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Princeton VIM Project: Semi-Annual Report

R. J. Uipton

1. IntroducUon
We have been officially underway at Princeton rnce August; hence, this

report actually covers about three months of activity.There are three major
aspects to our project: ALl, Census, and Testing.

Z AU
->- ALl, our procedural language for VLSI design and layout, is now up and run-

t ning.4. > It has already been used by Dobkin and Drysdale to redesign a divider
they previously designed on a graphics system at Xerox. In addition, LaPaugh's
VLSI class has already used ALl for their VLSI projects. Dobkin is currently
beginning to explore ways to create graphics interfaces to the AIU system.

-ALI2 the second version of our layout system is coming along well. Valdes
has already fully defined the new language and implementation is now er way
[7]. ALJ2 differs from AL! in two essential ways. First, it is based on, 'hat we
believe to be a much cleaner set of primitive and constructs. For in ance, it
does not have the "shuffle property" so many design languages do- y this we
mean that the order of placement commands does matter. Secor, AL12 gen-
erates far fewer constraints than Al does. This is of course critica if such con-straint based systems are to be able to handle large complex layouats.

Plans are already underway on how to best exploit the unique features of

AL12. Ramacharndran has just finished a study of the cost of increasing the size
of drivers in order to speed up '.ircwts [5]. She assumes that sizes of transis-
tors can be changed but that the layout cannot be restructured. Under these
assumptions she can tightly bound the worst case cost in terms of area of mak-
ing the delays on all wires a "constant". Since AI,2 allows a designer to easily
change the sizes of wires and transistors we feel that such results are important•
Already it is common place for designers to size transistors for speedup in an ad
hoc way [6].

Also Vijayan and Wigderson have isolated a number of new layout problems
that arise naturally when one considers the implementation of ALI2 [8,9]. All
these problems concern the embedding of "rectilinear" graphs. These are
graphs where each edge is connected to the "left", "top". "right",or "bottom" of
each vertex. They are currently exploring the computational complexity of a
variety of layout problems here. For example, they can quickly recognize those
graphs that have planar embeddings; moreover, they can also quickly find such
emJddings when they exist.

f Census
a The census language is a new way to express parallel algorithms that use a

fairly loosely coupled method of control, f' Work is under way to understand
the limits and powers of such languages. North is beginning to identify those
problem areas that can be successfully mapped onto the census language. We
are also thinking about implementations of census, but no implementation is yetstarted.Cens has been looked at from a theory point of view by Chandra, Fortune,

Cen-
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and Lipton [2]. They have been able to get tight upper and lower bounds on the
size of boolean circuits with unbounded fan-in. Unbounded fan-in circuits not
only model an important class of census computations but they also model cir-
cuits such as PLA's. For example, it is possible to construct a circuit that adds
two n-bit numbers in constant time and whose size is approximately linear in n.
We are beginning to examine the feasibility of using these Ideas in real VLSI
designs.

4 .Testing
) Our work on testing divides into two areas. Arden is beginning to work on

flrst silicon testing especially with respect to scanning electron microscopes
(SEM). He plans to be on leave this spring and work with the SEM group in Mun-
ich. In the future we expect that we will be able to use a SEM that the Princeton
Siemens group is about to get.

LaPaugh and Upton have begun to work in the area of production testing.
They have already successfully been able to completely characterize the testa-
bility of "prefix computations". Prefix computations arise naturally in a number
of places: for instance, in carry-look-ahead adders.{4- Such characterizations
link the self-test of these computations with classic semi-group theory.

Also work is under way on a new self-test strategy which we call "toggJe
search". This method first generates the vector of all O's; next it randomly
changes one of the 0's to a 1; it repeats this until all 0's have been toggled to 's.
then the entire process begins again. Toggle search and its generalizations are
well suited to many test environments where one bit of an input can be changed
more quickly than a whole input vector. Already we have empirical evidence of
the superiority of toggle search over other methods. Colleagues at IBM Watson
Research have tested toggle on examples of about one thousand gates and found
that it is about three times faster than standard methods. For example, it took
about 600 thousand vectors versus 1.8 million to achieve 100X fault coverage on
one piece of random control logic. We plan further experiments to further vali-
date these results.

Finally, we have also found a way to transform any combinational logic cir-
cuit into one that is easy to test. Here by easy to test we mean that we can
detect a very large class of physical faults. The penalty for this transformation I
is that the number of gates can increase by as much as 100X. We plan this com-
ing year to carefully explore this new method. In particular, we wish to both
understand the cost of the method and the class of faults it can and cannot
detect.
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VLSI Layout as Programming
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Aktrect: The first component of a VLSI design environment being built at Princeton is
described. The general theme of this effort is to make the design of VLSI circuits as simi-
lar to programming as possible. We are trying to build tools that do for the VLSI circuit
designer what the best software tools do for the implementor of large software systems.
The work described here is a procedural language to specify circuit layouts.

1. Introduction
* "In this paper we describe a very important component of any VLSI

design environment: a tool to automate the layout of circuits. This work
is part of an effort to create an integrated environment for VLSI design
(including layout systems, device and switch level simulators and testing
facilities) currently under way at Princeton.

Our main thesis is that the VLSI design task can be profitably thought I
of as a progmamming task, as opposed to a geometric editing task. We
believe that much is to be gained by consciously attempting to apply our
knowledge about programming to this new activity. We have thus tried to
create tools for the VLSI designer that incorporate the most useful
features of the software develpoment tools that we are familiar with.

Although we feel that we have had moderate success in this endeavor
we are well aware of how much room for improvement we have left, and
would like to help convince the community of people interested in the
design of programming language and programming environments that
there are fresh and important challenges in this relatively new direction.

A prototype of the procedural layout language described in this
paper has been operational for some months. All figures given in thic.
paper were generated by the language and all the code fragments have
been used as part of larger programs.
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Z All: a procedural language to describe layouts
The main feature of AI as a layout language is that it allows its user

to design layouts at a conceptual level in which neither sizes nor posi-
tions (absolute or relative) of layout comnponenLs may be specified.
Mostly as a consequence of this, ALI simultaneously (i) makes the layout
task more like programming than editing, (ii) eliminates the need for
design rule checking after the layout is generated, (iii) permits the crea-
tion of easy to use cell libraries and (iv) provides the designer with the
mechanisms to describe a layout hierarchically so that most of the detail
at one level of the hierarchy is truly hidden from all higher levels.

The notion of not assigning sizes or positions to any object in a layout
until the complete layout has been described (similar to the idea of
delayged binding in programming languages), sets AUI apart not only from
just about all of the graphics based layout editors we know of ([3,, [4-,
[7], [13], [17]) but also - with the exception of [14] - from most of the
procedural languages for the layout task currently in use or recently pro-

rs0 ed, whether or not they include a graphics interface ([ 1), [4]1, [5], [8],
91,[10], [15]).

The issues that we tried to address with AU are the following.
*The creation of an open ended tool. Graphics editors tend to be closed
tools in that it is hard to automate the layout process beyond what the
original design of the system allowed. Procedural languages are gen-
erally much better in this respect. However, the fact that most such
languages require the specification of absolute sizes and positions,
makes the creation of a general purpose library of cells a hard task,
since information about the sizes and positions of the cell elements that
can interact with the outside world has to be apparent to the user of
the library. The absence of absolute sizes and positions makes this
problem much less severe in ALT. The extensibility of AUI derives from
the fact that it has been built on top of Pascal, thereby making the full
power of Pascal available to the designer. The generation of tools to
automate the layout process, such as simple routers or PLA generators,
involves writing Pascal routines to solve some abstract version of the
problem and having done so invoke AUl cells to generate the layouts

*Creating tools that are simple to use and easy, to learn. In particular,
we want to avoid tools whose behavior is unpredictable. Many programs
which rely heavily on sophisticated heuristics respond to small changes
in their input with wholesale changes in their output. We have main-
tained a simple correspondence between the text of an AUl program and
the resulting layout so that changes in the layout can be easily related
to changes in the program. This decision has simplified the system at
Lhe cost of making it less knowledgeable about TAOS circuits.

*Facilitating the division of labor. Large layouts have to be produced by
more than one designer. If the piece produced by each designer is

* specified in absolute positions, serious problems are likely to arise when
the different pieces are put together, unless very tight interaction -
with its attendant penalties in productivity - is maintained throughouL

* the design. AUl allows the partitioning of tasks in such a way that the
designer of a piece of the layout does not need to know anything about
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the sizes of other pieces of the complete layout. For instance, on the
top of fig. 1 three simple cells are shown with the intended connections

4 between them shown by dotted lines; on the bottom of the figure, the
pieces have been brought together to form a larger piece. The stretch-
ing that has taken place has occurred without the designer having to
plan for it explicitly while considering each individual cell.

At-

fI

Three separate cell. and the result of
connecting them along the dotted line.

* Facilitating hierachicl design. Even when a single designer is
involved, the ability to view a layout as a hierarchy, with as much inf or-
mation about lower levels completely hidden from higher levels, is
extremely useful. In ALI, the information about a given level of the
hierarchy needed at the level immediately above is reduced by the
absence of absolute sizes and positions, to topological relations among
the layout elements of the lower level visible to the higher one.
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"Reducing the life cycle cost of layouts. Modifying a layout to be fabri-
cated on a new process, or to make it conform to a new set of design
rules, is currently a costly operation. Yet successful designs seem to be
more or less continuously updated as improved processes become avail-
able during their lifetime. Fig. 2 shows two instances of a simple layout
produced with ALl. The instances are the result of running an ALI pro-
gram twice changing exactlyj four constants in the pro gram in between
runs (those that specified the sizes of power and ground buses).- This
type of flexibility addresses the problem directly. An ALI program can
be written naturally so that all layouts produced by it are completely
free of design rule violations, no matter what the values of the con-
stants used in the programs. Therefore the need for costly design rude
checking of different instances of a layout (see fig. 2) can be avoided.
The same ALl program can also generate layouts using different design
rules by running it with a new module incorporating the new design
rules.

" To avoid the need for special purpose comnputing equipment. ALI can
be used effectively from a standard ASCII terminal in combination with
a small plotter shared by several designers. All the algorithms used in
the inner cycle of ALI require lineasr time, therefore permitting the use
of just about any machine and guaranteeing fast turnaround on small
layouts. Furthermore ALI replaces design rule checking by a hierarchi-
cal process that can be performed separately on the individual pieces of
the layout. For example, after checking that each of the pieces shown
on the top of fig. 1 is free of design rule violations, their combination
shown on the bottom of the same figure will be guaranteed by ALI to be
free of rule violations regardless of the stretch that takes place as a
consequence of connecting them. ALI in fact requires far fewer comput-
ing resources than many design rule checking programs.

We feel that ALl succeeds in partially solving most of these problem.
We do not claim however to have made the layout task trivial. To use aI
software metaphor, we feel that AUl elevates the work of the layout
designer from absolute machine language programming, to programmun-U-12
in a relocatable assembler with subroutines. This not only makes the

task more pleasant but makes new and more powerful tools possible
such as loaders, linkers and compilers in the case of software. Similar
tools for the VL.SI world - which would indeed simplify the layout task
enormously - remain, however, to be written. AUI should stand or fall
with its ability to allow such tools to be built: whether we are right in
believing that we have a framework in which these tools can be morc
easily implemented will not be known until our efforts in that direction
succeed or fail.

The remainder of this section is devoted to a survey of the main
features of ALI and a brief discussion of its current implementation.



Fig. 2
I Two ALT layouts generated by programs

differing only Lft the values of four constants
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1 1. An overview of Al
The basic principles of ALI are quite simple. A layout is regarded as

a collection of rectangular objects (with their sides oriented in the direc-
tion of the axes of a cartesian coordinate system) and a set of relations
among these rectangles. The AU user specifies a layout by declaring the
rectangles (also called bozes) of which it is composed, and stating the
relations that hold between them. AU then generates a minimum area
layout that satisfies all the relations between boxes specified in the pro-
gram. For example, fig. 3 shows a trivial ALl program and the layout it
produces.

chip rmple;
eat

Dwammer - 10;
length = 20;
tuwdth = 6

boatype
--we array [I. .Anrber) f metal;

VOW
t: Weger;

box
haxont : e
wrtaL: metal;

fort := I to hnmber-I do bein
above (hoviz,tal[t], hmixotal [i1])
ghrigh* (orieontal[t), vertical)

end
gLuffight (hovwsontaLllwumaber], vtical)
zmore (horizontal[hntrnber]. length);
xvmare (viertcal. uddth.)

A simple* AU program and the layout it produces

This program looks very much like a Pascal program: it consists of a
declarative part, followed by an executable part. To declare a box the
user specifies its name (horizontal or vertical in the example). and it s
type, (metal - a predefined type - in the example). The standard box
types correspond to the layers of the physical layout. As the example
also shows, the ALI user can define structured objects (an array in the
example). Further details on the type structure of AL can be fou.d in
section 2.2. 1.

The relations between the rectangles that make up a layout are
specified in ALl through calls to a small set of primitive operations in the
executable part. All such operations take as arguments boxes and possi-
bly values of standard Pascal types (integers in our example). In our
example above, glueright and zmore are primitive operations. The primi-
Uve above specifies that its first argument must appear above the sccond
one in the final layout, the primitive glueright extends its first argument
to the right t-3 intersect 'ts second argument, and zxmore makes the size

Li
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of its first arguments along the x axis at least as large as the value of the
second argument. Note that in this example ALI has determined the
minimum separation between the horizontal elements as well as the
minimum sizes of boxes not specified by zmore (such as the height of the
horizontal metal lines) by accessing a table of design rules. More infor-
mation about the type structure and the primitive operations of ALI is
given in the next section.

When an ALI program is executed it generates two kinds of informa-
tion. It produces a set of linear inequalities involving the coordinates of
the corners of the boxes in the layout as variables. These inequalities,
which embody the relations between the rectangles of the layout, are
then solved to generate the positions and sizes of the layout elements. A
brief description of the problems involved in this step can be found in
section 2.3.2. The program also produces connectivity information about
the rectangles in the layout. This information can then be used by a
switch level simulator that predicts the behavior of the circuit as laid out
whithout having to perform the ususal "node extraction" analysis.

