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Princeton VLSI Project: Semi-Annual Report
R. J. Lipton

1. Introduction

We have been officially underway at Princeton fince August; hence, this
report actually covers about three months of activityMThere are three major
aspects to our project: ALl, Census, and Testing.

2 Al i

<> ALl our procedural language for VLS] design and layout, is now up and run-
ning,{4}> It has already been used by Dobkin and Drysdale to redesign a divider
they previously designed on a graphics system at Xerox. In addition, LaPaugh's
VLSI class has already used ALl for their VLS] projects. Dobkin is currently
beginning to explore ways to create graphics interfaces to the ALl system.

-ALI2 the second version of our layout system is coming along well. Valdes
has already fully defined the new language and implementation is now er way
[7]. ALI2 differs from ALl in two essential ways. First, it is based on. what we
believe to be a much cleaner set of primitive and constructs. For ingtance, 1t
does not have the "shuffle property” so many design languages do: By this we
mean that the order of placement commmands does matter. Second, ALI2 gen-
erates far fewer constraints than ALl does. This is of course critical if such con-
straint based systems are to be able to handle large complex layotits.

Plans are already underway on how to best exploit the unique features of
ALI2. Ramachandran has just finished a study of the cost of increasing the size
of drivers in order to speed up .ircuits [5]. She assumes that sizes of trans:s-
tors can be changed but that the layout cannot be restructured. Under these
assumptions she can tightly bound the worst case cost in terms of area of mak-
ing the delays on all wires a "constant”. Since ALI2 allows a designer to easily
change the sizes of wires and transistors we feel that such results are important.
Already it is common place for designers to size transistors for speedup in an ad
hoc way [6].

Also Vijayan and Wigderson have isolated a number of new layout problems
that arise naturally when one considers the implementation of ALI2 [8,8]. Alil
these problems concern the embedding of "rectilinear" graphs. These are
graphs where each edge is connected to the "left", "top", "right".or "bottom" of
each vertex. They are currently exploring the computational complexity of a
variety of layout problems here. For example, they can quickly recognize those
graphs that have planar embeddings; moreover, they can also quickly find such
empeddings when they exist.

Census
*\ The census language is a new way to express parallel algorithms that use a
fairly loosely coupled method of control, {8} Work is under way to understand
the limits and powers of such languages. North is beginning to identify those
problem areas that can be successfully mapped onto the census language. We
are aiso thinking about implementations of census, but no implementation is yet
started.

Censys has been looked at from a theory point of view by Chandra, Fortune.
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and Lipton [2]. They have been able to get tight upper and lower bounds on the
size of boolean circuits with unbounded fan-in. Unbounded fan-in circuits not
only model an important class of census computations but they also model cir-
cuits such as PLA's. For example, it is possible to construct a circuit that adds
two n-bit numbers in constant time and whose size is approximately linear in n.
We are beginning to examine the feasibility of using these ideas in real VLS]
designs.

.4; Testing
" -2 Our work on testing divides into two areas. Arden is beginning to work on

Jirst silicon testing especially with respect to scanning electron microscopes
(SEM). He plans to be on leave this spring and work with the SEM group in Mun-
ich. In the future we expect that we will be able to use a SEM that the Princeton
Siemens group is about to get.

LaPaugh and Lipton have begun to work in the area of production testing.
They have already successfully been able to completely characterize the testa-
bility of “prefix computations”. Prefix computations arise naturally in a number
of places: for instance, in carry-look-ahead adders. {43 Such characterizations
link the self-test of these computations with classic semi-group theory. @‘, i

Also work is under way on a new self-test strategy which we call “toggle
search”. This method first generates the vector of all 0's; next it randomly
changes one of the 0's to a 1; it repeats this until all 0's have been toggled to !'s,
then the entire process begins again. Toggle search and its generalizations are
well suited to many test environments where one bit of an input can be changed
more quickly than a whole input vector. Already we have empirical evidence of
the superiority of toggle search over other methods. Colleagues at IBM Watson
Research have tested toggle on examples of about one thousand gates and found
that it is about three times faster than standard methods. For example, it took
about 800 thousand vectors versus 1.8 million to achieve 100% fault coverage on
one piece of random control logic. We plan further experiments to further vali-
date these results.

Finally, we have also found a way to transform any combinational logic cir-
cuit into one that is easy to test. Here by easy to test we mean that we can
detect a very large class of physical faults. The penalty for this transformation
is that the number of gates can increase by as much as 100%. We plan this com-
ing year to carefully explore this new method. In particular, we wish to both
understand the cost of the method and the class of faults it can and cannot
detect.
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VLSI Layout as Programming
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Abstract: The first component of a VLSI design environment being built at Princeton is
described. The general theme of this effort is to make the design of VLSI circuits as simi-
lar to programming as possible. We are trying to build tools that do for the VLS] circuit
designer what the best software tools do for the implementor of large software systems.

The work described here is a procedural language to specify circuit layouts.

1. Introduction

In this paper we describe a very important component of any VLSI
design environment: a tool to automate the layout of circuits. This work
is part of an effort to create an integrated environment for VLS] design
(including layout systems, device and switch level simulators and testing
facilities) currently under way at Princeton.

Our main thesis is that the VLSI design task can be profitably thought
of as a programming task, as opposed to a geometric editing task. We
believe that much is to be gained by consciously attempting to apply our
knowledge about programming to this new activity. We have thus tried to
create tools for the VLSI designer that incorporate the most useful
features of the software develpoment tools that we are familiar with.

Although we fee] that we have had moderate success in this endeavor
we are well aware of how much room for improvement we have left, and
would like to help convince the community of people interested in the
design of programming language and programming environments that
there are fresh and important challenges in this relatively new direction.

