156333 PRINCETON VLS1 PROJECT(U) PRINCETON UNIV Ny DEP! OF 13
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE R y L 1P1ON
1983 NOOO14-82-K-0549

UNCLASSIFIED

F/6 9/% '

| .

!
)
p
£
* !L
1
1
iﬁ
+
|
L .
' |
) i
i
e .

10§ s
== = k& 22
Mnmg

L
fllis flis nm

(o]

HE

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963~ *

* . g,

™
:.g PRINCETON VLSI PROJECT: Semi-Annual Report
Ne)
PERIOD ENDING: November 15, 1083
™ .
oy
<E R.J. Lipton - Principal Investigator
EECS Department
|
Q Princeton University
FACULTY Contract NOOO1L-82-K-0549
B. W. Arden
D. Dobkin

H. Garcia-Molina
P. Honeyman

A. LaPaugh

K. Steiglitz

DTIC

ELECTE[
JANS 1984

D

83 12 09 092

TSTRIBUTION STATEMENT A |
Approved for public release; ‘

Distribution Unlimited

\ «.

/"‘”‘:>

1. Introduction

There are three major aspects to our project. The first concerns the
development of a procedural approach to the layout of VLSI circuits. The second
is the continuing investigation of the census language. Finally, the third is in the

area of testing of VLSI circuits. ,—\
\

2. Procedural Approach to VLSI

1. ALI2 [LaPaugh, Mata]

A complete version of ALI2 is now operational. It includes a variety of sup-
port packages. These include a library of basic cells and a switch-level simulator
that is “built” into ALI2. This simulator is novel in that it can detect a number
of “‘problems” in circuits such as race conditions.

ALI2 is now being used and evaluated by a number of VLSI designers at
Princeton. It is also being used in a beginning VLSI course at Princeton. We
hope to get feedback from these users shortly on ALI2 and the procedural ap-
proach to VLSI design.

Already work is under way on improvements to AL]2. One area of improve-
ment is the elimination of any need for design rule checkers. Layouts generated
by ALI2 are usually design rule correct but this is not guaranteed by the system.
It appears possible to modify ALI2 slightly to make all generated layouts design
rule correct.

2.2. Clay [Lipton, Lucas, North, Souvaine)

Clay, another procedural approach to VLSI Jesign, is now operational. We
are currently using it in several design projects. Indeed, a number of simple
designs have completed successfully the full design-fabrication cycle. We have
also just made Clay available to other institutions and have a number of users

outside Princeton.

2.3. Layout Algorithms [Huang, North, Steiglitz)

The layout algorithms used by ALI2 and Clay are quite prone to “‘thrash-
ing” the paging system of the VAX. For this reason a number of independent
projects are underway to improve on the current implementations. Clay uses a
hierarchical approach. Clay allows the user to break their layout up into several
pieces that can be separately compiled into layouts. This still preserves the total
flexibility of Clay layouts. Another more theoretical approach is based on a new
algorithm for layout. For an important class of layout problems, this algorithm
can guarantee few (relatively) page-faults. Work is now underway to implement
and evaluate this new algorithm.

){DD 3
'U“
o 9o
oS
t =83
© o > L P
By |t T -t 8:: ©
o8 O -l oq ™ O
"‘g [T PO)
O, fom D} % o SWw
O o« -l a2 o >
n, & O & " o<
g.mog*‘ oy ot
- ! q -
Q 0 0 t
Q B b -} b-'ﬂ‘: g\—
<|mASH | @A a
M—— ., —— 1 Q

-

2.4. Referee [Lipton)

Referee is a new program for circuit comparison. It uses a new definition of
when two circuits are the same. This definition is more ‘‘forgiving" then the usu-
al definition based on graph isomorphism. Referee also has a guaranteed running
time that is linear in the size of the circuit. We are planning in the future to in-
tegrate it into the ALI2/Clay systems.

2.5. Applications of Clay

2.5.1. Graphics Engine [Dobkin, Field, Souvaine]

Progress on the design of a VLSI engine for doing graphics has concentrated
on the design of custom chips for scan conversion of lines. Using Clay adders of
various types have been designed. These can be combined to yield complete cir-
cuits for both Bresenham’s algorithm and Field's algorithm for anti-aliased scan
conversion of lines, scenes, and cubic curves.

Work has begun on interfacing these circuits to other portions of our graph-
ics system. The goal is to have the pseudo-triangle as the basic building block.
This structure consists of the interconnection of three vertices via curves of arbi-
trary degree (<4). Circuits to compute these functions are lacking in even high-
end state of the art graphics systems.

2.5.2. Recursive Layout [Lucas, Souvaine, Steiglitz]

Clay has been used to design a number of recursive circuits. These include:
(1) comparers, (2) tally circuits, (3) various adders, and others.

The advantages of using Clay for such designs are several. First of all, once
the basic cells have been described, the entire layout is generated by a single re-
cursive function call. Since, in Clay, the calls remain flexible until the layout is
complete, proper interconnections among the cells is assured. Moreover, by
changing a single parameter, an 8-bit, a 16-bit, a 128-bit, or any size layout may
be generated.

Equally important, however, is the ease with which we can resize transistors
in order to improve speed. A number of layouts have used this feature and Cry-
stal to dramatically improve their performance: one chip was speedup from
200ns to 53ns by just such a resizing which is trivial with Clay. We are now
working on automating this whole resizing step.

3. Census
There are two main projects under way here.

3.1. Top/Down [Lopresti, North]

This project is investigating the use of the census approach to parallel com-
putation as a way to speed up a large class of computations. The essential idea
is that rather than speeding up the inner loop of a computation as is usual, we
plan to take a top-down approach. Here, the problem is decomposed at a high

-4-

level into independent (or nearly) computations on loosely coupled processors.
We are currently investigating the classes of problems that match this approach.

3.2. M [Garcis-Molina, Honeyman, Lipton]

This project is investigating a new approach to the design of a super com-
puter: we propose to interconnect large number of memories with a very small
number of processors. Our central thesis is that a machine with a hugh amount
of physical memory, in the tens of billions of bytes, can outperform other super-
computers on many important tasks. The project has already found a new novel
way to implement such a machine which we call ESP. Work is now underway to
develop and expand our understanding of the issues involved in building such a
machine. ~

4. Testing
Work on VLSI testing is continuing along two basic lines.

4.1. Structured Testing [Steiglits, Vergis]

Work here has recently found large classes of regular layouts that are easily
testable. These include many important classes of systolic arrays.

4.2. Bipartite Testing [LaPaugh, Lipton)

Work continues on this approach to design for testability. The earlier
methods have now been extended to CMOS circuits. Work also is continuing on
building test circuits.

In addition, a new but related approach to testing is now being developed.
It uses a special nand gate that is similar to that used in the Bipartite Method.
However, it avoids the potential doubling of the number of gates found in the Bi-
partite Method. The additional cost is the number of test vectors is no longer
constant but in worst case is linear in the size of the circuit. The key, however,
is as before it is computationally easy to find the test vectors that guarantee
1006 coverage.

6. Papers

Molding Clay: A Manual for the Clay Layout Lasguage
Stephen C. North

VLSI Memo #3
Suly 1088

Molding Clay: A Manual for the Clay Layout Language

Stephen C. North

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, New Jersey 08540

Bell Laboratories
Murray Hill, NJ 07974

The Clay VLSI Design Language

Clay is a procedural language for NMOS VLSI layout design.t A layout in Clay is created
by writing a program whick describes the devices and wires in the layout, and where they are
placed. The Clay system translates the algorithmic description into CIF (Caltech Intermediate

Format).

There are several advantages of a programming language over s graphical editor for VLSI
design. A programming language prov'ides a means for controlling the complexity of the design
task. For instance, a structured design language can belp make large layouts managable by top-
down decomposition, similar to the way large programs can be written. A language, as opposed
to an editor, also provides a vebicle for implementing VLSI layout algorithms, and allows the
designer to write generic, parameterized cells (such as tramsistors, inverters, PLAs, channel

routers, etc.) and then instantiate them many times.

A disadvantage to our approach is that the designer cannot see his design as he is writing
the layout program, except by going through the translate-layout-plot cycle. So he must bave a
mental (or physical) picture of the design he is trying to create, and then express it as statements
in the programming language. This is primarily a problem in writing low-level cells, which

% The fondamental design of Clay is independent of the fabrication technology; an extemsion for CMOS is
planped

-2.

contais many random objects and which often must be optimized for small area. Higher level
structures tend to be more regular and are more naturally described algoritbmically. Neverthe-
less, we have had satisfactory experience with designing low-level cells, and since Clay can handle
arbitrary CIF objects, it is very easy to access cells created by other Isyout tools such as a graphi-

cal editor.

Clay was written as a package of C data types and functions. Before trying to write a Clay
program, the designer should already know C. We chose C as a base language because we did not
want to try to re-invent all the features of a structured programming language not related to the
layout task and C is flexible enough to support the data types and function interfaces we need.

Further, the Unix C compiler is eflicient enough to support large layouts.

Clay adds two new data types to C: wires and symbole. Wires are horizontal or vertical
runs of some layer (metal, polysilicon, or diffusion). Wires declared in a Clay program are of fixed
width but variable length. The length is determined by the Clay system itsell as part of the
translation into a layout. A wire can be thought of as a stretchable line segment with a fixed-
width field around it. A symbol is a small rigid piece of CIF, such as a transistor or contact.
Symbols interconnect wires. Thus, a layout consists entirely of stretchable wires meeting at sym-
bols. It is intentionally mot possible to place any object at an absolute location. This flexible

placement of objects, similar to stick diagrams, is an important feature of Clay.

The Clay language primitives (which we will describe in detail later) create wires and sym-
bols and coptrol their placement in the layout. The execution of a Clay program produces, not
the CIF layout, but a list of the wires and symbols it created, and constraints on their placement.

A program called the solver converts these into CIF.

To get started, consider the following simple Clay program illustrating the basic primitives

(live pumbers are not part of the program).

.3.

#include */va/clay/lib/header.h”
maln()

wiretype w;
symboltype s;
w = wire(POLY MIN);
s = symbol('‘mpcontact”);
ordered(LR);
place(s, NULL NULL ,w,NULL);
place(s, w NULL,NULL ,NULL);
leaveordered();

ot ~ad Ak XX X X R
[N TR A o g

[)

}

Line (1) is the include needed for the definition of Clay data types. Every Clay program must
bave this. Line (4) is the declaration of a wire variable. A wire variable takes on actual wires as
values. A call to wire creates a new wire in the layout, but does not say anything about where
to place it, nor how long it is. Thus, the call to wire in line (6] sets w to a new minimum width
wire of polysilicon. In NMOS, the legal layers are POLY, METAL, and DIFF. Widths larger

than MIN can be given as multiples of the predefined constant LAMBDA, for instance:
w = wire(METAL,10 * LAMBDA);

To conform with the convention that CIF dimensions are given in centimicrons for 2.0 micron
NMOS, LAMBDA is currently defined as 200. For a different fabrication process or CIF scaling
factor, LAMBDA can be redefined. The width of a wire is the maximum of the user-supplied
width and the process minimum. That is, a wire can’t be narrower than the design rules allow,

but it can be wider.

Line (5) is the declaration of a symbol variable. As described before, a symbol is a rigid
object that can be placed under the control of a Clay program. A symbol variable is set to such
an object by a call to symbol, as in line (7). The argument to symbol is the Unix name of a
CIF file. Clay uses a symbol as a template, to be copied and placed. The call to symbol does
not put anything in the Jayout, but merely sets the value of a symbol variable so the symbol can
be referenced later. Since symbol opens, reads, and closes the CIF file to get the symbol
definition, it is better to set symbol variables once at the start of a program, rather than within a

loop.

- 4-

An important concept in Clay is that wires and symbols are placed inside ordered contexts.
The ordered primitive creates a new context. Its argument specifies the kind of context to be
created: TB for top-to-bottom, BT for bottom-to-top, LR for left-to-right, and RL for right-to-
left. A context is a virtual box in the layout. A context's scope extends until a matching
leaveordered primitive appears. In our example, the left-to-right ordered context created in line
(8) continues until line (11). Usually, ordered and leaveordered will enclose a block of code,
but since they are executable primitives (and not syntactic delimiters of a static scope) a Clay

program cab create new contexts dynamically.

Within a context, the place primitive places wires and copies of symbols. The general form
of this primitive is:
place(sym,a,b,c.d);

The first argument is a symbol; the other four are wires or the constapt NULL. The call to place
has several eflects. First, it forces the wires to meet at a point: @ must enter from the left, § must
enter from the top, ¢ must enter from the right, and 4 must enter from below (see Fig. 1).
Second, it places a copy of the symbol op top of this point. Third, the symbol is constrained to
lie entirely within the current context. Fourth, aymbols are ordered as they are placed. It is this
interplay between ordered and place that gives Clay its power. The user need never explicitly
constraint the position of any wire or symbol. The positions are implied by the sequence of primi-

tives that appear in an ordered context.

Figurc 1

-5-

If a wire argument to place is NULL, then there is no wire entering from that direction.
Note that the four wire arguments need not be distinct: if a wire goes through a symbol, not ter-
minating inside it, then it can enter from both top and bottom, or left and right. The symbol
argument can also be NULL, which forces the wires to meet and orders the point in the current
context, but does not create a copy of a symbol. Note that a symbol cannot be used where the

wires do not meet at a point (see Fig. 2). Cases like this can be created by a Clay function.

L

Figure 2

Once a Clay program (foo.c) has been written, it can be translated into a CIF file by the fol-

lowing commands:

% cl foo.c
% a.out

%% solve

cl compiles the source program and loads it with the Clay runtime library. Cl is a slightly
modified version of the ce¢ compiler, with the same options. The execution of a.out creates the
constraint files. These sre put in the current directory as dot files since usually the programmer
need never refer to them. Since their names are fixed (for instance: .xconstraint, .yconstraint,
.definitions) each Clay program should reside in its own directory. Finally, solver reads these files
and outputs a file pamed ou!.cif containing the layout. The plot of the example program is given

in Fig. 3.

Figure 3

Correcting Errors
Syntax errors are detected by the compiler.

Run time errors are sometimes self-explanatory and sometimes aren’t. If the run time sys-
tem complains about a ‘“‘negative constraint,”’ a Clay primitive has written a constraint which
that the right endpoint of a wire is to the left of its left endpoint. Also, CIF symbols not in the
special format described later will be rejected. The run time system can core dump for the same
reasons an ordinary C program does, such as referencing an uninitialized wire or symbol variable.

#db can be used to track down some of these errors.

The most common diagnostic from solver is the infamous ‘‘cycle error.” This means that the
Clay program wrote an inconsistent set of constraints; there is no possible layout satisfying them.
For example: a cycle error occurs if the Clay program states that wire A is both above and below
wire B. Look for incorrect place and ordered commands, and misuse of wires that are function
arguments. Referencing an uninitialized wire variable may also cause the solver to give 3 warning

about a ‘‘coordinate variable number out of bounds.”

Many runtime or solve errors can be diagnosed with the aid of the trace package. The trace
writes a log of the Clay primitives called (with indentation according to the nesting of ordered
contexts) on stderr. set_trace(level) turns the trace on or off. The level can be TR_NOTRACE,
TR_PARTIAL, or TR_TRACEALL. If enabled, trace also checks for dangling wires at the end of

the program run. These are wires with one end unconstrained. Since the solver tries to move the

.

endpoints of wires as far down and to thg left as possible, the free end will stretch to the boun-
dary of the layout, even if it crosses over the other endpoint (‘‘snaps back”— see Fig. 4). The
solver gives warnings about wires that are degenerate or snap back and does not place them in
the layout. If a wire is created by a call to ext_wlire, rather than wire, its external name will be
printed in the trace. The format of the call is ext_wire(layer,width,external_pame} where

external_name is a string.

Finally, the solver can generate illegal CIF if there is a bad symbol file.

T 4

Figure 4

More Primitives

Altbough ordered and primitive are powerful enough to describe most Clay designs, other

primitives are provided for access to internal data structures, efliciency, or flexibility.

drop(sym,a,b,c,d) takes the same arguments as place. drop glues up to four wires
together in a point, and puts in a symbol over this point, but does not write any other con-
straints. drop is appropriate when symbols are being dropped in over a regular structure which
bas already been constrained. For instance, 3 PLA can be created by first laying out a grid of
wires, and then dropping in contacts and transistors where needed to define its functions. Because

of the risk of design rule violations, drop should be used carefully.

override(i) changes the default separation of wires and symbols in an ordered context. The

default separation is the maximum imposed by any design rule, which is 3 * LAMBDA in the

B A pees S

-8-

current NMOS version of Clay. This means that Clay is not very smart about how close the
design rules allow objects to be packed; it assumes the worst case. override is intended for
hacking low-level cells, where lambdas count. Its integer argument is in centimicrons, but it can
be given as a multiple of LAMBDA. Obviously it is possible to create layouts with design rule
violations if override is used incorrectly. Note that the argument is the ehange in separation—

pegative to decrease it, positive to increase it.

layer(w), width(w), and direction(w) have wiretype variable arguments. layer returns
the layer of the wire. dlrectlon returns its direction. (TB, LR, BT, or RL). wldth teturns the
width of the wire in multiples of LAMBDA. These primitives can be helpful when writing a func-

tion that needs to find out the type of its wire arguments.

position(w,type) constrains wires to run outside the layout (the outermost context). wisa
wiretype variable; type is one of the following: enter_ left, enter_right, enter_top,
enter_bottom, thru_LR, or thru_TB. enter forces one end of the wire to be outside and

the other end inside; thru forces both ends of the wire to be outside.

freewlire(w) frees the storage allocated by a call to wire. This is 28 bytes per wire in the
current version of Clay. freewlre can be called when the memory requirement of a Clay pro-

gram becomes excessive due to the creation of many wires.

mark(w,string) is a symboltype-valued function. The one-line CIF symbol it returns puts
the string argument as 2 label on the same layer as the wire, using a Berkeley extension to stan-
dard CIF. Placing this symbol somewhere on the wire will label it in the plot. Note 1hat some
CIF tools (such as the crystal timing simulator) will not recognize a label as being on a wire if it

is placed or its endpoint. Instead, the wire should pass through the symbol.

eonnect(a,b,c,d) forces up to four wires to meet at a point and also places the appropriate
symbol to electrically connect them. conmneet is usually preferable to place since it automati-
callv creates symbols when needed, and therefore is easier than creating them by hand and less

error-prone.

o

Useful Things to Know

The functions startup and endup are automatically called by the Clay runtime system at
the beginning and end of its execution. These primitives should not be called by the user; we

mention them only so their names can be avoided.

If the environment variable claypath is defined, the symbol primitive will use this to search
for symbol files. claypath should contain the mame of one or more directories, separated by
colons. These directories are searched in order if the initial open of the file in the current direc-

tory fails.

The CIF for a symbo! must be in the following canonical format. The first CIF command
must be a comment containing two numbers which give the size of the symbol (x and y) in cen-
timicrons. The size is measured as distance from (0,0). So the frst line of a symbol of size 1000 x
1000 centered over the origin would be *“(500 500);". The next section is a list of macro
definitions. The last section is a list of macro calls and box creation commands. Note that some
CIF extensions which affect scanning the CIF file, such as the Berkeley CIF include command, are
not supported. Also, when a symbol is placed, the CIF origin (0,0} is centered over the point. At
present, symbols must be symmetric, that is, the boundaries of the symbol cannot be off-center,

although the contents of the symbol can be arbitrary.

A major anpoyacce in the current release of Clay is that there is n~ way to change orienta-
tion. For instance, separate symbols for horizontal and vertical pass transistors are needed. Like-
wise, if you have written a chanpel router in Clay with the channels running borizontally. you
cannot easily obtain from this a router with channels running vertically except by editing a copy
of the function, making the pecessary changes. We intend to correct this deficiency in a future

version of Clay.

In addition to TB, LR, BT, and RL, contexts may be NONE ordered. The initial context of
a Clay program, before the first ordered call, is NONE ordered. Symbols placed in s NONE

ordered context are constrained to lie inside it, but are not constrained with respect to each other.

-10.

Solving Constraints

To write low-level primitives or modify the Clay system, you must understand how Clay
generates the CIF layout. The layout is contained entirely within the first quadrant of the Carte-
sian coordinate plane. When a symbol, wire, or context is created, it is assigned coordinate vari-
ables. Since a symbol is placed over a point, it has two coordinate variables {(an x coordinate and
a y coordinate). A wire has three coordinates: a horizontal wire has two x coordinates associated
with it, and a y coordinate; similarly a vertical wire has one x coordinate and two y coordinates.
The bounding box of a context has two x coordinates and two y coordinates. The Clay primitives
can then control the positions of objects by stating constraints on the values of their coordinate
variables. For instance, let vertical wire & have x coordinate variable 4, and wire § have x coordi-
pate variable 12. (Coordinate variable names are non-negative integers. x variables are even; y
variables are odd.} If the Clay program states that the center line of & is at least 5 LAMBDAs to
the right of the center line of 8, where LAMBDA is defined as 200, then the execution of the Clay
program creates the constraint:

2,52 2,+1000
In fact, all constraints generated by Clay are of the form:
v 2v+d
Constraints on x coordinate variables are written in binary in the file .xconstraint. Constraints on
y variables are written in .ycon‘straint. Also, since endpoints of wires can be glued together, as by
drop or place, the Clay program writes a list of commaads in .unionfind which force two coordi-
pate variable pumbers to be synonyms. In addition, a list of the wires and symbols created is put

in .creation, and a list of symbol definitions is put in .definitions.

To obtain a CIF layout, the solver first reads .unionfind and builds a union-find tree. Next
op separate passes it processes .xconstraint and .yconstraint to find a layout having smallest total
area, using a linear-time algorithm based on topological sort. Finally, solver writes a CIF file by
loading the CIF macros for symbols (using .definitions) and writing box creation commands for

wires and macro calls for symbols (using .creation).

-11-

For dynamic storage allocation in the solver, the maximum internal coordinate variable
pumber and symbol numbers referenced by the Clay program are written in .maxpofile, along
with the coordinate variable sumbers of the outermost context. These coordinate numbers are

needed for hierarchbical solving, described in the next section.

Hierarchical Solving

In the Clay examples given so far, an entire layout was described by a single Clay program,
and all the constraints were solved in one run of the solver. If a Clay program creating a large
layout generates many objects and constraints, the run time of the solver may become excessive
and its memory requirements may cause page thrashing. To belp avoid this, and for top-down
refinement of Clay designs, we allow hierarchical partitioning of Clay layouts into cells, or non-
overlapping sections of a layout. A hierarchical layout has a main cell, the parent, containing oune
or more child cells. Each cell is described by a separate Clay program. This containment is
recursive, 5o a child cell may itself have children. A parent and child cell usually have wires they
share that cross the boundary between them, called parometer wires. The parameters wires and

the outermost context of a child cell are its ezternally visible points.

Since each Clay program must reside in its own directory, we need a separate directory for
each cell. The logical hierarchy of cells must be reflected in their directory names. For instance,
if alu and control are children of mychip, there is a directory mychip with subdirectories alu and

conirol.
We also allow rigid CIF cells to be children. A rigid cell cannot have its own children.

In a hierarchical layout, the parent and child cells are solved separately. A child may affect
the layout of its parent, since it has area and imposes a minimum distance between its parameter
wires. Likewise, a parent may affect its child by stretching the distance between parameter wires.
To obtain a bierarchical layout, we first compile and execute the Clay programs for all the cells to
get constraint files. Then, starting with the lowest-level children (those with no children of their
own) we solve to get a layout of the child cell, and append constraints on.iu size and position of

parameter wires to Jhe constraint files of its parent. Then we solve the parents of these cells, on

. Az e

-12-

upward in the hierarchy, until we have solved all the way up to the topmost cell (the root) which
has no parent of its own. Then we can solve back down the hierarchy, exporting constraints from
parents to their children, and at the same time getting out.cif files for the individual cells. When
we have solved all the leaf cells on this downward pass, the concatenation of all the oul.cif files
yields the complete layout. The cifcat command concatenates CIF files with macro renumbering
and bandles the CIF End command so the resulting file is palatable to most CIF tools. The argu-
ments to cifce! are names of files to be concatenated, and it writes to its standard output {which

can be redirected).

The solver works on only one cell in the hierarchy at a time. That is, in the directory of
any cell, we can rup solve - to solve up, exporting constraints to the parent, solve -d to export
constraints to children and get an ouf.cif file, or a simple solve to get out.cif without aflecting
children. Since the solver must be invoked more than once on a hierarchical layout, you may

want to write a shell script to make this more convenient.

Next we will explain how to define parameter wires in 3 Clay program and describe the
hierarchy of parent and child cells. Parameter wires and child cells are identified by name. The
primitive for creating parameter wires is ext_wire(layer,width name), described previously. The
external name of a wire is returned by the name(w) primitive. If w was created by wire, not
ext_wire, then name returns NULL. Each wire created by a call to ext_wire bas an entry in

.symtab with its coordinate numbers.

ext_ordered(direction,name) creates a context for a child cell. The context is an exter-
nally visible object with an entry in .symtab. Parameter wires can be placed between
ext_ordered and leaveordered. The parameter wires between a cell and its parent should be

constrained by calls to position.

A floorplen in a parent cell directory tells the solver the names of children and the names of
the parameter wires. The floorplan has an entry for each child cell. The first line of each entry is

of the form:

-13-

type childname directory

Type is either flezidle or rigid. Flexible cells are those described by the constraint files of a Clay
program execution; rigid cells are in CIF. cAildneme is the name given in the ext_ordered call.
directory is the name of the subdirectory containing the child. For sanity's sake, this should usu-
ally be the same as cAsldname. Remember that there must be a separate directory for each child,
even if they are identical copies of the same layout. For instance, if your layout has 8 input pads,

there must be a separate directory for each instance of an input pad.

