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1. Introduction
--- There are three major aspects to our project. The first concerns the development of AL12

which is a procedural language approach to the layout of VLSI circuits. The second is the con-
tinuing investigation of the census language. Finally, the third is in the area of testing of VLSI
circuits.

2. ALI

2.1. AL12 IJainn, Valdes, Voya]
An almost complete version of AL12 became operational at the beginning of March. This

version implements most of the language features described in the accompanying "Language
Overidew" and is currently being used to layout a number of circuits.

The language has now a small group of local users which includes people not involved
directly on the language design and implementation. The first circuits designed with AL12 will
probably be sent to fabrication before the end of April.

The number of users will soon increase substantially, when the students in our VLSI design
course begin work in earnest on their course projects. Most of our current efforts are directed
towards making the system stable enough for them as well as for release to users outside Prince-
ton.

On the language itself, the only unimplemented features are those related to cempletenee
checking and direct interface to simulators. The code to implement completeness checking will be
relatively short and straightforward to implement. It has not been implemented yet because we
judged more importan. to have a version of the language publicly available before the end of the
semester. We have not yet selected the simulator to which AL12 will be interfaced, but the inter-
face should not present great problems. We expect to complete the implementation of these two
features during the summer.

The initial experience of AL12 users has been generally positive, in spite of the fact that
they have carried most of the burden of testing and debugging of the language translator and run
time support. We are confident that the current system will be completely stable very soon. The
efficiency and convenience of use of the language have been those that we expected at the time

4 we designed it.

Future work on AL12 will primarily involve the completion of the current version as
described earlier. A longer term effort would involve the implementation of a New version of the
language that incorporates the experience gained using the current one. Such an effort is con-
tingent on the level of use of AL12 and the general reception from its uwers, and it is not likely to
be initiated for another six months or so.

On a slightly different but related topic, we intend to research constraint based, low level,
layout specifications as a possible intermediate description level between CF and high level
languages. Two of the main lesson we have extracted from the ALl2 project is the usefulness of
such descriptions and the presing need for well defined intermediste rern tatiou of that
nature.

2.2. Graphls Engine [Dobkla, Valdes
XThe design of the graphics engine bas progresed to the design of our initial Mae drawing

chips. New algorithms for line drawing have been developed which are more dicint than
Bresenh am's algorithm and which are especially suited for parallel implementation. We are
currently in the process of implementing one sueh algorithm in ALI2.

--. - -



-.

Our progress to date has been the design of an Htree circuit to do 16 bit wide comparisons
* along with the controlling logic for the chip. We expect to have completed a similar Htree for

addition within the next few weeks. At that point, an initial version of the lie drawing circuit
will be ready for fabrication. The structure of this circuit is very non VLSI-ih. Long data paths
have been permitted in ordered to allow us to do a piecemeal design and adjust to the design
environment. A new design is in process which will overcome these difficulties.

The new design is expected to have area 1/3 less than the current design and to have short
paths which will probably allow a faster clock. Furthermore, the replication of data and compu-
tations in the new circuit will be minimal.

During the design phases so far, we have had an opportunity to evaluate the ALl tools and
to serve as 'friendly debuggers" of these tools. Our experiences have been positive. The pro-
cedural nature of the tools has allowed us to delay design decisions which we would have had to
make earlier in a graphics oriented language. The cost in area has not been great. Our estimates
are that a similar design in a graphics based language would have required 70 or 80% of the
current area. Indeed, these numbers are borne out by comparisons with portions of the circuit
which had previously been designed using ICARUS.

2.3. Clay [Lipton, Lues, Northi

In parallel with AL12 another effort has started on a related layout language that is called
Clay. This language has many of the same features as ALI2 but is implemented as a package in
the programming language C. This approach has allowed us to get a version of Clay up very
quickly. Both AL12 and Clay share essentially the same constraint based view of the layout pro-
cess. Clay however will allow us to experiment more easily with a variety of new ideas more
quickly. Thus, Clay has a feature that allows a designer to link several different pieces of layout
and still keep them all flexible. Currently a number of our PhD students are using Clay to design
a very simple processor that we call Prism

2.4. Local Algorithms for Large Layout Problems [A. Huang)
While the usual algorithms for topologically sorting large graphs (which arise in VLSI layout

problems) use asymptotically linear time and space, in practical situations they perform badly
because of page thrashing. This comes about because memory references are frequently made to
information on pages outside of fast memory. We are studying the construction of algorithms for
topological sort which have good behavior in this respect; preliminary results show that the
number of page faults can be bounded by a constant (which depends however on the geometric
constraints of the layout problems) times the number of pages. This should make practical more
efficient ways of laying out very large integrated circuits.

3. Census
There are several projects underway in the area of census and related architecture.

3.1. Unbounded Paa-in Circuits Liptonj
Work continues on our investigation of the power of such circuits. We have receatly been

able to further haacterise the power of such circuits.

L3.2. Maxlminsng Throughput with Latebing (P. Cappello, A. LePaugh, K. Stelmftsl
In many applications of custom chips, especially for digital signal processing tasks such as

convolution, Altering, sad Fourier trndormation, high throughput is very important, and a rela-
tively large delay is tolerable. If a circuit has stages in which there is large delay because the
combinational logic is many levels deep (an array multiplier is an example), the throughput can
be increased by introducing intermediate levels of latching. Thin costs area ad clockiag delay.
The tradeoff between extra latching circuitry ad clocking an the one hand, and increased
throughput on the other, was studied using analytical model. The results provide guidelines for
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the choice of latching density, using the product of area and period as a performance measure.
Significant increases in throughput are predicted for situations like a bit-parallel aray multiplier.

8.3. Massive Memory Machines [Garela-Mollna, Upton, Valdes]

The size of VLSI circuits being designed is growing at a fast rate, and there are predictions
of circuits with as many as one hundred million transistors by the mid nineties. The tools to
design these circuits will be limited, not by the speed of central processing units, but by the speed
at which random accesses can be made to memory. The reason for this is that most tools contain
algorithms with good asymptotic running times, but reference memory in unpredictable ways.
Thus, a very fast "super-computer" which relies on a disk paging mechanism to access a large cir-
cuit will easily be outperformed by a slower machine which can hold all the necessary data in its
main memory.

We are investigating the feasibility of such a Massive Memory Machine. There also appears
to be a need for such a machine in other fields like databases and artificial intelligence, aud the
cost for a machine with one billion bytes of main memory seems comparable to that of current
super-computers. The design of a gigabyte computer is not a simple task, and novel architectures
for it are being pursued. Some preliminary results on this topic can be found in an attached
report.

4. Testing (Arden, LaPaugh, Lipton]

This project concerns itself with all aspects of testing. Currently Arden is working with the
Siemens group on frst silicon testing at Munich.

4.1. Bipartite Testing

Work continues on refining our bipartite approach to circuit testing. This approach exploits
very structured design for testability. It has three components: the use of combinational circuits
which are bipartite, the use of a controllable logic gate (nand or nor), and the use of logic to
observe internal values. It achieves 100% single stuck-at fault coverage and the detection of
many multiple faults using under twenty test vectors. A simple transformation of an arbitrary
circuit into a bipartite one exists. It may double the number of gates in a circuit, but will never
do worse. LaPaugh recently presented this method to the IEEE workshop on VLSI circuit test-
ing.

Initially, the approach was developed for aMOS circuits. We are now investigating the
extension of this approach to CMOS and to designs which use steering logic as well as gates. We
are al,.o continuing development of a special latch which will allow a large class of sequential cir-
cuitv; to be tested by this method without the addition of sean paths. We are also beginning to
work with Siemens on developing actual devices. These devices will be used to build circuits to
test our method. Many implementation issues remain which will be explored through the design
of these circuits.

4.2. Testing of Regular Arrays [Vergls]
We are looking at conditions that guarantee that one- and two-dimensional bilateral arrays

of combinational cells are testable. New conditions have been derived which are more general
than previously known. The work is being generalized towards combinatorial cels (with internal
states). The question of having tests which take time linear in the sumber of cells is also being

' studied. The results should be useful in testing such regular structures as systolic arrays for digital
filters and convolution.

5. Papers (See Attachod)
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Optimlu Choice of Intermediate Latching to Maxinise

Throughput in VLSI Circuits t

Peter R. Cappello tt
Andrea LaPaugh, and Kenneth Steiglltz

Electrical Engineering and Computer Science Dept.
Princeton University

Princeton, N. J. 08544

ABSTRACT

In many computational tasks, especially in signal processing, it
is the throughput that is important, rather than the latency, or
delay. If a special-purpose VLSI chip is designed for a particular
signal processing task, such as FIR filtering, for example, the max-
imum clock rate, and hence throughput, is determined by the depth
of the combinational logic between registers and the time required
for the distribution and operation of the clock. If the combinational
logic is sufficiently deep (in bit-parallel circuits, for example), the
throughput can be increased by inserting intermediate stages of
clocked latches. This is at the expense of increased area and delay
to operate and clock the intermediate registers. Roughly speaking,
the strategy amounts to using more of the chip area to store infor-
mation useful for pipelining.

This paper investigates the optimal tradeoff between the degree
of intermediate latching and cost, using the measure AP, where A is
the chip area and P is the period (the reciprocal of throughput).
We derive expressions for the time and area before and after inter-
mediate latching, using the Mead-Conway model, both for the cases
of on-chip and off-chip clock drivers. The results show that
significant reductions in AP-product (reciprocal of throughput-per-
unit-area) can be achieved by intermediate latching in many typical
signal processing applications, for a wide range of circuit parame-
ters. The array multiplier is used as an example.

t This work was sppotned is purt by NSF OGrat SCS1241037. U. S. Army ReetamubhDarha Grast
DAAG.-r2.-K-0095, ad DARPA Cetract N10014-12-IC.0541 A psubmismy veeies of thi pape* protest.
ed at the 1,. IEE latermatiosal Ceferace ea Acestia, Speech. nad Sigtal Pfs"Miag, iartol. MA. April
14-16, IN3
t Peter R Cappello is mow with the Departmemt of Computer kiee., Usiverity of Califtswi. But& Barbars.
CA 3106
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1. lntroductlon
When certain tasks are implemented with special-purpose VLSI chips, it is

often the period P (time between successive outputs) that is crucial, rather than
the latency or delay T. This is especially true in signal processing, where typical
tasks such as filtering and Discrete Fourier Transformation often have high
volume requirements and relatively lax delay requirements. Recent work has
described bit-serial and bit-parallel VLSI architectures that do in fact allow the
period to be equal to the clock period (see, for example, 12,4-9,121). In [5,71 a class
of these circuits is called completely pipelined. In this paper we take up a
different question, that of inserting intermediate stages of latching so as to max-
imize the rate at which the clock can run without a disproportionate blowup in
area requirements. We will use the criterion of minimizing the AP-product, where
A is the area of the VLSI circuit and P is the period. The AP-product can be
thought of as the reciprocal of throughput-per-unit-area, and a completely-
pipelined circuit optimal with respect to this criterion can be claimed to make
best use of chip area. Leiserson and Saxe 1141 treat the related problem of redis-
tributing latches so as to decrease period, but they do not consider area or clock-
ing penalties.

We assume that the circuits we discuss are designed along the lines described
by Mead and Conway III: typically that a two-phase clock is used to transfer
information between registers (or latches), and that these registers are separated
by combinational logic. The following sections are devoted to modeling the time
and area requirements of the latches, the combinational logic, and the clock
driver. We then consider the overall circuit and investigate the optimal choice of
the amount of latching for tl!e two cases of on-chip and off-chip clock drivers.
While the assumptions made about first-order circuit behavior pertain to nMOS
technology, the analysis technique uses dimensionless parameterization and is
applicable to any situations with deep combinational logic - typically bit-parallel
circuits. A representative tradeoff curve is shown for an example.

2. Clock Timing
We will adopt a version of the two-phase clocking system described by C. L.

Seitz in Chapter 7 of IJ, a typical stage of which is shown in Fig. 1. Fig. 2 shows
the corresponding timing diagram: First, we must drive the Phase 1 clock signal
o, high, taking time t,, (the clock driver time). We then need a minimum time

ge,, (the delay time) to charge the input stage of the combinational logic. Phase I
must then go low (taking time ) and Phase 2 must then go high (also taking
time e,,,. We must insure that there is a minimum time i,j during which both
clocks are low; otherwise we run the risk that skew between the clock phases will
cause both clocks to be on at the same time. This brings us up to the point where
the combinational logic has already started to work.

The input values propagate through the combinational logic, taking some
time t:',t. This time includes the time during which *t is brought down and o2 is

-' -
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brought up. The time £., will ordinarily dominate the clock-interchange time,
but in general we need to set the time for this operation to

- , 2 1d.b + 112)

where for safe operation of the circuit seo,, must of course be taken as the maz-
imum delay time of the combinational logic.

We next need to transfer the output values of the preceding logic stage to
the input of the latch whose output is controlled by #,; that is, 2 must remain on
for a minimum charging time a,,, (the preset time). The 0 clock signal must then
be brought down (taking another clock driver time ld.k, and another dead time
(im) provided to insure non-overlap of clocks in case of clock skew.

The minimum period P of the circuit is therefore

P = 2 1aL#ck + Idig + I, + In + maz(Ij~jc , 28lc + I&)

To be more accurate, we might want to take into account the fact that the up-
going and down-going clock waveforms are not completely symmetric; but the
term ta.,0C can be taken to represent the average of the up- and down-going clock
times in a single driver. In a multistage driver the stages alternate up and down,
and we can take t d,,k to be the sum of the averages of the up- and down-going
times along the driving chain.

3. Latch Time and Space
We next want to express the time delay of the latches in terms of basic units

that are determined by the technology. For this purpose, we consider the nMOS
inverter with a minimum size pulldown and a pullup/pulldown ratio of 4 to be
the basic cell, with area A, pulldown gate capacitance C, effective pulldown resis-
tance R, and pulldown time (transit time) r when driving the input of an equal
size inverter. We refer to such a cell in what follows as a minimal inverter.

Now inverters in the latches drive pass transistors, so the discussion in [I)
shows that we should choose a pullup/pulldown ratio of 8. The time required for
the second inverter to charge its load is therefore approximated by the following
RC constant:

l,,,.y - (RI + R,..XC,.. + C,..)

where the R's and C's are shown in Fig. 3. Assuming that the pass transistors are
minimum size, R,6,, - R and C,., - C. Also assuming that the capacitative load
(input to the combinational logic) is minimal, we get

Idlfy " 2(RS/R + l)r
-2(LIW 3 + I)r

where from now on we express resistance in terms of the length-to-width ratio of
the transistor:

.1 ____gold
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R, - (L1 Jw,)R

If the pullup/pulldown ratio of the latches is taken to be 8 (as mentioned
above), we can write the normalized delay time as

id,# ~/r - 2(Sr + 1)

where r - L 2/w2 is the size of the latch pulldown. When r - 1/2 the puldown
transistor of the latch inverter will be twice as wide as the corresponding transis-
tor of the minimal inverter, but the pullup/puldown ratio is 8, not 4, so the
pullup transistor will then be the same length as in the minimal inverter. The
area of such a latch inverter with r - 1/2 will be only a little larger than that of
a minimal inverter, perhaps about 25% larger. The choice of r - 1/2 thus speeds
up the latch without much area penalty, and we will use this value in this paper,
although it could be kept as a parameter.

