perform these additions in parallel, and therefore that the
throughput rate is limited by the time for three additions

Figure 2)b shows another signal flow graph F', the transpose
(see [34], fL;r exampie) of signal flow graph F (called BI in
[21]). The transformation of transpoition entails reversing
the direction o, every arc, replacing summing nodes by
branching nodes, replacing branching nodes by summing
nodes, and interchanging input and output. Here the
sequence of sums is replaced by a broadcast of the input signal
z, at any time: the computation during each cycle is again
shown at the right. This broadcasting, or fanout, of a signal
carries with it a certain penalty in terms of delay, but is gen-
erall, much Laster than sequential add operations, so that this
signal flow graph can be implemented with a much higher
throughput if the three additions are implemented with three
adders operating in parallel The commercial chip described in
[47] uses this transposed structure.

The fanout problem of graph F' and the sequential delay of
graph F can be avoided by using the graph FO, shown in Fig. 2c.
Here on every clocx pulse the input signal moves to the right,
and the output signal moves to the left. The transfer function
of 14 is Hlz 2) if the original graph F has transfer function H(z),
so that meaningfu] output is obtained only every other clock
cycle (this is the structure WI of [21]). Thus the input and

-7-

+TJ+Li

4i

Igure 2. Structures for word-serial filtering. The boxes are
delay elements. The computation during each clock period is
shown at the right. From the top: a) F, b) IM, c) r, d) F, e) FI.

I

L'

-8-

output signals must be interleaved with zeros (or two indepen-
dent filtering operations can be interleaved).

It seems that there is no way to avoid all the difficulties
with a single structure. For example, the sumnming nodes of F
can be separated by registers (delays), and corresponding
extra delays inserted between inputs, producing the circuit F4
shown in Fig. 2d (called W2 in [21]). Here the input and output
signals move in the same direction, but at different speeds.
But this graph has more registers than F or P, and has a delay
before the output appears.

Finally, Fig. 2e shows the structure F6 that results when
the additions in F are performed using a binary-add tree
[7,9,37]. This is a convenient structure for visualizing the con-
volution operation, and may be useful for general convolution
(as opposed to filtering). Care must be taken, however, that
the tree is laid out in a way that does not take up too much
area on the chip. The recursive configuration of an H-tree is
useful for that purpose [32].

Are the preceding structures, by our terminology, systolic
or completely-pipelined? Graph F can be laid out to be locally-
connected, but is not flow-simple if a single adder is used
sequentially (and that is only reasonable since multiple adders
would not be usable in parallel). Neither is it cell-simple, since
the time for the elementary computation (that between clock
pulses) depends on the number of coefficients in the filter. The
structure F is therefore neither systolic nor completely-
pipelined.

Signal flow graph P is not locally-connected, because the
length of the longest wire, used to broadcast x, depends on the
filter order. It is, however, flow- and cell-simple, so it is by our
definition completely-pipelined, but not systolic.

Graph Fe is both systolic and completely-pipelined; it can
be laid out so as to be locally-connected, and is flow-and cell-
simple.

Finally, signal flow graph " is completely-pipelined, but
not systolic, since any layout (including H-trees) will have
wires whose lengths depend on the filter order.

3.2 Bit-Serial Multiplication

The same structures used for word-serial filtering can be
used for bit-serial multiplication by a constant, with the
difference that each summing node is a full adder with three

.______.....__z.

carrj carr8

Figure 3. MI: The structure FI adapted for bit-serial rrultipli-
cation.

inputs and two outputs. The inputs to each full adder are the
two addend bits and the preceding carry bit, the outputs are
the sum bit and the carry bit. Figure 3 shows the multiplier
corresponding to graph -4, it is really no more than a s'-riple
implementation of the ordinary shift-and-add elementary-
school multiplication algoritrvi We will denote by :,. M',I
and M" the multipliers corresponding to F, Fl, F2 , and FA,
respectively.

3.3 Word-Parallel Fiitering
We now consider word-parallel filtering, and, in the next

section, the corresponding operaLion of bit-parallel multiplica-
tion. Figure 4 shows a diamond array with the signal z enter-
ing from the top left and the filter weights from the top right
(when the weights wt e-e fixed, they need not be transmitted
through the array as shown but can be stored in place). Notice
that the signal values z, corresponding to a given signal are
arranged on a horizontal line, and hence skewed in time so
that successive values enter the diamond array at successive
clock pulses. The next horizontal line will have another signal
in it, and blocks of f&itered signals emerge from the bottom of
the array at successive clock pulses. The sides of the diamond
array have length proportional to the filter order.

Figure 5 shows the detail of a node of the array: Each node
in Fig. 4 contains a multiplication by a weight and an adder,
and each arc has a delay eiernent (a latched register). We will
call the overall structure F-, (for Army FPiter).

I

I

-10-

FIgure 4. A structure for word-parallel filtering, FA

F~gure 5. Detail of anode in FA

- 11-

3 4 Bit-Parallel Multiplication
As before, the filtering structure becomes a multiplication

structure when the multipliers are replaced by Boolean pro-
duct and the summers by full adders with carries. in this case
the carries propagate down and to the left, which direction
corresponds to the next-higher bit of the product. An extra
triangle is needed at the lower left so that the carry bits can
propagate all the way to the left (see [31], for example'. The
reader will recognize this signal flow graph as nothing more
than an array multiplier (we will call it MA), with every value
latched between clock pulses (see [31,37]). This parallel mal.-
plication structure has the property that the full adders at the
top of the diamond can accept inputs without extra logic, so
that the multiplier can function as an accumulator as well, and
ti-is fact is useful in FIR filters and other applications [10. 15].

This hexagonally-connected array multiplier is locally-
connected, cell-simple, and flow-simple, and is therefore both
systolic and completely pipelined by our definition.

3 5 Other Useful Structures
We have already seen the linearly-connected array (in al:

the serial examples), the hexagonally-connected array (in I%-
and j 1 A), and the leaf-connected tree [7,9] (in F and M5) We
now mention some of the other regular topologies that hae-
proven useful in constructing computational networks for
VLSI. A structure called cube-connected cycles is used in [353
for bit-parallel multiplication. A tree-like structure can be
used to shorten the delay (latency) of a parallel multip!ier, and f
the resulting structure. called a mesh-of-trees can be found in
[6,25]. Leighton also discusses an analogous topology called a
tree-of-meshes [25].

We have seen above a variety of different topologies, all of
which perform similar computational tasks. Some work hasr
been done towards developing a unified treatment of computa-
tional structures of this type, and showing how they can be
expressed conveniently and derived from each other. For more
about such mathematical representations see [12,14,20,45,46].

4. HIERARCHICAL METHODOLOGY
An important feature of the regular topologies exemplified

in the preceding section is that they can be combined in a
recursive, or hierarchical, way. The most obvious application

I

____________ __________________ L

of this idea is to use bit-serai multiplication within a word-
serial filter, yielding, a bit-seria, word-serial filter that is fully-
pipelined. On each cloc.k pulse, every bit mo,es, every piece of
hardware (silicon) is used, a7c one output bit appears. Bit-
serial adders are needc-d at the summing nodes. Such struc-
tures have been disct.ssed widely in the literature recently
[6,13,16,23,301, and are !ttractive at this time because a rea-
sonably high-order fster can it on one chip, and the intercon-
nection problems caus:-d by high pin counts are greatly alle'.-
ated by the bit-serial nature of -he computation.