A prototype of the procedural layout language described in this
paper has been operational for some months. All figures given in thic
paper were generated by the language and all the code fragments have
been used as part of larger programs.

Portions of this paper appeared in the Procesdings of the 1982 ACH symposium on Principles of Program
ming Languages and i the Procesdings of the 1982 Deuign Automatio Corference.
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2. ALl a procedural language to describe layouts

The main feature of ALI as a layout language is that it allows its user
to design layouts at a conceptual level in which neither sizes nor posi-
tions (absolute or relative) of layout components may be specified.
Mostly as a consequence of this, ALl simultaneously (i) makes the layout
task more like programming than editing, (ii) eliminates the need for
design rule checking after the layout is generated, (iii) permits the crea-
tion of easy to use cell libraries and (iv) provides the designer with the
mechanisms to describe a layout hierarchically so that most of the detail
at one level of the hierarchy is truly hidden from all higher levels.

The notion of not assigning sizes or positions to any object in a layout
until the complete layout has been described (similar to the idea of
delayed binding in programming languages), sets ALl apart not only from
just about all of the graphics based layout editors we know of ([3], {4,
[7]. [13]. [17]) but also — with the exception of [14] - from most of the
procedural languages for the layout task currently in use or recently pro-

sed, whether or nol they include a graphics interface ([1], [4], [5], [8].
9], [10], [15]).
The issues that we tried to address with ALl are the following.

¢ The creation of an open ended tool. Graphics editors tend to be closed
tools in that it is hard to automate the layout process beyond what the
original design of the system allowed. Procedural languages are gen-
erally much better in this respect. However, the fact that most such
Janguages require the specification of absolute sizes and positions,
makes the creation of a general purpose library of cells a hard task,
since information about the sizes and positions of the cell elements that
can interact with the outside world has to be apparent to the user of
the library. The absence of absolute sizes and positions makes this
problem much less severe in ALl The extensibility of ALI derives from
the fact that it has been built on top of Pascal, thereby making the full
power of Pascal available to the designer. The generation of tools to
automate the layout process, such as simple routers or PLA generators,
involves writing Pascal routines to solve some abstract version of the
problem and having done so invoke ALl cells to generate the layouts

* Creating tools that are simple to use and easy to learn. In particular,
we want to avoid tools whose behavior is unpredictable. Many programs
which rely heavily on sophisticated heuristics respond to small changes
in their input with wholesale changes in their output. We have main-
tained a simple correspondence between the text of an ALl program and
the resulting layout so that changes in the layout can be easily related
to changes in the program. This decision has simplified the system at
the cost of making it less knowledgeable about MOS circuits.

¢ Facilitating the division of labor. Large layouts have to be produced by
more than one designer. If the piece produced by each designer is
specified in absolute positions, serious problems are likely to arise when
the different pieces are put together, unless very tight interaction -
with its attendant penalties in productivity -- is maintained throughout
the design. ALl allows the partitioning of tasks in such a way that the
designer of a piece of the layout does not need to know anything about
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the sizes of other pieces of the complete layout. For instance, on the
top of fig. 1 three simple cells are shown with the intended connections
between them shown by dotted lines; on the bottom of the figure, the
pieces have been brought together to form a larger piece. The stretch-
ing that has taken place has occurred without the designer having to
plan for it explicitly while considering each individual cell.

Ng. 1
Three separate cells and the result of
connecting them along the dotted lines

e Facilitating Aterarchical design. Even when a single designer is
involved, the ability to view a layout as a hierarchy, with as much infor-
mation about lower levels completely hidden from higher levels, is
extremely useful. In ALl, the information about a given level of the
hierarchy needed at the level immediately above is reduced by the
absence of absolute sizes and positions, to topological relations among
the layout elements of the lower leve] visible to the higher one.
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¢ Reducing the life cycle cost of layouts. Modifying a layout to be fabri-
cated on a new process, or to make it conform to a new set of design
rules, is currently a costly operation. Yet successful designs seem to be
more or less continuously updated as improved processes become avail-
able during their lifetime. Fig. 2 shows two instances of a simple layout
produced with AL]I. The instances are the result of running an ALI pro-
gram twice changing ezactly four constants in the program in between
runs (those that specified the sizes of power and ground buses). This
type of flexibility addresses the problem directly. An ALl program can
be written naturally so that all layouts produced by it are completely
free of design rule violations, no matter what the values of the con-
stants used in the programs. Therefore the need for costly design ruie
checking of different instances of a layout (see fig. 2) can be avoided.
The same ALl program can also generate layouts using different design
rules by running it with a new module incorporating the new design
rules.

» To avoid the need for special purpose computing equipment. ALl can
be used effectively from a standard ASCII terminal in combination with
a small plotter shared by several designers. All the algorithms used in
the inner cycle of ALI require linear time, therefore permitting the use
of just about any machine and guaranteeing fast turnaround on small
layouts. Furthermore ALI replaces design rule checking by & hierarchi-
cal process that can be performed separately on the individual pieces of
the layout. For example, after checking that each of the pieces shown
on the top of fig. 1 is ifree of design rule violations, their combination
shown on the bottom of the same figure will be guaranteed by ALl to be
free of rule violations regardless of the stretch that takes place as a
consequence of connecting them. ALl in fact requires far fewer comput-
ing resources than many design rule checking programs.

We feel that ALl succeeds in partially solving most of these problem.
We do not claim however to have made the layout task trivial. To use a
software metaphor, we feel that ALl elevates the work of the layout
designer from absolute machine language programming, to programming
in a relocatable assembler with subroutines. This not only makes the
task more pleasant but makes new and more powerful tools possible
such as loaders, linkers and compilers in the case of software. Similar
tools for the VLS] world —~ which would indeed simplify the layout task
enormously — remain, however, to be written. ALl should stand or fall
with its ability to allow such tools to be built: whether we are right in
believing that we have a framework in which these tools can be morc
easily implemented will not be known until our efforts in that direction
succeed or fail.