Using a similar argument based on RC charging times, the preset time is

1,/r - (Br + 1X)/r + 1)

The 1/r term comes from the input capacitance of the second inverter, which
loads the first inverter. To see this, write

c,,., - (L 2 W/LW)C - (W 2lL2)C - (1/,)C

where L2 - L - W are minimum size.

The latching area is easy to write down. Assuming that the pass transistors
are the same size as minimal inverters, and that the latches have area 1.25A, each
two-phase latch requires normalized area

At~j /A "- 2(1.25 + 1) = 4.5

4. Combinational Logic Time and Space
We want a fairly general model for the combinational logic that is

sandwiched between the latches; such logic may be built from NAND and NOR
gates, pass transistors, or some combination of the two. We will assume that the
typical logic stage is a uniform array of nxk lopical elements, each of which has
an area A,,, and a delay N,,,, where

A . aA

and

?rw, Or

This array will be thought of as n rows by k columns, with a maximum delay
path from left to right of k elements. Since logic stages are not usually so uni-
form, the a and 0 parameters must represent ,verle. values for the combinational
logic. If gates are built out of inverters and coupled directly, for example, p will

NOW , ,
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generally be determined by the fan-out factor of the logic and the size of the
inverters. An average fan-out factor of 3 using gates (with a pullup/pulldown
ratio of 4) will result in 0 f 12, because we must allow for the worst case in the
propagation of logic, where all signals are up-going. To reduce this to a value
closer to that of a minimal inverter, we expect to increase the area to, say, twice
that of a minimal inverter. Thus we can take values of a - 2 and P - 4-12 as typ-
ical of combinational logic implemented with arrays of gates. We should also

note that the value of a should be selected to reflect the space per logical element
required for power and ground lines.

We will assume that the nominal circuit has one typical logic stage between
a pair of two-phase latches, and we then consider the insertion of (m-i) latches
equally-spaced in the combinational logic, m > 1. The case m - 1 then represents
the original situation. We assume the latches can be made to "fit' well; that is,
that the combinational logic is arranged regularly enough so that stages can be
pushed apart and columns of latches inserted. The total time required for the
logic is therefore

0,,, (k/m

and the area

Aj~r1A - adkt

where d - n/k is the height-to-width ratio of the original logic block, another
dimensionless parameter, usually assumed to be 1.

5. On-Chip Clock Driver Time and Space

If we use an on-chip clock driver, we want to use a multi-stage version as
described in [11, since the driver will have a large capacitative load, especially if
there is an appreciable amount of intermediate latching introduced. We assume
that clock distribution is on metal, so that propagation delay along the wires is
small. Each stage is assumed to have a pulldown f times the size of the preced-
ing, so if there are S stages driving Y pass transistors, each with minimal capaci-
tance C, - yl/S

If we start the clock driving with a minimal inverter, the normalized delay of
such a driver is approximately

d,,,,Ir - 2.5 S

The factor of 2.5 results from averaging the pullup time of 4r and pulldown time
r along the inverter chain. (If we do not insist that S is an integer, and we
minimize this delay with respect to f, we get the value f - l jl. But S it an
integer.)

This estimate for delay assumes that we insist on a globally-synchronized

tN
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clock - that the clock signals at the input of the driver can be used anywhere
else without concern for synchronization. Caraiscos and Lin fil1 have pointed

*. out that the rise and fall times of the clock waveforms may be much smaller than
the absolute delay, and that using a local clock may allow higher throughput, at
the expense of using local clock signals that must be made synchronous with the
signal itself at different points on and off the chip. Sending the clock along with
the signal will incur other costs, of course. (For a discussion of the virtues of a
globally-synchronized clock in signal processing, see 110]). The analysis in this
paper is conservative in the sense that the resulting degree of latching and
increase in throughput is on the low side. (We can avoid the area and delay
penalty incurred by using an on-chip clock driver by moving the clock driver off-
chip. That case will be discussed in more detail in Section 7.)

We must also consider the area contribution of the clock driver in relation to
the rest of the circuit. The normalized area of the driver is

A,,,/A - f' -(Y - 1)/1 -1)

Next we look at the overall time and space requirements of the circuit.

6. Optimization of AP-Product with an On-Chip Clock Driver
We can now write the total minimum normalized period P/r-p in terms of

our parameters as follows:

p - 5fS + 25 + r, + max(ft/m , 5fS + rl.j

where as above
fS - Y -(m + 1)n - number of ine driven

and r - S, /r, m - i./t. Similarly, the total normalized area Aree/A -. is

- 2(Y - 1)/(f-1) + 4.5Y + akn
where the factor of 2 accounts for the fact that we must have two drivers, one for
each phase. (These can be combined to some extent, but the total area is still
nearly twice that of a single driver.)

We now have the function sp(m,$}, where m and S are discrete parameters.
The number of stages is never much larger than laY, since the optimal choice of
f is usually around e. In most cases of interest, therefore, it suffices to take the
minimum of 6p for S - i,..... , producing what we call ep(m,e):

,p(m,e) - mums e(M,S)

The range of m is certainly between I and k, so the optimal choice of m can be
detmmined simply by

4p(0,e) - mis p(m, )

0 7
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The gain G in AP-product achieved by latching is therefore

G - ap(,e)/op(e,*)

7. The Case of an Off-Chip Clock Driver

As mentioned in Section 5, if we allow the clock driver to be off-chip, we can
drive the larger capacitive loads incurred by extra latching with essentially no
penalty in clock delay or driver area. The normalized period and area can then
be written

p -
2 rciek + 25. + ra + max(fk/m . 2 r,,,k + ru)

a - 4.5Y + akn

where we have assumed some delay of T d,.k - ldok/T for the clock rise and fall
times. The ap-product is therefore a function of only one unknown parameter,
In.

With these changes in a and p, the same methodology applies - a numerical
example will be given in the next section. Note, however, that now the optimal
value of ,m will occur roughly near the breakpoint where fik/m - 2 rack + 12, and
that these times are both highly uncertain and small in size. The analysis in this
case is therefore much less reliable, and much more sensitive to unmodeled effects
such as propagation delay, than in the on-chip clock driver case.

a. Numerical Examples

We now give some typical numerical results. For this purpose, we consider a
16-bit array multiplier, implemented by an array of full adders, as described , for
example, in [21. We also assume that the full adders are implemented with gates;
each full adder will then be about 3 gates deep. The carry propagation will
require an array that has a maximum depth of 2X16, so altogether the combina-
tional logic will have k r 100. (This is consistent with the value of "113 gate
delays" given in [3].) Say that each gate takes about double the area of a minimal
inverter ( a == 2, optimistic for area, and hence pessimistic for our purposes), and
that, as discussed in Section 4, 0 6. The array is roughly square, so that d 1.
Finally, we will assume that clock skew is not an important problem, and take
T12 m 1r2i - 4.4Fig. 4 shows a plot of normalized period p(m,e)/p(i,*); normalized area
.(m,e)/.(le); and normalized AP-product vp(m,u)/ap(le); vs. m. The period as a
function of ,, decreases sharply (roughly as l/m) until the combinational logic
time is dominated by the clock-swapping and dead time (that is, until
Ilog,, m 2 1

dec, + 112). After this point the clock-driving time will determine the
minimum clock period and it no longer pays to increase m, because the area will
increase with no payoff in speed. The minimum value of period occurs close to
the minimum value of AP-product. Thus, in theory, the period can be decreased
somewhat from its value when the AP-product is minimized, at a slight cost in

A _____________________________________________
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area. In practice the optimal values are almost always nearly equal, and some.
times identical because of the discreteness of the parameters m and s.

Fig. 5 shows a plot of gain G in AP-product vs. the depth of combinational
logic k, for the values a - 2 and P - 4,6,8,12. The graph shows significant gains in
AP-product (more than 2) over the unlatched case when k > So and 0 >_ 6. Even
when the gates are as fast as a minimal inverter (worst-case delay factor 0 = 4)
there is an AP-product gain of 2.2 when k - 1i0. Note that a larger value of a
would only improve the gain.

We conclude by looking at the actual numerical values of the minimum
clock periods and areas involved in this analysis. Taking the k - 100, a - 2, P == 6
case above for a hypothetical 16-bit array multiplier, and assuming r - .3 nsec for
current technology, we get a period of P - 210 nsec with no intermediate latch-
ing, and an optimal period of P - 66 nsec with m- 6 (5 intermediate latching
stages).

The area before latching is 2.11x10'A, which at X -- i.5, ( 3p line width) and
a 225X*- inverter is about 10.7 rm2 . After the intermediate latching, the area
becomes 12.1 mmn2 ; certainly a modest increase in area for about a three-fold
increase in speed.

The preceding example assumed an on-chip clock driver. When we use an
off-chip clock driver at presumed small cost, as discussed in Section 7, we natur-
ally get much faster solutions. In this example, the optimal value of period with
the parameters of Section 7 and r , - 4 (assuming a very sharp clock rise- and
fall-time), minimizing AP-product, is 18 nsec, compared with the unlatched value
of 191 nsec. The area goes from 106 mm2 with no latching to 16.S mm2 with latch-
ing. This large increase in area reflects a corresponding increase in the density of
latching; 26 (m = 27) latching stages are introduced. We emphasize that in the
case of an off-chip clock driver, the numerical values of the parameters i12 and
t,, are very uncertain and the optimal values of period, area, and latching den-
sity" are sensitive to these parameters. The large predicted speedups in possible
clock rate may not be realizable in practice.

0. Conclusiona

We have modeled the timing of a generic pipelinable VLSI circuit in which
there are combinational logic stages separated by latching stages driven by two.
phase clocks. An array multiplier is typical of such a configuration. We then

jinvestigated the effect of introducing intermediate latching stages, especially the
tradeff between increased throughput and increased area. Expressions were
derived for area and minimum clock period, normalized in terms of minimal
invertcr area and uelay, and we showed that optimal choices of the number of
clock driver stages (s), and the number of intermediate latching stages (m -i).
can be made by simple enumeration.

The numerical results illustrate the choice of latching density in a typical
signal processing application. According to our model, a 16-bit array multiplier

.. . ..__________________________
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with gate logic and an on-chip multistage clock driver can be clocked about 3
times faster with about a 13% increase in ares using 5 intermediate latching
stages. This decrease in period is also accompanied by an increase in the latency,
or delay, of the multiplier.

Higher throughput can be achieved with an off-chip clock driver, but the
parameters in that case are less well known, and at such speeds the model
becomes less reliable.

Much more work needs to be done on detailed modeling of the timing of
such VLSI circuits if we are to achieve maximum throughput rates in applica-
tions like signal processing. Future work will attempt to refine our model, along
the lines of 113] as an example. We also need to study propagation delay, which
was assumed to be relatively small in the examples ( 4 times the minimal inverter
gate delay r for clock distribution, a reasonable assumption if the clock lines are
metal, for example). Another important set of interesting problems concerns the
study of the way algorithms, topologies, and layouts interact with the timing
problems considered here. Recent work on completely-pipelined or bit-level sys-
tolic arrays is a start in that direction (see, for example, [2,4-9,12]).
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Figure Captions
Fig. I Two-phase clocked latches between stages of combinational logic.
Fig. 2 Clock-timing diagram.

Fig. 3 Details of the clocked latches, showing pullup and pulldown effective resis-
tances and capacitances.

I



Fig. 4 Normalized period, awe&, and AP-product vs. m for a -2. 0 6, *-100.
The parameter (rn-i) is the number of intermediate latching stages.

Fig. 5 Gain in AP-product vs. combinational logic depth k for 0 - 4.6,9,12. The
parameter 0 is the delay of a combinational logic element, normalized in
terms of that of a minimal inverter.
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AL12 Documentation and Implementation Guide

Language Overview

Version 4
Februsar t, It

I. Valdes, R.L. Ks&n

1. Introduction

This document i. a reference manual for AL2, a Pascal-basedtprocedural language for
describing VLSI layouts. Several revisions have recently been made to the language, so the
current document may differ slightly from previous versions.

The syntax of the language will be presented by way of syntax diagrams. An efort has
been made to minimize the number of diagrams -d shorten the accompanying text by (a) includ-
ing more semantic information in the syntax diagrams than is customary, and (b) making refer-
ence where possible to syntactic entities of the Pascal syntax given in [1] (which bas been
included as an appendix to this document). Semantic content which is not evident from the syn-
tax diagrams will be explained in the text.

The AL12 design goals and the problems that ALI2 addresses are described is detail is 121.

2. General description of ALI2
AL12 programs are compiled by first translating the AL12 statements into standard Pascal

131, and then compiling the Pascal statements into linkable binary object files. Partly as a conse-
quence of this arrangement and partly for aesthetic reasons, AL12 programs look very much like
Pascal programs. Many features of AL12 have syntax and semantics very similar, if not identical,
to those of corresponding Pascal constructs. For the sake of brevity, this document takes
knowledge of Pascal for granted. The syntax and semantics of AL12 will be described in terms of
the syntax and semantics or Pascal whenever possible.

The objects manipulated by AL12 programs can be classified naturally into two categories:
those that a normal Pascal program can manipulate (which will be called PaeseeJ ejecte) and
those that are specific to AL12 (ALIt eject*). There are three ALi2 objects: cell, bes.., and
u'ree. AL12 programs can also manipulate aggregates of wires, just a Pascal programs can mani-
pulate aggregates of variables using structured types. Although ALI2 programs will typically
manipulate all three kinds of AL12 objects, the final product of an AL12 program is a layout con-
sisting entirely of wires. Cells and boxes are simply used as ways to express the relations between
groups of wires in a structured and systematic way.

A cell in AL12 is a prototype for a rectangular section of a layout. In a cell defisition, the
user describes a prototype of a rectangular layout piece. In a cell creation, alo called

I laud e UCB Pucal 1udr UNIX.

The AL12 systm is propntty to Pri eusta Usivity, Ptioneu., New Jung. ke dovdeom Was 11 1
i part by DARPA under grast N00014-82.K4*40.
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instantiation, the user requests the insertion of an instance of a previously defined cell in a give
environment. Multiple instances of a prototype can be created. It is possible to define a cell pro-
totype whose content and structure depends on the values of parameters which will be supplied to
the prototype at run-time. The sizes and shapes of actual instances of a given cel will then vary
according to the "actual parameters" provided when the instance is created. Thus, AL12 cells are
very much like the familiar parameterized procedures and functions.

The entire layout generated by an ALI2 program iB itself actually an instance of a single cell
defined by the program. The body of an AL12 program is simply the statement that instantistes
the cell definition. Just as typical Pascal main programs will include numerous calls to consti-
tuent procedures and functions, the definition of the main AL12 cell will typically include the
instantiation of numerous component cells.

Each cell instance is enclosed in a cell 1ounding bo, cells are thus restricted to have rec-
tangular shape. Cell boundaries may not overlap, nor may they be crossed by any wires. Wires
will either be entirely contained within a given cell instances, or lie entirely outside it. Cell boun-
daries therefore impose a strict hierarchy on the arrangement of wires in a layout.

Wires are rectilinear objects which lie on a specific toyer, have a given UwiIIA, and carry a
specified signal. Wires are used to interconnect cells and must have both of their endpoints lying
on cell boundaries. Wires which are connected to only one cell wil not appear in the layout pro.
duced by the program.