Following this comes a list of the child cell's parameter wires, which we call a welk. The
walk must totally order all the externally visible wire coordinates. The x-coordinate walk comes
first (implicitly beginning with the left side of the cell and ending with the right), then the y-
coordinate walk (which likewise implicitly begins with the bottom and ends with the top of the
cell). The walk is given simply by listing the wire coordinates, terminated by a ¢. A wire coordi-

nate is one of the following:

x(wircname) x-coordinate of vertical wire
x1(wirename) left x-coordinate of horizontal wire
x2(wirename) right x-coordinate of horizontal wire
y(wirename) y-coordinate of a horizontal wire
y1l(wirename) lower y-coordinate of vertical wire
y2(wirename) upper y-coordinate of vertical wire

where wirename is the name given to the wire in the call to ext_wire. For instance, the

floorplan entry of the flexible cell in Fig. 5 is shown below:

fiexible onebitadder onebitadder
x2(gnd) x2(cin) x(sum) x{datal) x(data2) x1(cout) x1(vdd)
L]

y(grd) y2(datal) y2(data2) y(cin) y(cout) y1(sum) y(vdd)

Since the floorplan walk imposes & fotal ordering on the parameter wires, even if they are pot
otherwise related to each other in the Clay program, you may need to fine-tune a floorplan entry
if the ordering causes the cell to stretch unnecessarily. For instance, in the floorplan entry for
onebitadder, the y-walk forces cout to be at the same y-value or above cin, even thowgh the Clay
program may allow them to float. If the cell stretches badly because of this, y{cout) should

appear before y(cin) in the Soorplan.

e 14-

o ——o 1" I
datal data2
Figure 5

The walk for a rigid CIF cell is slightly different, since we also need to specily the exact
separation of parameter wires measured between wire centers, and the wire types and widths.
These are given in centimicrons (not LAMBDAs). The walk begins and ends with the scparation
from the cell boundary. The entry for each wire is the wire coordinate, its type ('m’, 'p’, or 'd’),

and its width. The separation appears between the wire entries. The floorplan entry for the rigid

cell of Fig. 6 is given below: ’

rigid datacell datacell
0 x2(v) m 1600 0 x2(g) m 1600 20000 x(in) p 400 10000 x1{out) d 400 0
L]

0 y2(iu) p 400 800 y(v) m 1600 6000 y(out) d 400 20000 y(g) m 1600 800
L]

The CIF for a rigid child cell must be placed in the file in.cif in its directory. During solve up,
the constraints implied by the rigid cell’s walk are exported to its parent. Then, during solve
down, rather than exporting constraints, the parent checks that it has not tried to change the
separation of the rigid cell’'s parameter wires, and writes oul.cif in the child directory by translat-
ing ¥n.cif to its position in the layout. in.eif must be in the canonical format described earlier for

symbols.

-15-
L S } __ 4\
metal 8\ A
—
100\
datacell
| —
- ? --------------------------------------- A dief
v T ¢
metal 8\ T T°17°C 3‘ T 4\
k) —
: ' .
E -- "E - ‘
' 100A ‘ Y '
in
poly 2\
A\ = 200 centimicrons
Figure 6
%
w
\ .

-16-

There are two other Clay primitives written for separate compilation.
arrayname(name,sumber) simply concatenates the string conversion of number to neme, for
convenience in giving names to arrays of parameter wires. For instance, arrayname(‘‘data”,$)
is “‘data’”. put_in_elf{cellname,ciflile,Boorpian_header) makes it easier to incorporate rigid cells
in Clay programs. Its arguments are string pointers. The first is the name of an ext_ordered con-
text. The second is the name of a CIF file, and the third is the name of a file containing the
floorplan header (X and Y walks). put_ln_clf creates s subdirectory for the child cell (if needed),
copies the named CIF file to in.cif, and appends an entry for the rigid cell to the floorplan in the
current directory. Since the floorplan is modified every time put_In_elf is called, you will need
to make a backup of floorplen and restore it whenever the Clay program is run. Otherwise,

put_In_eclf will append multiple copies of the same entry to floerplan.

A Simple Router In Clay

As another Clay example, consider the following function which is s one-sided channel
router using a greedy allocation strategy. Metal wires enter from the top; the router connects the
pets on poly. The function call is gcroute(n,a,w) where n is the number of wires, 8 is the connec-
tion list given as an array of n integers, and w is ap array of n wires, already separated left to
right. afi] gives the index in w of the next wire to the right of uli] to be connected in the net, or

-1 if ufd] is the rightmost wire in the net.

The router has two phases. In the first phase it assigns channels to the nets. To do this, it
works from left to right in the net list, assigning the lowest-numbered channel available. The
variable pos stores the current position in the left-to-right scan for wire nets,
channel_number|pos]| stores the channel number (0 is topmost) chosen for the connection of the
pet whose leftmost terminal is at pos. ehan|i] stores the index of the rightmost wire in the
currcot pet conpected on channel i. When pos> chen|i], the ith channel can be reused. No

actual layout is done during the first phase.

During the second phase, the router works from top to bottom, laying out each channel

Since the wires.in w are assumed to be previously separated from each other, each channel is

-17-

ordered(NONE). The router then looks through the chennel_number array to find wires which
are the Jeftmost members of nets running on the channel, and connects the net via a poly wire.

All dynamically allocated data structures are freed before the function exits.

1. [

2: ¢ greedy one-sided channel router

3: * metal wires enter from top and nets are connected by horizontal

4: ¢ poly runs.

5: . n is the number of wires

6. o a is the connection list. ali] gives the index of the next wire
7. . to the right of wli] in the net or -1 if it is the rightmost.
8: * w is an array of wires to be connected. they must already be
9: . constrainedin left to right order!

10 s/

11:

12 ¢#include */vb/clay/lib/header.h”
13: #inelude <stdioh>
14: #define NCHANNELS 10 /*max number of channels route can haves/

16. geroute(n,a,w)

17: int n,a[l;

18: {wlretype wll;

19:

20: int chan[NCHANNELS], /erightmost terminal connecteds/

21: Int nextavail = 0; /*next available channel (lowest pumbered)s/
22: int i,j.k pos,prev;

23: int #phase schannel_number;

24: Int maxused == -1; /*highest channel number actually useds/

25: wiretype ¢;

26:

27 /spbase keeps track of which wires have been connecteds/

28: phase == (int ¢) malloe(n * sizeof(int));

29: for (i = 0; i < b; i++) phase[i] = 0; /*mark everyone as not seen yet*/
30: /#*channel_number remembers to which channel the leftmost wire

3 in a net list has been connecteds/

32 channel_number = (Int *) malloe(n * sizeof(int));

33: for (i = 0; i < b; i++) channel_number|i] = -1; /emark as not used yets/
34 for (i = 0, i < NCHANNELS; i++) cban|i] = -1; /snot used yets/

35:

36: [+first phase is to compute connections to channelss/

37: pos = 0;

38 while (pos < n)

39 {

40: if (ajpos] <= pos) /ecan’t go from right to left in the net lists/
41 fprintf{stderr, ‘route: attempt to connect term %d to %d0',pos,
42: alpos});

43 channel_number|pos] == nextavail,

44 i == alpos|;

45: phase|pos] = 1;

46: while (afi] != -1) /escan middle contactse/

47

48: phase|i] = 1;

-18-
49: i = ali];
50:
51 phaseli] = 1; /*rightmost contacts/
52: chap|pextavail] = i; /emark how far we used*/
§3: /*move to next position and find nextavail channels/
54: while ((pbase[pos]) £& pos < n) pos++;
55: if (pos === p) break; /¢all dones/
56: prev = pextavail;
57: for (nextavail = 0; nextavail < NCHANNELS; nextavail++)
58: if (cban|nextavail] < pos) break;
59: if (nextavail == NCHANNELS)
60:
61 ¢ forintf{stderr, couldn’t route in %d channels0', NCHANNELS);
62: exit(-1);
63:
64:) if (nextavail > maxused) maxused = pextavail, /sremember max*/
65:
66:
67: [#second phase is to create layoute/
68: ordered(TB), /¢go by channelss/
69: for (i = 0; i <= maxused; i++)
70:
7 ordered(NONE); /suse ordering of w|] witbin channelse/
72 /*could speed up by baving a list per channel; not worth the trouble*/
73: for (j=20;] < n; j++)
74
75: if (channel_number|j] = i) continue; /*ignore if not leftmosts/
76: /*do leftmost terminals/
77 ¢ = wire(POLY MIN); /*poly wire for channele/
78: connect{NULL w|j!,c, NULL);
76 k = a|j|;
80: while(a[k] != -1) /*do middle terminalse/
81:
82: connect(c,wlk|,c, NULL);
83: k = ak;
84: ’
85: [*do rightmost terminals/
86: eonnect(c,w|k], NULL NULL);
87: freewire(c);
88:
89: leaveordered();
90:)
91: leaveordered().
92. free(phase);
93: free(channel_number);
o4)

A plot of a layout created by this function is given in Fig. 7.

AT

«19-

Figure 7

Acknowledgments

The Clay primitives and solver were written by R. J. Lipton and S. C. North. Our first
users, J. Lucas and D. Souvaine, wrote many of the library functions and helped greatly to debug
and refine the system. Support for R. J. Lipton, J. Lucas, and D. Souvaine was provided under
DARPA contract N00014-82-K-0549. S. North was supported by Bell Laboratories. The trace

package was written by Tom Freeman.

kY

ALI2: A VLSI Layout System
(Draft)

J. Matas, G. Vijayan

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, NJ 08540

1. Introduction

In this paper we describe the main features and usage of a language designed at Princeton
to automate the layout of VLSI circuits. The language is calied ALI2 and has been operational
for some months at Princeton. The language ALI1, also developed at Princeton was a forerunner
to ALI2.

The main thesis in the ALI project is that VLS] design can be profitably thought of as a
programming task, as opposed to a geometric editing task. We believe that making layout design
similar to software design has many advantages and that much is to be gained by consciously
attempting to apply our knowledge about programming to this new activity. We have thus tried
to create tools for the VLS| designer that incorporate many useful features of the software
development tools that we are {amiliar with.

The main feature of ALI2 as a layout language is that it allows its user to design layouts at
a conceplual level, in which only the topological relations between the layout components capn be
specified. Absolute positions of layout components cannot be specified.

2. An overview of ALI2

ALI2 programs are compiled by first translating the ALI2 statements into standard Pascal.
Partly as a consequence of this arrangement and partly for aesthetic reasons, ALI2 programs look
very much like Pascal programs.

The objects manipulated by ALI2 programs can be classified naturally into two categories:
those that a normal Pascal program can manipulate (which will be called Pascal objects) and
those that are specific to ALI2 (ALI2 objects). There are three ALI2 objects: cells, bozee, and
wires. ALI2 programs can also manipulate aggregates of wires, just as Pascal programs can mani-
pulate aggregates of variables using structured types. Although ALI2 programs will typically
manipulate all three kinds of ALI2 objects, the final product of an ALI2 program is a layout con-
sisting entirely of wires. Cells and boxes are simply used as ways to express the relations between
groups of wires in a structured and systematic way.

A cell in ALI2 is a prototype for a rectangular section of a layout. In a cell definition, the
user describes a prototype of a rectangular layout piece. In a cell creation, also called instantia-
tion, the user requests the insertion of an instance of a previously defined cell in a given environ-
ment. Multiple instances of s prototype can be created. It is possible to define a cell prototype
whose content and structure depends on the values of parameters which will be supplied to the
prototype at run-time. The sizes and shapes of actual instances of a given cell will then vary
according to the ‘‘sctual parameters'’ provided when the instance is created. Thus, ALI2 cells are
very much like the familiar parameterized procedures and functions.

#—"—

PR

2.

Each cell instance is enclosed in a cell bounding boz;, cells are thus restricted to have rec-
tanguiar shape. Cell boundaries may not overlap, nor may they be crossed by any wires. Wires
will either be entirely contained within s given cell instances, or lie entirely outside it. Cell boun-
daries therefore impose a strict hierarchy on the arrangement of wires in a layout.

Wires are rectilinear objects which lic on a specific layer, bave a given widih, and carry a
specified signal. Wires are used to interconnect cells and must have both of their endpoints lying
on cell boundaries.

]
d

- g

)

T

LA
M

N

¢}

.

it

[af

i
IiE
;
{’ﬂ:

Fig. 1 - Four separate cells and the resuit of connecting them

The entire layout generated by an ALI2 program is itself actually an instance of a single cell
defined by the program. An ALI2 program produces a set of linear inequalities involving the coor-
dinates of the endpoints of the wires and boxes in the layout as variables. These inequalities,
which embody the relations between the wires and boxes of the layout, are then solved to gen-
erate the positions and sizes of the layout elements. The program also produces conpectivity
information about the wires in the layout. This information can then be used by a switch level
simulator that predicts the bebavior of the circuit as laid out without having to perform the usual
“node extraction’ analysis on the resulting layout.

Fig.2 - Layout produced by aa ALIS program

. wem e - - g S ———— oy B e A SRS, PY cme T YO ST .

: \ {

- .

"

- ehip shiftregister (output):

wiretype polywire » wire (poly, 2*lambda. aullsignal);
diffwire = wire (d1ff, 2*lambds, nullsignalls
metilwirer wire (metal.s*lambda, nu!lllynal)c
€luewires (Ir: layer) = pus wi: polywire:
w2: metslwire;

w3t wire (ir, miowidthile), nullsignal);

wid: metelwire;
wh: polywire;
end:
wirevar 11, rr1 fivewires {(poly):

cel) contact (left 1: wire: top t: wire: right r: wire; bottos b wire):

begin
create syscontact (Vi, 1ti, tri, 1bl) (Ffalse)
end:

cel)l tnverter (left 1: fivewires: right r: flvewires 1
wirevar di¢f], diff>, diff3: diffwire;
begin
ordered ttob dc begin
create contact ! t.wl, auliwire, r.wl, nullwire)
creste contact (l.w2, nullwire, r.w2, 6i1ff});
creste syspullup (nullltist, Idi1fFYI, Ir.wdi,
systranz-stor { '1.w3i., 1416121, nulliltist, 1d19¢3)
contact (lT.wd, 0i1ff3. r.wé, nullwire)
contact { 1.wE, nullwire, r.wh, Aauliwire);:
end (ordered).
end:

cell ck] (Yeft 1: fivewires: right r: flvewires);
wireva~ pcly!., go'yl: polywire:

ctffj: giffwire:

metl: met2lwire;

begin
orcered 2ot do besin
create contact © l.wl, nullwire., r.wl, polyl)3

cre3te gyvscontact t 11.wgl, tpelylt,
orcered lte- co becin
creze rclate?
c-ez-e cortazt (I FTl, nullvwire, nullwire, metl).
enc {orcere
crea2te con t apliwire., met]l, r.w2, nullwire };
create cort P l.wl, nuilwime. rowd, nullwire)
zrezte comtzzt U 1 wE, nu'lwire. r.wt, nullwire),
eng iorcc-ed.
end:

ce’t el { “eft V: Fiver'res; right r: fivewires)
wira,2- o2yl poVlyl: polywire:

c.¢" diffw re;
met! . Fretilwire:
bez'n
or¢e-ed “tct dc becinr

erezte cortztt ¢ Y.wl, nullwirte, v .wl, mullwire)

cre-te cir 2t (1.w2, n.l'wire. r.w2, aulleire);

e-ce-e- ltgr cr tegtr
c~ez.e rcidtelll systrarsistor (ipely2i, 1V . w3, nullilist,

cer T ¢ ffli. nLllwre. nuliwire, metl):

enc orge-e:
create cortict (nu'lwire. metl. r.wl, nullwire Vs

creztey s szortezd C Mlows . Ipclyll, Ir.wdl, jpolyll)} (true);
Lrezte contact ¢ 1.wh, gelyl, r.wi., nullwire)
er: icrderec’
enrc.

ce’t ghift (Te t 1°: filvewires: i ‘ght rr: flvewires);
wirever wm-. rrl- fivew res (diff);
nel: fieires (poly’

becin
c-el-e frve<te- ¢ 11, mm])
c e [SN S8 R LD I

c'e.te vecter { mrl, amd)
Ccecte cvl ! mr2, rri;
erc:

ftaier2:) (4)

Ir.w2i, lpoly2l) (true);

sysi-ansisior { I1poly2t, 14¢FFIL, nulllist, 1).w3l

Id1feLt

cel’ grifi-azicier 1 left inbus: filvewires: righst outbus: flvewires) (length:

w'revgr tenp: fivewires (po'lyl:
bec ir
4 length = | the~
¢c-e2te shift (inbus. outbus)
else begir
crezte shift { inbus., temp)
create st ftregirter (temp. oulbus' (length - 1)
er2 (1f)
[1.I-H

creste sh'“tregigster (11, rr) ¢ 3)

end.

Fig. 3 - Aa ALIS program

—~— wmm -) mgeae . AT m et tem g EtE L A hum e RPN Sa N PRSI M e SraAwel, ATy

. \) L

e~

) (falpe):

) (false):

3. Main Features of ALI2

3.1. Type Structure

The wires manipulated by ALI2 are declared by stating their name and their type. Wires
can be of a simple type (a single wire) or ci & slructured type (a group of wires).

ALI2 is a strongly typed language. The ALI2 compiler will perform type checking just as
compilers for conventional languages do. Type checking can be effective in catching certain errors
very early during the design phase. For example, cells can be designed to accept only certain
types of wires, and any violation will be reported during compilation time even before the layout
is actually produced.

Wire types in ALI2 are parametric types. Parametric types are designed to make type
checking more selective or weaker as the user wishes,

In ALI2 there is just one predefined wire type called uire. This parametric type has three
parameters corresponding to the three attributes of a wire:

wire { l: uirelayer; w: integer; s: signal)

The types wirelayer and signal are predefined scalar types. The parameter w stands for the width
of the wire.

Other parametric types can be defined by pseudo-calls to the type wire . For instance, the
following type definition:

polywire { w: inleg.er} = unre { poly, w, nullsignal)

creates a new parametric type polyuire. All wires of this new type will have poly as their layer
and nulleignal as their signal. The following wirevar declaration

mywire: polywire (£+lambda |

creates a poly wire with width 2#lambda.

The values used as actual parameters can be arbitrary expressions of the appropriate type.
These expressions will be evaluated at run time. Thus if kis a variable of type integer defined in
the current scope, the following would have been a legal type declaration:

localpoly = polyunre ((2% - 1)#lambda)

Thus the actual parameters of the parametric types of ALI2 are dound at run time. This allows
for a great deal of flexibility and permits the construction of dynamic types within a cell.

There are three composite wire types in ALI2: dus, bundle and list. The types bus and bun-
dle are roughly analogous to the array and record types of Pascal, and represent, respectively
aggregates of wires of the same type and aggregates of wires of different types. The type list is
peculiar to ALI2. A list is either the nulllist or an aggregate of one or more wires, each of any
type whatsoever. This type is intended to facilitate the writing of general-purpose cells which
accept a variable number of wire parameters.

The accessing of the elements of bundles and buses is done as in Pascal. Accessing of lists is
similar to that of bundles. ALI2 also provides the user with a number of predefined functions
that take composite or simple wires as parameters and return various interesting attributes of the
wires like layer, width, number of elements, etc.

3.2. Cell Mechanism

Perhaps the most powerful feature of ALI2 is its procedure-like mechanism for the definition
and creation of cells. The cell mechanism permits the users of ALI2 to introduce hierarchical
information into their programs, and therefore into the layouts they describe.

A cell is a collection of related wires enclosed in a rectangular area. Wires that are inside 2
cell are of two types: local which are invisible to the outside, or parameters which cap interact in
a simple and well defined manper with wires outside the cell.

A cell is defined by specifying its local objects, its formal parameters and the relations
among all of them. Oncz a cell has been defined, it can be instantiated as many times as desired
by specifying the actual parameters for the instance, much the same way as one invokes a pro-
cedure or function in a procedural language. The result of instantiating a cell is to create a brand
new copy of the prototype described in the cell definition with the formal parameters connected
to the actual parameters.

The body of a cell will contain Pascal and ALI2 statements. Cells can be defined to be
‘external’ cells and separately compiled. Cells can also be ‘rigid’ cells to indicate that the cell
definition is not given textually as part of the ALI2 program but instead the actual layout pro-
duced by a previous instantiation of the cell is to be used.

Cells are instantiated by the create statement, and the parameter list of the cell contains
both wire parameters and other parameters.

The cell mechanism helps in the automatic generation of constraints in many ways: local
wires and cells are put inside the cell bounding box, wire parameters are separated, and cells that
share a parameter are automatically separated.

The cell mechanism gives the ALI2 user the ability to describe layouts in a truly hierarchi-
cal manner. A proper ALI2 design, very much like a well structured program, will consist of a
hierarchy of cell instances with only a small amount of information at a given level (the parame-
ters of the cell instances at that level) being visible from the immediately higher level. Cells can
be written and debugged separately and then put together with the least effort to obtain more
complicated cells.

Much of the power and generality of the cell mechanism of ALI2 comes from the absence of
absolute positions and sizes in a layout specification. We believe that no cell mechanism can be
said to be truly general unless the sizes of its parameter wires and local wires, as well as the rela-
tive distances between them are determined at the time the cell is instantiated.

The primitive cells in ALI2 are the predefined cells. These are the cells that appear at the
leaves of the hierarchy of cells. In fact, the whole Jayout can be viewed as a collection of primitive
cells joined together by straight line wires. The higher level cells are just rectangular regions
enclosing subsets of these primitive cells.

The primitive cells in ALI2 are called systransistor, syscontact and syspullup. These are
quite general cells that implement the transistor, contact, and pullup of nMOS. Each of these
primitive cells have four parameters: four lists of wires, one for each side of the cell. The con-
tents of an instance of a primitive cell will depend on the attributes of the actual parameter wires
used in that instance. So, these cells are 'smart’ cells which do a large amount of processing
internally.

There are also some non-wire parameters to these cells, which also contribute to the con-
tents of an individual instance. The systransistor cell has a boolean parameter which determines
whether the transistor is implanted or not. The pullup ratio is a parameter to the syspullup cell.
The syscontact cell has a boolean parameter which determines whether all the wires are to be
electrically connected at the contact, or only the wires on independent layers are to be connected
to each other.

The reason for making these primitive cells general and thus having fewer number of these

cells, is to keep the number of technology dependent features of the language small. However, the
user can define simpler versions of these cells to facilitate their repeated invocation. As

-6-

mentioned earlier, all the techuology dependent features of ALI2 are hidden inside the design
rules table, the primitive cells, and a few reserved identifiers. Even in the design rules table only
the separation and width rules are stored, because the other design rules are enforced inside the
primitive cells. ALI2 currently supports only aMOS primitive cells. Design of cells for other tech-
nologies is currently under investigation.

3.3. Placement

Placement is specified implicitly by ereate statements, or explicitly by the ordered and the
separate statements. These statements are used to relatively place the various objects (wires and
bounding boxes) in the layout.

The ordered statement is given a direction of separation, and a list of creations of objects,
and its eflect is to place the created objects in the order in which they are created.

ordered Itor do
begin v

< bounding boz 1 > . [~
< bounding boz 2 > ' ‘ .

ordered ttob do D f
begin ' '
___l 2

< bounding boz 8 > ~
< bounding boz 4 > ' -
end; i '.__; e
< bounding boz 5 > L

end

Fig. ¢ - ordered statement

The actual objects that are ordered within an ordered statement are really bounding boxes
Each ordered statement or cell create statement is associated with a rectangular bounding box
The bounding box created for ap ordered statement will enclose the bounding boxes created for
the statements within its scope, and in addition these bounding boxes will be separated in the
given direction.

Since ALI2 is an extension of Pascal, repetition statements of Pascal can be used within an
ordered statement to create a succession of objects that are separated as specified

The ordered statement matches quite well with the motion of Soor-plans of layouts. Once
the ALI2 user has a rough sketch of the floor-plan of his layout, he can quickly trabsiate the
sketch into a series of nested ordered statements. He can then refine each of his regions in the
floor-plan in a similar manner.

Both the cell structure and the ordered statement contribute to the hierarchy in the la- out
description. However, there is a fundamental differcnce in the bierarchies created by the cel's and
the ordered statement: wires cannot stradcle the bounding box of a cell, but the same is r ot true
for an ordered statement. Thus, wires are subject only to the hierarchy defined by the ¢ 1l boun-
daries. The combination of strict bierarchy of the cell structure and the lenient hierarc iy of the
ordered statement seems to give the ALI2 user the right mixture of rigidity and Sexibilit, that he
needs.

The other placement statement — the sepsrafe statement — is used to separs‘c s given hist
of bounding boxes and wires in a given direction of separation. Unlike the ordered statement, the
separate statement is not a structured statement. Its analogy in programming languages is the go
to statement. An ALI2 program can be written without using the separate statement, but it may
be used to make small local changes in the layout to avoid rewriting major portions of the ALI2
program.

4. Layout Issues Addressed in ALI2
A sample of the main issues that we tried to address with ALI2 are the following:

o The creation of an open ended tool. Most layout design tools require the specification of abso-
lute sizes and positions, thus making the creation of a general purpose library of cells a hard
task, since information about the sizes and positions of the cell elements that can interact with
the outside world has to be apparent to the user of the library. The absence of absolute sizes
and positions makes this problem much less severe in ALI2. ALI2 bas been built on top of Pas-
cal, and is a full-fledged programming language baving all the powers of Pascal, thereby making
it easily extensible. The generation of tools to automate the layout process, such as simple
routers or PLA generators, involves writing Pascal routines to solve some abstract version of the
problem and baving done so invoke ALI2 cells to generate the layouts.

e Facilitating the division of (sbor. Large layouts have to be produced by more than one
designer. If the piece produced by each designer is specified in absolute positions, serious prob-
lems are likely to arise when the diflerent pieces are put together. ALI2 allows the partitioning
of tasks in such a way that the designer of a piece of the layout does not need to know any-
thing about the positions or sizes of other pieces of the complete layout.

o Facilitating hierarchical design. In ALI2, the information about a given level of the hierarchy
needed at the level immediately above is reduced by the absence of absolute sizes and positions,
to topological relations among the layout elements of the lower level visible to the higher one.

o Facilitating easy update of layouts. Successful designs seem to be more or less continuously
updated as improved processes become available during their lifetime. Therefore, layout tools
must be easily amenable to changes in the technology or design rules. The technology depen-
dent part of ALI2 is confined to a few design rules tables and primitive cells and only these
bave to be rewritten in order to update ALI2 to 2 new technology. Future versions of ALI2 will
give its user the flexibility of writing one ALI2 program to describe a layout, and then produc-
ing different layouts for diflerent processes by just setting certain appropriate flags when invok-
ing the ALI2 system.

e Allowing parametric design. Having a layout design which produces different lavouts for
diflerent values of a set of parameters is extremely useful. This is especially true for cell designs
which are used repeatedly. These parameters will allow decisions about the detailed charac-
teristics of the cell in a layout to be delayed until later in the design phase. In ALI2, the cell
mechanism has been designed so that the pumber as well as the attributes of the wires connect-
ing to a cell can be parameters of the cell. In addition, the cells can have other parameters that
affect the insides of the cell. ALI2 offers all the wealth of a full-fledged programming language,
such as do-loops, conditional statements etc., which can be used to exploit the availability of
these parameters.

o To allow easy modification of layouls. The fact that absolute sizes and positions are absent in
an ALI2 specification makes modification of a layout a very simple task. Such modifications are
actually being made to a program, which is 3 much easier task compared to making changes in
the final layout.

