AD-A136 552 PRINCETON VLSI PROJECT{U) PRINCETON UNIV NJ DEPT OF
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE R J LIPTON
1983 N00014-82-K-0549

UNCLASSIFIED F/6 9/5

nuhuu
a3
w-ﬂﬂﬂmnnuu. L

= EE
— — ™~N

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

B el Do it s L e T o D e e £ R N e ot e S S SRS 20 e

- Princeton VLSI Project: Semi-Annual Report

Period Ending: April 15, 1088 .

R. J. Lipton, Principal Investigator

EECS Department
Princeton Ubiversity

T Lo omy

e
]
;O
Y

ey ;‘,4!,»»
> had B

Faeulty

B. W. Arden
D. Dobkin
H. Garcia-Molina
A. LaPaugh
K. Steiglits
J. Valdes

AD-A136552

Contract NOOO1,-82-K-0549

DTIC

ELECTE
JANS 19847

BIK FILE copy

DISTRIBUTION STATEMENT A

Approved for public release}
Distribution Unlimited i

83 12 09 093

lnbuiu Por

BPIS CRAaL
PTIC TAB
Unanneunced

.2.

Justifieation

Princeton VLSI Project: Semi-Annual Report LPistribution/

R. J. Lipton - r Speciel

1. Introduction

—3> There are three major aspects to our project. The first concerns the development of ALI2

which is a procedural language approach to the layout of VLSI circuits. The second is the con-
tinuing investigation of the census language. Finally, the third is in the ares of testing of VLSI

circuits, &

3. ALl

2.1. ALI2 [Kalin, Valdes, Vijayan)

An almost complete version of ALI2 became operational at the beginning of March. This
version implements most of the language features described in the accompanying ‘Lenguage
Overview' and is currently being used to layout a pumber of circuits,

The language bas now a small group of local users which includes people not involved
directly oo the language design and implementation. The first circuits designed with ALI2 will
probably be sent to fabrication before the end of April.

The number of users will soon increase substantially, when the students in our VLSI design
course begin work in earnest on their course projects. Most of cur current eflorts are directed
towards making the system stable enough for them as well as for release to users outside Prince-
ton.

On the language itself, the only unimplemented features are those related to completenees
checking and direct interface to simulators. The code to implement completeness checking will be
relatively short and straightforward to implement. It has not been implemented yet because we
judged more importan. to have a version of the language publicly available before the end of the
semester. We have not yet selected the simulator to which ALI2 will be interfaced, but the inter-
face should not present great problems. \We expect to complete the implementation of these two
features during the summer.

The initial experience of ALI2 users has been generally positive, in spite of the fact that
they have carried most of the burden of testing and debugging of the language translator and run
time support. We are confident that the current system will be completely stable very soon. The
efliciency and convenience of use of the lsaguage bave been those that we expected at the time
we designed it.

Future work on ALI2 will primarily involve the completion of the current version as
described earlier. A longer term effort would iavolve the implementation of a sew version of the
language that incorporates the experience gained using the curreat ome. Swch an effort is con-
tingent on the level of use of ALI2 and the general reception from its users, aad it is not likely to
be initiated for another six months or so.

On a slightly different but related topic, we intend to research constraint based, low level,
layout specifications as a possible intermediate description level betweea CIF aad high level
languages. Two of the main lesson we have extracted from the ALI2 project is the usefulvess of
such descriptions and the presing meed for well defined intermediate represeatation of that
nature.

3.3. Graphies Engine [Dobkin, Valdes)

The design of the graphics engine has progressed o the desiga of our isitial line drawiag
chips. New algorithms for line drawing have beea developed which are more efficient than
Brescnham's algorithm and which are especially swited for parallel implementation. We are
currently in the process of implementiag ome such algorithm in ALJ2.

oy Toc v o Eile

Avaugl_:_u_itvu gogga
vail snd/er

ialag il

AR A RPNy

. A s o e i —

-8-

Our progress to date has been the design of an Htree circuit to do 16 bit wide comparisons
along with the controlling logic for the chip. We expect to have completed a similar Htree for
addition within the next few weeks. At that point, an initial version of the line drawing circuit
will be ready for fabrication. The structure of this circuit is very mon VLSIkish. Long data paths
have been permitted in ordered to allow us to do a piecemeal design and adjust to the design
environment. A new design is in process which will overcome these difficulties.

The new design is expected to have area 1/3 less than the current design and to have short
paths which will probably allow a faster clock. Furthermore, the replication of data aad compu-
tations in the new circuit will be minimal.

During the design phases so far, we have had an opportunity to evaluate the ALI tools and
to serve as "friendly debuggers™ of these tools. Our experiences have been positive. The pro-
cedural nature of the tools has allowed us to delay design decisions which we would bave had to
make earlier in a graphics oriented language. The cost in area has not been great. Our estimates
are that a similar design in a graphics based language would have required 70 or 80% of the
current area. Indeed, these numbers are borne out by comparisons with portions of the circuit
which had previously been designed using ICARUS.

2.3. Clay [Lipton, Lucas, North]

In parallel with ALI2 another effort has started on a related layout language that is called
Clay. This language bas many of the same features as ALI2 but is implemented as a package in
the programming language C. This approach has allowed us to get a version of Clay up very
quickly. Both ALI2 and Clay share essentially the same constraint based view of the layout pro-
cess. Clay bowever will allow us to experiment more easily with a variety of new ideas more
quickly. Thus, Clay has a feature that allows a designer to link several different pieces of dayout
and still keep them all flexible. Currently a number of our PhD students are using Clay to design
a very simple processor that we call Prism.

2.4. Local Algorithms for Large Layout Problems [A. Huang]

While the usual algorithms for topologically sorting large graphs (which arise in VLSI Jayout
problems) use asymptotically linesr time and space, in practical situations they perform badly
because of page thrashing. This comes about because memory relerences are frequently made to
information on pages outside of fast memory. We are studying the construction of algorithms for
topological sort which have good behavior in this respect; preliminary results show that the
number of page faults can be bounded by a constant (which depends however on the geometric
constraints of the layout problems) times the aumber of pages. This should make practical more
eflicient ways of laying out very large integrated circuits.

3. Census
There are several projects underway in the area of census and related architecture.

3.1. Unbounded Fan-In Circults [Lipton)

Work continues on our investigation of the power of such circuits. We have recently been
able to further characterize the power of such circuits.

3.2. Maximising Throughput with Latehing [P. Cappello, A. LaPaugh, K. Steigtits)

In many applications of custom chips, especially for digital signal processing tasks such as
coavolution, filtering, and Fourier transformation, high throughput is very importaat, and a rela-
tively large delay is tolerable. If s circuit has stages in which there is large delay because the
combinational logic is many levels deep (an array multiplier is an example), the throughput can
be increased by istroducing intermediate levels of latching. This costs area aad clocking delay.
The tradeoll betweea extra latching circuitry aad clocking on the one hand, aad imcreased
throughput on the other, was studied using asalytical model. The results provide guidelines for

ode

the choice of latching density, using the product of area and period as a performance measure.
Significant increases in throughput are predicted for situations like a bit-paralle] array multiplier.

3.3. Massive Memory Machines [Gareis-Molina, Lipton, Valdes]

The size of VLSI circuits being designed is growing at a fast rate, and there are predictions
of circuits with as many as one hundred million transistors by the mid nineties. The tools to
design these circuits will be limited, not by the speed of central processing units, but by the speed
at which random accesses can be made to memory. The reason for this is that most tools contain
algorithms with good asymptotic running times, but reference memory in unpredictable ways.
Thus, a very fast “super-computer’’ which relies on a disk paging mechanism to access s large cir-
cuit will easily be outperformed by a slower machine which can bhold all the necessary data in its
main memory.

We are investigating the feasibility of such a Massive Memory Machine. There also appears
to be a peed for such a machine in other fie)ds Jike databases and artificial intelligence, and the
cost for a machine with one billion bytes of main memory seems comparable to that of current
super-computers. The design of a gigabyte computer is not a simple task, and novel architectures
for it are being pursued. Some preliminary results on this topic can be found in an attached
report.

4. Testing [Arden, LaPaugh, Lipton]

This project concerns itself with all aspects of testing. Currently Arden is working with the
Siemens group on firet gilicon testing at Munich.

4.1. Bipartite Testing

Work continues on refining our bipartite spproach to circuit testing. This approach exploits
very structured design for testability. It has three components: the use of combinational circuits
which are bipartite, the use of a controllable logic gate (nand or nor), and the use of logic to
observe internal values. It achieves 100 single stuck-at favlt coverage and the detection of
many multiple faults using under twenty test vectors. A simple transformation of an arbitrary
circuit into a bipartite one exists. It may double the number of gates in a circuit, but will never
do worse. LaPaugh recently presented this method to the JEEE workshop on VLSI circuit test-
ing.

Initially, the approach was developed for BMOS circuits. We are now investigating the
extension of this approach to CMOS and to designs which use steering logic as well as gates. We
are also continuing development of a special latch which will allow a large class of sequential cir-
cuits to be tested by this method without the addition of scan paths. We are also beginning to
work with Siemens on developing actual devices. These devices will be used to build circuits to
test our method. Many implementation issues remain which will be explored through the design
of these circuits.

4.3. Testing of Regular Arrays [Vergh)

We are looking st conditions that guarantee that one- and two-dimensional bilateral arrays
of combinational cells are testable. New conditions have been derived which are more general
than previously known. The work is being gencralized towards combinatorial cells (with internal
states). The question of baving tests which take time linear in the aumber of cells is also being
studied. The results should be useful in testing such regular structures as systolic arrays for digital
filters and convolution.

5. Papers (Sce Attached)

- — i - UGS it - . AP —f W ARG ——- - - - - -

Optimal Choice of Intermediate Latching to Maximise
Throughput in VLSI Circuits

Peter R. Cappello 1t
Andrea LaPaugh, and Kenneth Steiglitz

Electrical Engineering and Computer Science Dept. |
Princeton University
Princeton, N. J. 08544

ABSTRACT

In many computational tasks, especially in signal processing, it
is the throughput that is important, rather than the latency, or
delay. If a special-purpose VLSI chip is designed for a particular
signal processing task, such as FIR filtering, for example, the max-
imum clock rate, and hence throughput, is determined by the depth
. of the combinational logic between registers and the time required
I for the distribution and operation of the clock. If the combinational
logic is sufficiently deep (in bit-paralle] circuits, for example), tie
throughput can be increased by inserting intermediate stages of
clocked latches. This is at the expense of increased area and delay
to operate and clock the intermediate registers. Roughly speaking,
the strategy amounts to using more of the chip area to store infor-
mation useful for pipelining.

This paper investigates the optimal tradeoff between the degree
of intermediate latching and cost, using the measure AP, where 4 is
the chip area and P is the period (the reciprocal of throughput).
We derive expressions for the time and area before and after inter-
mediate latching, using the Mead-Conway model, both for the cases
of on-chip and off-chip clock drivers. The results show that
significant reductions in AP-product (reciprocal of throughput-per-
unit-area) can be achieved by intermediate latching in many typical
signal processing applications, for s wide range of circuit parame-
ters. The array multiplier is used as an example.

1 This work was swpported in part by NSF Gnst BCS-8120087, U. 8. Army Research-Derham Graat
DAAG20-82-K-0095, asd DARPA Costract N00014-82-K-05¢49. A preliminaty vervion of this paper was present- |
ed at the 15 - IEEE Intermational Conference on Acoustics, Epeech, and Signal Procensing, Bosten, MA, April
1418, 1983

41 Peter R Cappelio ir now with the Department of Computer Science, Univenity of California, Ssata Barbars,
CA 93108

1. Introduction

When certain tasks are implemented with special-purpose VLSI chips, it is
often the period P (time between successive outputs) that is crucial, rather than
the latency or delay T. This is especially true in signal processing, where typical
tasks such as filtering and Discrete Fourier Transformation often have high
volume requirements and relatively lax delay requirements. Recent work has
described bit-serial and bit-parallel VLSI architectures that do in fact allow the
period to be equal to the clock period (see, for example, {2,4-9,12]). In [5,7] a class
of these circuits is called completely pipelined. In this paper we take up a
diffcrent question, that of inserting intermediate stages of latching so as to max-
imize the rate at which the clock can run without a disproportionate blowup in
area requirements. We will use the criterion of minimizing the AP-product, where
A is the area of the VLSI circuit and P is the period. The AP-product can be
thought of as the reciprocal of throughput-per-unit-area, and a completely-
pipelined circuit optimal with respect to this criterion can be claimed to make
best use of chip area. Leiserson and Saxe [14] treat the related problem of redis-
tributing latches so as to decrease period, but they do not consider area or clock-
ing penalties.

We assume that the circuits we discuss are designed along the lines described
by Mead and Conway [1]: typically that a two-phase clock is used to transfer
information between registers (or latches), and that these registers are separated
by combinational logic. The following sections are devoted to modeling the time
and area requirements of the latches, the combinstional logic, and the clock
driver. We then consider the overall circuit and investigate the optimal choice of
the amount of latching for the two cases of on-chip and off-chip clock drivers.
While the assumptions made about first-order circuit behavior pertain to aMOS
technology, the analysis technique uses dimensionless parameterization and is
applicable to any situations with deep combinational logic — typically bit-parallel
circuits. A representative tradeoff curve is shown for an example.

2. Clock Timing

We will adopt a version of the two-phase clocking system described by C. L.
Seitz in Chapter 7 of [1), a typical stage of which is shown in Fig. 1. Fig. 2 shows
the corresponding timing diagram: First, we must drive the Phase 1 clock signal
¢, high, taking time ¢, (the clock driver time). We then need a minimum time
te:5 (the delay time) to charge the input stage of the combinational logic. Phase 1
must then go low (taking time ¢,,,), and Phase 2 must then go high (also taking
time t,.,). We must insure that there is a minimum time 1,, during which both
clocks are low; otherwise we run the risk that skew between the clock phases will
cause both clocks to be on at the same time. This brings us up to the point where
the combinational logic bas already started to work.

The input values propagate through the combinational logic, taking some
time t,,,.. This time includes the time during which ¢, is brought down and ¢, is

«3-

brought up. The time ¢,,. will ordinarily dominate the clock-interchange time,
but in general we need to set the time for this operation to

¢ m maz(lp: » 2ot + 42)

where for safe operation of the circuit t,,, must of course be taken as the maz-
smum delay time of the combinational logic.

We next need to transfer the output values of the preceding logic stage to
the input of the latch whose output is controlled by ¢,; that is, ¢, must remain on
for a minimum charging time ¢, (the preset time). The ¢, clock signal must then
be brought down (taking another clock driver time ¢,,., and another dead time
(t1) provided to insure non-overlap of clocks in case of clock skew.

The minimum period P of the circuit is therefore
P = 2':10:3 + ‘am + ‘nt + ‘21 + ’M’(‘um ’ 2‘duk + ‘u)

To be more accurate, we might want to take into account the fact that the up-
going and down-going clock waveforms are not completely symmetric; but the
term ¢, can be taken to represent the average of the up- and down-going clock
times in a single driver. In s multistage driver the stages alternate up and down,
and we can take ¢, to be the sum of the averages of the up- and down-going
times along the driving chain.

3. Latch Time and Space

We next want to express the time delay of the latches in terms of basic units
that are determined by the technology. For this purpose, we consider the nMOS
inverter with a minimum size pulldown and a pullup/pulldown ratio of 4 to be
the basic cell, with area A, pulldown gate capacitance C, effective pulldown resis-
tance R, and pulldown time (iransit time) r when driving the input of an equal
size inverter. We refer to such a cell in what follows as a minimal snverter.

Now inverters in the latches drive pass transistors, so the discussion in [1}
shows that we should choose a pullup/pulldown ratio of 8. The time required for
the second inverter to charge its load is therefore approximated by the following
RC constant:

‘ldoy - (Rl + Rnunclul + Cms)

where the R’s and C’s are shown in Fig. 3. Assuming that the pass transistors are
minimum size, R,,,, = R and C,,, = C. Also assuming that the capacitative load
(input to the combinational logic) is minimal, we get

{

1

1 Ly = AR,/R + 1)r

‘ - AL,/W, + 1)
i
i

where from now on we express resistance in terms of the length-to-width ratio of
the transistor:

ey e

-4-

Ryw== (L;/W))R

If the pullup/pulldown ratio of the latches is taken to be 8 (as mentioned
above), we can write the normalized delay time as

tiy]7 = 2(8r + 1)

where r = L,/W, is the size of the latch pulldown. When r = 1/2 the pulldown
transistor of the latch inverter will be twice as wide as the corresponding transis-
tor of the minimal inverter, but the pullup/pulldown ratio is 8, not 4, so the
pullup transistor will then be the same length as in the minimal inverter. The
area of such a latch inverter with r = 1/2 will be only a little larger than that of
a minimal inverter, perhaps about 25% larger. The choice of r = 1/2 thus speeds
up the latch without much area penalty, and we will use this value in this paper,
although it could be kept as a parameter.

Using a similar argument based on RC charging times, the preset time is
b/T o= (8r + 1)1/r + 1)
The 1/r term comes from the input capacitance of the second inverter, which
loads the first inverter. To see this, write
Cisas = (LaW3/LW)C = (W3[L3)C = (1/r)C

where L, = L = W are minimum size.