If both endpoints of a wire are interior to a cell C3 (i.e., the wire connects two cells C1 and
C2 internal to cell C3), then the wire is said to be local to cell C3. Such wires will be declared as
local uire variables in the definition of cell C3. Wires which run from a boundary of cell C3 to
the outside boundary of another cell internal to C3 (e.g., cell CI) are instances of formal parame-
ters. These wires will be declared in the heading of the definition of cell C3. Thus, AL12 wires
may be obtained by (a) declaring local wire variables in a cell which is to use those wires for
internal cell connections, and (b) declatring formal parameters for connecting wires that end on the
boundary of a cell to one or more of its internal cells. Fig. 1 illustrates these relationships.

Fig i
Ci, Ct and C art cell instaues; u is local to Ct,

p is an intance of a formal paramewr in the definition of 0&

In addition to the cell bounding boxes which we automatically created by ALI2 for each
instantiated cell, a user may explicitly create and manipulate other boxes. These user-defined
bounding boxes are used to enclose rectsaular reas of a layout that are to be considered as a
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unit during certain operations performed while the AL12 program i being executed. AL12 will
permit wires to pierce these boxes, and generally delegates all responsibility for their manipulation
to the user.

In the remainder of this document, we will describe AL12 by discussing in turn the general
form of an AL12 program, the type structure of ALI2, the facilities for cell definition and instan.
tiation, the statements specific to ALI2, and finally the predefined cells, procedures and functions
of the language.

3. General form of AIIS Programs

The general form of the units that the AL12 system manipulates is given by the syntax
diagrams of figs. 2 and 3. These units are of two types: proerme and module#. AL12 programs,
when compiled and run, produce layouts. Modules can be separately compiled and linked to other
modules or programs but they are purely declarative and cannot be run by themselves. (for the
details of how these two units are actually bandied by the AL12 system, see 14 and 151).

pe ddosg'am

Fig. 2
The general form of AL12 programs and modules

An AL12 program consists of a series of cell declmations and the instantiation of a single
cell. Each cell declaration consists of a Iesder and a body. The header specifies the formal
parameters, in effect defining the cell boundary. The body describes the local objects and con-
tains statements indicating how to create sn instance of the cell when actual parameters are pro.
vided to be connected to the formal ones.

The relationships between wires and boxes that can be expressed in an AL12 cell definition
are mostly metric free: no actual sizes or positions may be specified. The sizes and positions of
the wires of the layout produced by the program are determined by a simple process that minim-
izes the final layout area while preserving the relationships between the wires stated in the pro-gram 141.

Note that declarations of AL12 objects - cel declarations and declaratios under the key-
words uireippe, virevar and box - are completely separate from the declarations of Pascal objects.
The declarations of Pascal objects have exactly the same syntax and semantics ais i Pascal. The

.. , f t
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only exception is that AL12 permits the right hand sides of constant declarations to include
expressions that are evaluated at compile-time (see fig. 4 for the syntax of such expressions).

It is important to notice also that no wires or boxes may be declared in a module. This is
done in order to guarantee that each wire in a layout is either local to a cell instance, or an
instance of a formal parameter.

€otnf ef spre.silo n

co.tant tem

constant factoar

Fig. 4
The syntax of the expressions allowed on the

right hand side of constant declarations

AL12 inherits Pascal's type structure almost intact. Thus enumerated types, subrange
types, arrays, records, pointers, Ales etc. are all AL12 types. The only exception is the #el type,
which does not exist in ALl2.

All of Pascal's predefed identifiers exist in AL12 as well: types (integer, booleon...), con-
stants (morint, true...), files (input, output), procedures (put, get, urite...), functions (abe, err...)
and directives (forward, ezerna!...). All of these behave in an ALl2 program as they would in a
Pascal program.

The header of an AL12 program include, a list of identiiers. They are interpreted, as they
are in Pascal, to be a list of logical file names used by the program. As in Pascal, each of these
identifiers except input and output most be declared as variables of type fle in the declarative
part of the program.

Although it is not shown in the syntax of |g.2, all Pascal statements are also ALI2 state-
meats; the only exception is the with statement, which has been omitted for a mixture of
aesthetic and pragmatic considerations!

tThe deviatioes from standard Pascal jest mentioned are small enough me that so gnat problems should &rse
from their eaistece It it important to vote that object lie cotanilg tra slated AL12 programs will be total-
ly compatible with those generated by the Pascal compiler 141 Thas, PascaJ fragments that use the disallowed
feateres extensively cas be compiled separately aad loaded with tranlated ALI2 programs, misimisia fuather
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4. Predefined Pascal types

AL12 inherits all the predefined types of Pascal. ALI2 has several additional predefined
Pascal-like types: wireorientation, orientationchange, direetionofeparution, toyer, wirelayer and
signal. All of them are enumerated scalar types except wirelayer, which is a subrange of layer.
As we will see in the detailed description that follows, these types are identical in all respects to
any other enumerated predefined type with the exception of signal, which differs in a minor way.

The type wireorientelion is defined as

wireorientation - (nulorient, vertical, koriontal)

The composition of this type reflects the fact that AL12 wires can lie only in one of two
orientations so that only "Manhattan" layouts can be expressed in ALI2. The orientation of a
particular wire will be determined by the way it is used in the program (i.e., at run time), with all
wires having nullorient as their initial orientation. The run time system of AL12 will be responsi-
ble for assigning orientations to wires and checking that no inconsistent use of wires with respect
to their orientation occurs.

The type orientationchange includes all the operations of the dihedral group - the only rigid
plane motions that map a wire orientation to a wire orientation. It is defined as follows:

orientationAange =
nullchange, roeated9O, rotatedi 80, rotated170, flippedO, fippedl5, flipped9O, Jlipped85)

Changes of orientation are useful when instantiating cells. They permit the creation of
instances of the same cell declaration that can be mapped into one another by rigid plane motion,
thus avoiding the need for multiple definitions.

The type directionofueparation consists of the eight directions along which AL12 objects can
be separated (plus the null value for this type). It is defined as follows:

direction ofieparation = ( nulldir, lItob, blot, lgor, riot, tltobr, brioll, trtobl, bloir )

The symbols that belong to the type layer depend on the process to which the AL12 system
is targeted. For the current system (nMOS as described in 161), its definition is the following;

layer - (nullayer, metal, poly, diff, cut, impl, glass, virtual)

In general, this type will include the names of al the physical layers of the process being
used plus the identifiers virtual (the layer on which boxes may be imagined to lie) and nuillayer (a
null value for this type that will be used exclusively by the AL12 run-time system.

The type wrel yer is the subrange of layer that contains the layers on which wires are nor-
mally constructed. It is defined as:

Svirelayer M metal .. diff

The type signal is aa, an enumerated scalar, but it has some special characteristics. Unless
redeclared by the user, the type contains only the value nulteignal. Users can redeclare the type
as an enumerated type, but if they do so, the identifier nultrignsl must be among the values of the

the chasces that tbes absemces will burt the AL|2 user is a 80iosi way.
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type because this identifier is used in a special manner by the AL12 runtime system.

Here is a valid signal type definition:

eignal - (nutUsignal, power, ground, detain, dalsout)

5. WIre types

This section describes the type structure of AL12 wires. The syntax of the wire type
declarations is given in fig. S. The semantic content of these declarations will be described in
detail in the next two sections. We will examine the simple wire types first and then consider the

composite wire types.

bun e i

------ 4d tde V e ed

Fig. 6
The syntax of the right hand side of wire type declarations

5.1. SImple wire types
All wires in ALI2 are of similar type. This type, however, is a parametric type, a concept

which is mot part of Pascal and therefore requires explanation here. The AL12 parametric types
are modeled after those described in 17j.

Parametric types are designed to make type checking more selective or weaker is certain
places without doing away with it altogether. It works particularly well as a way to permit the
user to regulate the extent of type checking that is to be performed during procedure or function
calls.



The basic idea of a parametric type is that of leaving some characterstics of the elements of

the type unspecified. These characteristics become formal parametero of the type declaration.
When the type identifier is used in the right band side of the declaration of a sew type or vari-
able, each formal parameter in the parametric definition must be provided with a value of the
appropriate type as a matching actual parameter. Hence, the left hand sides of parametric type
definitions look somewhat like procedure headers and the right hand sides lke procedure calls.
The actual parameters fill out the previously unspecified characteristics of the parametric type.

In the case of AL12 wires, there are three parameters to the parametric wire type: the taer,
the width and the eignal of the wire! The layer and signal will have to be values of the predefined
types wirelayer and eignal respectively. The wire width is an integer expressing the width in bun.
dredths of microns. Width can be expressed in scalable X~ units (6J using the predefined constant
lambda (see examples below).

Other parametric types can be defined from this one by pseudo-calls to the type definition
in which actual values for some (or all) of the formal parameters are specified. For instance, the
following type definition

polytire (w integer - ire (poly, w, nuignaL

creates a new parametric type polytwire. All wires of this new type will have poly as their layer
and nulleignal as their signal. The formal parameter "w"essentially passes over to the right side
of declaration to become an actual parameter to the definition of the parametric type "wire". We
say that "polywire" is derived from "wire".

Similarly, the definition

atdpoll/ire = polytwire ( telambda)

creates a new type. This new type is different from the two types considered earlier in that it has
no parameters. We call this a bound type.

Because there is only one predefined parametric type, the global structure of these types will
be quite simple: each new type will be derived from a previously existing one by a partial or total
instantiation of its parameters. The structure of the types will therefore be a tree of types with
the predefined type wire at the root.

ALI2 provides a predefined wire constant that belongs to all simple wire types. This wire is
called nullwire and will be used extensively in connection with cell calls. It is analogous to the
predefined constant nil used by Pascal in connection with pointer types.

The values used as actual parameters in the right hand side of a parametric type declaration
can be arbitrary expressions of the appropriate type. These expressions will be evaluated at run
time. Thus, if k is a variable of type integer defined in the current scope, the following would
have been a legal type declaration:

localpol - polywire ( (tel- I/ambaia)

Thus, the actual parameters of the parametric wire tIpee of ALIt re bound at run Lime. This
Jallows for a great deal of lexibility at the cost of some complexity in the run time package.

ITbe erseneles of the wire cas be mifermd at run time by the way %be win imsed ad need bet he pat of
the declarato Itself
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5.2. Composite wire types
As 6g. 5 shows, there are three composite wire types in AL12: bu, bundle lad lilt.
The types bundle and bus are roughly analogous to the arrel and recerd types of Pascal, and

represent, respectively, aggregates of wires of the same type and oggegates of wires of different
types. Below are some sample definitions of composite objects of these types.

dotal ( low, high, width : integer ) = bundle flow.. high I of pelypire ( width )
dalsf - bundle I 1 .. 100 1 wire ( metal, 10*smb ds, sultignst);
fool (wi, wt : integer; I : leper; a : signal) - bus

S: psI ywre ( . 1);
ft : sire ( , wt, a)end;

foot - bus dl : doal ( 10, to, I )
de : dotal

and;

The type bundle is a parametric type in its own right, since the number of the wires it con-
tains and the values used to access them may be parameters of the type. The type bus is
parametric only because the types of its components may be parametric.

The type list is peculiar to ALl2. A list is either the nuliet which has so component wires,
or an aggregate of one or more wires, each of any type whatsoever. This type is intended to facil-
itate the writing of general-purpose cells which accept a variable number of formal parameters.
As we will see later, only formal parameters may be declared to be of type list.

S. Cell declarations

This section describes the syntax and semantics of cell declarations. The cell mechanism is
very similar in spirit to the procedure facility of Pascal. It permits the users of AL12 to introduce
hierarchical information into their programs, and therefore into the layouts they produce. Unlike
procedure hierarchies, however, the hierarchy of cell invocations corresponds very closely to
features in the program output.

The syntax of a cell declaration is given in fig. 6. The next two subsections examine this
syntax and the associated semantics in detail.

8.1. Cell headers

A few syntactically correct cell headers are givea below

cell ehift ( left I : shifibus; top t : clock#; right r : uhift e);
cell register (left I : ohiftbus; top I : list; right r : iflbue ) (size integer);
cell oilly ( left w : wire; left p : pelywire);
cell doit ()(k:tp);
cell generic (top 11, it, IS: wire) (cell e (left 11, It :pelywire ));

The cell header may include two parameter lists. The formal parameters in the Irst list
must be of wire types, while no formal parameters of wire types may be included in the second
list. This is done to preserve the strict hierarchy of wires with respect to cell instances.

.f.~(
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The formal wire parameter list includes isforration about where the parameters intersect
the tell bounary. Besides the explicit information gives by the keywords left, ri, top bad W,.
t~em there is an implicit assumption that the top and bottom parameter# at# Noted inm left of right
order and that the left avid right paraimeter* are Noted in top to bottom order. Thu, the header of
a cell definition describes the boundary of the cell.

Cells can be declared as formal Parameters to other cells by listing a prototype of the cell
header in the second of the two parameter lits of the cell definition header. This is the sm
general manner in which procedures ad functions are passed as, parameters in Pascal (seeIl.

0.2. Cell bodies
As explained above, the executable portion, or "body", of as AL12 program is a single cell

instantiation statement. The body of a cell may he either (i) one or more statements bracketed
by the keywords beglin and end, or (ii) a directive which specifies that the CeON header should be
treated in a non-standard way.

The executable part of the tell contains statements which describe the structure and cotent
the cell will have when it is later instatiated. This part may contain say AL12 statement,
including recursive instastiationss of the cell itself. A complete discussion of the AL12 statements
is given in section 9.

The directive forward is used exactly as in Pascal to circumvent the AL12 requirement that
a procedure, function or cell definition refer only to previously defined cells, functions or pro-
cedures.

The directive externsl is intended to permit the separate compilation of file. It is not part
of standard Pasa but something similar to it in spirit is found in most recent compilers. Its
meaning in AL12 is similar to that of the forwsrd directive in that it defers the association of a
cell header to a body. It is unlike it in that the external directive adds the cell name to the list of
symbols visible to the link editor when the program or module in which the definition is found is
translated to a binary file.

For cells defined using the external directive, a body can be associated to their header either
at compile time (by giving the body as if the header had been listed with a forward directive) or
at load time (the name of the cell is left unresolved after compilation and the loader will attempt
to resolve it later). In the first case, the cell name will be used to resolve references at load time
and in the second it will be an outstanding reference which the loader will have to resolve.t

Thus, when a file containing the following

Cell z .. ) .. ) ext enal;

c ell x; begin ... ed

is processed by AL12, z becomes a symbol visible to the loader which can be used to resolve
unbound symbols from other loader fies. If the body of the cell had not been given is the same
fie, z would have become a symbol to be resolved by the loader.

t Nott that AL12 external compilation facilities diler fromI ath UitC brhdey Pascal is that s.W~ hidi as
external object may be as the same le as its body Thi permits type maseritis to estop is by oideoappial

%he cross.modoIe type checking htamr of the UC Berkeley UNIX compiler bets abot the facility eaie to arn

I ~ _______J"
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The directives rigid and flexible indicate that the cell definition is not to be given textually
as put of the program: it is to be found in the file named by the string given as argument to the
directives. That file must be a 'rectangle file" (see [8q) defiing a rectangular layout fragment.
When a cell defined in ibis manner is instantiated, the ALI2 run time system will attempt to
integrate the layout fragment described by the file into the layout defined by the program.