5. The ALI2 System

The ALI2 program takes as input an ALI2 program, with precompiled cells or rigid cells,
and produces the layout in CIF (Caltech Intermediate Form) code, or alternatively a precompiled
cell or a rigid cell, and connectivity information for simulation. There is a switch-level simulator,
described in [11]. The CIF code is then used to interface with other CAD tools, like Berkeley VLSI
Tools [9]. There is also a program that takes a CIF code and transforms it into a rigid cell, to be
used by any ALI program. Also, the pode information for simulation can be obtained from the
CIF code.

L

arr——— - - —— e — —
i 8-
]
Com £ ’(T} fe ld : .
((f"’ ! g!"j ;‘— C'FkR
' —
)
- ALz]
Pragram > ALIR - LIF coit
3
i
H
e o
v oot _—k s, A
_—— f T
Fig. § - The ALI2 Systemn
‘ There are 6 steps in going from the text of an ALI2 program to a layout in CIF:
1- Translation. The ALI2 program is translated into Pascal. ,
2. Compllation. The Pascal program is compiled, producing an object file.
3 Loading. The object file generated by the pre * us step plus several other standard object
modules are made into a single executable file.
' 4 Enxecution. The executable file is executed, producing a file of linear coastraints, and
optionally connectivity information.
S5- Solving. The set of linear constraints is ran through the solver program, and aa internal
represeatation of the layout is produced.
* 6- Generating CIF. The internal representation (in lambda units) is converted to CIF (cen-
timicron waits).
¢ The whole system is impiemented under Berkeley UNIX, snd the system is very efficient.
{ The translator was writtea using YACC. The compiler is the Berkeley Pascal Compiler. Execution
doesn’t take too much time, since its basic operation is to write down constraints every time a cell
| is instantiated. The solver takes linear time relative to the number of cosstraints. CIF generation

i is straightforward. So, what takes most of the time is read/write operations, specislly for large
L layouts.

B R T P T

s o = e — by o v

B __.,t,--____ — i
- - e i —]

8. Example

One of the chips designed wsing ALI2 was s »-bit paralle] adder, and it is being sent for

fabrication. The parallel algorithm used for addition was borrowed from [13].

This design illustrates the utility of several features of ALI2:

J- General purpose cells such as the aarray cell {8], that was used to generate Weinberger type
cells, can be written snd used very eflectively.

2- It is easy to parametrize cells.

3- ALI2 bas the power of a conventional programming language such as recursion, iterative
- statements and functions.

4 It is quite simple to divide a lsyout task among several designers.

5 An ALI2 program serves as a good documentation of the design of the layout.
!

Acknowledgements

The ALI2 system resulted of the work of many people, especially Prof. Jacobo Valdes and

Prof. Richard Lipton. We would like to mention the contributions of Roo Kalin and Steve Nortb.

This work was supported in part by DARPA wnpder ONR N00014-82-K-0549.

-10-

7. References

i1l

12
3

[4]
(1
fel

I
(8]
[9]

[10]
[11]

12}

h3]

Hennessy, J., Elmquist, H. The Design snd Implementation of Perametric Types in Pascol.
Software — Practice and Experience, vol. 12, 1982.

Jepsen, K., Wirth, N. Pascal Urer Manual end Report. 2nd ed., Springer-Verlag.

Johnson, S. C. YACC: Yet Another Compiler-Compiler. Unix Programmer's Manual, Japu-
ary 1979.

Kalin, R. L., Valdes, J. Language Overview. ALI2 Documentation and Implementation
Guide.

Lipton, R. J., Sedgewick, R., Valdes, J. Programming Aspects of VLSI. Proc. of the Ninth
Aonual ACM Symp. on Principles of Programming Languages, 1082.

Lipton, R. J.,, North, S. C., Sedgewick, R., Valdes, J., Vijayan, G., ALIl: a Procedural
Language to Describe VLSI Layouts. Proc. of the 19th Design Automation Conference, June
1982.

Lipton, R. J, North, S. C., Sedgewick, R., Valdes, J., Vijayan, G. VLS! Layout a2 Pro-
gramming. ACM Trans. of Programming Languages and Systems, July 1983.

Mata, J. M. An Array Generator in ALIZ. Department of Electrical Engineering and Com-
puter Science, Princeton Urniversity, 1983.

Mayo. R, et al. 1958 VLSI Tools. Report No. UCB/CSD 83/115, University of California,
Berkeley, March 1983.

Mead, C., Coaway, L. Introduction to VLSI Systems. Addison-Wesley, 1980.
Ramachandran, V. An improved suitch-level simulator for MOS eircuits. Proc. of the 20th
Design Automation Conference, June 1983.

Vijayan, G. Design, Implementation, and Theory of o VLSI Layout Language. Ph.D. Thesis,
Princeton University, August 1983,

Vuillemin, J., Guibas, L. On Fast Binary Addition in MOS Technologics. Proc. of the IEEE
International Conference on Circuits and Systems, September 1982

——

A HIERARCHICAL COMPACTION ALGORITHM WITH LOW
PAGE-FAULT COMPLEXTTY

Ming-Deh A Huang and Kenneth Steiglite

Department of Electrical Engineering and Computer Science
Princeton University. Princeton, New Jersey 08544

ABSTRACT

The problem of VLS] layout compaction is often
reduced to finding optimal solutions to systems of sim-
ple linesr inequalities and equalities. The commonly
used algorithms take only linear time and space by the
usus! worst case complexity measures, but serious
problems of page thrashing often occur when the algo-
rithms are run on systems with large sets of con-
straints. Page laults must be taken into account if the
performance of such algorithms is to be predicted real-
istically.

In this paper. we first discuss page-fault complexity
in the setting of paged dags. We then extend the discus-
sion to the case of constraint systems that are
hierarchically organized. We present algorithms that
find optimal solutiont to hierarchical constraint sys-
tems with strict bounds on the number of page-faults
These aigorithms also run in linear time and space by

‘the usual complexity measures

1. Introduction

As VLS] logical design problems get more and more
complex, there is a trend toward hierarchical design
methodology Several languages (e.g ALl [LSV], CLAY
[N]. KILL [LM]. SLIM [D]) have been developed for layout
specificstion in which the relative geometric relations
and interconnections among the geometric objects in a
layout are specified instead of the absolute positions of
these opjects. and the layout can be specified in a
hierarchical way. Usually a layout specification is
stated formally as foliows:

(1) SU Compection Given a set of simple linear ine-
qualities | 2, +d, € x,{. find a solution such that
max (z,) - min (z,) is minimized.

————
t This work was wupported in par: by NSF Gram ECS-8120037.
«§ Army Research Ofce-Durhar. Gram DAAG 20-82-K-009>.

- and DARPA contrac: NDOO34-82-K-0684

In the case where the set of constraints consists of sim-
ple linear inequalities plus simple egqualities, the prob-
lemn can be stated as foliows:

(2) SLIE Compaction: Given a set of simple linear ine-
Qualities | £+d; < 2, | and o set of simple equal-
ties | % =2, | Bnd a solution such that
m‘u (z) = m‘i.n () is minimized.

We call a set of simple linsar inequalities an SL/
system, and 8 set of simple linear inequalities and sim-
ple equalities an SL/E system.

Both problems have efficient algorithms in terms of
the usual time and space complexity measures. For SL!
compaction, the well known PERT algorithm runs in
linear time and space. For SLIE compaction, we make a
substitution of variables to reduce the problem to com-
paction for an SL! system. However, when an SL! or
SLIE system generated from a VLS| layout specification
is too large to fit into the workung space of a computer,
the system is often partitioned and stored in several
pages. Page-thrashing in execution of the PERT algo-
rithm then becomes a serious problem. often dormunat-
ing the rest of the computation. Experiments indicate
that as the size of the constraint get grows lerger and
larger, the problem of pPage-thrashing becomes more
and more significant. Therefore, we must take page-
feults into account in any meaningfu! measure of the
complexity of algorithms for these problems.

One way to svoid page threshing is to find algo-
rithms that are efficient in the length of the layvout
specification, which is usually much shorter than that of
the éompletely genersted constraint set. Lengauer {L]
showed that this is possible in some. but not all, cases
In this paper, we sdopt a different approach. We
assume that the generated constraints are stored expli-
citly in the secondary memory, which is divided into
pages of fixed size. We will show that when the con-
straint systoms are bierarchically organized. page-
swapping can be controlied in such a way thst the
number of page-faults is strictly bounded. This iz prac-
tical since we can often organize the generated con-

——

straints in e way that peflecls the hierarchical

specification of a VLS] circuit.

In Section 2, we define hierarchical SLI and SLIE
systemns. In Section 3, we discuss page-fault complexity
in the general setting of paged-dags. In Section 4. the
basic ideas presented in Section 3 are applied to
hierarchical SLI and SLIE systems. We present new
algoritbms that find optimal solutions to hierarchical
SL] and SLIE systems in s bierarchical way, with strict
bounds on the number of page-faults. These algoritbms
run in linear time and space, which is also best possible
by the ususl time and space complexity measures.

2. Hierarchical SL] and SLIE Systems .

We assume that the simple linear inequalities and
simple equalities in an SL] or SLIE system are stored in
the following way: for each variable z,, there is a list of
tuples (z;.dy). where z;+d,, € 2; is a constraint. s list of
tuples (2).de). where z, +d,, < z, is a constraint, and a
list of elements z, where 2, = 2, is a constraint. We
assume throughout that dy; > 0. and the constraints are
acyche.

We a!so assume that the storage structure consists
of & fast memory. which we call the main memory (or
the working space), sand a slower memory, which we call
the secondary memory The secondary memory is par-
. titioned into pages where each page has a fixed amount
of space. Suppose now a set of constraints is stored in
severa! pages and each page stores a disjoint subset of
variables with their adjacency lists. We may think of
each page as representing a subset of variables, and the
union of Lthese subsets is the whole set of variables We
call an SLI or SLIE system stored in this way a paged SL)
or SLIE system.

A paged SLI or SLIE system cen be organized
hierarchically. More formally, let V be the set of vari-
sbles of an SUIE or SL) system. Let V=V,V,
be a partiion of V. We call each subset ¥, of V & block
at level 1. A block at level 1 corresponds to a page.
Now we can similarly partition ¥ into subsets of blocks
at level 1 and call each subset a block at level 2. A
block at leve! 2 thus contains several blocks at level 1
st members. This process can be continued to higher
levels. We stop when we get to a block that contains all
of V., and such s hierarchy can be represented by a
" tree. The root is tbe block at the highest level, the
leaves are the blocks at level 1, which correspond to the
pages. When a paged SLIE (or SLI) system is hierarchi-
cally organized, we call it 8 AlerarcAical SLIE (or SLI)
system.

Definition Suppose blocks V).V, are both members of
block V. When there is a constraint relsting s variable
£, in ¥, and a variable 2y in Vy. we say that 2, and 2,
are sutervariables of V, and ¥, respectively.«

Note that the outer-varisbles of a block are the
variables that interact with variables of other blocks at
the same ievel. Usually, the number of puter-variables
is small compared to the total number of variables.

Before going further, we present a slightly modified
wersion of the PERT algorithm and point out how page-
threshing may occur. Let us extend slhghtly the
definition of an SL] system to include, besides a se! of
simple linear inequalities, a set of constraints |
2, = 2,z is a variable, 2, is 8 constant {. We call such
an extended system a preconditionsd SL! system. The
following modified version of the algoritbm PERT solves
the compaction problem for a preconditioned SL] sys-
tem in a way similar to topological sorting [K]

Algorithm SIMPLE PERT

Input : a set of simple linear inequalities together with a
set tz & 20!z, is e variable, 2, is & constant {

Output : { t(z,) !z, is & variable | (comment an optimal
solution to the preconditioned SL] system where {(z2) 1s
the value for variable z)

begin
t(z,) := 0, p(z() = 2 for all i;
n(z,) :="iz, 'z, +dyy £ 2, is a constraint | i
S :=z empty queue;
{(comment initialization)
Find all 2, where in(z,) = 0. put 2, in S:
while S is not empty do begin
Pop e variable z, from §;
t(z,):=p(z,):
for z, such that z,+d,, < 2, is & constraint do begin
plzy) :=max (plz,). 1 (x)+d,)
in(z,):=in(z,) ~ 1,
fwn(z,)=0. thenputz in §
end
end
end.
Referring to S/MPLE PERT, we see thst whenever
s variable in a page different from that of the current =z,
is referenced, » page fault occurs. In practice, for large
probiems, this can happen quite often, as illustrated by
the following simple example of an SL] system. This
example also motivates the basic ideas that will be used
later on.
Bample 2.1 The set of variables 1
2;/1€1£3, 155 sn | is partitioned into 3 disjoint
blocks.
Visizpo2, ...%5,)

Vemf{ze0. 20 ... %pn)

{

—

Va= [Bg0. %9y - - - . B |

We assume that esch block is in one page. The con-
straints are the foliowing, where d is a positive integer:

gytd £y $=1,2, 3 5=, (n-1)
2,000 € 2gp.
Sgtd £ Zge.

Egtd £ 2,9

Representing & constraint 2+d €3’ by 242’ we
obtain s dag G ss shown in Figure 2.1. In Figure 2.1, tle
variables are arranged so that the rows correspond to
the blocks. and the columns represent the successive
configurations of the queue S when S/MPLE PERT is
apphied. From the picture, we see thst 3n page-faults
occur when S/MPLE PERT is spplied. Although this
example exhibits bad behavior using a FIFO queue. simi-
lar exampies can be contrived for LIFC and other lst-
management disciplines.

Now we examine the example more closely and
show how page-faults can be reduced. The interaction
among the blocks can be represented by 8 dag H on
the outer-variables z,o 2(. 1 = 1, 2, 3, as shown in Fig-
ure 2.2. The dag / actually represents the dependency
relation arnong the outer-variables. In A, there is an
arc from an outer-variable to another if the letter is
reachable from the former in G without passing through
any other outer-variable. If an outer-variable has no
predecessor in H, then it does not depend on any vari-
seble external to the block it is in. Therefore we can
compute the value for it if the biock it belongs to is
fetched to the working space. After the value of an
ouler-variable is computed, we delete it from H. It
then holds inductively that at any point of tbe algo-
rithm. an outer-variable with no predecessors in the
remaining part of dag / is one whose predecessors in G
that are external to the block it beiongs to are all com-
puted. Therefore we can compute such a variable if the
block it belongs to is fetched next.

In the beginning. since z,o has no predecessor in
H, we can fetch ¥, and compute the value for 2,0 After
we compute £,0. we can computle 2, since 2, its only
predecessor, is computed. However, z,, cannot be
computed since it depends on £ which is externa! to
V,. Since the value of £,, is computed, we delete it
tfrom H (Fig. 2.3). Now that 2, the only predecessor to
the outer-variables of V. is computed, we can compute
«ll the variables in V, in the order £40. 24,...., Zgn. Now
we delete zgc and x4 from M (Fig. 2.4); then we see that
we can fetch Vy and compute 2gg Zgj..... Egn vince all

the predecessors of £y and 24 that are external to Vg
are already destermined. Finally, s and g4 are
deleted from K (Fig. 2.5). we fetch V, and the vaiues for
&1g..... B3 can be computed. In this way, only 4 page-
faults occur. ¢

We call the dags on the outer-variables constructed
in Example 2.1 the ouferdags associated with the SLI
systems. The example illustrates the fact that the
outer-dags contain information that is wuseful for
arranging the page-fetching to reduce the number of
page-faults.

In the aigorithms we will present later on. aigo-
rithm S/MPLE PERT will only be used locally withun &
page. We observe that algorithm SINPLE PERT is
essentially topological sort on the wariables with
respect to the partial order induced by tbe inequality
constraints. In the hierarchical situation this approach
will be extended (1) to exploit useful partial orders on
the outer-variables or interesting sets of outer-variables
that are induced by tbe constraints; (2) to find efficient
methods for computing such partial orders.

3. Pagefault Complexity for Computational Dags

In this section, we will discuss page-fault complex-
ity in the setting of paged computational dags. which
correspond in a natural way to paged SL] systems We
consider a general computational problemn that car be
characterized by & dag G = (V,£E). A node represents a
computational step and the arc set £ represents the
dependency relation on the computstional steps. That
is if (v.u)€E. then the computation u cannot be done
before v. We suppose V is partitioned into subsets
Vi..... V. and call each subset a block. We may think of
e block with the adjacency lists of its nodes being
stored in a page and therefore we call a dag G = (V.£)
with a partition V=iv,.... %1 a
paged compuiational dap. or simply paged dag If
(uu’)e £ withu € . u' € ¥, and ¢, then we sey u
is an outernode of ¥,. and u' is an outer-node of V;.

In the sequel, we will always use "*" to denote tran-
mitive closure.
Definition For u.v€V we say u<v when (u.v)cE. So
u-«‘v if and only if v is reachable from u. For outer-
nodes v . u', we say u<,u’ when u’ is resachadble from u
without passing through any other outer-node. »
Definition Let U be the set of outer-nodes. We define a
directed graph M on U as foliows. H = (U.E,). and £,
® § (uv)ugu and uwel §. It is clear that H 15 &
dag. We call / the outer-dag essociated with G. ¢

L ¥
i
i
i
i
:
.
i i
H
i
{
: 1l
[
{
L]
'
i
1
i
j
_—

Definition Let G= (V.E). P={V,. ..V | be as
described before. Let &= (V5 where
E={(V,.V,) there are outer-nodes wey. vel,,

(v.v)cE | We call 8 the supergraph associated with G
and ¥ When Gis a dag. we call it & superdap. o

In particuler. for an SL] system. the corresponding
computational deg is G = (V.E) where V is the set of
variables, a node represents the determination of the
value of the variable in it, and £ = | (s‘.:,,)l there is &
constraint z,4d,; € z, | In this case, a paged dag is just
a paged SL! system, and a block corresponds to a page
of the SLI systemn. The outer-nodes are just the outer-
variables in V. For variables z,. 2;. 2,2, if and only if
there is a constraint z,+dy € z,. For outer-variables
2.3, 5 <, 2; If and only if z,+°z, snd there is no
.outer-variable z, such that 2,+°z, and z, <"z, Note
that for every paged dag G = (V.E) with partition ¥,
there is 8 paged SLI systern whose corresponding paged
dag can be represented by Gand V.

Definition Let G = (V.E) be a dag For veV, define
v)=1 if v bas no predecessor, else
{v)=mex} l(u)'u is a predecessor ofvin G {+1.
Calll{v)thelevel ofv in G o

Definition Let G = (V.E) be adag. A nodev in G is said
to be exposed if and only if indegree(y) = 0. that is. v
has no predecessor e

Given adag G = (V.E) and a subset ¥ of V. the fol-

"lowing procedure recursively deietes the exposed nodes

whichk belong to W. We will
Procedure DELETE. G. ¥)
(comment G = (V. E)isagraph. ¥ is a subset of V)

use this procedure later on

begin
while there is a node u in ¥ that is exposed do
begin
G=6-u:
W= W-u
end.
end -

In carrying out the computational steps of a paged
dag G = (V.E). we assume that only one block is aliowed
to reside in the working spsce at one time When a
block is fetched to the working space, some nodes in
the block can be computed. When it is not possibie to
proceed any further, a new block must be fetched into
the working space and the original block stored back in
the secondary memory, in which case a page-fault
occurs.

Let < Vo, >. 1 = 1.... k, be the sequence of page-
faults that occur in the course of a computation. That
is. when the i-th page-fault occurs, block V.‘ is fetched

to the working space. and V, »# ¥, The number of

)

page-faults is simply the length of the sequence. We
call & sequence of blocks 8 page sequence. call & page
sequence that corresponds to e full computation of the
paged dag a lepal page sequencs.

Suppose that an outer-node is deleted from the
outer-dag once it is computed. Then an outer-node
becomes exposed exactly when all its precedent outer-
nodes are computed and deleted. Now let M be the
current outer-dag with all the computed outer-nodes
deleted at the time the i-th page-fault occurs. and let
Uq, be the outer-nodes of ¥V, . When the i-th page-fault
occurs and V.‘ is fetched to the working space, the
exposed outer-nodes in Uq, bave all their precedent
outer-nodes already computed. Therefore they car be
computed and deleted before the (i+1)-st page-fault
occurs. After they are computed and deleted, there
may be new outer-nodes in U, that become exposed
Similarly, they can also be computed and deleted from
H before the next page-fault occurs. Inductively, we
see that the outer-nodes in V, thet can be computed
and deleted are exactly those that would be deleted
when procedure DELETL is spphed to K and U,
Therefore, the following is true:
lemmas 3.1 Let < Vo > be » page sequence. Let 'y be
the outer-nodes of the block V. Let ¥ be the outer-
dag with all the computed outer-nodes deleted et the
time the i-th page-tault occurs Then (1) between the
i-th and (1 +1)-st page-faults, the outer-nodes of block
V.‘ that can be computed are exactly those that are
deleted when procedure DELETE is apphed to X and
U,,. (2) between the i-th and (1+1)-st page-faults. the
nodes v in V.‘ that can be computed are exactly those
v in V.‘ whose precedent outer-nodes u, where u <" v,
are deleted before the (1 +1)-st page-fault occurs. =

Lemma 3.1 shows that the computationel effect
between two page-faults can be described by a process
that recursively deletes the exposed outer-nodes of a
block from the outer-dag To illustrate this ides, let us
look at Exampie 3.1.

Example 3.1 A paged dag G and its associated outer-
dag 4 are depicted in Figure 3.1, where r,,'s are in
block V), z¢'s are in block V,.

A legal page sequence is V,, ¥,, ¥,. Let us examune
the action taken with each page-fault.

V, is fetched to the working spece (see Figure 3.2):

v

«ode 2, is deleted from ¥, then z4,.

#he remaining part of G when the deletion process
is applied is shown in Figure 3.2.

Vp is fetched to the working space (see Figure 3.3):

node xg is deleted from M, then z4,.

«all nodes in ¥p will be deleted.
Finally. V, is fetched to the working space:

wmode x4 is deleted.

«all nodes in V, will be deleted. »

ldeally, given & paged dag. we would like to minim-

ize the number of page-faults for a full computation of
the dag. That is, we would like to find e legal page
sequence tbat has minimum length for the paged dag.
Unfortuaately, this problem is NP-complete. Namely,
we Fave the following result:

Theorem 3.1 Tbe following problem is NP-complete:
g:iven a peged dag and an integer k, are k page-faults
sufficient for computing the paged dag?

The proof of Theorem 3.1 can be found in [E] it
uses reduction from feed-back vertex set. Theorem 3.1
implies that to achieve the minimum possible page-
fauiting 1s practically infeasible, assuming of course
P » NP. Fowever, we have the following result:

Theorem 3.2

(1} In the worst case, for a paged dag of p blocks andm
outer-nodes in every block, at least mp page-faults are
necessary for computing the paged dag.

(2 There is an algorithm that computes a paged dag of
p blocks with no more than m outer-nodes in every
block in Lnear time and space. with the number of
page-faults no more thanmp . ¢

Theorem 3.2 will be established in several steps,
and an algorithm for (2) will actually be constructed

We prove (1) first by constructing paged-dags for
which the worst case occurs, given p, the number of

‘blocks. and m. the meximum number of outer-nodes in

a biock. Choose positive integers a and b such that
a+b =p. We form adeg H = (L'.E,) so thet level 2141
of H,i=0,...,m=1, consists of a nodes uy,. k = 1,....@.
level 21 conmists of b nodes wu,. k=a+l..p.
izl..m andfornodew,u inH,(w,u)isanarcif
and only if{(w) = 1{u")-1.]t is easy to construct a dag
G with partition ¥={v,. .. ¥,{ on V such that for
k=1..p the u,'s sre in ¥, and the associated
outer-dag is the same as 5. By Lemma 3.1 and the way
H 1s defined. any legal page sequence for G has length
2 U' = mp. Thus proves (1).

Now we turn our attention to (). first finding &
legal page sequence.

Suppose G = (V.F) is & paged dag with the sssoci-
sted partition Pon v. Suppose the associated outer-
dag H = (U.E,) bas been determined: then the following
procedure will find a legal page sequence for G.

Procedure SEQUENCE
Input: H, the outer-dag associated with a paged dag G.
Output: a legal page sequence S.

S := empty sequence. H := the input outer-dag. (com-
ment nitialization)

begin
while 4 is not empty do begin
choose an exposed node « in H:
tf u is from block V,. then apply procecure
I‘ZELETE on H and the subset oPgu);.eE-nodes of
A
append ¥, to the end of the sequence §

end
end -

Let m be an upper bound on the number of outer-
nodes a biock can have and p be the number of blocks
Then the length of the legal page sequence determined
by procedure SEQUENCE st/ s mp.

Instead of actually constructing the outer-deg and
epplying procedure SEQUENCE., we will describe an
algorithm for computing & computstional dag that will
result in the same legal page sequence as is determ:ned
by procedure SEQL'LANCE The algorithm 1s basec on
the argument thal was used to prove Lemmea 3.1

GCiven & set of newly computed nodes in & block V.
the follow:ng procedure LOCA/ will compute as many
nodes in V as possible In this procedure as well as in
the algorithm we will describe, S(V) wili denote & set of
newly computed nodes i1n ¥, tn(1) will denote the in-
degree of v for a node 1.

Procedure LOCAL{ S(V). V)
begin
do until S{V) is empty begin
pop e node v from S{V):
for u such thet (v, u) is an arc do begin
in(u):zin(u) - 1;
if in (u) = O then do begin
fu €V then put u 1n S(V)
tS'.rVS;U’ for some j then put u in

end
end
end

end

Notice that S, (¥} is small since it is a subset of ;.
We may a-sume that these S,(V,) are kept in the man
mermory throughout the computstion. The following
slgorithm computes s computational dag G with the

same page
SEQUENCE.
Algorithm CONMPUTE DAG
begin
for each block V do begin
S(Vi=tveVim(v)=01:
LOCAL S(V). V)
end:
do until all S, (V) are empty begin
lord.non-empty 5,(V) do LOCAL(S, (V). V).
on

sequence determined by procedure

end

We can see by induction that between two page-
faults, procedure LOCAL computes the nodes which are
cheracterized by lemnma 3.1, And the execution of
algorithm COMPUTE DAG will result in the same number
of page-faults o3 is determined by procedure
SEQUENCE, which is bounded by mp. Finally, the total
runming time and space is linear in the number of arcs,
as is ciear from the algorithm. o

From the above discussion, we see that the outer-
dags associated with the paged-dags play an essential
role in studying the page-fault complexity. The ideas
presented in this section will be extended in the next
section to deal with the general hjerarchical situation.
Our gosl 1s to obtain an analog of (2) of Theorem 3.2 for
the general case of hierarchical SLIE systems, where
equality constraints are also involved.