In order for the layouts produced by an ALI program to be free of
design rules, the program must be complete, in that every pair of rectan-
gles in it must be related in some way. Two rectangles may be related
explicitly in the user program by virtue of being arguments to a primitive
operation, or they may be related through the transitivity of the sepasra-
tions. The reason for this strong requirement is to prevent the area
minimization process from shoving together rectangles that wei e
intended to be separate (see section 2.3.3 fo a discussion of complete-
ness).

ALI helps the designer to achieve this goal by generating certair reiei-
tions between layout elements in an automatic fashion, and by checking
on request whether this condition is satisfied. It is however the responsi-
bility of the user to make an ALI program complete in this sense, as the
computational cost of doing any sophisticated inference (be~ orjd th~e
transitivity of relations such as aibove) is prohibitive [ 16,1.

Z2. Main features of AUl
This section describes how AU appears to its user. Its three sL'bsec-

Lions deal, in turn, with the type structure, the primitive operations of
the language and the cell mechanism. AUI has been built on top cf Pascal
and has inherited most of its features. In the interest of shortening this
section we have assumed a certain famriliarity with the general features of
Pascal.

2..1. Type structure
As the example of fig. 3 shows, the objects manipulated by ALI are

declared by stating their name and their type. The types of ALI have the
same structure as the Pascal types. Objects can be of a uixnple type
(boxes) or of a structured type.



-8-

There are a small number of standard types, all of them simple. The
standard types correspond to the layers of the process to be used to
fabricate the layout (metal, poly, diff, impl, cut and glass in the NMOS
version currently implemented) plus the type virtual, used to name
bounding boxes and having no physical reality in the fabricated circuit.
For example, in the program of fig. 2, the declaration

vertical :metal

specifies that the rectangle named vertical on the final layout should be
on the metal layer. ALl will use this information to generate constraints
on its minimum size and its separation from other layout elements.

Structured types are of two flavors: array (a collection of objects of
the same type) and bus (a collection of objects of heterogeneous types,
much like records in Pascal), which correspond directly to the array and
record structured types of Pascal. ALI, like Pascal, permits the creation
of new user defined types that can be either simple or structured. For
example, in fig. 3, the fragment

htype = array [1..hnumber] of metal

inside the boxtype section of the program, creates a new type, htype,
each object of that type made up of a number of metal rectangles, and
the fragment

horizontal "htype

inside the box section, creates an object of that type named horizontal.
In a similar fashion the type declaration

shiftbus = bus
phi, ph2 "metal;
vdd: metal;
data .' dff;
gnd : metal

end
f

creates a user defined type, allowing the user to create objects which
consist of four metal boxes and a diffusion box. The types of the com-
ponents of structured types are arbitrary: the user can define arrays of
buses, or buses containing arrays.

The accessing of the elements of arrays and buses is done as ini Pas-
cal. Thus if x is of type ht.ype then z[i] refers to the i-th element of z, and
if y is of type shiftbus then V.data refers to the diffusion box of y.

Although the structured objects are generally used by ALI simply as a
naming mechanism, they are also used in conjunction with the cell
mechanism (discussed in section 2.2.3) to automatically generate separa-
tions between boxes. We will be more precise on this point when wc
describe the cell mechanism of ALI.
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Like Pascal, ALI is a strongly typed language. The primitive opera-
tions know about certain type restrictions and generate type mismatch
errors if operations are attempted with rectangles of inappropriate
types.

P2.2 Primitive operations
The relations between the rectangles that make up a layout are

specified in ALI through calls to a small set of primitive operations. All
such operations take boxes (i.e., objects of simple types) as arguments.
In the program of fig. 3, above, gtueright and zmore are primitive opera-
tions.

It is not important to know the actual primitive operations of the
current version of AL to understand its operation. As a gross measure ol
its complexity we can say that the system currently implemented -
based on NMOS as described in [12] - has about twenty primitive opera-
tions which can be arranged in the following groups:
I Separation primitives: such as above in fig. 3. which specify that their

arguments must be separated in a certain direction in the final layout.
The minimum amount of space between boxes separated in this manner
depends on their types and is supplied by ALI from a table of design
rules.

2 Conrection primitives: such as glueright in fig. 3, to specify that their
arguments -- which must be boxes in the same layer -- are to be joined
in a particular manner.

3 An inclusion primitive, inside, that specifies that one box is to be
placed inside another. The minimum distances between their edges are
again suphed by ALI from a table of design rules.

4 Minimum size primitives: such as zmore in fig. 3, which specify the
minimum size of a box along a certain direction. Default minimum
sizes are provided by ALI from a design rule table.

5 Transistor primitives, which create depletion mode and pass transis-
tors

6 Contact Primitives, which create contacts between layers and connect
boxes to them.

Note that no absolute positions or dimensions for any rectangle can
be specified with these primitives. All the rectangles of a layout can be
stretched and compressed (up to a minimum size) and all can float in any
direction. If one single characteristic is to be used to separate ALT from
other layout systems, this must be it. Most of the power of AT~i and most
of the problems one faces in its implementation are consequences of this
fact.

It is important to remember that in order for a layout produced by
AL to be free of design rule violations, any two rectangles in it must be
related in some way. ALI will make no inferences as to the relations
between boxes beyond those implied by the transitivity of some primitive
operations (i.e., if above (a, b) and above (b, c) are stated, above (a, c)
need not be stated). Although the system generates a good number of
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relations automatically for the user, particularly in connection with the
cell mechanism (see the next subsection), there is still a fair amount of
drudgery left for the user in making sure that this requirement is met. A
brief discussion on the computational complexity of the automatic ger-
eration of relations between boxes can be found in section 2.3.3.

Z2.. Cells
Perhaps the most powerful feature of All is its procedure-like

mechanism for the definition and creation of cells. A cell is a collection
of related rectangles enclosed in a rectangular area. Rectangles that are
inside a cell are of two types: local which are invisible to the outside, or
parameters which can interact in a simple and well defined manner with
rectangles outside the cell.

A cell is defined by specifying its local objects, its formal parameters
and the relations among a] of them. Once a cell has been defined, it can
be insLaniiated as many times as desired by specifying the actual param-
eters for the instance, much the same way as one invokes a procedure or
function in a procedural language. The result of instantiating a cell is to
create a brand new copy of the prototype described in the cell definition
with the formal parameters connected to the actual parameters.

A cell definition is made up of a header, in which the formal parame-
ters are described, a set of local box declarat ons and a body in which the
relationship between the parameters and the local boxes, as well as those
among local boxes, are specified.

The header describes the names and types of the parameters and the
side of the bounding rectangle through which they come into contact with
the inside of the cell. The header of a cell (using the type shiftbus
defined in section 2.2. 1) and an instance of it are shown in fig 4.

aei shit (left I sNftbus; right r siftbus)

~~*4
A sample cell definition header

and an instance of the cell defined



Cells may have any number of parameters on each of their four sides.
The order in which they are listed in the cell header describes their rela-
tive positions. Horizontal parameters (i.e., those touching the cell on the
left or right) are assumed to be listed in top to bottom order and vertical
parameters in left to right order.

The body of a cell is very much like an ALI program. For example, fig.
5 shows a complete cell definition that consists of a variable number of
shift cell instances connected sequentially together with two of its
instances. Note that cells are instantiated by the create statement, and
that the parameter list of the cell contains both box parameters and
other parameters (an integer in this case) in separate lists. Note also
that recursion has been used to define this cell; this highlights the fact
that AU has the full power of Pascal at its disposal.

When an instance of a cell is created it can be given a name, provided
that the name given has been declared as a rectangle of the standard
simple type vitual. The relationship of the rectangle bounding a newly
created cell to any other rectangle of the layout can be specified in the
standard manner by calls to the primitive operations. This is a vital
feature since in many cases (i.e.. above, below ... ) stating a relation
between two cell instances cl and cg immediately implies a relation
between every pair of rectangles r I and rg such that r 1 is part of c I and r2
part of ce.

There are two important ways in which the cell mechanism helps in
the automatic generation of constraints between boxes. When an object
of a structured type is passed as a parameter to a cell, its component
boxes are separated from top to bottom (if it is a l.ft or right argument)
or from left to right (if it is a top or bottom argument).- The order of the
separation is determined by applying recursively the following rules:
array elements are separated ordered by their indices and bus elements
in the order in which they were specified in the bus declaration. Thus, in
the example of fig. 5, the components of parameter inbus would beI
separated from top to bottom. The second mechanism involves the
automatic separation of cells that share a parameter; thus in the exam-
pie of fig -5, the individual instances of shift are separated automatically.
since adjacent instances share a parameter.

The cell mechanism gives the AU user the ability to describe layouts
in a truly hierarchical manmer. A proper AUl design, very much like a well
structured program, will consist of a hierarchy of cell instances with only
a small amount of information at a given level (the parameters of the cell
instances at that level) being visible from the immediately higher level.
For example, the layout given in fig. 2 consists of four instances of the
same cell stacked vertically. That cell in turn is defined in terms of three
other cells, one of them being the cell shown in fig. 1, which is in turn
defined in terms of three other cells.

Much of the power and generality of the cell mechanism of ALI comes
from the absence of absolute positions and sizes in a layout specification.
In particular, two instances of the same cell may have radically different
sizes depending on the actual parameters used to create them, as
exemplified by figs. 1, 2 and 5. We believe that no cell mechanism can be
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cal Usi flbegter (left vnbus: shftbus;
right Outbur shiftbu)
l(gth : Wtegr):box

temp asft bus;

U lengft = I then
crete st (*nbus. outbus)

else begin
west. tA~ft (ftbus, temp)
creae V "regstr (t#vm. o -- s) (kegt -1i)

end

T~va M

If. 5
A cell definition and two instances of it

generated by a simple AU program

said to be truly general unless the sizes of its arguments and local rec-
tangles, as well as their relative distances are determined at the time the
cell is instantiated.

There are some penalties involved in the use of the cell mechanism.
In particular, ALl generates separations between cells in a mariner which
is oblivious to what is inside them. That is, the minimum separation
between cells as far as Al is concerned, is the maximum of all the
minimum separations for two layers in the design rules, thus creating a
certain wastage. We believe that this penalty will be generally a small
percentage of the total area and is well worth the advantages gained by
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the ability to separate cell instances as units.
Another source of wastage is the fact that cells are restricted to be

bounded by a rectangle, so the packing of cells that have irregular shapes
results in a certain amount of unused space. The rectangular shape of
the cells is a fundamental characteristic of ALI: The introduction of irreg-
ularly shaped cells is simply not possible without completely redesigning
the language and. However, the waste introduced because of this restric-
tion can be avoided in most particular cases through some code
modifications.

Z3. Implementation issues
The previous section described the user view of ALI. In this section

we discuss briefly some of the problems to be solved when trying to go
from an ALI program to a layout that satisfies the relations stated in it.
We first give an overall description of the system as currently imple-
mented, then discuss the method used to assign locations and sizes to
the layout elements and then the concept of completeness and how it is
checked.

Z23. 1. Overall implementation
The current version of our system has been implemented as follows.

The ALl program is first translated into standard Pascal. The resulting
Pascal program is then compiled and linked with a precompiled set of
procedures that implement the primitive operations and the resulting
object module is then run. The output of this programn (generated
entirely by the primitive operations) is a set of linear inequalities and
connectivity relations among the layout elements. The inequalities are
then solved to generate a layout or examined by a program thdt Lthecks
their logical completeness, and the connectivity information can be used
to simulate the circuit laid out.

The design rules are incorporated as a table which is used by the
primitive operations to produce the linear inequalities. Thus changing
the design rules for our system requires only to change this table.

2.3.2. Placement
As explained above, one of the results of running an All program is a

set of linear inequalities that embody the relations between the layout
elements. These inequalities are of the following simple form:

where the variables are the coordinates of the corners of the boxes that
form the layout and the constants are either user supplied (as in the
second argument of the zwwre primitive, for instance) or extracted from
the table of design rules by the system itself.
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This set of inequalities should be solved so as to generate placements
for the boxes that compose the layout in such a way as to minimize its
total area. In order to perform this task efficiently, we require that no
inequality in the set involve both x and V coordinates. This restriction
allows us to minimize the total area by minimizing the maximum z and Yj
coordinates of any point independently, at the cost of reducing the range
of the relations between boxes that we can express. We cannot, for
instance, handle rectangles whose sides are not parallel to the cartesian
axes or express aspect ratios directly.

We have now a sufficiently simple problem so it can be solved in time
pr~oportional to the n"iumber of inequalities in our set. (All layouts that
can be expressed in All can be generated by a program that produces a
constant number of inequalities per rectangle). This is done by a version
of the topological sort algorithm [11] applied to the z and V coordinates
independently. This algorithm assigns to each point the lowest possible
coordinate while minimizing the largest coordinate of alH points.

The form of the inequalities that we allow is rather restrictive; it is
sufficient however, to describe the design rules given in [12] for NMOS,
and the efficiency gained in return for this simplicity seem to us like a
good tradeoff. A more subtle consequence of the simplicity of the ine-
qualities and the method we use to solve them is that undesirable
stretching can occur, since we have no way to specify a maximum size for
any object. This is not a common occurrence and the user can in all
cases guard against such stretching by the careful selection of the primni-
tive operations used. It is nonetheless an additional burden placed on the
designer.

The choice of an efficient placement algorithm over expressibility
power and a reduced degree of user convenience has been quite cons-
cious in this particular case. We feel that every reasonable measure
should be taken to keep the complexity of the placement problem linear,
given that the size of layouts is currently large (10" rectangles) and is
growing fast. Widening the class of linear inequalities acceptable isI
almost certain to make linear time solutions impossible [23.

* Z3.3. Completeness
ALI programs do not involve absolute sizes or positions of boxes, and

are, to a great extent,independent of the design rules. These characteris-
tics make it clearly desirable to insure that the layout described by a
program will be free of design rule violations in a way other than check-
ing the finished layout. The following paragraphs describe a way of insur-
ing freedom from design rule violations in a manner that is independent
of the actual design rules used to generate the final placement. The
description may be somewhat cryptic; the interested reader is referred
to [16] for further details.

A layout generated by an ALI program is complete if for any two
* boxes a and b whose types make it possible for them to interact in the

final layout, either
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(i) a and b are explicitly stated to be in contact by some primitive
operation, or

(ii) a and b are, explicitly or through the transitivity of primitive rela-
tions, stated to be separated in either the x or the yt direction by a
minimum amount which depends on their types.
From this definition, it should be clear that testing completeness of a

cell instance involves computing the transitive closure of a graph. There-
fore the complexity of the operation will be 0(n 3), where n is the number
of boxes in the cell. It is thus not feasible to test a large layout for com-
pleteness in a direct way.