The format of rectangle files includes a description of the elements that touch the bounday
of the layout fragment described by the file [81. The run time system will check that the boun-
dary as described in the file matches the actual parameters given when the cell is instantiated; an
error will be generated if a parameter mismatch exists. Note that this check is moo performed at
compile time because it is not always possible to do so. if the two boundaries match, the run
time system "connects" each of the actual parameters used in the instantiation to the correspond-
ing element on the boundary of the rectangle file. This connection is performed by abutment if
the directive is rigid. The directive flezible is not currently implemented, but when operative, it
will connect the actual and formal parameters using a simple channel router.

7. Wire variables, Box valribles, and Formal Parameters

As fig. 3 shows, the format of the declarations of wire variables follows the standard Pascal
conventions. Some examples of declarations of wire variables of the types declared as examples in
section 6.1 are given below.

wl foot;
we : fool (4, 6, metal, power);
ws : dotal ( 1, 100, $*lambda);
w4 : bundle 1 .. 100) of bundle (1 .. 100/ of sidpoly;
w5, w6 : polywire (£f4mbds j;
w7 : aidpolywire;
w8 : bundle 1.10, 10 Jof polywire (t 0ambdo);

Each declaration creates a number of objects of the specified type which exist in a certain
syntactic scope.

The main operation that the AL12 user will perform with wires is to pass them as actual
parameters in cell instantiations. As stated earlier, AL12 expects each wire to be used as an
actual parameter in exactly two cell instantiatios, i.e., an actual wire parameter connects two
cells. Incidentally, AL12 will separate automatically any two cells connected by a wire.

The format of the declarations of box variables is quite different from that of other variable
declarations. For instance, the box declaration

box &I, it, IS;

* simply states that the identifers listed may become asociated to boxes during the scope of the
declaration. If such an association occurs, then the Identifier stands for the box associated to it
until execution leaves the scope of the definition. No box can be associated to more than ome box
variable (no aliaes) and so box varisble can be associated to more than one box (Do reassign-
ment).

Box variables are somewhat like labels in a Pascal program, not only in the format of their
declaration but also in the way they are used. The only operation that tan be performed on a
box is to use it in a statement specific to ALl2. This shifts responsibility for their manipulation
to the AL12 run time system.

1 .~



There is an important difference between, the scope rmle for box variables ad wire varn.
ables and the scope rules for all other variables. Pasal-lie variables are gverned by the sm
scope rules used by Pascal, with tells treated is the samse way an functions or procedures. Wires,
ad boxes, on the other hand, are only accessible locally: so wire or box cmn be global to any con-
text. Once again, this is a consequence of our desire to preserve a strict hierarchy of layout ele-
ments.

Another important semantic detail is that the type of my AL12 wire variable bas to be
bound and not parametric. Thus the following wire declwario

dS polywire;

is illegal since it declares dS to be a wire variable of a parametric type without giving actual
parameters for the formal parameters of the type. Such &'wire cannot be created unambiguously
(what is the width of d.") and is therefore banned.

Thus wires of parametric types are effectively restricted to appear fil formal parameters in
cell declarations. In particular, no wire variable other than a formal parameter may be of the
type list, since it is not a bond type.

7.1. Type checking of wire parameters
By declaring a formal wire parameter to be of parametric type, the user deems acceptable as

actual parameters any wires that are of a type derived from that of the formal parameter. These
parameters will become bound (i.e., values for the formal parameters in their type deflition will
he assigned) at run time by inheriting the characteristics of the actual parameters assigned to
them at cell instantiation.?

The type checking used in the parameter passing mechanism just described allows for a
great deal of flexibility. Only certain properties (selected by the user) of the parameters are
checked when a wire parameter is passed. All others are inherited by the formal parameter from
the actual parameter. As an example, if a cell has the following header

cell silly (top k : elystire)

then the following two wires

d1 paLywsre (£eLambda)
dt it lywpre (Eeambda)

can be passed as actual parameters for k. Is this example, the layer ad signal values of the
actual parameters are known to he acceptable at compile time and k will inherit the width of the
actual parameter of the instantiation which will only be known at rn time.

The type host is used to declare formal parameters which are aggregates of wires without any
further restriction. Thus a cell having the followriag header

tThe felloumag argumemt skows that this mockasrnm will ousure that all vim an, boead al s Ui. Wire
accessible as say point im %be oolisof als AL12 prosramuai be silet (1) declared is the comt& scope or
(2) formal parameters (sit. so global wires mst is AL12) Is 11.1. An canhe vim most bed&f boed type.
Is lb. sood can. am actual parameter for oach of tte vim most hae boom poems om the .s! was ias-w
tiated or the procoere or fetiom, invoked The actual parameter grom moft hv boom, bocad ft as induc-
live argumest prosaded *m &be fact that wime local to the outrotll oout be booed) ad therefore the for
meal parameter imbeuated all its umboumd charactorstics from it sad became booed.
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ell eay (left n Nil

can be called with any collection of wire# as arguments. AL12 provides a list constructor to per-
mit the user to create wire aggregates to be passed as actual parameters. The expresion

means "make a list of each of the wire variables listed and then concatenate these lists in the
order given". Because no assignment to variables of type lSI is possible in ALI2, this constructor
can only be used to build actual parameters for cell instantiations.

The arguments of a list constructor may be wire aggregates such u bus or bundle variables.
They are converted into lists by (recursively) taking the elements of the bundle in the order given
by its index type and taking the fields of the bus in the order listed in its type declaration.

The constant nuflwire can be passed as an actual parameter for any formal parameter of a
simple type. When used in a list constructor it will be treated as if it had not been listed. Thus,
nuliire will never be an element of a list. That is,

nuIlwire - nuflist and I , niaire, i a, b

The use of nut/wire and nut//ut as actusi parameters will be a common phenomenon in
ALl2, as we will see shortly.

An aside on the general principles guiding type checking in AL12 is perhaps in order. First,
notice that since we translate AL12 into Pascal, we are at the mercy of the underlying Pascal
compiler for run time type checking on Pascal objects. Second, type checking on wires is res-
tricted to parameter passing, since no assignment to these variables can ever be made.

There are at least two sensible approaches that could have been taken to type checking on
wires. The first one - etrict checking - is to require that the formal and actual parameters be
defined by tae tame type identifier in order to be compatible. The second one - the lenient method
- requires that the type of the actual parameter be identical to or derived from (i.e. defined
directly or indirectly in terms of) the type of the formal parameter.

For instance, consider the following declarations:

wietype
polywire ( w : integer) wire (poly, i, nuslignal);
poly5 = polywre (5);
pw polyuire ( 5);

cell silly (top I: polyuire);
begin ... and;

If strict checking is performed, pw$ cannot be an actual parameter of silly siace the type
identifier of pw5, namely polyS, differs from the type identifier of the formal parameter 1, namely
polywire. In the case of lenient checking, pw could be passed a a parameter to silly since its type
has been derived from that of the formal parameter.

AL12 uses the lenient approach. The experience with the original ALI language (which used
the strict method) convinced us that the extra flexibility afforded by this approach would be help-
ful. For example, any component of a list could be passed as an actual parameter matching a for-
mal parameter of type wire.
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This conflict is similar to the Pascal issue - unresolved is the Pascal Report 191 - of
whether the following declarations

type pi - inteper; tpt - SO1;
vat Vl : 1pl; VS : 8p2;

create two variables of the same type or not. Most compilers seem to resolve the matter in a
lenient manner by assuming that they do.

7.2. AccessIng components of agreate wire types
The syntax for accessing components of bus, bundle and fist variables is given in Gg. 7.

.1 ~ ~ ~ ~ ~~~ire ibo ~b(buss) f Wcsin or eprsoneofargt.ietys
list ... b e Wv fiweto

Fig. 7The syntax for accessing components of &W~epte wire types

AL12 simply borrows the Pascal notation for accessing elements of records and srras and
extends it to buses and bundle# respectively. Here are some examples that use the variable
declarations of section 7 to generate legal wire variable names.

wl.dl
W1 .dldi 41

OI

u,4/ 51/s5/
u'S

In addition AL12 provides two functions that extract the low and high bound of any vari-
able of type bundle. This is necessary because bundles - unlike Pascal arrays - may have sizes
that are determined at run time. Thus, given the variable definitions of section 7 and the type
definitions of section G.1,

ilouindez ( wS) I
• khighindear ( wS 1 = 00

Accessing of elements of a variable of type ii is done via a notation similar to array index-

ing. For instance, if z is a variable of type hot, then

X11o1

denotes the tenth element of s (the first element is accessed by & [ 1 J). All elements of a Not
variable are simple wires.

tf
-- '.... .... " " -" • I - * ", " -' '



The value used to index the list can be an arbitrary integer expression which has a value
between one and the length of the list. The length of a list may be obtained as follows: if I is a
list variable,

will return an integer whose value is the number of elements in L

A. Procedures and functions
The syntax of the procedure and function declarations in AL12 is shown in fig. 8.

~1 As these diagrams show, the syntax is identical to that of standard Pascal with additions to
(1) permit passing wires and cells as parameters, (2) allow declaration of cells local to the prop.
cedure or function, and and (3) allow for separate compilation facilities. Note that functions can-
not return wires or boxes as their result.

A fact only partially explicit in the syntax diagrams is that the only wires and boxes acces-
sible inside a procedure or a function are those that are passed in as parameters: the restricted
block syntax prevents the declaration of wires local to the procedure or function, and no global
wires exist in AL12.

Non-wire parameters may be pawsed using any of the standard Pascal parameter passing
mechanisms (i.e., by reference or by value). Parameters of wire types will always be assumed to
be passed by reference, so no local copy of an actual parameter is ever created. This parameter
passing mechanism for wires and boxes is intended, once again, to preserve the strict hierarchical
nature of AL12 layouts.

The directives forward and external for procedures and functions work exactly like those of
cells described in section 6.2.

0. A112 statements
There are only four ALI2 statements that are not Pascal statements. One of them is used

to instantiate cell definitions, two others to generate placement information and one to indicate tW
AL12 lack of concern about relative placement of pairs of objects. Their syntax is described in

* figg9.

In addition, AL12 has a facility for naming bounding boxes created during execution of a
* program. The syntax of this facility is also shown in fIS. 9.

The rest of this section is divided into five subsections discussing in detal each of these
statements and the box naming facility.

0.1. The "ordered" statement

The syntax of the ordered statement should be obvious from the syntax diagram; its seman-
tics however are peculiar to AL12 and require some elaboration.

During execution of an AL12 program, the run time system maintains an internal reord of
the current bouandinag bas (which may or may not be associated to a box variable). When the first
statement of a cell definition is executed during an instantiation, the current bounding box will
become the boundary of the cell instance, and when the instantiation is completed the current
bounding box will be whatever it was before the beginning of the instantiation.

Bounding boxes are created automatically on entry to cells or ordered statements or by
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explicit invocation by the user of a predefined procedure (see section 10 for details).
Any two bounding boxes will either be disjoint or one will contain the other. The execution

of an AL12 program therefore creates a tree of bounding boxes, with its root being the bounding
box for the cell instance which is the whole layout. In this tree the bot'nding boxes represented
by the descendents of a node v will be contained in the bounding box represented by vi.

The ordered statement uses &he direction of separation given in its header to place all
bounding boxes created in its scope in the order in which they are created along the direction
given. These boxes will be automatically separated along the direction of separation by an
amount equal to the minimum specified for their layers in a design rule table available to ALI2.

An example of a program and the arrangement of boxes it generates is given in fi.10
below.

ordered her do
begin __________

< ondna
< 110uadint box I >

end

Fig. 10
A program fragment and the arrangement of bounding boxes it produces

0.2. The "separate" statement
The statement

separate Itor liox, wirel, ,viref, uireS, boz2, WoS;

will force box) to be to the left of wire), wire) to be to the left of wire!, wirel to the left of wireS
etc. The sizes of the separations that the statement will force between the objects listed will of
course depend on their types and will be obtained from the design rule table. AL12 will guarantee
that any two objects listed will be separated by the minimum separation required by their layer
along the direction specified'

If the statement has the form

separate hfot hen, wtire), wire!, wireS, he:!, bex$ by tsmhds;

then the objects would have been separated by the amount specified. This amount can be an
arbitrary expression. If the value of the expression is less than the minimum separation for any
two objects in the list, a warning will be issued.

trhir involves some subtlety beass %he design rules may sot he trassitive, i e.. is texuample, %he layers of
morelI, moel ad wire9 may be such that separating morel from wirer and separatiag wirer from wie$ do. got
imply that morel is sulaiciatly, separated from wire#

*I j;-A 4
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When a composite object appears in the list of arguments to this command, it is interpreted
as if all its simple components had been listed in their natural order (low index to high index for
bundles, the order in which the fields are listed in the declaration for buses and the obvious order
for lists, all applied recursively).

The direction of separation is interpreted in the obvious way if it is horizontal (hIgr or rot)
or vertical (glob or blot). Diagonal directions of separation are interpreted as the conjunction of

one horizontal and one vertical direction. The value nulldir is meaningless in this statement and
its use will produce an error.

Because wire endpoints must always be at cell boundaries, it is meaningless to separate hor.
izontal wires in a horizontal direction or vertical wires in a vertical direction (hence no wires can
be separated diagonally). This implies that any wire having nullorient as orientation listed in a
separate statement will be assigned either vertical or horizontal as orientation.

9.3. The "complete" commandl

The AL12 system will guarantee that the layouts produced with it are free from design vio-
lations without using the standard design rule checking process. In order to do this, the system
checks the "logical completeness" of the layout description [01. This amounts to guaranteeing
that any two objects at the same level in the hierarchy of bounding boxes of a layout are (I)
either separated (explicitly or through transitivity) by an amount greater than or equal to the
minimum separation for their layers prescribed by the design rule table, or (2) explicitly stated to
be allowed to be at any distance whatsoever.

The complete statement states that its arguments can be as close as necessary without caus-

ing any problem. The syntax of the statement is quite simple. For instance,

complete bi, b62, wl, w, bS;

expresses that the user does not care about the separation between any twu of the objects listed
after the word "complete". If a composite wire variable is given as argument, the above rules are
applied to each of its components.

9.4. Cell instantlation

The general syntax of the cell instantiation statement was given in fig. 9; the syntax for the
parameter lists of cell instantiations are given in fig. 11. Here are some examples of syntactically
correct cell instantiation statements.

create flipped9O shift (data], elk, datal);
create register ( dl, elk#, d. ) ( t);
create rotatedlSO dolt () (kk),

The change in orientation that the user may specify when instantiating a cell is used as fol-
lows. The AL12 run time system keeps at all times a current global orientation. Calls to certain
predefined AL12 procedures have an effect that depends on the current value of the global orienta-
tion. By adding a change of orientation to the cell instantiation statement the user specifies that
uithin the scope of the cell instance, the current orientation should be the dihedral group product of
the orientation before the statement and the dihedral group element specifled in the statement. The
tTlhe completeness checks bare sot been implemented yet

!r.. .. ...
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0142 actual parameters

ah a tu alt ter

£int €o is1tsbctov-

Fig. 1
The syntax of the atual paameter lsts

for a cell instantiation statement

global orientation after the statement is completed reverts to its previous value.