Suppose for illustration that the multiplier M' is used
within the filter F, ,es ILii in what we will call F1(M'). Figure
6 shows a schematic representation of this filter, which is simi-
lar to those described in [6.131. In theory, then, we have the
ingredients for 5 x t5 = 2t different bit-serial, word-scria
filters, all of whic, h Lee slightly different timing and iayout
details.

++ +i4 4

++

Figure 6. Recursive use of the structure P: F(M t).

I_

-13-

To go one step further, we can combine, serial and parallel
structures. For example, at the other extreme from the com-
pletely bit-serial filter just described, we can assemble FA(MA),

producing a bit-parallel, word-parallel filter - one that pro-
duces a completely ffitero.d block of signal samples once every
clock pulse. (Now we need bit-parallel adders at the summing
nodes.) Of course, the amount of area is greatly increased over
the bit-serial filter, but so is the throughput.

In the same wav, we cculd use a bit-serial multiplier within
a word-parallel filter (yielding FA(Ml), for example), which pro-
duces a bit-serial, word-parallel filter, which for B-bit words,
produces a complete block of filtered samples every B clock
pulses. Aith only the 6 different structures discussed here,
there are 36 possibilities, each having its own characteristics
in terms of layout area and throughput.

An important advantage of this approach to VLSI layout is
that some of t.'.e pi objems associated with design and layout
are greatly simplified, since the overall problem is broken
dow-n into natur&i pieces, each of which can be handled in rela-
tive isolation Such a design methodology is well-suited to the
use of high-level Jayoft languages and silicon compilers (see,
for example, 17.18 2'38b

Another advantage of the hierarchical approach is in the
crucial but often ngiected area of testing. Because the corn-
plexity of testinr arbitrary circuits can grow exponentially

i'th the size of the circuit, it is a great advantage to be able to
break a circuit i.,,Lo blocks whose function can be tested
independently of the other blocks. Much the same approach
has proven very valu;ible in the design of large software sys- I
tems. Some recent results in the testing of regular bilateral
arrays can be found in [19,40,42].

5 MODELS AND BOUNDS FOR VLSI
The signal processor has heretofore been concerned

znainly with speed of operation. High throughput on a general-
purpose computer is achieved by managing time. But now the
clesigner of systems has a new resource to manage: area. It is
no longer sufficient to specify a sequence of instructions for
data processing. We must now specify a geometric layout. Of
Lourse the requir-nments of high speed and small area are
mutually confldtiilg Consider, for example, the multipliers
discussed above A B-bit-serial multiplier like M' will generally
have a throughput rate of one product every B clock pulses

-14-

before the answer is ready, and generally takes area propor-
tional to B. On the other hand, a B-bit-paralle! multiplier such
as MA has a throughput rate of one product every clock pulse
(once the pipeline is full), but area proportional to B2. Thus
there appears to be a conservation law at work, and we expect
that i- ,unds can be obtained on such quantities as throughprut
per unit area. We will describe some such bounds below.

5. ! Some Terminology
We need to define some important terms precisely. First,

the delay or latency T of - signal processing device is the time
between the arrival of the first bit of the input signae at the
input port, and the time that the last bit of the answer
appears at the output port. This is the usual usage of the term
"computation time." But in many signal processing applica-
tions we are concerned more with the throughput rate tharn
with the delay. We define the time between successive outputs
with pipelines full as the period P of a chip, and the reciproca
of the period as the throughput.

If a quantity is bounded from above by a constant multiple
01 f (B) for sufficiently large B. where B is any parameter cf
iterest. (often the number of bits), we say the quantity is
0j IB)), So. for example, the array multiplier MA requires ared
0'B 2) A corresponding loiker bound is written QB)

5.2 A VLSI Model
We will next describe a mathematical model for a VLSI

chip, one that is abstract and simple enough so that results
can be proved about it, but one that is also realistic enough so
that the results provide some guidelines, or at least hints,
about reality. The model we describe is attributed by Vuillemhn
to the three sources [4,32,411; this and similar models have
been used by many others. There is a fairly large literature on
models and bounds that we will not attempt to survey corn-
pletely here (see, for example, [1,2,4,5,24.26,28,35,39,41,43]).

The basic premise is that there is a minimum feature size
A, and minimum delays r and r, dictated by the technology.
The important assumptions are then that a) no two wires can
have their midpoints closer together than ?,, b) every logical
unit (such as a gate) must have area at least X, c) passing a
signa: through a wire entails a delay of at least %, indepen-
dent of the wire's length, and d) passing a signal through a
gate entails a delay of at least 'g.

SI

-15-

As discussed in [2], the assumption that the delay is
independent of wire length is true only in certain regimes.
Depending on the technology, the time for propagation of slg-
nals may be independent of wire length, as we assume here
(the synchrorous model [4]), or proportional to the logarithm
of the wire length (using repeaterm), or proportional to the
square of the wire length (diffusion case).

5.3 Lower Bounds
The essential result is expressed in a nicely general form

by Vuillemin [43]. He defines a wide class of functions called
transitive functions, which includes integer product, convolu-
tion, linear transform, and matrix product.

Theorem [43]: Any circuit that computes a transitive function
has wire area

A = O(D2) (2)

where D is the data rate in bits/sec.

The period P is related to the data rate D in a simple way:
P = NIL, where N is the number of input bits. Therefore the
bound above can also be written

Ap2 = Q N 2) (30)
We can also observe that if any one of Ai input bits can

affect the output, and if there is a constant bound on the
allowed fan-in, then the circuit must have at least logN stages.
This implies the following lower bound on the latency T:

T = O(logN) (4)

A good example to illustrate the use of these bounds is B-
bit multiplication. The bounds above tell us that AP-" = f(B 2).
and T = 11(logB). The array multiplier described above has
A = O(B'), P = 0(1), and T = O(B). It is therefore asyrnptotically
optimal under the measure AP2, but possibly has more delay
then necessary. In fact, the delay can be reduced to the
asymptotically optimal O(logB) with the area increasing only
from O(B2) to O(B2logB) [8] (see also [44]).

An interesting measure of goodness, that takes into
account both period and latency, is AP 2T1. By the arguments
above the lower bound on multiplication is then
AP2 T2 = fl(B 2log2B). The array multiplier mentioned above [8]

-16-

has the upper bound AP2T 2 = O(B2 og'B), which is therefore no
more than one los-factor away from asymptotic optimality, by
this measure at least.

Compare this result with the bit-serial multiplier MI, for
example. That structure has area A = O(B), period P = OkB), and
latency T = 0,B), so that A/ 2r = O(B5). This is an indication that
the overall efficiency of silicon utilization is not as good
asymptotically as that of the parallel array multipliers, but
one should not conclude too much from this argument. For
one thing, we may need a multiplier with small area simnply
because an array multiplier will not fit on a chip, in which case
we must settle for the possible instead of the asymptotically
good. It is also quite likely that the constants of proportional-
ity favor the simple linearly-arranged designs such as M', so
that for reasonably-sized B the measures above may be
misleading. The asymptotic measures give us useful guidelines
for comparing designs that are similar, but there are so many
factors in choosing a multiplier for a particular application at
a particul1ar point in technological development, that
mathematical analysis should be interpreted with caution.