Fortunately, completeness can be checked hierarchically. Let us
look only at the objects at the highest level of the hierarchy of boxes that
defines a layout, i.e., those boxes (including cell. boundaries) defined glo-
bally in the ALI program that generated the layout. If these objects are
related in a complete manner and the cell instances used at this level are
also complete, then the whole layout is complete.

Thus one can check the completeness of a layout by successively
checking cell instances for completeness, thereby reducing the complex-
ity of the process to 0(m-1) where mn is the largest number of boxes local
to a cell instance in the layout. This process can be reduced further.
since not every cell. instance needs to be checked. For example, if a cell
is defined by a straight line program, checking one instance for com-
pleteness suffices, as one instance of the cell will be complete if and only
if all of its instances are [161. The case of cells with branches and itera-
tion is not quite as simple. Yet we are confident -- and our experience
tends to confirm this belief -- that checking the completeness of a lew
carefully selected instances of any cell. definition will be eriough to
guarantee that the cell definition is complete.

The end result is that completeness has the flavor of a static, almost
syntactic, property for all non malicious examples, and is much easier to
check in a well structured layout than design rule freedom by the S tan-I
dard means on the final layout.

Finally, a word about the possibility of taking an incomplete layout
specification and automatically completing it. The general problem of
generating an optimal completion is NP-Complete, but the simpler ver-
sion of generating any completion for graphs embedded in a grid (as our
layouts are) seems to be solvable in 0(ng) steps. The question of how
much area wil be wasted by such a completion algorithm will have to wait
for some experimentation, but there is no question of its usefulness.

2.4. Experience with AL!
The current implementation of All has shown the soundness of most

of our original ideas. The system is efficient and the language easy to
learn, and the layout it produces are relatively dense (for example, an ALI
program written without concern for area optimization produced a layout
which was about thirty per cent larger than a similar layout packed by
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hand on a graphics editor. Unfortunately, this evidence has been Rath-
ered mostly from people who had a hand in designing or implementing
ALI. Perhaps a more reliable evaluation of ALT, ought to wait until a sub-
stantial number of users not involved in its design can give an informed
opinion. We hope to obtain this evidence before long, since ALI is
currently being used in a VLSI design course.

The fact that very little effort was invested in error recovery for the
sake of expediency in getting a prototype running, and that no mechan-
ism for integrating separately produced layout pieces was provided make
the current system useful mostly for teaching purposes and experimen-
tation. It must be emphasized that this is a result of implementation
choices, and not of any intrinsic limitation on the approach we have
taken.

The problems of the current system which we plan to address with
the next version are the following:
(1) Memory requirements. The solution of the system of linear inequali-

ties requires large amounts of memory. We will use a different algo-
rithm which is slightly less efficient in terms of time but requires an
order of magnitude fewer memory locations for a typical large lay-
out.

(2) Pascal problems. The current Al has exactly the same type struc-
ture as Pascal. The lack of generic types and dynamic arrays has
made the task of writing general purpose tools (PLA generators.
routers...) inside ALU more difficult than it ought to be. The ncxt ALI
will have the notions of generic types and dynamic arrays

(3) Connecting primitives. Certain objects, such as contacts, are used
frequently enough to warrant making them part of the language.

(4) Separate "compilation" facilities. Clearly, large layouts will have to
be generated in pieces, which is something that our current system
cannot do.
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Rectilinear Graphs and their Embeddinxg
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1. bntroduction

The problem we address in this paper is an embedding problem for a class
of graphs which we call rectilinear graphs. These graphs are important in many
VIM layout problems. In fact, this problem arose in the implementation of AL
[0,7. a procedural language for VLSI design currently under development at
Princeton. An embedding algorithm can be used to automate the production of
VLSI layouts in many procedural design systems.

Consider the following model for VLI layout design. A VlSI layout is
described hierarchically using cells and wires that connect the cells together.
Each cell C is enclosed within a rectangle R(C), and has four tuples of pins, one
each for the left, top, right, and bottom of rectangle R(C). Each wire w is
denoted by a pair of pins Lejpj), such that pt and pj are pins of different cells
end are of opposite types. For example. if p% is a right pin then pj should be a
left pin. Given such a description of a VLSI layout, our aim Is to produce an !
embedding of the description on the plane, much that (i) no two bounding ret-
tangles touch each other. (it) the pins appear In the correct order on the
bounding rectangles, (tE) the wires are straight and rectilinear, and (1i) no two
wires cross each other. Later on, we can fill each boundin rectangle R(C) with
the embedding of the cell C in the same manner.

The restriction that wires cannot be bent may seem unrealistic, but this is
certainly the case in many design systems including Al. If a wire has to be
bent, the user specifies that by breaking up the wire Into several straight vires
and placing cells at each of the turn points of the wire. In ALI, for example, the
user can incorporate routing algorithms in a AI program to determine how the
wires are to be bent. The restriction that wires cannot cross implies that we are
dealing with the wires on a single layer. For a layout with multiple layers, it is
clearly necessary that the wires on each layer do not cross.

To solve the above embedding problem, it is enough to consider only a sim-
pie restriction, where each bounding rectangle has at most one pin on each side.
We can then treat the bounding rectangles as vertices and the wires as edges,
which leave in one of the four cardinal directions. We give the name refttnsor

.4
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r to such graphs. The embedding problem of rectilinear graphs is our

main concern in this paper.

For VLSI applications, we need efficient algorithms to recognize and then
actually embed rectilinear graphs. In this paper, we present an O(n) recogni-
tion algorithm and an O(n2) embedding algorithm, where n is the number of
vertices in the graph. Thus, a hierarchically described VLSI layout with cell

instances CI,C,... , C can embedded in time O(tr&), where wi is the
tml

number of pins in cell instance Ct.

An embedding of a rectilinear graph is just a relative placement of the ver-
tices ( cells ) on a rectangular grid, such that no two edges cross. Some of the
relative placement information is already present in the description of a rectil-
inear graph For example, if (a.b) is the rightgoing edge of vertex a, then a
should be to the right of b. and a,b should be on the same horizontal grid line.
Hence, an embedding can be viewed as a "completion" of the rectilinear graph
description. We showed in a different paper [9) that the completion problem for
a slightly more relaxed VLSI layout model is NP-complete. In light of this result,
the results in this paper have become more important.

In section 2. we present formal definitions of rectilinear graphs and their
embeddings. In section 3. we mention some properties of rectilinear graphs. We
discuss some topological properties of the embeddings in section 4. A necessary
and sufficient condition for biconnected rectilinear graphs to be embeddable is
presented in section 5. A similar condition for arbitrary rectilinear graphs is the
main result in section 8. We also describe a O(n) recognition algorithm in this
section In section 7, we use the ideas of the previous sections to obtain an
O(n 2 ) embedding algorithm. An important subclass of rectilinear graphs is dis-
cussed in section 8. In section 8, we discuss extensions and open problems. For I
definitions of graph theoretic terminology used in this paper, please refer to
[1.2].

2. Definition of the Prdem

First we give a formal definition of a rectilinear graph.

iefnition 2.1: A rectiliwr graph G is a triple (V. E. X). where V is the vertex
set, E is the edge set, and

X:Vx V-E U le, where E = IL,R,D,UI

is a wertez ordueing relatan with the following properties
for every a.bc 1E V and X c

( ) ((a,b)) =t - Ja,bj E

(ordering is specified only between adjacent vertices)

(Ii) ?((a.b)) = L - ?((b,a)) = R, A((a.b)) = D - A((b.a)) = U,



-:3-

( i) ?\((&,b)) = X -X X((c ,b)) i X, Vc Po a (no overlapping edges).

Each vertex in a rectilinear graph has degree at most four, and each edge
(ab), as it goes from one vertex a to the another b, has a nonempty label on it,

which in the embedding will indicate the direction (left.right, down, or up) in
which the edge leaves vertex a. There can be at most one edge with a particular
label emanating from each vertex. The undirected graph G(V.E) will be
referred to as the underling graph.. Figure 2.1 (like all other figures) gives an
illustration of a rectilinear graph.

pR

4"L_ L
Figure 2.1

A rectilinear graph

Now we define what sort of an embedding we are looking for.

Defnition 2.2: An embedding of a rectilinear graph G(V,E,A) on a rectwangular
grid is given by two mappings z, y: V-* Z ( the integers ) which are the x and y
coordinates respectively of the vertices. These mappings obey:

1. the ordering relation. A, i.e. for all edges |a,bJ E

A = L -. >(a),(b), z(a)z(b),

X((c,,))=R y(,,)=y(b), z(a)<z(b).

X((,.b)) =D - z(,)=z(b), V(a) >,V(b),

X((ab)) U . z(a)=z(b), y(a) < y(b).

2. Planarity. no two edges cross, i.e. for each pair of non-adjacent edges

|a.b 1, 1c,d I such that X((n,b)) = R and X((c,d)) = U, the condition

a(a)9fz(c), z(b) and y(c),cy(a),c,(d)

does not hold.

An embedding of a rectilinear graph on a rectangular grid is one in which
the vertices are placed at grid points, the edges run along grid lines in the direc-
tions given by their labels, and no two edges cross each other except If they
share a vertex. We say that a rectilinear graph is embeddable f it has an
embedding. We will show in the next section that not all rectilinear graphs are
embeddable.
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Now our main problem can be stated simply: Given a rectilinear graph
G(VE,X). is it embeddable, and ifyes, find an embedding.

3. Some Comments on Rectilinear Graphs

Figure 3.1
Two nonembeddable rectilinear cycles

Ca) (b)

Figure 3.2
Two nonembeddable rectilinear graphs

whose biconnected components are

In this section we list some properties of rectilinear graphs and their
embeddings These will give an indication of why the problem is not trivial and
why it is different from other embedding problems, and in particular, planar
graph embedding [3,5].

1. Embeddability is a hereditary property. Subgraphs are defined m the usual
fashion, but here the labels of edges are inherited. This is obvious, but
worth mentioning, because this will be used in the proofs.

2. If each connected component of a rectilinear graph is embeddable then the
graph itself is embeddable. So, without loss of generality we will restrict
ourselves to connected rectilinear graphs.

3. Rectilinear graphs with nonplanar underlying graphs are clearly not
embeddable. So it is not interesting to consider those graphs. However, not
every rectilinear graph with a planar underlying graph is embeddable. In
figure 3 1, we have two simple cycles which are not embeddable.
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4. In contrast with planarity, embeddability is not a property determined by
the biconnected components. Figure 3.2 provides an illustration of this
fact.

5. This problem is a restriction of an NP-complete problem (9.11]. For each
wire w, we are given its orientation (horizontal or vertical), and a set V. of
vertices. The wire w has to pass through each vertex in the set V (the ver-
tices could be touched in any order). Then, the embedding problem
becomes NP-complete.

6. If we relax the rectilinearity of the edges and impose only the cyclic order-
ing of the edges at each vertex, then there is an 0(1 VI) algorithm [10). The
cyclic orderings automatically determines the faces of the embedding (if
one exists). Thus a embeddable rectilinear graph has a unique embedding in
this sense.

4. Topological Structure of Embeddings

A((nbcdefgh)) = LURDRUL

Figure 4.1
The extension of A to paths.

There is a natural way to extend the function X to paths and cycles in the

graph as follows. Given a path P = (i 0v, I. • - vg) we define
A(P) = A((vov))A(i.ev)). . A((-tvj.vt)). We define a similar extension for
cycles where now vs = wo. A becomes a mapping that associate -Ith each path
or cycle in the graph a string in E ° which is the concatenation of labels along the
path or cycle. Note that strings containing RL, DU, LR, UD as substrigs do
not represent paths. Also the direction in which we traverse a path and the
starting point in a cycle are important. An example of this mapping can be found
in figure 4.3.

Next we define two topological actions on rectilinear graphs These actions
will simplify a rectilinear graph while preserving its topological structure. Let G
be a rectilinear graph.

Action 1 - Edge ContracUon: Let (abcd) be a path in G such that both b and c

have degree 2, and A((bcd)) = XYX where X.Y C E. Contract the edge (b ,c) to
the vertex b. The resulting path (abd) will have A((abd)) = XX. We abbreviate
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-- -----

FIgure 4.2
Edge contraction and vertex deletion

this action by XYX - XX ( figure 4.2(1) ).

Action 2 - Vertex Deletion: Let (abc) be a path in G such that vertex 6 has
degree 2, and X((abc)) = XX where X e E. Delete the vertex b and introduce
the edge (ac). The resulting edge (ac) will have A((ac)) = X. We abbreviate
this action by XX -. X ( figure 4.2(2) ).

In a natural way we can define inverses for the above two actions which we
will refer to as edge expansion and vertex addition respectively.

Lemma 4.1: Let G be a rectilinear graph and G' be the graph resulting from G
by the application of a sequence of the above four actions Then G' is also rectil-
inear and moreover G' is embeddable if and only if G is embeddable.
Proof: The proof is easy and is left to the reader. a

RDLDR . R RDLDRULDLURDLU R RDLU

Figure 4.3

Simplification of a path and a cycle

DeftnItion 4.1: Given a string - E ' representing a path or a cycle, the
asvnplifled forva I of y is obtained by repeatedly applying the reduction rules
X'X - XX and XX -0 X, where X, Y E E, until they cannot be applied any more.

If y represents a cycle then it is treated as a cyclic string.

In figure 4.3 we give a path and a cycle along with their simplified forms.
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lmina 4.2: Every string y 1 E has a unique simplified form.
Proof: The replacement system defined by the two reduction rules have the
Church-Rosser property [B]. a

DeGWUin 4.2: A aqum. is one of the cyclic strings LURD or LDRU.

Sometimes we may distinguish between two squares by their starting labels.

DefiniUon 4. A spisal is a path which cannot be simplified. Equivalently a

spiral is a substring of (LURD)* or (LDRU)*.

Lemma 4.3: Every path is embeddable.