4. Hierarchical Compaction for Sll and SLIE systems

In this section, we will extend the ideas presented
in the last section to deal with hierarchical SL) and SLE
systems. All the algorithms presented in this section
run in total linear time and space with a strict bound on
the number of page faults.]n Section 4.1, we discuss an
important subciass of SLI systems that are character-
ized by an acyclic property. In Section 4.2, we discuss
the general case of hierarchical SLIE systems.

4.1 Hierarchical Local Pert for Acyclic SLJ Systems

First let us extend the definition of super-grapb to
hierarchical SL] systems.

Definition Let V be a block in a hierarchical SL] sys-
tem. and let V= |y, . vs | be the set of member
blocks of V. Define the directed graph Gy = (V. £,)
where L = (vy.v,) ' there are outer-
variables 2, of v,. 2, of v, such that 2, (.2, |. Call G,
the supergraph associsted with V. When (v is o dag.
cali it & superdog o

enriable z of

The SL! systems we are interested in in this section
are those for which every block bes an scyclic super-
graph. For such an SL! system, the essocisted super-
grapb of every block V at any level, &y = (V. £y). is a
dag. and therefore tv defines s partial order <y on 7
Namely, we put v, <y v; If and only if (v,.vs)e£E.

Let V.W be two blocks at the same level. If there
are T € V.2 '€ W, such that 2 <, ", then we say Vis a
preceding block of . We say a block is computed if all
the variadles in it are computed

For s block V at the bottom level, if all the preced-
ing blocks of V have been computed, then all outer-
variables = external to V such that z ¢, £’ for some
z' € V have been computed. Tberefore, V can be com-
puted next. We see that this bolds inductively for
blocks at all levels. Based on this idea. the following
algorithm will determine the values for ail the variablcs
of a block V by proceeding from one member block of V
to another in an order that is consistent with the partial
order <y, assuming that the preceding blocks of biock
V are all computed.

Algorithm (HIERARCHICAL LOCAL PERT)

Input:e set of simple linear inequalities on the variables
of 8 block V, Gy = (V. Ey) the sssocisted super-deag. &
set Pre (V) containing inequalities of the forms z 2 z¢
where z is an outer-variable of ¥ and z, is a constant.
and similarly s set Pre(:,) contauung inequalities
2z » . where z is an outer-variable of t, for each1,€}
Output:f t(z) z€V | (comment t(z) it the value of the
variable z in V)

begin

forzeV. t(z):= 0;p(2) := 0; (comment initialization)
M Vs a bottom level block then

begin

(z) = max LVn ‘z > ais in Pre(V) |, for every outer-

SIMFLE PERT on V;

end

M Vis not a bottom leve] block then

begin

Seiect the member blocks of ¥V in ap order tha! is con-

sistent -xmvthe partial order <, on V, for esch selected
block v, 1n Vdo

begin
pir):=maxia'z2ais in Pre(y,)| for every
outer-variable z of v,:
HIERARCHICAL LOCAL PERT on v,
for v, such that (v, v;)e £ do
Pre(vy) = Pra(v)) Ylz,2t(z)ed 2+d s 2,
is 8 constraint withz €y, z, € v, |
end.
ond
end

To find an optimal solution to an acyclic SLI sys-
tem. we first construct the super-dags 5y for all the
biocks This takes linear time and space and p page-

faults where p is the total number of pages. We then
apply Hierarchical Local Pert on the outer-most block V
with Pre(V) = [z20'z is an outer-variable in V{. It is
easy to see that every page is fetched to the main
memory once. Therefore, we have the following:
Proposition 4.1 For a hierarchical SL] system with acy-
clic super-graphs for all the blocks al all levels. an
optimal solution can be found in linear time and space,
causing the number of page-faults 2p where p is the
number of pages.s
4.2 Compaction for General Hierarchical Sil and SLIE
Systems

In this section, we discuss a hierarchical algoritbm
for finding an optimal solution to a general hierarchical
SLIE systemn. This algorithm also applies to SL) systems
since SL] 2ystemns are also SLIE systems.
Definition Denote by the relation R,(z,.z;) (or z,R,x,)
the condition where there is a constraint z,+d;p < zp.
and by R)(z,.z,) (or 2,R»x;) the condition where there
1s a constraint z, =z, We say z-z' if there are
z,.2; . Zy. @p Q. .., 6p Wwith a, € | 1, 2{. such
that Ra(z.2)). R, (2,.22). R, (2:.2'). 8nd there is
exactly one 1t such that a, = 1.

The relation -+ just defined can actually be viewed
as the extension of the relatiorn <« defined for paged
dags in Section 3. The reiatior. = on the variables has
the foilowing interpreiation.. The value of & variable z
cannot be computed unti! all the variables 2 suck that
x «'r are computed.]t is clear that -~ must be acyciic,
otherw:se the SLIE system is unso'sable. (Recall that
wE assume d, >0 for inequality constraint
z, +d < z,.)

Suppose V is & block of an SLIE system. Let Z(V)

be the set of the outer-variables of the member blocks
of V. We now define the rejation &, on the outer-
variables in Z(V).
Definition Let V be 8 block of an SLIE system. and let
z.z be two outer-variables in Z(V). We say x<, 2z (in
¥) if and only if z +x' or there exist variables z,...., Z,,
in V such that 242, 2,+2,,..., 2, <2 and none of z,,
i =1, . m.isan outer-variablein Z(V)e

Note that the definitions of <« and <, when res.
tricted to tbe SL] systems are consistent with the ones
defined in section 3. For an SLIE system, if we disre-
gard the equality constraints, we get an SLI system
which we call the SLJ subsystem of the original SLIE sys-
tem When we restrict - to the SLJ subsystem, we call it
« with respect to the SL/ subsystem, and likewse for
<,

From the definition of <,, we see that ¢, must be

acyclic. For every block V, we can construct en outer-
dag on the outer-veriables Z(V) with respect to <, as
before. Indeed for SLI systems, the metbod thet
worked for paged dags in Section 3 can be extended in a
simple way to work for hierarchical SL] systems. Eow-
ever, for SLIE systems. some complicetions arise due to
the presence of equality constraints. For instance in
Example 3 of Section 3, if we add the following con-
straints: 2,0 =Zp.)25 2. end zx,,=2xs then
Zge <o Ty and the outer-dag / becomes as shown in
Figure 4.1. We now cannot apply procedure DELETE to
determine a legal page sgequence. For example,
altbough z,; is exposed in K, we cannot compute it
immediately, for otherwise, since z,c = 23, we would
have been able to compute zy without looking at biock
Vp- The existence of an eguality z =z’ imples that
when one of the two variables is computed, so is the
other. To take this fact into account, we need to con-
sider the equivalence clesses on the outer«variables
formed with respect to the equalities.
Definition We partition the set of variables in an SLIE
system into equivalence classes with respect to Ry. the
relation defined by equalities. We write [z] for the
equivalence class [z] is in, and cali [z] an
esquality class. o

Ciearly, [z,]) = [z;] if and only if 2 ,R; =,

Definition W%e say @ block V touches {z) if
[r]~Z(V)# ¢. In this cese. we Jet [z]; be
[z) ~ Z(V). and call {z], the restriction of {z] to V.
When & block V is specified. we sometimes write [z or
{z)n Vior[z], »

We note that if for every variable x; in an equahty
class [z). the values of all variables z; such that 2+ "z,
are computed. then the value ¢z] of all the variables n
[x] can be computed as foliows:

(1) p(z,)s max { t(x,)+dy |2, +d,;Sz, is a constraint {.
(2) t{z)e max {p(z,) zel=]}.

Now we extend the definition of <, to the equalty
classes.

Definition Let [z,]. [z;] be two equality classes that
touch a block V.

(1)) V is & bottomn-level block, then write [z,]<,[2;) (in
V) if and only if there are zre[x,]. £°€[z,] suck that
z<, 2z in V.

(2)If Vis not a bottom-level block. then write [z,]<,[z;]
(in V) if and only if there are g€(z,]. 2'€[z,;] such thet
either Ry(z.x’) or [2,),¢,[2y), where u is a member
block of V that touches botb {z,] and [2,]+

Y

Lemma 4.1 Let ¥ be a block in a hierarchical SLIE sys-
tem. Then

(1) the relation <, defines a partial order on the egual-
ity classes that touch V.

{(2) if 2.2 are two outer-variables in V, then 2, °z°
implies [z]<, *[z]
Proot

Without loss of generality, we assume that there is
at least one outer-variabie in each block so that every
block touches at least one equality class.

Part (1) is clear from the definition Part (2) we
prove by induction on the level of V in the hierarchy.

For V et the bottom level. the assertion follows
immediately from tbe definition. Suppose V is not at
the bottom leve! If z.z are in the same member block
u of V, then by induction, 2<,°z => (2], ¢, "[z').. and
therefore {z]<, *[27]

If x, z are in different member blocks. say T €v,,
T'E€Elm. Putling £ 2¢,. 2' = g3 then 2¢,°z implies
that there are member biocks of V. v, . V- and
outer-variabler z,,. z,€v,. 1=0.., m such that
2,.< 22 T2 Ry 2y, for 1=0....m=1 Now by
nduttion 2,,<, ‘z,; => {2,), <, 22l 1 2 0o m =>
(20:1< "[22] Aise ze Ry zieny =2 [2el<alziam).
1 =0....m=) Therefore. [2]<, [z] o

By Lemma 4.1, for every block. we can form e dag
on the equality ciasses with respect to <,. From
Lemma 4 1. we glso see tha! for 8 block V end an eque!-
1ty class (2] tha! touches V. if all equality classes [z7]
suth the: (z]J¢,[z] have been computed, ther the
rumber max } t(z,) + d, 2,+d, sz 2,V { can be com-
puted Wher V is the lughest-level block. then this
value 1s exactly the value for all the variables in [x])
Therefore we car proceed from equality class to equal-
ity ciass 1N an orcer that 1s consistent with the partial
order <,.

As in Sectior. 3, we need not construct the dag that
is defined with respect to the partia! order ¢,. As &
preparation stage. we neecd orily compute the squality
classes. This can be done by applying breadth-first-
search hierarchically. treating an equality £ =z as an
edge {x. 2). We also compute in{z] which is the sum
ofin(z) forz € [z). where in(z) denotes the number of
x° so that there is & constraint 2°+ d €2 All these
computations can be done by examining each bottom-
level block once. To simplify the presentation, we also
assume that within each bottom-leve] block. there are
only inequality constraints binding variables in that
block. This can be achieved by forrming equivalence
ciasses with respect to equality constraints within each

bottorn-level block. choosing one representative for
each class, and substituting all the variables in & class
by the representing one.

The maein procedure LOCAL EQPERT is described
below.]t takes two arguments V and Y(V). where Vs a
biock, ¥(V) is s set of newly computed variables if V is
at the bottom level, and a set of newly computed equal-
ity classes otherwise. Jt will compute as many varisbles
and equality classes in V as possible, starting from the
given Y(V). In the procedure as well as in the algo-
rithm, ¢(z) will denote the current lower bound on &
variable =, t[z] will denote the current lower bound on
an squality class [z]. The final values of t(z) and t{z]
will be the values of z and [z] respectively Also. Ve wli
denote the highest-level biock.

Procedure LOCAL EQPERT (Y(V), V)

Begin
If V is at bottom leve! then while Y(V) is not empty do

for z € Y(V) do begin
for a constraint z + d £ 2, do
t(zy):= max(t(x,). t(z)+d)
in(x,):=in(z,) - 1;
if in{(z,)= 0 then #f z, is not outer-
variable then put z,in ¥(V) else do begin
t[z,) 1= max(‘[31] ‘(31> B
m[zll =inlz,] -
ifin[z,] = 0 then put [z,)in Y(V,):
end
end
end
end
if V is not at bottom leve! then for each member bock
u« that touches at leasi one equality ciass in Y(i’
begin
Y(u):=§[z], [z]eY(¥)}
LOCAL EQPERT (Y(u).u).
end.
end

Now we describe the aigorithm.

Algorithm COMPUTE SLIE
begin
t(z) := O for all variables z:
t{z]:= O for all equality class [z];
for each bottom-level block V do begin
for variable z in ¥ such that in(z) = O do begin
“ : 15 not an outer-variable then put z in

Y(V)
if z i an omer-vanable and in{z] =0 then
put [2]1n ¥ Vo;
end

LOCAL EQ-PERT(Y(V). V).
end

do until (V) is empty begin

LOCAL EQPERT (Y(Vp). Vo).

epd

end

Let p be the number of pages in & hierarchical SLIE
systern The preparation stage for computing equality

classes takes p page-faults. Other than that, algorithm
COMPUTE SLIE examines sach bottom-level block no
more than m times, where m is a bound on the number
of outer-variables in a bottom-level block. We therefore
bave flnally,

Theorem 4.1 Algoritbm COMPUTE SLIE runs in time
O(N) where N is the total number of constraints,
causes s number of page faults no greater than (m +1)p
where p is the number of pages, and m is the maximum
number of outer-variables o page (that is. a bottom
level biock) can have.

Reference

[AFU)A.V. Aho. J.E. Hoperoft, J.D. Ullman, The Design
and Analysis of of (omputer Algorithms. Addison-
Wesley, Reading. Mass, (1874), 378-387.

[D]A.E.Dunlop. “SLIM - The Translation of Symbolic Lay-
outs into Mask Data.” Proc 17th /EEE Design Automa-
tion Confersence (1980), 595-802.

(GJIM.R. Garey. D.S. Johnson, Computers and /ntracta-
biluy A Guide to The Theory of NP Completeness. Free-
man (1973, ’

{FJM. A Fuang. thesis in preparation

[KIDE Knuth. The Art of Computer Programming. Vol
1. Addison-Wesiey Reading. Mass (1965},

[LSVIR.I Lipton. k Sedgew:.ck. J. Valdes, "Programmun
Aspects of VLS! . Prac Sh ACM-POFL Conference
(19982 57-6%

{LM]T Lengauer. K Mexlhorn. "EILL - Hierarchica! Lay-
out Language. A CAD Systerm for VLS! Desygn.' Tk
ASZ ‘10, FB 10. Universitst des Saarbriocken, West-
Germany (1982

[L17 Lengauer, "The Compiexity of Compacting
Fierarchically Specified Layouts of Integrated Circuits',
Proc JEEE Conference on Foundalions of Computer
Science (1982). 358-365

[N]S C North. "Moiding Clay A Manua! for the CLAY Lay-
out Language’', VLS/ memo# 3. Princeton University.
[MC]C Mead. L Conway. Mmtroduction to VLS/ Systems.
Addison-Wesley. Reading. Mass. (1980)

[V]C Vijayan. Design implementation and Theory of a
VLS! Lay>u! Language. Ph.D Thesis. Princeton Umver-
sity. (1983)

Xo ™ Xit
X20 Xat

—

X3 X3z

ng 22

Hye = X352

Fg 24

ng 21

IR TIXpy = e Sk,

Xz
Xz Xaz

X3c — X3

g 23

'XAI

neg 25

[

.
t
; -10-
i
; ' ~
x‘dx“—oxu-o“-ou-.x G
! V. X2 X e G Xaz K-
% Xn—'Xn Xer = X3 Ky =PRD
: {
‘ KXao—» m-txn-‘x.g-'w Xe Xaa™> K
i d bl Y
H Kia: H Xm
i
i i
Xio = Xz — X V L
g 33
f; X3 —> Xag Vi
|
; Fg 31
l H X.r\—' Yo =X
; Xae—> Ka1 —b)X ;4
? G
X—Xss A L Sl W G 'X“—’-—Q-
~ Fig 4.1
X X9 —
{ WL. -z, -u‘-ox.‘ X
l“ :.7 Ls h, ’-'-liu-,-ou-..
]
H Xao——xs H Xie
{
Kz —— x4 Xaa =—— xoy
s
/ ' ne sz
{
\

T s e ke e

o.

Testability Conditions
for Bilsteral Arrays of Cambinational Cells

Anastasios Vergis and Kenneth Steighits

Department of Elsctrica! Engineering and Computer Science
Princeton University, Princeton, New Jersey 08544

Two ssts of conditions are derived that make one-
dimensional bilateral arrsys of combinational cslis
testable for single faulty cells. The test sequences are
preset and. in the worst case, grow quadratically with
the size of the array Conditions for testabllity in linear
time are aiso derived. The basic cell can operate at the
bit or at the word level An implementation of FIR
fiiters using (systolic) one-dimensional bilatera! arrays
of cells, which can be considered combdinstional at the
word level, is presented as an example.

1. Intreduction

The use of iterative arrays of identical cells in
current VLS] technology is becoming more frequent due
to their many sdvantages. like ease of design. fabrice-
tior and testing Moreover. many probiec.ns are
sfliciently solved with the use of "systolic arrsys’, which
are high'y iterative structures operating synchronously.
An important problem asssociated with thess structures
18 fault detection, that is, derivation of test imput
sequences to the array. such that the output sequences
of the normal and any feulty array (under some fault
assumnptions) are different. In this paper we give some
testability conditions for & special class of arrays
(defined below) thet improve upon the eoondition
reported in [3] Derivation of tbe test input sequences
18 also described.

2 Assumplions, Definitions and Netatien

Figure 1a shows & bilsteral array of combinstional
ecells The basic esll te shown in Figure 1b. At each time
unit it produces left and right outputs, dependung on its
left. right and vertical Inputs.

Let R be the set of right-moving signals, L the set
of lefi-moving signals and Z the set of vertical cell
wmputs. let gp AxZxl <R be tbe right-moving signal
maepping. and g;:AxZxl<l be the lefi-moving signal
mapping

A fault in a particular cell alters gp. ;. or both for
one or more arguments (v, e, 1). However, we assume
thet the cell remains combinational.

We sssume initislly Lhet to test a cell completsly,
we must apply all input combinations AxZxl to that
eell. This assumption makes testing of the eoels
independent of how they are realized and independent
of the faull mode! for permanent faults [1). We shall
ezamine later the case when only a subset of AxZxl
suffices to test Lbe basic cell. We further assume that
to test the array completely (for single faulty oslls), we
must test completely every cell in the arrey.

The lefL, vertical and right inputs of esll § at time ¢
are denoted as v/(2). 8/(t). 1/(t) respectively. Mence.

cell 4 ot time £ +1 will produce left and right outputs
H-(te1). pi*2(t+1).

Figure 2 gshowr the space-time trarsformation (2]
of \he array in Fig. 1a. Each row represents the array
st sach time unit. This makes the operstion of the
arrey easier to visualize. Note that this transformation
maps the one-dimensional synchronous bilsteral array
into a two-dimensional asynchronous unilateral array.

It Lo is-a subset of L. define gp(r.=. Lg) = Ry
whbere R is the oot { ga(r.8.2) | 1€Lp]. It Rg contains
just one slement v, we write ga(r. 2. Lg) = v’ (instead
of fr']). Similarly tor ga(Ro. £.1). ga(r.2o.). and simi-
larly for g, .

M rv€R. define R, = R—-{r]. Similarly L = L~{i}.
An input or output labeled v/ Ry where RoCR. and r
does no! belong to Ry, means normal input or output r,
and faulty input or output some member of By I Ry
contains just one slement r', we write v/r . Some-
times, when no confusion arises, v/ R, will also be
called & fault. For simplicity v/ R, will sometimes be
written as v/ ®,

¥We @lso define plry/rg e, l)sv /ey if
ga(ryi. s, l)=se, and ”(r,. g l)sry and v, vy,
v wry We define similarly gp(r.e. i,/) =1/ 1.
and eimilarly for g;. Another definition is.
on(r/7Ros.l)me /Ry U galr.e.l)=r, and
ga(Rp. 8. 1) C Ry Bimilarly for ga(r.e. 8/ Lg) end for
ot- ().loh that ga(r/ Ro 8. 1) is not uniquely defined.
since R'p may be any supersst of gu(R,. &.). not con-

ining ') Ilf, according to the above, the input of a
cell is & fault r/ Ry and ite output is r'/ Rg we say thst
this cell propogates the fault v/ Ry. Notice thst sccord-
ing to our convention r' does not belong to Ry 80 we
can distinguish between the norma! and the faulty out-
put.

In the sequel, p denotes the total number of celis
in the srray.

8. Some Cenerul Testability Cenditiens
Let V be the following set of conditions:

C1: for every reR there oxist v'¢X, s€Z such tbet
oalr.s.l)sey.

C2: for every i€l there exist I'cl.scZ such that
ol s,)=t

01: for every v, ¢ €X with v, v v, there exist
Scl.sCZ such that ga(r,. 8.8) @ galre. 8. 1)

OR: for every I,.lp¢l with {,w i, there exist
PCR. sCZ such thatl gy(r. 0. 8,) v g (r. 8. by).

Theersm 1: Any bilatera! array of combinational
oells that setisfles condilions V is testadle for mngie
faulty eells.

1083 IIIZ Intermational Conference om Computer Dessgn/VLSI in Comput
Aye, Bev York, Ootober 31-Bov. 3, 1083. " " ore.

. e —

e . - = e s - m i e ———

The proof is similar in spirit to the proof of the
next theorem, and it is actuslly simpler. So It is
omited. We only mention that, under conditions V, to
test the entire array completely we need
pp+1)maz(IR|.ILI) IR |ZI-1L] tests.

Let W be the foliowing set of conditions (ses Figs. 3
and 4):

Cl: for every rER there exist £'€R, 2€Z such that
onlrso.s.L)=v/".
C2: for every lel there exist I'el.s€Z,7'€R such

that gi(r'. 8. 1) =l and ga(r/® s, ') mv/e.

O1: for every v €R there exist s€Z such that

AN WARX VAR
02: for every I, €l with I, wl, there exist

r€R,2€2Z suchthatgi(r.e.8y) mgr(r.s.ls).

Conditions W hold if 1) the basic cell just transmits
unaltered the right-moving signsl, 2) ga(R.2.L) = L, 3)
for any two different right inputs there exist v, £ that
produce two different left outputs. This is a Quite rea-
sonable set of assumptions.

Theorem 2 Any bilatera! array of combinational
cells that satisfles conditions W is testable for single
faulty celis.

Proof: Assume we want to test cell § for inputs
(ro. 2¢. Ig). These test inputs will be applied at time
tz2p=-j il the test begins at time t=1. Hence
ro=ri(2p—j) lo= U/(2p-3). 8o = 8/ (2p =5) (see Fig. 5.
shaded cell).

First we must make the left input of cell § at time
2p~-j be ro= r/(2p~y). Condition C1 guarantees the
existence of ¢ }(2p-5-1), ¢!~} (2p-y-1) such thet
vi(@p~3) = ppr!~Y(2p-3-1). e }(2p-3-1), L). hence
it suffices to apply v/~ (2p~5-1). /" }(2p-j~1) as left
and vertica! inputs to cell y~1 (at time 2p-j-1).
Inductively, apply v/ %(2p~-5-2), 8/ "%(2p~-5~-2) to cell
J -2 stc., until we reach the leftmost cell. The tricky
part is to apply right input lg = 1/(2p-5) to cell §. Con-
dition C2 gusrantees the existence of #/*(2p-5-1),
Ui (2p-5-1), s!*}(2p-4-1) such that l(2p-j) =
pu(ri*N2p-y-1), ¢7*}(2p—~j=1). U*Y(2p -y -1)). snd
grlri*ep-g=1)7®, e/ (2p=f=1). U} (Zp-y-1)) =
v*Y2p-5)/*. Hence it suflices to apply input
(ri*i(2p-y-1), U*¥2p~5-1), e/*}(2p =5 -1)) to cell j+1
(at time 2p~f-1). Left input v/*i(2p~g-1) and right
input 1/*}(2p ~5=~1) can be applied (recursively) in the
same way we sapplied inputs ry and Io to cell § (using
C1). This solves the controllabdility probiem.

We have not yet used the strong part of condition
C2. namely the fact that gp(r/® s, 1')=r/® The
usefulness of this will become spparent in the sequel.

Assume thst the normal right and left outputs of
cell § (on input (ry. 8¢ {p)) are v and ! respectively;
assume thet we test for the error /7 in the left output.
We can simultaneously test for all errors v/ ° in the
right output. Propagation of the error i/ to the left-
most output is done using 02 and C1.

We have not yet discussed the "southeast” portion
of Fig. 5. that is the portion balow the right-to-left diag-
onal that passes through the shadsed cell. First we bave
to propagste the fault v/ ¢ (= ¢i*}(Bp=y¢1)/°®) to the
rightmost output. But cell § may fail to function
correctly st any previous tims, so for instance (see Fig.
8) cell § on input ¢/(2p-2m+g) (for some m in
fge1, 442, - ,pl) may not output
ri*i(2p-2meg+1). 90 cell m mey mot output
1™-(2p =m + 1), bence cell § may not receive I as right

input, and due to 8 fsull, it may output the expected
outputs {, r. Under this worst case scenario the two
faults will be masked and we will get the expected
observable outputs 1%(2p) and ¢?°}(3p~2541) (sssum-
ing fx(p+1)/2). This is avoided a3 follows:

First, to propagate the fault ¥/ ® to the rightmost
output, using condition O1 we ind 8/*}(2p—j+1) such
that cell j+1 on inmput w*!(2p—j+1)/* outputs
v1*8(2p = +2)/%; inductively we propagate this feult to
the rightmost output (r?(3p~25~1)7°). Similarly, we
propagsate the feult r™(2p-m)/* for
mege14¢2 - - ,p. Nolice that the potentia! prew-
ous feult ¢/*}(2p-2m+s+1)/* of cell j has been
"automstically” propagsted to cell m as r™(2p-m)/*
by the strong part of condition C2 “when"” we were solv-
ing the controlisbility problem. So, if cell § outputs
something differsnt from v/*}(2p—2m +j+1). we shall
detect it ot the rightmost output by getting something
different from the expected v?*'(3p-2m+1). Trs
solves the observability problem.

Tus abovs procedure is repeated for svery 1 in L:
then we have tested cell § for input (re. = lp). Thus is
repeated for every (v, 2.8) in RxZx[; then we have
tested cell § completely. o

The testing time shown in Fig. 6 is 2p. Hence to
test cell § for input (rg. so. {g) we need 2p (L) tests,
bhence to test ecompletely cell j we need
2p |LI®|R|-|Z! tests. and to test completely the

.arrey we need 2p" |L|®|R| [Z! tests. Note that if

some cell in the space-time transformation is “used at
time ¢, it is never used at time t+1, hence the obvious
pipelining reduces the testing time to one-ha!f of the
sbove number of tests.

4. One-step Testability

Parthesarathy and Reddy [4] introduced the notion
of one-step testabdbility for unilateral arrays We extend
this notion to bilatera] arrays as follows.