6. PIPENINIG AND LATCHING FOR THROUGHPUT
In the designs discussed above it was assumed that every

signal value was 'ched (that is, held in a register) at every
stage in the signal now graph. So, for example, the array multi-
plier MA has a register after every full adder (this was stressed
in [31]). This means that every part of the circuit can be used
for holding intermediate results -that every part can function
as a pipeline. This approach leads to high throughput at the
expense of delay. In contrast, array multipliers that are com-
mercially produced on packaged chips do not generally have a
high degree of pipelning in this sense of the term; the answer
is usually produced in one or two clock cycles, and the carry
signals ripple through the structure, settling in time for each
new clock pulse. In [3], for example, an array multiplier with
combinational logic that is 113 gates deep is mentioned. Thus,
commercial single-package multipliers are optimized for
latency and not throughput, and are therefore not necessarily
"fast" for custom chip designs for signal processing applica-
tions.

However, latching at every possible stage of a circuit does
not necessarily lead to the highest throughput. First, the
latches themselves take time to operate; their input stages

a

-17-

Art&

AP" ?-A,,tt

Per.od

0 I I I .
0 0 20 30 40

Wu,%6er 0; Laices

FIgure 7. Area, period, ana area-period product, as functions
of the number of intermediate latching stages m, in a typical
pipelined array multiplier (after [11]).

must be charged, and they must charge the input stages of the
next layer of logic. Second, the clock driver must drive the
additional capacitance of the latches, and for a given driver
this lengthens the clock rise- and fall-times and decreases the
possible clock rate.

If we start with one stage of a circuit that has combina-
tional logic that is many gates deep, and we introduce m inter-
mediate stages of latching, we decrease the period by a factor

I.

- 18-

of roughly 1/m, up to the point that the latching and clock-
driving time becomes comparable to the propagation time of
signals through one stage o2 logic. After that point there are
diminishing returns to the addition of more latching. In [11]
the generic situaticn of a block of combinational logic is
modeled mathematically, and the optimal choice of the
number of additional latches, m, was studied. Figure 7 shows
typical curves of area, period, and area-period product as a
function of m for a circuit with a depth of 100 gates. As ca:; be
seen, the period as a function of in decreases sharply to a
minimum and sla s ali rost constant, the area increases
steadily with m, and t:-e product has a well-defined minim.u-.
We may wish to rninmize this product AP instead of the period
P; 1/AP can be written as ,' / P)/A - the throughput-per-unit-
area. In any case, th-e optimral values of n for minimizing P oF"
AP will be close to eac, -ther.

A typical exarrpie o such a situation occurs in the imple-
mentation of the bit-pzirai.l array multiplier MA discussed in
Section 3.4. Here .he ana ysis predicts that the period of a
16-bit array multiplier car- be decreased from 210 nsec to 66
nsec by the addition of 5 stages of intermediate latches, isith
an attendant increase in a-.. a of orly 13%.

7. CONCLUSIONS
The design and development of custom chips for signal

processing tasks is very challenging, calling as it does on the
signal processing expert to make decisions at many design lev-
els: he must manage overall system architecture, circuit
topology, timing, area utilization, and layout. At the same
time, making good use of such resources can lead to reliable
low-cost devices Lhat have very high throughput in many signa
processing applicaticons.

The key to effective design is a high degree of pipelinin
using regular, repeLitive structures and fixed data-flow paLhs
Such structures can be hierarchically organized, making the
design and layout problems manageable.

8. ACKNOWLEDGEMENTS
I want to thank Prof. Peter R. Cappello of the CompuLer

Science Department, University of California, Santa Barbara,

I I

Im i

Ii

- 19 -

Caiifo:nia. Some of the work discussed here is due originally
to him, and forms part of his Ph. D. dissertation (Princeton
University, 1982).

This work was supported in part by NSF Grant ECS-
8120037, L. S. Army Office-Durham Grant DAAG29-82-K-0095,
and DARPA Contact N00014-82-K-0549.

REFERENCES

1. Abelson, H. and P. Andreae, "Information Transfer e nd
Area-Time Tradeoffs for VLSI Multiplication," CACM, Vol. 23,
Jan. 1980, pp.20-23

2. Bilardi, G., M. Pracchi, and F. P. Preparata, "A Critique and
an Appraisal of VLSI Models of Computation." in VLS.I Sys-
tems and CompLtatio,, H. T. Ku.ng, Bob Sproull, and Guy
Steele (eds.), Co.nputer Sci.nce Press, Rockville, Md.,
1981.

3. Bocher, K., A. Lacroix, Y. T m,, D. Wesseling, "Integrated
Floal.ing Po-nt Signal P rocessor," Proc. 1982 IEEL Int
0:mf on Acoustics, Specch, and Signal Processing. Paris,
_V .ay 1982, pp. 1088-91.

4. BreT, R. P. and H. T. K.rg, 'h'ne Chip Complexity of Bin.ry
Arithmetic." Prcc. 12th Arnual ACM Symposiurn on the
Tt&wory of Computing, lcs Angeles, Ca., April 1980, pp
190-200.

5 Brent, R P. and H. T. Kung, "The Area-Time Complexity c!
inrary MulLtlcat. on," J4CM, Vo;. 28, No. 3, July 1981, pp

521-534.
6. Cappel'o, P. R, and K. Steilgitz, "Digital Signal Processing

Applcations of Sys* z!Ac A igorithms," in VLSI Systems and

Camputations, H.T. Kung. Bob Sproull, and Guy Steele
'eds.), Computer Science Press, Rockville, Md., 1981.

7. Cappello, P. R. and K. Steiglitz, "Bit-Level Fixed-Flow Archi-
tectures for Signal Processing," Proc. 1982 IEEE Int. Cornf.
on ftrcuits and Compiders, New York, N. Y., Sept. 29 - Oct
1. 1982.

8 Cappello, P. R. and K. Steigitz, "A VLSI Layout for a Pipe-
lined Dadda Multiplier," ACM Trans. on Computer Systems,
Vol. !, No. 2, May 1983, pp. 157-174.

I'

-20-

9. Cappello, P. R. and K. Steiglitz, "Completely Pipelined
Architectures for Digital Signal Processing," IEEE Trans.
on Acoustics, Speech, and Signal Processing, Vol. ASSP-31,
No. 4, August 1983, in press.

10. Cappello, P. R. and K. Steiglitz, "A Note on 'Free' Accumu-
lation in VLSI Filter Architectures,' submitted for publica-
tion.

11. Cappello, P. R., A. S. LaPaugh, and K. Steiglitz, "Optimal
Choice of Intermediate Latching to Maximize Throughput
in VLSI Circuits," Proc. 1983 IEEE Int. Conf. Acoustics,
Speech, and Signal Processing, Boston, Mass., April 14-16,
1983, pp. 935-938. (Also IEEE Trans. on Acoustics, Speech,
and Signal Processing, in press.)

12. Cappello. P. R. and K. Steiglitz, "Unifying VLSI Array
Designs with Geometric Transformations," 1983 IEEE Int.
Conf. on Parallel Processing, Aug. 1983.

13. Caraiscos, C. and B. Liu, "Bit Serial VLSI Implementations
of FIR and IlK Digital Filters," Proc. 1983 Int. Symrp. on
Circuits and Systems, May 1983.

14. Culik II, K. and J. Pachl, "Folding and Unrolling Systolic
Arrays," Research Report CS-82-11, Faculty of Mathemat-
ics, University of Waterloo, Waterloo, Ontario, Canada, April
1982.