The remainder of this section is devoted to a survey of the main
features of ALl and a brief discussion of its current implementation.
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2.1. An overview of ALl

The basic principles of ALI are quite simple. A layout is regarded as
a collection of rectangular objects (with their sides oriented in the direc-
tion of the axes of a cartesian coordinate system) and a set of relations
among these rectangles. The All user specifies a layout by declaring the
rectangles (also called bozes) of which it is composed, and stating the
relations that hold between them. ALl then generates a minimum area
layout that satisfies all the relations between boxes specified in the pro-
gram. For example, fig. 3 shows a trivial ALl program and the layout it
produces.

chip simple;
const
hreamber = 10;
length = 20;
wndth = 6;
boxtype
hiype = arvay [ 1. .Anumber] of metal;
var
1 : tnteger;
box
horizontal : htype;
vertical : metal;
begin
fori ;= 1 to hnumbder-1 4o begin
above (horizontalli), horizontal [i+1] );
glueright ( horisonial[], vertical );
.ndmon ( horizontal (1}, length )
glueright ( horizontal[ AMnumber], vertical );
zmore ( horizontal[Anumber], length );
zmore (vertical, width )
end

-

Fig3
A simple ALl program and the layout it produces

This program looks very much like a Pascal program: it consists of a
declarative part, followed by an executable part. To declare a box the
user specifies its name (horizontal or vertical in the example). and its
type, (metal — a predefined type — in the example). The standard box
types correspond to the layers of the physical layout. As the example
also shows, the ALl user can define structured objects (an array in the
example). Further details on the type structure of ALl can be found in
section 2.2.1.

The relations between the rectangles that make up a layoul are
specified in ALI through calls to a small set of primifive operativons in the
executable part. All such operations take as arguments boxes and possi-
bly values of standard Pascal types (integers in our example). In our
example above, glueright and zmore are primitive operations. The primi-
tive above specifies that its first argument must appear above the sccond
one in the final layout, the primitive glueright extends its first argument
to the right t» intersect ts second argument, and zmore makes the size

B dra
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of its first arguments along the z axis at least as large as the value of the
second argument. Note that in this example ALI has determined the
minimum separation between the horizontal elements as well as the
minimum sizes of boxes not specified by xmore (such as the height of the
horizontal metal lines) by accessing a table of design rules. More infor-
mation about the type structure and the primitive operations of ALl is
given in the next section.

When an ALl program is executed it generates two kinds of informa-
tion. It produces a set of linear inequalities involving the coordinates of
the corners of the boxes in the layout as variables. These inequalities,
which embody the relations between the rectangles of the layout, are
then solved to generate the positions and sizes of the layout eiements. A
brief description of the problems involved in this step can be found in
section 2.3.2. The program also produces connectivity information about
the rectangles in the layout. This information can then be used by a
switch level simulator that predicts the behavior of the circuit as laid out
whithout having to perform the ususal “node extraction' analysis.

In order for the layouts produced by an ALl program to be free of
design rules, the program must be complete, in that every pair of reclan-
gles in it must be related in some way. Two rectangles may be related
explicitly in the user program by virtue of being arguments to a primitive
operation, or they may be related through the transitivity of the sepsra-
tions. The reason for this strong requirement is to prevent the area
minimization process from shoving together rectangles that were
inter\tded to be separate (see section 2.3.3 fo a discussion of complete-
ness,;.

ALI helps the designer to achieve this goal by generating certain reia-
tions between layout elements in an automatic fashion, and by checking
on request whether this condition is satisfied. It is however the responsi-
bility of the user to make an ALl program complete in this sense, as the
computational cost of doing any sophisticated inference (berond the
transitivity of relations such as above) is prohibitive [16].

2.2. Main features of ALl

This section describes how AL] appears to its user. Its three subsec-
tions deal, in turn, with the type structure, the primitive operations of
the language and the cell mechanism. ALl has been built on top cf Pascal
and has inherited most of its features. In the interest of shortening this
section we have assumed a certain familiarity with the general features of
Pascal.

2.2.1. Type structure

As the example of fig. 3 shows, the objects manipulated by ALl ere
declared by stating their name and their type. The types of ALl have the
same structure as the Pascal types. Objects can be of a simple type
(boxes) or of a structured type.




There are a small number of standard types, all of them simple. The
standard types correspond to the layers of the process to be used to
fabricate the layout (metal, poly, diff, impl, cut and glass in the NMOS
version currently implemented) plus the type wirtual, used to name
bounding boxes and having no physical reality in the fabricated circuit.
For example, in the program of fig. 2, the declaration

vertical . metal

specifies that the rectangle named vertical on the final layout should be
on the metal layer. ALI will use this information to generate constraints
on its minimum size and its separation from other layout elements.

Structured types are of two flavors: array (a collection of objects of
the same type) and bus (a collection of objects of heterogeneous types,
much like records in Pascal), which correspond directly to the array and
record structured types of Pascal. ALl like Pascal, permits the creation
of new user defined types that can be either simple or structured. For
example, in fig. 3, the fragment

htype = array [ 1..hnumber] of metal

inside the boxtype section of the program, creates a new type, hlype,
each object of that type made up of a number of metal rectangles, and
the fragment

horizontal : hiype

inside the box section, creates an object of that type named horizontal.
In a similar fashion the type declaration

shiftbus = bus
phl, ph2 : metal;
vdd - melal,
data . diff,
gnd : metal

end

creates a user defined type, allowing the user to create objects which
consist of four metal boxes and a diffusion box. The types of the com-
ponents of structured types are arbitrary: the user can define arrays of
buses, or buses containing arrays.