The Jatching area is easy to write down. Assuming that the pass transistors
are the same size as minimal inverters, and that the latches have area 1.254, each
two-phase latch requires normalized area

A]A = 2(1.25 4+ 1) = 4.5

4. Combinational Logic Time and Space

We want a fairly general model for the combinational logic that is
sandwiched between the latches; such logic may be built from NAND and NOR
gates, pass transistors, or some combination of the two. We will assume that the
typical logic stage is a uniform array of n x& logical elements, each of which has
an area A,., and a delay r,,., where

A.“- - aA
and

Toem ™= Br

This array will be thought of as » rows by ¢ columps, with a maximum delay
path from left to right of & clements. Since logic stages are not usually so uni-
form, the a and parameters must represent sverage values for the combinational
logic. If gates are built out of inverters and coupled directly, for example, 8 will

]
!
H
{
{
i
o

generally be determined by the fan-out factor of the logic and the size of the
inverters. An average fan-out factor of 3 using gates (with a pullup/pulldown
ratio of 4) will result in 2~ 12, because we must allow for the worst case in the
propagation of logic, where all signals are up-going. To reduce this to a value
closer to that of a minimal inverter, we expect to increase the ares to, say, twice
that of a minimal inverter. Thus we can take values of a = 2 and g = ¢-12 as typ-
ical of combinational logic implemented with arrays of gates. We should also
note that the value of a should be selected to reflect the space per logical element
required for power and ground lines.

We will assume that the nominal circuit bas one typical logic stage between
a pair of two-phase latches, and we then consider the insertion of (m-1) latches
equally-spaced in the combinational logic, m > 1. The case m = 1 then represents
the original situation. We assume the latches can be made to “fit” well; that is,
that the combinational logic is arranged regularly enough so that stages can be
pushed apart and columns of latches inserted. The total time required for the
logic is therefore

‘up:/f - ﬂk/m)
and the area
Appc/A = adi?

where d = n/k is the height-to-width ratio of the original logic block, another
dimensionless parameter, usually assumed to be 1.

5. On-Chip Clock Driver Time and Space

If we use an on-chip clock driver, we want to use a multi-stage version as
described in [1], since the driver will have a large capacitative load, especially if
there is an appreciable amount of intermediate latching introduced. We assume
that clock distribution is on metal, so that propagation delay along the wires is
small. Each stage is assumed to have a pulldown s times the size of the preced-
ing, so if there are S stages driving Y pass transistors, each with minimal capaci-
tance C,

! - YIIS

If we start the clock driving with a minimal inverter, the normalized delay of
such a driver is approximately

“""/T - 25,5

The factor of 2.5 results from averaging the pullup time of ¢r and pulldown time
¢ along the inverter chain. (If we do pot insist that S is an integer, and we
minimize this delay with respect to 7, we get the value f = ¢ [1]. But S is an
integer.)

This estimate for delay assumes that we insist on a globally-synchronized

I S S <.

.

clock - that the clock signals at the input of the driver can be used anywhere
else without concern for synchronization. Caraiscos and Liu {11} have pointed
out that the rise and fall times of the clock waveforms may be much smaller than
the absolute delay, and that using a local clock may allow higher throughput, at
the expense of using local clock signals that must be made synchronous with the
signal itself at different points on and off the chip. Sending the clock along with
the signal will incur other costs, of course. (For a discussion of the virtues of a
globally-synchronized clock in signal processing, see [10]). The analysis in this
paper is conservative in the sense that the resulting degree of latching and
increase in throughput is on the low side. (We can avoid the area and delay
penalty incurred by using an on-chip clock driver by moving the clock driver off-
chip. That case will be discussed in more detail in Section 7.)

We must also consider the area contribution of the clock driver in relation to
the rest of the circuit. The normalized area of the driver is

5-1
Agwe/A = 31 =(Y-1)/(f-1)
1=0
Next we look at the overall time and space requirements of the circuit.

6. Optimization of AP-Product with an On-Chip Clock Driver

We can now write the total minimum normalized period P/r = p in terms of
our parameters as follows:

p=5S+ 254 oy + max(Bk/m ,8fS + 1)
where as above
J5 = Y == (m 4+ 1)n = number of linee driven
and 7, = {,,/7, 75, = 85 /7. Similarly, the total normalized arca Area/A = ¢ is
¢ = 2(Y -1)/(f-1) + 4.5Y + akn

where the factor of 2 accounts for the fact that we must have two drivers, one for
each phase. (These can be combined to some extent, but the total area is still
nearly twice that of a single driver.)

We now have the function ep(m,S), where m and S are discrete parameters.
The number of stages is never much larger than Y, since the optimal choice of
/ is usually around e. In most cases of interest, therefore, it suffices to take the
minimum of ep for S = 1,...,16, producing what we call ap(m,»):

sp(m,#) = mins op(m,S)

The range of m is certainly between 1 and &, so the optimal choice of m can be
determined simply by

op(*,¢) = min, op(m,e)

e SRS St e

-7-

The gain G in AP-product achieved by latching is therefore

$ G = GP(L‘)/BP(‘.')

il

7. The Case of an Off-Chip Clock Driver

As mentioned in Section 5, if we allow the clock driver to be off-chip, we can
drive the larger capacitive loads incurred by extra latching with essentially no
penalty in clock delay or driver area. The normalized period and area can then
be written

P=2rpa+ 25.+ T+ m“(ﬂk/m » Mot + T12)
e = 45Y + ain

where we have assumed some delay of r,,, = ¢,.,/r for the clock rise and fall
times. The ap-product is therefore a function of only one unknown parameter,
m.

With these changes in s and p, the same methodology applies — a numerical
example will be given in the next section. Note, however, that now the optimal
value of m will occur roughly near the breakpoint where gt/m = 2r,,., + 1,,, and
that these times are both highly uncertain and small in size. The analysis in this

i case is therefore much less reliable, and much more sensitive to unmodeled effects
such as propagation delay, than in the on-chip clock driver case.

8. Numerical Examples

We now give some typical numerical results. For this purpose, we consider a
16-bit array multiplier, implemented by an array of full adders, as described , for
example, in [2]. We also assume that the full adders are implemented with gates;
each full adder will then be about 3 gates decp. The carry propagation will
require an array that bas a maximum depth of 2x16, so altogether the combina-
tional logic will have & =~ 100. (This is consistent with the value of “113 gate
delays” given in [3].) Say that each gate takes about double the area of a minimal
inverter (a = 2, optimistic for area, and hence pessimistic for our purposes), and
that, as discussed in Section 4, # ~ 6. The array is roughly square, so that 4 =~ 1.
Finally, we will assume that clock skew is not an important problem, and take
Nz == Ty = 4.

Fig. 4 shows a plot of normalized period p(m,#)/p(1.¢); normalized arca
¢(m,#)/a(1,#); and normalized AP-product ap(m,#)/ep(1,¢); vs. m. The period as a
function of m decreases sharply (roughly as 1/m) until the combinational logic
time is dominated by the clock-swapping and dead time (that is, until
Uoge = et + 132). After this point the clock-driving time will determine the
minimum clock period and it no longer pays to increase m, because the area will
increase with no payoff in speed. The minimum value of period occurs close to
the minimum value of AP-product. Thus, in theory, the period can be decreased
somewhat from its value when the AP-product is minimized, at a slight cost in

L o . ol et B o s i st s = — et

|
c.

area. In practice the optimal values are almost always nearly equal, and some-
times identical because of the discreteness of the parameters m and s.

Fig. 5 shows a plot of gain G in AP-product vs. the depth of combinational
logic &, for the values « = 2 and § = 4,6,8,12. The graph shows significant gains in
AP-product (more than 2) over the unlatched case when & > 50 and 4> 6. Even
when the gates are as fast as a8 minimal inverter (worst-case delay factor g = 4)
there is an 4P-product gain of 2.2 when & = 100. Note that a larger value of o
would only improve the gain.

We conclude by looking at the actual numerical values of the minimum
clock periods and areas involved in this analysis. Taking the k£ = 100, a = 2, # =6
case above for a hypothetical 16-bit array multiplier, and assuming r = .3 nsec for
current technology, we get a period of P = 210 nsec with no intermediate latch-
ing, and an optimal period of P = 66 nsec with m =6 (5 intermediate latching
stages).

The area before latching is 2.11x10'4, which at) = 1.5 (3x line width) and
a 225)\% inverter is about 10.7 mm? After the intermediate latching, the area
becomes 12.1 mm? certainly a modest increase in area for about a three-fold
increase in speed.

The preceding example assumed an on-chip clock driver. When we use an
ofl-chip clock driver at presumed small cost, as discussed in Section 7, we natur-
ally get much faster solutions. In this example, the optimal value of period with
the parameters of Section 7 and r,,., = 4 (assuming a very sharp clock rise- and
fall-time), minimizing AP-product, is 18 nsec, compared with the unlatched value
of 191 nsec. The area goes from 10.6 mm? with no latching to 16.5 mm? with latch-
ing. This large increase in area reflects a corresponding increase in the density of
latching: 26 (m = 27) latching stages are introduced. We emphasize that in the
case of an ofl-chip clock driver, the numerical values of the parameters ¢,, and
t.,« are very uncertain and the optimal values of period, area, and latching den-
sity are sensitive to these parameters. The large predicted speedups in possible
clock rate may not be realizable in practice.

9. Conclusions

We have modeled the timing of a generic pipelinable VLSI circuit in which
there arc combipational logic stages separated by latching stages driven by two-
phase clocks. Apn array multiplicr is typical of such a configuration. We then
investigated the effect of introducing intermediate latching stages, especially the
tradeofl between increased throughput and increased area. Expressions were
derived for arca and minimum clock period, normalized in terms of minimal
inverter area and uclay, and we showed that optimal choices of the number of
clock driver stages (S), and the number of intermediate latching stages (m - 1).
can be made by simple enumeration.

The numerical results illustrate the choice of latching density in a typical
signal processing application. According to our model, a 16-bit array multiplier

with gate logic and an on-chip multistage clock driver can be clocked about 3
times faster with about a 13% increase in area using 6 intermediate latching
stages. This decrease in period is also accompanied by an increase in the latency,
or delay, of the multiplier.

Higher throughput can be achieved with an off-chip clock driver, but the
parameters in that case are less well known, and at such speeds the model
becomes less reliable.

Much more work needs to be dore on detailed modeling of the timing of
such VLSI circuits if we are to achieve maximum throughput rates in applica-
tions like signal processing. Future work will attempt to refine our model, along
the lines of [13] as an example. We also need to study propagation delay, which
was assumed to be relatively small in the examples (4 times the minimal inverter
gate delay r for clock distribution, a reasonable assumption if the clock lines are
metal, for example). Another important set of interesting problems concerns the
study of the way algorithms, topologies, and layouts interact with the timing
problems considered here. Recent work on completely-pipelined or bit-level sys-
tolic arrays is a start in that direction (see, for example, [2,4-9,12)).

10. Acknowledgements

We are indebted to C. Caraiscos and B. Liu for valuable comments on the
manuscript.

11. References

1. C. Mead and Conway, L.,Introduction to VLSI Systems, Addison-Wesley
Publishing Co. Menlo Park, Ca., 1980.

2. McCanny, J. V., J.G. McWhirter, J. B. G. Roberts, D. J. Day, T. L. Thorp,
“Bit Level Systolic Arrays,” Proc. 15th Asilomar Conf. on Circuits, Systems,
& Computers, Nov., 198].

3. Bitcher, K., A. Lacroix, M. Talmi, D. Wesseling, ‘Integrated Floating Point
Signal Processor,” Proc. 1982 IEEE Int. Conf. Acoustics, Speech, and Signal
Processing, Paris, May 1082, pp. 1188-91.

4. Cappello, P. R. and K. Steiglitz, “Digital Signal Processing Applications of
Systolic Algorithms,” CMU Conference on VLSI Systems and Computations,
H.T. Kung, Bob Sproull, and Guy Steele (eds.), Computer Science Press,
Rockville, Md., 1981.

5. Cappello, P. R. and K. Steiglitz, “Bit-Level Fixed-Flow Architectures for
Signal Processing,” Proc. 1982 IEEE Int. Conf. on Cireuits and Computers,
Sept. 29 - Oct. 1, 1982.

6. Cappello, P. R. and K. Steiglitz, “A VLSI Layout for a Pipelined Dadda
Muitiplier,” ACM Trans. on Computer Systems, Vol. 1, No.2, May 1083 (to
appear).

-10-

7. Cappello, P. R. and K. Steiglitz, “Completely Pipelined Architectures for i
Digital Signal Processing,” IEEE Trans. on Acoustics, Speech, and Signal
Procs., Vol. ASSP-31, No. 4, August 1983 (to appear).

8. Kung, H. T., L. M. Ruane, and D. W, L. Yen, “A Two-Level Pipelined Sys-
tolic Array for Convolutions,” CMU Conference on Systems and Computa-
tions, H. T. Kung, Bob Sproull, and Guy Steele (eds.), Computer Science
Press, Rockville, Md., 1981.

9. P. B. Denyer and D. J. Myers, “Carry-Save Arrays for VLSI Signal Process-
ing,” in VLSI 81: Very Large Scale Integration, John P. Gray (ed.),
Academic Press, London, 1981. (Proceedings of the First International
Conference on Very Large Scale Integration, University of Edinburgh,
August 18-21, 1981.)

10. Lyon, R. F., ““A Bit-Serial VLSI Architecture Methodology for Signal Pro-
cessing,” in VLSI 81: Very Large Scale Integration, John P. Gray (ed.),
Academic Press, London, 1981. (Proceedings of the First International
Conference on Very Large Scale Integration, University of Edinburgh,
August 18-21, 1981.)

11. C. Caraiscos and B. Liu, private communication.

12. C. Caraiscos and B. Liu, *Bit Serial VLSI Implementations of FIR and IIR
Digital Filters,” Proc. 1983 Int. Symp. on Circuits and Systems, May 1083
(to appear).

13. Penfield, P. Jr. and J. Rubinstein, “‘Signal Delay in RC Tree Networks,”
Proc. of the Second California Institute of Technology Conference on VLSI,
1981.

14. Leiserson, C. E. and J. B. Saxe, ‘‘Optimizing Synchronous Systems,” Proc.
22nd Annval Symp. on Foundations of Computer Science, IEEE, October 28
30, 1981.

i Figure Captions
3 i Fig. 1 Two-phase clocked latches between stages of combinational logic.
Fig. 2 Clock-timing diagram.

3 Fig. 3 Details of the clocked latches, showing pullup and pulldown effective resis-
tances and capacitances.

-11-

Fig. 4 Normalized period, srea, and AP-product vs. m for a == 2, fa= 6, k = 100.
The parameter (m-1) is the number of intermediate latching stages.

Fig. 5 Gain in AP-product vs. combinationsl logic depth & for A= ¢, 6,8, 12. The
parameter g is the delay of a combinational logic element, normalized in

terms of that of a minimal inverter.

r e e - At B ot et < . . ettt .

Fy. |

soo.oollllj Llao‘.o-

P

rT..LII.oJ hovopy Lo

i

“ Aol

| o
J

(H 2

K iz | _”.Jl:lxn ¢
] P

#, ./ \L ¢

AP-PRODUCT
PERI

m————
AREA

4

= o
 19NA0Ud-dV ONV ‘V3INV ‘G0I¥3d 0IZITVINNON

20

150

“ 49NA0¥d -dV NI NIVO

e - ——— ——— T — ~——p—yy ~ v T

ALI2 Documentation and Implementation Guide
Language Overview

Version §
February 25, 1952

J. Valdes, R.L. Kslin

1. Introduction

This document is s reference manual for ALI2, a Pascal-based’ procedural language for
describing VLS] layouts. Several revisions bave recently been made to the language, oo the
current document may differ slightly from previous versions.

The syntax of the language will be presented by way of syntax diagrams. An effort has
been made to minimize the number of diagrams and sborten the accompanying text by (a) includ-
ing more semantic information in the syntax diagrams than is customary, snd (b) making refer-
ence where possible to syntactic entities of the Pascal syntax given in [1) (which has been
included as an appendix to this document). Semantic conteat which is mot evident from the syp-
tax diagrams will be explained in the text.

The ALI2 design goals and the problems that ALI2 addresses are described in detail ia [2].

2. General description of ALIS

ALI2 prugrams are compiled by first translating the AL]2 statements into standard Pascal
[3], and then compiling the Pascal statements into linkable binary object files. Partly as a conse-
quence of this arrangement snd partly for sesthetic reasons, ALI2 programs Jook very much like
Pascal programs. Many features of ALI2 bave syntax and semantics very similar, if aot identical,
to those of corresponding Pascal comstructs. For the sake of brevity, this document takes
knowledge of Pascal for granted. The syptax and semantics of ALI2 will be described in terms of
the syntax and semantics of Pascal whenever possible.

The objects manipulated by ALI2 programs caa be classified naturally iato two eategories:
those that s normal Pascal program can manipulate (which will be called Psscel objects) and
those that are specific to ALI2 (ALJ2 edjects). There are three ALI2 objects: cells, bozes, and
wires. ALI2 programs can also manipulate aggregates of wires, just as Pascal programs can masi-
pulate aggregates of variables wsing structured types. Although ALI2 programs will typically
manipulate all three kinds of ALI2 objects, the fnal product of aa ALI2 program is a layout con-
sisting entirely of wires. Cells and boxes are simply used as ways to express the relations betweea
groups of wires in a structured and systematic way.

A cell in ALJ2 is 8 prototype for a rectangular section of a layout. Ia a cell definition, the
user describes a prototype of a rectangular layout piece. In a cell crestion, also called

1Based e» UCB Pascal sader UNIX.

The AL12 system is proprietary to Prisceton Univenvity, Princeton, New Jorvey. Ko development was supported
in part by DARPA uader graat N000) 4-82-K-0549.