Certain placement constraints are automatically generated by the system during cell instan-
tiat ion.
-1- The actual parameters of the cell are separated: the top and bottom parameters from left to

right and the left and right parameters from top to bottom.

-2- Cell instances that share an actual parameter (i.e., are connected by a wire) are separated
by the minimum separation given in the design rule table for objects having virtual as their
layer. (This separation can be explicitly overrided as explained in section 10).

The parameter type checking performed for the instantiation is the following. On the wire
parameters (those in the first list of arguments), the type of each actual parameter mutt be idtnti.
at to or derived from the type of the eorresponding formal parameter. On the second list of

parameters the checking is identical to that performed by Pascal.
Formal wire parameters exist only inside the cell instance, actual parameters exist only out-

side the cell instance and they ae abutted at the cell boundary. A pictorial representation of this
is shown in fig. 12.

Note that in the case of cells declared rilid, this connection may not be feasible: conditions
outside the cell force two actual parameters to be farther apart than the coresponding formal
parameters in the cell definition. In that case AL12 will generate an error message during the
placement phase [5].

'S."
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Fig. It
How wires are pamd ae cell parmesers

This parameter passing schema has the disadvantage of increasing the total number of ele-
ments in a layout by oftentimes dividing what at int eight may appear to be one long wire into
several small pieces. It guarantees, however, a strict hierarchy among wires of AL12 layouts, by
making it impossible for any of them to straddle a cell boundary.

The parameter passing mechanism for simple wires is extended to composite objects in the
obvious manner. In any given instance, the formal parameter will be a composite object having
the same general structure and identical components as the corresponding actual parameter! The
two objects will be connected by the appropriate method in a component by component manner.

The predefined constants nuluire and nuliet will be used often as actual parameters in cell
instantiation statements. Specifying nufuwire as an actual parameter in a cell instantiation simply
means that the formal parameter will take the value nuiluire. The use of nulliet as an actual
parameter for a formal parameter means that the formal parameter becomes a list with no ele-
ments. The main purpose of these conventions is to avoid forcing the user to declare wires for the
exclusive purpose of passing them as actual parameters to satisfy the type checking mechanisms.
This possibility is not extended to formal parameters of the other two composite types: no way of
passing a bundle or bus of dummies is available in ALl2.

0.S. Name tap for bounding boxes
AL2 contains a facility to attach the name of a box variable to any of the bounding boxes

created automatically during execution of a program. The association is performed by tagging
the statement that creates the box with the keyword named and the box name. The syntax of
such a tag is described in fig. 9, and some examples of its use are given below,

named n : create flippedO ehifl ( dsti, elk, det)
named it : create rotatedlSO doit () (kk)
named newcontex : ordered blar do ...

This facility is akin to Pascal labeb except that only statements that create a bounding box
can be tagged.

tin the cue of bee parameter aud bhadi parameueo with pranete beads tbis mechaaie implies that
copies of the actual parameters will have to be made at re time

A I - i'I !
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10. Predefined procedure and funct1os

We will now describe the predenned procedures and functions of AL12. They, together with
the predefined cells described in the next section, represent the user-visible past of the AL12 run
time system.

The descriptions given here are for general users. Implementation details of the run time
* system can be found in 111].

procedure croveing ( w :wire )

This procedure informs the AL12 run time system that the given argument is to appear after
the last bounding box created and before the next bounding box along the direction of separation.
The argument is enclosed in a pseudo box in order to separate it from other bounding boxes
created in the same scope. It is assumed that the current direction of separation is either horizon-
tal (in which case w must be a vertical wire) or vertical (w must be horizontal).

procedure override ( &I, b! : "any uire ir boz"; d: directionofseparation; k : integer);

The purpose of this function is to override the automatic separation features of AL12 and as
such it should be used sparingly. The function has a header that cannot be expressed entirely in
AL12 since it takes as arguments either simple wires or boxes in any combination.

its behavior is the following. Whatever separation may have been specilled for bi aad It in
the direction given by the third argument is replaced by the one specified as the fourth argument.
Additionally, completeness checks between the first two arguments will be inhibited.

It should be noted that later separations - generated explicitly by the user or automatically
by the system - may undo the effect of this statement. Thus, for it to work properly the user
must be somewhat familiar with the inner workings of ALI2.

{ Not yet implemented )
procedure ckcompletenete ( b : "cell bounding box");

This procedure instructs AL12 to perform a completeness check on the constraints generated
at the top level of the cell instance given as an argument. This check will be performed as soon

4 as the instance is completed during the running of the AL12 program. Appropriate messages will
inform the user of the result. The procedure should be invoked before the cell instance is created.

!f
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function u"dOkof ( w :wre ) integer;

function layero( w :wire ) :layer;

function eignalaf ( ae si) guul;

function orientasionf ( : wire ) wireerientstien;

The values computed by these functions we the obvious ones. Remember that the width
will be in hundredths of microns and that multiplication by lambda is seeded to convert it to )

units.

function minwidlh ( k : 1yer ) integer;

function minoeparation ( kI, kh ayer ) : integer;

These functions access the design rule tables. The irst one gives the minimum thickness of
a wire on the specified layer, and the second the minimum distance between objects in the two
layers given as arguments such that they will not interact electrically.

function lengthof ( z : iot ) integer;

The value returned by Lengthof is the number of elements in its argument.

function Lowindez ( s "any kinlle type" ) integer

function khghindez ( * "any bundle type" ) integer

These functions compute, respectively, the index of the irst element of the bundle and the index
of the last element of the bundle. Note that the headers cannot be expressed entirely in AL12.

11. Predefined cells
There are only four predefined cells in AL12. AN at them awe "mart" in that they do a

large amount of processing. All of them ate "not very smart" is that they will insist that the
problems presented to them have a solution with the center limes of nll the wires gives as parame-
ters meeting at a point. If no such solution is possible - or if the cell cannot led it - a error
message will result.

Given below are the headers of all four cells and short descriptions of what they do. Note
that all four are quite general, and that most users will want to delin simpler versions of them to
facilitate their repeated invocation.

V -. ,- * .
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eell oyetranertor ( Iof stelfl liet;
top source :hot;
right pateright :tiet;
bottom drain : ist)

( implanted : boolen);

This cell constructs an enhancement mode transistor. The following conditions have to be
satisfied by the parameters of this cell. The lists passed as eource and drain have to contain at
least one diffusion wire and at least one of the lists gateleft and lateright must include a polysili-
con wire. Each of the lists must contain wires that run on electrically independent layers!

lnstantiation of this cell results in the following actions. The source of the transistor will be
the diffusion wire in source, its drain the diffusion wire in rain and its gate. the polysilicon wires
in gateleft and laterighi, which will be connected together if both exist. The dimensions of the
transistor are determined by the maximum of the widths of source and drain and the minimum of
the widths of gateleft and lateright. The parameter implanted tells whether the transistor should
be implanted. Any wire parameters having layers other than polysilicon or diffusion will be
electrically connected to one another over the transistor. Such a connection will have no electri-
cal interaction with the transistor. If such a connection cannot be built, an appropriate error will
be generated.

ca1] sYspullup ( left drainleft : Uit;
top source :ait;
right drainright : list;
bottom drainbottom : list )

( ratio : integer);

This cell constructs a pull-up (depletion mode) transistor. The conditions on the parameters
are the following. The source must contain at least a diffusion wire and the drain at least one
wire of any type. Each of the parameters must be composed of wires running o electrically
independent layers.

The effect of instantiating this cell is the following. A depletion mode transistor having the
specified ratio will be created. Its source will be the diffusion wire which is part of source and all
other wires will be connected to the drain of the transistor. If such a construction is not feasible,
an appropriate error message will be generated.

cell tecontact ( I 1: list;
top : liet;
right r lit;
bottom b :Not)

laperbylayer : bolen);

t"ladepeadest layers" refer to layers whes vim es overlap without a% deotncal isteroctioe occammesg. sic
s metal aid polysilcos is aMOS. From the poiet of ve ef ALI2. kyen whose msimum msparstso a e
desip rule table is sey. are ssumed to be idepeadeat.

____________



This cell generates a contact that electrically connects the gives wires. The only conditions
on the parameters are two: (1) that they contain at least one wire among them and (2) that it
may be possible to connect all the wires in them so that their centerlines meet at a point.

The elect of instantiating the call is 0 follows A region that makes the component wires
electrically connected will be created; if the boolean argument is true, the connection will be done
so that wires en independent lager* will be cennected to each ether but ne to wire. en ether layers.
If the connection is not possible - either in a true senme or because of implementation limitations
- an error will be generated.

cell seycro.over ( left I : wire;
top I :sire;
right r wire;
bottom b wire);

This effect of the cell is to connect the top and bottom wires and the left and right wires
separately, with the left-right pair crossing over the top-bottom pair. No constraints are imposed
on the parameters of this cell beyond those explicit in the header. Of course, the layers of the
wires will in general require that contacts be created to change layers, so that the finished size of
the cell may end up being rather large.

12. Final comments
We will close this document by saying a few words about bow we view the task of program-

ming in AL12.

12.1. Conceptual framework

A physical layout is composed exclusively of wires. Thus, wires are the most prominent
objects in AL12. For the purpose of organizing wires into a hierarchy, rectangular boxes have
been introduced.

Certain wire arrangements appear very often in VISI layouts. Although the outward
appearance of these arrangements varies widely, they can be classified into a few groups according
to their function. AL12 forces its user to generate these arrangements by calling predefined cells,
which try to bide the varied appearances but leave the function visible.

After the arrangements of interacting wires are hidden, a layout becomes simply a matter of
routing wires. Until the AL12 library of routing aids has been completed, wire routing must be
handled by the user. The composite types are intended to make this task somewhat simpler:
routing aggregates of wires, rather than routing each wire individually, helps to reduce the routing
effort. The composite and parametric wire types represent our best efforts to balance the need for
flexibility in the type checking with the need for as many consistency checks as possible.

13. Hlerarchles In ALI2 programs

An ALJ2 program is an object in which several hierarchies coexist. Two of them are fami-
liar to any Pascal programmer: the compile time hierarchy, in which objects (wires, Pascal-like
variables, functions, cells, etc.) are defined in terms of one another in a hierarchical fashion, and
the run time hierarchy determined in the case of AL12 by the procedure, function and cell

.4
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invocations. The properties of these two hierarchies in AL12 are almost identical to those of the
corresponding hierarchies in many programming Inguaes. The few differences (i.e., the local
character of wires) need no further comment.

AL12 was designed so that programs will, in a natural manner, produce highly hierarchical
layouts as output. It is this output hierarchy, absent from conventional programs, that is peculiar
to ALl2. Because the properties of this hierarchy are unlike those of the more familiar ones, the
rest of this section describes them in some detail.

The output hierarchy is determined by the execution of two AL12 statements: create and
ordered. Each of these statements creates a new bounding bea in which local layout elements -
including other bounding boxes - are enclosed. They defne a hierarchy which gives the layout
its structure.

The bounding boxes created by each of the two statements differ in a crucial way: while
wires may not straddle the boundary of a box generated 6y a create statement (see fig. 11), the
same is not true of the boundary of boxes generated by the execution of ordered statements.
Thus, wires are subject only to the hierarchy defned by cell boundaries.

Note that the box hierarchy is quite different from the run time hierarchy. For instance,
wires that are local to a procedure will be inside the current bounding box at the time the pro-
cedure is invoked. Two different invocations may produce wires that are in the same box.

All bounding boxes are similar, however, in that they represent a local contezt for the AL12
programmer. Each box has a local orientation with respect to that of the box containing the
overall layout, and a local direction of separation. The way in which these values are derived for
a new bounding box is as follows:

-I- Create statements. The local orientation is the (dihedral group) product of the local orienta-
tion of the current bounding box at the time the statement is executed and the orientation
change specified in the statement. The local direction of separation is nuUdir.

-2- Ordered statements. The local orientation is the same as that of the current bounding box
when the statement is executed. The local direction of separation is the one specified in the
statement.

Note that the direction of separation inside a given box ii relative to the local orientation.
Therefore if a bounding box has a local orientation which is rotated ninety degrees with respect to
the orientation of the outermost box, and its local direction of separation is lior, the result - from
the point of view of the outermost box - is that the box has bot as its direction of separation.
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Total Stuck-at-Fault TestUig by Circuit TransfoamaUlon
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does, however, increase the size of the circuit The
gate count of the modified circuit can be as much

Abstract as. but never more than, double the number of

We present a new approach to the production gates of the original The other two techniques add

testing of VLSI circuits By using very structured some extra circuitry which may also increase the

design for testability, we achieve 100% single stuck- chip area needed. but not as substantially, and may

at fault coverage with under 20 test vectors and no also Increase the delay slightly. While these

search The approach also delects most multiple increases are potentially costly, for many circuits

faults the tremendous advantages of our method will far
outweigh its cost This is likely the case for gate
arrays and other semi-custom logic

1. Introduction 2 Technique 1: Bipartite Circuits

In this paper we present a new approach to the Our method is based on a special class of com-

production testing of VLS: circuits The major binational circuits These circuits are special in

features of this approach are that the set of test that they are easy to test for all stuck-at faultc and

vectors is both small (less than twenty', and yet they are able to "simulate" other circuits quite

independent of circu't size and that no search for efficiently The circuits can be composed of arY.

test vectors is required These features are type of inverting logic gates, that is any logic &ate'

achieved while guaranteeing the detection of all sin- whose output is 0 when all inputs are l's and I wher,

gle stuck-at faults in M05 circuits along w.th many all inputs are O's This includes, of course, any c:r-

other faults Testing can be done without any spe- cuits that consist solely of nsor and navid gates Inm-

cial test equipment, allowing field testing o! V..SI tially we will discuss only combinational circu.,s

circuits to be done as well as production testing Sequential circuits will be addressed later.