The accessing of the elements of arrays and buses is done as in Pus-
cal. Thus if z is of type hiype then z[i] refers to the i-th element of z, and
if y is of type shiftbus then y.data refers to the diffusion box of y.

Although the structured objects are generally used by ALI simply as a
naming mechanism, they are also used in conjunction with the ceil
mechanism (discussed in section 2.2.3) to automatically generate separa-
tions between boxes. We will be more precise on this point when we
describe the cell mechanism of ALl
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Like Pascal, ALl is a strongly typed language. The primitive opera-
tions know about certain type restrictions and generate type mismatch
errors if operations are attempted with rectangles of inappropriate
types.

2.2.2. Primitive operations

The relations between the rectangles that make up a lavout are
specified in ALl through calls to a small set of primitive operalions. All
such operations take boxes (i.e., objects of simple types) as arguments.
In the program of fig. 3, above, glueright and rmore are primitive opere-
tions.

It is not important to know the actual primitive operations of the
current version of ALl to understand its operation. As a gross measure of
its complexity we can say that the system currently implemented -
based on NMOS as described in [12] — has about twenty primitive opera-
tions which can be arranged in the following groups:

1 Separation primilives: such as above in fig. 3, which specify thal their
arguments must be separated in a certain direction in the final layout.
The minimum amount of space between boxes separated in this manner
depends on their types and is supplied by ALl from a table of design
rules.

2 Connection primitives: such as glueright in fig. 3, to specify Lhat their
arguments -- which must be boxes in the same layer -- are to be joined
in a particular manner.

3 An inclusion primitive, inside, that specifies that one box is to be
placed inside another. The minimum distances between their edges are
again suplied by ALI from a table of design rules.

4 Minimum size primilives: such as zmore in fig. 3, which specify the
minimum size of a box along a certain direction. Defaul)i minimum
sizes are provided by ALI from a design rule table.

S Transistor primitives, which create depletion mode and pass transis-
tors.

6 Contact Primilives, which creale contacts between layers and connect
boxes to them.

Note that no absolute positions or dimensions for any rectangle can
be specified with these primitives. All the rectangles of a layout can be
stretched and compressed (up to a minimum size) and all can float in any
direction. If one single characteristic is to be used to separate ALl from
other layout systems, this must be it. Most of the power of Al.i and most
of the problems one faces in its implementation are consequences of this
fact.

It is important to remember that in order for a layout produced by
ALl to be free of design rule violations, any two rectangles in it must be
related in some way. ALl will make no inferences as to the relations
between boxes beyond those implied by the transitivity of some primitive
operations (i.e., if above (a, b) and above (b, c) are stated, abewe (a. c)
need not be stated). Although the system generates a good number of
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relations automatically for the user, particularly in connection with the
cell mechanism (see the next subsection), there is still a fair arount of
drudgery left for the user in making sure that this requirement is met. A
brief discussion on the computational complexity of the automatic gen-
eration of relations between boxes can be found in section 2.3.3.

2.2.3. Cells

Perhaps the most powerful feature of ALl is ils procedure-like
mechanism for the definition and creation of cells. A cell is a collection
of related rectangles enclosed in a rectangular area. Rectangles that are
inside a cell are of two types: local which are invisible to the outside, or
parameters which can interact in a simple and well defined manner with
rectangles outside the cell.

A cell is defined by specifying its local objects, its formai parameters
and the relations among all of them. Once a cell has been defined, it can
be instantiated as many times as desired by specifying the actual param-
eters for the instance, much the same way as one invokes a procedure or
function in a procedural language. The result of instantiating a cell is to
create a brand new copy of the prototype described in the cell definition
with the formal parameters connected to the actual parameters.

A cell definition is made up of a header, in which the formal parame-
ters are described, a set of local boz declarations and a body in which the
relationship between the parameters and the local boxes, as well as those
among local boxes, are specified.

The header describes the names and types of the parameters and the
side of the bounding rectangle through which they come into contact with
the inside of the cell. The header of a cell (using the type shiftbus
defined in section 2.2.1) and an instance of it are shown in fig 4.

call shift (left | : shiftbus; rightr : shiftbus)

Fig. 4
A sample cell definition header
-and an instance of the cell defined

id -'h_»vyé-iti “
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Cells may have any number of parameters on each of their four sides.
The order in which they are listed in the cell header describes their rela-
tive positions. Horizontal parameters (i.e., those touching the cell on the
left or right) are assumed to be listed in top to bottom order and vertical
parameters in left to right order.

The body of a cell is very much like an ALI program. For example, fig.
5 shows a complete cell definition that consists of a variable number of
shift cell instances connected sequentially together with two of its
instances. Note that cells are instantiated by the create statement, and
that the parameter list of the cell contains both box parameters and
other parameters (an integer in this case) in separate lists. Note also
that recursion has been used to define this cell; this highlights the fact
that AL! has the full power of Pascal at its disposal.

When an instance of a cell is created it can be given a name, provided
that the name given has been declared as a rectangle of the standard
simple type virtual. The relationship of the rectangle bounding a newly
crealed cell to any other rectangle of the layout can be specified in the
standard manner by calls to the primitive operations. This is a vital
fealure since in many cases (i.e., above, below...) stating a relation
between two cell instances c, and cp; immediately implies a relation
between every pair of rectangles r, and rg such that r, is part of ¢, and r;
part of c.,.

There are two important ways in which the cell mechanism helps in
the automatic generation of constrainis between boxes. When an object
of a structured type is passed as a parameter to a cell, its component
boxes are separated from top to bottom (if it is a left or right argument)
or from left to right (if it is a top or bottom argument). The order of the
separation is determined by applying recursively the following rules:
array elements are separated ordered by their indices and bus elements
in the order in which they were specified in the bus declaration. Thus, in
the example of fig. 5, the components of parameter inbus would be
separated from top to bottom. The second mechanism involves the
automatic separation of cells that share a parameter; thus in the exam-
ple of fig. 5, the individual instances of shift are separated automatically,
since adjacent instances share a parameter.