.2.

instantiation, the user requests the insertion of an instance of a previously deSined cell in a given
environment. Multiple instances of a prototype can be created. It is possible to define a cell pro-
totype whose content and structure depends on the values of parameters which will be supplied to
the prototype at run-time. The sizes and shapes of actual instances of a givea cell will then vary
according to the “sctual parameters” provided when the instance is created. Thus, ALI2 cells are
very much like the familiar parameterized procedures and functions.

The entire layout generated by an ALI2 program is itself actually an instance of a single cell
defined by the program. The body of an ALI2 program is simply the statement that instantiates
the cell definition. Just as typical Pascal main programs will include pumerous calls to consti-
tuent procedures and functions, the definition of the main ALI2 cell will typically include the
instaptiation of numerous component cells.

Each cell ipstance is enclosed in a cell bounding doz, cells are tbus restricted to have rec-
tangular shape. Cell boundaries may not overlap, nor may they be crassed by any wires. Wires
will either be entirely contained within a given cell instances, or lie entirely outside it. Cell boun-
daries therefore impose a strict hierarchy on the arrangement of wires in a layout.

Wires are rectilinear objects which liec on s specific layer, have 2 given width, and camry »
specified signal. Wires are used to interconnect cells and must have both of their endpoints lying
on cell boundaries. Wires which are connected to only one cell will not appear in the layout pro-
duced by the program.

If both endpoints of a wire are interior to a cell C3 (i.e., the wire connects two cells C1 and
C2 internal to cell C3), then the wire is said to be locel to cell C3. Such wires will be declared as
local wire variables in the definition of cell C3. Wires which run from a boundary of cell C3 to
the outside boundary of another cell internal to C3 (e.g., cell C1) are instances of formal parame-
ters. These wires wil) be declared in the heading of the definition of cell C3. Thus, ALI2 wires
may be obtained by (a) declaring local wire variables in a cell which is to use those wires for
internal cell connections, and (b} declaring formal parameters for connecting wires that end on the
boundary of a cell to one or more of its internal cells. Fig. 1 illustrates these relationships.

Fig. 1
C1, C2and C3are cell instances; gis local to C8,
g is an instanece of o formal parameter in the definition of C9.

In sddition to the cell bownding boxes which are awtomatically ereated by ALJ2 for each
instantiated cell, a user may explicitly creste and madipulate other boxes. These user-defiped
bounding boxes are wsed to emclose rectangular areas of a layout that are to be considered as a

unit during certain operations performed while the ALI2 program is being executed. ALI2 will
permit wires to pierce these boxes, and generally delegates all responsibility for their manipulation
to the wser.

In the remainder of this document, we will describe ALI2 by discussing in turn the general
form of an ALI2 program, the type structure of ALI2, the facilities for cell definition and instan-
tiation, the statements specific to ALI2, and Snally the predefined cells, procedures and functions
of the language.

3. General form of ALIS Programs

The general form of the units that the ALI2 system manipulates is given by the syntax
diagrams of figs. 2 and 3. These units are of two types: programs and modules. ALI2 progreams,
when compiled and run, produce layouts. Modules can be separately compiled and linked to other
modules or programs but they are purely declarative and cannot be run by themselves. (for the
details of how these two units are actually bandled by the ALI2 system, see [4] and [5]).

ali2 program

-~
Conip)—~[udentifier}—(O-=fidensiper}<()—~(:)

declarative block
actual wire parometers

Cereat)-fcell dentiter} ()2)

(e bt perematers—~D-

a2 module

——w{restricted declarative block |—»

Fig. 2
The general form of ALI2 programs and modules

An ALI2 program consists of a series of cell declarations and the instantiation of a single
cell. Each cell declaration consists of s Aeader and a body. The header specifies the formal
parameters, in eflect defining the cell boundary. The body describes the local objects and con-
tains statements indicating how (o create an instance of the cell when actual parameters are pro-
vided to be connected to the formal ones.

The relationships between wires and boxes that can be expressed in an ALI2 cell definition
are mostly metric free: no actual sizes or positions may be specified. The sizes and positions of
the wires of the layout produced by the program are determined by a simple process that minim-
izes the Bnal layout area while preserving the relationsbips between the wires stated in the pro-
gram [4].

Note that declarations of ALI2 objects — cell declarations and declarations under the key-
words wirelype, wirever and doz — are completely separate from the declarations of Pascal objects.
The declarations of Pascal objects bave exactly the same syntax snd semantics as in Pascal. The

declaretive block

———genaral declarations | —dobject declarations |—| PFC declarations|—o

vestricted declarative block

——igeneral declarctions | ol PFC declarations |-—»

geneval declarations

O
> ®
Ceonst Dpefidentifer] (=)—Jconstant uyntml—u@D

Qriretype)-—fwtype Asading | —(=) ()

oy .. Ape 1)

1

odject declarations

~
G T L OO

o) .ﬁﬂ"' o
v

PFC daclarations
r__{zmodun declaration f—
g function dulauﬁoTl__
\——cell declaration |
'

Fig. 3
The syntax of declarative blocks

- %ea

e s i o pyin e ey s

5.

only exception is that ALI2 permits the right hand sides of constant declarations to include
expressions that are evaluated at compile-time (see fig. 4 for the syntax of such expressions).

It is important to notice also that no wires or boxes may be declared in a module. This is
done in order to guarantee that each wire in a layout is either local to s cell instance, or an
instance of a formal parameter.

constant expression

%%
FE=poras

constant factor
{_..lmmgned constant
onstant express:on

Fig. 4
The syntax of the expressions allowed on the
right hand side of constant declarations

ALI2 inberits Pascal's type structure almost intact. Thus enumerated types, subrange
types, arrays, records, pointers, files etc. are all ALI2 types. The only exception is the set type,
which does not exist in ALJ2.

All of Pascal's predefined identifiers exist in ALI2 as well: types (integer, boolean...), con-
stants (maxint, drue...), files (input, output), procedures (put, get, write...), functions (abs, sgrl...)
and directives (forward, external...). All of these behave in an ALI2 program as they would i a
Pascal program.

The header of an ALI2 program includes a list of identifiers. They are interpreted, as they
are in Pascal, to be a list of logical file names used by the program. As in Pascal, each of these
identifiers except snput and oufput must be declared as variables of type file in the declarative
part of the program.

Although it is not shown in the syntax of 5.2, all Pascal statements are also ALI2 state-
ments; the only exception is the wiiA statement, which bas been omitted for 3 mixture of
aestbetic and pragmatic considerations!

$The deviations from standard Pascal just meationed are small enosgh so that no great probiems should arive
from their existence K is important to note that object files containing translated ALI2 programs will be total
ly compatible with those generated by the Pascal compiler [4). Thus, Pascal fragments that use the disallowed
features extensively cas be compiled separately and loaded with traaslated ALI2 programs, minimising farther

-6-

4. Predefined Pascal types

ALI? inberits all the predefined types of Pascal. ALI2 bas several additional predefined
Pascal-like types: wircorientation, orientationchenge, directionofecparation, lsyer, wirelayer and
signal. All of them are enumerated scalar types except wirelsyer, which is a subrange of layer.
As we will see in the detailed description that follows, these types are identical in all respects to
any other enumerated predefined type with the exception of signal, which differs in a minor way.

The type wireorientatlion is defined as

wireorien(ation = (nullorient, vertical, Aorizontal)

The compositinn of this type reflects the fact that ALI2 wires can lie only in one of two
orientations so that only ‘‘Manbattan" layouts can be expressed in ALI2. The orientation of a
particular wire will be determined by the way it is used in the program (i.e., at run time), with all
wires having nullorient as their initial orientation. The run time system of ALI2 will be responsi-
ble for assigning orientations to wires and checking that no inconsistent use of wires with respect
to their orientation occurs.

The type orientationchange includes all the operations of the dihedral group — the only rigid
plane motions that map a wire orientation to a wire orientation. It is defined as follows:

orientationchange ==
{ nullchange, rotated90, rotated180, rotated270, flipped0, fippedyS, fipped90, flipped185)

Changes of orientation are useful when instantiating cells. They permit the creation of
instances of the same cell declaration that can be mapped into one snother by rigid plane motion,
thus avoiding the need for multiple definitions.

The type directionofseparalion consists of the eight directions along which ALI2 objects can
be separated (plus the null value for this type). It is defined as follows:

directionofseparation = (nulldir, tiob, btot, llor, riol, titobr, briotl, trtobl, bltotr)

The symbols that belong to the type layer depend on the process to which the ALI2 system
is targeted. For the current system (nMOS as described in [6]), its definition is the following;

layer = [nulllayer, metal, poly, difl, cut, impl, glass, virtual)

In general, this type will include the names of all the pbysical layers of the process being
used plus the identifiers virfual (the layer on which boxes may be imagined to lie) and nulllayer (a
null value for this type that will be used exclusively by the ALI2 run-time system.

The type wireloyer is the subrange of lsyer that contains the layers on which wires are not-
mally constructed. It is defined as:

wireloyer = melel .. diff

The type signal is sis. an enumerated scalar, but it has some special characteristics. Unless
redeclared by the user, the type contains only the value nullsipnal. Users can redeclare the type
as an enumerated type, but if they do so, the identifier nullsignal must be among the values of the

the chances that these absences will hurt the ALI2 user in & seriows way.

7.

type because this identifier is used in a special manner by the ALI2 runtime system.
Here is a valid signal type definition:

signal == (nullsignal, power, ground, datain, datsout)

5. Wire types

This section describes the type structure of ALI2 wires. The syntax of the wire type
declarations is given in fig. 5. The semantic content of these declarations will be described in
detail in the next two sections. We will examine the simple wire types first and then consider the
composite wire types.

wiype heading

wiype

O
. unre type ‘dcnt(ﬂ"@ 7

@ (I)—[integer c:prcsml}_.@_.] integer upnsriol)—-@ ~!__ﬁ@—ﬂ

Fig. 5
The syntax of the right hand side of wire type declarations

. —

5.1. Simple wire types

Al wires in ALI2 are of similar type. This type, however, is a paremetric type, & concept
which is not part of Pascal and therefore requires explanation here. The ALI2 parametric types
are modeled after those described is |7}.

Parametric types are designed to make type checking more selective or weaker in certain
_ places without doing away with it altogether. It works particularly well as & way to permit the
A user to regulate the extent of type checking that is to be performed during procedure or function
calls.

T SR e

The basic idea of a parametric type is that of leaving some characteristics of the elements of
the type unspecified. These characteristics become formal psrsmeters of the type declaration.
When the type identifier is used in the right hand side of the declaration of a mew type or vari-
able, each formal parameter in the parametric definition must be provided with a value of the
appropriate type as a matching sctual perameter. Hence, the left band sides of parametric type
definitions look somewhat like procedure headers and the right hand sides like procedure calls.
The actual parameters fill out the previously unspecified characteristics of the parametric type.

In the case of ALI2 wires, there are three parameters to the parametric wire type: the lsyer,
the width and the eignal of the wire! The layer and signal will have to be values of the predefined
types wireloyer and signal respectively. The wire width is an integer expressing the width in bun-
dredths of microns. Width can be expressed in scalable \ units [6] using the predefined constant
lombda (see examples below).

Other parametric types can be defined from this one by pseudo-calls to the type definition
in which actual values for some (or all) of the formal parameters are specified. For instance, the
following type definition

polywire (w:inleger] = wire (poly, w, nullsignal)

creates a new parametric type polyuire. All wires of this new type will bave poly as their layer
and nullsignal as their signal. The formal parameter ‘‘w'’essentially passes over to the right side
of declaration to become an actual parameter to the definition of the parametric type ‘‘wire”’. We
say that ‘‘polywire" is dersved from ‘‘wire’’.

Similarly, the definition
stdpolywire = polywire { 22lambda)

creates a pew type. This new type is different from the two types considered earlier in that it bas
po parameters. We call this a bound type.

Because there is only one predefined parametric type, the global structure of these types will
be quite simple: each new type will be derived from a previously existing one by a partial or total
instantiation of its parameters. The structure of the types will therefore be a tree of types with
the predefined type wire at the root.

AL12 provides a predefined wire constant that belongs to all simple wire types. This wire is
called nullwire and will be used extensively in connection with cell calls. It is analogous to the
predefined constant nil used by Pascal in connection with pointer types.

The values used as actual parameters in the right band side of a parametric type declaration
can be arbitrary expressions of the appropriate type. These expressions will be evaluated at run
time. Tbus, if k is s variable of type integer defined in the current scope, the following would
have been a legal type declaration:

localpoly = polywire ((2ek - 1}dembds)

Thus, #Ae actual paramelers of the parametric wire types of ALI? are bound of run time. This
sllows for a great deal of flexibility at the cost of some complexity in the run time package.

1The orientation of the wire can be inferred at run time by the way the wire is used snd need pot be part of
the declaration itoelf

§.2. Composite wire types
As fig. 5 shows, there are three composite wire types in ALI2: bus, bundic sad kist.

The types bundie and bus are roughly anslogous to the arrey and record types of Pascal, aad
represent, respectively, aggregates of wires of the same type and aggregates of wires of different
types. Below are some sample definitions of composite objects of these types.

datal (low, high, width : integer] = bundle [low .. high [of polywire (width };
data? = bundle [1.. 100] of wire (metal, 10¢iambds, nullsignsl);
Jool [wi, w2 :integer; | :layer; 8 oignel) = bus
J1 : polywire (wl);
2 wire(l, wt a)
end;
Joof = bus
d1 : dotal (10,20, 2);
d¢ : data?
end;

The type dundle is a parametric type in its own right, since the sumber of the wires it con-
tains and the values used to access them may be parameters of the type. The type bus is
parametric only because the types of its components may be parametric.

The type list is peculiar to ALI2. A list is either the nulllist which has no component wires,
or an aggregate of one or more wires, each of any type whatsoever. This type is intended to facil
itate the writing of geperal-purpose cells which accept a variable aumber of formal parameters.
As we will see later, only formal parameters may be declared to be of type list.

0. Cell declarations

This section describes the syptax and semantics of cell declarations. The cell mechanism is
very similar in spirit to the procedure facility of Pascal. It permits the users of ALI2 to introduce
hierarchical information into their programs, and therefore into the layouts they produce. Unlike
procedure hierarchies, bowever, the hierarchy of cell invocations corresponds very elosely to
features in the program output.

The syntax of a cell declaration is given in fig. 6. The mext two subsections examine this
syntax and the associated semantics in detail.

8.1. Cell headers
A few syntactically correct cell beaders are given below

cell ehift (left [: ahiftbus; top (: clocks; right r : shiftbus);

cell repister {left [: shiftbus; top (: Kat; vight r:ekiftbus]} (size : inleger);
cell silly (left w: wire; left p : polywire);

eell doit (j(k:tp);

cell generic (top 11,12, 18 : wire) (eall ¢ (Meft i1, 12 : polywire));

The cell header may include two parameter lists. The formal parameters in the frst list
must be of wire types, while no formal parameters of wire types may be included in the second
list. This is done to preserve the strict hierarchy of wires with respect to cell instances.

h——{aliZ precedure Aeoding }

-—¢| al: 2 function Mcdiny—l,

cell heoding t
)
ot -
ali2 dlock
——{@clerative Binei }—~(herio) QTN CD
Fig. 8

The syntax of a cell declaration

- -
e e

.l‘.

The formal wire parameter list includes information abost where the parameters intersect
the cell boundary. Besides the explicit information given by the keywords left, right, top and bot-
tem, there is an implicit sssumption that the top and bottom paremeters are listed in left to right
order and that the left and right parameters are kisted in top to boltom order. Thus, the beader of
s cell deBnition describes the doundary of the cell.

Cells can be declared as formal parameters to other cells by listing a prototype of the cell
header in the second of the two parameter lists of the cell definition beader. This is the same
general manner in which procedures and functions are passed as parameters in Pascal (see [1]).

8.3. Cell bodles

As explained above, the executable portion, or ‘‘body’’, of aas AL]2 program is a single cell
instantiation statement. The body of a cell may be cither (i) one or more statements bracketed
by the keywords begin and end, or (ii) » directive which specifies that the cell header should be
treated i 3 non-standard way.

The executable part of the cell contains statements which describe the structure and content
the cell will bave when it is later instantiated. This part may coatain any ALI2 statement,
including recursive instaptiations of the cell itself. A complete discussion of the ALI2 statements
is given in section 9.

The directive forward is used exactly as in Pascal to circumvent the ALI2 requirement that
a procedure, function or cell definition refer only to previously defined cells, functions or pro-
cedures.

The directive ezternal is intended to permit the separate compilation of Sles. It is not part
of standard Pascal but something similar to it in spirit is found in most recent compilers. Its
meaning in ALI2 is similar to that of the forward directive in that it defers the associstion of 2
cell beader to a body. It is unlike it in that the external directive adds the cell name to the list of
symbols visible to the link editor when the program or module in which the definition is found is
translated to a2 binary file.

For cells defined using the external directive, & body can be associated to their header either
at compile time (by giving the body as if the header bad been listed with a forward directive) or
at load time (the name of the cell is Jeft unresolved after compilation and the loader will attempt
to resolve it later). In the first case, the cell name will be wsed to resolve references at load time
and in the second it will be an outstanding reference which the loader will have to resolve.'

Thus, when 3 fle containing the following

.e;ll z2(..) (..); esternal;
;ll z; begin ...end;
is processed by ALI2, z becomes a symbol visible to the loader which can be wsed to resolve

uwnbound symbols from other loader files. If the body of the cell had aot beea given in the same
le, ¥ would bave become a symbol to be resolved by the loades.