Definition: A cell in a dilatera! arrsy of combina-
tiona! cells is one-step testable for input (r. #. 1) if the
number of time units needed to test this cell for anput
(r.s.1)is independent of |R|, |L].

Definition: A cell in & bilateral arrsy of combina-
tionsl cells is one-step testadble if it is one-step testabdle
for all inputs (r. 8. 1) in RxZxL.

Definition: A bilsters! array of combinational cells
is one-step testable if all its cells are one-step testable.

The notion of one-step testadility is important for
the following reason: if an array is one-step testable, the
time needed to test it is grestly reduced since. if the
expected output of a cell under test is, ssy. 1. it is not
nscessary to apply different test inputs for sach feult
WiiteL=-yy.

The following conditions are useful for one-step tes-
tability (sse Fig. 8):

OST1: for every r€R there exist 1€l. s €2 such that
or(r/R,. 8. l)me/R,.

0ST2: for every l€L there exist rER. £€Z such that
nir.s. l74) =7 4.

let OST be conditions OST] and OST? together. let
V-OST (W-0OS™) be conditions V (W) and OST together.

If W-OST hold, instead of Lesting for the fault {/Tfor
esach [in [, as in the proo! of theorern 2, we can test for
the fault 1/ L. Tbua, to test cell § for input (r¢. ®¢. I¢).
we only need Bp time units. Therefore, if we want to
test all cells for inputs a subset / of AxZxl, we need

c—

2pt |7] time units. If V-OST bold, similarly es above, by
testing for all output faults simuitaneously (on a given
input). we need p (p+1) || tests if we want to test all
cells for a subset J of Rx2ZxL.

5. Conditions for Testability in Linear Time
Lat L be the following set of conditions (see Fig. 7):
0C1: For every ;. vg €R with r,»rg and for every i€
there exists '€l and s€Z such that
or(ri. o . b)wga(ry. 8. 8)ind g (r, .)=,
0C2: For svery ;. iy €L with {,;#{; and for every r€R
there exists v€R and s€Z such that
pr(r.a.) wgi(r.e. lp)and gp(r,s.l)=r.

Theorem & Condition C1 of V and L is & sufficient

set of conditions for testability of the entire array in a.

number of time units proportional to the length of the
array.

Proof: We shall give a constructive proof. To keep
things simple, we shall work on an example; the gen-
eralization is straightforward. Consider the space-time
transformation of an array of 8 cells as in Fig. 6.
Assume that each cell must undergo 2 tests, that is it
must be tested for inputs (r,. 4) (£1,2) for faults
v/t Vsl (e v U are the normal outputs sand
r,. L, are the faulty outputs). In Fig. B8 cells under test
are depicted as full squares; so the inputs and outputs
of these cells are "given”.

Let's group the celly of the space-time transformae-
tion diagonally, forming different groups on the left and
right of the celis under test, as in Fig. 8. Call these
groups left and right diagonal groups. Note that each
left diagonal group of ¢ cells bas one left input, one
right output, c right inputs and ¢ left outputs. Its right
inputs will typically be faults that bhave to be pro-
pegated to its left outputs. Fig. 9 shows » left disgonal
group contaning cells & through m, at time units ¢
through tem—k. Assume that the faults
B (tei)/ B (t+i)torixD,1, -, m=k are given and
have to be propsagetcd to its left outputs; also output
™ ¢} ({ e -k +1) must be generated. We shall show bow
to find its left input r*(t) that does that. Using condi-
tion OC1 we can find input r™ (¢ +m ~k) that propagates
the fault I™(t+m~k)/T(t+m ~k) and generstes the
output ¢™*}(tem=k+1). Now #™(¢t+k~m) has to be
generated, so inductively we can find v (t). Hence each
left diagonal group can propagate to its left outputs any
fsults on its right inputs and, at the same time, it can
generate any right output. Entirely symmetrical things
bold for each right diagonal group.

We apply the construction steted above, starting
from the left diagona! group st the top of Fig. 8 (which
contains just one cell): that is, we find its left Input so
that the fault ',/ 7, is propagated, and output ¢ is gen-
erated. Then, for the next left diagonsl group (second
from the top). we know the fauits thel it bas to pro-
pagete. If we were testing the lefimost cell for one
more input, we would also know the output that bas to
be genersled by this diagonal group: since this is not
the case here, we can choose it arbitrarily. Therefore,
we can apply again that construction to find its left
input that does this. We proceed this way, from top to
bottomn. (Inductively, sach disgonal! group will heve to
propagate some faults and generste an output; as we
proved above, there exists an input that does this.) We
repest the same procedire for the right diagonsl
groups. proceeding agein from top Lo bottom. Obviously
it does not hurt if some of Lthe left inputs of a right diag-

onal group are not faults that have to be propagated. as
for the first, third stc. groups in Fig. 8.

For the first p-2 left diagonal groups their left
inputs are “inside” the array, so we bave the sdditiona!
problem of how to generate them. Condition C1 of V
takes care of this, (as in theorem 2).

If sach cell requires T tests, (T+1)p is the
number of inputs that have to be applied to the left
boundary of the array (see Fig. 8); sdditionally, p~1
time units are required for the propagstion to the right
boundary of the faults in the leftmost cell Hence the
entire array can be tested in in (T+1)pep~1 time
units. Again, the obvious pipelining saves sbout half of
tbese time units. s

6. Conditions for One-step Testability in Linear Time
Let us consider now one-step testable arrays. It

turns out that it suffices to replace the fault r,/r,

(resp. 1,71;) in conditions L by tbe fault v/°* (resp

1/°). This wey we obtain the following set of conditions

1-0ST.

OCi: For every reR and for every l€l tbere exists
el and s€Z wsuch that gp(r/7*.s.l)=
gr(r.s. l)/® andg(r.a.l)=1.

OC2: For every i€l and for every re€R there exists
r€R and g€Z such that g,(r'.s.l/%)=
g.(r.a. l)/® andgp(r.e l)=r.

Theorem 4. Condition C1 of V and L-OST is =
suflicient set of conditions for one-step testability of the
entire array in @ number of time units proportional to
the iength of the array.

Proof: Analogous to the proo! of theorem 3. If
esch cell is tested for s subset / of ite inputs. the
number of time units required is (|/{+1)pep-1. s

Remark: Al the above results are easily general-
ized for the case when gp. g; are not identical for every
eell, that is we bave gh. gl for the {-th cell: it suffices to
replace the conditions for ga. ;. by conditions for gh.
g} for everyi.

7. Application

Figure 10 shows the basic cell of & two-way pipeline
systolic array used for FIR fiitering [5). [8]. For this cell
we bave [Z|=1 (no _s-inputs). ga(r.l)=r,
gi(r.1) = len-r. This array can be considered os o
bilateral array of combinational cells at the word level
(tbe basic time unit is the time required to produce the
outputs). It easy to see that conditions W-OST are
sstisfled. (Here we have the case when gp. p; depend
on the cell.) Therefore, if & subset / of RxL suflices to
test the basic cell, 2p% (/| tests suffice to test the
array. Also, if we ignore overflow problems assuming
for all v, {jea rrisear for I,y conditions L-OST
bold; hence for this cese O(p |/|) tests suffice to test
the array. Note that the inequality above does not have
to hold for all v, {,. Is: obviously, it suffices to bold for
the signals that appear as inputs or outputs in the test
descridbed in the proof of theorem 3.

ACKNOWLEDGEMENT

This work was supported In part by NSF Grant ECS-
8120037, U. 5. Army Research-Durbam Grant DAAG29-
82-XK-0095. and DARPA Contract NDOD14-82-K-0549

REFERENCES

[1) M. A Breuer and A. P. Friedman, Diagnoris and
Reliadle Dasign of Digital Systams, Computer Sci- S
ence Press. 1976, .

[2] F. C. Hennie. /terative Arrays of Logical Cireutis, ..
Cambridge. MA: MIT Press, 1961. gy an ey ‘.

[3] F. G. Gray. and R. A Thomson. "Fault Detection
in Bilateral Arrays of Combinstional Cells.” JEEZE .
Trons Comput , vol. C-27, pp. 1208-1213, 1978. .

[4) R. Partbasarathy snd S. M. Reddy. "A Testable .
Design of Iterative Logic Arrays.” JEEE Trons »
Comput., vol. C-30. pp. B33-B41, 1981,

[5] H. T. Kung. "Let's Design Algorithms for VLS] Sys~ .o 4
tems.” Proc. Conf on Wry Large Scale Mntegra-
tion: Architecture, Design, Fabricgtion, California .
Institute of Technology. Jan. 1978, pp 65-90. D .

[8) H. T. Kung and C. E. leiserson, “Algorithms for @& .
VLS] Processor Arrays.” in ntroduction fo VLS/ .
Systems. C. Mead and L. Conway. Addison-Wesley, D *

1980 .
s [2 Y R
. ~
\
‘\ﬂ-t-n i

o ntred) o $

Fig . {a) A synchronous bilateral array ({b) The basc cell

[') 3 [""“Nj\
A Y
-
' ') o) o0 '._ﬂ-
e 4(;) o 4(1) o) /v
[yt Pt ‘I'
N\ ~-.§:r
t ') Lt] o) [3%)
O T a2, 1h2) %) Lt
" -
’ ') o) ..lm
N
T s v 8y ") m,
AN
.
e

Fig 2 Space-time transformationinto
asynchronous urulateral array

sty s e

Cond Cl oW g 4 (l) Condition O of W
the 3 %:)) C::‘llltll:: C2 ot W . (b) Condusticn & oW

'/ v /" LA A4 B v ’ !
:[:;F: il:p :t; |
trh byiy Wi N 8 Tesung

d OST: T Condition NI of L
ne ¥ gcmaimar: © ne g cootuen €y at

aptmepety ® o
.

* . [144 Py
.
. oot gesy e
. . .

* M dualdd "~y -;
. gy em o) -y oy

.
Pyl *

R""OIV'

.
.
’
-y
~

.y -2 °
(Gl AL

Fig 5 The test described inthm 2 (vertical inputs
are not shown for simplicity)

Lol I 11372 JT)

" (lem=d}

Fg § Aleh diagona! group
Sos

Sou ® 8y
Sow S s &y

LS
N
— |
ot =
g 10 The bamc cell of & two-way pipeline
systolic array for FiR fiitering

an array that satifies conditions L

Cells under test are depicted as full squares
the olher celis are depicted as pownts

Total Fault Testing using the Bipartite Transformation®

Andres S. laPaugh
Richard J. Lipton

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, N.J. 08544

Abstract:

We present a method of creating circuits which are
easily tested for all single stuck-st fa.lts using a con-
stant number of test vectors. The method is the combi-
nation of a number of techniques. it uses special *“‘con-
trolisbie’’ logic gates and latches. It requires that com-
binational logic subcircuits be bipartite, which is
achieved by transformation if necessary. The method
was previously presented for nMOS combinetiona! logic.
In this paper, we extend this method to both CMOS and
to sequential circuits. We also discuss alternate methods
of achieving bipartiteness during testing.

1. Introduction

In [LaB3), we presented s new spproach to the pro-
duction testing of VLS] circuits. This approach gives
100% single stuck-at fault coverage of circuits using a
constant number of test vectors. [t ealso covers many
multiple faults. Generating test vectors is very fast; in
fact, it does not require gny searching. only » one pass
analysis of the circuit. Our method has tremendous
advantages over traditional methods iIn getting
guaranteed bigh fault coverage without the high costs of
searching for good test vectors and applying large sets of
test vectors. One of its great advantages is that the set
of test vectors is small enough to be stored on-chip, giv-
ing deterministic self-testing. The approach does have
penalties - primarily in circuit area bul also in speed.
However, we believe the advantages will outway the costs
in many situations.

Our epproach is the combinstion of three tech-
niques which, in fact, could be used separately. The first
is the use of circuits with the property of being bipartite;
the second is the use of special controliable logic ele-
ments. the third is the use of small amounts of logic to
observe the values of internal nodes. Originally, the
approasch was presented for nMOS technology and pri-
merily combinstional logic. The purpose of this second
paper is to give extensions of the method to sequential
logic and to CMOS. Also, we will explore variations of the
method which address tradeofls in fault coverage, area,
speed. and fault tolerance. We are particularly con-
cerned with providing alternatives when the ares penalty
of our basic technique is too costly.

® Supporied by DARPA #N000) 4-2-K-0940

2. The Approach

Our approach is based on the ease with which any
wire in a bipartite circuit can be controlled to the value
0 or 1. A bipartite circuit is a combinstional logic curcuit
whose gates can be colored black and white such that no
two gates of the same color are connected Given such s
coloring of the gates, the wires can aiso be colored so
that sach wire inherits the color of the gate to which it 1s
input. Circuit output wires inherit the opposite color of
tbe gate from which they are output.

Call s logic gate dnverting if it bas output 1 when
presented with all 0's as input and 0 when presented with
all 1's as input. Inverter, NAND, and NOR gates are
inverting. If s bipartite circuit consists of inverting log:c
gates, then every wire can be forced to the values 0 and
1 using just two input vectors. (This was observed for
NOR-»quivalent circuits by Akers [Ak74¢).) The property
is central to our spproach; we call it the panty principle

Parity Principle: /f we sef all the black inpu! wires
of an inverting lognc bipartite circusl to the value V ond
all the white Snpu! wires of the circuil to the value V,
then sl black (respectively whife) uares toke on the
value V (respectwely V).

We use the stuck-st fault model [Br78] in which each
input to s logic gate and each output from a logic gate
may be independently stuck-at O or stuck-at 1. This
mode!] includes stuck on or stuck off faulls for & MOS
transistor since these are squivalent to stuck-st 0 or
stuck-at 1 faults on the gate (control input) of the
transistor.

To use the parity principie in o test strategy. two
test vectors are applied. one with all white input wires
set to O and all black input wires set to 1 and the other
with these vaiues reversed. These will excite any stuck-
at feult at the output of e logic gate. However. note that
in e fault-free circuit, all inputs to an individual log:c
gate will be squal. Thus not all stuck-at faults st the
inputs of logic gates will be tested. For example. given a
(two input) NOR gate. to detect an individual input
stuck-st 0 requires that value 1 be applied to the stuck-
st input and O be applied to the otber input. Therefore.
using tbe parity principle to test bipartite inverting logic
circuits allows one to check that sach logic gate output
can take on the values 0 and 1 but does not catch each
stuck-at fsult in a transistor or at an input.

To catch all stuck-at faults in @ bipartite inverting
logic circuit, we repiace sach logic gate with a special
gate. This gate uses extrs global control inputs to catch
al stuck-at faults for the gate. In [La83). an nKOS two
input NOR gste was presented for use in circuits contain-
ing only NOR gates and inverters. An nMOS NAND for
NAND/inverter eircuits is similar and NOR and NAND

To be presented at International Test Conference, Oct. 1983.

getes (requiring more control variables) for use in mixed
NAND/NOR circuits are extensions of these. In the next
section, we present s controliable NOR for CMOS.

Given @ circuit of controlisble gates, the number of
test vectors increases as a function of the sumber of glo-
bal control inputs used. For a circuit consisting only of
controllable two tnput NOR gates (inverters are crested
by using an NOR gate with both inputs the same). tbe
number of test vectors incresses from two to five. The
purpose of the five test vectors will become clear in the
next section when the CMOS NOR is presented in detail
Because combinstional ecircuits are fesdback-free, any
faulty circuit will have ot least one gete whose inputs
come from fault-free geates but whose output is
incorrect. This is detected by observing the output of
every gate.

Normally, observing the output of every gate would
be an impossible task for & LS] or VLS] circuit. There are
fer too few pins availsble, and mechanical probing is
difficult. A scanning electron microscope can be used
for such observation [Ki82]. but its use is not practical
for production testing of & large number of chips and
probibits fleld testing. However, in our approsch tbere
are very few svents, i.e. combinations of values of geate
outputs, that we wish to observe. The basic technique
using s bipartite circuit with controllable NOR gates
requires the observation of three events: all white gates
output O and all black gates output 1; all white gates out-
put 1 and all black gates output O; all gates output 1.
Handling specia! input pads and sequential logic will
increase the number of events dby two.

Because there are so few events using our approach,
we can edd extrs circuitry to observe these events.
Each event is observed by using s large fanan AND to
observe all outputs which should be 1 and a large fan-in
OR to observe all outputs which should be 0. By physi-
cally distributing these large fan-in gates. we can keep
tbe increase in circuit ares small. Note that the number
of such large fan-in getes needed is proportionally te the
number of distinct events to be observed. Most test
methods require the observation of a large number of
svents. Thus. althougb the observation circuitry could
be sdded to any circuit, the amount of circuitry needed
would be prohibitive for most test methods. This method
of observing internal values can be used with other test
methods requiring the observation of only a few events
(e.g. [Ha74. Sa74]).

S. The Approach for CNOS

The CMOS oentroliable NOR gate is s modifiostion of
the standard ratioless pullup-pulldown CMOS NOR [Ho83)
shown in Figure 1a. Figure ib shows the new gate with
sdditional inputs C, and C;. This gate is used in circuits
consisting only of inverters and NORs; the inverter is
ereating by using a NOR with both inputs the same.
Inputs C) and Cy are gloda! to the circuit — every gate in
the circuit contains them. For normal operation, €, and
Cg bave the value 1. Table 1 shows the values to be used
to excite each possibie stuck-at fault in the gate. Note
that an ntype (respectively p-type) transistor stuck on
is equivalent to its input stuck-at 1 (respectively stuck-
st 0). and p-type (respectively p-type) transistor stuck
off is equivaient to its input stuck-at 0 (respectively
stuck-at 1).

Ip Table 1, pote thet whenever one of C, and
takey on the value 0 and the other takes on Lhe value 1, a
feuit-free gate is inverting with respect to normal inputs
2 and y. Thus, for these values of £, and Cy. the parity

e e —

aputs Owpu: |
_Pauh s y &, Cp | Correct Peuny
] wot Mmi1l0 o 1 0 1 [
Mol &t 1 o ° 1
C, st Mmily 3 0 ° 1 [}
01 1 1 0O o 1
] wigpe B8A) |0 O 1 [} 1 shor
01t 1 3 ° ° fioa:
s paqwe BM3l0 0 1 [1 fos:
Mo 1 1 [0 short
C, wagpe A1 |31 1 O ° 1 ahort
0|1 1 3 0 0 fios:
C, pops W1 |31 1 © O 1 [
a0l 1 1 [0 shom

TABE
for y faults and Cy feults, reverse values on €, and Cp with
same results

principle bolds and getes can be tested simultaneously -
white and black gates being tested for opposite faults.
To test stuck-at 1 faults at £, or C,. both are set to 0. In
this cese, the normal inputs and outputs of all gates
should be 1; again, all gates can be tested simultane-
ously.

Table 1 shows that each single transistor fault in the
CMOS gste results in the gate output being eitber electri-
¢illy isolated. denoted floating. or on a path from VDD to
¥SS, denoted short. In nMOS, beceuse the logic is
ratioed, s short provides a valid logic 0 [Me80). However,
in CMOS, this may not be the case. Also, in nMOS a float
can occur only if the depletion mode pullup transistor
which is normally on is stuck off. In CMOS however, all
the individua! stuck off faults for transistors cause float-
ing outputs. This is necessarily the case in ratioless
CMOS since for sach input combination, there should be
either a path from VDD or s path from VSS to the output
of & gate. To detect & stuck off transistor, such s path
must be broken. causing a floating output Similarly.
any single trangistor stuck on will ceuse & VDD-VSS short

To detect a short, we may choose in the design of
the controliable gete to mize transistors so thet such
shorts appear as a valid logic value. This may cause
some transistor faults to be undetectadble. The most
desirable such ratioing is to make the p-type C, and C,
transistors with high resistance and the ntype C, and
transistors with low resistance. This is also desirabie for
good performance of the logic gste in normal operation.
The remaining transistors are adjusied so that any short
leaves the output at s logic 0 (as for nMOS). Then, an n-
type transistor stuck on will be detected as yielding an
incorrsct logic value: & p-type transistor stuck on will
give the correct logic value but st s bigher voltage within
the allowable range.

Sizing transistors to handle shorts negates one of
the great sdvantages of ratioless CMOS ~ the ability to
design logic gates so that transitions to both 1 and O are
st spproximately the same spesed.)f & VDD-VSS short

car oe detected by detecting high leakage current on
th: power bus [MaB2. AcB3] this sizing cen be slim-
inated. The controllsble gste can be designed for
optirmum fault-free performance. This is the method of
choice for detecting shorts.

To detect srroneous but logically valid outputs and
floating outputs. we must obsserve the values of sach out-
putl gate. Possible distributed AND and OR configurstions
for CMOS are shown in Figure 2. These are similar to cir-
cuits which may be used in nMOS. In CMOS we use only
n-type transistors and propagste only logic 0 through
ibern. To use either type of observation circuit, we hold
all circuit inputs at e test value while doing the following.
The observation logic output is set to logic 1 by a
separate source whije holding the observation logic input
at 1. Then, the separate source is disconnected and the
observation logic input is set to 0. For the AND
configuration, this O will propagate to the output if ail
wires being observed are correctly at value 1. For the OR
configuration, the 0 will propagate to the output if some
wire being observed is incorrectly at value 1. Figure 2
shows the basic construction. In practice, drivers may
be needed so that the observation logic does not bave
too severe 8 delay. Note that this delay only affects the
time to test the circuit — the observation logic is not
used during norma! operation. Since there are very few
test vectors to be applied, we can afford a longer delay
for each test vector than if we were using a metlhod in
which thousands of test vectors were applied. This delay
is 8 disadvantage in that it may prohibit st speed’ test-
ing of the circuit.

To detect flosting outputs, we use the fact that such
an output will hold it's old wvalue for several circuit
delays We sequence the test vectors so that the correct
values of gate outpuls alternate between D and 1. Thus,
when a gate output is flosting. it will hold an old value
different from the expected value. Note that there are in
fact only five test vectors:

Black White
Vector Inputs Inputs C, &
v,] 1 1 0
vy 1 0 1 0
Vs 0 1 [} 1
v, 1 0 [1
vg 1 1 0 0

I we use the sequence v, vy, vy, Vg, V), ¥, Vg ¥, then
the outputs of black gstes should take on the sequence
of values 1.0.1,0,1,1,0.1 and the outputs of white gates
should take on the sequence of values 0,1,0,1,0.1,1,1. In
this case. for each gate, each test vector is applied at
least once when the previous output of the gate is oppo-
site from the expected output for tbe test vector.

4. Ssquential Logic

We bave described our approach as applied to com-
binational circuits. We now consider sequential circuits
composed of bipartite combinstional logic subcircuits
separated by simple latches We will consider only
latches with one dste input, one output, and ens latch
signal When the latch signal is high, the value of the data
input is stored. Tbe output is equal to the last input
value stored and is aiways available. Given such a

-3-

sequential circuit with bipartite combinational subcir-
cuits, a scan path technique [Wi81) could 2 used to gain
access to the lstches. Our technique couvid be used for
the combinational portions by loading and unloading the
lstches through the scan paths. The sequential loading
and unloeding of tbe latches is slow. Even worse, for
CMOS whers the ssquence of test vectors is important,
the sequential losding mey cause serious problems in
testing for floating output nodes. The exsct design of the
scan path latch will determine what is feasible. However,
there is an alternative. If a speocial controllable latch 1s
use in place of the simple latch, sequential circuits witn
bipartite combinationa! subcircuits can be tested using
our approach without the use of scan path circuitry

The testing of sequential circuits using the controll-
abie latch breaks up the circuit into controllable comb.-
national pieces just as scan patb tecbniques do. How-
ever, instead of loading the latches with values during
testing, sach controllable latch has special test modes
In each test mode, the outputs of s latch are the specific
wvalues needed for the current test, regardiess of the
stored value. Thus, in addition to the dsts input and
latch signal, the controllable latch will have mode inputs.
In the most general case, the latch outpul may be con-
nected to both black and white gates. In this case. the
latch will have five modes: (i)all outputs squal to last
stored input (normal), (ii) all outputs equal to 1. (iii) al!
outputs equal to 0, (iv) all cutputs to white gates equal to
0 and outputs to black gates equal to 1, (v) all outputs to
white getes equal to 1 and outputs to black gstes equal
to 0. (Note that for & NOR/inverter circuit mode (iu) 1s
not needed. but in &« NOR/NAND/inverter circuit it would
be.) Modes (ii) through (v) are test modes and ignore the
wvalue actually stored in the latch. During testing the
oulpuls (black and white) of the controliable latch are
observed in the same fashion as the sutput of a logic
gate. Figure 3 gives one possible design for such a gate
in nMOS.

The test seguence using controllsble latches is as
follows:

1. Test combinstional logic. Set the modes using (ii)
through (v) above as appropriste to test the comb:-
nationa! logic pieces. Observe that correct test
wvalues are on outputs of sach lateh.

Il. Test latching of input. The data input to each latch
is either white or black: we call the latcbh white or
black accordingly. Since the combinational logic
bas been tested, we can use it to set a known value
in sach latch.

A Using mode (iv). set the inputs to all white
latches to 0 and the inputs to all black latches
to 1. Raise all latch signals so these values
sbhould be stored.

B. Lower all latch signals. Use mode (i) to pro-

pagate latched values to observable outputs

Repest A and B using mode (v) in A and again using
mode (iv) in A. For esach latch, this will test the
transition from storing a 0 to storing & 1 and the
trangition from storing s 1 to storing & 0. In B, only
the values at latch outputs are observed since the
distinction between white and bleck wires is not
maintained at this step. This introduces two new
ovents to obeerve.