The cell mechanism gives the ALI user the ability to describe layouts
in a truly hierarchical manner. A proper ALl design, very much like a well
structured program, will consist of a hierarchy of cell instances with only
a small amount of information at a given level (the parameters of the cell
instances at that level) being visible from the immediately higher level.
For example, the layout given in fig. 2 consists of four instances of the
same cell stacked vertically. That cell in turn is defined in terms of three
other cells, one of them being the cell shown in fig. 1, which is in turn
defined in terms of three other celis.

Much of the power and generality of the cell mechanism of ALI comes
from the absence of absolute positions and sizes in a layout specification.
In particular, two instances of the same cell may have radically different
sizes depending on the actual parameters used to create them, as
exemplified by figs. 1, 2 and 5. We believe that no cell mechanism can be
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cell shiftregister { left nbus : shiftbus;
right outdus : shiftbus )
( langth : integer );

temp : shiftbus;

begin
if length = 1 then
create shift (inbdus, outbus )
else begin
create shift (indus, temp );
create shiftregister ( temp, outdus ) (length -1)

- N N ) ".
JB:J
« \.AZ‘ S N
L o

» A
AR .
4

Fig 5
A cel] definition and two instances of it
generated by a simple ALl program

said to be truly general unless the sizes of its arguments and loccal rec-
tangles, as well as their relative distances are determined at the tirne the
cell is instantiated.

There are some penalties involved in the use of the cell mechanism.
In particular, ALl generates separations between cells in a manner which
is oblivious to what is inside them. That is, the minimum separation
between cells as far as ALl is concerned, is the maximum of al! the
minimum separations for two layers in the design rules, thus creating a
certain wastage. We believe that this penalty will be generally 2 small
percentage of the total area and is well worth the advantages gained by
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the ability to separate cell instances as units.

Another source of wastage is the fact that cells are restricted to be
bounded by a rectangle, so the packing of cells that have irregular shapes
results in a certain amount of unused space. The rectangular shape of
the cells is a fundamental characteristic of ALl: The introduction of irreg-
ularly shaped cells is simply not possible without completely redesigning
the language and. However, the waste introduced because of this restric-
tion can be avoided in most particular cases through some code
modifications.

2.3. Implementation issues

The previous section described the user view of ALl In this section
we discuss briefly some of the problems to be solved when trying to go
from an ALl program to a layout that satisfies the relations stated in it.
We first give an overall description of the system as currently imple-
mented, then discuss the method used to assign locations and sizes to
the layout elements and then the concept of completeness and how it is
checked.

2.3.1. Overall implementation

The current version of our system has been implemented as follows.
The ALI program is first translated into standard Pascal. The resulting
Pascal program is then compiled and linked with a precompiled set of
procedures that implement the primitive operations and the resulting
object module is then run. The output of this program {generated
entirely by the primitive operations) is a set of linear inequalities anc
connectivily relations among the layout elements. The inequalities are
then solved to generate a layout or examined by a program that checks
their logical completeness, and the connectivity information can be used
to simulate the circuit laid out.

The design rules are incorporated as a table which is used by the
primitive operations to produce the linear inequalities. Thus changing
the design rules for our system requires only to change this table.

2.3.2. Placement

As explained above, one of the results of running an ALl program is a
set of linear inequalities that embody the relations between the layout
elements. These inequalities are of the following simple form:

:‘ -z’!d (dtﬂ)

where the variables are the coordinates of the corners of the boxes that
form the layout and the constants are either user supplied (as in the
second argument of the amore primitive, for instance) or extracted from
the table of design rules by the system itself.
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This set of inequalities should be solved so as to generate placements
for the boxes that compose the layout in such a way as to minimize ils
total area. In order to perform this task efficiently, we require that no
inequality in the set involve both z and y coordinates. This restriction
allows us to minimize the total area by minimizing the maximum z and y
coordinates of any point independently, at the cost of reducing the range
of the relations between boxes that we can express. We cannot, for
instance, handle rectangles whose sides are not paraliel to the cartesian

. axes or express aspect ratios directly.

We have now a sufficiently simple problem so it can be solved in fime
proportional to the number of inequalities in our set. (All layouts that
can be expressed in ALl can be generated by a program that produces a
constant number of inequalities per rectangle). This is done by a version

_ of the topological sort algorithm {11] applied to the z and y coordinates
f independently. This algorithm assigns to each point the lowest possible
coordinate while minimizing the largest coordinate of all points.

The form of the inequalities that we allow is rather restrictive; it is

; sufficient however, to describe the design rules given in [12] for NMOS,
! and the efficiency gained in return for this simplicity seem to us like a
| 1 good tradeoff. A more subtle consequence of the simplicity of the ine-
qualities and the method we use to solve them is that undesirabie

stretching can occur, since we have no way to specify a maximum size for

any object. This is not a common occurrence and the user can in all

cases guard against such stretching by the careful selection of the primi-

tive operations used. It is nonetheless an additional burden placed on the

[ designer.