TNote that AL12 external compilation facilities differ from those of UC Berkeley Pascal in that the header of a3
external object may be in the same file as its body This permits type insecuritios to creep in by sidestepping
the cross-module type checking features of the UC Berkeley UNIX compiler but makes the facility easier to use

«12.

The directives rigid and flezidle indicate that the cell definition is not to be given textually
as part of the program: it is to be found in the file named by the string given as argument to the
divectives. That file must be s “rectangle file” (see [8]) defining a rectangular layout fragment.
When a cell defined ip this manner is instantiated, the ALI2 run time system will attempt to
integrate the layout fragment described by the file into the layout defined by the program.

The format of vectangle files includes 3 description of the elements that touch the boundary
of the layout fragment described by the file [8]. The run time system will check that the boun-
dary as described in the file matches the actual parameters given when the cell is instantiated; an
error will be geperated if a parameter mismateh exists. Note that this check is nol performed at
compile time because it is not always possible to do so. If the two boundaries match, the run
time system ‘‘connects’’ each of the actual parameters used in the instastiation to the correspond-
ing element op the boundasy of the rectangle file. This connection is performed by abutment if
tbe directive is rigid. The directive flenible is not currently implemented, but when operative, it
will connect the actual and formal parameters using a simple channel router.

7. Wire variables, Box variables, and Formal Parameters

As ig. 3 shows, the format of the declarations of wire variables follows the standard Pascal
conventions. Some examples of declarations of wire variables of the types declared as examples in
section 6.1 are given below.

wl ; Joo2;

w? : fool (4, 6, metal, power J;

ws : datal (1, 100, 6¢lambda);

wf : bundle [1..100] of bundle [1..100] of stdpoly;
ws, w6 : polywire (2dambda J;

w? : stdpolyusre;

w8 : bundle [-10, 10 Jof polywire (24ambda);

Each declaration creates a number of objects of the specified type which exist in a certain
syntactic scope.

The main operation that the ALI2 user will perform with wires is to pass them as actual
parameters in cell instantiations. As stated earlier, ALI2 expects each wire to be wsed as an
actual parameter in exactly two cell instantiations, i.c., an actual wire parameter connects two
cells. Incidentally, AL]2 will separate automatically any two celis connected by a wire.

The format of the declarations of box variables is quite different from that of other variable
declarations. For instance, the box declaration

box b1, 2, bS;

simply states that the identifiers listed may become associsted to boxes during the scope of the
declaration. If such an asssociation occurs, then the idestifier stands for the box associsted to it
wntil execution leaves the scope of the definition. No box can be associsted to more than cae box
variable (po aliases) aad mo box variable can be associsted to more thas oae box (no reassige-
ment).

Box variables are somewhat like Jabels in a Pascal program, not oaly ia the format of their
declaration but also in the way they are used. The osly operation that can be performed oa a
box is to wse it in a statement specific to AL1I2. This shifts responsibility for their manipulation
to the ALI2 run time system.

18-

There is an important difference between the scope rules for box varisbles aad wire vari-
i ables and the scope rules for all other variables. Pascal-like variables are goversed by the same
: scope rules used by Pascal, with cells treated in the same way as functions or procedures. Wires
and boxes, on the other hand, are only accessible locally: o wire or box can be global to any con-
text. Once again, this is a consequence of our desire to preserve » strict bierarchy of layout ele-
ments.

Another important semantic detail is that the type of any ALI2 wire variable has to be
dound and not parametric. Thus the following wire declaration

JOF 28 e

e e

48 : polywire;

is illegal since it declares 45 to be a wire variable of a panmemc type without giving actual
parameters for the formal parameters of the type. Such a ‘wire cannot be created unambiguously
(what is the width of d5?) and is therefore banned.

Thus wires of parametric types are eflectively restricted to sppear is formal parameters in
cell declarations. In particular, no wire variable other than a formal parameter may be of the
type list, since it is not a bound type.

7.1. Type checking of wire parameters

By declaring a formal wire parameter to be of parametric type, the user deems acceptable as
sctual parameters any wires that are of a type derived from that of the formal parameter. These
parameters will become bound (i.e., values for the formal psrameters in their type definition will
be assigned) at run time by inheriting the characteristics of the actual parameters assigned to
them at cell instantiation.'

The type checking used in the parameter passing mechanism just described allows for »
great deal of flexibility. Only certain properties (selected by the wser) of the parameters are
cbecked when a wire parameter is passed. All others are inberited by the formal parameter from
the actual parameter. As an example, if a cell bas the following header

eell silly (top & : polmme)
then the following two wires

d1 : polywire (2elambda);
d2 : polywire { §elambds);

can be passed as actual parameters for & In this example, the layer and signal values of the
actual parameters are known (o be acceptable at compile time aad & will inherit the width of the
actual parameter of the instantiation which will oaly be known at run time.

The type his! is wsed to declare formal parameters which are aggregates of wires without any
forther restriction. Thus a cell baviag the following header

1The following argument shows that this mechaniom will ensure that all wires are bouad at run time. Wires
accessible at asy point in the execution of a0 ALI2 program must be sither (1) declared in the current scope or
(32) forma! parameters (vince no global wires anist in ALIZ) In the Bt case the wires must be of & bonnd type.
is the second case, an sctual parameter for each of these wires must have beea given when the coll was iantan-
tisted or the procedure or function taveked The actual parameter given must bave been bonad (by an indec-
tive argument grossded on the fact that wires local to the outermont coll mast be bound) and therefore the for-
mal parameter inherited all ite nabouad characteristics from it aad became bound.

cell easy (loft n : kst);

can be called with any collection of wires as arguments. ALI2 provides a list constructor to per-
mit the user to create wire aggregates to be passed as actaal parameters. The expression

l2, 02|

means ‘‘make a list of each of the wire variables listed and then concatenate these lists in the
order given''. Because po assignment to variables of type list is possible in ALI2, this constructor
can only be used to build actual parameters for cell instantiations.

The arguments of a list constructor may be wire aggregates such as bus or bundle varisbles.
They are converted into lists by (recursively) taking the elements of the bundle in the order given
by its index type and taking the fields of the bus in the order listed in its type declaration.

The constant nullwire can be passed as an actual parameter for any formal parameter of a
simple type. Wheb used ip a list constructor it will be treated as if it had not been listed. Thus,
nullwire will never be an element of a list. That is,

| nullwire | = nulllist and | 6, nullwire, b| = |a, b|

The use of nulluire and nulllist as actuzi parameters will be a common phenomenon in
ALI2, as we will see shortly.

An aside on the general principles guiding type checking in ALI2 is perbaps in order. First,
potice that since we transiate ALI2 into Pascal, we are st the mercy of the underlying Pascal
compiler for run time type checking on Pascal objects. Second, type checking on wires is res-
tricted to parameter passing, since no assignment to these variables can ever be made.

There are at least two sensible approaches that could have been taken to type checking on
wires. The first ope — strict checking = is to require that the formal and actual parameters be
defined by the same type identifier in order lo be compatible. The second one — the lenient method
=~ requires that the type of the actual parameter be identical to or derived from (i.e. defined
directly or indirectly in terms of) the type of the formal parameter.

For instance, consider the following declarations:

wiretype
polywire (w : integer) = wire (poly, w, nullsignal J;
polyS = polywire (S);
wirevar
pw : polywire (5);
pusS :© polyS;
eell ailly (top ¢ : polyuwire);
begin ... end;

If strict checking is performed, pw$ cannot be sn actual parameter of silly since the type
identifier of pwS5, namely poly5, differs from the type identifier of the formal parameter (, namely
polywire. In the case of lenient checking, pw could be passed as a parameter to ailly since its type
bas been derived from that of the formal parameter.

ALI2 uses the lensent approach. The experience with the original AL language (which used
the strict method) convinced us that the extra flexibility afiorded by this approach would be help-
ful. For example, any component of s lisf could be passed as an actusl parameter matching a for-
mal parameter of type wire,

-15-

This cooflict is similar to the Pascal issue — wnresolved in the Pascal Report {9] ~ of
whether the following declarations

typeip] = integer; ip2 = ipl;
var vl :ipl; ve: 1p2;

create two variables of the same type or not. Most compilers seem to resolve the matter in a
lenient manner by assuming that they do.

7.2. Accessing components of aggregate wire types
The syntax for accessing components of bus, bundle and list variables is given in fig. 7.

wire vaviadle

wire variable identifler |—

wire variable (bundle) _‘-—-@——\Eﬁgv ezpression wj
] i e O e
(o nger) D) foer emprsmion} (D

Fig. 7
The syntax for accessing components of aggregate wire types

ALJ2 simply borrows the Pascal potation for accessing elements of records snd errays and
extends it to buser and bundies respectively. Here are some examples that use the variable
declarations of section 7 to generate legal wire variable names.

wl.dl
wi.dif14]
w2 f1
w8(39]
wi[25)[s5]
vl

In addition ALI2 provides two functions that extract the low and bigh bound of any vari-
able of type bundle. This is necessary because dundles — unlike Pascal arrays — may have sizes
that are determined at run time. Thus, given the variable definitions of section 7 and the type
definitions of section 6.1,

lovindez (wS | = |
highinder (wS] = 100

Accessing of elements of a variable of type lisf is done via a motation similar to array index-
ing. For instance, if 2 is a variable of type &st, then

z[10])

denotes the tenth elemedt of 2 (the Brst element is accessed by 2 /1 /). All elements of a hst
variable are simple wires.

-16-

The value used to index the list can be an arbitrary integer expression which bas s value
between one and the length of the list. The length of a list may be obtained as follows: if {is a
list variable,

lengthof (1)

will return an integer whose value is the number of elements in [

8. Procedures and functions
The syntax of the procedure and function declarations in ALI2 is shown in fig. 8.

As these diagrams show, the syntax is identical to that of standard Pascal with additions to
(1) permit passing wires and cells as parameters, (2) allow declaration of cells local to the pro-
cedure or function, and and (3} allow for separate compilation facilities. Note that functions can-
pot return wires or boxes as their result.

A fact only partially explicit in the syntax diagrams is that the only wires and boxes acces-
sible inside a procedure or a function are those that are passed in as parameters: the restricted
block syntax prevents the declaration of wires local to the procedure or function, and no global
wires exist in ALI2.

Nop-wite parameters may be passed using any of the standard Pascal parameter passing
mechanisms (i.e., by reference or by value). Parameters of wire types will always be assumed to
be passed dy reference, so no local copy of an actual parameter is ever created. This parameter
passing mechanism for wires and boxes is intended, once again, to preserve the strict bierarchical
nature of ALI2 layouts.

The directives forward and external for procedures and functions work exactly like those of
cells described in section 6.2.

0. ALI2 statements

There are only four ALI2 statements that are not Pascal statements. Onpe of them is used
to instantiate cell definitions, two others to generate placement information and one to indicate to
ALI2 lack of concern about relative placement of pairs of objects. Their syntax is described in
fig 9.

In addition, ALI2 has a facility for naming bounding boxes created during execution of a
program. The syntax of this facility is also shown in fg. 9.

The rest of this section is divided into Bve subsections discussing in detail each of these
statements snd the box naming facility.

9.1. The ‘ordered” statement

The systax of the ordered statement should be obvious from the syntax diagram; its seman-
tics bowever are peculiar to ALI2 and require some elaboration.

During execution of an ALI2 program, the run time system maintains an internal record of
the current bounding boz (which may or may pot be associated to 3 box variable). When the first
statement of a cell definition is executed during ap instantiation, the current bounding box will
become the boundary of the cell instance, snd when the instantiation is completed the current
bounding box will be whatever it was before the begianing of the instantiation.

Bounding boxes are crested automatically oa entry to cells or ordered statemeats or by

-17-

procedure declaration

ali2 restricted block
Gm>————
(=2
Qprocedure)—{ forwerd zexternal procedure entifier}—{(—{aliZ restricted uou)l—-»

procedure Aeading —{ ;)

alil procedure Aeading

R e o

Junction declaration
ali2 restricted block q

b
@ forward /ezternal functien idcnﬁﬂ?}—-@—‘[d{z restricted blocﬂ"l"—"

Sunction heading —o (:)

ali2 function heading
efomu lm'“

ali2 formal paramseters

ali2 restricted block ()
—{Festricted declorative biock —w(begin)->{aliz statement] 4(end) .'

Fig. 8

The syntax of procedures and function declarations

ww""j@@—

() - () —

%M

-~ erdinal expression }—o do)—d alil statsment |
D
r—'! u‘nﬂmﬁﬂv‘

isf comstructor! by "weger s srion,
box identifier

—@_{hem sf separeiion ..,n
e) e —

CQT‘"M ad ia "'"'BO‘ED"@" tual perameters }—Q:J—
1

Fig. ¢
The syntax of the ALI2 statements

«10.

explicit invocation by the user of a predefined procedure (see section 10 for details).

Any two bounding boxes will either be disjoint or one will contain the other. The execution
of an ALI2 program therefore creates a tree of bounding boxes, with its root being the bounding
box for the cell instance which is the whole layout. In this tree the bornding boxes represented
by the descendents of a pode v will be contained in the bounding box represented by v.

The ordered statement uses the direction of separation given ib its header to place all
bounding boxes created in its scope in the order in which they are created along the direction
given. These boxes will be automatically separated along the direction of separation by an
amount equal to the minimum specified for their layers in a design rule table available to ALI2.

An example of a program and the arrangement of boxes it generates is given in fig. 10
below.

ordered lor do
begin
< bounding bos 1 >
< bounding boz 2 > I H
ordered ttod do ' 3

begin . .
< bounding bos 9 > . ’ L E
< dounding dos { > H

end,

< bounding bos 5 >
end

o v - o

Fig. 10
A program fragment and the arrangement of bounding boxes it produces

9.2. The *‘separate” statement
The statement

separate [tor bozl, wirel, wire?, wire$, dozf, boz$;

will force boz! to be to the left of wirel, wirel to be to the left of unre?, wire® to the left of unreS
etc. The sizes of the separations that the statement will force between the objects listed will of
course depend on their types and will be obtained from the design rule table. ALI2 will guarantee
that any two objects listed will be separated by the minimum separation required by their layer
along the direction specified’

If the statement has the form
separate llor Jozl, wirel, wiref, wireS, bozf, bo2z8 by 2dambde;

then the objects would have been separated by the amount specified. This amount can be an
arbitrary expression. If the value of the expression is less than the minimum separation for any
two objects in the list, 3 warning will be issued.

!Thir 1nvolves some rubtiety because the design rules may not be transitive, i e, in the example, the layers of
®irel, wire? and wired may be such that separating wires from wire? and separating wire? from wires does not
inply that ®iret 1s sufliciently separated from wire®

_?

-920-

When a composite object appears in the list of arguments to this command, it is interpreted
as if all its simple components had been listed in their natural order (low index to high index for
bundles, the order in which the fields are listed in the declaration for buses and the obvious order
for lists, all applied recursively).

The direction of separation is interpreted in the obvious way if it is horizontal (itor or rtol)
or vertical (ttod or btot). Diagonal directions of separation are interpreted ss the conjunction of
one borizontal and one vertical direction. The value nulldir is meaningless in this statement and
its use will produce an error.

Because wire endpoints must always be at cell boundaries, it is meaningless to separate bor-
izontal wires in a borizonta! direction or vertical wires in a vertical direction (bence o wires can
be separated diagonally). This implies that any wire baving nullorient as orientation listed in a
separate statement will be assigned either vertical or horizontal as orientation.

9.3. The “complete” command'

The ALI2 system will guarantee that the layouts produced with it are free from design vio-
lations without using the standard design rule checking process. In order to do this, the system
checks the “logical completeness™ of the layout description [10]. This amounts to guaranteeing
that any two objects at the same level in the hierarchy of bounding boxes of a layout are (1)
either separated (explicitly or through tranmsitivity) by an amount greater than or equal to the
minimum separation for their layers prescribed by the design rule table, or (2) explicitly stated to
be allowed to be at any distance whatsoever.

The complete statement states that its arguments can be as close as necessary without caus
ing any problem. The syntax of the statement is quite simple. For instance,

complete b1, b2, w1, w2, bS;

expresses that the user does not care about the separation between any two of the objects listed
after the word ‘‘complete’”. If a composite wire variable is given as argument, the above rules are
applied to each of its components.

9.4. Cell instantiation

The general syntax of the cell instantiation statement was given in fig. 9; the syntax for the
parameter lists of cell instantiations are given io fig. 11. Here are some examples of syntactically
correct cell instantiation statements.

create flipped90 ehift (datal, clk, data?);
create regisler (di, clke, 42) (28 };
ereate rotated!50 doit [) (kk);

The change in orientation that the user may specify when instantiating a cell is used as fol-
lows. The ALI2 run time system keeps at all times a current glodal orientation. Calls Lo certain
predefined ALI2 procedures have an eflect that depends on the current value of the zlobal orienta-
tion. By adding a change of orientation to the cell instantiation statement the user specifies that
within the scope of the cell instance, tAe current orientstion should de the dihedral group product of
the orientation before the stalement and the diredral group element specified in the statement. The

*The completenesy checks bave not beea implemented yet

«2]-

ali2 actual parameters

list constructor

—O(=E=C

Fig. 11
The syntax of the actual parameter lists
for s cell instantistion statement

global orientation after the statement is completed reverts to its previous value.

Certain placement constraints are sutomatically generated by the system during cell instan-
tiation.

«1- The actual parameters of the cell are separated: the fop and bottom parameters from left to
right and the /eft and right parameters from top to bottom.

-2- Cell instances that share an actual parameter (i.e., sre connected by a wire) are separated
by the minimum separation given in the design rule table for objects having virtual as their
layer. (This separation can be explicitly overrided as explained in section 10).