Note that to execute JI. the latch signsls of all
latches must be controllable of the values
in the circuit under test. In many circuits this will bap-
pen naturally — the control signals and deta are received

and manipulated separstely. }f this independence does
not bold. there are peveral alternstives. The most direct
is to modify the latch signal logic so that under test the
ilatch signals can be controlied directly. Note that enly
one latch signal can be used within s latch, otherwise the
lstch will not be completely testable. Of course, the
logic creating tbe modified iatch signal must be tested.
Anotber alternstive is to test only some latches at o
time For example, there may de two sets of latches,
with the lateh signals and dats inputs for sach depen-
dent on the output of the other but the latch signals and
dats inputs for each lstch in e given set independently
controllable. Then we can test one set at s time by
sppropristely setting the outputs of the other set Such
s method requires careful anslysis of the dependencies
of the circuit and brings us once again to the problems
of test vector generstion. Thbus, it is not in keeping wit:
the spirit of our approach. However, it may prove to be
s demirable method, especislly if there are very few
groups of latches which interact

S. Nnding Bipartite Circuits

Our approach requires that the combinstional logic
sections of & circuit be bipartite In [LaB3), we have
sbown that any circuit can be transformed into s bipar
tite version by et worst doubling the number of gates
This transformation does not increase the fan-out or the
length of input /output paths. We also require the use of
controllable input pads similar to the controliable latch
descnbed sbove In test mode. a controllable input pad
allows black wires and white wires from the pad to take
on opposite vajues

Since the cost of transforming an arbitrary combi-
national circuit into a bipartite circuit may be very high,
we wish to identify technologies and design methodolo-
gies which produce bipartite circuits nsturally. Two com-
mon desgn structures which are bipartite are the NOR-
NOR and NAND-NAND PLAs. (Note that each gate of & PLA
mey bave high fan-in, requiring s proportionsl number of
control signals.) PLA's are in fact exampies of level logic
fogic which 13 constructed in levels of gates 90 that gates
in the % Jevel receive inputs from gates in the ¢—1%
level and send outputs to getes in the i+ 1% level. Any
level circwt is bipartite. It 1s interesting to note that to
string together PLAs, one must take care at the inputs.
Often. a PLA uses an input value and its complement as
shown in Figure 4. When the input is treated as & circuit
input with a controliable pad. this does not present a
probiem. However, if the input is to come as the output
of some other PLA, the combined circuit rmay not be
bipartite. Instead of employing the circuit transforma-
tion, one may use a preudo input pad between the two
PLAs 30 that the input value and its complement can be
decoupled (take on the same value) during test. This
illustrates one important theme which emerges from our
test approsach:

Allouw variables and their complements fo asrume

values independently during tes!

The usefuiness of this theme has been noted by others as
well (e.g [SaB2]). The pseudo input pad essenually
breaks a “’bad” edge The concept of breaking “bad’
edges will be expanded upon below. Note that the result
is not always fully testable.

A design metbodology which produces bipartite cir-
cuits is domino CMOS [Ho83] In domino CMOS. esch
composite gate is actually s precharded inverting gate
followed by a standard CMOS inverter These composite
gotes can be connacted in any feedback-ree fashion to

produce 8 bipartite circuit (color all precharged gates
white and all standard inverters black).

The transformstion presented in (La83] is advanta-
geous because it does not increase the fan-out or lengths
of paths of the circuit. Thus it does not increase the two
major sources of delay. However, the ares penalty for a
pearticular circuit can be very large. A circuit may be
“almost’’ bipartite in one of two ways. Its transforma-
tion may require only a small number of extra gates. or
thers may be a black/white eoloring for it in which few
sdges go between gates of the same color {offendirg
edges). Note that the latter does not imply the former,
as shown in Figure 5. We would like 8 circuit with few
offending edges to bave & low cost modification to e
bipartite wersion, but it mey not under the origina:
transformation. In the remainder of this section we dis-
cuss ways of modifying such 8 circuit et the offending
edges so thet the parily principle can be used These
techniques will not incur the ares cost but have other
costs. It should be noted thast doth finding &« minimum
size transformed circuit and finding s coloring with a
minimum number of offen edges are computation-
ally difficuit (ie.NP-.omplete (Ga75. GaB2)]). Therefore,
we do pot expect to solve either problem optumally. dut
to find good solutions

In each of the techniques, we will conceptually
insert an eztre gate on each offending edge during test
80 that the edge 13 split into two and the circuit becomes
bipartite. The most straightforward solution 1s to actu-
ally do this as shown in Figure 8a This introduces an
extra delay duning normal operation of one pass trans:s-
tor (trensmission gate) on each offending edge Even
worse, tre normal functioning of the “edge’’ cannot be
testeA viing our eppros b Thus thus solution costs both
speed and fault coveragy but bas a small ares penaity
when thers are few offendun, edges

By using an inverter whose output can be 1solated as
sbown in Figure 8b. part of the tesling problem of our
initial “splitting” method can be alieviated Thus
tnverter must bave & pullup which will not dominste the
pulldown psths within the preceding logic gste In this
respect. it is designed to be fault tolerant A third con-
trol signal is required

Two alternstives present themselves to solve the
remaining lack of fault coverage One is to introduce a
second path for normal operation (making s double
edge) and through this redundancy make the construc-
tion fault tolerant. The layout of such s construction
with redundant paths in very important, since the Likel:-
bood of both paths being broken must be low. This siter-
nstive ibcresses the ares penalty st ssch offending edge
and does not improve the fault coverage

The second alternative is to modify the preceding
logic gste so that we have further control over it Note
that the controllable NOR can be set to output s 3
regardliess of the values of its normal inputs (the con-
troliable NAND can be set to output s D). Suppose we
further modily the NOR, using another control input, to
output & 0 regardiess of the value of its normal inputs. If
an offending edge is from such s controlladle NOR. we
can check that the normal connection from the gate to
the next gate is working, ie. that the ‘‘edge’” works
correctly in normal operation. To do Lhis. we generste a
0 and & 1 as outputs of the gate independent of the
gste's normal inputs. For each value, we seiect the nor-
ma) connection through the edge and observe the value
of the edge beyond the test mode circuitry. This test wili
introduce two new events at such edges. This alternative

requires e more complicated gate preceding an
offending edge. thus further increasing the ares penalty.
It also requires more test vectors and observation logic
than the simple strategy for splitting” an edge. Again, if
few edges are involved. the area penalties may still be
less than using the original transformation.

The techniques described ‘above all “gplit” an
offending edge during testing so that the parity principle
wil hold. We may instead. reroute inputs so that each
gste receives inputs from gates of the correct color dur-
ing test. To do this. for each offending edge. we intro-
duce an alternate esdge to the same input as tbe
offendung edge but from an arbitrary gate of the ~urrect
color. The offending edge is selected for normal opera-
tion and the alternate edge is selected for test. This
involves the addition of wires and pass transistors as
sbown in Figure 7. As for our simple splitting technique.
e pass transistor delay is added to each offending edge
and faults in the pass transistors for normal operation
are undetected. Thir technique does not require the
addition of an inverter. If routing the alternate connec-
tions 15 easy, very little additional area is required. Note
thet this technique tests a different circuit than the one
desired, but one with the samne gates. Thus all the gates
are tested but not all of the connections are tested.

8. Concluding Remarks

We bave presented s method of creating easily
testable circuits. focusing on the method as applied to
CMOS and sequential circuits. Our method requires
bipartite combinational logic, specially designed logic
gates and latches. and the addition of observation logic.
The special components and observation logic could be
used separately, but are designed to work with the bipar-
tite properties to produce a circuit requiring very few
test vectors. We heve also presented some alternatives
to the transformation presented in [LaB3] which try te
muumize the ares penalty of making @ circuit bipartite
for testing purposes.

We bave concentrated on the stuck-at fault model.
However, in eddition to all stuck-at faults, our method
will cstch any logic gate fault which causes the gate to
become non-inverting. Also, any bridging fault between o
white wire and s black wire. causing botb to take on the
same values, will be detected. However, such bridging
faults between wires of the same color are not detected.
It 15 interesting to note tha! faults causing CMOS logic
gates to have floating outputs are difficult to deal with in
conventional testing methods since a large set of test
vectors must be sequenced [ChB83] In our method, the
smell number of test vectors aliows us Lo easily sequence
them by inspection to produce tests for these faults
Another advantage of the method is the ability to design
self-testing chups using it. allowing the possibility of in-
fle}d te-ung

Given & circuit which has bipartite combinational
logic. Lthere remain some costs in ares and speed associ-
eted with the method we bave described. The controli-
able gstes and latcbes. routing of contro! signals. and
observation logic require extra srea. The controllabie
logic gates may be somewhat siower tban their standard
counterparts, but thus penally can be minimized during
gete design (normally st the expense of ares) The
observation logic will present a amall extra load on each
gste whose outpul is observed. this will also introduce
deley Consequently, we do expect o circuit designed for
this testing method to run somewhat slower than if
designed witbout the testability structures. We beleve

-5

this added delay will be small However, tuture work
comparing versions of circuits designed with and without
the testability structures is peceasary.

The practicality of the method we have presented
ultimately depends on the relative values of cbip fabrica-
tion cost, chip performance. and cost of fsulty chips
reaching the field. The additional circuitry will decreese
the yield of chips designed using our method and thus
increase the cost of fabrication. The higher fault cover-
age must more than compensate for the increase in
faulty chips Lo decrease the number of faulty chips end-
ing up in the fieid. We believe our method will prove
advantegeous when high confidence in chip correctness
is required. However further study is necessary ‘o
determine the actual penaities and gains of the method
in various design domains.

7. Raferences

[AcB3] Acken, J.M., "Testing for Bridging Faults (Shorts)
in CMOS Circuits,”" 20th Desygn Automation Conf |
IEEE, June 1983. pp. 717-718.

[Ak74] Akers. 8.B. Jr., “Fault Diagnosis as & Graph Color-
ing Problem. JEEE Trans on Computers. C-23.
No. 7. July 1974, pp. 708-712

[Br78] Breuer, M.A.. Friedman, A.D., Diagnosis and Reir-
able Demgn of Drgital Systems. Computer Sci-
ence Press (Potomac, Md.). 1876.

[Ch83) Chiang. K-W.. Vranesic. Z.G., *'On Fault Detection
in CMOS Logic Networks.” 20th Demgn Automa-
tion Conf . IEEE. June 1983. pp 50-58

[Ga79] Garey. M., Jobnson. D. Computers and Mmtvactadil-
Wy A QGuide to the Theory of NP-Completeness.
W.H. Freeman and Zo. (San Francisco), 1879

{Ga82] Garey. M.. Johnson, D. private communicstion

[Ha74) Hayes, J.. "On Modiying Logic Networks to
Improve Their Diagnossbwty''. JEEE Trans on
Computers, C-22, No 1, Jan. 1974, pp. 58-82

[HoB3) Hodges. D.. Jackson. H., Analysis and Desygm of
Digital /ntegrated (Ceocuits, McGraw-Hui (New
York). 1983.

[x:82] Kinch, R. Pottle, C., "Automatic Test Generation
for Electron-Beam Testing of VLS] Circuits.”
Mmternational Confersnce on Creuiuts and Com-
pulers (JCCC). 1982, pp. 548-551.

{La83] LaPsugh. A. Lipton. R.. "*Total Stuck-st Fault
Testing by Circuit Transformation.” 20th Desygn
Automation Cons JEEE. June 1983, pp. 713-7186

{MaB2] Malaiya, Y.K., Su, S., A New Fault Mode! and Test-
ing Technigue for CMOS Devices." nternational
Test Cons . IEEE, Nov. 1982, pp 2535

{MeB80) Mead. C.. Conway, L., Mtroduction to VLS/ Sys
tems, Addison-Wesley (Reading. Ma.), 1980

[Se74) Saluja. K. Reddy, S., "On Minimally Testable
Logic Networks'', JEEE Trans on Computers. C-
23. No. 5, Mey 1974, pp.552-554

(Sa82] Saluja. K., “An Enhancement of LSSD to Reduce
Test Pattern Generation Effort and Increase Fault
Coverage.” IRA Dasign Automaton Conf . IEEE.
dune 1982, pp 485-464¢.

[WiB1] Wiliams. T.W, Parker, K.P., *Design for Testability
- A Survey,” JEEE Tvgns en Cemputers, Vo! C-31
No. 1. Jan. 1082, pp. 2-15.

r—-—ji———

)

.

B)
w
s=d 40 o) =6
» o -
w

Y=t

oy
By -
€, =t [C‘
ricvee 1

(a) Standard QNS W02
(b) Simple Controllable OKS WOR

Uires Observing - Betece 411 1

- - W ot

—

¥ires Observing - Begect All ©

D LAYy £

Basic Observation logic for CMOS

naae 2

(a) Distributed amp
(b) Distributed O

[}
-
T _’ hosrve
daced Bignal
[} - s whice gates
NPot] Originel
Lated ? -
¢o block gates
T4 E; f
Saarve
.l
FIGURE 3

An wMOS Controllable Latch

T, l'. and !' are mode inputs

mode (1) T« 0
modes (41)=(v) T)

l' e value of white output
l. = value of bleck output

Z/“ 7/‘!“0

e

o Wite/Black®

3

FIGURE «

PLA Structure

S IS

(.)}——ﬁ\< Oflenging Edge
b’o -~

1

)

2o

«

FICURE §
(a) Crapt for circust with one offending edge.

(t* Transformatgor of circuit - 5 gates becomes 8.

Seras!
4
| g |
{s) T { 1
Boerve T Ghooree
test
“Soragl™ 5-4 0 ond “"Test” $4 | conmet o tested
Seraal
-l
?
hu. _'
hnl _'

hu. contrelleod pullup 19 designed o0 that pote g
output will dumiaste ot Tosty s 4 1

ricune ¢

#M05 Configurations for "Splitring™ Bdge

~1ﬂ7

[>—

I

FIiCURE 7
Rerouting for Test

The Impact of Processing Technigues on Communications,
NATO Advanced Study Institute, Chiteau de Honas.

(Gers). France, 11-22 July 1983

HIERARCHICAL, PARALLEL AND SYSTOLIC
ARRAY PROCESSING

Kenneth Steiglitz

Electrical Engineering and
Computer Science Department
Princeton University

Princeton, New Jersey 08544

1. SIGNAL PROCESSING AND VLSI

Many signal processing algorithms are highly regular.
data-independent, and access the data in fixed patterns. For
these reasons the current technological advances in very large
scale integrated circuits hold especially great promise for sig-
nal processing, and in fact we now see the development of
many highly integrated processors of a more or less special-
ized nature. At one end of the spectrum, we see programm-
able signal processing chips that are really microprocessors,
with program, memory and logic separated as in a general-
purpose machine. At the other extreme, we see highly-
specialized, custom chips that perform fixed tasks; typically
the data moves through the chip along fixed, regular paths,
the arithmetic logic is distributed in space, and the "‘program”
is really “*hard-wired" into the topology. This talk is devoted to
a study of this latter, custem variety of architecture.

The range of algorithms that are commonly used for digital
signal processing is not very great; a few very important algo-
rithms are used intensively. They fall roughly into four
categories: convolution and filtering; Fourier transforms:
matrix calculations (see, for example, [36]), and iterative

-2-

algorithms for adaptive filtering. All these applications are

characterized by two important characteristics that make

special-purpose, highly dense hardware very attractive:

¢ high-volume, real- or nearly real-time data-flow require-
ments, and

e effective algorithms unth regular patterns of data access
and fized operation sequences.

There are direct architectural consequences of these
characteristics. The regularity »f the patterns of data access
and operation sequences makes possible a high degree of pipe-
lining and multiplexing. This, in turn, makes possible & high-
volume data flow. Furthermore, the regularity of the algo-
rithms is reflected in a regularity of VLSI circuit structure, so
that a hierarchical approach to laycut design and specification
becomes possible, and that greatly simplifies the design and
development of large-scale, custom VLSI circuits for digital
signal processing. The rest of this talk is devoted to these
architectural consequences: In the next section we will discuss
some general aspects of parallelism, and why the need for
parallelism justifies the development of custom, single-
purpose chips. Section 3 is devoted to highly-pipelined and
systolic structures, using filtering as an example, with a review
of some useful topologies. Section 4 deals with how some of
the important structures can be combined in a hierarchical
way . We will review mathematical models of VLS] computation
and available lower and upper performance bounds in Section
5. Section 6 will deal with the practical matter of maximizing
throughput by appropriate choice of latching density.

2. PARALLELISM AND THE CUSTOM /PROGRAMMABLE DECISION

There is a general tradeofl between specialization and pro-
grammability in digital signal processing chips. The obvious
advantages of flexibility afforded by programmability must be
weighed against the higher potential throughput of a custom
chip. The choice between the two is dictated by the cost in
time and money of designing and testing a chip, and by the
need for very high-throughput real-time processing. This tra-
deoff changes with time and technology: as chip design
becomes a highly automated process, and as more real-time,
high-volume applications arise (such as in the fields of com-
munications and robotics), we are likely to see the prolifera-
tion of very specialized signal processing chips.

A
Pata Ra’teﬁ
(bits/se)
10
9 Logical
16° - ed
Video 'ém\k
F*!" iwm
10" Cops/see)
10°-
'05_ obuc\'\o
Ciler
T T T T B —
2 3 4
LT AT Y Computational
h‘\us\‘\'d
(cps/bit)

Figure 1. Signal Processing Tasks in the intensity-rate plane
(after [7.9]).

Figure 1 shows one way of looking at the range of signal
processing applications. We plot the data rate in bits/sec as
ordinate, and the computational intensity requirement of a
given task in operations/bit as abscissa. For example, a low-
order FIR filter has a low computational intensity, whereas a
high-order filter has a correspondingly high intensity. A 50th-
order FIR filter at a sampling rate of 20,000 words/sec (a typi-
cal audio rate) and 10 bits/word, with say 100 logical opera-
tions (at the gate level) per fixed-point multiply-by-constant,
corresponds to a data rate of 2x10° bits/sec, and a computa-
tional intensity of 5x10? operations/bit. For a chip of fixed size
and for a given technology, the product of the two coordinates
in operations/sec is bounded from above by some constant:
the total number of operations possible if every piece of the

-4 -

chip were doing useful work all the time. For a chip with 10°
gates and a clock period of 100 nsec, this is 101
operations/sec. This boundary is shown by a hyperbola in Fig.
1 (a straight line in log-log coordinates). At the same time,
there is an upper limit on the data rate, determined by the
number of 1/0 pins and the speed of the 1/0 drivers.

We are thus constrained to work within the region shown.
Whenever an operation is carried out that does not contribute
directly to the processing of the signal, as counted by the
measure of computational intensity, we move away from the
boundary. Consider, for example, the operation of a pro-
grammable signal processor with a stored program. Every
instruction fetch or store, every instruction decoding, and
every tes! fer branching, is wasted in the sense that a part of
the chip is d~ing work that is not essential. Also wasted, of
course, is any part of the chip that remains idle during any
par.icular clock cycle.

Wc are lead to the conclusion that the most efficient use of
chip area, the dearest resource at present, should avoid pro-
grarnmebility, and should make concurrent use of as much of
tne chip 2s possible. When demands on performance are very
high, at the limits of applications technology, we are lead to
the design of custom, single-purpose chips with fixed date-fow
nains. Thus. some filtering tasks at audio bandwidths may be
best implemented now with programmable chips, but applica-
tions at video rates, like robot vision, demand custom designs.

In this talk we will use the operation of convolution for our
examnles. It is no doubt the most widely-used of all the digital
signal operations. and is also representative in terms complex-
ity and throughput requirements. We write it as

Yy w8z = ‘é“w,,z,._,, = ;zku"n—t (1)

The function w, will be called the weight sequence, and wil!
usualiy be of finite duration, so that the limits of the summe-
tions in (1) will be finite. We will distinguish two situations in
which convolution is usually implemented: general convolu-
tion, where the weights w, are variable on a short-term basis,
as fast as the signal z,; and filtering, where the weights v, are
fixed (or al least infrequently changed). We will make no dis-
tinction between convolution and correlation, which is simply
convoluiion with one of the signals time-reversed.

Convolution can be applied in many ways. At the bit level,
with Boolean product, and Boolean sum with carry, it means

-5-

binary multiplication. At the signal level it means filtering or
correlation. At the logical level it means pattern matching.
This observation allows us to develop highly regular VLS! topo-
logies by first developing a structure at the word level for con-
volution. A similar structure is then used recursively to build
a multiplier at the bit level. The result is a hierarchicel struc-
ture that is highly regular, being uniform in topology all the
way down to the bit level. In the next two sections we carry
out just this plan.

3. SYSTOLIC AND COMPLETELY-PIPELINED STRUCTURES

Highly concurrent VISI circuits can be characterized by
the following desirable properties [7,9]:

» Local-Connectedness : This means that computational ele-
ments are connected only to nearby neighbors.

e Flow-Simplicity : This means that each element is used only
once per elementary computation.

e Cell-Simplicity : This means that eacl. elemernt takes only
constant time for its computation; that is, it romputation
time does not depend on the such parameters as the
number of bits in a word, or the number of coefficients in a
filter.

Systolic arrays [21,22,27] can be characterizec as those
that are both locally-connected and flow-simple. Wires are
short and the data flows through the structure in a smooth
way. However, each *‘cell” may be very complex (a multiplier,
possibly), and may take time dependent on the problem
parameters.

Completely-pipelined circuits [7,9] are another class of
highly concurrent, pipelined circuits, characterized by the
properties of being flow-simple and cell-simple. These circuits
are more general than systolic ones in that long wires are
allowed, but more restricted in the sense that the computa-
tional cells operate in time independent of the problem
parameters (such as word-size).

In what follows we will concentrate on the simplicity and
regularity of some computational structures and ignore scme
problems that are important at a practical level, but which
would obscure the presentation. For example, the question of
eflicient use of area will be ignored for now, but will be dis-
cussed in Section 5. The problem of distributing power,
ground, and clock lines will likewise be ignored; some

- o

-6 -

discussion of these points in the present context can be found
in [9]. We will also not worry about the signs of numbers in
describing multiplicatior;, but assume that extension bits are
added to two's-compiement numbers so that the answer is
alway)s in range (seec [13,31,33] for some discussion of this
issue).

3.1 Word-Serial Filtering

Figure 2a shows the conventional signal flow graph F for
TR filtering (see {37]. for example): the input signal z, is
delayed alorig a chair of registers, and during each clock
period the appropriate samples are multiplied by the
corresponding weights w,-, and summed. At the right we see
the computation tha: must be performed every clock cycle.
Notice that for this examnple of a 4-coeflicient filter, not only
do we neec to perform 4 multiplications and 3 additions
between clock pulses, but the input of the second addition
depends on the result of the first, and the input of the third
depends on the result of the second. This means that we can-
not perform these additions in parallel, and therefore that the
throughput rate ic limited by the time for three additions.

Figure 25 shows another signal flow graph F*, the transpose
(see [34], for example) of signal flow graph F (called Bl in
[21]). The transformation of transpcsition entails reversing
the direction ©. every arc, replacing summing nodes by
branching nodes, replacing branching nodes by summing
nodes, and interchanging input and output. Here the
sequence of sums is replaced by a broadcast of the input signal
z, at any time: the computation during each cycle is again
shown at the right. This broadcasting, or fanout, of a signal
carries with it a certain penalty in terms of delay, but is gen-
erallv much {aster than sequential add operations, so that this
signal flow graph can be implemented with a much higher
throughput if the three additions are implemented with three
adders operating in parallel. The commercial chip described in
[47] uses this transposed structure.

The fanout problem of graph F* and the sequential delay of
graph F can be avoided by using the graph F¢, shown in Fig. 2c.
Here on every clock pulse the input signal moves to the right,
and the output signal moves to the left. The transfer function
of F® is H{z?) if the original graph F has transfer function H(z),
so that meaningfu output is obtained only every other clock
cycle (this is the structure W1 of [21]). Thus the input and

%
'
{
}
[
' Figure 2. Structures for word-serial filtering. The boxes are
delay elements. The computation during each clock period is
shown at the right. From the top: a) F, b) F¥, ¢) F?, d) F%, e) F&
1
'

S —— SEBR — -

-B-

output signals must be interleaved with zeros (or two indepen-
dent filtering operations can be interleaved).

It seems that there is no way to avoid all the difficulties
with a single structure. For example, the summing nodes of F
can be separated by registers (delays), and corresponding
extra delays inserted between inputs, producing the circuit ¢
shown in Fig. 2d (called W2 in [21]). Here the input and output
signals move in the same direction, but at different speeds.
But this graph has more registers than F or 7, and has a delay
before the output appears.

Finally, Fig. 2e shows the structure F® that results when
the additions in F are performed using a binary-add tree
[7,9.37]. This is a convenient structure for visualizing the con-
volution operation, and may be useful for general convolution
(as opposed to filtering). Care must be taken, however, that
the tree is laid out in a way that does not take up too much
area on the chip. The recursive configuration of an H-tree is
useful for that purpose [32].

Are the preceding structures, by our terminology, systolic
or completely-pipelined? Graph F can be laid out to be locally-
connected, but is not flow-simple if a single adder is used
sequentially (and that is only reasonable since multiple adders
would not be usable in parallel). Neither is it cell-simple, since
the time for the elementary computation (that between clock
pulses) depends on the number of coeflicients in the filter. The
structure F is therefore neither systolic nor completely-
pipelined.

Signal flow graph F* is not locally-connected, because the
length of the longest wire, used to broadcast z, depends on the
filter order. 1t is, however, flow- and cell-simple, so it is by our
definition completely-pipelined, but not systolic.

Graph F® is both systolic and completely-pipelined; it can
be laid out so as to be locally-connected, and is flow-and cell-
simple.

Finally, signal flow graph /M is completely-pipelined, but
not systolic, since any layout (including H-trees) will have
wires whose lengths depend on the filter order.

3.2 Bit-Serial Multiplication
The same structures used for word-serial filtering can be

used for bit-serial multiplication by & constant, with the
difference that each summing node is a full adder with three

¢ang carry

Figure 3. ¥': The structure F* adapted for bit-serial rmrultipli-
cation.

inputs and two outputs. The inputs to each full adder are the
two addend bits and the preceding carry bit, the outputs are
the sum bit and the carry bit. Figure 3 shows the multiplier
corresponding to graph #*; it is really no more than a simple
implementation of the ordinary shift-and-add elementary-
school multiplication algorithm. We will denote by K. K¢ M?
and M4 the multipliers corresponding to F.F* F?, and F?,
respectively.

3.3 Word-Parallel Filtering

We now consider word-parallel filtering, and, in the next
section, the corresponding operaiion of bit-parallel multiplica-
tion. Figure 4 shows a diamend array with the signal z enter-
ing from the top left and the filter weights from the top right
(when the weights w, ere fixed, they need not be transmitted
through the array as shown but can be stored in place). Notice
that the signal values z, corresponding to a given signal are
arranged on a horizontal line, and hence skewed in time so
that successive values enter the diamond array at successive
clock pulses. The next horizontal line will have another signal
in it, and blocks of fiitered signals emerge from the bottom of
the array at successive clock pulses. The sides of the diamond
array have length proportional to the filter order.

Figure 5 shows the detail of a node of the array: Each node
in Fig. 4 contains a mu'tiplication by a weight and an adder,
and each arc has a delay eiement (a latched register). We will
call the overall structure F* (for Array Filter).