The choice of an efficient placement algorithm over expressibility
power and a reduced degree of user convenience has been quite cons-
cious in this particular case. We feel that every reasonable measure
should be taken to keep the complexity of the placement problem linear,
given that the size of layouts is currently large (10” rectangles) and is ,
growing fast. Widening the class of linear inequalities acceptable is
almost certain to make linear time solutions impossible [2].

t 2.3.3. Compleleness

ALl programs do not involve absolute sizes or positions of boxes, and
are, to a great extent,independent of the design rules. These characteris-
tics make it clearly desirable to insure that the layout described by a
program will be free of design rule violations in a way other than check- )
ing the finished layout. The following paragraphs describe a way of insur-
! ing freedom from design rule violations in a manner that is independent
of the actual design rules used to generate the final placement. The
description may be somewhat cryptic; the interested reader is referred
to [18] for further details.
A layout generated by an ALl program is complete if for any two
.8 boxes a and d whose types make it possible for them to interact in the
i final layout, either
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(i) e and b are explicitly stated to be in contact by some primitive
operation, or

(ii) @ and b are, explicitly or through the transitivity of primitive rela-
tions, stated to be separated in either the z or the y direction by a
minimum amount which depends on their types.

From this definition, it should be clear that testing completeness of a
cell instance involves computing the transitive closure of a graph. There-
fore the complexity of the operation will be O(n%), where n is the number
of boxes in the cell. It is thus not feasible to test a large layout for com-
pleteness in a direct way.

Fortunately, completeness can be checked hierarchically. Let us
look only at the objects at the highest level of the hierarchy of boxes that
defines a layout, i.e., those boxes (including cell boundaries) defined glc-
bally in the ALI program that generated the layout. If these objects are
related in a complete manner and the cell instances used at this ievel are
also complete, then the whole layout is complete.

Thus one can check the completeness of a layout by successively
checking cell instances for completeness, thereby reducing the complex-
ity of the process to O(m3) where m is the largest number of boxes local
to a cell instance in the layout. This process can be reduced furthe:.
since not every cell instance needs to be checked. For example, if & cell
is defined by a straight line program, checking one instance for com-
pleteness suffices, as one instance of the cell will be complete if and only
if all of its instances are [16]. The case of cells with branches and itera-
tion is not quite as simple. Yet we are confident -- and our experience
tends to confirm this belief -- that checking the completeness of a few
carefully selected instances of any cell definition will be ernough to
guarantee that the cell definition is complete.

The end result is that completeness has the flavor of a static, almost
syntactic, property for all non malicious examples, and is much easier to
check in a well structured layout than design rule freedom by the sitan-
dard means on the final layout.

Finally, a word about the possibility of taking an incomplete layout
specification and automatically completing it. The general problem of
generating an optimal completion is NP-Complete, but the simpler ver-
sion of generating any completion for graphs embedded in a grid (as our
layouts are) seems to be solvable in O(n®) steps. The question of how
much area will be wasted by such a completion algorithm will have to wait
for some experimentation, but there is no question of its usefulness.

2.4. Experience with ALl

The current implementation of AL! has shown the soundness of most
of our original ideas. The system is eflficient and the language easy to
learn, and the layout it produces are relatively dense (for example, an ALl
program written without concern for area optimization produced a layout
which was about thirty per cent larger than a similar layout packed by

"
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hand on a graphics editor. Unfortunately, this evidence has been gath-
ered mostly from people who had a hand in designing or implementing
ALl. Perhaps a more reliable evaluation of ALI, ought to wait untii a sub-
stantial number of users not involved in its design can give an informed
opinion. We hope to obiain this evidence before long, since ALl is
currently being used in a VLSI design course.

The fact that very little effort was invested in error recovery for the
sake of expediency in getting a prototype running, and that no mechan-
ism for integrating separately produced layout pieces was provided make
the current system useful mostly for teaching purposes and experimen-
tation. It must be emphasized that this is a result of implementation
choices, and not of any intrinsic limitation on the approach we have
taken.

The problems of the current system which we plan to address with
the next version are the following:

(1) Memory requirements. The solution of the system of linear inequali-
ties requires large amounts of memory. We will use a different algo-
rithm which is slightly less efficient in terms of time but requires &n
order of magnitude fewer memory locations for a typical large lay-
out.

(2) Pascal problems. The current ALl has exactly the same type struc-
ture as Pascal. The lack of generic types and dynamic arrays has
made the task of writing general purpose tools (PLA generators.
routers...) inside ALI more difficult than it ought to be. The next ALl
will have the notions of generic types and dynamic arrays.

(3) Connecting primitives. Certain objects, such as contacis, are used
frequently enough to warrant making them part of the language.

(4) Separate ‘‘compilation’ facilities. Clearly, large layouts will have to
be generated in pieces, which is something that our current system
cannot do.

Acknowledgements

We would like to thank Jose Mata, Vijaya Ramachandran and Jerry
Spinrad for their help in the implementation of ALl, and Jean Vuillemin,
Scot Drysdale and the referees of the paper for their comments. We also
want to thank Bruce Arden for his advice and support.

The work of Richard Lipton has been partially supported by grants
MCS8023-8068 from NSF and N00014-82-K-0549 from DARPA and ONR.
Stephen C. North is being supported by Bell Laboratories. Robert
Sedgewick's work was partially supported by NSF grant MCS80-17579.
The work of Jacobo Valdes has been supported by DARPA and ONR grant
N00014-82-K-0549.

asutll, ﬂu[v‘ B




-17 -

3. References

[1] Ackland, B., Weste, N, ‘A pragmatic approach to topological sym-
bolic IC design. design,” VLSI'81, pp 117-128, John P. Gray ed,
Academic Press.

[2] Apsvall, B. and Shiloach Y., *'A Polynomial Time Algorithm for Solving
Systems of Linear Inequalities with Two variables per Inequality’’, pp
205-217, Proc. of the twentieth IEEE Symp. on Foundations of Com-
puter Science, 1979.

[3] Baker, C. M., “‘Artwork Analysis Tools for VLSI Circuits,’” M. S. Thesis,
MIT, EECS Department, June, 1880.