Proof: Every spiral is embeddable. Since any path simplifies to a spiral (by

definition ), by lemma 4.1 it is also embeddable. a

So it is the cycles which make the problem nontrivial. The following lemma

is a crucial fact about cycles,

lamma 4.4: A cycle is embeddable if and only if it simplifies to a square.
Proof: tf: A square is embeddable and hence by lemma 4.1 any cycle which

simplifies to a square is also embeddable.

only if: Let f be an embeddable cycle and ?,(f) = 7. By lemma 4.1, the

cycle defined by T is also embeddable. Let I-I = n. Look at the embedding of 5-

Since it has no crossings the embedding is a simple polygon, Therefore the inte-

rior angle of this polygon sum to (n-2).180'. Since 5 is a spiral all its interior

angles are 900. The only solution to n. 90 = (n-2).180 is n = 4. Therefore 5 is a

square. a

The proof of the previous lemma suggests another useful characterization

of embeddable cycles. Going along a cycle f = V jvg • • • uv I in the counter-
clockwise direction, let us denote by g! (vt) the angle at vertex vi, which is the I
angle between (vi- 1 t.) and (vt ,v+I).

Lemma 4.5: A cycle f =vlv"" vv 1. n k.- 4 is embeddable if and only if

F = Apj NO = (n *2)1B00.

Proof: Suppose f is embeddable, then its embedding is a simple polygon.

Depending on whether we sum the Interior angles or exterior angles we should

get (n *2). 180.

To prove the sufficient part we show by induction of 9 that f simplifies to a

square. The possible values for ! (vtj) are 90,180,270 ° . The basis for induction is

n = 4. In this case the given sum of the angles is either 3800 or 10800. which

implies that each angle is either 900 or 3800 respectively. So f must be a

square by itself.

Assume that the claim is true for all values less than n and let n > 4. If for



-B-

some 1, 9/(") = 1800. then A(v- ,, = A7. We can apply vertex deletion at
V to obtain f , • • • -s t+ * , * avi. Then
9(1") = p(J) - 9;(ut) = ((n-1)L2).180°. and by induction we are done.

This leaves the case where all angles are either 90" or 2700. Since n > 4
and 9() = (A *2). 180 not all the angles can be equal. Hence there must be a k
such that l; (t',) i p, (wt+,). Hence we have X(ajh-i&Vbk ,IU&+2) = XYX. Apply
edge contraction to obtain f' = v 1 . "k -1ti+2 " " 1. The edge contrac-
tion removed 3600 from the angle sum and added 1800. Hence

(f ') = (( °1)*2).180 . •

Deftintion 4.4: A complewant of a path P udth respect to a square a is any
path Prin the graph such that PP'is a cycle which simplifies to X(PP ) = a.

lemma 4.6: Given a path P, all its complements with respect to a square a.
which have the same start and end labels, have a unvgue simplified form.
Proof: Let A(P)=a=X1 Xa. .Xt. Since a is a spiral we have X = X for
i =j(4). Assume that k > 4 and that the spiral a and the square a are either
both clockwise or both counterclockwise. Then a must be a substring of a. Since
a is a cyclic string we can assume that a = XXgSX 4 ,

Let PC be a complement of P with respect to a and let P = f. Since
k > 4, P must spiral in the opposite direction to a. Since both a and P are
simplified, ap can be simplified only at the borders between the two strings.
Write P = PIPL83, such that T = a We are allowed to shift Ps because ap is a
cyclic string. Then it is clear that P, c jX&_. t ,X te, and P3 E WX,XX 4 1 P2 is
the 'essential part' of P. Since l al = k and a = 4, we must have I PaI = k-4.
From the possible values of P, and Ps, and the fact that p is a spiral opposite in
direction to a , we can conclude that P2 = X-,-s" " X4. We used k > 4 in
order for P2  not to be an empty string. Therefore

= |X.X,X 1._X --• X 4 trXXX 4j, which is unique but for the start and
end labels. The arguments in the cases where a and a are in opposite directions
and for k -; 4 are similar. a

5. Bconneeted Rectilinear Graphs

In this section we discuss an algorithm for recognizing biconnected rectil-
inear graphs. Note that the ordering relation X induces a cyclic ordering of the
edges incident at each vertex v. For convenience we will need the following
definition.

Deftition 5.1: Let v be a vertex in a rectilinear graph G. Define Lr<(v) to be the
cyclic list of the neighbors of v in G in the counterclockwise order.

Using these lists, we can define the essential notion of a candidate face of a
biconnected rectilinear graph.
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6 7

CF 1(a) = 2.1.5.4,3,2 and CFg(e) = 1.2.7.6.5.4.3.2

Figure 5.1
Candidate faces

DeniUn 5.2: Let G = (V,E,A) be a biconnected rectilinear graph. With each
edge e = (v, pv), |jv > vj2 t we associate two lists of vertices called candidate
faces CF I(e) and CFs(e ) which are defined as follows.
CF(e) = v p1,li," • .. , where vt ,v for Q ik.,, 1 j and -& z = 1
for some , !C i < k -1, such that for each 1. 1 < I < k + 1I, w,+ is the successor
of w,_ in the cyclic list LG(vj). CFs(a) is similarly defined but starting with
lia,VI1.

It is easy to see that CF, and CF2 are uniquely defined An illustration of
this definition is given in ftgure 5. 1.

We now need a lemma about biconnected undirected graphs. Let us define
a biconnected graph to be mimna if for every edge a in the graph G-* is not
biconnected. The following lemma is taken from [2] and is stated without proof.

Iiama 5.1: If G is a mrintmal biconnected graph having at least four vertices

then G contains a vertex of degree two. I
lmmaa 5.2: In any biconnected graph G which is not a simple cycle, there is a
simple path P = (vi,i),(v2,vs),• ,(s-,), r k 2, with the intermediate ver-
tices ( if any) v, 1 0 1,r all having degree 2, such that the graph G' = G-P is

biconnected.
Proof: Transform the given graph G to another graph G" by replacing all paths
of the form P = (i.v2),(v2 ,),v • • ,(i-,-,,) where the vertices Wt. i 0 1,m all
have degree 2, by the edge (vl). So for each edge a in G" we have a
corresponding path P. in G. Note that the degree of any vertex in G" is at least
three. If G" has multiple edges between some two vertices, say u and w, then in
G there must be at least two parallel paths between u and w. Since G is not a
simple cycle any one of those paths will serve our purpose. If G" does not have
multiple edges then it must have at least 4 vertices. By lemma 5.1 G" cannot be
minimal. Therefore there is an edge a in G" such that G"-e is biconnected.

t For onvenience we 8mume that V is a set of intqmrs.
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which implies that 0-P is also biconnected.•

The following theorem gives a necessary and sufficient condition for a bicon-
nected rectilinear graph to be embeddable.

VV I VA
V_ - V -I

@4

Figure 5.2
Two possible embeddings of CF1 (e)

VV W

P,

4 I

Figure 5.3
The two cycles f 'f g and the path P

Theorem 5.1: Let G = (KEA) be an biconnected rectilinear graph with at least
three edges. Then G is embeddable If and only If for each edge . in the graph
both the candidate faces CF(e) and CFe(e) represent simple embeddable
cycles in the graph (i.e. the starting and ending vertices are identical, and it
simplifies to a square). Moreover, if the graph is embeddable each such distinct
candidate face corresponds to a face in the planar embedding.
Proof:

od1/ 1if: Supposing for some edge e=(vev), CF(e) is not a cycle, i.e
CF 1(s) = v z, L. • • " ,wk +1 with t = v+I for some C, 1 < t < k-1. Suppose G
is embeddable. Look at the cycle 11,.' • - ,vj,%+j in the embedding. Suppose
that the edge (t-Imi) is inside this cycle. There can be no other edges
(ul), i s ; I Tk maiK this cycle, otherwise u would have appeared instead of

wj+, in CFI(e). From the planarity of the embedding, there dbn be no path from
vi_. to v, other than the edge (jg, ), This contradicts the btconnectedness of
G. The case where (viz, ) is outside the cycle Is similar ( both cases are dep-
icted in figure 5.2
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Suppose CF1(e) is a cycle but is not embeddable. Since CFX(e) ip a sub-
graph of G. G itself cannot be embeddable. rilar arguments holds for CFg(e).

if: The proof of this part is by induction on the number of edges. The basis
for the induction are simple embeddable cycles, for which the claim is true by
lemma 4.4. Assume that the claim Is true for any biconnected rectilinear graph
which has less than k edges. Let G be a blconnected rectilinear graph which is
not a simple cycle and which has k edges. By lemma 5.2, there Is a simple path
P = (1 1 .vX),(v2.v). " - - with the vertices %., t Y 1,r all having degree
2. such that the graph G' = G-P is biconnected. v, and wr will have degree
greater than two. Also assume that u > ws and ei =

Since all our candidate faces are cycles, if an edge a lies on a candidate
face f then either CFI(e) = f or CF(e) = f . So each edge will be present in
exactly two of these candidate faces. Hence the path P will appear in CF,(0 12)
and its reverse path will appear in CF2 (e 12). Let
f' I = CF10e 12) = 'U P."2, * * "r X'' P. ' " * .UJ,VJ 1
f12 = CF( 12) =tpi,i, -1, v "" , , • , and

fa = 1Jw1 1 , .-b,WrUl, • ••.,l.

It follows from the definition of the candidate faces f, %md 12 that the vertices
tSjJ 2 ,w1 appear consecutively in that order in LG(vl) and that a,%._W,uj
appear similarly in LO(Wv) ( see figure 5.3 ). Therefore for each edge in f1 or 12
which is not in P, the new candidate face in G will be f 3 which is a simple cycle.

We still have to show that f a is embeddable. Since fI and f 2 are both
embeddable P(f 1) = (r +j ±2).180' and q(1'2) = (r+k±2).180' . However, since
f1 and f 2 share the edge s. it is implied by the definition of candidate faces
that (f 1) = (r-+j+2).1800 and p(1g) = (r+k+2).1800 is impossible. With a little
bit of algebraic manipulation we can show that p(f s) = ((I +k +2)*2). 1808. Since
fs has j +k + 2 vertices by lenma 4.5, it is embeddable. Thus the candidate faces
for G' are the same as those for G, excepting for f 3 replacing the two faces f 1
and 2 2. So for each edge in G' its two candidate faces are again simple embedd-
able cycles. By induction hypothesis G' is embeddable and each distinct candi-
date face corresponds to a face in its embedding. The orderings of the edges at
the vertices I1 and u, imply that the end edges (v Ig) and (w.-.,w) of the path
P are both trying to go inside the face corresponding to f 3.

We are left to show that we can add the path P back without destroying
embeddability. Find any rectilinear path P in the face corresponding to Js in
the embedding of G', that starts and ends with A((vl,vg)) and A((1V,_,v,))
respectively. This is clearly possible although we may have to extend the grid in
order for P to lie on the grid lines. P creates a face in the embedding with the
path P, = w ua' • U•v1 . If f's is not the outside face then
YPq = XTI) = K(P) = a. The case when i s is the outside face is slightly
more complicated. There are two such different paths P depending on the new
outer face that is created. However, for one of the two the above holds and sup-
pose this is the one we chose. By definition both P and P are complements of
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P3 with respect to a, they also share the same start and end labels, and by
lemma 4.6 we have XMP = X-. Therefore G'+P' can be obtained from G by
applying a sequence of the four topological actions, and since G'+P' is embedd-
able, by lemma 4.1 G is also embeddable. It is easy to see that the two new
faces we get after Inserting P in the embedding of G' correspond to f Iand f g. a

The above theorem leads to the following algorithm for recognizing embedd-
able biconnected rectilinear graphs. The algorithm also outputs the faces of the
embedding if the graph happens to be embeddable.

morithm check-bicoamacted(G);
begIn

if G is an edge then retun;
u JEI > 31Vj-5 umn

iurUe( Vwt embeddable 9;
qit

for each edge a do
begin

mark[e .1]:= false;
markke .2]:= fale

end;
for each edge s do

fort:= I to 2 do
begin

f not marke ,] then
begin

f := cewuLdte-face e. t)
f vrol embed -ccLe (f ) then
begin

wi ta ( not embedtdable');

end

for each edge e' = ( 1 ,t 2 ) in ! do
ifwI > i then mark[e',]:= true
else mark[e',2]:= true;

outputt (f)
end

end
endL

Boolean function embed-cycle(') returns value true if f is an embeddable
cycle. If f is a cycle then we simplify using the reduction rules and check if we
and up with a square. This can be done In time linear in the size of f. Function
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call candide-ace(e,i) returns the candidate face CF(e) and the function can
be implemented exactly as described in definition 5.2. In the calls to this func-
tion, each edge a can be traversed at most twice, due to the flags mark[s ,1] and
markte ,2]. Therefore the algorithm runs in time O( VI). We conclude this sec-
tion with a lemma which will let us identifly the outer face in a rectilinear graph.

Luma 5.8: Let G be an embeddable biconnected rectilinear graph. For all
Interior faces I in the embedding of G, 9(f) (n-2).180 , and for the unique
exterior face f., V(f.) = (n +2).1800.
Proof: Consider the embedding of G. The faces of the embedding are deter-
mined by G, and are simple polygons In the plane. By the definition of P, for
every interior we count the interior angles, and for the exterior face we count
the exterior angles. The lemma follows. ( Remember that if G is a simple cycle,
the embedding has two faces)..

I I I I "

I , " I
I . , : I r--- I

II I

S-. r -

Figure 5.4
Shapes U and W

Lemma 5.4: Let G be an embeddable biconnected rectilinear graph, f, the
exterior face n its embedding and v a vertex on f. If P, (v) = 180 then G

can be embedded inside a polygon of shape U, as shown In figure 5.4a. If
opf = 270° then G can be embedded inside a polygon of shape W, as shown In

figure 5.4b.
Proof: Easy and left to the reader..

6. Articulation Vertices

In this section we examine the conditions under which the embeddability of
the biconnected components of the graph implies the embeddabllty of the
graph Itself. Clearly, this will depend on the way components meet at articula-
tion vertices. In figure 3.2, we showed two examples of nonembeddable rectil-
inear graphs, each of which decomposes into two embeddable biconnected rec-
tilinear graphs.

In those cases, the two biconnected components are not "compatible" at
the articulation vertex However, the situation need not be so local. Figure 6. 1
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Figure 6.1
Decompositions of nonembeddable graphs

depicts two nonembeddable graphs, each of which decomposes into three
embeddable biconnected components, so that the components meeting at each
articulation vertex are compatible. Note that an edge is a (trivial) biconnected

component.