15. Denyer, P. B. and D. J. Myers, "Carry-Save Arrays for VLSI
Signal Processing," in VLSI 81: Very Large Scale Integra-
tion, John P. Gray (ed.), Academic Press, London, 1981.

16 Denyer, P. B., "An Introduction to Bit-Serial Architectures
for VLSI Signal Processing," Draft of a paper presented at
Advanced Course on VLSI Architecture, University of Bris-
tol, U.K., July 1982.

17. Denyer, P. B. and D. Renshaw, "Case Studies in VLSI Signal
Processing using a Silicon Complier," Proc. 1983 IEEE Int.
Conf. on Acoustics, Speech, and Signal Processing, Bos-
ton, Mass., 1983, pp. 939-942.

18. DeMan, H., J. Van Ginderdeuren, and N. Gonpalves, "Cus-
tom Design of Hardware Digital Filters on I.C.'s," Proc. Ous-
torn Integrated rcuits Conf., Rochester, N. Y., 1982.

19. Gray, F. G. and R. A. Thompson, "Fault Detection in Bila-
teral Arrays of Combinational Cells," IEEE Trans. on Com-
puters", Vol. C-27, 1978, pp. 1206-1213.

-21 -

20. Johnsson, L. and D. Cohen, "A Mathematical Approach to
Modeling the Flow of Data and Control in Computational
Networks," in VLSI Systems and Computation, H. T. Kung,
Bob Sproull, and Guy Steele (eds.), Computer Sciencc
Press, Rockville, Md., 1981.

21. Kung, H. T., "Why Systolic Architectures?" Carnegie-Mellon
Univ., Dept. of Computer Science, CMU-CS-81-148, Nov.
1981.

22. Kung, S. Y., and D. V. Bhaskar Rao, "Highly Parallel Archi-
tectures for Solving Linear Equations," Proc. 1981 Int.
Conf. on Acoustic, Speech, and Si gnal Processing, Atlanta
Ga., 1981, pp. 39-42.

23. Kung, H. T., L. M. Ruane, and D. W. L. Yen, "A Two-Leve l

Pipelined Systolic Array for Convolutions," in VLSI Systems
and Computations, H. T. Kung, Bob Sproull, and Guy Steele
(eds.), Computer Science Press, Rockville, Md., 1981.

24. Leighton, F. T., "New Lower Bound Techniques for VLSi."
Proc. 22nd Annual Symposium on Foundations of Com-
puter Science, Nashville, Tenn., Oct. 1981.

25 Leighton, F. T., "A Layout Strategy for VLSI Which is Prov-
ably Good," Proc. 14th Annual ACM Symposium on the
Theory of Computing, San Francisco, Ca., May 1982.

26. Leiserson C. E., "Area-Efficient Graph Layouts (for VLSI;;'
Proc. 21st Annual Symposium on Foundations of Com-
puter Science, Syracuse, N.Y., 1980.

27. Leiserson, C. E. and H. T. Kung, "Algorithms for VLSI -ro-
cessor Arrays," Section 8.3 of Introduction to VLSI Sys-
tems, C. Mead and L. Conway, Addison-Wesley Publishing
Co., Menlo Pbrk, Ca., 1980.

28. Lipton, R. J. and R. Sedgewick, "Lower Bounds for' VlI,"
Proc. 13th Annual ACM Symposium on the Theory of Com-
puting, May 1981, pp 300-307.

29. Lipton, R.J., J. Valdes, R. Sedgewick, "Programming
Aspects of VLSI," Proc. 9th Annual ACM Symposium on
Piniples of Programming Languages, Albuquerque, N.M.,
Jan. 1982.

30. Lyon, R. F., "A Bit-Serial VLSI Architecture Methodology for
Signal Processing," in VZSI 81: Very Large Scale Integra-
tion, John P. Gray (ed.), Academic Press, London, 1981.
(Proceedings of the First International Conference on
Very Large Scale Integration, University of Edinburgh,
August 18-21, 1981.)

- 22 -

3 . McCanny, J. V., J.G. McWhirter, J. B. G. Roberts, D. J. Day. T.
L. Thcrp, "'Bit Level Systolic Arrays," Proc. 15th Asitomar
Con!. on (rcuits, Systems, and Computers, Nov. 1981.

32. .Mead, C. and I. Conway, Introduction to VLSI Systems,
Addison-Wesley, Menlo Park, Ca., 1980.

33. Myers. D. J., "Multipliers for LS1 and VLSI Signal Processing
Applications," M. Sc. Project report MSP5, University of
Edinburgh. U.K., Sept., 1981.

34. Oppenheim, A. V., and R. W. Schafer, Digital Signzd Prc-
cess.ing, PrenLice-Hail, Englewood Cliffs, N. J., 1975.

35. Preparata, F. P. and J. E. Vuillemin, "Area-Time optimal
1,,S: Networks Based on the Cube Connected Cycles," Rap-

pcrt INRIA #13, Rocquencourt, France, 1980.
3G. Priester. i1. W., H. J. Whithouse, K. Bromley, J. B. Clary,

"Signal Processing with Systolic Arrays," Proc. 1981 IEEE
.r,. t Conf. on Parallel Processing, 1981, pp. 207-215.

37. 9_b.ner, 1, R and B. Gold, 7heory and application of dg-;-
ta signal processing, Prentice-Hall, Inc., Englewood Cliffs,
N.J.. 3975.

38. Sastry, S. and S. Klein, "PLATES: A Metric-Free VLSI Layout
Lj.--ifage, Prcc MIT Conff on Advanced Research iV1 Z:.T
Cambrige, Mass., 1982.

39. Savage, J E., "Area-Time Tradeoffs for Matrix Mul"tplca-
tion and R]ted Problems in VLSI Models," J. Computer
cr.d Systems Science, April 1981.

40. Sung, C H., -Testable Sequential Cellular Arrays," ILEE
7raas on Computers. Vol. C-25, Jan. 1976, pp. 11-18.

41. Thompson, C. D., "Area-Time Complexity for VLSI," Proc.
I 7.th Arnual ACM Symposium on the Theory of Cornputing,
Aprl 1979. pp. 81-86

42 Vergs, A. and K Steiglitz, "Testability Conditions for Biia-
tera] Arrays of Combinational Cells," 1983 IEEE Interna-
tioral Co;.erence on Computer Design: VLSI in Computers.
New York, Oct. 31 - Nov. 3, 1983.

43. VUlbemin, J., "A Combinatorial limit to the Computinr
Power of VLSI Circuits," Proc. 21st Annual Symposivrn on
the ibundations of Computer Science, 1980, pp. 294-300.

44. Vuliei-., in, j., "A Very Fast Multiplication Algorithm for
V'LS. lmple..entation." Integration, Vol. 1, 1983, pp. 39-52.

- 23 -

45. Weiser, U. and A. L. Davis, "Mathematical Representation
for VLSI Arrays," Technical Report UUCS-80-111, Dept. of
Computer Science, University of Utah, Salt Lake City,
Utah, Sept. 1980.

46. Weiser, U. and A. L. Davis, "A Wavefront Notation for VLSI
Array Design," in VLSI Systems and Computations, H. T.
Kung, Bob Sproull, and Guy Steele (eds.),Computer Science
Press, Rockville, Md., 1981.