[4] Batali, J., Mayle, N., Shrobe, H., Sussman, G., Weise, D., "The
DPL/Deedalus Design Environment,” VLSI'81, pp 183-192, John P.
Gray ed., Academic Press.

[5] Bryant, R. E., *MOSSIM: A switch-Level Simulator for MOS LSl pp
786-790, 1&h Design Autormation Conference. 1981.

[6] Davis, T., Clark, J., “'SILT: A VLSI Design Language (Preliminary
Draft)’’, unpublished manuscript, Digital Systems Laboratory, Stan-
ford University.

[7] Eichemberger, P., “Lava: an IC layout language', unpublished
manuscript, Electronics Research Laboratory, Stanford University.

[8] Fairbairn, D., Rowson, ‘'Icarus: an Interactive Integrated Circuit Lay-
out Program’’, pp 188-192, [5th Design Automatfion Conference
Proceedings, 1978.

[8] Fan, S. P., Hsueh, M. Y., Newton, A. R., Peterson, D. O, "MOTISC: A
new circuit simulator for MOSLSI circutis,”” JEEE Proc. Int. Symp.
Circuits and System, pp 700-703, 1877.

[10]Franco, D., Reed, L., “'The Cell Design System'’, pp 240-247, 16th
Design Automation Conference Proceedings, 1981.

(11]Holt, D., Shapiro, S., "'BOLT -- A Block Oriented Design Specification
Language'’, pp 276-279, 18th Design Automation Conference Proceed-
ings, 1981.

[12]Johannsen, D., 'Bristle-Blocks'’, pp 310-313, 16th Desigr. ‘utcmation
Conference Proceedings, 1979.

[13]Johnson, S. C., *'The LSI Design Language i'’, unpublished 1nanuscript.

[14])Knuth, D. E., The 4rt of Computer Programming, vol. 1. Fundamen-
tal Algorithms, Addison-Wesley, 1971.

[15]Mead, C., Conway, L., Introduction to VLSI Systems, Addison-Wesley,
1980.

[16]Moslelier, R.C., “REST: A leaf cell design system,” VLS/'81, pp 163-
172, John P. Gray ed., Academic Press.

[17]Sastry, S., Klein, S., *PLATES: A Metric Free VLSI Layout Language'’,
Pp 165-189, Proceedings of the 18682 Conference on Advanced
Research in VLSI, 1982.




-18-

[18] Tarjan, R. E., "Efficiency of a Good but Not Linear Set Union Algo-
rithm"’', JACM, vol. 22, no.2, pp 215-225, 1875.

[19] Trimberger, S., *‘Combining Graphics and a Layout Language in a
Simple Interactive System,” 18th Design Automation Conference
Proceedings, 1981.

[20]Vijayan, G., **Completeness of VLSI Layouts’’, VLSI Memo #1 Princeton
University, Department of Electrical Engineering and Computer Sci-
ence, September 1982.

[21]Williams, J., “'STICKS, A Graphical Compiler for High Level LSI
design’’, pp 289-295, Proceedings of the 1978 NCC, 1978.




Rectilinear Graphs and their Embeddings
Gopalakrishnan Vijeyan
A Wigdsrson

Department of Electrical Engineering and Computer Science
Princeton University.
Princeton, New Jersey 08544

1. Introduction

The problem we address in this paper is an embedding problem for a class
of graphs which we call rectilinear graphs. These graphs are important in many
VLSI layout problems. In fact, this problem arose in the implementation of ALl
[6.7). a procedural language for VLSI design currently under development at
Princeton. An embedding algorithm can be used to automate the production of
VLS] layouts in many procedural design systems.

Consider the following model for VLS! layout design. A VLS] layout is
described hierarchically using cells and wires that connect the cells together.
Each cell C is enclosed within a rectangle R(C), and has four tuples of pins, one
each for the left, top, right. and bottom of rectangle R(C). Each wire w is
denoted by a pair of pins (p, p;), such that p; and p, are pins of different cells
and are of opposite types. For example, if p is & right pin then p; should be a
left pin. Given such a description of a VLS] layout, our aim is to produce an
embedding of the description on the plane, such that (i) no two bounding re>-
tangles touch each other, (ii) the pins appear in the correct order on the
bounding rectangles, (if€) the wires are straight and rectilinear, and (iv) no two
wires cross each other. Later on, we can fill each bounding rectangle R(C) with
the embedding of the cell C in the same manner.

The restriction that wires cannot be bent may seem unrealistic, but this is
certainly the case in many design systems including ALl If a wire has to be
bent, the user specifies that by breaking up the wire into several straight vires
and placing cells at each of the turn points of the wire. In ALl, for example, the
user can incorporate routing algorithms in a ALl program to determine how the
wires are to be bent. The restriction that wires cannot cross implies that we are
dealing with the wires on a single layer. For a layout with multiple layers, it is
clearly necessary that the wires on sach layer do not cross.

To solve the above embedding problem, it is enough to consider only a sim-
ple restriction, where sach bounding rectangie has at most one pin on each side.
We can then treat the bounding rectangles as vertices and the wires as edges,
which leave in one of the four cardinal directions. We give the name rectilinsar
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graphs to such graphs. The embedding problem of rectilinear graphs is our
main concern in this paper.

For VLSI applications, we need efficient algorithms to recognize and then
actually embed rectilinear graphs. In this paper, we present an O(n) recogni-
tion algorithm and an O(n®) embedding algorithm, where n is the number of
vertices in the graph Thus, a hierarchically described VLSI layout with cell
instances C,.Cp - - -, can embedded in time 0(‘2m2). where ny is the

=1
number of pins in cell instance .