If v is an articulation vertex in a graph G. then its removal results in

several connected subgraphs G, of G. We will refer to the subgraphs G+, as
the subgraphbs ieeting at v. Throughout this section we will implicitly assume
that we are dealing with rectilinear graphs whose biconnected components are

embeddable.

Definition 6.1: Let B, and B2 be two nontrivial biconnected components of a
rectilinear graph G that share an articulation vertex v. Then B, and B2 are said
to 4nterlace if the horizontal edges at v belong to B, and the vertical edges
belong to B2. We also say that v is an Wer/ace vertex. Any articulation vertex

that does not have this property is said to be interLace-free.

Lemma 6.1: A rectilinear graph G which has an interlace articulation vertex V is
not embeddable.
Proof: Let B, and Bs be the two biconnected components sharing the vertex v.
Since B, and B2 are nontrivial, the horizontal edges at V lie on a cycle in B, and
the vertical edges lie on a cycle in B.. It is impossible to draw G on the plane
without these two cycles crossing. .

Bdnition 6.2: Let B, and B, be two non interlacing biconnected components of

G that share an articulation vertex v, and assume B1 is nontrivial. Then Be is
said to be itdr BI ( or B 1 doninates B, ata' ) if either (i) v is not on the exte-
rior face of B1 , or (ii) edges (viu) and (ww) at the vertex v are on the exterior
face of B1, and u,w are consecutive in that order in Lc(v) ( note that they are

always consecutive in LB(w ) ). I neither B dominates B2 nor Bg dominates B 1 ,

then B,1 and B2 are said to be outs e each other.
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The intuition behind the above definition is that in the embedding. one

biconnected component must lie wholly inside some face of the other if one
edge of it does. This is due to the planarity criterion. Clearly, if biconnected
components B, and B2 that share an articulation vertex v dominate each other,
the graph is not embeddable (this is the case in figure 3.2b ).

Let B, and B2 be two biconnected components of a graph G that share an

articulation vertex v, such that B, dominates B 2. Let G' be the subgraph of G
meeting at v, that contains B2. If G is embeddable then in any embedding of G,
all of G' should lie inside one face of B1. This suggests extending the relation
"dominate" as follows:

Definition 6.: Let B = BI,B2 ,. Bi. be the set of biconnected components

of G. We say that A doatamtes Bj if there exists a biconnected component Bt
and an articulation vertex v. such that (i) B& and A4 share v. (ii) A dominates

B& at v, and (i) Bj and Bo are both subgraphs of the same connented sub-
graph meeting at v.

Let us denote by V(G) the vertex set. of the graph G and by E(G) the edge
set.

Lemma 6.2: If in a rectilinear graph G, there exists some pair of biconnected

components B and B2 that dominate each other, then G is not embeddable.
Proof: If B, and Bp share an articulation vertex v, then as mentioned earlier G
is not embeddable. Suppose that B, and B2 are disjoint. Since B, and B2 dom-
inate each other, there must be articulation vertices v 1,vg. biconnected com-

ponents Bl',B2 ', and subgraphs G1,G2 , such that for i = 1,2, (i) B and Bt' share

ti, (i) Bt dominates Bt' at vi, and (iK) G is one of the subgraphs meeting at vt
and contains B'. Let us assume that G is embeddable. From (i) v2 E V(GI).
(ii) G, lies wholly inside BI in the embedding, and (ii) V(GI)r)V(B 1 ) = Jsv1, we I
can conclude that v2 must be properly inside a polygon defined by the face fI of
B .containing v1n. Similarly w,1 should be properly inside the polygon defined by a

face f2 of B2 containing V2. Therefore some vertices of f2 must lie outside fI
and the two faces must intersect, and hence G is not embeddable. 0

Given a rectilinear graph G, with set of biconnected components B and set

of articulation vertices A we can construct a tree T of biconnected components

such that V(T) = AuB, and E(T) = |(vB) I v iE A, B c. B, w c V(B)I.

lamma 6.8: Let G be a rectilinear graph with the set of biconnected com-
ponents B and tree of biconnected components T. Let B be a leaf in the tree T

which is adjacent to an articulation vertex v of degree 2 in T. If B dominates B'

the other biconnected component adjacent to v in T, then B dominates every

other biconnected component in B.
Proof: The only two subgraphs meeting at v are B and G-B+, and the proof

follows from definition 6.3..
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If no two biconnected components dominate each other, then the relation
"dominate" induces a partial order on B. A nondominating element in this partial
order is a biconnected component which does not dominate any biconnected
component.

Corollary 6.1: If for a rectilinear graph G, "dominate" is a partial order, then
there exists a nondominating biconnected component which is a 0eaf in the tree
T of biconnected components.
Proof: Any trivial biconnected component (which is just an edge ) must be non-
dominating. If any vertex in T ( corresponding to an articulation vertex in G ) is
adjacent to two leaves, then either the two leaves are nontrivial and not dom-
inating, or one of them is a trivial biconnected component. If no vertex in T is
adjacent to two leaves, then all leaves are adjacent to vertices of degree 2. and
there are at least two such leaves. If two of these leaves are dominating, then by
lemma 6.3 the two leaves dominate each other which is a contradiction that
"dominate" is a partial order. In fact all of these leaves must be nondominating. a

Theorem 6.1: Let G be a rectilinear graph and B its set of biconnected com-
ponents. G is embeddable if and only if
(i) every biconnected component B in B is embeddable,
(ii) every articulation vertex in G is interlace-free, and
(iii) "dominate" induces a partial order on B.
Proof: The necessary part follows from lemma 6.1 and lemma 6.2.

The sufficient part is shown by induction on the number of vertices. The
basis for induction is any biconnected rectilinear graph. Let G be not bicon-
nected with I V(G) I = n. Assume that the claim is true for all smaller graphs.
Look at the tree T of biconnected components. By corollary 6.1, there exists a
leaf B in T which is nondominating. Let v be the articulation vertex shared by B
and G' = G-B+v. the rest of the graph. G' being a subgraph of G also satisfies
the conditions of the claim. By induction hypothesis G' is embeddable. By condi-
tion (i), B is also embeddable. If B is a single edge it is easy to add the edge to
the embedding of G'. Assume B is nontrivial. Since B is nondominating, v must
he on the exterior face f. of B and , o 90' (why?).

Embed G' and B separately and consider the vertex v in both embeddings
If f. (v) = 180 . then v is on only one edge in G'. Add- new grid lines to the

embedding of G', create the shape U as shown in figure 6.2a, magnify the embed-
ding, and embed B in the U as in lemma 5.4a. If g5. (v) = 270'. then v is either

on just one edge in G' , or on two perpendicular edges in G'. In both cases, add
new grid lines, create the shape W and embed B as shown in figure 6.2b. w

Before we describe an algorithm for testing embeddability, we need an algo-
rithm for testing whether "dominate" is a partial order on the set of biconnected
components. From the tree 7' of biconnected components, we construct T a
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Figure 6.2()
Adding B to the embedding of G'

partially directed tree as follows. Assume that no biconnected component dom-
inates and is dominated at the same vertex. If so then "dominate" is not a par-

tial order. Direct edge (iJ ,B) from B to v if B dominates at v . Direct edge
(v ,B) from v to B if B is dominated at v. Leave all the other edges undirected.

This partially directed tree T can be constructed in linear time as follows.

Find the faces of each of the biconnected components using the algorithm

check-biconnected This takes O(1 Vj) time. Check for dominations at each

articulation vertex as described in definition 6.2. There are at most 4 bicon-

nected components at each articulation vertex and hence there are at most 12

(ordered) pairs to be tested for domination ( in fact only 2 tests are necessary,

how? ). Construct T by directing the edges of T as described earler. Note that

articulation vertices and biconnected components can be found in o(1 VI) [I].

For each vertex z in T, denote by dn(z), d(z), and d(z), the number of

incoming arcs, the number of outgoing arcs, and the number of undirected

edges respectively. The rest of the algorithm is given below.

Algorithm check-domirude-po(G);

begin
construct T;
for each vertex z in 7 do

if d,(z) > 1 then

begin
wrif e ( ho t a partiaLt order');

end.
if searcht (T) then um e ( Ves. pmrtia. order')
elm unUte ( not a pzrtial order')

and

functio search (T): boolea;

begin
it T =9then search:= true



I

- 16 -

elm begin
i 5 B CBwith da(B)=O . (B)+d(B)=I then
begin

Let v be the neighbor of B;
if ,()+d.g (ii)+d(v )1 thensearch:= aewch(T-JBj)
elm search: = search (T-IB.,, )

end else se arch:= false
endL

The above algorithm can be easily shown to be correct using definition 6.3
and corollary 6.1. The boolean function search can be implemented nonrecur-
sively to run in Linear time by maintaining a queue of the leaves of T.

Given the biconnected components and articulation vertices, checking that
the articulation vertices are interlace-free can be done in 0(1 VI) time. Let
check-interlace-free be a procedure that checks a given articulation vertex for
interlace-freedom. We end this section with a 0(1 VI) algorithm for testing
embeddability of rectilinear graphs.

Algorithm check-rectin ar(G):
begin

Decompose G into its biconnected components,
for each biconnected component B do check-biconnected(B)
for each articulation vertex v do check-dnterace-free (v)
che ck-domirtate-po (G)

end.

7. An Embedding Algorithm
In the previous section we gave an algorithm for testing embeddabihty

This algorithm can be easily modified into an algorithm which gives an embed-
ding. However, the complexity of this naive algorithm would be O1I V I). The rea-
soning is as follows. The path P that we find in the proof of theorem 5.1 could be
0(V VI) long For each topological action that we apply on this path to transform
it to the path P, we update the coordinates of the vertices in the embedding
once. Thus for each path added we require 0(I V12 ) time There can be 0(I V;)
such paths and hence the complexity of the algorithm is 0(1 V11). To reduce the
complexity to 0(1 VI )2), we have to make sure that the path P is never longer
(asymptotically) than the path P. In this case the sum of the lengths of all such
paths P is 0(1 VI), and the 0(1 V12 ) complexity follows. In the following, we show
how we can always find such paths, describe the algorithm, and analyze its com-
plexity.

Lmmma 7.1: Let G be a planar biconnected multigraph with minimum degree
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three. Then any embedding of G has an interior face of size at most five
Proof: The dual G of G is also a planar graph. Since G has minimum degree 3,
Gd is a simple graph. Hence G1 has at least two vertices of degree ' 5 [2]. G is
biconnected and hence one of the vertices must correspond to a face of size ! 5.

Lemma 7.2: Given an embedding of a planar biconnected graph G, which is not a
cycle. there is a simple path P, such that (i) the interior vertices of P all have
degree 2, (Ui) the end vertices of P have degree - 2, (ii) P appears in an inte-
rior face f in the planar embedding, and (iv) 5. 1PJ I If I,
Proof: As in the proof of lenna 5.2, transform G to G' by replacing all paths
with property (i) and (ii) by edges. By lemma 7.1, G' has an interior face f of
size at most 5. The longest of all the paths in G corresponding to the edges of f
will satisfy conditions (iii) and (iv).-

To get an embedding of a given rectilinear graph, we first test if the graph is
embeddable and then apply the following algorithm.

Algorithm ebed-,rectiiwner(G);
begin

for each biconnected component B do embed-biconnected (B);
join-the-embeddings.

end

Algorithm eonbed-biconvncted(B);
begin

get-Long-path ( P. P1. a);
embed-b+iconnected ( B - P
find-pth-m-embedding ( P', P1. a);
qppLy-ations-and-ransform ( P'. P)

end

Prredure get-long-path returns paths PP 1 , and square a, such that P
satisfies the conditions of lemma 7.2, and the interior face f = PPI simplifies to
a. By lemma 7.2 such a path exists.

Procedure ftnd-path-in-embedding traces a path P in the embedding of
B-P, such that P' starts and ends in the same directions as P, and P'P,
simplifies to a. P and P are both complements of P, with respect to the square
a. Since PP1 is an interior face, P' can be obtained by starting in the required
direction, then following the path P in the embedding of B-P. and ending in
the required direction (figure 7.1). This will result in P being a complement of
P, with respect to a. We have IP' = O(I PI) = O0Pi).

Procedure zplly-actiams-and-traforn applies a sequence of the four
topological actions to P in the embedding of B-P+P' and transforms it to P
thus resulting in a embedding of B. This is done by first simplifying the path P'
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Figure 7.1
Finding the path P' in the embedding of B-P

L~Li

Figure 7.2
Path addition, simplification and expansion

and then expanding the simplified path to get the path P (figure 7.2). The
number of actions applied will be 0(IPI+IP'i) = 0(IPI), 

Procedure join-embeddings takes the embeddings of the biconnected com-
ponents and puts them together to get an embedding for G. This is done essen-
tially following the proof of theorem 6.1. Find a nondominating component B.
Recursively embed G'= G - B. Join the embeddings of B and G' using the
shapes U or I as shown in figure 6.2

The algorithm can be shown to be correct using the material developed in
the previous three sections. We now analyze the complexity of each step in the
algorithm and show that the total complexity is 0(1 V12).

Procedure join-embeddings updates each coordinate at most once per

recursive call. The total number of calls is bounded by the number of bicon-

nected components. Hence this procedure takes 0(1 V1t) time.

Procedure get-long-puth can be implemented to run in 0(1 VI) time each

time it is called. Remember that we can get the faces of a biconnected graph
from the testing algorithm, and searching all faces to get the required face

takes linear time, Procedure jInd-h-m-eembedi takes 0(1 P 1 ) = 0(1 V1)
time, These two procedures will be invoked at most 0( IVj) time. Hence total
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time spent in these calls is 0(1 Vi').

Procedure sppiaW ctonsmid-tomfovvn applies a sequence of O(1PI)
actions. Each edge in G will appear in only one such path P. Hence the sum of
the lengths of all such paths P is 0(i VI). Each action updates at most 0(1 VI)
coordinates. Therefore the time spent in calls to this procedure is 0(1 Vi l).

8. Ceasistent Rectilinear Graphs

Certain rectilinear graphs cannot be drawn on the grid even if we relax the
planarity criterion. We say that a rectilinear graph G(V,E.,) is consistt if it
can be drawn on the grid satisfying the ordering relation X. In other words, G is
consistent if the set of equality and inequality constraints generated in part 1 of
definition 2.2 is consistent.