47. Williams, F. A., "An Expandable Single-IC Digitai
Filter/Correlator," Proc. 1982 IEEE Int. Conf. on Acous-
tics, Speech, and Signal .Processing, Paris, May 1982, pp.
1077-80.

I

It

Im

ESP: AN ARCHITECTURE FOR A MASSIVE MEMORY
MACHINE

Rector Garcia-Molina
Richard J. Lipton

Jacobo Valdee

Department of Electrical Engineering and Computer Science
Princeton University

Princeton, N.J. 08544

ABSTRACT

This paper argues the case for a computer with massive

amounts of primary storage, on the order of billions of bytes. We

argue that such a machine, even with a relatively slow processor.

can outperform all other supercomputers on memory bound compu-

tations. This machine would be simple to pro-ram. In addition, it

could lead to new and highly efficient programs which traded the

available space for running time. We present a novel architecture

for such a machine, and show how it can lead to reduced memory

access times.

Note: Ail extended version of this paper has been submitted to the

IEEE Transactions on Computers.

October 28, 1983

ESP: AN ARCHITECTURE FOR A MASSIVE MEMORY
MACHINE

Hector Garcia-Molina
Richard J. Lipton
Jacobo Valdes

Department of Electrical Engineering and Computer Science
Princeton University

Princeton, N.J. 08544

1. INTRODUCTION.

This paper argues the case for a computer with a primary memory substan-

tially larger than what is currently (or will be in the near future) available on a

single machine. We do not have a specific target size for such a massive memory

machine (MM), but for arguments sake let us say we want a few billion bytes of

main physical memory. This size is certainly larger than what any manufacturer

offers today, or will probably offer ii i near future. Our thesis is that such a

MMNI is justified, even today, by the importance of certain applications in which

memory bound compulations occur naturally. For these computations, a classic

Von Neumann machine with a relatively slow processor and massive amounts of

physical memory, would vastly outperform even the "supercomputers" currently

being researched and would be, in addition, far easier to program.

In Section 2 we present the case for a MNIi, including its economic feasibil-

ity. In Section 3 we then discuss how an efficient NLMM could be built.

2. THE CASE FOR A MMM.

Research efforts in the supercomputer field have tended to concentrate at the

computational intensive end of the spectrum, disregarding the memory intensive

applications altogether. The typical supercomputer being investigated today is a

multiprocessor having up to one million processors, capable of executing up to

billions of operations per second and yet have as "little" as sixty four megabytes

of physical memory [Comp8O, CompSl, Comp82, Evan82].

4

-2-

Tbere are many applications for which such a machine (as well as any con-

ventional machine) would be limited by its disk to memory transfer rates. For

example, consider a program which accesses a four gigabyte (4 X 10 bytes) data

structure with an essentially random pattern. A machine with one hundred or

less megabytes of memory can be expected to generate a page fault in just about

every memory access, rendering its potential processing power meaningless as a

measure of its performance.

More precisely let us compare such a supercomputer with one hundred mega-

bytes of memory and a MMIM with four gigabytes of memory. Further, let us

assume that the supercomputer is "infinitely fast" while the NMM runs only at

one MIPS (Million Instructions per Second). Of course the supercomputer will

vastly out perform the MMIM on compute bound tasks. However, for the

memory bound program we are discussing, assume that the supercomputer

creates a page fault every f instructions , and that its disks a-e capable of servic-

ing 100 instructions a second. Then on this task the M\LM still computes at its

one MIPS rate while the supercomputer is reduced to computing at about 100f

instructions a second. Clearly if f is small enough the NMMI will be faster than

the supercomputer: itf Iis about 100 then the speedup is 100:1! While not all

tasks will cause the supercomputer to "thrash" in this way, we believe that there

are a large collection of important tasks that will cause such behavior.

2.1 Applications.

An MUMM will produce significant improvements for any task which refer-

ences, in a relatively random fashion, a large address space. Here we will review

three areas in which such tasks abound, but this list is by no means exhaustive.

(a) Databases [Date8l, Wied77]. It is well known that many database applica-

tions are 10 bound, that is, limited by the speed at which data can be

transferred from disks. Clearly, if the entire database (or a substantial frac-

tion) could reside in main memory, then the 10 bottleneck would be elim-

e inated.

- 3-

Not only will existing queries be answered faster, but it will now be possible

to pose new interesting queries that previously required unreasonable times

to answer. Thus, users can get more useful information out of the system.

(Reliability may be a problem in a massive memory database. We will

return to this issue later.)

(b) VLSI Design [Mcad80]. The size of VLSI circuits being designed is growing

at a fast rate. Today there are circuits with a half million transistors, and

predictions of integrated circuits with as many as one hundred million

transistors by the mid 90's. VLSI design tools will perforce deal with mas-

sive amounts of data, notwithstanding much cleverness in the use of

hierarchical design and the encoding of information.

Many of the VLSI design algorithms have good asymptotic running times,

but have very poor locality of reference. Thus, they are naturally candidates

for an MMNf. For example, a layout system we have designed [Lipt82] uses

topological sorting for placing objects. The algorithm for sorting requires

linear time, but unfortunately also requires linear space and has almost no

locality. Thus, beyond a certain layout size, its actual running time is deter-

mined by the memory available: at a given point, increasing the layout size

by 30'c sends our computer into uncontrolled thrashing and increases the

running time ten fold!

(c) Artificial Intelligence [Nils80, Wins77]. The concept of vast data struc-

tures built mainly by the use of pointers, and hence lacking any locality of

reference when accessed, brings the words "Lisp" and artificial intelligence

(Al) to mind immediately. Garbage collection [Cohe8l] and paging times

contribute substantial fractions to the total running times of many Al pro-

grams. It seems fair to say that a good fraction of Al research involves

memory bound computations.

Certain Al programs, such as DENDR.ML [Buch78] or MtA.CSIMA [Mart71],

have succinct inputs and generally produce su.cinct outputs, and yet may

build enormous intermediate data structures. These programs are even

better suited to a M NM than others. They would not even need to incur in

the overhead of loading the massive memory as a data base or VLSI program

II

-4.

would.

2.2 The economical feasibility of a MMM

Clearly VLSI has made computing in general cheaper. It is also clear,

although not as well understood by everybody, that VLSI has made certain kinds

of computing cheaper than others. One example of this differential impact

involves memory and processing power: over the past few years, the price of logic

circuits has decreased about 207 per year; during that same span, memory prices

have decreased at twice that rate: almost 40% per year. Clearly that trend, if

continued, should be very good news indeed for applications that require memory

bound computations.

In fact, there are good reasons to believe that the figures given in the previ-

ous paragraph represent more than a local kink in the prices of these commodi-

ties, brought about by a vicious fight for market share in a particularly impor-

tant market. Memories are the most regular integrated circuits (ICs), and thus

among those which would profit immediately from higher fabrication densities.

\Ve believe that memories will be always the first circuits to profit from progress

in integrated circuit manufacturing technology.

At today's prices, the cost of the ICs necessary to build a one gigabyte

memory is below one million dollars. This is not out of proportion with the

investment necessary to equip a state of the art installations for research or pro-

duction work in some of the areas identified earlier. Furthermore, if the price
trends hold, t0e ICs necessary to build a four gigabyte memory would cost

approximately 200,000 dollars by the end of the present decade.