!
|
-10- {
i
!
|
{
' Figure 4. A structure for word-parallel filtering, F4.
1
{
Figure 5. Detail of a node in F4.
!
|
L | |
| —t o y LT &

_11-

3 4 Bit-Parallel Multiplication

As before, the filtering structure becomes a multiplicatior
structure when the multipliers are replaced by Boolean pro-
duct and the summers by full adders with carries. In this case
the carries propagate down and to the left, which direction
corresponds to the next-higher bit of the product. An extra
triangle is needed at the lower left so that the carry bits can
propagate all the way to the left (see [31], for example]. The
reader will recognize this signal flow graph as nothing more
than an array multiplier (we will call it #4), with every valve
latched between clock pulses (see [31,37]). This parallel mul“i-
plication structure has the property that the full adders at the
top of the diamond can accept inputs without extra logic, so
that the multiplier can function as an accumulator as weli, and
ttis fact is useful in FIR filters and other applications [10,15].

This hexagonally-connected array multiplier is locally-
connected, cell-simple, and flow-simple, and is therefore both
systolic and completely pipelined by our definition.

3.5 Other Useful Structures

We have already seen the linearlyconnected array (in &l
the serial examples), the hexagonally-connected array (in 77
and M*), and the leaf-connected tree [7,9] (in F2 and M?) We
now mention some of the other regular topologies that heie
proven useful in constructing computational networks for
VLSl A structure called cube-connected cycles is used in [35]
for bit-parallel multiplication. A tree-like structlure can be
used to shorten the delay (latency) of a parallel multiplier, and
the resulting structure. called a mesh-of-trees can be found in
[8,25]. Leighton also discusses an analogous topology called a
tree-of-meshes [25].

We have seen above a variety of different topologies, all of
which perform similar computational tasks. Some work has
been done towards developing a unified treatment of computa-
tional structures of this type, and showing how they can be
expressed conveniently and derived from each other. For more
about such mathematical representations see [12,14,20,45,46).

4. HIERARCHICAL METHODOLOGY

An important feature of the regular topologies exemplified
in the preceding section is that they can be combined irn a
recursive, or hierarchical, way. The most obvious application

-12-

of this idea is to use bit-ser.ai multiplication within a word-
serial filter, yielding a bit-seria:, word-serial filter that is fully-
pipelined. On each clock pulse, every bit moves, every piece of
hardware (silicon) is usedl, anc one output bit appears. Bit-
serial adders are nceded at the summming nodes. Such struc-
tures have been discussed widely in the literature recently
[6.13,16,23,30], and are ~ttractive at this time because a rea-
sonably high-order filter can [it on one chip, and the intercon-
nection problems caus>c¢ by high pin counts are greatly allev:-
ated by the bit-seriai nature of the computation.

Suppose for illustratiorn that the multiplier #' is used
within the filter F¢, res.ilting in what we will call F*(M*). Figure
6 shows a schematic represeniation of this filter, which is simi-
lar to those described in [6.13]. In theory, then, we have the
ingredients for 5 x ¢ = 2% diflerent bit-serial, word-scrial
filters, all of which heve slightly different timing and iavoul
details.

x

)

oot

o-—{1T—

Figure 6. Recursive use of the structure F¢: Ft(#!).

-13_

To go one step further, we can combine, serial and parallel
structures. For example, at the other extreme from the com-
pletely bit-serial fiiter just described, we can assemble FA4(M4),
producing a bit-parallel, word-parallel filter — one that pro-
duces a completely filterzd block of signal samples once every
clock pulse. (Now we need bit-parallel adders at the summing
nodes.) Of course, the amount of area is greatly increased over
the bit-serial filter, but so is the throughput.

In the same wav, we cculd use a bit-serial multiplier within
a word-parallel fiter (yielding FA(M*), for example), which pro-
duces a bit-serial, word-parallel filter, which for B-bit words,
produces a coruplete block of filtered samples every B clock
pulses. With only the 6 different structures discussed here,
there are 36 possibilities, each having its own characteristics
in terms of iayout area and throughput.

An important advantage of this approach to VLSI layout is
that some of the probiems associated with design and layout
arc greaily simplified, since the overall problem is broken
down into natura' pieces, each of which can be handled in rela-
tive isolation. Such a design methodology is well-suited to the
uvs2 of high-leve] jayout languzages and silicon compilers (see,
for example, 117.18.29,38])

Another advantage of the hierarchical approach is in the
crucial but ofter. negiected area of testing. Because the com-
piexity of testing arbitrary circuits can grow exponentially
with the size of the circuit, 1t is a great advantage to be able to
break a circuit ii.lo blocks whose function can be tested
independently of the other blocks. Much the same approach
has proven very valuable in the design of large software sys-
tems. Some recent resuits in the testing of regular bilateral
arrays can be found in [16,40,42].

5 MODELS AND BOUNDS FOR VLS]

The signai processor has heretofore been concerned
mainly with speed of operation. High throughput on a general-
purpose computer is achieved by managing time. But now the
designer of systems has a new resource to manage: area. It is
no longer sufficient to specify a sequence of instructions for
data processing. We must now specify a geometric layout. Of
course the reguircenients of high speed and small area are
mutually conflicting. Consider, for example, the multipliers
discussed above. A B-bit-serial multiplier like #* will generally
Lave a throughput rate of one product every B clock pulses

-

-14-

belore the answer is ready, and generally takes area propor-
tional to B. On the other hand, a B-bit-paralle! multiplier such
as M* has a throughput rate of one product every clock pulse
(once the pipeline is full), but area proportional to B% Thus
there appears to be a conservation law at work, and we expect
that *.,unds can be obtained on such quantities as throughput
per unit area. We will describe some such bounds below.

5.1 Some Terminology

We need to define some important terms precisely. First,
the delay or latency T of e signal processing device is the time
between the arrival of the first bit of the input signa' at the
input port, and the time that the last bit of the answer
appears al the output port. This is the usual usage of the term
“computation time.” But in many signal processing applica-
tions we are concerned more with the throughput rate than
with the delay. We define the time between successive outputs
with pipelhnes full as the peried P of a chip, and the reciproca
of the period as the throughput.

If a quantity is bounded from above by a constant multipie
of r(B) for sufiiciently large B. where 5 is any parameter of
interes. {often the number of bits), we say the quantity is
O0.f .B)) So. for example, the array multiplier ¥4 requires arce
0:B%. A corresponding lower bound is written Q{B)

52 A VLSI Model

We will next describe a mathematical model for a VLSI
chip, one that is abstract and simple enough so that resulls
can be proved about it, but one that is also realistic enough so
that the results provide some guidelines, or at least hints,
about reality. The model we describe is attributed by Vuillemnin
to the three sources [4,32,41]; this and similar models have
been used by many others. There is a fairly large literature on
modeis and bounds that we will not attempt to survey com-
pletely here (see, for exampie, [1,2,4,5,24,26,28,35,39,41,43)).

The basic premise is that there is a minimum feature size
A, ard minimum delays 7., and 7,, dictated by the technology.
The important assumptions are then that a) no two wires can
have their midpoints closer together than A,, b) every logicel
uril (such as a gate) must have area at least AZ, c) passing a
signa. through a wire entails a delay of at least r,, indepen-
dent of the wire’s length, and d) passing a signal through a
gate entails a delay of at least 7.

Yo

-15-

As discussed in [2], the assumption that the delay is
independent of wire length is true only in certain regimes.
Depending on the technology, the time for propagation of sig-
nals may be independent of wire length, as we assume here
(the synchronous model [4]), or proportional to the logarithm
of the wire length (using repeaterz), or proportional to the
square of the wire length (diffusion case).

5.3 Lower Bounds

Thc essential result is expressed in a nicely general form
by Vuillemin [43]. He defines a wide class of functions callea
transitive functions, which includes integer product, convolu-
tion, linear transform, and matrix product.

Theoremn [43]: Any circuit that computes a transitive function
has wire area

A = QD% (2)

where D is the data rate in bits/sec.

The period P is related to the data rate D in a simple way:
P = N/L, where N is the number of input bits. Therefore the
bound above can also be written

AP? = QUN?) (3)

We can also observe that if any one of N input bits can
affect the output, and if there is a constant bound on the
allowed fan-in, then the circuit must have at least logV stages.
This implies the following lower bound on the latency 7:

T = QlogN) (4)

A good example to illustrate the use of these bounds is B-
bit multiplication. The bounds above tell us that 4AP? = Q(B?).
and T =0ogB). The array multiplier described above has
A = 0(B?), P=0{(1), and T = 0(B). It is therefore asymptoticaily
optimal under the measure AP?, but possibly has more deiay
th?n necessary. In fact, the delay can be reduced to the
asymptotically optimal O(logB) with the area increasing only
from 0(B?) to 0(B4ogB) [B] (see also [44]).

An interesting measure of goodness, that takes into
account both period and latency, is AP?T%. By the arguments
above the lower bound on multiplication is then
AP?T? = O)(B%0g?B). The array multiplier mentioned above [8]

-16-

has the upper bound AP?T? = 0(B%0g®B), which is therefore no
more than one loz-factor away from asymptotic optimality, by
this measure at least.

Compare this result with the bit-serial multiplier &*, for
example. That structure has area 4 = 0(B), period P = 0{B), and
latency T = 0{B), so that AP?T? = 0(B®). This is an indication that
the overall efficiency of silicon utilization is not as good
asymptotically as that of the paralle]l array multipliers. but
one should not conclude too much from this argument. For
one thing, we may need a multiplier with small area siinply
because an array multiplier will not fit on a chip, in which case
we must settle for the possible instead of the asymptotically
good. It is alsc quite likely that the constants of proportional-
ity favor the simpie linearly-arranged designs such as M!, so
that for reasonzbly-sized B the measures above may be
misleading. The asymptotic measures give us useful guidelines
for comparing designs that are similar, but there are so many
factors in choosing a multiplier for a particular application at
a particular point in technological development, that
mathematica] analysis should be interpreted with caution.

6. PIPELINING AND LATCHING FOR THROUGHPUT

In the designs discussed above it was assumed that every
signal value was !luiched (thatl is, held in a register) at every
stage in the signal f.ow graph. So, for example, the array multi-
plier M4 has a register after every full adder (this was stressed
in [31]). This means that every part of the circuit can be used
for holding intermediate results —that every part can function
as a pipeline. This approach leads to high throughput et the
expense cf delay. In contrast, array multipliers that are com-
mercially produced on packaged chips do not generally have a
high degree of pipelining in this sense of the term; the answer
is usually produced in one or two clock cycles, and the carry
signals ripple through the structure, settling in time for each
new clock pulse. In [3], for example, an array multiplier with
combinational Jogic that is 113 gates deep is mentioned. Thus,
commercial singie-package multipliers are optimized for
latency and not throaghput, and are therefore not necessarily
“fast” for custom chip designs for signal processing applice-
tions.

However, latching at every possible stage of a circuit does
not necessarily lead to the highest throughput. First, the
latches themselves take time to operate; their input stages

-17-

%
o Area
< sl
2
_!.
-3 1O
it
1
H
Z
AP- Produet
[- Xy -
Period
! i L
[+] 5) 20 30 40

Number of latches

Figure 7. Area, period, ana area-period product, as functions
of the number of intermediate latching stages m, in a typical
pipelined array multiplier (after [11]).
must be charged, and they must charge the input stages of the
next layer of logic. Second, the clock driver must drive the
additional capacitance of the latches, and for a giver driver

this lengthens the clock rise- and fall-times and decreases the
possible clock rate.

If we start with one stage of a circuit that has combina-
tional logic that is many gates deep, and we introduce m inter-
mediate stages of latching, we decrease the period by a factor

- 18 -

of roughly 1/m, up to the point that the latching and ciock-
driving time becomes comparable to the propagation time of
signals through one stage o° logic. After that point there are
diminishing returns to the addition of more latching. In [11]
the pgeneric situaticn of a block of combinational logic is
modeled mathematicaily, and the optimal choice of the
number of additional latches, m, was studied. Figure 7 shows
typical curves of area, period, and area-period producl as a
function of m for a circuit with a depth of 100 gates. As car; be
seen, the period ar a function of m decreases sharply tc a
minimum and siavs alinost constant, the area increases
steadily with m, and tl:e preduct has a well-defined minimun:.
We may wish to minimize this product AP instead of the period
P; 1/ AP can be written as {:/ P)/ A — the throughput-perwunit-
area. In any case, the optimal values of m for minimizing P or
AP will be close to each: other.

A typical examrple o such a situation occurs in the impie-
mentation of the bit-parailzl array multiplier M4 discussed in
Section 3.4. Here the ana'ysis predicts that the period of a
16-bit array mulliplier car. be decreased from 210 nsec to 66
nsec by the addition of & stages of intermediate latches, with
an attendant increase in ar:a of only 13%.

7. CONCLUSIONS

The design and deveiopment of custom chips for signal
processing tasks is very challenging, calling as it does on the
signal processing expert to make decisions at many design lev-
els: he must manage overall system architecture, circuit
topoiogy, timing, area utilization, and layout. At the same
time, making good use of such resources can lead to reliabie
low-cost devices that heve very high throughput in many signal
processing applications.

The key to effective design is a high degree of pipelining
using regular, repziilive siructures and fixed data-flow paths
Such structures can be hierarchically organized, making the
design and layout problems manageable.

8. ACKNOWLEDGEMENTS

I want to thank Prof. Feter R. Cappello of the Compuier
Science Department, University of California, Santa Bartara,

-19-

California. Some of the work discussed here is due originaily
to him, and forms part of his Ph. D. dissertation (Princeton
Unijversity, 1982).

This work was supported in part by NSF Grant ECS-

8120037, L. S. Army Office-Durham Grant DAAGR29-82-K-009%,
and DARPA Contact NO0C14-82-K-0548.

REFERENCES

i.

B

Abelson, H. and ®. Andreae, “Information Transfer end
Area-Time Tradeoffs for VLS! Multiplication,” CACHM, Vol. 23,
Jan. 1983, pp.20-23.

Bilardi, G., M. Pracch;, ar.d F. P. Preparata, ‘A Critique and
an Appraisal of VLSI Mocels of Computation.” in VLS Sys-
tems and Computalion, H. T. Xung, Bob Sproull, and Guy
Steele (eds.), Computer Sciznce Press, Rockville, Md.,
1081.
Bé'.cher, K., A. Lacroix, ¥. Te!mi, D. Wesseling, “'Integrated
Floaiing Po:nt Sigral Frocessor,” Proc. 1982 JEEL Int.
Ceny on Acoustics, Specch, and Signal Processing. Paris,
Vay 1982, pp. 1086-91.
Brert, R. P. and H. T. Kurg, ‘The Chip Complexity of Binary
Arithmetic.” Prcc. 12th Annuai ACM Symposium on the
Theory of Computing, los Angeles, Ca., April 1880, pp.
190-200C.
Brent, R P. and H. T. Kung, “The Area-Time Complexity cf
Einary Mull.plication,” J4CM. Voi. 28, No. 3, July 1981, pp.
52i-534.
Cappelio, P. R, and K. Sweiglitz, "'Digital Signal Processing
Applications of Sys:clic aAigorithms,” in VLS/ Systems and
cmputations, H.T. Kung. Bob Sproull, and Guy Stecle
{ecs.), Computer Science Press, Rockville, Md., 1981.

Cappello, P. R. and K. Steiglitz, *'Bit-Level] Fixed-Flow Archi-
tectures for Signal! Processir.,g,” Proc. 1982 IEEE Int. Conf.
on Circuits and Computers, New York, N. Y., Sept. 29 - Oct.
1.1982.

Cappello, P. R. anc K. Steigiitz, *'A VLSI Layout for a Fipe-
lined Dadda Multiplier,” ACM Trans. on Computer Systems,
Vol. 1, No. 2, May 1983, pp. 157-174.

10.

11

12.

14.

15.

16.

18.

19.

-20-

Cappello, P. R. and K. Steiglitz, '"Completely Pipelined
Architectures for Digital Signal Processing,” IEEE Trans.
on Acoustics, Speech, and Signal Processing, Vol. ASSP-31,
No. 4, August 1983, in press.

Cappello, P. R. and K. Steiglitz, ''A Note on ‘Free’ Accumu-
lation in VLSI Filter Architectures,’ submitted for publica-
tion.

Cappello, P. R, A S. LaPaugh, and K. Steiglitz, ‘‘Optimal
Choice of Intermediate Latching to Maximize Throughput
in VLSI Circuits,” Proc. 1983 IEEE Int. Conf. Acoustics,
Speech, and Signai Processing, Boston, Mass., April 14-16,
1983, pp. 835-938. (Also IEEE Trans. on Acoustics, Speech,
and Signal Processing, in press.)

Cappello. P. R. and K. Steiglitz, “Unifying VLS] Array

Designs with Geometric Transformations,” 1983 IEEE Int.
Conf. on Parallel Processing, Aug. 1983.

. Caraiscos, C. and B. Liu, "Bit Serial VLS] Implementations

of FiR and IIR Digital Filters,” Proc. 1983 Int. Symp. on
Circuits and Systems, May 1983.

Culik II, K. and J. Pachl, ‘‘Folding and Unrolling Systolic
Arrays,’” Research Report CS-82-11, Faculty of Mathemat-
ics, University of Waterloc, Waterloo, Ontario, Canada, April
1982.

Denyer, P. B. and D. J. Myers, "'Carry-Save Arrays for VLSI
Signal Processing,” in VLSI 81: Very Large Scale Integra-
tion, John P. Gray (ed.), Academic Press, London, 1981.

Denyer. P. B., “An Introduction to Bit-Serial Architectures
for VLSI Signa! Processing,” Draft of a paper presented at
Advanced Course on VLSI Architecture, University of Bris-
tol, UK., July 1982.

. Denyer, P. B. and D. Renshaw, ''Case Studies in VLSI Signal

Processing using a Silicon Complier,” Proc. 1983 IEEE Int.
Conf. on Acoustics, Speech, and Signal Processing, Bos-
torn;, Mass., 1983, pp. 939-942.

DeMarn, H., J. Van Ginderdeuren, and N. Gongalves, *'Cus-
tom Design of Hardware Digital Filters on 1.C.’s," Proc. Cus-
tom Integrated Circuits Conf., Rochester, N. Y., 1982.

Gray. F. G. and R. A. Thompson, “Fault Detection in Bila-
teral Arrays of Combinational Cells,” JEEE Trans. on Com-
puters”, Vol. C-27, 1978, pp. 1206-1213.

20.

21.

22.

23.

R4.

-21-

Jonnsson, L. and D. Cohen, "A Mathematical Approach to
Modeling the Flow of Data and Control in Computational
Nelworks," in VLS] Systems and Computation, H. T. Kung,
Bob Sproull, and Guy Steele (eds.), Computer Sciencc
Press, Rockville, Md., 1981.

Kung, H. T., “"Why Systolic Architectures?' Carnegie-Mellon
Univ., Dept. of Computer Science, CMU-CS-81-148, Nov.
1981.

Kung, S. Y., and D. V. Bhaskar Rao, ‘'Highly Parallel Archi-
tectures for Solving Linear Equations,” Proc. 198! Int.
Conf. on Acoustic, Speech, and Signal Processing, Atlanta
Ga., 1981, pp. 39-42.

Kung, H. T., L. M. Ruane, and D. W. L. Yen, A Two-leve!
Pipelined Systolic Array for Convolutions,” in VLSI Systems
and Computations, H. T. Kung, Bob Sproull, and Guy Steele
(eds.), Computer Science Press, Rockville, Md., 1981.
Leighton, F. T., ""New Lower Bound Techniques for VLSI.”
Proc. 22nd Annucl Symgosium on Foundations of Com-
puter Science, Nashville, Tenn., Oct. 1981.

. Leighton, F. T., "“A Layout Strategy for VLSI Which is Prov-

ably Good,” Proc. 14th Annual ACM Symposium on the
Theory of Computing. San Francisco, Ca., May 1982.

. Leiserson C. E., ""Area-Efficient Graph Layouts (for VLSI},’

Proc. 2i1st Annual Symposium on Foundations of Com-
puter Science, Syracuse, N.Y., 1980.

. Leisersor, C. E. an¢ H. T. Kung, “'Algorithms for VLS! *ro-

cessor Arrays,’” Section 8.3 of ntroduction to VLS Sys-
tems, C. Mead and L. Conway, Addison-Wesley Publishing
Co., Menlo Park, Ca., 1980.

. Lipton, R. J. and R. Sedgewick, ‘'Lower Bounds for VLSI,"

Proc. 13th Annual 4CM Symposium on the Theory of Com-
puting, May 1981, pp 300-307.

. Lipton, R.J., J. Valdes, R. Sedgewick, ‘‘Programming

Aspects of VLSL,” Proc. 9th Annual ACM Symposium on
Principles of Prcgramming Languages, Albuquerque, N.M.,
Jan. 1982.

. Lyon, R. F., “A Bit-Serial VLS] Architecture Methodology for

Signal Processing,” in VLS/ §1: Very Large Scale Integra-
tion, John P. Gray (ed.), Academic Press, London, 1981
(Proceedings of the First International Conference on
Very Large Scale Integration, University of Edinburgh,
August 18-21, 1981.)

37.

38.

39.

41.

42

43.

_22-

.. McCanny, ¢. V., J.G. McWhirter, J. B. G. Roberts, D. J. Day. T.

L. Therp, "'Bit Level Systolic Arrays,” Proc. 15th Asilomar
Conf. on Circuits, Systems, and Computers, Nov. 1981.

. Mead, C. and 1. Conway, Introduction to VLS] Systems,

Addison-Weslev, Menlo Park, Ca., 1880.

. Myers. D. J., “Multipliers for LS] and VLSI Signali Processing

Applications.” M. Sc. Project report MSP5, University of
Edinburghk. UK, Sept., 1981.

<. Oppenheim, A. V., and R. W. Schafer, Digital Signal Prc-

cessing, Prenlice-Hali, Englewood Cliffs, N. J., 1975.

>. Preparata, F. P. and J. E. Vuillemin, “*Area-Time optimal

VLS! Networks Based on the Cube Connected Cycles,” Rap-
pert INRIA #13, Recquencourt, France, 1980.

. Priester. R. W, H. J. Whithouse, K. Bromley, J. B. Ciary,

“Signel Processing with Systolic Arrays,” Proc. 19681 IEEE
Int Conf. on Farallet Processing, 1981, pp. 207-215.
R=b.ner, 1. R and B. Gold, Theory and application of digi-
tu. signai processing, Prentice-Hall, Inc., Englewood Cliffs,
N.J.. 1975,

Sastry, S. and S. Klein, "PLATES: A Metric-Free VLSI Layout
Layraege,” Free MIT Conf on Advanced Research i VLET
Car.bridge, Mass., 1982.

Savage, J E.. "Area-Time Tradeofls for Matrix Multipiice-
tion and Relcted Problems in VLSI Models,” J. Computer
end Systems Science, April 1981.

. Sung, C H., ""Testable Sequential Cellular Arrays,” ILEF

Trans on Computers. Vol. C-25, Jan. 1976, pp. 11-18.

Thompson, C. D., 'Area-Time Complexity for VISI,"” Proc.
11th. Arnual ACM Symposium on the Theory of Computing,
April 1979. pp. Ri-86

Verg:s, A. and K. Steiglitz, “'“Testability Conditions for Biia-
teral Arrays of Combinational Cells,” 1983 IELE Interna-
tior.al Coiilerence on Computer Design: VLS] in Computers.
New York, Oct. 31 - Nov. 3, 1983.

Vuillemin, J., A Combinatorial limit to the Computing
Power of VLE! Circuits,” Proc. 21st Annual Sympostum on
the roundations of Computer Science, 1980, pp. 294-300.

. Vwliemin, J., "A Very Fast Multiplication Algorithin for

V1=!] Iniplementation.” Integration, Vol. 1, 1983, pp. 39-52.

-23-

45. Weiser, U. and A. L Davis, "'‘Mathematical Representation

47.

for VLSI Arrays,” Technical Report UUCS-80-111, Dept. of
Computer Science, University of Utah, Salt Lake City,
Utah, Sept. 1980.

Weiser, U. and A. L. Davis, “'A Wavefront Notation for V1SI
Array Design,” in VLS! Systems and Computations, H. T.
Kung, Bob Sproull, and Guy Steele (eds.),Computer Science
Press, Rockville, Md., 1981.

Williams, F. A., "An Expandable Single-IC Digita:
Filter/Correlator,” Proc. 1982 I[EEE Int. Conf. on Acous-
tics, Speech, and Signal Processing, Paris, May 1982, pp.
1077-80.

ESP: AN ARCHITECTURE FOR A MASSIVE MEMORY
MACHINE

Hector Garcia-Molina
Richard J. Lipton
Jacobo Valdes

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, N.J. 08544

ABSTRACT

This paper argues the case for a computer with massive
amounts of primary storage, on the order of billions of bytes. We
argue that such a machine, even with a relatively slow processor,
can outperform all other supercomputers on memory bound compu-
tations. This machine would be simple to program. In addition, it
could lead to new and highly eficient programs which traded the
available space for running time. We present a novel architecture
for such a machine, and show how it can lead to reduced memory

access times.,

Note: An extended version of this paper has been submitted to the
IEEE Transactions on Computers.

October 28, 1983

ESP: AN ARCHITECTURE FOR A MASSIVE MEMORY
MACHINE

Heclor Garcia-Molina
Richard J. Lipton
Jacobo Valdes

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, N.J. 08544

1. INTRODUCTION.,

This paper argues the case for a computer with a primary memory substan-
tially larger than what is currently (or will be in the near future} available on a
single machine. We do not have a specific target size for such a massive memory
machine (HINM), but for arguments sake let us say we want a few billion bytes of
main physical memory. This size is certainly larger than what any manufacturer
offers today. or will probably offer iL ... near future. Our thesis is that such a
MMM is justified, even today, by the importance of certain applications in which
memory bound compulations occur naturally. For these computations, a classic
Von Neumann machine with a relatively slow processor and massive amounts of
physical memory, would vastly outperform even the ‘‘supercomputers’ currently

being researched and would be, in addition, far easier to program.

In Section 2 we present the case for a MMM, including its economic feasibil-

ity. In Section 3 we then discuss how an efficient MMM could be built.

2. THE CASE FOR A MMM.

Research efforts in the supercomputer field have tended to concentrate at the
computational intensive end of the spectrum, disregarding the memory intensive
applications altogether. The typical supercomputer being investigated today is a
multiprocessor having up to one million processors, capable of executing up to
billions of operations per second and yet have as ‘little”” as sixty four megabytes

of physical memory [Comp80, Comp81, Comp82, Evan82].

-2.

There are many applications for which such a machine (as well as any con-
ventional machine) would be limited by its disk to memory transfer rates. For
example, consider a program which accesses a four gigabyte (4X 10° bytes) data
structure with an essentially random pattern. A machine with one hundred or
less megabytes of memory can be expected to generate a page fault in just about
every memory access, rendering its potential processing power meaningless as a

measure of its performance.