Thus. major difficulties of current testing methods
-- the need for large and expensive searches for test 2. 1. Tatability of Bipartite Circuits

vectors with high coverage and expensive test A combinational circuit C is bspartite provided

equipment to apply larcr sets of test vectorQ it is possible to two color its gates black and utc

quickly -- are avoided In f,-.t. the techniqve is well so that no wire connects two gates with the same
suted for implementation on a self-testng chip color and each input wire of the circuit C is an

Little area is needed to store the test vectors and Input to gates from only one color class The color-
fault coverage is guaranteed rath, that probabibs- Ing of gateR in a bipartite circuit also defnr' A

* t~c a! in some self-testing strateries corresponding coloring of wires black (respectc''

Our aprroach is actua'ly the combinaton of white) wires are input only to black (respcct1ic:

three techniques which could be used indepen- white) gates Then outputs of black gates are %hitt

dently There are various penalties associated with wires, outputs of white gates are black wires

each of the techniques The most severe of these is The importance of bipartite circuits stems irc.

the requirement that the circuit be put into a spe- the following which we call the party4 V -ptricpLc
cial form There is a purely mechanical transforma-
tion for this purpose Hence, this requirement does Parity Principle: If wse set all ther black tjn.'
not prolong the design time Also it does not supirs of a bspatite circuit C to the value V and o'
change the depth of the circuit, hence, the circuit's the whil wp ires of C go the vaL e V. thrn afl
speed is essentially unchanged Nor does this black (respectiely whitr) ires take on tlr tal I

transformation add many ncA pins to the circuit It (respecft5elt T)

This principle is the key to the testat",1 c"'
this class of circuits From the principle. %t It,,
the followint theorem about controllabilit. ot 0i,

E *; o-.ed by DA3-A 0400014-8,2-K-0542 output wires of gates

r|



Theorem 1: Owen a bipartite ine,-in Logic The transformation doubles the number of
ccirit, only tuo input vectors awe required to Input and output wires, an undesirable effect if the
force the o sput node of U gates to the values 0 number of pins must also double. The new circuit

and 1. will simulate the original if the black and white ver-
sions of each input agree. For test operation, we

2.2. Universality of Bipartite Circuits want the black and white versions of each input to
be complements of each other. To do this with the

Since it is easy to see that not all circuits are same number of input pins. we use a special input
bipartite, we will now show how to transform any cell It is a piece of combinational logic with inputs
combinational circuit Into an equivalent bipartite z and mode and outputs X6 and xw.. When mode is
one This transformation will at most double the 0, the input pad drives zx and z,, so that
number of gates. However, even better, It is a z = z6 = z,. when mode is 1. the input pad drives
'local" transformation and thus will only increase z6 and z, so that x = =
the area of an Integrated circuit layout by a factor
of at most four (two in each direction). It will also It is even simpler to save output pads Since in
not increase the depth of the circuit at all This is normal operation the black and white versions of
our main advantage over past techniques for 1007. each input wire agree, the black and white versior s
fault coverage [Ha'4, Sa'4] We first present a simn- of each wire in the entire circuit agree. Therefore
ple method that always doubles the number of only one version of each output wire need be con-
gates We then discuss avoiding actually doubling nected to an output pad By eliminating redundant
the number of gates outputs and any wires and gates that compute

results used only by the eliminated outputs. we ca.
Giver any inverting logic combinational circuit, obtain a bipartite circuit with less than twice the

make two copies of each gate of the circuit, label number of gates. In general, it is not computation-
one copy of each gate "white" and one copy 'black" ally feasible to optimally choose which output of
(see Figure la and ib). Also, make two copies of each pair is eliminated so that the resulting circuit
each wire between gates one copy goes from the is minimum size (it is NP-complete [G&82-. Hoi-
black copy of the first gate to the white copy of the is m i sic e s nP-cmplte [Gao Hoi-- - ever, heuristics can be used in an attempt to avo~d
second gate -- a white wire, the other goes from the doubling the number of gates
white copy of the first gate to the black copy of the
second gate -- a black wire. Input wires and output 3. Technique II: Control of transistor faults
w.res are doubled in like fashion so that each black
(respectivel] white , gate has only black (respec- The parity principle for bipartite circuits is a
t'C ,h'c" irput wrcsz and white (respectively very powerful one It allows us to easily set all the
bla,, wires The resulting circuit has wires of a circuit to both 0 and 1. If we could examri-
exactly twice the number of gates of the original ine each wire, say with a scanning electron micro-
art is b;part.tc Note, that the fanout and depth Of scope (SEM) [Ki82. then we could detect any wire

ttra .... crred circuit is the came as that of the stuck-at fault However, such an approach is notcra.r rcal powerful enough to also detect transistor stuck-at

faults a transistor can be stuck without an' wire
also being stuck The problem is that our test vec-
tors for a bipartite circuit do not guarantee tha: a!'.
combinations of input values will occur at any .Lato

s6 black In fact, just the opposite is true the bipart)te te s'
=== strategy guarantees that all "healthy" inputs to a

a gate will be the some value
a V6 Our second technique is the introduction. of' a

controllable gate which when used in a bipar. ..
circuit allows the detection of both wire and tranf. Q
tor stuck-at faults We must further restrict thL'
type of logic gates used in tht circuit to achi 'c

2 h i to this We present a controllab:e nMO5 ncr _at,"
which is a modification of the standard iN!0S nrL-

e6 [MeSO We have also designed a controllab:r nar
but the two cannot be used in the same circuit

V our simple test strategy is to b( achie'ed Thus I',
original bipartite circuit must conta;r onl\ nc,
gates or only nand gates (Inverters arc ach,'"d
by using a ntor or natd with both inputs the annc"
The gates. are designed so that all stuck-a, Ir' -(a) migal gate (b) traformed "gate" tor faults can be forced to occur even as~u-', c'

normal inputs to a gate always take on the sam,
value when the circuit is under test

Given a bipartite circuit of nor gates cactIi ate
Fgurc 1. is replaced by the circuit displased in f iurc 2 'c

| ' .•



have added two new global control lines CI and C2. 4. Bipartite circuits with special gates
These are inputs to every gate of the circuit We now show how to cause any single stuck-at
Clearly, when CI = C2 = I this gate computes the fault to cause an incorrect gate output in a bip,-r-
nor of z and Yi; hence, in this case the new circuit Ute circuit consisting of controllable nor gates This
simulates the old one. Also. for all settings of Cl will give us controllability of all single stuck-at
and C2 except both 0, the gate is inverting with faults. The following table gives the test procedure
respect to the values of z and y Therefore, a
bipartite circuit of such gates will retain the parity
principle for all values of CI and C2 except both 0 Input Settiats Event Cbeck Fo,
On Cl=C2=0, the outputs of all gates should be I. black white C, C, all white wim all black wires

iape imputs

1 0 1 0 1 0

stadaurd Vs Ntr 0 1 1 0 0 1

1 0 0 1 1 0

0 1 0 1 0 1
Modified nor ftr "Stabilty

(M A C11 V (y A C2)

cl #-4 C2

Note that three events, i.e. states of all black and
white wires, must be detected How we detect these

l1ure 2. events is the subject of the next section If all
events are as expected, then we accept the circuit

otherwise, we reject it. Recall that Cl = C2 = I is
There are five active transistors in the control]- ..normal mode " in this mode the circuit simulates

able nor. For each individual stuck-at fault for the original It is interesting to note that we do not
each of these, we give settings for Cl, C2, z, and y need this setting while we are testing for stuck-at
with z= such that this fault causes an incorrect faults
output We first consider the pulldown transistors

( ,  The transistor controlled by Ci (respectively Theorem 2: If a bipartite circuit of controUoblc
C2) is stuck-on: Set C1=C2=0 and z=y=l nor gates is fault free, then it is accepted by thr
Since the transistor controlled by C I (respec- test procedure If the circuit has a uAre or transi-
tively C2) is on, the output is incorrectly to stuck-at fault. then it is rejected a long aF
pulled down to 0. there is at most one fault per gate

(ii The transistor controlled by Cl (respectively
C2) is stuck-off: Set CI= 1. C2=0. (respectively We now wih to tie off one remai. "ng loose end --

Cl=0. CS:=1)and r=:jl Since the transistor faults in the pad cells First, since we drive the cu.-
controlled by Cl (respectively CV, is stuck off, puts to 0 and 1, any faults in the output pads are
the output isincorrectly pulled up to 1 easily detected. Thus, it only remains to detect

(1i', The transistor controlled by z (respectively faults in the input cells The easiest way to handle

y) is stuck-on: Set Cl=l. C2=0. (respectively this is to introduce a fourth event all black arc
Ci=O. C2=1 , and z=y=0 white input wires are equal to 0 Note, this eve-'"

(:vl The transistor controlled by z (respectively only concerns itself with the input wires soK al.

y) is stuck off: Set Cl= I, C2=0, (respectively possible values of input wires are observed us,-;

CI=C, C2=1) and z~y=l some event

The pullup transistor is depletion mode with its 5. Technique M: Observing Events

gate tied to itc source Therefore, it it should Clearly, If we could probe internal nodes A:',"

a'v.avs be or: A stuck-off fault can be detected by say a SEN. then events would be easy to dctcc:

sett:ng Cl=0 and C2=0 The output should bc However, we wish to avoid using such equipmcr:

pulled high but w.ll not be if the pullup is stuck ofT and hence will add additional logic to the ci'.,:

Not,- ho'%c%:r that in this case if the fault occur. solely to detect the four events we must obserc

tc output is left floating Thercforc. it must hav, This additional logic is quite simple and take- l-

prev.ou.<y had the value 0 to be sure such a fault Is relatively little area Such observation logic cou!c

drcctvJ Appropriate ordering of the tests above be added to observe any set of events but thc

ca- Insure 0.s amount of logic needed is proportional to thc
number of distinct events observed Thus the kr-
to our success is the need to observe on]) four

I . ' .



! +
different events during our testing sequence, the basic techniques. Some work has been done on

Any event really consists of two sets of wires: all more efficient implementations, but optimal design
wires in one set must take on the value 0 and all of the test circuitry remains an important issue
wires in the other set must take on the value I Another important area for further investigation is
Clearly, we can do this detection simply by using the effect of our approach on the placement and
large fan-in or gates for the 0-valued set and large routing of gate arrays. Since our transformation is
fan-in and gates for the 1-valued set. The area local, we expect that the usual placement and rout-
needed for these gates is quite small. Each gate ing algorithms can be modified to take advantage of
could be physically distributed through the circuit. this.
As a practical matter, we would use a tree of rea-
sonable size fan-in gates to avoid great delay penal- To control the cost of our method, it may be
ties It is important to note that the speed of this possible to give the logic designer more feedback
circuit is not critical since it only affects how fast during the design process One of the nii - fet-:c
testing can be done. When only a small number of of our method Is that the test for being bipartite istest vectors are used, as in our method. the total "linear time" and so can be done very quickly

testing time is very small. It is also important to Thus we can constantly advise the designer on the
note that if a single fault occurs in the total circuit, current "cost" in extra gates of his design In th.5
we may call the "real" part of the circuit faulty way the designer will perhaps be able to make inte-
when it is good because of faulty observation logic, ligent choices about logic alternatives in a way that
but we will not call it good if it is faulty Many" mul- will aid the circuit's testability
tiple faults will also be detected In particular, a
fault in a transistor of a large fan-in gate will mask Mknowledgements
a fault in the "real" circuit only if the fault in the We would like to thank Stuart Daniels and Ken
"real" circuit must be detected through the bad Anderson of Siemens Corporation for essential corn-
transistor ments during the development of this method

6. Sequential Circuits References
We have presented our method for combina- [Be82] Beresford, R., "Technology Update Sem-

tional circuits Of course, it can be used with scan iconductors," Electronics, Vol 55.No 21.
patl" tc test sequential circuits It is also poss:hic Oct 20, 1982, pp 118-125
to use our method to directly test sequential cir- [Br76' Breuer, M A., Friedman, A D., D agnosis and
cu'tc withoul any scan path Just as we require a Reliable Design of ligot.1 Systems Co-r-
modified gate and input pad, this extension requres puter Science Press (Potomac, Md , 1976
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ever. for sequent.a, circuits, our method requires [Ha,4: Haves. J, "On Modifying Logic Net-crk. tc
conistant time H4 HvsJ_'OMoiynLoi\ewrttImprove Their Diagnosability", IEEE Tran-

7. Conclusions sactions on Computers, C-23, No 1, Jan
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test:ng of MOS comrbnational circuits which is the [Ho83" Hodges, D., Jackson, H , Analys-s arid Desirg
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use of observation logic to detect a small number of [Ki82 Kinch, R .Pottle, C . 'Automatic Tes, GC--
events This approach trades off real estate for eration for Electron-Beam Testing of %1S'.
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1. The bauic Idea
This paper argues the case for a machine with bilhione of bytes of primary storage. Our

main thesis is that such a machine is justified by the importance of certain applications in which
memory bound compufation# occur uaturally: VLSI design, Al and data bases, to name just three.
For these computations, a ciamic Von Neumann machine with a relatively slow (1 to 10 WMPS)
processor and mmssive amounts of physical memory, would vastly outperform all supercomputers
currently being researched and would be, in addition, far easier to program.

2. Impact of proposed supercomputers on memory bound computations

Research efforts in the supercomputer feld have tended to concentrate at the computational
intensive end of the spectrum, disregarding the memory intensive applications altogether. The
typical supercomputer being investigated today is a multiprocessor having up to one million pro-
cessors, capable of executing up to billions of operations per second and yet have as "little" as
sixty four megabytes of physical memory.

There are many applications for which such a machine would be limited by its disk to
memory transfer rates. For example, consider a database application in which the size of the
data is four gigabytes and the access pattern to records essentially random. A machine with one
hundred megabytes of memory can be expected to generate a page fault in just about every access
to s new record, rendering its potential processing power meaningless as a measure of its perfor-
mance.

More precisely let us compare such a supercomputer with one hundred megabytes of
memory and a MMM with four gigabytes of memory. Further lets us assume that the supercom-
puter is "infinitely fast" while the MMM runs only at oae MIP. Of course the supercomputer will
vastly out perform the NMI on compute bound tasks. However, assume that the supercomputer
creates a page fault every f instructions on some large task. Then on this task the MMM still
computes at its one MIP rate while the supercomputer is reduced to computing at about 100f
instructions a second ( we assume that the supercomputer's disks are capable of about 100 page
faults a second.) Clearly iffis small enough the MMM will be faster than the supercomputer: if f
is about 100 then the speedup is 100:1! While not all tasks will cause the supercomputer to
"thrash" in this way, we believe that there are a large collection of important tasks that will
cause such behavior.

S. An obvious solution?
One can argue that the MMM problem has not been investigated because it has an obvious

solution, namely connecting all the memory desired to the chosen processor by a very long bus.
This As, however, a far more problematic proposition than it seems. Given current IC densities, a
four gigabyte memory requires about one thousand devices (memory cards) on a single bus. Even
with clever arrangements and higher densities, hundreds of devices per bus seem unavoidable.

Commercial busses are simply unequal to the task. Those that are part of complete com-
puter systems are usually very well matched to the overall system design and can only support an

n hu trm mm[] mm mmm ummmm mnimI •• mmllllmm , ,".
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inadequate amnount of memory. Standard boose hardly fare any better; most have a lOmit on the
number of devices attached to them of only a few es, while we need an order of magnitude
more.

The deuign of a special purpose bus £o support that many devices is no trivial matter either.
There are two factors that will adversely affect the acces times as a bas with many devices.
First, the capacitance elfects may cause sigailat delays. Second, kt may be virtually impossible
to operate all the devices synchronously: The auynchrony will in turm lead to more complex bus
protocols and, once again, to greater secem times.

Thbe truth is that the "obvious" way to build a MMM disslves rapidly into a host of
difficult questions about bus behavior and machine architecture.

4. Archltectuesi solutions to the 141.0 problem
We will sow describe in some detail an architecture for a MMMN called the Gkoal Machine.

Our intention is not so much to present a 'conclusive solution", but to demonstrate that clever
architectures may lead to better 11M4Ns than brute force methods.

A schematic description of the GAM. Machine is shown is IS. 1.

Fig. Is The GheeI Machine

L The machine consists of a collection of standard Von-Neumann machine&, interconnected by
a system-wide (or global) bus that permits the broadcast of values from one machine to all the
others. Each individual machine has its own prmcsso and local memory connected via a local
bus. The gateway of each machine to the global bus is a #heat device convected both to the
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system bus sod the local bas.
The individual processors share the am address spate. This adds... Pte is distriute

among the local address spaes a follows (wee IS. 1). A small fraction of1k thglobsI address space
is replicated is ach local address space; the remainder of the sytein address spate is covee in a
mom overlapping smner by the local address pwa. A phoeI device connected to sath local bus
is responsible for servicing requests that involve nm local addresss.