2.3 New Programming TechE lques.

A MMM is straightforward to program. ExLstitg programs can be run on it,

and if they are memory intersu:'e, they will run very fast. However, the impact

of a MMM may be even more far :eaching. A IMM may alter the May we pro-

gram and this in turn may yield even grater improvements [Gray83, Wein83].

For example, consider the concurrency control mechanism of a database sys-

tem. Since user programs (called transactions) encounter long delays as they wait

for disk pages to be brought into main memory, the database system executes

several transactions concurrently. Since the transactions are not independent

(they are reading and writing the same database), their actions cannot be inter-

leaved in arbitrary ways. The concurrency control, mechanism (typically using

locking) ensures that only interleavings that preserve data consistency are run.

Very roughly, about 10% of the CPU instructions are spent doing concurrency

control.

When the database system is transferred to a MNIM, the disk delays disap-

pear, and concurrency control may no longer be needed. T'he data required by

each transaction is already in memory, so if transactions are short (as they are in

many commercial systems) they can simply be scheduled sequentially. So in

addition to making data availab!e faster, a KMMM may eliminate the overhead of

concurrency control.

In general, having massive amounts of memory will change our programming

techniques. Data structures for secondary storage (e.g., B-trees, extendible hash-

ing) will become obsolete. Table lookup will be practical in many more cases.

For instance, instead of computing trigonometric functions with a series, we may

want to have a large table of values and use simple interpolation. Digital search-

ing [Knu,73], which improves search times at the expense of memory space, will

be commonplace.

3. THE ESP ARCHITECTURE.

We have argued that main memory is a useful resource in many applica-

tions, and that a computer with massive amounts of memory (e.g., gigabytes) is

eeonomically feasible.

But are there any technological challenges in building a NMMM? Is it not just

a matter of connecting all the desired memory to the chosen processor in a con-

ventional way, i.e., with a very long bus? (See Figure 1.)

-6-

Fig. 1: A Conventional Architecture MAWM

A conventional architecture is a reasonable one, but as we will discuss

shortly there are other architectures that may be superior. The conventional

architecture has two main weaknesses: memory access times and reliability.

" Memory access times. Given current IC densities, a four gigabyte

memory requires about one thousand devices (memory cards) on a single bus.

Even with clever arrangements and higher densities, hundreds of devices per

bus seem unavoidable. Building a special purpose bus to support that many

devices is feasible, although not trivial. However, regardless of how the bus

is implemented, as the size of the memory grows, the access times grow

because of the physical distances and/or capacitance effects. At the same

time, memories are becoming faster, so that the larger access times make us

lose part of the advantage of having a massive memory.

* Reliability. As the size of the memory grows, the probability that one of

its components fails also grows. A conventional architecture h&., no provi-

sion for graceful degradation, and hence the entire machine would be una-

vailable with unacceptably high probability. For database applications,

some type of memory redundancy is also necessary in order to avoid loss of

dat a.

In the rest of this section we present a new architecture which directly

addresses the first of these weaknesses, The reliability issues are briefly discussed

-7-

in the conclusions section, and in a separate, more detailed report (Garc83b].

3.1. A Novel Architecture.

Our basic premise is that the time to access memory over a long bus (i.e.,

one that drives hundreds of devices) is substantially larger than the access time

over a short bus (i.e., one driving a single memory board). The meaning of "sub-

stantially" depends on how the buses are implemented, but for the time being let

us assume that access times over a long bus are at least an order of magnitude

larger than over a short bus.

A classical solution for improving access times over a long bus is to add a

memory cache [Kapl73, Smit,82] to the processor. (See Figure 2.) The idea is that

commonly accessed data reside in the cache, and are hence available with smaller

delays (both because the cache bus is sho:ter and because the cache memory is

generally faster). Unfortunately, caching dues not improve access times

significantly for the programs we have in mind. A cache may be useful for hold-

ing some commonly accessed values, but as discussed in Section 2, we are con-

cerned with programs that reference their data structures in essentially random

ways. Thus, for most of the recently referenced data, the probability of being

accessed next is low.

9 Fig. 2: A MAMlM with a Cache

- 8-

If we cannot bring the data to the processor as fast a we would like, we

could instead "take the processor to the data". This is precisely what the ESP

MAIM does. A schematic description of it is shown in Figure 3. (The name ESP

will be explained shortly.)

L7

Fig. 3: The ESP AMA

The ESP MM consists of a collection of standard Von.Neumann machines,

interconnected by a system-wide (or global) bus that permits the broadcast of

values from one machine to all the others. Each individual machine has its own

processor and local memory connected via a local (short) bus. The gateway of

each machine to the glob,.) bus is an ESP device connected both to the system

bus and the local bus. (The number of machines is not critical to the architec-

ture, but we expect a system with a few gigabytes to have a relatively small

number of machines, possibly up to one hundred. This means that each indivi-

dual machine has a substantial amount of memory.)

The individual processors share the same address space. This address space

is distributed among the local address spaces &- follows (see Figure 3). A small

fraction of the global address space is replicated in each local address space; the

remainder of the system address space is covered in a non-overlapping manner by

the local address spaces. An ESP device connected to each local bus is responsi-

ble for servicing requests that involve non-local addresses.

Even though the ESP MMM has multiple processors, it is a single instruction

stream, single data stream machine (SISD) IFlyn72]. All processors execute the

same program, which is loaded into the replicated portion of the system address

space. As long as that program references locations in the shared subspace all

processors will execute in lockstep and no communication through the system bus

will take place. References outside the shared address space are broadcast and

received on the global bus, as is illustrated by the following example.

Consider a program which references memory words w,1 through wo9. Assume

that to5, wo6 , "o are in machine 2, and the rest of the words in machine 3. Figure

4 shows the time at which each processor receives a referenced word. In this

figure we assume that fetching a word from local memory takes one time unit,

and that broadcasting a word over the system bus takes two units. (We choose

two Units Only to simplify the example. As discussed earlier, we expect the sys-

temn delays to be orders of magnitude larger than the local ones.)

At time 0, all processors start; since they all run the same program, they all

request word u,,. Processor 3 has w,1 locally, so one time unit later it receives it.

From then on, processor 3 works at full speed, accessing words wo2, to3 , and wo4.

At time 4, processor 3 requests word w5, but since it is not local, a delay ensues.

In the meantime, the ESP at machine 3 has been broadcasting words w,1

through wo4. Word w,1 arrives at processors I and 2 at time 3, and the following

g words arrive at one unit intervals. Note that the words are "pipelined" on the

bus, so that there is only one system bus end-to-end dela) involved. Hence, after

the initial delay, processors 1 and 2 start receiving and processing the words at

full speed.

During this time we say that processor 3 "has the lead", i.e., is ahead of the

others. But when processor 2 references %~, it finds this word in its local memory

- 10-

and takes the lead. The other processors must now wait until the ESP at

machine 2 broadcasts uv and the following words. In a similar fashion, the lead

changes back to processor 3 when w is referenced.

4.:"cgitr 4.$CJ4 11 U6 : 4 X' 'U,

3 4 ~ A' A4 Ak.

Fig. 4: Execution in an ESP AMA!~

In summary, an ESP examines each word request made by its local proces-

sor. If the address refers to the shared subspace, the ESP does nothing. If it

refers to the local non-replicated memory, then the ESP reads the fetched word

off the local bus and broadcasts it over the system bus. In case of a reference to

remote memory, the ESP waits for the next word broadcast over the system bus,

and then places it on the local bus. (This is why we picked the name "ESP" for

these controllers: the remote words required appear On the system bus vithout

having been requested, as if the controllers has ExtraSensory Perception.) In any

case, the processor is not aware of the ESP controller (except for time delays); it

operates as if it had a long bus linking it to all the memory units. Each local

memory module must know the addresses of the data it holds, honor requests for

its data, and ignore all other requests. (This is how memory modules in a con-

vention al architecture operate.)