The parameter type checking performed for the instantiation is the following. On the wire
parametcers (those in the first list of arguments), tAe type of each ectual parameler must be identi-
cal to or derived from the lype of the correaponding formal peremeter. On the second list of
parameters the checking is identical to that performed by Pascal.

Formal wire parameters exist only inside the cell instance, actual parameters exist only out-
side the cell instance and they are abutted at the cell boundary. A pictorial representation of this
is shown in fig. 12.

Note that in the case of cells declared rigid, this connection may not be feasible: conditions
outside the cell force two sactual parameters to be farther apart than the corresponding formal
parameters in the cell definition. In that case ALI2 will generate an error message during the
placement phase [5).

Fig. 12
How wires are passed as cell parameters

This parameter passing schema has the disadvantage of increasing the total number of ele-
ments in a Jayout by oftentimes dividing what at first sight may appear to be one Jong wire into
several small pieces. It guarantees, however, a strict hierarchy among wires of ALI2 layouts, by
making it impossible for any of them to straddle s cell boundary.

The parameter passing mecbanism for simple wires is extended to composite objects in the
obvious manper. Ip apy given instance, the formal parameter will be a composite object baving
the same general structure and identical components as the corresponding actual parameter! The
two objects will be connected by the appropriate method in a component by component manner.

The predefined constants nulluire and nulllist will be used often as actual parameters in cell
instantiation statements. Specifying nullunre as an actual parameter in a cell instantiation simply
means that the formal parameter will take the value nulluire. The use of nullist as an actual
parameter for a formal parameter means that the formal parameter becomes a list with no ele-
ments. The main purpose of these conventions is to avoid forcing the user to declare wires for the
exclusive purpose of passing them as actual parameters to satisfy the type checking mechanisms.
This possibility is not extended to formal parameters of the other two composite types: no way of
passing a bundle or dus of dummies is available in ALI2.

9.5. Name tags for bounding boxes

AL12 contains a facility to attach the name of a box variable to any of the bounding boxes
created automatically during executiop of a program. The association is performed by tagging
the statement that creates the box with the keyword nemed and the box name. The syntax of
such a tag is described in fig. 9, and some examples of its use are given below.

pamed n : create flipped90 ohift { datel, clk, data?)
named if : create rotated180 doit () (kk)
named newcontest : ordered ltor do ...

This facility is skin to Pascal labels except that only statements that create a bounding box
can be tagged.

'1n the case of het parametens and bundle pananeten with parametric bouads this mechaniom implies that
copies of the sctoal parameters will have to be made at ren time

Pt a2 DY

—— ——

i
|
!
l

«23-

10. Predefined procedures and functions

We will now describe the predefined procedures and functions of AL]2. They, together with
the predefined cells described in the mext section, represent the wser-visible part of the ALI2 run
time system.

The descriptions given here are for general users. Implementation details of the run time
system can be found ia [11].

procedure crossing (w: wire);

This procedure informs the ALI2 run time system that the given argument is to appear after
the last bounding box created and before the next bounding box along the direction of separation.
The argument is enclosed in a pseudo box in order to separate it from other bounding boxes
created in the same scope. It is assumed that the current direction of separation is either horizon-
tal (in which case w must be a vertical wire) or vertical (w must be borizontal).

procedure override (b1, b2 : “any wire or boz'’; d : directionofseparation; k : integer);

The purpose of this function is to override the sutomatic separation features of AL12 and as
such it should be used sparingly. The function bas » header that cannot be expressed entirely in
ALI2 since it takes as argumeants either simple wires or boxes in any combination.

Its behavior is the following. Whatever separation may have been specified for §1 and b2 in
the direction given by the third argument is replaced by the one specified as the fourth argument.
Additionally, completeness checks between the first two arguments will be inhibited.

It should be noted that later separations — generated explicitly by the user or automatically
by the system — may undo the eflect of this statement. Thus, for it to work properly the user
must be somewhat familiar with the inner workings of ALI2.

{ Not yet implemented }
procedure ckcompleteness { b : “‘cell bounding boz");

This procedure instructs ALI2 to perform s completeness check on the constraints generated
at the top level of the cell instance given as an argument. This check will be performed as soon
as the instance is completed during the running of the ALI2 program. Appropriate messages will
inform the user of the result. The procedure should be invoked before the cell instance is created.

-2-

function widthof (w : wire) :integer;
function leyerof { w : wire) : lager;
function agnelof (w :wire) : signel;

function orientstionof { w :wire) : wireorientation;

Tbe values computed by these functions are the obvious ones. Remember that the width
will be in bundredths of microns and that multiplication by lambde is needed to comvert it to)\
ubits.

function minwidth { k :layer) :integer;
function minseparation (L1, k2 :layer } :integer;
These functions access the design rule tables. The 8rst one gives the minimum thickness of

a wire on the specified layer, and the second the minimum distance between objects in the two
layers given as arguments such that they will mot interact electrically.

function lengthof [z : kst } :integer;

The value returned by lengthof is the number of elements in its argument.

function lowindez { z : “any bundie type") : inleger, l

f function Aighindez [z : “‘sny bundle type’'] :integer,

t These functions compute, respectively, the index of the first element of the bundie and the index
f of the last element of the buadle. Note that the beaders cannot be expressed entirely in ALI2.

11. Predefined cells

1 There are only four predefined cells in ALI2. All of them are “smart” in that they do a
(large amount of processing. All of them are "ot very smart” in that they will insist that the

problems presented to them bave a solution with the center lines of all the wires given as parame-
ters meeting at 3 point. If no such solution is possible — or if the cell cannot Sad it ~ aa error
message will result.

Given below are the beaders of all four cells and short descriptions of what they do. Note
that all four are quite general, and that most wsers will want to define simpler versions of them to
facilitate their repeated invocation.

cell syetransistor (left getelefl : kist;
top sowrce : list;

right pateright : list;

bottom drain : List) !

(implanted : boolesn); :

This cell constructs an enhancement mode trapsistor. The following conditions have to be ;
satisfied by the parameters of this cell. The lists passed as source and drein have to contain at |
least ope diffusion wire and at least one of the lists gateleft and gsferipht must include a polysili- ‘
con wire. Each of the lists must contain wires that run on electrically independent layers!

Instantiation of this cell results in the following actions. . The source of the transistor will be
the diffusion wire in source, its drain the diffusion wire in drain and its gate, the polysilicon wires
in gateleft and gateright, which will be connected together if both exist. The dimensions of the
transistor are determined by the maximum of the widths of source and drain and the minimum of
the widths of gateleft and gateright. The parameter smplanted tells whether the transistor should
be implanted. Any wire parameters having layers other than polysilicon or diffusion will be
electrically connected (o one another over the transistor. Such a connection will have no electri-
c3al interaction with the transistor. If such a connection cannot be built, an appropriate error will
be generated.

cell syspullup left drainleft : list;
top source : list;
right drainright : kist;
bottom drainbottom : list)
{ ratio : snteger);

This cell constructs s pull-up (depletion mode) transistor. The conditions on the parameters
are the following. Tbe source must contain at least a diffusion wire and the drain at least one
wire of apy type. Each of the parameters must be composed of wires ruaning om electrically
independent layers.

The efect of instantiating this cell is the following. A depletion mode transistor having the
specified ratio will be created. Its source will be the diffusion wire which is part of source and all
otber wires will be connected to the drain of the tramsistor. If such a construction is not feasible,
2D approptiate error message will be generated.

cell syscontact (left [: kist;
top (. ket
right r . list;
bottom J: kst)
(layerbylayer : boolean);

t1pdependent layers” refer to layers whose wires can overlap without aa electrical interaction eccurriag, such
8 metal and polysilicon in aMOS. From the poist of view of ALI2, layers whore minimum separstion oa the
design rule table is sero are assnmed to be independent.

¥
3

i
(
!
|

This cell generates a contact that electrically connects the givea wires. The only coaditions
on the parameters are two: (1) that they contain at least one wire among them and (2) that it
may be possible to connect all the wires in them so that their centerlines meet at a poiat.

The eflect of instantiating the cell is as follows. A region that makes the component wires
electrically connected will be created; if the boolean argument is true, the comnection will be done
so that wires on independent layere will be connected Lo each other but mot to wirce on other layers.
If the connection is not possible — either in a true sense or because of implementation limitations
-~ an error will be generated.

cell syscrossover [left | : wire;
top t : wire;
right r :wire;
bottom b : wire);

This eflect of the cell is to connect the top and bottom wires and the left and right wires
separately, with the left-right pair crossing over the top-bottom pair. No constraists are imposed
ob the parameters of this cell beyond those explicit in the header. Of course, the layers of the
wires will in general require that contacts be created to change layers, so that the Bnished size of
the cell may end up being rather large.

12. Final comments

We will close this document by saying a few words about how we view the task of program-
ming in ALI2.

12.1. Conceptual framework

A physical layout is composed exclusively of wires. Thus, wires are the most prominent
objects in ALI2. For the purpose of organizing wires into s hierarchy, rectangular boxes bhave
been introduced.

Certain wire arrangements appear very often in VLSI layouts. Although the outward
appearance of these arrangements varies widely, they can be classified into a few groups according
to their function. ALI2 forces its user to generate these arrangements by calling predefined cells,
which try to hide the varied appearances but leave the functiop visible.

Alter the arrangements of interacting wires are hidden, s layout becomes simply a matter of
routing wires. Until the ALI2 library of routing aids bas been completed, wire routing must be
bandled by the user. The composite types are intended to make this task somewbat simpler:
routing aggregates of wires, rather than routing each wire individually, belps to reduce the routing
eflort. The composite and parametric wire types represent our best efforts to balance the need for
fexibility in the type checking with the need for as many consistency checks as possible.

13. Hierarchles in ALI2 programs

Ap AL]2 program is an object in which several hierarchies coexist. Two of them are fami-
liar to any Pascal programmer: the compile time hierarchy, in which objects (wires, Pascal-like
variables, functions, eells, etc.) are defined in terms of one another in a hierarchical fashion, and
the run time hierarchy determined in the case of ALI2 by the procedure, function and cell

-
ot gtz -

—— e —

|
|
!
|

-7

_invocations. The properties of these two hierarchies in ALI2 are almost identical to those of the

corresponding hierarchies in many programming ln(uuu The few diflerences (i.c., the local
character of wires) need no further comment.

AL12 was designed so that programs will, in a matural manner, produce highly hierarchical
layouts as output. It is this output Aierserchy, absent from conventional programs, that is peculiar
to ALJ2. Because the properties of this hierarchy are unlike those of the more familiar ones, the
rest of this section describes them in some detail.

The output bierarchy is determined by the execution of two ALI2 statements: create and
ordered. Each of these statements creates a new bounding boz in which local layout elements —
including other bounding boxes — are enclosed. They define s bhierarchy which gives the layout
its structure.

The bounding boxes created by each of the two statements differ in a crucial way: while
wires may not straddle the boundary of a box generated by a create statement (see Bg. 11), the
same is not true of the boundary of boxes generated by the execution of ordered statements.
Thus, wires are subject only to the hierarchy defined by cell boundaries.

Note that the box hierarchy is quite different from the run time bierarchy. For instance,
wires that are local to a procedure will be inside the current bounding box at the time the pro-
cedure is invoked. Two diflerent invocations may produce wires that are in the same box.

All bounding boxes are similar, however, in that they represent a local contezt for the ALI2
programmer. Each box has a local orientstion with respect to that of the box containing the
overall layout, and a local direction of separation. The way in which these values are derived for
a new bounding box is as follows:

-1 Create statements. The local orientation is the (dihedral group) product of the local orienta-
tion of the current bounding box at the time the statement is executed and the orientation
change specified in the statement. The local direction of separation is nulldir.

«2- Ordered statements. The local orientation is the same as that of the current bounding box
when the statement is executed. The local direction of separation is the one specified in the
statement.

Note that the direction of separation inside a given box o relative to the local orientation.
Therefore if a bounding box bas a local orientation which is rotated ninety degrees with respect to
the oricntation of the outermost box, and its local direction of separation is ltor, the result — from
the point of view of the outermost box — is that the box bas dtof as its direction of separation.

14. References
[3] L. Atkinson, Psscal Programming, Joha Wiley and Sons, 1980.

{2 R. J. Lipton et. al, “ALL: A Procedural Language to Describe VLSI Lyouts", Proceedings of
the Nineteenth ACM-IEEE Design Automation Conference, Las Vegas, Nevada, June 1982,

3] R. L. Kalin, “The ALI2 Front-End: Design aad Implementation of Parser/Translator”,
ALI2 Documentation and Implemeniation Guide.

[4] 3. Valdes, “System Overview", ALJI2 Documentstion end Implementation Guide.

5] S. C. North and G. Vijayas, “ALI2 Solver”, ALI? Documentation and Implementation
Guide.

|6} C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, 1980.

e ——

-928.

[7] J. Hennessy and H. Eimquist, ‘‘The Design and Implementation of Parametric Types in Pas-
cal”, Software -- Practice and Ezperience, vol. 12, pp 169-184 (1982).

[8) S. C. North and G. Vijaysn, “AL]2 Runtime File Formats", ALI? Documentstion end
Implementation Guide.

{9 K. Jensen and N. Wirth, Pascsl User Manus!l and Report, 2nd ed., Springer-Verlag.
{10] G. Vijayan, “AL]I2 Completeness Checker” ALI2 Documentation and Implementstion Gyide.

[13] J. Mata, J. Valdes and G. Vijayan, “The Translation of ALI2 into Pascal and the ALI2
Runtime system'', ALI? Documentation end Implementstion Guide.

Appendices

Standard Pascal Documentation

Total Stuck-atFault Testing by Circuit Transformation*

Andree S. LaPaugh
Richard J._ Lipton

Department of Electrical Engineering and Computer Science
Princeton University

Abstract

We present s new approach to the production
testing of VLS! circuits By using very structured
design for testability, we achieve 100% single stuck-
at fault coverage with under 20 test vectors and no
sealrch The approach also detects most multiple
fsults

1. Introduction

In this paper we present a new approach to the
production. testing of VLSl circuits The major
features of this approach are that the se: of test
vectors is oboth small (less than twenty; and
independent of circu:l size anc that no search for
test vectors is required These festures are
achieved while guaranteeing the detection of all sin-
gle stuck-al faults in MOS circuits along with many
other faults Testing can be done without anv spe-
cial test equipment, allowing field testing of VLSI
circuits to be done as well as production testing
Thus. major difficulties of current testing methods
-- the need for large and expensive searches for test
vectors with high coverage and expensive tes!
equiprment to apply large sels of test vectors
quickly -- are avoided. In {-ct. the technigue is well
suited for impiemertation on a self-test:ng chip
Little area is needed to store the test vectors and
faull coverage is guaranteed reth. that probabilis-
1:c as in some seli-testing strategies

Our approach is actuaiiy the combinat'on of
three techriques which could be used incepen-
dently There are various penalties associated with
each of the techniques The most severe of these is
the requirement that the circuit be put into a spe-
cial form There is 8 purely mechanica) transforma-
tion for this purpnse Hence, this requirement does
not prolong the design time Also it does not
change the depth of the circuit, hence, the circuit’s
speed is essentially unchanged Nor does this
transformation add many ncw pins Lo the curcuit I

0 € j2o0-ed by DARZA JN00014-82-K-0549

el — -

does, however, increase the size of the circuit. The
gate count of the modified circuit can be as much
as. but never more than, double the number of
gates of the original The other two techniques ad¢é
some extra circuitry which may also increase the
chip area needed. but not as substantially. and may
slso increase the delay slightly. While these
increases are potentially costly. for many circuits
the tremendous sdvantages of our method will far
outweigh its cost This is likely the cese for gate
arrays and other semi-custom logic.

2 Technique I: Bipartite Circuits

Our method is based on a special class of com-
binational circuits These circuits are special in
that they are easy to test for all stuck-at faulis arc
yet they are sble to “'simulate’” other circuits quite
efficientlv The circuils can be composed o! any
type of inverting logic gates, that is any logic getles
whose output is 0 when all inputs are 1's and 1 when
all inputs are 0's This includes. of course. any c.r-
cuits that consist solely of nor and nand gates In:-
tially we will discuss only combinational circu.is
Sequential circuits will be addressed later.

2.1. Testability of Bipartite Circuits

A combinastional circuit C is bipartite provided
it is possible to two color its gates dlack and whiic
so that no wire connects two gates with the same
color and each input wire of the circuit C 15 an
input to gates from only one color class The color-
ing of getes in a bipartite circuit also defrncc a
corresponding coloring of wires black (respectic:
white) wires are input only to black (respcctine:
white} gates Then outputs of black gates are whilv
wires, oulputs of white gales are black wires

The importance of bipartite circuits stems fre
the following which we call the parily principle

Parity Principle: Jf we set all the black wnpu’
wires of a bypartite circui! C to the value V' and 2!
the while input wires of C to the valuc V. then all
black (respectively whitr) wires take on the valu- |
(respectively V)

This principle is the key to the testab.t\ o
this class of eircuils From the principle. wo Ly
the following theorem about controllabihity of i
output wires of gates

—

Theorem 1: Given o bipartite inverting logic
circuil, only fwo inpu! vectors are required fo
Jorce the output node of oll pates to the values O
and !.