All processors execute the same program, which is loaded into the replicatedl portins of the
system address space. As long as that program references locatUon s the shared sehspace all pro-

esoswill execute in lockstep aod no commmnlcaio through the yses bus will take place.
Suppose now that a reference to am address outside the shared subspate occuas fot the Iret

time. The address involved will be smapped to the local memory of some machine m, so the pro-
cessor of that machine gets an immediate response via its local bus; the thee! of M - realizingI that a reference to a son shared address kms occurred - reads the response off the bus said broad-
cuats it over the global bus; The #hest# of all the other achises - realizing that a son local
reference has been generated - wait for she ace datum to appear as the global bus ad use it as a
response to their reust.

During this operation, processor m "takes the lead", i.e., gets ahead of all others. It will
continue execution ahead of the rest as long as the common program generated requests for
addresses that are local to PL. eawhile, all other processes continue execution at the same rate
as mn, with their #hoses supplying the data they seed by reading it from the global bus. These
"trailing" processors, will be behind the leader by an amount of time equal to the one-way delay
time from #boot to #host through the global bus.

When a reference to an address local to another machine, a, occuan, the #hoot of us will wait
until the next data wives on the global bus (sent by a's #host) and use It as the response. Now -
as long as references local to a continue to occur - nfl machines will execute at their full rate
with n slightly ahead of the rest and furnishing them with the data they need through the global
bus.

A simple example of this behavior is depicted in IS. 2 below.

AhakUS&4M S4J;,kj AJq
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(p . t Ezeution in a caseMahn

This solution has the following advantages:
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.!- The local machines ae conventicnal architectures. They may be used independently when
the NOMNM is not seeded.

-2- Tbe global architecture can be easil' made transparent to the user program mad the task of
distributing the global address space to the spaces of the individual macbines can be
relegated So a sophisticated loader. The eci ems programs could rum om a ceevestioaal
Von Neumann machine (assuming some virtual memory managemn) ad in the Gost
Machine. Hence the GAost machine will be m harder to program thas a canventional
machine.

-3- vk-mory references in the Ghost machine cam be serviced in half the time (or less) that they
would require in a conventional MMI. In a conventional machine, the address must be
transmitted on the global bus and the referenced datum must be transmitted back. In a
GAost machine data will either be available through the faster local bus or be provided by
the ghoot. Thc data seeded by the taver appears without being requested, avoiding addres
tranmiscion delays. If the requested word canses a "lead change", the word will be avail-
able in approximately the time seeded to broadcast a value over the global bus. If no lead
change occurs, the delays will be even shorter.

-4- The rate of execution - except for pauses for "lead changes" - of the whole machine is the
same as that of each of the individual machines. The "lead change" pauses will last
Spproximatety as much as the time needed to broadcast a value o the global bus. This
time should be much smaller than the time required to service a page fault on an ordinary
machine. (Lead changes will also be considerably less frequent than page faults).

-- The Chost machine will reward "locality of reference" by minimizing "lead changes" in pro-
grams that exhibit it (the fewer the lead changes, the faster the Ghost machine will exe-
fute). Locality in this context, however, has a wider meaning, as any two references local
to the lead machine an equivalent, and any one machine may have as much as sixty mega-
bytws of local storage.

Obviously, these gains come in exchange for duplicated processors and memory.

It

A
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ABSACT

7"wo new sets of conditions are derived that make one-dimensional
bilateral arrays of combinational cells testable for single faults. The test
sequences are preset and, in the worst case, grow quadratically with the
size of the array. The basic cell can operate either at the bit or at the
word level. An implementaion of FIR filters usin 9 (systolic) one-
dimensional bilateral arrays of cells, 1uhich can be considered combina-
ional at the word level, is presented as an example. A straightforward

generaliization for the two-dimensional case is made, a systolic array
used for matrix multiplication is presented as an example for this case.

1. INTRODUCTION

The use of iterative arrays of identical cells in current VLSI technol-
ogy is becoming more frequent due to their many advantages, like ease of
design, fabrication and testing Moreover, many problems are efficiently
solved with the use of "systolic arrays", which are highly iterative struc-
tures operating synchronously. Digital systems of iterative arrays have
also been suggested in the past in several places in the literature, (refer-
ences can be found in [2]-[7]) mainly for realization of Boolean functions
in asynchronous mode. An important problem associated with these
structures is fault detection; that is, derivation of test input sequences to
the array, such that the output sequences of the normal and any faulty
array (under some fault assumptions) are different. Fault detection in

' T - work wa supported in part by NSF Grant ECS-812O37, U. S. Army Rearch-)urharn
Grant DAAG29 2-K-O0O, and DAR1A Contract N00014-62-K-049
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maps the one-dimensional synchronous bilateral array into a two-
dimensional asynchronous unilateral array. Figure 2b shows the inputs
and outputs of a cell in the space-time transformation according to the
notation described above.

If Lo is a subset of L, define gR(r, z, Lo) = Ro, where RD is the set
I g [9(r. z. l) 11 EL0 . If Ro contains just one element r', we write
gR(r. z, L0)= r' (instead of Jr'J). Similarly for gR(Ro, z, 1), gR(r.Zo, L),

and similarly for gL.

If r ER, define R, = R-r . Similarly Li = L-111.

An input or output labeled r/R o, where RoCR, and r does not belong

to Ro. means normal input or output r, and faulty input or output some
member of Ro. (If Ro contains just one element r', we write r/r').

We also define gR(rl/r2'Z, L) = r'i/r'2 if gR(r1 z, L) = r' and

gR(r2, z, 1) = r'2 and r, i r2, r', 4 r'2- We define similarly

g (r, z, 1 /L2 ) = L1/'" 2 , and similarly for g1 .

Another definition is: gR(r/Ro, z, L) = r'/R'0 if gj(r, z, L) = r', and

gR (Ro, z, L) c R'o. Similarly for gR(r, z, I/LO) and for g1L. (Note that
gR(r/R o, z, 1) is not uniquely defined, since R'0 may be any superset of

gR(RO, z, 1).)

For simplicity r/R, will sometimes be written as r/.

3. ONE-DIMENSIONAL ARRAYS

Gray and Thompson [9] derived the following sufficient condition G
for testability:

There exists an a E Z such that for every r E: R, for every 1 E L

G 1: g (r, a, 1) = ,(r) and

G2: gL(r, a, 1) = v(1)

where A is a permutation of R (independent of 1) and v is a permutation
of L (independent of r).

Note that the right output depends only on the left input, and the left
output depends only on the right input. Fig. 3 illustrates the above condi-
tion.

Let V be the following conditions:

C1: for every rER there exist r'(R, ZEZ such that gR(r', z, L) = r.

...I ' 1 -
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unilateral arrays has been studied extensively [1]-[?], [10]. Results for
bilateral arrays have appeared in Gray and Thompson [9] (for one-
dimensional arrays of combinational cells) and Sung [8] (for two-
dimensional arrays of sequential cells). However, the sufficient condi-
tions for testability derived there appear more restrictive than neces-
sary. In this paper we first examine one-dimensional arrays; two sets of

j sufficient conditions for testability are derived, which improve upon the
condition reported in [19]. Testing timne, however, in the worst case
increases from linear to quadratic (in the number of cells). A straightfor-
ward generalization to the two-dimensional case is made next.

2. ASSUMPTIONS, DEFINITIONS AND NOTATION
Figure Ia shows a bilateral array of combinational cells. The basic

cell is shown in Figure lb. At each timre unit it produces left and right
outputs, depending on its left, right and vertical inputs. Let p be the
total number of cells in the array.

Let R be the set of right-moving signals, L the set of left-moving sig-
nals and Z the set of vertical cell inputs. (The absence of vertical cell
inputs is equivalent to the case I Z Ij1.

Let gft:RxZxL-R be the right-moving signal mapping, and
UL :RxZxL -#L be the left-moving signal mapping.

A fauLt in a particular cell alters gR. 9L. or both for one or more
arguments (r, z, 1). However, we assume that the cell remains combina-
tional.

We assume initially that to test a cell completely, we must apply all
input combinations RxZXL to that cell. This assumption makes testing of
the cells independent of how they are realized. We shall examine later the
case when only a subset of RXZXL suffices to test the basic cell.

We further assume that to test the array completely (for single faulty
cells), we must test completely every cell in the array.

We say that an array is testacbte if any input combination can be
applied to any cell of the array and any fault can be propagated to an
observable output of the array ([1]).-

The left, vertical and right inputs of cell j at time t are denoted as
ri (t), ui (t), 0 (f ) respectively. Hence, cell j at time t+lI will produce left
and right outputs Li -1(t +1), 0 * I(t + 1).

Figure 2a shows the space-time transformation of the array in Fig.
Ia. Each row represents the array at each time unit. This makes the
operation of the array easier to visualize. Note that this transformation
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C2: for every LL there exist L'EL, z EZ such that gL(R, z, V) = 1.

01: for every r , r2 ER with r I r2 , there exist LEL, ZEZ, such that
9R(ri, X. 1) 71 gMr.Z. z, ).

02: for every L1 .Lz1 L with 11 # 12, there exist rER, zEZ,such that
g ,(r . . 11 i gL(r .a , 12).

Figures 4a and 4b illustrate conditions C1 and C2, Figures 5a and 5b

illustrate conditions 01 and 02.
Conditions CI, CZ can be thought of as corntrottahYity conditions, and

conditions 01, 02 as obserubitity conditions.

Condition Cl simply states that if we want to get a particular right
output r, all we have to do is to apply vertical input z and left input r', no

matter what the right input is (see Fig. 4a). Condition C2 is the symmetr-

ical version of condition C1. Condition 01 states that if we want to distin-
guish between right inputs r, and r 2 , all we have to do is to apply vertical

input z and left input L, and observe the right output. Condition O2is the

symmetrical version of condition 01.

V is a broader set of conditions than G, and in particular GI implies

Cl and 01, G2 implies C2 and 02. We elaborate further on that: Let us

construct a digraph GR = (R, ER) with node set R; arc (rI , r2) E ER and

is labeled z if and only if gR(ri, z, L) = r2 . This means that if we apply r,
as left input and z as vertical input, we get r2 as right output, no matter

what the right input is (Fig. 6). We define in a similar manner the "left"

digraph GL = (L. EL). Condition G states that there exists a label a such

that there are exactly I RI arcs of GR and I LI arcs of GL labeled a, and

these arcs form a set of vertex-disjoint cycles. Conditions Cl and C2

state that every node of G and GL has a predecessor. Condition 01 (02)

states that for every pair of distinct left (right) inputs rI, r2 (L, 12) there

exist a vertical and a right (left) input that produce distinct left (right)

outputs (Fig. 5).

tyWe can prove now that conditions V are in fact sufficient for testabil-

Teworerm I. Any bilateral array of combinational cells that satisfies

conditions V is testable for single faulty cells.

Poof: Assume we want to test cell j for inputs (ro. so, 10). First we

have to solve the contollability problem, that is we have to apply input
(ro,. 0o, 1) to that cell by controlling the external inputs of the array.

Then we have to solve the observability problem. that is we have to pro-

pagate the faulty outputs of that cell to the observable outputs of the

array; this propagation should be such that the observable outputs areAt _____



different from the expected under the presence of faults.

Let j(p+l)/2. (The case j<(p+l)/2 is treated similarly). These
test inputs will be applied at time t =j if the test begins at time t = 1.
Hence r0 = rJ(j), 10 = L(j), zo = zJ(j) (see Fig. 7, shaded cell). First we
must make the left input of cell j at time j be ro = rO(j). Condition C1

guarantees the existence of ri-,j-i), zi-1 (j-l) such that rLji) =
Ue(T'-1-), z#-(j-l), L), hence it suffices to apply rJ'(-1),
z-U(j-1) as left and vertical inputs to cell j-1 (at time j-1). Induc-
tively, apply r- 2 (j -2). zi-2 j -2) to cell j -2, etc., until we reach the left-
most cell. Similarly, to apply 1o = (j) as right input to cell j, we find
L''(j-1), zJ 1'(j-1) such that tiUi) = 9(R, z+ 1(j -1), L' 1Uj-1)),
according to condition C2. We proceed inductively in the same way, until
we reach the rightmost cell. If j:(p + 1)/ 2 the first test input to the right-
most cell (p) will be applied at time 2j--p-1. This way inputs r o and to

will be applied simultaneously to cell j (at time j). This solves the con-
trollability problem.

Assume that we want to test for the right output fault r/r; that is,
the normal right output is r and we are testing if we get r" instead.
According to our notation r = rj+1 U+1). Let P+I(j+i) = r. Condition 01
guarantees the existence of a vertical input zj 1 (j +1) and a right input
Lj 1 (j+1) such that 9R(ri+'(j+1)/Fr'(+l), zi'1(j+1), L 1 1 (j+I)) =
'ri 2 U+2)/P+2(j+2). l 1 '(j+1) is obtained as left output of cell j+2 in
the same way that 03(j) was obtained as left output of cell j+i (using
condition C2). Thus the faulty right output r/ is propagated to the right
output of cell j + 1. Inductively, this is propagated to the observable right
output of the rightmost cell. Similarly, using condition 02, we can simul-
taneously test for the left output fault I/1, propagating it to the left out-
put of the leftmost cell. This solves the observability problem.

The above procedure is repeated for every r in R,, I in 4; then we
have tested cell j for input (r o. z o, 1o). When this is repeated for every

(r, z, 1) in RXZxL we have tested cell j completely. u

The testing time shown in Fig. 7 is p + 1. Hence to test cell j for input
(ro, xo, o) we need (p + ).maz (I R ,IL I) tests, and to test cell j corn-
pletely we need (p+).ma(IRI,IL)IR. Z I.ILI tests, and to test the
entire array completely we need p. (p + 1).m= (IR 1, 1L I). IR I- IZ I IL I
tests.

From Fig. 7 it is clear that if some cell is used for a specific test at
time t, it is never used at time t + 1, hence the obvious pipelining reduces
the testing time to one-half of the above number of tests.

.4 . r.
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For comparison, if condition G holds, testing time is
O(p .IRi IZI.ILl).

Although condition V is weaker than G, it is still a very strong condi-
tion in that it requires the existence of z inputs for which the right-
moving signal is independent of the left-moving signal and vice versa.
However, the very purpose of making the array bilateral suggests depen-
dence of at least one of the right or left-moving signals on both the right
and left-moving signals. As an example, consider the case Z I = I. Then
we basically have no z-inputs, and if conditions Cl and C2 hold, the array
degenerates to two unilateral arrays, one with signal flow from left to
right, and one with signal flow from right to left. Anyway, the case might
be that for all z, the left output depends on both the right and the left
input, so condition C2 is violated. We derive a set of sufficient conditions
for this case. We shall keep the assumption that for some z the right out-
put depends only on the left input. Naturally, this will lead to a more
complicated set of conditions.

Let W be the following set of conditions:

C1: for every rER there exist r'ER, z2EZ such that
gR(r'/ , z. L) = r/0.

C2: for every LEL there exist L'EL, z EZ,r'cR such that gL(r', z, V) = L
and gR(r'/ , z, ') = r/.

01: for every r E:R there exist zEZ such that gRr/ , z, L) = r'/.