While the common program generates requests for data local to machine m,

tLe processor at m takes the lead. All other processes continue execution at the

same rate as m, with their ESPs supplying the data they need. These "trailing"

processors, mill be behind the leader by an amount of time equal to the one-way

I1

delay time between ESPs through the system bus. When a reference to an

address local to another machine occurs, that machine takes the lead.

Writes to memory can be ignored by the ESPs. When the program calls for

storing into the replicated address space, all processors will execute the instruc-

tion and will update their copies. When the program modifies non-replicated

storage, the processor with the data will modify it, and the rest need do nothing.

(When we discuss reliability in Section 4, we will see that special precautions

must be taken when writing into the nOn-replicated address space.)

The replicated address space is used to store the program and commonly

accessed values. In addition, each processor may have registers and a cache to

hold recently accessed data.

Two important things to Dote about the system bus are that it acts as the

system "clock" and that there is no contention. The data transmitted over the

bus are the timing signals that keep all processors in synchrony. (In the example

of figure 4, processor 2 picks up the lead when it receives word wi4 from processor

34 Since non-replicated data is found only at a single machine, only one ESP will

ever broadcast at a time. This means that the bus protocols will be very simple,

and hence transmissions can be fast.

The ESP architecture has the following advantages over a convention~'l one:

(1) The local machines have conventional architectures. They may be used

independently when the NALM is not needed.

(2) For fully random references, memory access times are cut by roughly a fac-

tor of two. In a conventional machine, the address must be transmitted on

the system bus and the referenced datum must be transmitted back. In an

ESP machine, no addresses have to be transmitted on the global bus: each

6 datum appears on the system bus without having been requested. That is,

since references are random, each memory access will cause a lead change.

But these lead changes only involve a one-way broadcast, and thus, half the

delay encountered in a conventional architecture.

12 -

(3) The ESP MIMM will reward "locality of reference" by minimnizin~g "lead

changes" in programs that exhibit it. That is, if two or more references fall
within the same memory module, then the access times are reduced to local

bus times. The fewer the lead changes, the faster the ESP MMM will exe-

cute.

Locality in this context, however, has a wider meaning than in a conven-

tional memory cache or virtual storage system. Here, locality of reference

means that two references are local to the lead machine, and this machine

may have a substantial chunk of memory (probably tens of megabytes). In

the next sub-section we will explore these issue in more detail.

What is the price we pay for these advantages? Obviously, we have repli-

cated processors and some data. Given current pricing trends, the cost of this

extra hardware should be reasonable, at least compared to the cost of the massive

Memory. What we have not sacrificed is simplicity and ease of programming.

The processors and memory modules are conventional. The ESP architecture is

transparent to the user program. The task of distributing the global address

space to the spaces of the individual machines can be relegated to a sophisticated

loader.

3.2. Program Locality.f

The potential performance improvements of an ESP MMM over one with a

conventional architecture hinge on two main factors:

(i) The "locality" exhibited by the program, and

(ii) The memory access times over the system and local busses.

In this sub-section we study the first factor in more detail. The bus times are

discussed in the following sub-section.

The ESP MM1M utilizes several mechanisms to improve memory access

times: (1) registers and caches at each processor to hold recently accessed values;

(2) a replicated address space to hold the program and commonly accessed values;

and (3) the ESP mechanism, which lets the leading or controlling processor move

to the memory module where the data resides. The first two mechanisms can be

- 13-

easily incorporated to a conventional MMM, so the decisive factor is clearly the

ESP mechanism.

What does the ESP mechanism give us that the others do not? In order to

answer this question, let us postulate a simple data reference pattern. (We are

not interested in the instruction reference pattern, since the entire program is

replicated in all machines.)

Suppose that the M memory words of the MMM are divided into blocks of B

words each. A block is the unit of data transfer between the memory and a

cache. We assume that the location of the next referenced block depends only on

the location of the most recently accessed one. Specifically, Figure 5 gives the

probability distribution of the next reference. There is a set of a blocks, centered

on the last referenced block, that have a high probability p of being accessed

next. All other blocks have a much lower probability q. (For simplicity, we

assume that when the last reference is within a/2 blocks of the ends of the

memory, the distribution wraps around.) We assume that a is odd.

MC4A!.. ..

Fig. 5: The Probability Distribution.

Our experience tells us that this is, in an idealized way, the way programs

reference their data (e.g., see [Siss68, Smit82]). For example, consider a program

that simulates a VLSI chip. When a transistor is referenced, several contiguous

words may be referenced. The next transistor reference is likely to be to a con-

nected one, and if the circuit is represented in a reasonable way, it will be close

-14 -

to the previous one. Here "close" may mean within a few thousand bytes, so our

high probability window, a, may be relatively large.

The parameters a and p define the locality of the program. As a shrinks

and/or p grows, the program exhibits more locality, and as a grows and/or p

approaches q, the references become more random (i.e., the distribution becomes

flatter).

Note that this distribution ignores other types of data locality that may also

be exhibited by programs. For instance, programs may have time locality (i.e.,

tend to reference recently accessed data) or may access certain fixed locations

with high probability. Since these types of localities are exploited by data

caches, the distribution we have selected to study will highlight the strengths of

the ESP mechanism, not of caches. This is precisely what we want to do.

Using this probability distribution, we have analyzed the performance of an

ESP mechanism (where processors have no registers or caches) and of a simple

cache. The analysis is described in [Garc831. Figure 6 presents some typical

results. The figure shows the hit ratio for the cache (he) and the ESP mechanism

(,,as a function of a, the high probability windowN. For the cache, the hit ratio

is the probability that the next referenced word is in the cache. For the ESP, it

is the probability that the next word falls in the same machine as thie previous

word. (In the figure, locality decreases from left to right.)

If on each memory reference the cache can fetch a significant portion of the

"high probability of next access" window, then the cache perform verywel

(That is, if a is close to 1 block.) In this case, either the program has very high

locality or the system bus feeding the cache is very wide. In this case the ESP

does not have any advantages over the cache.

At tbe other extreme (very large a), references are fully random and both

mechaiiisms have a hit ratio of 0. In this range, the ESP is superior by roughly a

factor of two because, as we discussed earlier, addresses need not be brop icast.

In between is a large range of localities where the ESP performs substan-

tially better than the cache (from a equal to 4 or 5 until a is roughly the number

of blocks in a memory module of the ESP.) In this area, most references using the

ESP mechanism are local. On the other hand, with a cache, most references

- 15 -

1.0q D. S

43
05

8)

02

a'
10ID I)

Fig. 6: Hit Ratios for ESP and Cache

continue to rely on the system bus. This is because the cache mechanism

retrieves data from memory in very small units, on the order of a few words.

The improvement will be, roughly, the ratio of system bus access times to local

bus times.

The programs that will use a MMM, as we argued in Section 1, are memory

intensive ones, programs that cause a virtual memory system to thrash. Thus we

expect these programs to operate in the range of localities where the ESP

mechanism does pay off.