The equality constraints define an equivalence relation on the set of coordi-
nates of the vertices of G. Let us denote by a (z) the equivalence class contain-
ing the coordinate z. Denote by I, and I the sets of x-coordinate and y-
coordinate inequality constraints respectively. Construct two directed graphs
_. (V,.) and G,(V, ,) as follows:

. =e(z) I =z(a),a E Viand E., = (z, ) I Z1  >Z2E:I,

V and E-V are similarly defined.

It can be easily shown that C is consistent if and only if the two directed
graphs G. and Ci are both acyclic. A solution to the coordinates which satisfies

the constraints will correspond to a nonplanar embedding of G on the grid. This
can be obtained by performing the topological sort operation [4] an the two acy-
clic digraphs. In fact this will yield a solution that minimizes the area of the rec-

tangle bounding the embedding.

In a nonplanar embedding of a consistent rectilinear graph on the grid, all
crossings are between horizontal edges and vertical edges. The vertical edges

can be assigned one layer, and the horizontal edges can be assigned a second

layer. In other words the 'thickness' [2] of a consistent rectilinear graph is less

than or equal to two. A generalization of the rectilinear graph embedding is the
problem of embedding a rectilinear graph with layers preassigned, in which no

two edges belonging to two diffirent layers cross. This remains an open prob-

lem.

9. Kztanlona and Open Problems
As mentioned in the previous section, the embedding problem for layer

assigned rectilinear graphs is still to be solved. This has important applications

in VLSI. It is easy to show that if a rectilinear graph is allowed to be discon-

nected, then the optimal area embedding problem is NP-complete ( reduction

from two dimensional bin packing ). However, the question is open for con-

nected rectilinear graphs.

V4
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On a more theoretical side, we can define 'triangular', 'hexagonal' and other
polygonal graphs. and consider the embedding problems on appropriate grids.
However, it seems that the work in this paper does not generalize easily. This is
mainly because these polygonal graphs lack the nice simplification properties of
rectilinear graphs. Geometry seems to dominate over topology in these polygo-
nal graphs.

We conclude with a note that our 0(j V12) embedding algorithm will be
implemented in ALl. In ALI, layouts are described in a hierarchical fashion, and
hence the algorithm can be applied hierarchically on a cell by cell basis. In this
case the complexity of obtaining the embedding is the sum of the quadratic
complexity over all cell instances.
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On Driving Many Long Lines in a VIM Layout

Wjavo Rwachm"I"M

Department of Electrical Engineering and Computer Science
Princeton University
Princeton. N.J. 06544

Abstract We assume that long wires represent large the resistance of a long wire can be ignored and that the
capacitive loads, and investigate the effect on the area of wire can be viewed as a large capacitive load whose capa-
a VLSI layout when drivers are introduced along many citance is proportional to its length. This view is also
long wires in the layout. We present a layout for which presented in [MR79] and is supported by BUlardi, Pracchi.
the introduction of drivers along long wires aqumes the and Preparata [BPP8l] who solved the diffusion equation
area of the layout. we show, however, that the increase in for a long wire and suggest that, for predicted future
area is never greater than this. if the driver can be laid gains in technology, the wire can, indeed, be modeled as
out in a square region. We also show an area-time trade- a purely capacitive load. For such a load, it is well-known
off for a single long wire by which we can reduce the area that the delay can be reduced to the logarithm of the
of its driver to (19).q <1. from $(1). if we can tolerate a capacitance by introducing a sequence of drivers which
delay of 0(1 '-I) rather than 9(log 1); and we obtain tight occupies area proportional to the capacitance (MCso].
bounds on the worst-case area increase in general lay- In this paper, we assume that the wire can be
outs having these drivers. using the Brouwer fixed-point modeled as a purely capacitive load. We address the fol-
theorem. We also derive results for the case when drivers lowing question that arises naturally in this context, but
are embedded in rectangles that are not square. Finally, has not been examined before: What ts ta effect a the
we extend the use of our upper-bound technique to other rect of Layo ,uAsn drti ers mae tntroduced to speed up
layout problems. *fgnak along mortl long stfes? We justify our

capacitive-model assumption by appealing to the simula-
tion results of CBPPOIJ. Further. if a long wire must.

1. Introduction indeed, be modeled as an RC-network, then the introduc-
tion of repeaters to reduce the delay will increase the

The presence of long wires in a VLSI layout slows area only by a consftant factor. This is because such
down the performance of the circuit due to signal propa- repeaters are of constant size, and a long wire may thus
gation delays. This effect can be minimized by using a be modeled as a sequence of short wires connected by
driver at the head of each long wire. However, the nodes of fixed size. In the capacitive model, on the other
drivers themselves occupy space, and the question band, the area occupied by a driver increases with the
arises whether drivers can be introduced efficiently length of the wire it drives, and thus. drivers cannot be
when there are many lons wires in a lavout. For exam- abstracted as constant-size nodes. In fact, we show that I
pie, consider the simple case of a long bidirectional'wire, there can be definite area penalties when there are
A driver needs to be introduced at each end of the wire, many drivers in a layout. Our results are of particular
and the presence of each driver increases the length significance for upper-bounds in area-time products for
along which the other driver has to drive the signal. A VLSI layouts, since most previously derived bounds have
large network with many long wires may contain several ignored the delay along long wires. Either linear delay
instances of mutual interactions of this and other kinds, should be assumed along connecting wires (this would
and it is not clear whether drivers can be introduced in represent either "RC" wires with repeaters, or "capaci-
an area-efficient manner under these conditions (or even tive" wires without drivers), or the area expansion
whether they can be introduced at all). This is the prob- caused by drivers for capacitive wires should be taken
lem we analyze in this paper. into consideration; alternatively, some intermediate

The question of delays along long wires is a complex design for drivers can be used from the spectrum of
one, and no consensus has been reached as yet on the designs we suggest in section 4. But upper-bounds
correct way of modeling this. Some papers (e.g.. 13(801. derived using constant delay along all wires, and no area
[VSO]) assume that a constant propagation delay models expansion for drivers do not model the physical situation
the current situation quite well. But It is generally well.
accepted that this is not a good approximation of the For a wire of length 1. the most familiar type of
physical situation. Mead and Conway [MCS0] and driver occupies *(L) area while reducing the delay from
Chazelle and Monier [CMul] suggest that a wire is basl- 0(l) to 0(log 1). In this paper, we present a layout for
cally a distributed RC-network. and the delay thus is pro- which the introduction of such drivers along long wires
portional to the square of its length. This delay can be squwas the area of the layout; we show. however, that
reduced to a linear delay by using repeaters along the the increase in area is never greater than this. f the
wire. Linear delay is also the asymptotic limit imposed driver can be laid out in a square region. We prove the
by the speed of light. Thompson [TIC. T81] suggests that upper-bound by a new technique that uses a fixed-point

theorem; we believe the proof technique is important in
This researeh wss supported in pert by NIF uider Grat S its own right. We also show an area-time trade-off for a
803oM. ad in pat by DARPA under ON 00014-W-K49, single long wire by which we can reduce the area of its

driver to 0(L).9 <1. from S(f). it we can tolerate a delay

f



of 0(1") rather than *(log 1); and we obtain bounds on
the worst-case area increase in general layouts having _____---- --_

these drivers, again using the Brouwer fied-point ">
theorem. We also examine the case when drivers canot ierwire
be laid out efficiaenUy in square regions.

The paper is organized u follows: Section 2 presents
the VLSI model we use. In section 3 we present a graph
on ni vertices with O(n) long wires for which the layout *ure I
area expands from O(n) to 0(n4') after introducing A driver introduced along
drivers fcr the long wires. Section 4 examines the area- part of a long wire
time trade-off for drivers, and sections 5 and 6 use the
Brouwer fixed-point theorem to find general tight upper-
bounds for the area expansion caused by drivers in arbi- constant k. This is not strictly true, since the driver has

trary layouts. Section 7 generalizes the technique to a transistor whose channel is 9(l) wide. and hence it is
other layout problems. and section 8 concludes the more naturally laid out in a long. narrow rectangle.
paper with a review and some open questions. Clever design methods, however, such as the use of a

zig-zag poly line for the gate in MOS technology, can be

used to overcome this problem. We have more to say on

2. The Model this point in section 6.

We assume a layout model similar to the one used
by Thompson[TSO] and Leiserson[LBO]. The VLSI circuit is cut I
abstrected as a graph having bounded vertex degree and -- I
it is embedded on a planar grid subject to the following
constraints:
1) Eech vertex represents a processing element and
occupies a constant area. Distinct vertices of the graph
are embedded at distinct grid intersection points.
2) Edges have unit width and are routed along grid lines

with the restriction that no two edges touch one another
excepL possibly when crossing perpendicular to each (-A - - >
other. Also, an edge cannot he routed over a vertex it
does not connect. Each edge represents a connecting
wire. We will refer to an edge as a ,uire or a LIne. drier k

We assume that we are given su.h a layout for a cir-
cuit with certain edges identified as long wires. Note that
the number and positions of long wires is layout-
dependent, and the same circuit may have another lay-
out with shorter lines. We shall not go into the question igure 2

of derigning layouts to minimize the presence of long Introducing a driver by making

lines. Some work has been done on minimizing the length cuts in a layout

of the longest line in a layout for certain classes of
graphs ((PRS1)], [RS81], 1. 82]). but, as we mention in Civen a long line wo of length I in a layout, an ares- I
section S, the minimization criterion in our case is a officient way to achieve signal speed-up would be to
different one, which has not been studied so far. We will, introduce a long skinny driver (the natural design) along
therefore, assume that the layout Is given, and we will a portion of iw (see fgure 1). However, VaI layouts are
introduce drivers where needed by making local espasi- dense in general, and the above scheme will not work if
siont without distorting the layout configuration. there are vertical lines present in this region. In such a

A long wire is a bidirectional element electrically, case. we make two "cuts" or 'slices" (a notion introduced
but in a VLSI circuit, It usually connects active unidirec- by Llserson [LSO]) at the bead h of ,. each kvT wide,
tional devices, so that the signal always originates at one one each in the vertical and horizontal directions (figure
Axed end of the wire (which we will call the head of the 2). Any edge that is broken by the cut is then joined
wire) and propagates towards the other end. For the rest across the cut by a straight line. This forms a square
of thet paper, we assume that wires come with the direc- region of k V7 side at h with no edges or vertices from
tion of signal flow specified. and that bidirectional wires the original layout. We introduce the driver in this
are deromposed (conceptually) as two edges connecting region. Ths construction does not disturb the layout
the same vertices, but having opposite signal flow. configuration. and introduces the driver by local expan-

As mentioned in the Introduction. we assume that sions. It increases the length of each side of the layout
the line is purely capacitive, and the delay thus grows by the size of the cut. Is also trieeases 6W k/1. the
linearly with A. the length of the line. This delay can be lenth of each Ahorsorital gstie t Inh ayout uhich inter-
reduced by using drivers to speed up the signal. Many sects the se tcal lite asup through A and each wrti.al
different types of driver designs are possible, and they Uie that Interects the horwotl li e drsuo thrmgh h
differ In the signal speed-up they offer, and the area they These other wires will now require larger drivers then the
occupy. We analyze these time-space trade-offs in see- ones they would have needed in the absence of a driver
tion 4. For the present, we assume the most familiar at A. The introduction of drivers at these other fines will.
type of driver, which reduces the delay to *(log I) at the In turn. offect the lengths of more lines, and could even
expense of occupying *(I) area. We also assume that the Increase the length of w so that the area of its driver
driver can be laid out in a square of side kv, for some would have to be revised upward.



We are now in a position to state the problem we are let s, be a new variable defined by
going to analyze:

OWen a VLSI layout wit cegis edges speoglad w slam+d,
riop ukritS. uAats the *reUe in lt ar fe o Isut sl C8Um+d+d,

n the w-at twouAan drtaers are used to speed up sip-vias song these long uies?

3. A VerSt-ellsxaiaple esmc 8 + t dj

Consider the graph layout of figure 3. It consists of at's+ so

a square mesh on nt vertices (assume n een). together -k(rn d1 )V •
with n/2 long horizontal lines wl. 5 , • • * uk/t. If we
assume the vertices to be laid out in an nlfx grid (there =a+-I+k
will be a slight expansion needed to accommodate the
long wires along grid lines, but, we can ignore this for wdr convenience. define am Note that s+t gives the
"order-of-magnitude" arguments) and let me an/ 2, then width of the layout from the rightmost end to the left
u; I runs from vertex (r.1) to vertex (n.1). wli runs from and of the tth driver. and sa+m gives the length of each
(m -i 2) to (n -l.2). - a • .nd uo, runs from (1.m) to side of the layout after the introduction of drivers on all
(m + ].m). The signal goes from left to right along each of of the long wires. We find bounds for this value below:
these of these lines. lemma: There exist constants k, and ks such that for

any integer m >0.

p n.n) ktl+wa , & k ltlm for t &!VR.

Pio We prove both sides of the inequality by induction.

Assumre #ai* ,ltgir
- - Since s0=m .the assumption holds for so for all values of

& i Assume the result holds up to s,. Then,

-- >k itevn +kk I'

fret6 Hence. e0*,hrn~kl(1+l) s for kl<(k2/4) and for

sufficiently large t. For k ltc(k/ 9), the result holds for
figure 3 el values of i. So we have eta(kt/ 9)i 2+m for all iaO.

A graph layout with 8(n 2) area and 0(n) long Lines
of length 0(n) each Assum Iiske0+m

Assume the result holds up to &,. Then,

We consider now the increase in the area of the lay-
out when we introduce drivers on wires ul to tv,,. Notice at*lost+krat -

that the presence of the underlying square-mesh struc- gkjt0+m+k(k ) o+
ture forces us to make cuts to introduce the drivers. fkore+1)l(s(k efrI /

1 13

Since "/Z drivers are introduced diagonally, and the

length of each wire is 0(n) to start with, the length of cks(t+1)t +m for ks(k l B)(l /l+l16/ks).

each zide of the layout increases to at least 9(n .n 1/ ), so
that the area of the layout increases from 0(ne) to at Hence we have at (k'/S)(1+ 1 )t'+m for
least 9(n9). However, this does not account for the . For tVm" ', we need e s/.mktm+m, and since
increase in the lengths of some wires due to the intro- ai'g (tn+k%"'ff4+R k(l+k)yr the inequality holds
duction of drivers on other wires. We now derive a non- when k k 15.2k +2k'.
linear recurrence relation that accounts for this effect, Therefore, a sk i +m for all thv'i when
and use it to bound the increase in area as 9(n 4). keamax( (k18)( /+16 ), k ).