2.2. Universality of Bipartite Circuits

Since it is easy to see that not all circuits are
bipartite, we will now show how to transform any
combinational circuit into an equivalent bipartite
one This transformation will at most double the
number of gates. However. even better, it is a
"local" transformation and thus will only increasse
the area of an integrated circuit layout by a factor
of at most four (two in each direction). It will also
not increase the depth of the circuit at all This is
our main advantage over past techniques for 100%
fault coverage [Ha74, Sa74) We first present a sim-
ple method that always doubles the number of
gotes We then discuss avoiding actually doubling
the number of gates

Giver any inverting logic combinational circuit.
make twc copies of each gate of the circuit, label
one copy of each gate 'white'' and one copy ""black”
(see ligure 1a and 1b). Also, make two copies of
each wire between gates one copy goes {rom the
black copyv of the first gate to the white copyv of the
second gate -- a white wire, the other goes {from the
white copy of the first gate to the black copy of the
second gate -- a black wire. Input wires and output
w,res are doubled in hike fashion so that each black
(respectively white' gate has onlv black (respec-
tive'y whiie' anpul wires and white (respectively
black} output wires The resulting circuit has
exactiy twice the number of gates of the original
anc 1s bipart.ic Note, that the fanout arnd depth of
the trans/crmed circuit 15 the same as that of the
cr:g.nal

5 plack
z
.U
O >—-. .
)
w wvhite
J— 2
|
(s) original gate (b) transformed 'gate"

Fgure 1.

The transiormation doubles the number of
input and output wires, an undesirable effect if the
number of pins must also double. The new circuit
will simulate the original if the black and white ver-
sions of each input agree. For test operation. we
want the black and white versions of each input to
be complements of each other. To do this with the
same number of input pins, we use a special input
cell. It is a piece of combinational logic with inputs
z and mode and outputs z, and z,.. When mode is
0, the input pad drives x, and z, so that
T =2, = z,,. when mode is 1, the input pac drives
z, and z, so that z =z, = £,

It is even simpler to save output pads Since in
normal operation the black and white versions of
each input wire agree, the black and white versions
of each wire in the entire circuit agree. Therefore
only one version of each output wire need be con-
nected to an output pad By eliminating redundant
outputs and any wires and gates that compule
results used only by the eliminated outputs. we can
obtain a bipartite circuit with less than twice the
number of gates. In general, it is not computation-
ally feasible to optimally choose which output of
each pair is eliminated so that the resulting circuit
is minimum size (it is NP-complete [GaB82 }. How-
ever, heuristics can be used in an attempt to avo:d
doubling the number of gates

3. Technique lI: Control of transistor faults

The parity principle for bipartite circuits is &
very powerful one It allows us to easily set all the
wires of a circuit to both O and 1. If we could exam-
ine each wire. say with a scenning electron micro-
scope (SEM) [Ki82_. then we could detect any wire
stuck-at fault However, such an approach 1s not
powerful enough to also detect transistor stuck-at
faults- a transistor can be stuck without anyv wire
also being stuck The problem is that our test vec-
tors for a bipartite circuit do not guarantee that a!
combinations of input values will occur at anv gatc
In fact, just the opposite is true the bipartite tes:
sirategy guasrantees that all “"healthyv’ inputs to a
gate will be the same value

Our second technique is the introductions of &
conirollable gate which when used 1n a b:pari::
circuit allows the detection of both wire and trans.s-
tor stuck-at faults We must further restrict the
type of logic gates used in the circuil {o achieve
this We present a controllable nMOS ner cat'c
which 1s &8 modification of the standarc n\0F nc-
[MeBO. We have also designed & controllabic nand
but the two cannot be used 1n the samc circuil
our simple test strategy is to be achieved Thus th
original bipartite circuil must conta:r oniv ncr
gates or only nand gatcs (Inverters arec achieved
by using a nor or nand with both inpute the same’
The gates are designed so that all stuck-a! trar < .-
tor faults can be forced to occur even assuming t™.
normal i1npuls to a gatc alwayr: take on thc same«
value when the circuit 1s under test

1]

Given a bipartite circuit of nor gates cach galc
is replaced by the circuit displaved 1n Figurc 2 Wce

e O e

L mm—

——

have added two new global control lines C1 and C2.
These are inputs to every gate of the circuil.
Clearly, when C1 = C2 = 1 this gate computes the
nor of z and ¥, hence, in this case the new circuit
simulates the old one. Also, for all settings of C1
and C2 except both 0. the gale is inverting with
respect to the values of * and y. Therefore, a
bipartite circuit of such gates will retain the parity
principle for all values of C1 and C2 except both 0
On C1=C2=0, the outputs of all gates should be 1.

g
¢!

f—— vy
_— y Standard aOS nor

Nodified mor for Testability

ﬂ-— (x AClY v (y AC2)

| —y
€l ey — 2
Figure 2.

There are five aclive transistors in the controll-
able nor. For each individual stuck-at fault for
each of these. we give settings for €1, €2,z and y
with =y such that this fault causes an incorrect
output We first consider the pulldown transistors

(1) The transistor controlled by C1 (respectively
C?2) is stuck-on: Set (C1=C2=0 and z=y=1
Since the transistor controlled by C1 (respec-
tivelv C2) is on, the output is incorrectly
pulled down to 0.

(it The transistor controlled by C1 (respectively
C2) is stuck-off: Set Cl=1, C2=0. (respectively
C1=0. C2=1}and z=y=1 Since the transistor
conirolied by C1 (respectively C2) is stuck off.
the oulputl 1s incorrectly pulled up to !

(i) The transistor controlled by z (respectively
y) is stuck-on: Set Ci=1, C2=0. (respectively
Ci=0. C2=1)and 2=y =0

{(:v) The transistor controlled by z (respectively
y) is stuck off: Set Ci=1, C2=0, (respectively
C1=C, C2=1)and 2=y =1

The pullup transistor is depletion mode with its
gate tied to its source Therefore, 1t 1t should
always be or: A stuck-off fault can be detected bv
sett:ing C1=0 and €2=0 The output should bce
pulled high but w:ll not be if the pullup i1s stuck off
Notr however Lthot 1n this case 1f the fault occurs
the output 1s left floaling Thercforc. it must have
prev.ous.yv had the value 0 to be sure such a fault 1
deicclee Apprepriate ordering of the tests above
Cur insurc thas

4. Bipartite circuits with special gates

We now show how to cause any single stuck-at
fault to cause an incorrect gate output in a bipar-
tite circuit consisting of controllable nor gates This
will give us controllability of all single stuck-at
faults. The following table gives Lhe test procedure

Input Settings Eveat Check For

black white C; Cy | oll white wires all black wires
inputs isputs

1 0 1 [} 1 0

0 1 1 0 0 1

1 0 (4] 1 1 0

0 1 1] 1 0 1

] H 0 0 1 1

Note that three events, i.e. states of all black and
white wires, must be detected How we detect these
events is the subject of the next section i all
events are as expected, then we accept the circuint
otherwise, we reject it. Recall that C1 = C2 = 1 is
‘‘norma)l mode "’ in this mode the circuit simulates
the original It is interesting to note that we do not
need this setting while we are testing for stuck-at
faults

Theorem 2: /f a bipartite circutl of controllablc
nor gates is fault free, then i is accepted by the
test procedure Jf the circuil has a wire or {ransis-
tor stuck-at faul! then i« is rejected as long as
there is al most one fault per gate

We now wish to tie off one remair :ng loose end --
faults in the pad cells First, since we drive the ou:-
puts to O and 1, any faults in the output pads are
easily detected. Thus, it only remains to detect
faults in the input cells The easiest way to handle
this 1s to introduce & fourth event all black arc
white input wires are equal to 0 Note this evern:
only concerns itself with the inpul wires Now al,
possible values of input wires are observed us:v;:
some event

6. Technique ITI: Observing Eventis

Clearly, if we could probe internal nodes w:th
say a SEM. then events would bc easv to detco:
However. we wish Lo avoid using such equipmecnt
and hence will add additional logic to the civcu!
solely to detect the four events we mus! obseric
This additional logic is quile simple and takes urp
relatively little area. Such observation logic coulc
be sdded to observe anv set of events but thc
amount of logic needed is proportional to the
number of distinc! events observed Thus the key
to our success is the need to observe only four

different events during our testing sequence.

Any event really consists of two sets of wires: all
wires in one sel must teke on the value O and all
wires in the other set must take on the value 1.
Clearly, we can do this detection simply by using
large fan-in or gates for the O-valued set and large
fan-in and gates for the 1-valued set. The area
needed for these gates is quite small. Each gate
could be physically distributed through the circuit.
As a practical matier, we would use a tree of rea-
sonable size {an-in gates Lo avoid great delay penal-
ties It is important to note that the speed of this
circuit is not critical since it only affects how fast
testing can be done. When only a small number of
test veclors are used, as in our method, the total
testing time is very small. It is also important to
note that if a single fault occurs in the total circuit,
we may call the “real” part of the circuit faulty
when il is good because of faulty observation logic,
but we will not call it good if it is feulty Manv mul-
tiple faults will also be detected In particular, a
fault in a transistor of a large fan-in gate will mask
a fault ir the “‘real” circuit only if the fault in the
“real” ecircuit must be detected through the bad
transistor

6. Sequential Circuits

We have presented our method for comtina-
tiona! circuits Of course, it can be used with scan
patl tc test sequential circuits It is also poss:ble
to use our method to directly test sequential cir-
cu'ts without! any scan path Just as we require a
modified gate and input pad. this extension requires
a modified latch W:lh this latch. state setting can
be done ir one step rather then by shiftine Thus
ever. for sequential circuits. our method requires
constant time

7. Conclusions

We have presented a new way to do production
test:ng of MOS combinational circuits which s the
comtinstion of three technigues the use of bipar-
t'te circuits the use of a controllable gate and the
use of observation logic Lo detect a small number of
events This approach trades off rea! estate for
easy of testabiitv A critical question that must be
studied 1n the future 15 th:s tradeo®™ Since
increaced real esiate decreases vield our tradeof!
car be put another way is)t better to have a high
vield circest with low fault coverage or a lower yield
c.rewrt with high fault coverage” We claim no

veiume circuits such as gate arravs our methods
mey be qu.iearportant

The scr.ousness of the reazl estate/testabilhity
tradeoft 1= dependent on the actual res) estatr
mcrease when our method is applicd to actual cir-
Cu.te Thore are ciasses of circuits which are natur-
a'ls» b.pasitr fer example PLAs and precharged
(dor : ¢ CMOS [HoR2 The implementational
dcia.it of the mod.fied gates and circuitry for
olscrval,on are aisc importarnt in delermining Lhe
ccst: of our techmque We have focussed here on

]

the basic techniques. Some work has been done on
more efficient implementations, but optimal design
of the test circuilry remains an important issue
Another important area for further investigation is
the effect of our approach on the placement and
routing of gate arrays. Since our transforma‘ion is
local, we expect that the usual placement anc rout-
ing algorithms can be modified Lo take advantage of
this.

To control the cost of our method. it mayv be
possible to give the logic designer more feedback
during the design process One of the nics featurcs
of our method is that the test for being bipariite 1s
“linear time’” and so can be done very quickly
Thus. we can constantly advise the designer on tLhe
current ""cost’’ in extra gates of his design In this
way the designer will perhaps be able to make inte!-
ligent choices about logic alternatives 1n a way that
will aid the circuit's testability

Acknowledgements

We would like to thank Stuart Daniels and Ken
Anderson of Siemens Corporation for essential com-
ments during the development of this method

References

[BeB2) Beresford. R., "Technology Update
iconductors,”” Electronics, Vo] 53. No 2!,
Oct 20. 1982, pp. 118-125

(Br76_ Breuer, M A, Friedman, A D.. Diagnosis and
Relwable Design of Iigital Systems. Cor-
puter Science Press (Potomac, Md). 1876

[GeB2. Garey, M., Johnson, D. private communica-
tion

[Ha74_ Haves. J.. "On Modifving Logic Netwcrks tc
Improve Their Diagnosability’’, JEEE Tran-
sactions on Compulers, C-23, No 1. Jan
1974, pp. 56-62

[HoB3] Hodges, D, Jackson, H., Analysis and Desgn
of Digital Integrated Qircutts. McGrew-H ©
(New York), 1983

[Ki82_ Kinch, R. Pottle, C. ~Automatic Tes: Ger-
eration for Electron-Beam Testing of VLE!
Circuits,” /nternafional Conference on (ir-
cuils and Compulers (/CCC). 1862 pp Deb-
551

[MeBO. Mead. C.. Conway. L. mfroduction fo /iS5’
Systemns. Addison-Wesley /(Reeding Mo
1980

(Sa74. Saluja, K., Reddy. . "On Minimallv Testa> '
Logic Networks™', JLLF Transacfions o=
Computers, C-23. No 5 Mayv 1874 pp ool
554

(wi81] Wilhams, TW, Parker, K F . "Desicr for Te:-
tablity - A Survey " JEIT Transac-fwons ¢~
Compulers, Vol C-31. No 1. Jan 188> p»
2-15

Sem-

A Massive Memory Machine Architecture

Hector Garcis-Moline
Richard J. Lipton
Jacobo Valdes
Department of Electrical Engineering and Computer Scieace
Princeton University

1. The basic idea

This paper argues the case for a machine with dillions of bytes of primary storage. Our
main thesis is that such a machine is justifed by the importance of certain applications in which
memory bound compulations occur maturally: VLSI design, Al and data bases, to name just three.
For these computations, s classic Von Neumann machine with a relatively slow (1 to 10 MIPS)
processor and massive amounts of physical memory, would vastly outperform all supercomputers
currently being researched and would be, in addition, far easier to program.

2. Impact of proposed supercomputers on memory bound computations

Research eflorts in the supercomputer field bave tended to concentrate at the computational
intensive end of the spectrum, disregarding the memory intensive applications altogether. The
typical supercomputer being investigated today is s multiprocessor having up to one million pro-
cessors, capable of executing up to billions of operations per second and yet have as “little’’ a8
sixty four megabytes of physica! memory.

There are many applications for which such s machine would be limited by its disk to
memory transfer rates. For example, consider a database application in which the size of the
data is four gigabytes and the sccess pattern to records essentially random. A machine with one
bundred maogabytes of memory can be expected to generate a page fault in just about every access
to s new record, rendering its potential processing power meaningless a8 & measure of its perfor-
mance.

More precisely let us compare ssch s supercomputer with one bundred megabytes of
memory and 3 MMM with four gigabytes of memory. Furtber lets us assume that the supercom-
puter is "infinitely fast” while the MMM runs only st one MIP. Of course the supercomputer will
vastly out perform the MMM op compute bound tasks. However, assume that the supercomputer
creates 3 page fault every [instructions on some large task. Then on this task the MMM still
computes at its ooe MIP rate while the supercomputer is reduced to computing at about 100f
instructions a second (we assume that the supercomputer’s disks are capable of about 100 page
faults 8 second.) Clearly if / is small enough the MMM will be faster than the supercomputer: if /
is about 100 then the speedup is 100:1' While not all tasks will cause the supercomputer to
"thrash”™ in this way, we believe that there are s large collection of importast tasks that will
cause such behavior.

3. An obvious solution?

One can argue that the MMM problem has not been investigated because it bas an obvious
solution, namely connecting all the memory desired to the chosen processor by a very long bus.
This is, however, a far more problematic proposition than it seems. Given curreat IC densities, »
four gigabyte memory requires about one thousand devices (memory cards) on a single bus. Even
with clever arrangements and higher densities, hundreds of devices per bus seem unavoidable.

Commercial busses are simply unequal to the task. Those that are part of complete com-
puter systems are usually very well matched to the overall system design and can only support aa

g A

inadequate amount of memory. Standard busses hardly fare any better; most have a limit oo the
_ pumber of devices attached to them of oaly a few tens, while we need an order of magnitude
E maore.

The design of a special purpose bus to support that many devices is no trivial matter either.
There are two factors that will adversely affect the access times on a bus with many devices.
First, the capacitance effects may cause significant delays. Second, it may be virtually impossible
to operate all the devices synchronously: The asynchrony will in turn lead to more complex bus
. protocols and, once again, to greater access times.

‘ The truth is that the ‘“‘obvious’ way to build 3 MMM dissolves rapidly into a host of
b , difficult questions about bus bebavior and machine architecture.

4. Architectural solutions to the MMM problem

We will now describe in some detail an architecture for 3 MMM called the Ghos! Machine.
Our intention is not s0 much to present a ‘“‘conclusive solution’, but to demonstrate that clever
architectures may lead to better MMMMs than brute force methods.

A schematic description of the Ghost Machine is shown in fig. 1.

\6'5'-“-4-«
B

e Aty
4 N } “pyg
i (= [{: ¥
TH [
bt

Fig. 13 The Ghost Machine

The machine consists of 8 collection of standard Von-Neumann machines, interconnected by
s system-wide (or global) bus that permits the broadcast of values from one machine to all the
others. Each individual machine bas its ows processor aad local memory cosnected via s local
bus. The gateway of esch machine to the global bus is a ghost device comnected both to the

e

e e —

!
‘,

system bus and the local bus.

The individual processors share the same address space. This address space is distributed
among the local address spaces as follows (see 5. 1). A small fraction of the global address space
is replicated in each local address space; Lthe remainder of the system address space is covered in a
noa overlapping manner by the local address spaces. A ghoo! device coanected to each local bus
is responsible for servicing requests that isvolve noa Jocal addresses.

All processors execute the same program, which is loaded into the replicated portion of the
systemn address space. As Jong as that program references locations i the shared subspace all pro-
cessors will execute in Jockstep and 50 communication through the system bus will take place.

Suppose now that a reference to an sddress outside the shared subspace occurs for the first
time. The address involved will be mapped to the local memory of some machine m, 30 the pro-
cessor of that machine gets an immediate response via its local bus; the ghost of m — realizing
that a reference to 2 nob shared address has occurred — reads the response off the bus aad broad-
casts it over the global bus; The ghosts of all the other machines = realizing that 3 non local
teference has beep generated — wait for the nest dofum to appear on the global bus and use it as »
response to their requests.