(IGarc83 presents more results, and also considers other probability distribu-

tions. The trends obtained are similar to what we have presented here.)

- 16-

3.3. System and Leal Bus Access Times.

The performance improvements of an ESP MNMM over a conventional archi-

tecture depend on the value of the system bus access time. D, and the local bus

time, d. if we ca, Implement a system bus with D small compared to the cycle

time of the processor(s), then cutting this time by a factor of two or more may

not be important. Similarly, if d is not significantly lower than D (as we have

assumed so far), then the gains of the ESP mechanism will be limited.

The values of d and D depend on the hardware used to implement the

N IN, as well as on the size of the memory. Thus, it is difficult to reach an-

definitive conclusions. However, we can discuss two implementation scenarios

where certainly D is significant as compared to the cycle time, and where d is

orders of magnitude less than D. In both of these cases, the ESP ,MMMM performs

very well.

* Processor and Memory on a Chip. It will soon be possible to build a

reasonable processor with a few megabytes of memory, all on a single VLSI

chip. These chips wi!l be ideally suited for the construction of an ESP

M.\I.I. The time to access on-chip memory (d) will be very small, since

sm.,ll currents and small distances are involved.

The limiting factor in this implementation v, ill be the rate at which ESPs

can broadcast data out of the chip, into the system bus. However, an opti-

cal bus may provide the necessary throughput.

* Sharing Memory on Existing Computers. Suppose that we already

have an installation with several computers (maybe 2 or 3, maybe 100 or

200) connected via a local area network. The ESP architecture gives us a

way to combine these resources into a single MMM, when it is needed.

Clearly, local memory access times are significantly less than transmission

times over the network, so the ESP is a useful idea. Each existing machine

would be provided with an ESP controller, and the network protocols (for

MMM operntion) would be simplified, e.g., there is no contention, no need

for packet headers. (This assumes that while the machines operate as a

NINIM, the network has no other users.) A program requiring more memor.

than is available at a single machine (even if it only needs the memory of 3

- 17-

or 4 other machines) can be sped up considerably. There will be improve-

ments even if its references are totally random, since page faults (with seek,

rotational, and substantial data transfer delays) will be replaced by fast (and

probably short) network messages.

For some programs it may be possible to implement the ESP mechanism

fully in software. If a program has a distribution similar to the one of the

previous sub-section, and if a is less than the memory at each computer,

then lead changes will be infrequent. A lead change can then be imple-

mented by sending a message with the state (e.g., contents of registers) of

the lead machine to the next leader.

4. CONCLUDING REMARKS.

If we look at the ratio of memory size to processor speed of past and present

commercial computers, we find that most are within an order of magnitude of

one megabyte per MIPS. (The value one megabyte per MIPS is called "Amdahl's

constant".) The supercomputers being developed all have ratios well below this

value, and are targeted for computationally intensive problems. The machine we

proposed here, on the other hand, would have a memory to speed ratio of 100,

1000 or more. We have argued that such a machine would speed up memory

bound programs like no other computer could. We also asserted that a massive

memory machine having unconventional architecture and features would be more

efficient. Yet, in spite of its novel structure, this machine would be simple to

program.

We have only sketched the main features of a massive memory machine and

the ESP architecture, but of course, there are many other important issues that

must be resolved before such a machine can become a reality.

One of these issues is reliability. F.3rtunately, the ESP architecture appears

to be well suited for failure toler2 -Ihe state of a computation (e.g., registers

and program counter) is replicated at all processors, so if one of them fails, its

state can be reconstructed. The processors are connected through a simple linear

bus, so it is not difficult to have spare units that can take over when others fail

A major portion of the main memory is not replicated, so if it failk data v. 1i 1..,

AD-AI36 553 PRINCETON VLSI PROJECT(U) PRINCETON UNIV NJ DEPT OF
EECTRICAL ENGINEERINO AND COMPUTER SCIENCE R d LIPTON
1963 NUTS 4 92 E 0549

UNCLASSIFED F/V 9/S NLEl'N

a

MICROCOPY RESOLUTION TEST CHART

NATIO#A1. BUREAUI OF STANDARDS-1963-A

lost. Thus, if this data is important, a secondary copy must be kept. Mechan-
isms similar to those used in database systems (eg., logging) can be used to keep
the secondary copy up to date. These strategies and mechanisms are discussed
imlGarcg3b).

A second issue is the utilization of the multiple processors in the ESP archi-
tecture. Given that they exist, they can also be used for parallel processing. For
example, in a database application, the MtvM could be divided up for executing a
parallel search, then reconstituted. Of course, the program for the multiple pro-
cessors will not be as simple as the MMM ones.

Acknowledgments. Several useful ideas and suggestions were made by Jim
Gray, Peter Honneyman, Steve North, Peter Weinberger, and Gio Wiederhold.

REFERENCES.

(Buch78I B. G. Buchanan and E. A. Feigenbaum, "Dendral and Meta-Dendral:
Their Applications Dimension", Artificial Intelligence, Vol. 11, Num.
1-2, 1978, pp. 5-24.

[Cohe8l] J. Cohen, "Garbage Collection of Lsinked Data Structures", ACM
Computing Survey., Vol. 13, Num. 3, September 1081, pp. 341-367.

ICompSOI Special Issue on Supersystems for the 80's, IEEE Comnputer,
November 1980.

[Comp8l] Special Issue on Array Processor Architecture, IEEE Computer, Sep-
tember 1981.

IComp82J Special Issue on Highly Parallel Computing, JEEE Computer, Janu-
ary 1982.

[Dategl C. J. Date, An Introduction to Datubase System, Addison-Wesley,
1981.

Evan82l D. J. Evans (Editor), Pareel Proceing Syetenm, Cambridge
University Press, 1982.

[Flyn72] M. J. Flynn, "Some Computer Organizations and Their

Effectiveness", IEEE Transaetions on Computers, September 1072,

pp. 048-960.

[Garc83] H. Garcia-Molina, R. J. Lipton, and J. Valdes, "Analysis of the Mas-

sive Memory Architectures", Technical Report 313, Department of

Electrical Engineering and Computer Science, Princeton University,

May 1983.

Gare3b 11. Garcia-Molina, R. J. Lipton, and J. Valdes, "A Massive Memory

Machine", Technical Report 315, Department of Electrical Engineer-

ing and Computer Science, Princeton University, July 1083.

[Gray83 I. Gray, "What Difficulties Are Left in Implementing Database Sys-
tems", Invited Talk at SIGMOD Conference, San Jose, CA., May
1983.

lKap73) K. R. Kaplan, R. 0. Winder, "Cache-based Computer System,"

IELE Computer, March, 1073, pp.30-36.
[Knut73 D. E. Knuth, The Art of Computer Programming; Volume S: Sorting

and Searching, Addison-Wesley, 1973.

fLiptS21 R. J. Lipton, S. C. North, R. Sedgewick, J. Valdes, and G. Vijayan,

"ALl: A Procedural Language to Describe VLSI Layouts", Proc.

Nineteenth ACM-IEE Design Automation Coqfcrence, L. Vegas,

Nevada, June 1982, pp. 407-474.

[iart7l W. A. Martin and R. J. Fateman, "The MACSYMA System", Prot.

ACM Second Symposium on Symbolic and Algebraic Manipulation,

Los Angeles, CA., 1971, pp. 23-25.*0
[Mead80] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-

Wesley, 1980.

I