Since the signal travels from left to right along each The required result follows from combining the two
of the long wires, the length of wn is not affected by the inequalities..
introducticn of drivers at the heads of the other long
wires. In general, the length of s Increases by exactly Thus, the width of the layout after the introduction
the le.'gths of the drivers introduced on wn to u _-, If we of drivers, which is given by so,+m. is 0(m2)=9(n2) and
let d, be the width of each side of the driver for wire u%, the area thus grows to exactly 9(n4). the square of the
then we have initial area. The width of the driver for u, is given by:

d "de k (m +'Yd )l/t
d sk(wed.)i/

s  
Sol

O(s ). for t&t5-n.

disk (me+Y') t oa  Hence there are O(n) drivers of width 6(n) in this lay-
ji out. Note also that many of the short wires have their

isgiIm mmmmmmmW maIrmmm mmm s•mmm
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lengths greatly increased by the introduction of driver@ inverter for to1.2. • ^-1. and let fi be the ratio of CL

for wires u; j to %m. For instance, the wire connecting the to the capacitance c, of the last driver (figure 5).
vertex (1.u) to the vertex (2.n) has its length increased
from I grid unit to 0(t) grid units. We may now want to
introduce drivers for these wires. too, but since we a
deriving a lower bound in this section. we will ignore this channel width
point. (normalized) I fI

The layout of figure 3 is simple in the sense that it (cap. r V.c) L
has no mutual interaction: there do not exist wires ,uk
and Uvj such that the driver of uk increases the lenth of
U and the driver of wj increases the length of uk. In
general, we could have a more complex pattern of long
wires in which such mutual interactions occur in many figure 5
ways. However. in section 6. we present the surprising A sequence of drivers for load cl

result that the penalty in area never becomes worse
than the square of the original area, We have / lsf . .cL/ci and the total delay through

4. Area-Day Trade-eff for a Draer of a 1An Wire the 9L stages is T(J * ! + • • • 1)t. If we fix each ft

to be equal to a constant f. then the delay

When a large capacitive load cL is driven by an Tflog€(cL/c,), and this is the minimum delay we can
inverter withrestacit.ive dlay is e t obtain up to a constant (see [MCBO]). However, the area

inverter with resistance r,, the delay Is the product ancL occupied by the drivers in this case grows linearly with
(note that rt here refers to an "average" resistance. c. as we show below, and it may be desirable to reduce
since the resistance and the delay vary depending on this area penalty at the expense of a sightly greater
whether the input is low or high. In what follows, we delay. We show below that such a space-delay trade-off
make some other simplifications of the physical situa- exists. Some of these results are implicit in the work of
tion, but these will affect the constant factor only, so lin and Linbolin [LL75] and Jaeger[J75).
that t.e "order-of-magnitude" results hold). If the resis-
tance and capacitance of a minimum-size inverter are r, Let the area occupied by a minimum-size inverter

and c, respectively, then the basic unit of delay is t rc, be A.. Then. an inverter whose channel is I times as

and this represents the delay when a mnimum-size wide as a minimum-size inverter requires an area of

inverter drives the gate of another minimum-size about fA. Hence the total area A occupied by the

inverter. In terms of this unit t. a minimum-size inverter sequence of drivers with logarithmic delay is given by

driving a load capacitance cL causes a delay of CL9/ C.
and this grows linearly with the load capacitance. When AS4(+J+,+ ... f )

the load is a long wire, this delay grows linearly with 1, m0(f' )
the length of the wire, assuming the width and thickness 0(cL).
of the wire remain fixed. Now, consider the general sequence of drivers described

above. -The area occupied in this case is

- ____ .__ ,4 ,4,-*. +!,! al ' 4!,st la-,).
Assume that we can tolerate a delay of 0(l),0<q <1

c 11f 1'cS ctl= i recs (ao((cL)V)). Since the area of the last driver dominates
rVzrs/fI rora,/f IlI the above expression for area, we look for the smallest

size for the last driver which will still result in a delay of
not more than 0(11). Since cnvcL/ ,. and the delay

channel width of inv. 1 = f I1 (minimum channel width) through the last stage is fst, the best we can do is to set

channpl width of inv. 2 = fi (channel width of inv. 1) fwSl(l). and this results in an area of 0(1"') for -.
Now, the question is whether we can accommodate tlhe

figure 4 other drivers to occupy not more than 9( 1
-'9) area and

Delay on one stage of a driver sequence cause no greater than 0(11) delay. The answer to this as

'yes'. and in fact, we can accomplish this in many ways.
We describe one method of doing this, which minimizes

To reduce the delay to more acceptable levels, we the constant on the delay term. For this. we make ..
use a sequence of drivers with successively wider chan- the load so that we Aed to drive a load of 0(1' v). We
nela to drive the load capacitance. To understand why know from the design for drivers with logarithmic delay.
this suheme works. consider the delay when one inverter that this can be done w.th B((l-q)log 1) delay and area
with channel width f, times the minimum-size inverter 0(11-9) using 0((log r./c,)) stages. Hence the total area

drives the gate of another inverter whose channel is fg for the Pt stages remains 0(
I ') while the delay is incre-

times wider than that of the driving inverter (se figure mented by only a 0(log 1) term and hence remains 0(19).
4). The resistance of the frst inverter is rl/f ' and the
capacitance of the second inverter is i gJc, and hence We have thus shown the following interesting area-

the delay of this stage is .f , If we now have at inverter delay trade-off for the driver of a single long wire of

stages, starting with a minimum-size inverter as the first length 1: Am any 9.0<9 c1. uic can desiit a dyrtey uitth

stage, a driver with e very wide channel as the nth stage delay 0( ) and osa-delay product 9(l). If, hDwe e, us

to drive c€, and Intermediate stages with successively need to reduce the delayf to S(log 1), uAtck tr the

wider channels, then the total delay is the sum of the minum delay achieueble, then the area-dele product

delay through the vt stages. Let f. be the ratio of the gos up to 0(1log i).

channel width of the t lst inverter to that of the ith



6. An Upper-Bound Proof Technique Using lxed-Peinta by

Let F(zjzg. z,.) be a mapping from 3m to m f t (z...)k(/,+ ua)'. wben( duzj)n0.
defined by j=0, otherwise. - (1)

S1 . -)-(f 1. z ) z 1. vwhere k and 1, are positive constants. O<p l. and

where each f, is a mapping from m to R Then, a 0mdjgK. for some positive constant K. Usually. 6, is
fied-ptW of F is a vector (zr. • J)cJm such that either 0 or 1. For such functions, we have the following

coolary3 to Theorem 1.

, ( . z,. for 4l,-. ,m. Ceinary 1.1: Let F be a mapping from NO to NO given
by

The following are some well-known results from real F(z,.. rM)(f 1(c. Aw)., * fo,( .

analysis (see e.g.. Bartle [964]). where the J's are given by (1). Then F has a fized-point.
each component of which is positive and has magnitude

Bftiwer ,.ed-Point orem Let 0., and let D be the no greater &bn R. where
hypersphere defined by D is Iel".s:lsBi. Then. any Rumax(kQ k. m( PykmtP/li'P) the k,'s
contir.uous function with domain D and range contained being positive constants independent of in.
in D hase a fed-point. iDod It is easy to prove that each ft has behavior func-

Fact I Any real continuous function on a bounded closed tion gt(x)zul(z. .9). Let rta(e solution of the eque-
met in Re has s maximum and a minimum. tion k (L d, z)'=). Then. since pVl. , is sublinear

Fact 2 For B>. the hypersphere defined by D a with breakpoint r,. Hence from Theorem I. each com-
|z cRm: Iz t;B is a closed bounded set. ponent of a fxed-point of F bas magnitude no more than

We will nerd the following two definitions: R. where Ramax rt.

Definition I Let f (z,. w .z) be a continuous mapping ase I Assume that each t. ( Our,). Then we require
from m to R. and let 9 (z) be the mapping from R* tn R* li4

such th.t for each RaO. g(R) gives the maximum abso- es(fd)(r )Pft. for some constant cek, or.
lute value of f in the closed bypersphere of radius

R%'R. We callg the behatizr function off. Note that by 2.A
facts ! and 2. V always exists. . I where The maximum

possible value for ech 6V is K. Hence. each eoordinate
Definition 2 A function g(z) from R* to R* is rublinsar of the Axed-point is guaranteed to have a value no
in z if there exists an r-0 such that, for all mr. we have greater than Rakej.3 m' (1-P ). for some constant k..i
g (z ) z. We call r a breakpost of the function V. (that depends on k and K).

We now prove
Ca~st2 There exist 4's such that each

Theorem 1: Let F be a continuous mapping from no to
3O given by Let A1 be the maximum value of such I&'s. Then
F(41. -z,)-(f &. d,,. O: z). end hence we reed v,.kI for some con-

and for each fl. let the behavior function 9, be sublinear fneo

in z. witn breakpoint r. Then. seant kcltk. Hence. in this case. each coordinate of the
1) the function F has a fled-point within a byperphere fixed-point is guaranteed to have a value at most

of radius R'Wn. where R=max rt. and Rsmu(k1  .,spl).

2) each component of the fixed-point is no greater than By combining the two cases, the required result fol-
R in magnitude lows. Clearly, since the rare of F lies entirely in the

positive ortbant. each component of the fixed-point must

Proof To prove 1). it is sufficient, from Brouwer's be positive..
theorem. to prove that the range of F is contained on or
within the prescribed hypersphere when the domain is Carolar7 1.k: If at most V of the fi, can be nonzero for
similarly constrained. For this. it is sufficient to prove each function ft in (1). then each component of a Axed-
that, for each t. g(R)gR, since this will guarantee that point of F is positive nd hba magnitude no greater than
the Euclidean length of the range is no greater than R. where Rma(k ill...iiI..,iV'l'").
./ImR But this fo'lows immediately from definition 2,
since the functions 9, are sublinear with breakpoints rt. Pfod Immediate from the proof of Corollary 1.1..
and for each t. 't'R.

Note that. by requiring pt(R)SR for each t, we are , General Upper Decade fer Ara Penalty in layouts
constraining the range to lie within a closed bypercube with Driver
inscribed within the hypersphere of the domain. This
additional restriction ensures that each component of We initially assume that a driver for s wire of leneth
the fixed-point is at most R in magnitude, and this I oea be embedded in a square of side Mr (psl/2).
proves 2). and the theorem . When po2/2, this corresponds to the standard driver

In our application to layout problems, and in partlc- with iogarithmic delay. Since we are now proving upper

ular, to the problem of drivers, we wil be interested in a bounds, we will assume all wires in the layout to be long
special clams of functions I(si , • • •rm):9m6A define: This may be a neoemary asumption. since a ire that
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was short initially may become long due to the introduc- drivers. A similar result holds for horizontal cuts. Note
tion or drivers on other wires (as we saw in section 3). that this means that we need make at most two cuts at

Now. assume that the layout is in an vtrn' grid each vertical and horizontal grid position (the factor of
(nan ). Hence the area of the layout before introducin two aripes from the convention we adopted in observa-
drivers is Ann'. We note the following points about ions tiora 2 above, regarding the position of the cut). Thus. at
lines and their drivers in this layout: most 2(ftw*) cuts will be needed to accommodate

drivers in any vxLw' layout. The iii dts of the cuts need
1) If each long line is I units Iong. then there are at most to be determined, and we bound these values later in

RA/I long lines in the layout. this section to obtain tight upper-bounds on the worst-
ease area expansion caused by the introduction of
drivers.

4) If a wire bends (i.e.. goes both vertical and horizontal).
the analysis still holds. We assume. however, that a wire
bends at most a constant number of times, and hence a
wire can have length no more than A, for some con-
stant K.

5) If a wire is £ grid units long, then its length is affected
by at most 21 other drivers. This worst case happens
when there are the heads of two long wires (either verti-
cal or horizontal) at each of the 1-1 inner grid positions
of i. and the signal flow on these wires is directed so

that cuts are required on both sides of the grid position;4,and there is a long wire at each end grid position of u.,
and each of these wires requires a cut on the side
affecting the length of wire wi. This situation is shown in

figure 6 fgure 8

The position of a cut for a driver

2) The cut perpendicular to the direction of the wire is > _
always made with thr position of the head fixed, and on
the side the wire extei,ds (dgure 6j. Thus, if there are
two wires with ther heads along the same vertical (or
hnrizcntal) line and with opr~osite signal flow, their %-T
drivers do not overlap the same horizontal (or vertical)

regior. Since this simplifl:ation at most doubles the -, -
effect of drivers at any single vertical or horizontal posi-
tion, the "order-of-magnitude" results remain
unaffected. The cut in the direction parallel to the wire length of wire iw = 3 units
is made on the side of the wire which hes on a clockwise
rotation from the wire (see again figure 6). With this figure 8
convention, we can introduce drivers on all four lines at Worst-cose effect of other drivers on the lengtb of a wire w
a vertex. if needed. initially k grid units long

Consider a general layout with in long wires
w.. ,ai, of initial lengths 11.Ig, • .1m. As men-

tioned earlier, bidirectional wires are treated as two
I'- >-- "" separate wires, with opposite signal flow. Let the driver

for the ith wire be embedded in a square of side d1, We
need to solve for the d,'s. ta1.2. .m. For this, we
note that the length of the tth wire. £. is increased to a
new value 4 ' by the presence of drivers on some of the

_ other wires i.e.. we have

figure? Jul

The effect of long wires with their with heads aligned where 6. is nonzero if the driver of wire i, increases the

length of us,. and is 0 otherwise. Since we allow a wire to
3) Consider the situation in figure 7. All of the lines bend a constant number of times. a single cut can

have their beads along the vertical line expand a wire by up to A' times the width of the cut. and
through %&j. and the signal flow on each wire is such that hence 6V is a nonnegative integer having value no more
a cut is required immediately to the right of wi, to than K. Now, the driver of wj will increase the lengths of
accommodate the driver for each wire. In such a case, all horizontal wires that intersect the vertiral line
the idth of the widest cut is sufficient to include all through the bead of ,%. and all vertical wires that inter-
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sect the horizontal line through the head of wj (see become greater than el'P
/ Is