More precisely let us compare such a supercomputer with one hundred mega-
bytes of memory and a MMM with four gigabytes of memory. Further, let us
assume that the supercomputer is “infinitely fast’’ while the MMM runs only at
one MIPS (Million Instructions per Second). Of course the supercomputer will
vastly out perform the MMM on compute bound tasks. However, for the
memory bound program we are discussing, assume that the supercomputer
creates a page fault every finstructions , and that its disks ave capable of servic-
ing 100 instructions a second. Then on this task the MMM still computes at its
one MIPS rate while the supercomputer is reduced to computing at about 100f
instructions a second. Clearly if fis small enough the MMM will be faster than
the supercomputer: if fis about 100 then the speedup is 100:1' While not all
tasks will cause the supercomputer to “thrash” in this way, we believe that there

are a large collection of important tasks that will cause such behavior.

2.1 Applications.

An MMM will produce significant improvements for any task which refer-
ences, in a relatively random fashion, a large address space. Here we will review

three areas in which such tasks abound, but this list is by no means exbaustive.

(a) Databases [Date81, Wied77]. It is well known that many database applica-
tions are 10 bound, that is, limited by the speed at which data can be
transferred from disks. Clearly, if the entire database (or a substantial frac-
tion) could reside in main memory, then the IO bottleneck would be elim-

inated.

o=

(b)

(c)

-3-

Not only will existing queries be answered faster, but it will now be possible
to pose new interesting queries that previously required unreasonable times

to answer. Thus, users can get more useful information out of the system.

(Reliability may be a problem in a massive memory database. We will

return to this issue later.)

VLSI Design [Mead80]. The size of VLSI circuits being designed is growing
at a fast rate. Today there are circuits with a half million transistors, and
predictions of integrated circuits with as many as one bundred million
transistors by the mid 90's. VLSI design tools will perforce deal with mas-
sive amounts of data, notwithstanding much cleverness in the use of

hierarchical design and the encoding of information.

Many of the VLSI design algorithms have good asymptotic running times,
but have very poor locality of reference. Thus, they are naturally candidates
for an MMM, For example, a layout system we have designed {Lipt82] uses
topological sorting for placing objects. The algorithm for sorting requires
linear time, but unfortunately also requires linear space and has almost no
locality. Thus, beyond a certain layout size, its actual running time is deter-
mined by the memory available: at a given point, increasing the layout size
by 307¢ sends our computer into uncontrolled thrashing and increases the

running time ten fold!

Artificial Intelligence [Nils80, Wins77]. The concept of vast data struc-
tures built mainly by the use of pointers, and hence lacking any locality of
reference when accessed, brings the words ‘Lisp’’ and artificial intelligence
(Al) to mind immediately. Garbage collection [Cohef1] and paging times
contribute substantial fractions to the total running times of many Al pro-
grams. It seems fair to say that a good fraction of Al research involves

memory bound computations.

Certain Al programs, such as DENDRAL [Buch78] or MACSYMA [Mart71],
have succinct inputs and generally produce succinct outputs, and yet may
build enormous intermediate data structures. These programs are even
better suited to a MMM than others. They would not even need to incur in

the overhead of loading the massive memory as a data base or VLSI program

-~

would.

2.2 The economical feasibility of a MMM

Clearly VLSI bas made computing in general cheaper. It is also clear,
although not as well understood by everybody, that VLSI has made certain kinds
of computing cheaper than others. One example of this differential impact
involves memory and processing power: over the past few vears, the price of logic
circuits has decreased about 20% per year; during that same span, memory prices
have decreased at twice that rate: almost 40°c per year. Clearly that trend, if
continued, should be very good news indeed for applications that require memory

bound computations.

In fact, there are good reasons to believe that the figures given in the previ-
ous paragraph represent more than a local kink in the prices of these commodi-
ties, brought about by a vicious fight for market share in a particularly impor-
tznt market. Memories are the most regular integrated circuits (ICs), and thus
among those which would profit immediately from higher fabrication densities.
We believe that memories will be always the first circuits to profit from progress

in integrated circuit manufacturing technology.

At today's prices, the cost of the ICs necessary to build a one gigabyte
memory is below one million dollars. This is not out of proportion with the
investment necessary to equip a state of the art installations for research or pro-
duction work in some of the areas identified earlier. Furthermore, if the price
trends bold, tne ICs necessary to build a four gigabyte memory would cost

approximately 200,000 dollars by the end of the present decade.

2.3 New Programming Techriques.

A MMM is straightforward to program. Existitg programs can be run on it,
and if they are mernory intersive, they will run very fast. However, the impact
of a MMM may be even more far reaching. A MMM may alter the way we pro-

gram. and this in turn may yield even grater improvements [Gray&3, Wein&3].

-5

For example, consider the concurrency control mechanism of a database sys-
tem. Since user programs (called transactions) encounter long delays as they wait
for disk pages to be brought into main memory, the database system executes
several transactions concurrently. Since the transactions are not independent
(they are reading and writing the same database), their actions cannot be inter-
leaved in arbitrary ways. The concurrency contrc. mechanism (typically using
locking) ensures that only interleavings that preserve data consistency are run.
Very roughly, about 10% of the CPU instructions are spent doing concurrency

control.

When the database system is transferred to a MMM, the disk delays disap-
pear, and concurrency control may no longer be needed. The data required by
each transaction is already in memory, so if transactions are short (as they are in
many commercial systems) they can simply be scheduled sequentially. So in
addition to making data available faster, a MMM may eliminate the overhead of

concurrency control.

In general, having massive amounts of memory will change our programming
techniques. Data structures for secondary storage (e.g., B-trees, extendible hash-
ing) will become obsolete. Table lookup will be practical in many more cases.
For instance, instead of computing trigonometric functions with a series, we may
want to have a large table of values and use simple interpolation. Digital search-
ing [Knui73], which improves search times at the expense of memory space, will

be commonplace.

3. THE ESP ARCHITECTURE.

We have argued that main memory is a useful resource in many applica-
tions, and that a computer with massive amounts of memory (e.g., gigabytes) is

economically feasible.

But are there any technological challenges in building a MMM? Is it not just
a matter of connecting all the desired memory to the chosen processor in a con-

ventional way, i.e., with a very long bus? (See Figure 1.)

-

M. Mz Mh

Fig. 1: A Conventional Architecture MMM

A conventional architecture is a reasonable ome, but as we will discuss
shortly there are other architectures that inay be superior. The conventional

architecture has two main weaknesses: memory access times and reliability.

e Memory access times. Given currept IC densities, a four gigabyte
memory requires about one thousand devices (memory cards) on a single bus.
Even with clever arrangements and higher densities, hundreds of devices per
bus seem unavoidable. Building a special purpose bus to support that many
devices is feasible, although not trivial. However, regardless of how the bus
is implemented, as the size of the memory grows, the access times grow
because of the physical distances and/or capacitance effects. At the same
time, memories are becoming faster, so that the larger access times make us

lose part of the advantage of having a massive memory.

e Reliability. As the size of the memory grows, the probability that one of
its components fails also grows. A conventional architecture has no provi-
sion for graceful degradation, and hence the entire machine would be una-
vailable with unacceptably high probability. For database applications,
some type of memory redundancy is also necessary in order to avoid loss of
data.

In the rest of this section we present s new architecture which directly

addresses the first of these weaknesses. The reliability issues are briefly discussed

-7-
in the conclusions section, and in a separate, more detailed report {Garc83b).

3.1. A Novel Architecture.

Our basic premise is that the time to access memory over a long bus (ie.,
one that drives hundreds of devices) is substantially larger than the access time
over a short bus (i.e., one driving a single memory board). The meaning of ‘“‘sub-
stantially” depends on how the buses are implemented, but for the time being let
us assume that access times over a long bus are at least an order of magnitude

larger than over a short bus.

A classical solution for improving access times over a long bus is to add a
memory cache [Kapl73, Smit82] to the processor. (See Figure 2.) The idea is that
commonly accessed data reside in the cache, and are hence available with smaller
delays (both because the cache bus is sho:ter and because the cache memory is
generally faster). Unfortunately, caching doues not improve access times
significantly for the programs we have in mind. A cache may be useful for hold-
ing some commonly accessed values, but as discussed in Secticn 2, we are con-
cerned with programs that reference their data structures in essentially random
ways. Thus, for most of the recently referenced data, the probability of being

accessed next is low.

CACUE

A M. M

Fig. 2: A MMM with a Cache

-8-

If we cannot bring the data to the processor as fast as we would like, we
could instead ‘‘take the processor to the data. This is precisely what the ESP
MMM does. A schematic description of it is shown in Figure 3. (The name ESP
will be explained shortly.)

Fig. 8: The ESP MAfAM

The ESP MMM consists of a collection of standard Von-Neumann machines,
interconnected by a system-wide (or global) bus that permits the broadcast of
values from one machine to all the others. Each individual machine has its owa
processor and local memory connected via a local (short) bus. The gateway of
each machine to the globz] bus is an ESP device connected both to the system
bus and the local bus. (The number of machines is not critical to the architec-
ture, but we expect a system with a few gigabytes to have a relatively small
pumber of machines, possibly up to one hundred. This means that each indivi-

dual machine has a substantial amount of memory.)

-9-

The individual processors share the same address space. This address space
is distributed among the local address spaces as follows (see Figure 3). A small
fraction of the global address space is replicated in each local address space; the
remainder of the system address space is covered in a non-overlapping manner by
the local address spaces. An ESP device connected to each local bus is responsi-

ble for servicing requests that involve non-local addresses.

Even though the ESP MMM has multiple processors, it is a single instruction
stream, single data stream machine (SISD) [Flyn72]. All processors execute the
same program, which is loaded into the replicated portion of the system address
space. As long as that program references locations in the shared subspace all
processors will execute in lockstep and no communication through the system bus
will take place. References outside the shared address space are broadcast and

received on the global bus, as is illustrated by the following example.

Consider a program which references memory words w; through wy. Assume
that ws, wg, wy are in machine 2, and the rest of the words in machine 3. Figure
4 shows the time at which each processor receives a referenced word. In this
fizure we assume that fetching a word from local memory takes one time unit,
and that broadcasting a word over the system bus takes two units. (We choose
two units only to simplify the example. As discussed earlier, we expect the sys-

tem delays to be orders of magnitude larger than the local ones.)

At time 0, all processors start; since they all run the same program, they all
request word w;. Processor 3 has w; locally, so one time unit later it receives it.
From then on, processor 3 works at full speed, accessing words w,, w,, and w,.

At time 4, processor 3 requests word w;, but since it is not local, a delay ensues.

In the meantime, the ESP at machine 3 has been broadcasting words w),
through w,. Word w, arrives at processors 1 and 2 at time 3, and the following
words arrive at one upit intervals. Note that the words are ‘‘pipelined” on the
bus, so that there is only one system bus end-to-end delay involved. Hence, after
the initial delay, processors 1 and 2 start receiving and processing the words at

full speed.

During this time we say that processor 3 ‘‘has the lead”, i.e., is ahead of the

others. But when processor 2 references ws, it finds this word in its local memory

-10-

and takes the lead. The other processors must now wait until the ESP at
machine 2 broadcasts w; and the following words. In a similar fashion, the lead

changes back to processor 3 when ujy is referenced.

t&{uu i.‘.q Ay by Oy @, M5 A0y Ky 4

T *-QJN Ay, ., 03 in Mz 2, J'JB(AM’!3
3 Ll S P M ky Ay
2 A Ry O & a4y o A g
i O L oy A b 1y 0 Ly .
T — - T ,
&NB{CLU\
¢Lu’.” MW"-“
oty 2 word

Fig. 4: Ezecution sn an ESP MMM

In summary, an ESP examines each word request made by its local proces-
sor. If the address refers to the shared subspace, the ESP does nothing. If it
refers to the local ncon-replicated memory, then the ESP reads the fetched word
ofl the local bus and broadcasts it over the system bus. In case of a reference to
remote memory, the ESP waits for the next word broadcast over the system bus,
and then places it on the local bus. (This is why we picked the name “ESP" for
these controllers: the remote words required appear on the systemn bus without
baving been requested, as if the controllers has ExtraSensory Perception) In any
case, the processor is not aware of the ESP controller (except for time delays); it
operates as if it had a long bus linking it to all the memory units. Each local
memory module must know the addresses of the data it holds, honor requests for
its data, and ignore all other requests. (This is how memory modules in a con-

ventional architecture operate.)

While the common program generates requests for data local to machine m,
the processor at m takes the lead. All other processes continue execution at the
same rate as m, with their ESPs supplying the data they need. These *‘trailing”

processors, will be behind the leader by an amount of time equal to the one-way

-11-

delay time between ESPs through the system bus. When a reference to an

address local to another machine occurs, that machine takes the lead.

Writes to memory can be ignored by the ESPs. When the program calls for
storing into the replicated address space, all processors will execute the instruc-
tion and will update their copies. When the program modifies non-replicated
storage, the processor with the data will modify it, and the rest need do nothing.
(When we discuss reliability in Section 4, we will see that special precautions

must be taken when writing into the non-replicated address space.)

The replicated address space is used to store the program and commonly
accessed values. In addition, each processor may have registers and a cache to

hold recently accessed data.

Two important things to note about the system bus are that it acts as the
system ‘‘clock” and that there is no contention. The data transmitted over the
bus are the timing signals that keep all processors in synchrony. (In the example
of figure 4, processor 2 picks up the lead when it receives word w, from processor
3.} Since non-replicated data is found only at a single machine, only one ESP will
ever broadcast at a time. This means that the bus protocols will be very simple,

and hence transmissions can be fast.

The ESP architecture has the following advantages over a conventional one:

(1) The local machines have conventional architectures. They may be used

independently when the MMM is not needed.

(2) For fully random references, memory access times are cut by roughly a fac-
tor of two. In a conventional machine, the address must be transmitted on
the system bus and the referenced datum must be transmitted back. In an
ESP machine, no addresses have to be transmitted on the global bus: each
datum appears on the systermn bus without having been requested. That is,
since references are random, each memory access will cause a lead change.
But these lead changes only involve a one-way broadcast, and thus, half the

delay encountered in a conventional architecture.

-12-

(3) The ESP MMM will reward “locality of reference’’ by minimizing “lead
changes' in programs that exhibit it. That is, if two or more references fall
within the same memory module, ther the access times are reduced to local
bus times. The fewer the lead changes, the faster the ESP MMM will exe-

cute,

Locality in this context, however, has a wider meaning than in a conven-
tional memory cache or virtual storage system. Here, locality of reference
means that two references are local to the lead machine, and this machine
may have a substantial chunk of memory (probably tens of megabytes). In

the next sub-section we will explore these issue in more detail.

What is the price we pay for these advantages? Obviously, we have repli-
cated processors and some data. Given current pricing trends, the cost of this
extra hardware should be reasonable, at least compared to the cost of the massive
memory. What we have not sacrificed is simplicity and ease of programming.
The processors and memory modules are conventional. The ESP architecture is
transpasent to the user program. The task of distributing the global address
space to the spaces of the individual machines can be relegated to a sophisticated

loader.

3.2. Program Locality.

The potential performance improvements of an ESP MMM over one with a
conventional architecture hinge on two main factors:
(1) The “locality” exhibited by the program, and
(ii)) The memory access times over the system and local busses.
In this sub-section we study the first factor in more detail. The bus times are
discussed in the following sub-section.

The ESP MMM utilizes several mechanisms to improve memory access
times: (1) registers and caches at each processor to hold recently accessed values;
(2) a replicated address space to hold the program and commonly accessed values;
and (3) the ESP mechanism, which lets the leading or controlling processor move

to the memory module where the data resides. The first two mechanisms can be

-13-

easily incorporated to a conventional MMM, so the decisive factor is clearly the

ESP mechanism.

What does the ESP mechanism give us that the others do not? In order to
answer this question, let us postulate a simple data reference pattern. (We are
not interested in the instruction refercnce pattern, since the entire program is

replicated in all machines.)

Suppose that the M memory words of the MMM are divided into blocks of B
words each. A block is the unit of data transfer between the memory and a
cache. We assume that the location of the next referenced block depends only on
the location of the most recently accessed one. Specifically, Figure 5 gives the
probability distribution of the next reference. There is a set of a blocks, centered
on the last referenced block, that have a high probability p of being accessed
next. All other blocks have a much lower probability ¢. (For simplicity, we
assume that when the last reference is within a/2 blocks of the ends of the

memory, the distribution wraps around.) We assume that a is odd.

4
PROMAL.L ™Y a
oF WET — pot ™
(43
pece fW"“""""
L—-—
t N
4 ki B Ao
M fuxx
D14 &
SEFRREVLED

Fig. 6: The Probabslity Dsstribution.

Our experience tells us that this is, in an idealized way, the way programs
reference their data (e.g., see [Siss68, Smit82]). For example, consider a program
that simulates a8 VLSI chip. When a transistor is referenced, several contiguous
words may be referenced. The next transistor reference is likely to be to a con-

nected one, and if the circuit is represented in a reasonable way, it will be close

jo=

- 14 -

to the previous one. Here ‘‘close” may mean within a few thousand bytes, so our
bigh probability window, a, may be relatively large.

The parameters a and p define the locality of the program. As a shrinks
and/or p grows, the program exhibits more locality, and as a grows and/or p
approaches g, the references become more random (i.e., the distribution becomes
flatter).

Note that this distribution ignores other types of data locality that may also
be exhibited by programs. For instance, programs may have time locality (i.e.,
tend to reference recently accessed data) or may access certain fixed locations
with high probability. Since these types of localities are exploited by data
caches, the distribution we have selected to study will highlight the strengths of

the ESP mechanism, not of caches. This is precisely what we want to do.

Using this probability distribution, we have analyzed the performance of an
ESP mechanism (where processors have no registers or caches) and of a simple
cache. The analysis is described in [Garc83]. Figure 6 presents some typical
results. The figure shows the hit ratio for the cache (h,) and the ESP mechanism
(h,), as a function of a, the high probability window. For the cache, the hit ratio
is the probability that the next referenced word is in the cache. For the ESP, it
is the probability that the next word falls in the same machine as tie previous

word. (In the figure, locality decreases from left to right.)

If on each memory reference the cache can fetch a significant portion of the
“high probability of next access” window, then the cache performs very well.
(That is, if a is close to 1 block.) In this case, either the program has very high
locality or the system bus feeding the cache is very wide. In this case the ESP

does not have any advantages over the cache.

At the other extreme (very large a), references are fully random and both
mechauisms have a hit ratio of 0. In this range, the ESP is superior by roughly a

factor of two because, as we discussed earlier, addresses need not be bros icast.

In between is a large range of localities where the ESP performs substan-
tially better thap the cache (from a equal to 4 or 5 until a is roughly the number
of blocks in a memory module of the ESP.) In this area, most references using the

ESP mechanism are local. On the other hand, with a cache, most references

y~—

-15-

H: 10" wote = (07 dodo

WY 4 B: WOwd,
Remo Y01 o+ 08
b1 1 ayr o woda v 10° wwdo
09 " age T sy nmiels 10wl
01 1
o0t
0.5 -
84 19 A
634 “
024
0 4
o ot " o' \D, lO‘ v
O (abed)

(MG Mosap ™y snizoc,
Lobmamin; SULE

Fig. 6: Hit Ratios for ESP and Cache

continue to rely on the system bus. This is because the cache mechanism
retrieves data from memory in very small units, on the order of a few words.

The improvement will be, roughly, the ratio of system bus access times to local

bus times.
The programs that will use a MMM, as we argued in Section 1, are memory
intensive ones, programs that cause a virtual memory system to thrash. Thus we

expect these programs to operate in the range of localities where the ESP
mechanism does pay off.
([Gare83] presents more results, and also considers other probability distribu-

tions. The trends obtained are similar to what we have presented here.)

- 16 -

3.3. System and Lccal Bus Access Times.

The performance improvements of an ESP MMM over a conventional archi-
tecture depend on the value of the system bus access time, D, and the local bus
time, d. lf we ca’ .mplement a system bus with D small compared to the cycle
time of the processor(s), then cutting this time by a factor of two or more may
not be important. Similarly, if d is not significantly lower than D (as we have

assumed so far), then the gains of the ESP mechanism will be limited.

The values of d and D depend on the hardware used to implement the
MMM, as well as on the size of the memory. Thus, it is difficult to reach any
definitive conclusions. However, we can discuss two implementation scenarios
where certainly D is significant as compared to the cycle time, and where d is
orders of magnitude less than D. In both of these cases, the ESP MMM performs

very well.

¢ Processor and Memory on a Chip. It will soon be possible to build a
reazsonable processor with a few inegabytes of memory, all on a single VLSI
chip. These chips will be ideally suited for the construction of an ESP
MMM, The time to access on-chip memory (d) will be very small, since

small currents and small distances are involved.

The limiting factor in this implementation will be the rate at which ESPs
can broadcast data out of the chip, into the system bus. However, an opti-

cal bus may provide the necessary throughput.

e Sharing Memory on Existing Computers. Suppose that we already
bave an installation with several computers (maybe 2 or 3, maybe 100 or
200) connected via a local area network. The ESP architecture gives us a
way to combine these resources into a single MMM, when it is needed.
Clearly, local memory access times are significantly less than transmission
times over the network, so the ESP is a useful idea. Each existing machine
would be provided with an ESP controller, and the network protocols (for
MMM operation) would be simplified, e.g., there is no contention, no need
for packet beaders. (This assumes that while the machines operate as a
MMIM, the network has no other users.) A program requiring more memory

than is available at a single machine {even if it only needs the memory of 3

Y

-17-

or 4 other machines) can be sped up considerably. There ill be improve-
ments even if its references are totally random, since page faults (with seek,
rotational, and substantial data transfer delays) will be replaced by fast (and

probably short) network messages.

For some programs it may be possible to implement the ESP mechanism
fully in software. If a program bas a distribution similar to the one of the
previous sub-section, and if @ is less than the memory at each computer,
then lead changes will be infrequent. A lead change can then be imple
mented by sending a message with the state (e.g., contents of registers} of

the lead machine to the next leader.

4. CONCLUDING REMARKS.

If we look at the ratio of memory size to processor speed of past and present
commercial computers, we find that most are within an order of magnitude of
one megabyte per MIPS. (The value one megabyte per MIPS is called “Amdahl’s
constant’’.) The supercomputers being developed all have ratios well below this
value, and are targeted for computationally intensive problems. The machine we
proposed here, ou the other hand, would have a memory to speed ratio of 100,
1000 or more. We have argued that such a machine would speed up memory
bound programs like no other computer could. We also asserted that a massive
memocry machine baving unconventional architecture and features would be more
eflicient. Yet, in spite of its novel structure, this machine would be simple to

program.

We have only sketched the main features of a massive memory machine and
the ESP architecture, but of course, there are many other important issues that

must be resolved before such a machine can become a reality.

One of these issues is reliability. Fortunately, the ESI> architecture appears
to be well suited for failure toler: . .. The state of a computation (e.g., registers
and program counter) is replicated at all processors, so if one of them fails, its
state can be reconstructed. The processors are connected through a simple linear
bus, so it is not difficult to have spare units that can take over when others fail

A major portion of the main memory is not replicated, so if it fails data will b

AD-A136 553 PRINCETON VLSI PROJECT{(U)} PRINCETON UNIV NJ DEPT- OF J/’.
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE R J LIPTON
1983 N0O0014-82-K-0549

UNCLASSIFIED F/G 9/5 NL

FEE
“EEER

= E

2 b

)

he e e i e e e e et i oS it

- - I

e e e e cncamsn S

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

P e

o

-18-

lost. Thus, if this data is important, a secondary copy must be kept. Mechan-
isms similar to those used in database systems (e.g., logging) can be used to keep
the secondary copy up to date. These strategies and mechanisms are discussed
in|Garc83b).

A second issue is the utilization of the multiple processors in the ESP archi-
tecture. Given that they exist, they can also be used for parallel processing. For
example, in a database application, the MMM could be divided up for executing a
parallel search, then reconstituted. Of course, the programs for the multiple pro-
cessors will not be as simple as the MMM ones.

Acknowledgments. Several useful ideas and suggestions were made by Jim
Gray, Peter Honneyman, Steve North, Peter Weinberger, and Gio Wiederhold.

REFERENCES.

{Buch78] B. G. Buchanan and E. A. Feigenbsum, “Dendral and Mets-Dendral:
Their Applications Dimension’, Artificial Intelligence, Vol. 11, Num.
1-2, 1978, pp. 5-24.

[Cohe81] J. Cohen, *“‘Garbage Collection of Linked Data Structures”, ACM
Computing Serveys, Vol. 13, Num. 3, September 1981, pp. 341-367.

[Comp80] Special Issue on Supersystems for the 80's, IEEE Compster,
November 1980.

[Comp81] Special Issue on Arrav Processor Architecture, JEEE Computer, Sep-
tember 1081.

[Comp82] Special Issue on Highly Parallel Computing, IEEE Computer, Janu-
ary 1082,

[Date8l] C. J. Date, An Introduction to Database Systems, Addison-Wesley,
1081.

[Evan82]

[Flyn72)

{Garc83)

{Garc83b)

[Gray83]

[Kapl73)

[Knut73]

[Lipt82)

[Mart?1]

[Mesdso]

«10-

D. J. Evans (Editor), Perellel Processing Systems, Cambridge
University Press, 1982.

M. J. Flynn, “Some Computer Organizations and Their
Effectiveness”, IEEE Trensactions on Computers, September 1972,
pp. 948-960.

H. Garcia-Molina, R. J. Lipton, and J. Valdes, “Analysis of the Mas-
sive Memory Architectures”, Technical Report 313, Department of
Electrical Engineering and Computer Science, Princeton University,
May 1983.

H. Garcis-Molina, R. J. Lipton, and J. Valdes, “A Massive Memory
Machine”, Technical Report 315, Department of Electrical Engineer-
ing and Computer Science, Princeton University, July 1083.

1. Gray, “What Difliculties Are Left in Implementing Database Sys-
tems”, Invited Talk at SIGMOD Conference, San Jose, CA., May
1983.

K. R. Kaplan, R. O. Winder, “Cache-based Computer System,”
IELE Computer, March, 1973, pp.30-36.

D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting
and Searching, Addison-Wesley, 1973.

R. J. Lipton, S. C. North, R. Sedgewick, J. Valdes, and G. Vijayan,
“ALI: A Procedural Langusge to Describe VLSI Layouts”, Proc.
Nineteenth ACM-IEEE Design Astometion Conference, Las Vegas,
Nevada, June 1982, pp. 467-474.

W. A. Martip and R. J. Fateman, “The MACSYMA System", Proc.
ACM Second Symposium on Symbolic end Algedbraic Manipulation,
Los Angeles, CA., 1071, pp. 23-25.

C. Mead and L. Conway, Introduction to VLSI Systems, Addison-
Wesley, 1080.

e