During this operation, processor m “‘takes the lead”, i.c., gets ahead of all others. It will
continue execution ahead of the rest as long as the common program generated requests for
sddresses that are local to m. Meanwihile, all other processes continue execution at the same rate
as m, with their ghosts supplying the data they need by reading it from the global bus. These
“trailing” processors, will be behind the leader by an amount of time equal to the one-way delay
time fromn ghost to ghost through the giobal bus.

When s reference to an address local to another machine, n, occurs, the ghoot of m will wait
uotil the next data arrives on the global bus (sent by n's ghost) and wse it as the response. Now -
as Jong as references local to n continge to occur — all machines will execute at their full rate
with n slightly shead of the rest and furpishing them with the data they need through the global
bus.

A simple example of this bebavior is depicted in 3. 2 below.

*% ‘ua : A“l‘-h‘-’.“.l’““"!bl‘-‘q
tlnduns Ay . 03 Monw 2, Wb tn a3

Pusws
34 MmN N Y X 3 R
2 0 By O O by & A ~e
1 o G oA by O O by -
K et e ofclich
wﬁ.) ”m
Ay - » wond

Pig. 81 Ezecution in 8 Ghoot Machine

This solutios has the following sdvantages:

-2-

3

‘-

.‘.

The local machines are conventional architectures. They may be used independently when
the MMM is aot needed.

The global architecture can be easily made transparent to the user program aad the task of
distuibuting the global address space (o the spaces of the iadividual machines can be
relegated to a sophisticated loader. The esoct seme programs could run os a coaveational
Vor Neumaon machine (assumiag some virtual memory managemest) and in the Ghost
Machine. Heace the Ghost machine will be no harder to program thaa a coaventional
machine,

Memory references in the GAost machine can be serviced in half the time (or less) that they
would require it a conventional MMM]. In a conveptional machine, the address must be
transmitted on the glcbal bus and the refercnced datum must be transmitted back. In a
Ghost machine data will either be available through the faster local bus or be provided by
the ghoet. The data needed by the ghoe! appears without being requested, avoiding address
trapemission delays. If the requested word causes a ‘‘lead chauge”, the word will be avail-
sble in approximately the time needed to broadcast a value over the global bus. If no lead
change occurs, the delays will be even shorter.

The rate of execution — except for pavses for *‘lead changes” = of the whole machine is the
same as that of each of the individual machines. The “lead change' pauses will jast
approximately as mueb as the time needed to broadcast a value on the global bus. This
time should be much smaller thau the time required to service s page fault on an ordinary
machine. (Lead changes will also be considerably less frequent than page faults).

The Ghost machine will reward *locality of reference’ by minimising ‘‘lead chapges’ in pro-
grams that exhibit it (the fewer the lead changes, the faster the Ghost machine will exe-
cute). Locality in this context, however, has a wider meaning, as any two references jocal
to the lead machine are equivalent, and any one machine may have as much as sixty mega-
bytes of loral storage.

Obviously, thete gains come in exchange for duplicated processors and memory.

FRRS

TESTABILITY CONDITIONS I
FOR BILATERAL ARRAYS OF COMBINATIONAL CELLS"' :

Anastasios Vergis and Kenneth Steiglitz

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, NJ 08544

ABSTRACT

Two new sets of conditions are derived that make one-dimenstional
bilateral arrays of combinational cells testable for single faults. The test
sequences are prese! and, in the worst case, grow quadratically unth the
size of the array. The basic cell can operate either at the bit or af the
word level. An implementation of FIR filters using (systolic) one-
dimensional bilateral arrays of cells, which can be considered combina-
tional at the word level, is presented as an ezample. A straightforward
generalization for the two-dimensional case is rnade, a systolic array
used for matriz multiplication is presented as an ezample for this case.

1. INTRODUCTION

The use of iterative arrays of identical cells in current VLS] technol-
ogy is becoming more frequent due to their many advantages, like ease of
design, fabrication and testing. Moreover, many problems are efficiently
solved with the use of "systolic arrays”, which are highly iterative struc-
tures operating synchronously. Digital systems of iterative arrays have
also been suggested in the past in several places in the literature, (refer-
ences can be found in [2]-[7]) mainly for realization of Boolean functions
in asynchronous mode. An important problem associated with these
structures is fault detection; that is, derivation of test input sequences to
the array, such that the output sequences of the normal and any faulty
array (under some fault assumptions) are different. Fault detection in

t This work wes supported in part by NSF Grant ECS-8120037, U. S. Army ResearchrDurham
Gran: DAAG29-82-K-0005, and DARPA Contract N0OOO14-82-K-0048

R -

- e e — = e

e e

!

-3-

maps the one-dimensional synchronous bilateral array into a two-
dimensional asynchronous unilateral array. Figure 2b shows the inputs
and outputs of a cell in the space-time transformation according to the
notation described above.

If Ly is a subset of L, define gg(r, 2z, Ly) = Ry, where Ry is the set
fgr(r.2,l) | lely). If Ry conteins just one element 7', we write
gr(r. 2z, Lo) = 7' (instead of {r'}). Similarly for gr(Ro. 2.1). gr(r.Zo. L),
and similarly for g; .

I reR, define R, = R-{r}. Similarly I; = L={L}.

An input or output labeled r/ Ry, where RoC R, and r does not belong
to R, means normal input or output 7, and faulty input or output some
member of R, (If Ry contains just one element 7', we write 7/ 7').

We also define gg(ry/ra z,l)=7y/7r's if gp(ry,z,l)=7", and
gr(ra. 2, l)=7rs and ry#7r; 7T #r'; We defilne similarly
grlr, z, l;/1l3) =11/, and similarly for g; .

Another definition is: gr(r/ Ro. 2, 1) =7/ R'y if gp(r,2,!) = 7', and
gr(Ro. 2,1) ¢ R'g. Similarly for gg(r, 2z,l/Ly) and for g,. (Note that
gr(T/ Ry, 2, 1) is not uniquely defined, since R'p may be any superset of
gr(Ro. 2., 1).)

For simplicity r/ R, will somelimes be writtenasr/ *.

3. ONE-DIMENSIONAL ARRAYS

Gray and Thompson [9] derived the following sufficient condition G
for testability:

There exists an a € Z such that for everyr € K, foreveryl € L
Gl: ge(r.a,l) = u(r) and
G2: g;(r,a,l)=v(l)

where u is a permutation of R (independent of !) and v is a permutation
of L (independent of 7).

Note that the right output depends only on the left input, and the left
output depends only on the right input. Fig. 3 illustrates the above condi-
tion.

Let V be the following conditions:

Ci: for every T€R there exist r'€R, 2€Z such that gg(r'. 2, L) = 7.

TS L s

- e, — . -

i
(.
J
|

-2-

unilateral arrays has been studied extensively [1]-[7], [10]. Results for
bilateral arrays have appeared in Gray and Thompson [8] (for one-
dimensional arrays of combinational cells) and Sung [8] (for two-
dimensional arrays of sequential cells). However, the sufficient condi-
tions for testability derived there appear more restrictive than neces-
sary. In this paper we first examine one-dimensional arrays; two sets of
sufficient conditions for testability are derived, which improve upon the
condition reported in [9]. Testing time, however, in the worst case
increases from linear to quadratic (in the number of cells). A straightfor-
ward generalization to the two-dimensional case is made next.

2. ASSUMPTIONS, DEFINITIONS AND NOTATION

Figure 1a shows a bilateral array of combinational cells. The basic
cell is shown in Figure 1b. At each time unit it produces left and right
outputs, depending on its left, right and vertical inputs. Let p be the
total number of cells in the array.

Let R be the set of right-moving signals, L the set of left-moving sig-
nals and Z the set of vertical cell inputs. (The absence of vertical cell
inputs is equivalent to the case |Z |=1.)

Let gpr:RxZxL-+R be the right-moving signal mapping, and
g,:RxZxL-L be the left-moving signal mapping.

A fault in a parlicular cell alters gp, g;. or bolh for one or more
arguments (r, z, l). However, we assume that the cell remains combina-
tional.

We assume initially that to test a cell completely, we must apply all
input combinations RxZxL to that cell. This assumption makes testing of
the cells independent of how they are realized. We shall examine later the
case when only a subset of RxZxL suffices to test the basic cell.

We further assume that to test the array completely (for single faulty
cells), we must test completely every cell in the array.

We say that an array is festable if any input combination can be
applied to any cell of the array and any fault can be propagated to an
observable output of the array ([1]).

The left, vertical and right inputs of cell § at time { are denoted as
ri(t), 25(t), 17 (t) respectively. Hence, cell j at time £ +1 will produce left
and right outputs ti=1(¢+1), P/*1(t+1).

Figure 2a shows Lhe space-time transformation of the array in Fig.
1a. Each row represents the array at each time unit. This makes the
operation of the array easier to visualize. Note that this transformation

-4-

C2: for every leL there exist l'eL, z€Z such that g; (R, 2,1) = L.

O1: for every r,,r2 €R with 7, # 75, there exist leL,z€Z, such that
gr(r1. 2. 1) # ggrlra 2z, 1).

02: for every I, lp€L with l; #l; there exist r€R, zeZ,such that
grir.z.) #g.(r. 2, L)
Figures 4a and 4b illustrate conditions C! and C2, Figures 5a and 5b

illustrate conditions O and 0O2.

Conditions C1, C2 can be thought of as controllability conditions, and
conditions 01, 02 as observability conditions.

Condition C! simply states that if we want to get a particular right
output r, all we have to do is to apply vertical input 2z and left input 7*, no
matter what the right input is (see Fig. 4a). Condition C2is the symmetr-
ical version of condition C!. Condition 01 states that if we want to distin-
guish between right inputs r; and 75, all we have to do is to apply vertical
input z and left input !, and observe the right output. Condition O2is the
symmetrical version of condition O/.

V is a broader set of conditions than G, end in particular GI implies
C1 and 0!, G2 implies C2 and 02 We elaborate further on that: Let us
construct a digraph Gg = (R, Eg) with node set R; arc (r, rz) € Er and
is labeled z if and only if gg(r,. 2, L) = r,. This means that if we apply 7,
as left input and z as vertical input, we get 7, as right output, no matter
what the right input is (Fig. 8). We define in a similar manner the "left"
digraph G, = (L, E;). Condition G states that there exists a label a such
that there are exactly |R| arcs of G and |L| arcs of G labeled @, and
these arcs form a set of vertex-disjoint cycles. Conditions C! and (2
state that every node of G and G, has a predecessor. Condition 01 (02)
states that for every pair of distinct left (right) inputs ry, vz ({,, I2) there
exist a vertical and a right (left) input that produce distinct left (right)
outputs (Fig. 5).

We can prove now that conditions V are in fact sufficient for testabil-
ity.

Theorem 1. Any bilateral array of combinational cells that satisfies
conditions V is testable for single faulty cells.

Proof: Assume we want to test cell j for inputs (rq. 2o, lp). First we
have to solve the contollability problem, that is we have to apply input
(ro. 2p. Lp) to that cell by controlling the external inputs of the array.
Then we have to solve the observability problem, that is we have to pro-
pagate the faulty outputs of that cell to the observable outputs of the
array; this propagation should be such that the observable outputs are

«-5-

different from the expected under the presence of faults.

Let j2(p+1)/2. (The case j<(p+1)/2 is treated similarly). These
test inputs will be applied at time ¢=j if the test begins at time ¢=1.
Hence ro = r3(5), o = U/ (j), 29 = 27 (j) (see Fig. 7, shaded cell). First we
must make the left input of cell j at time j be ro = r(j). Condition C1
guarantees the existence of r/~'(j-1), 27-)(j-1) such that 7i(j) =
gr(¥~1G-1),2771(j-1),. L), hence it suffices to apply r~!(j-1),
27-1(j-1) as left and vertical inputs to cell j—1 (at time j—1). Induc-
tively, apply 79 -3(j —2), 27~%(j -2) to cell j =2, etc., until we reach the left-
most cell. Similarly, to apply {p = L7(j) as right input to cell j, we find
PUH(G-1), 27*(j-1) such that U(5) =g.(R, 2% -1), V¥ (G -1)),
according to condition C2 We proceed inductively in the same way, until
we reach the rightmost cell. If j2(p +1)/ 2 the first test input to the right-
most cell (p) will be applied at time 2j —p —1. This way inputs 7y and I,
will be applied simultaneously to cell j (at time j). This solves the con-
trollability problem.

Assume that we want to test for the right output fault r/ 7: that is,
the normal right output is » and we are testing if we get 7 instead.
According to our notation r = r*1(j+1). Let P*1(j+1) = 7. Condition 0!
guarantees the existence of a vertical input 27*!(j +1) and a right input
1741(j +1) such that gep(r*i(+1)/ P+ +1), 2T*1(j+1), F*IG+1)) =
ri*2(j +2)/ P *3(j+2). 7*1(j +1) is obtained as left output of cell j+2 in
the same way that l7(j) was obtained as left output of cell j+1 (using
condition C2). Thus the faulty right output r/ ris propagated to the right
output of cell j +1. Inductively, this is propagated to the observable right
output of the rightmost cell. Similarly, using condition 02, we can simul-
taneously test for the left output fault £/, propagating it to the left out-
put of the leftmost cell. This solves the observability problem.

The above procedure is repeated for every r in R,, Tin L;; then we
have tested cell j for input (7, 2o, lp). When this is repeated for every

(r, 2, 1) in RxZxL we have tested cell j completely. ®

The testing time shown in Fig. 7 is p+1. Hence to test cell j for input
(ro. 20, o) we need (p+1)maz(|R|.|L]|) tests, and to test cell j com-
pletely we need (p+1)maz(|R|,|L|)|R!-1Z|-|L] tests, and to test the
entire array completely we need p-(p+1)maz(|R|.[L{) [R|-|Z| |L|
tests.

From Fig. 7 it is clear that if some cell is used for a specific test at
time £, it is never used at time ¢ +1, hence the obvious pipelining reduces
the testing time to one-half of the above number of tests.

-8 -

For comparison, if condition & holds, testing time is
O |R|-|Z}-IL}).

Although condition V is weaker than G, it is still a very strong condi-
tion in that it requires the existence of z inputs for which the right-
moving signal is independent of the left-moving signal end vice versa.
However, the very purpose of making the array bilateral suggests depen-
dence of at least one of the right or left-moving signals on both the right
and left-moving signals. As an example, consider the case |Z| = 1. Then
we basically have no z-inputs, and if conditions C1 and C2 hold, the array
degenerates to two unilateral arrays, one with signal flow from left to
right, and one with signal flow from right to left. Anyway, the case might
be that for all z, the left output depends on both the right and the left
input, so condition C2 is violated. We derive a set of sufficient conditions
for this case. We shall keep the assumption that for some z the right out-
put depends only on the left input. Naturally, this will lead to a more
complicated set of conditions.

Let ¥ be the following set of conditions:

Ci: for every 7r€R there exist r'eR,z€2 such that
gr(r /% 2z, L)=r/".

C2: for every leL there exist l'€L, z€Z,r'eR such that g;(r', 2, 1l") =1
and gp(r'/ *, 2z, l)=r/ "

O1: for every r €R there exist z€Z suchthat ggr(r/ % 2z, L) =7/ *

02: for every l;, lp el with !; # l5, there exist re€R,2z€Z such that
gr(r.z. b)) # g (r. 2z, lp).

Figures 8a and 8b illustrate conditions C! and C2, Figures 9a and 8b
illustrate conditions 07 and O2.

Conditions C1, C2 can be thought of as ccntrollability conditions, and
conditions 01, O2 can be thought of as observability conditions. Condi-
tion C1 (of W) is a stronger version of condition C! of V in that it not only
requires that if we want to get a particular right output r we can apply
vertical input z and left input 7‘, no matter what the right input is, but

additionally, if we apply some left input different from r’, we get a right
output different from r. But still this condition is weaker than G1.

Condition C2 states that if we want { as left output, all we have to do
is to apply (7', 2, 1’) (notice that it matters what the left input is, whereas
in C2 of V it does not), but additionally, if instead of ' we apply some
other left input different from r’, we shall get a right output different
from r. Notice that if this additional restriction is removed, condition C2

2 - - - i 4 N .+ o ity

O

~SRbs L MR o Sl o TR s

AT S R T

-7-

holds trivially if we naturally assume that every output is obtainable for
some inputs. Notice also the asymmetry between C7 and C2.

01 is again a stronger version of condition O of V, in that the latter
required only the propagation of r;/ 7, to the right output for some z and
{, but 01 of W requires the propagation of r/ ¢ for some 2, no matter
what ! is. But still this condition is weaker than GI. (In other words G!
implies C1 and 01).

Finally condition 02 is the same as condition O20of V.

Conditions W hold if 1) the basic cell just transmits unaltered the
right-moving signal, 2) gr(R.Z,L) =L, 3) for any two different right
inputs there exist r, z that produce two different left outputs. This is a
very reasonable set of assumptions.

We can prove now that conditions W are in fact sufficient.

Theorem 2. Any bilateral array of combinational cells that satisfies
conditions W is testable for single faulty ceils.