) for some constant c. The
figure 9). maximum width occurs in the case when 1=0(n) (since

this is the maximum value for 1. by observation 4), and
this width is bounded by ep(I-9

). 
The worst-case over po

*occurs when pal/2 and in this case the width is 0(n).
IO But we know from the example of section 3 that a driver

1' can indeed become as wide as 0(). Hence this bound is
tght. There can be up to 8(n) wires in the layout (by

_ Wj observation 1). and hence we may have to make 0(n)
W, cuts in each of the two directions, so that the layout area4 1 _ _ will increase from Anne to *(v')=o(Ae). This upper

bound in the increase in area is again matched by the
_ _ _ lower bound of section 3. For p c1/2. the area increases

to 0((nvt'-l)')=O(A'/l')).

if iaS(n'),O0"1, then the width of each driver is
-0 . O(n'P/ "'). but by observation 1. there can be up to

The signal flow can be in either direction in (n') such lines in the layout. We thus have more than
each of wires u. to ,. 8(n) drivers in this case; however, by observation 3. if we

make two cuts of width 9(n') at each vertical and hor-
figure 9 izontal grid position where drivers are needed (there are

Determining 6V at most 4n such cuts), then we can accommodate all
drivers. Each side of the layout will expand to at most
S(n''('P )) and the area grows to

Hence a simple preprocessing of the layout gives the *(ft *P/( IP))=S(A I.,P/(I'P)) Since r<1. this increase is
values for d -,,7l. , m. Note that we can treat both less than the increase for the case when rit.
horizontal and vertical wires uniformly because of our
assumption that the driver occupies a square region. If we bad a mixture of wires of varying length. the

Later, we will need to modify our equations when we con- width expansion is still 0(n'/('"1
)) by the same erg u-

sider drivers embedded in rectangles that are not ment. In the worst case, we may have to make a cut for
a driver at each side of each vertical and horizontal grid

square. The value for each , is given by position. There are 4n such vertical and horizontal grid

positions, and the worst case occurs when 9(n) cuts of
width e(nP/lI-1)) are required in each of the two direc-

6wdj)', (2) tions. We have thus proved the following theorem:
j-2

Let us rewrite equation (2) by defining d, in a fune- Theorem t. If the driver of a long wire of length I can be
tional form, and extending its domain to RH as follows: embedded in a square region of side S(LP).0<psl/2,

then the area A of any VLSI layout embedded on a square
d=f,(dj,. ,dm)=k (4+ dVdj)P. i ml,...,, when grid increases to at most O(A'

,
'l')) with the introduc-

tion of such drivers along long wires.

i-a We have already shown that this bound is tight when
=0 otherwise. p=i/ 2 . We now show that this holds for any pjr1/2.

Let F(d, .di) be the mapping from Re to Rn defined Iamma. It the driver of a long wire of length I can be
by embedded in a square region of side *(l').0<pJ/2.

then there exists a VLSI layout whose area increases
F(d . . )-(4i(dj. .4). .I.(d . .4)) from A to fl(A1/(

-
P)) when such drivers are introduced

Then the solutions of the system of equations (2) along long wires.

correspond exactly to the fixed points of the function F. Proof We use, once again, the layout of figure 3. The
i.e.. tc the values of d,• .4 such that recurrence relation for s is now

F(dl... )=(d,. .a4)

From the results of the previous section, we can now with so=a=nt/2. As before, *.Rm gives the width of
Immediately derive upper bounds on the width of each each side of the layout after the introduction of drivers
driver. We first determine this for the case when the lay- We prove by induction that s. a(,, til).
out is in a square siwn grid. We later show that this is the Assume s, t c
worst case. The result holds for so for all values of c. Assume that

Assume that each £5 is I units long, and hence, from the result holds up to as.. Then,
observation 5. up to 21 of the dM can be nonzero for each
. lence, by Corollary 1.2, each component of the fixed- jk:es.1 k(xgj)P

point has magnitude no greater than R. where c (t -)i/(-Pl') m+ k (c (i-])l/") m)'

R(maz(kI-.) 1 . 1 ")) +kc (t-)l') -

enect/ O) -)Pand'rivr I(ths lyou-wil nve
Hence the width of any driver in this layout will never
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Since p,91/2, we have p/(l-p)-;l, and hence drives, i.e.. the natural design for a standard driver.) In
(l1/i)J/li-I);e(11/i). Hence, this case, the convergence of the system of equations (3)

for specific layouts depends on the constant k 1 . If k 1 2 1,
8,;eci 1/0s-00(-1/ 00+ ((k /€c V)-I)/ t) n then. clearly, drivers cannot be introduced in any layout

tctl/(iP) w when tatZ and cs(k / 3 )1/i - ). containing a long bidirectional wire. In fact. for any fixed

We also need e=m+kmPhc w. Hence. value for kI, we can design layouts in which drivers can-
etac1l1/l -)+m for all t and for not be introduced, as we show in the foUowing theorem.

c;miri( (k/3)1'1 - . kms ). Set m =1 In the min expres-
sion to obtain a value for c that Is independent of m. Theorem 4: If the driver of a wire of lehgth I must be

Toe width of each side of this layout after the intro- embedded in a rectangle whose length is kl, for some
duction of drivers of and constant k, then there exist layouts in which drivers can-

not be introduced on all long wires.
the required result for the area increase follows.

Next. we consider the case when the driver is
embedded in a rectangle that is not square. In this case,
we show below that, in the worst case, the longer side of (1.) - -- - - - - ',nt)

the driver dominates the summation in equation (2) by
proving the following theorem:

Theorem 8: Assume that the driver for wire ua of length "
, can be embedded in a rectangle that has length
a,=kl" along the direction of the wire and width b6=kL --

ir. thi, perpendicular direction. If O<s,f.l, then the
worst-case increase in the area A of a VLSI layout on a

square grid is max(e(A/0- )). 9(A/(i- ))) when s-ich .4e' )
drivers are introduced at the beads of long wires.

Proof Since the driver is no longer symmetrical in the I=6

two directions, we must nov modify the equations for the
fs to: fure 10

A layout to prove Theorem 4

................... fl ... m)ei(k (dis .6svb,))' Proof Consider the graph of figure 10. It is the same as

..... ,.... bm)=s(/+ (6i +6sbj))i, (3) the one in figure 3, except that all long wires are b.direc-
*.-t tional. We will prove the, for nL-2/k, drivers cannot be

introduced on all long lines in this layout As before, let
where the domains of f li and f i are extended to R11 as us write out the equrtion for each d , For instance,
in the previous case. The 61 's and the 6s's are deter-
mned as before (see figure 9). except that the first sub- dizk(+
script of 1 refers to Lines parallel to wire i. and that of 2 dezk(i+idl+r.e+ • d.).
refers to Lines perpendicular to it. Thub, in fgure 9. we
have the following values: 6d1 *=l. 6=0, 6111=0. 6gbzl (where mw(ri/2)), end the equations for the other d,'s
6,cj=. 6.g,=0. and the other values are all zeros. We can be written out by inspection. Since this is a system I
now require the fxed-point of the function of linear equations, this can be rewritten in matrix form

as
............. . .. .)(',. ! b...,!im.I. ., ,

Ad=ki,
(where the arguments on each fj on the right hand side

are a ..... aw,b 1 ..... b,,.) Again, if each long wire is where A is an vn matrix of the coefficients of the d,'s, I
O(nv) long to start with, we obtain from Corollary 1.2, is a vLaor of the L's. and d is a vect ie dt'r We
the fo'lowing upper-bound for the width of each driver: need a solution of this system of equati. -h e

nonnegative. For this, we note that the n,&,rix / n
Rmax( ( ) M-matrx when n<(2/k). and from the theory o "

=SO(nv/i-)), wberepzmax(s,t). matrices. it is simple to prove that the system o:
tions ba a solution with all components of d nonnegr,. ,e

As before, the worst case occurs when rzI, and this onlywhenc 2/k [BP79]..
gives us a maximum width of O(nJ /(1-3)) for each driver For particular layouts, we may still obtain conver-
along its longer side. We still may nued 8(n) cuts of this gence. but with a large area penalty. For example, the
width in each of the two directions to introduce the layout of section 3 (which has no mutual interaction
drivers, and this gives us the required result for the between drivers and wires) will require area ()((lI*k ))
maximum increase in area.- after the introduction of such drivers. This result is

This bound is once again tight, and the lower bound easily verified from the recurrence relation for s which
can be proved using the layout of Aure 3 with n//2 verti- in this case, is s=(l+hk)s-i.
cal long lines added on with their beads along a diagonal. We pointed out in section 4 that the driver has a last
Note that in this case, 9 or f may be greater than 1/2. stage with a very wide channel that dominates the area
and so the area blow-up will be more than the square of of the driver Thus such a driver will. indeed, be very
the original layout. In particular. ifpal. the above bound long, and have constant width. The introduction of such
ceases to bold. (This will be the ease for a long driver a driver in the circuit can be disastrous in terms of area
whose area is proportional to the length of the wire it blow-up (if not impossible). However. it should be possi-
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ble to redesign the channel to occupy a more square does not carry over directly to VLSI Circuits, since the
region, possibly with some penalty in the total area connecting wires here are also likely to fail. and the pro-
required. Thus, if the driver originally required area bability of failure increases with the length of the wire
9(9), then this design might result in a driver of length This probability can be reduced by increasing the width
9(1') and width 9(1') with e(l')>e{l'), but with It is generally accepted that a fau!t can occur arywbere
Ors .tl. In such a case, drivers can auanyVs be intro- on the surface of a silicon wafer with a constant probabil-
duccd in any layout of long wires with a polynomiad blow- ity, and thus, the occurrence of a fault can be modeled
up in area given by Theorem 3 (the degree of this po-no- as a random variable with a Poisson distribution Urnder
mial will be very high if s or t is close to 1). In practice, tkls model. it can be shown that the probability of failure
we expect driver designs in square areas with no extra along a wire can be bounded by any constant e>O by
area penalty, and this results in the squaring of the area making the width of the wire proportional to the log of
in the worst case. the length. But if the width is increased after the circu:'

Finally, we look into the case of a rectangular VLSI ias laid out (and this is the only logical way. since the the
layout in an zxi' grid (nam'). As before, if each long lengths of wires in the layout cannot be known before the
wire is I units long, then the width of any driver is circuit is laid out), then this will result in increasing the
O(lP-/(I-P) by Corollary 1.2. By observation 1. the lengths of other wires, and it is not clear what the global

number of wires in the layout is O(sn'/l)uO(A/l'), effect of many such local transformations is
where A is the area of the layout before the introduction We analyze the general problem by assuming that.
of drirers If 1=0(n'), then we may have to make 2n in the worst case, a "cut" (as described in section 2)
cuts along the longer side, increasing its length to would be required to make any expansion of one dimen-
O(ri 1P/li-)), and similarly, 2n' cuts aiong the shorter sion of an element in the layout. Thus, to irtroduce a
side, icreasing its length to 0(n' IP/(1-i), Hence the driver of length I and breadth b at the head of a wire. we
area increases frori n" to 0(aan'.l/{)) 0 (A4 /l-)). would require a cut of width I perpendicular to the wire,
If L=P n ). then. since the number of wires in the layout and a cut of width b. parallel to the wire. both at the
is 0(nn'/1). the number of cuts along the longer side is bead of the wire, in order to accommodate the driver Of
also n3 greaer than 0(rtn'/L), so that the length of that course, in particular layouts, it may so happen that cor .-
side increases to O((1in/l)lP/(i-!)). The increase in ponents are sparse at this region, and so the driver car-
length of the shorter side remains 0(n'.lP/(i'P)). Hence be introduced as it is without any expansion of the I'-
the area increases - to no more than out But we are looking at worst-case situations, and *e
O((nn'/l)n' lEPli-P)i:O(Ai")-P)), since l=O(n) by will thus assume that the introduction of any element
observation 4. Hence the worst case area expansion for can be achieved only by making cuts of the appropriate
rectaegular layouts due to the introduction of drivers is widths. Similarly, for wide wires in fault-tolrrant co -
no grea&ter than that for square ones puting. the width of a wire is increased to u by mak in& a

To summarize, we have shown that cut of width w paraliel to the wire.
Our general construction is as follows

I) if the drivers described in section 4 can be embedded 0) Lay out the circuit (or assume that the circuit lavyou
in a scuare regmon without extra area penalty, then in the is given).
worst case, the area of a VISI layout grows quadratically 1) Number the spatial elements that are to be varied
with the introduction of drivers for long wires. This worst (usually this is a subset of the lengths and widths of the
case occurs %hen drivers require area proportional to lines, or the dimensions of processing elements or
the length of the wire they drive (i.e.. the standard drivers, but could conceivably include other objects) as
desig.); when the layout is in an nx square and has vI, vd. , in some arbitrary order.
8)n) long wires of length 8(n) each; and when the intro- 2) For each spatial element vs, identify the other ele-
ducticn of drivers requires G(n) cuts of width 0(n) in the ments v that are made to expand by its presence For
layout in each of the two directions, each such element, set 61,=k, where v, is made to

expand k times by the presence of v,.
2) if a driver requires a rectangular embedding, then the 3) The following system, of equations defines the final
worst case increase in area is 8(Ai/i-)), where the values of the v,'s:
longer side of a driver rectangle for a wire of length I is
9(') grid units long lfpk-l, then there exist layouts for
which drivers cannot be introduced. n

7. ApphcaUo to Other Layout Prolblems where I, is a conetant corresponding to the initial value
of some linear dimension in the layout. and f, deter-

The technique developed in the previous two see- rnines the functional dependence of v, on the %,'s If, for

tions can be used in other related problems in VLSI. Con- each ft, the behavior function V, is sublinear with bre8K
aider the following question point r.. then an upper bound for the e,'s is given t) R.

where
Olvin a VLSI ovout. u" is W L# Lobd affect of msalingm
many local vp .. ' ezpanions that rntuy j eracf' Rcmu r,

The introduction of drivers for long lines is one Examples:
example of this problem. Another example is fault-
tolerant computing in VLSI. Von Neumann[vNS6] has 1) For drivers embedded in a square, v, is the length of
suggested a method of constructing refiable combine- a side of the driver of the ith line, and 4 1s the lengl¢h Of
torial circuitry using components that bave a certain the ith line, and fq(z)=k xP, for some constant k and
probability of failure. The construction requires replica- for some p <1.
tion of the basic components many Uses.This method
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