02: for every 11, 2 EL with l 0 12, there exist rER, zEZ such that

,gL(rz, LI) 7 GL(r. z, L2).

Figures 8a and 8b illustrate conditions CI and C2, Figures 9a and 9b
illustrate conditions 01 and 02.

Conditions CI, C2 can be thought of as controUability conditions, and
conditions 01, 02 can be thought of as obseruability conditions. Condi-
tion Cl (of W) is a stronger version of condition CI of V in that it not only
requires that if we want to get a particular right output r we can apply
vertical input z and left input r', no matter what the right input is, but
additionally, if we apply some left input different from r', we get a right
output different from r. But still this condition is weaker than Gl.

Condition C2 states that if we want I as left output, all we have to do
is to apply (r', z, 1') (notice that it matters what the left input is, whereas
in CZ of V it does not), but additionally, if instead of r' we apply some
other left input different from r', we shall get a right output different
from r. Notice that if this additional restriction is removed, condition C

4-
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holds trivially if we naturally assume that every output is obtainable for
some inputs. Notice also the asymmetry between C1 and C.

01 is again a stronger version of condition 01 of V, in that the latter
required only the propagation of rI/r2 to the right output for some z and
1. but 01 of W requires the propagation of r/ * for some z, no matter
what I is. But still this condition is weaker than Gi. (In other words G1
implies C! and 01.

Finally condition 02 is the same as condition 02 of V.

Conditions W hold if 1) the basic cell just transmits unaltered the
right-moving signal, 2) gR(R,Z, L) = L, 3) for any two different right
inputs there exist r, z that produce two different left outputs. This is a
very reasonable set of assumptions.

We can prove now that conditions W are in fact sufficient.

Theorem 2: Any bilateral array of combinational cells that satisfies

conditions W is testable for single faulty cells.

Proof- Assume we want to test cell j for inputs (r0 , z 0 , 10). These test
inputs will be applied at time t=2p -j if the test begins at time t =1.
Hence ro = r'(2p-j), L0 = L(2 p-j), Zo = z3(2p-j) (see Fig. 10, shaded
cell). First we must make the left input of cell j at time 2p -j be
r o = r'(2p-j). Condition Cl guarantees the existence of rI-1 (2p-j-1),
z'-1(2p-j- 1) such that r'(2p-j) = gg(ri-'(2p -j-l), ze- 2 (2p-j-1). L);

hence it suffices to apply r'-'(2p-j -1), z'- 1 (2p-j -1) as left and vertical
inputs to cell j-1 (at time Zp-j-1). Inductively, apply r1 -2 (2p-j-2),

zj- 2(2p-j-2) to cell j-2, etc.. until we reach the leftmost cell. The
difficult part is to apply right input L0 = L(2p-j) to cell j. Condition C2
guarantees the existence of r'* 1 (2p-j-1), 134"(2p-j-1), z*''(2p-j-l)
such that L0(2p-j) = 9g(rJ I(2p-j-1), zJ*'(2p-j-1), Lj 1 (2p-j-1)),
and gR(r' 1(2p-j-l)/ *, zj+'(2p-j-l), L '2 (2p-j-l)) = rI+(2p-j)/

Hence it suffices to apply input (ri+1(2p-j-1), Li'l2P-j-1),
zj+'(2p-j-1)) to cell j+1 (at time 2p-j-1). Left input r*''(2p-j-1) and
righL input J 1'(2p-j-1) can be applied in the same way we applied
inputs r o and L0 to cell j (using C1 ). This solves the controUability prob-

lem.
We have not yet used the strong part of condition C, namely the fact

that g?(r'/ 0, z, L') = r/ 0. The usefulness of this will become apparent in

the sequel.

Assume that the normal right and left outputs of cell j (on input
(r 0. z o, L0) are r and I respectively; assume that we test for the error 1/1
in the left output. We can simultaneously test for all errors r/* in the

, .7NT-',--o
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right output. Propagation of the error 1/ to the leftmost output is done
in the same way as in the proof of theorem 1, using 02 and C1.

We have not yet discussed the "southeast" portion of Fig. 10, that is
the portion below the right-to-left diagonal that passes through the
shaded cell. First we have to propagate the fault r/ * to Lhe rightmost
output. But cell j may fail to function correctly at any previous time, so
for instance (see Fig. 10) cell j on input r1 (2p-2m+j) (for some m in
SJ+l, j+2.....p1), may not output ri*1(2p-2m+j+1), so cell m may not
output Lm-(2p -m + 1), hence cell j may not receive to as right input, and
due to a fault, it may output the expected outputs L, r. Under this worst
case scenario the two faults will be masked and we will get the expected
observable outputs L°(2p) and rP+1(3p-2j+l) (assuming j!(p+l)/2).

This is avoided as follows:

First, to propagate the fault r/ to the rightmost output, using con-
dition 01 we find zJ (2p-j) such that cell j+2 on input ri+2 (2p-j)/
outputs r 1 +3(2p -j + 1)/ *; inductively we propagate this fault to the right-
most output (rP(3p-2j-l)/ ). Similarly, we propagate the fault
rl(2p-n)/" *for m=j+lj+2 .... j. Notice that the potential previous
fault r' 4 1(2p-2m +j + 1)/ of cell j has been "automatically" propagated
to cell m as r m (2 p -m)/ * by the strong part of condition C2 "when" we
were solving the controllability problem. So, if cell j outputs something
different from r+ 1(2p-2m+j +1), we shall detect it at the right-most out-

put by getting something different than the expected rP+1(3p-2m+ 1).

The above procedure is repeated for every I in Ls; then we have
tested cell j for input (ro, z0 , 10). This is repeated for every (r, z, 1) in

RxZxL; then we have tested cell j completely. U

Remark: If we have already tested cell j for inputs
(r'(2p-2m+j), z'(2p-2m+j). L) we know that r'(2p-m) will be the
correct input to cell m, so propagation of the fault r m (2p-mn) will not be

necessary.

The testing time shown in Fig. 10 is 2p. Hence to test cell j for input
(r0, zo, t0) we need 2p- I L!) tests, hence to test completely cell j we need

2p ILj 2-jR I.IZJ tests, and to test completely the array we need
2p21IL1 2.IRI.IZI tests.

Again, the obvious pipelining reduces testing time to one-half of the

above number of tests.

When I R i, i Z !, I L I are large, the number of tests may be prohibitive.
This happens when the basic cell operates at the word level. But in that
case it may be possible to drop the assumption that to test a cell

.4. . C



completely we must apply all input combinations; however, we must then
of course have some information about the realization of the basic cell.
Assume that we have somehow obtained a set of tests that suffice to test
the basic cell. Each test is of the form: (r, z, 1), (), ) where (r, z, 1) is
the input and (, i is the faulty output. For example, assume we adopt
the stuck-at fault model [14] and a certain line is tested for stuck-at-i
(S-A-i) by applying inputs (r, z, 1); the output is (;. . if this line is indeed
S-A-I. Let the number of tests be T. Then, if condition V holds, the
number of test inputs is easily seen to be p.(p+l).T since every cell
requires p +1 time units for each test t in T. Similarly, if condition W
holds, we need 2p 2 . T time units.

Parthasarathy and Reddy [10] introduced the notion of one-step tes-
tability for one-dimensional unilateral arrays. We extend this notion to
bilateral arrays as follows:

Definition: A cell in a bilateral array of combinational cells is one-
step testable for input (r, z, t) if the number of time units needed to test
this cell for input (r, z, t) is independent of IJ, L.

Definition. A cell in a bilateral array of combinational cells is one-
step testable if it is one-step testable for all inputs (r, z, L) in RxZxL.

Definition: A bilateral array of combinational cells is one-step
testable if all its cells are one-step testable.

If an array is one-step testable the time needed to test it is greatly
reduced since, if the expected output of a cell under test is, say, 1, it is
not necessary to apply different test inputs for each fault L/7, IEL- Ij.

The following conditions are useful for one-step testability:

OSTI: for every rER there exist LEL, z Z such that
9R(r/ Rr, z, 1) = r'/ R~r..

OST2: for every LEL there exist rER, z EZ such that
9L(,, z, 11L) =VI'/.

Figures 1 la, 1 lb, illustrate these conditions. Let OST be conditions
OSTi and OST2 together. Let V-OST (W-OST) be conditions V(W) and
OST together.

It is easy to see that V-OST is equivalent to conditions CI and C2 of
V, OSTI and OST2. (01 and 02 of V are implied by OSTI and OST2.) If
V-OST hold, instead of testing for the fault r/; for each r in R-r I as in
the proof of theorem 1, we can test for the fault r/ R,. Thus, to test cell
j for input (r0, z0, 10), we only need p + 1 tests. Therefore, if we want to
test all cells for inputs a subset I of RxZxL, we need p.(p +I). If tests.
(If Z RxZxL we save a factor of marRJ, LI).)

,~~~ . . ,
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W-OST is equivalent to conditions C1, C2, 01 of W and OST2. (Con-
dition 01 of W is stronger than OSTI, that is 01 of W implies OSTJ; OST2
implies 02 of W.) Similarly as above, by testing for all left output faults
simultaneously, we need 2p2 . II tests if we want to test all cells for a sub-

set I of RxZxL. (If I = RxZxL we saved a factor of IL1.)

Remark: The above results are easily generalized for the case when

gR, 9gL are not identical for every cell, that is we have g9, gj for the i-th

cell; it suffices to replace the conditions for gR, gL by conditions for gyk,
g. for every i.

Application.

Figure 12 shows the basic cell of a two-way pipeline systolic array

used !or FIR filtering [11],[12]. For this cell we have IZ 1 (no z-
inputs), gR(r, 1) = r, L.(r, L) = L+a.r. This array can be considered as a

bilateral array of combinational cells at the word level (the basic time
unit is the time required to produce the outputs). It easy to see that con-

ditions W-OST are satisfied. (Here we have the case when gR, gL depend
on the cell.) Therefore, if a subset I of RxL suffices to test the basic cell,

2p 2 I !1 tests suffice to test the array.

4.TWO-DIMENSIONAL ARRAYS.

Figure 13a shows a two-dimensional array. The basic cell is shown in

Fig 13b. In addition to gR, gL, we now have gz which is the vertically-

moving signal mapping RxZxL-,Z.

Let I be the following "independence' condition:

I: gz(R, z, L) = A(z), where A is a permutation of Z.

If condition I holds, the vertically-moving signals become indepen-
dent of the horizontally-moving signals, hence any z-input sequence can
be applied to any row by controlling the z-inputs of the first row. For

instance, assume that at time t we want to apply the z-input sequence
2 1, Z2 ...... p to the i-th row. This can be done by applying the x-input

sequence - (z 1), u-4(z ) ..... . -'(z,) to the first row at time t--i. Hence,

it condition I holds, the discussion for the one-dimensional case immedi-

ately applies to the two-dimensional case. If, furthermore, p is the iden-

tity permutation, any test inputs required for the one-dimensional array,
which is just a row of the two-dimensional array, can be applied to all the

rows simultaneously.

1' !



App ication.

The basic cell of a two-dimensional array shown in Fig. 14 has been

proposed in [13] for matrix multiplication. For this cell we have

gR(r, z, L) = r, gL(r, z, L) = L+z .r, gZ(r, z, l) = z. Hence condition I

holds with A the identity permutation; also conditions W-OST hold,
therefore if a subset I of RxZxL suffice to test the basic cell, a row of

cells can be tested inp2- I1I time units. If the array has n rows it can be

tested in p2- l I+m time units, since m time units are required for the
vertical signals to propagate from the first to the last row.

REFERENCES

[1] W. H. Kautz, "Testing for Faults in Cellular Logic Arrays," in Proc. 8th

Annu. Syrp. Suitching Automat. Theory, 1967, pp. 161-174.

[2: P. R. Menon and A. D. Friedman, "Fault Detection in Iterative Logic

Arrays," IEEE Trans. comput., vol. C-20, pp. 524-535, 1971.

(3] R. W. Lardgraff and S. S. Yau, "Design of Diagnosable Iterative
Arrays," IEEE Trans. Comput., vol. C-20, pp. 867-877, 1971.

[4' A. D. Friedman and P.R. Menon, "Fault Location in Iterative Logic

Arrays," in Theory of Machines and Computations, Z. Kohavi and A.

Paz, Eds. New York: Academic, 1971.

[5- A. D. Friedman, "Easily Testable Iterative Systems," IEEE Trans.

Cornput., vol. C-22, pp. 1061-1064, 1973.

[6- F. J. 0. Dias, "Truth-table Verification of an Iterative Logic Array,"

IEEE Trans. Comput., vol. C-25, pp. 605-613, 1976

['1 B. A. Prasad and F. G. Gray, '"ultiple Fault Detection in Arrays of

Combinational Cells, IEEE Trans. Comput., vol. C-24, pp. 791-802,

1975.

18., C. H. Sung, "Testable Sequential Cellular Arrays," IEEE Trans. Corn-

put., vol. C-25, pp. 11-18, Jan. 1976.

[9 F. G. Gray, and R. A. Thomson, "Fault Detection in Bilateral Arrays of
Combinational Cells," IEEE Trans. comput., vol. C-27, pp. 1206-1213,

1978.

[101R. Parthasarathy and S. M. Reddy, "A Testable design of Iterative

Logic Arrays," IEEE Trans. comput., vol. C-30, pp.833-841, 1981.

(11]H. T. Kung, "Let's Design Algorithms for VLSI Systems," Proc. Conf.
on Very Large Scale Integration. Architecture, Design, Fabrication,

California Institute of Technology, Jan. 1979, pp. 85-90.



- 12-

[12]H. T. Kung and C. E. Leiserson, "Algorithms for VLSI Processor
Arrays," in Introduction to LSI Systems, C. Mead and L. Conway,
Addison-Wesley, 1980.

[13] R. W. Priester, H. J. Whitehouse, K. Bromley, J. B. Clary, "Signal Pro-
cessing With Systolic Arrays," presented in Tactical Airborne Distri-
buted Computing c nd Networks Conference (AGARD), held in Roros,

Norway, 22-26 June, 1981.

[14]M. A. Breuer and A. P. Friedman, Diagnosis and Reliable Design of
Digital Systems, CompuLer Science Press, 1976.

4

, , .,"; '.



VL~r. Z.1)

(a) (b)

Figure 1
(a): A synchronous bilateral array

(b): The basic cell
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Figure 2a
Time-space transformation into asynchronous unilateral array
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Figure 2b
Inputs at time t and outputs at time t +I1 of the j -th cell
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Figure 3 Figure 4
Condition G (a): Condition CI of V

(b): Condition C2 of V
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Figure 5
(a): Condition 01 of V
(b): Condition 02 of V
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Figure 6
Condition under which arc (r I. r2) belongs to R
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Figure 7

The test described in thm. I (vertical inputs are not shown for simnplicity)
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Figure 8
(a): Condition Cl of W
(b): Condition C2 of W/
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Figure 9
(a): Condition 01 of W

(b): Condition 02 of W
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Figure 11

(a): Condition OST-1

(b): Condition OST-2
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Figure 12

The basic cell of a two-way pipeline systolic array for FIR filtering
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Figure 13
(a): A two-dimensional synchronous bilateral array

(b): The basic cell
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I' Figure 14

The basic cell of a two-dimensional systolic array for matrix multiplication
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