ProoJ: Assume we want to test cell j for inputs (7, zq. {g). These test
inputs will be applied at time t=2p—j if the test begins at time ¢=1.
Hence ro=1r7(2p~j). lo =1 (2p—j), 20 = 27(2p—j) (see Fig. 10, shaded
cell). First we must make the left input of cell j at time 2p—j be
ro,=77(2p~;j). Condition C! guarantees the existence of r/~1(2p —j-1),
zi-3(2p~j —1) such that ¥ (2p—j) = gp(ri=Y(2p—j 1), 271 (Zp—j -1). L);
hence it suffices to apply ¥/ ~1(2p—j —1), 27-1(2p —j —1) as left and vertical
inputs to cell j—1 (at time 2p—j—1). Inductively, apply r¥~%(2p —j-2),
2/-3(2p~j -2) to cell j—-2, etc., until we reach the leftmost cell. The
difficult part is to apply right input y = 17(2p~j) to cell j. Condition C2
guaraniees the existence of r3*}(2p—j—1), 1V*}(2p—j-1), 2/*}(2p—j-1)
such that t(2p—j) = g (r*}(2p—j-1), 27*(2p-j-1), U*'(3p—j-1)),
and gp(ri*1(2p—j—-1)/ * 27*(2p—j-1), U+ (2p~j -1)) = ri*¥(2p—j)/ *.
Hence it suffices to apply input (ri*}2p-j-1), f*¥2p~j-1),
27*1(2p~j—1)) to cell j+1 (at time 2p —j —1). Left input r7*!(2p—j-1) and
right input /*!(2p~j-1) can be applied in the same way we applied
inputs r¢ and {q to cell j (using C!). This solves the controllability prob-
lem.

We have not yet used the strong part of condition C2, namely the fact
that gp(r'/ *, 2, 1') = v/ *. The usefulness of this will become apparent in
the sequel.

Assume that the normal right and left outputs of cell j (on input
(ro. 2q. lg) are r and I respectively; assume that we test for the error /1
in the left output. We can simultaneously test for all errors r/ ¢ in the

———

-8-

right output. Propagation of the error {/7 to the leftmost output is done
in the same way as in the proof of theorem 1, using O2 and CI.

We have not yet discussed the "southeast” portion of Fig. 10, that is
the portion below the right-to-left diagonal that passes through the
shaded cell. First we have to propagate the fault r/ ¢ to the rightmost
output. But cell ;7 may fail to function correctly at any previous time, so
for instance (see Fig. 10) cell j on input »/(2p-2m +j) (for some m in
§7+1, j+2....p]), may not output r7*}(2p-2m +;j+1), so cell m may not
output {™~1(2p~m +1), hence cell j may not receive !, as right input, and
due to a fault, it may output the expected outputs ¢, r. Under this worst
case scenario the two faults will be masked and we will get the expected
observable outputs (%(2p) and rP*!(3p-2j+1) (assuming j=(p+1)/2).
This is avoided as follows:

First, to propagate the fault r/ * to the rightmost output, using con-
dition OI we find z7*2(2p —j) such that celi j+2 on input r7*3(2p—j)/ ¢
outputs r7*3(2p —j +1)/ *, inductively we propagate this fault to the right-
most output (rP(3p-25-1)/ ¢). Similarly, we propagate the fault
r™(2p-m)/ * for m=j+1,j+2,...p. Notice that the potential previous
fault 77*1(2p~2m +j+1)/ * of cell j has been "automatically" propagated
to cell m as r™(2p—m)/ * by the strong part of condition C2 "when" we
were solving the controllability problem. So, if cell j outputs something
different from 77*1(2p —2m +j +1), we shall detect it at the rightmost out-
put by getting something different than the expected rP*}(3p —2m +1).

The above procedure is repeated for every Tin L;; then we have
tested cell j for input (rq 2zg. lo). This is repeated for every (r, z,!) in

RxZxL,; then we have tested cell j completely. ®

Remark. 1f we have already tested «cell ; for inputs
(v (2p-2m+j), 27 (2p—2m+j), L) we know that 7™(2p-m) will be the
correct input to cell m, so propagation of the fault ™ (2p —m) will not be
necessary.

The testing time shown in Fig. 10 is 2p. Hence to test cell j for input
(ro. 2o Lo) we need 2p-|L!|) tests, hence to test completely cell j we need
20 |L|%|R|-|Z| tests, and to test completely the array we need
2p%|L|%|R| |Z] tests.

Again, the obvious pipelining reduces testing time to one-half of the
above number of tests.

When |R|,iZ!.|L| are large, the number of tests may be prohibitive.
This happens when the basic cell operates at the word level. But in that
case il may be possible to drop the assumption that to test a cell

completely we must apply all input combinations; however, we must then
of course have some information about the realization of the basic cell.
Assume that we have somehow obtained a set of tests that suffice to test
the basic cell. Each test is of the form: (r, z, t), (r, I) where (r, z, 1) is
the input and (;. 'D is the faulty output. For example, assume we adopt
the stuck-at fault model [14] and a certain line is tested for stuck-at-1
(S-A-1) by applying inputs (7, z, L); the output is (7, I) if this line is indeed
S-A-1. Let the number of tests be T. Then, if condition V holds, the
number of test inputs is easily seen to be p-(p+1)-T since every cell
requires p+1 time units for each test ¢ in 7. Similarly, if condition ¥
holds, we need 2p% T time units.

Parthasarathy and Reddy [10] introduced the notion of one-step tes-
tability for one-dimensional unilateral arrays. We extend this notion to
bilateral arrays as follows:

Definition: A cell in a bilateral array of combinational cells is one-
step testable for input (7, 2, {) if the number of time units needed to test
this cell for input (r, z, {) is independent of |k, |L].

Definition. A cell in a bilateral array of combinational cells is one-
step testable if it is one-step testable for all inputs (r, 2,) in RxZxL.

Definition: A bilateral array of combinational cells is one-step
testable if all its cells are one-step testable.

If an array is one-step testable the time needed to test it is greatly
reduced since, if the expected output of a cell under test is, say, {, it is
not necessary to apply different test inputs for each fault /1, Te L—{I}.

The following conditions are useful for one-step testability:

OST1: for every reR there (exist leL,ze€Z such that
9r(r/ Ry 2, 1) =1/ R,
OST2: for every lel there exist 7r€R,z€Z such that
g(r.2, 7)) =l'7 L.
Figures 11a, 11b, illustrate these conditions. Let OST be conditions
OST1 and OST2 together. Let V-OST (W~OST) be conditions V (W) and
OST together.

It is easy to see that V—-0OST is equivalent to conditions C1 and C2 of
V, OST1 and OST2. (01 and O2 of V are implied by OST? and 0OST2.) If
V-0ST hold, instead of testing for the fault r/7 for each 7 in R-{r] asin
the proof of theorem 1, we can test for the fault »/ R,. Thus, to test cell
J for input (rq. 2o, lp), we only need p+1 tests. Therefore, if we want to
test all cells for inputs a subset / of RxZxL, we need p-(p+1)-|7| tests.
(f Z = RxZxL we save a factor of maz(|R|, |L]).)

-10-

W -0ST is equivalent to conditions CI, €2, 01 of W and 0ST2. (Con-
dition O of W is stronger than OST1, that is O of W implies OST1, OST2
implies 02 of W.) Similarly as above, by testing for all left output faults
simultaneously, we need 2p2 | 1| tests if we want to test all cells for a sub-
set J of RxZxL. (If] = RxZxL we saved a factor of |L].)

Remark.: The above results are easily generalized for the case when
gr. 9L are not identical for every cell, that is we have gk, g} for the i-th
cell; it suffices to replace the conditions for gr, g, by conditions for gk,
gl for everyi.

Application.

Figure 12 shows the basic cell of a two-way pipeline systolic array
used for FIR filtering [11],[12]. For this cell we have |Z]| =1 (no z-
inputs), gr(r,) =7, gi(r,l) = l+a-r. This array can be considered as a
bilateral array of combinational cells at the word level (the basic time
unit is the time required to produce the outputs). It easy to see that con-
ditions W—-OST are satisfied. (Here we have the case when gg, g; depend
on the cell.) Therefore, if a subset I of #xL suffices to tesi the basic cell,
2p2 i1| tests suffice to test the array.

4 TWO-DIMENSIONAL ARRAYS.

Figure 13a shows a two-dimensional array. The basic cell is shown in
Fig. 13b. In addition to gg, g.. we now have gz which is the vertically-
moving signal mapping RxZxL~+2Z.

Let I be the following "independence’ condition:

I. gz(R,z,L)=u(z), where u is a permutation of Z.

I condition 7 holds, the vertically-rnoving signals become indepen-
dent of the horizontally-moving signals, hence any z-input sequence can
be applied to any row by controlling the z-inputs of the first row. For
instance, assume that at time ¢ we want to apply the z-input sequence
23,22, ..., Zp to the i-th row. This can be done by applying the z-input
sequence L7 (2,), u™(22)...., w7 (2) to the first row at time t—i. Hence,
if condition I holds, the discussion for the one-dimensional case immedi-
ately applies to the two-dimensional case. If, furthermore, u is the iden-
tity permutation, any test inputs required for the one-dimensional array,
which is just a row of the two-dimensional arrey, can be applied to all the
rows sirmnultaneously.

-11-

Applicatlion.

The basic cell of a two-dimensional array shown in Fig. 14 has been
proposed in [13] for matrix multiplication. For this cell we have
gr(r.z.)=7r, g,(r,2,l)=l+z-7, gz(r,2,l)=2. Hence condition J
holds with x the identity permutation; also conditions W-0ST hold,
therefore if a subset 7 of RxZxL suffice to test the basic cell, a row of
cells can be tested in p? |/ | time units. If the array has m rows it can be
tested in p2 |/|+m time units, since m time units are required for the
vertical signals to propagate from the first to the last row.

REFERENCES

[1] W.H Kautz, "Testing for Faults in Cellular Logic Arrays,” in Proc. 8th
Annu. Symp. Suitching Automat. Theory, 1967, pp. 161-174.

[20 P. R. Menon and A. D. Friedman, '"Fault Detection in Iterative Logic
Arrays,” JEEE Trans. comput., vol. C-20, pp. 524-535, 1971.

R. W. Lardgraff and S. S. Yau, "Design of Diagnosable Iterative
Arrays,” IEEE Trans. Comput., vol. C-20, pp. 867-877, 1971.

[47 A D. Friedman and P.R. Menon, "Fault Location in Iterative Logic
Arrays,” in Theory of Machines and Computations, Z. Kohavi and A.
Paz, Eds. New York: Academic, 1971.

[A D Friedman, "Easily Testable Iterative Systems,” IEEE Trans.
Comput., vol. C-22, pp. 1061-1064, 1973.

[6. F. J. O. Dias, '"Truth-table Verification of an Iterative Logic Array,”
IEEE Trans. Comput., vol. C-25, pp. 605-613, 1976

[?0 B. A Prasad and F. G. Gray, "Multiple Fault Detection in Arrays of
Combinational Cells, IEEE Trans. Comput., vol. C-24, pp. 791-802,
1875.

[8) C. H. Sung, "Testable Sequential Cellular Arrays,” IEEE Trans. Com-
put., vol. C-25, pp. 11-18, Jan. 1976.
[8] F. G. Gray, and R. A. Thomson, "Fault Detection in Bilateral Arrays of

Combinational Cells,” IJEEE Trans. comput., vol. C-27, pp. 1206-1213,
1878.

(3

4

[10]R. Parthasarathy and S. M. Reddy, "A Testable design of Iterative
Logic Arrays,” JEEE Trans. comput., vol. C-30, pp.B33-841, 1981.

[11JH. T. Kung, "Let's Design Algorithms for VLSI Systems,” Proc. Conf.
on Very Large Scale Integration. Architecture, Design, Fabrication,
California Institute of Technology, Jan. 1979, pp. 85-80.

]

-12-

[12]JH. T. Kung and C. E. Leiserson, "Algorithms for VLSI Processor
Arrays,” in Introduction to VLSI! Systems, C. Mead and L. Conway,
Addison-Wesley, 1980.

[13]R. W. Priester, H. J. Whitehouse, K. Bromley, J. B. Clary, "Signal Pro-
cessing With Systolic Arrays,” presented in Tactical Airborne Distri-
buted Computing and Networks Conference (AGARD), held in Roros,
Norway, 22-26 June, 1981,

[141M. A. Breuer and A. P. Friedman, Diagnosis and Reliable Design of
Digital Systemns, Computer Science Press, 1976.

- —— -

—— e o e

i "

}

— = EEmm— p—— — —
g.(r.2,1) l
(2) ®)
Figure 1
(a): A synchronous bilateral array
(b): The basic cell
0 1 2 3 space

1 9 .1(1) . '3(1)

PN (1) (1) 1 13(1) (1) i /s .

1°(2) r(2)
1 £'(2) £5(2) £%(2)

r1(2) L 11(2) 1'2(2) ‘ lz(z) ,.3(2) l 13(2)

1%(3) r4(3)
3 £'(3) £2(3) £%(3)

riEN_4 |

1(3) %3 123 e 86
4 ¢
time i
Figure 2a

Time-space transformation into asynchronous unilateral array

e o

\
| | |
Jt ',(t)
|
"(t) —L l’(t) > ‘
Y-t +1) rI*1(t +1)
4] 1
| |
/,
T
time |

Figure 2b
Inputs at time ¢ and outputs at time £ +1 of the j-th cell

S ‘u(r) o | - R
i ————

&p
o N

L r——.
v(l) ¢ L l v
(®) (v)
Figure 3 Figure 4
Condition G (a): Condition C1 of V
(b): Condition C2 of V
z] z
r/T2 l 9r(r1. 2, 1)/ gp(ra 2, 1) . J
i e — g
| .
’ Gulr. 2. 1)/ gi(r, 2, 1) Lty
(2) (b)
Figure 5 j
(a): Condition 01 of V ‘
(b): Condition 02 of V
z
r, ‘ rs
i -
gy i ——
L
Figure 6

Condition under which arc (r,. 72) belongs to G

Figure 7

\
N
\
N
\
N N /’ P(@@j-p+2)
hY \ /
\ \ P
\ \ / /
N\ \ / /
N 171 -1) LA)
N\ : /
\ 1(j vy) 7
#1(2 -2 +1) < f © ,
\
171G+1) N _.‘ UG +1) P@m-p)
\
AN 2k \ P4
\ 7 . e
N y 7 ™ (m)/ P (m) ™(m)
v (2 -k)
PG +1)/P G 4) M
LY
/
/ i)
7/ d 41 (p +1)/ P Hi(p +1)
r2i-1) 7
1925)/ (%)

The test described in thm. 1 (vertical inputs are not shown for simplicity)

;
n s .
__r'/ : J r/° v/ ’—‘— r/°
I e—
-— P I
g L - U
- (o) (b)
S
Figure 8
(a): Condition C1 of ¥
(b): Condition C2 of W
! . .
v/ | v’/ ° r ‘
pre— — >
] - L e ——
L l'l/l'Z ll/lz
() (b)

Figure 9
(a): Condition O1 of ¥

% (b): Condition 02 of ¥

N
<
|
t

ks YA

e — . e

{
{
|
|

- 'l‘]) .
\
L Y
\
' \
ri(2p -2m +1) .
¥ L)
\ T
\ s ¥G)
\
* . 1)/
\ L
A .
Y(2p -2j-1) *)
ri(2p -2j~1 N
\ L
N N
N ri(2p-2m +j) \
N ri*l(2p-2m+j+1)/° N
ri(ep-2+1) . R T
. . ”(p) e k)
\ > . "“(p*’) ,g"l(",)/ P
\ \ AN ’v
r'(av-zj+3)\ : \ A @ m)y . t™(2p-m)
\ 'n-l)
:k N H(p-i-2) T :-**(au-m+a)/ .
\ i) .
\ . D L’ v (3 -2m)/
\ pition i 0
G A &1/ *3(2p-5-1) P -2maey)/ e
N 1
N "@-)) U (2p -3
N \
g+ »
(3 -2k +)) (@3N \
_ \r*Np-i)° \
N .
\ / \ v (p-2j-2)°
\ ,
N ‘. \
v (2p k) N Y -2j-1)/ *
\
\
,’ P (p-3)"*
’
ri(2p~-1) (3 -Rje1)*
1%2p)/P(2p
Figure 10

The test described in thm. 2 (vertical inputs are not shown for simplicity)

g
E s
k r/ R, ‘ r'/ R, r ‘
‘ 7L 72"
b i
-
- () ()
Figure 11
(a): Condition OST-1 |
(b): Condition OST-2
Tin Tout
S a fe———— z.u, = Tin
Vout —r;n— Vou = Yinta Tip

Figure 12
The basic cell of a two-way pipeline systolic array for FIR filtering

[

o

< W

- e o o=

. s e | S -

1

i

- o o g

(a)

T

Figure 13
(a): A two-dimensional synchronous bilateral array
(b): The basic cell

s
z z £=2
n—— . f:y-}z-z
- £=x
v | v

L}

Figure 14

The basic cell of a two-dimensional systolic array for matrix multiplication

|

[Nils80]
[Pohm8&3]
[Siss68]
[Smit82]
[Wein83)

[Wied77]
[Wins77)

-20-

N. J. Nilsson, Principles of Artificial Intelligence, Tioga Publishing
Company, 1980.

A. V. Pobm, O. P. Agrawal, High-Speed Memory Systems, 1983.

S. S. Sisson, M. J. Flynn, ‘“‘Addressing patterns and memory han-
dling algorithms,” Proc. AFJPS Fall Joint Computer Conference,
Vol. 33, Part 2, December, 1968, San Francisco, CA., pp. 957-967.

A. J. Smith, ‘“Cache Memories,”” ACM Computing Surveys, Vol. 14,
No. 3, September, 1982, pp. 473-530.

P. Weinberger, Personal Communication.
G. Wiederhold, Database Design, McGraw-Hill, 1977.
P. H. Winston, Artificial Intelligence, Addison-Wesley, 1977.