An embedding of a rectilinear graph is just a relative placement of the ver-
tices ( cells ) on a rectangular grid, such that no two edges cross. Some of the
relative placement information is already present in the description of a rectil-
inear graph for example, if (a.b) is the rightgoing edge of vertex @, then a
should be to the right of b, and a.b should be on the same horizontal grid line.
Hence, an embedding can be viewed as a "completion” of the rectilinear graph
description. We showed in a different paper [8] that the completion problem for
a slightly more relaxed VLSI layout model is NP-complete. In light of this result,
the results in this paper have become more important.

In section 2, we present formal definitions of rectilinear graphs and their
embeddings. In section 3, we mention some properties of rectilinear graphs. We
discuss some topological properties of the embeddings in section 4. A necessary
and sufficient condition for biconnected rectilinear graphs to be embeddable is
presented in section 5. A similar condition for arbitrary rectilinear graphs is the
main result in section 8. We also describe a O(n) recognition algorithm in this
section. In section 7, we use the ideas of the previous sections to obtain an
O(n?) embedding algorithm. An important subclass of rectilinear graphs is dis-
cussed in section 8. In section B, we discuss extensions and open problems. For
definitions of graph theoretic terminology used in this paper, please refer to
[1.2).

2. Definition of the Problem
First we give a formal definition of a rectilinear graph.

Definition 2.1: A rectilinear graph G is a triple (V, £, A). where ¥ is the vertex
set, £ is the edge set, and

A:¥VxV- I ) {e]. where £ ={L R D U}

iz a vertez ordeming relation with the following properties:
foreveryadbe e Vand X €&

(i) AM(ad))=e « fadjeE
(ordering is specified only between adjacent vertices)
(#) M(ad))=L o A((da))=R. A(a.d))=DwA((ba))=U




——

-3-

(i) A({(e.d)) =X - Al(c.b)) # X. V¢ # a (no overlapping edges).

Each vertex in a rectilinear graph has degree at most four, and each edge
{a.b). as it goes from one vertex a to the ahother b, has a nonempty label on it,
which in the embedding will indicate the direction (left.,right, down, or up) in
which the edge leaves vertex a. There can be at most one edge with a particular
label emanating from each vertex. The undirected graph G(V.E) will be

referred to as the underlying graph. Figure 2.1 (like all other figures) gives an
illustration of a rectilinear graph.

- R
- R
v
—
=R WUl n
‘T T
Figure 2.1

A rectilinear graph

Now we define what sort of an embedding we are looking for.

Definition 2.2: An embedding of a rectilinear graph G{V.E.A) on a rectangular
grid 1s given by two mappings z. y: V-+ Z ( the integers ) which are the x and y
coordinates respectively of the vertices. These mappings obey:

1. the ordering relation, A, i.e. for all edges fa,b} € £
AM(a,d)) =L -+ y(a)=y(b) =(a)>=(d)

M(ad)) =R -+ y(a)=y(b). =z(a)<=z(d)
M(ad))=D =+ z(a)==z(b) yl(a)>y(d)
M@pd))=U » z(a)=z() y(a)<y(d)

2. Planarity. no two edges cross, i.e. for each pair of non-adjacent edges
fa.bj, fc.d} suchthat A((e.d)) =R and A((c.d)) = U, the condition

z(a)<=z(c)<z(d) and y(c)<y(a)syl(ad)
does not hold.

An embedding of a rectilinear graph on a rectangular grid is one in which
the vertices are placed at grid points, the edges run along grid lines in the direc-
tions given by their labels, and no two edges cross each other except if they
share a vertex. We say that a rectilinear graph is embeddable if it has an

embedding. We will show {n the next section that not all rectilinear graphs are
embeddable.
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Now our main problem can be stated simply: Given a rectilinear graph
G(V.E \). is it embeddable, and if yes, find an embedding.

3. Some Comments on Rectilinear Graphs

Figure 3.1
Two nonembeddable rectilinear cycles

() (b

Figure 3.2
Two nonembeddable rectilinear graphs
¢ whose biconnected components are

In this section we list some properties of rectilinear graphs and their
embeddings. These will give an indication of why the problem is not trivial and
why it is different from other embedding problems, and in particular, planar
graph embedding [3,5].

1. Embeddability is a hereditary property. Subgraphs are defined in the usual
fashion, but here the labels of edges are inherited. This is obvious, but
worth mentioning, because this will be used in the proofs.

2. If each connected component of a rectilinear graph is embeddable then the
{ graph itself is embeddable. So, without loss of generality we will restrict
‘ ourselves to connected rectilinear graphs.

] 3 Rectilinear graphs with nonplanar underlying graphs are clearly not
embeddable. So it is not interesting to consider those graphs. However, not
every rectilinear graph with a planar underlying graph is embeddable. In

figure 3.1, we have two simple cycles which are not embeddable.
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4. In contrast with planarity, embeddability is mot a property determined by
the biconnected components. Figure 3.2 provides an illustration of this
fact.

§. This problem is a restriction of an NP-complete problem [9,11]. For each
wire w, we are given its orientation (horizontal or vertical), and a set ¥, of
vertices. The wire w has to pass through each vertex in the set ¥, (the ver-
tices could be touched in any order). Then, the embedding problem
becomes NP-complete.

6. If we relax the rectilinearity of the edges and impose only the cyclic order-
ing of the edges at each vertex, then there is an O(|V|) algorithm [10]. The
cyclic orderings automatically determines the faces of the embedding (if
one exisls). Thus a embeddable rectilinear graph has a unique embedding in
this sense.

[

. Topological Structure of Embeddings

A((abcdefgh)) = LURDRUL
Figure 4.1
The extension of A to paths.

There is a natural way to extend the function A to paths and cycles in the
graph as follows. Given & path P =(vov, - .v) we define
A(P) = AM{vov ))A((v,.ve)) - - A{(vg-1.%)). We define a similar extension for
cycles where now v; = vp. A becomes a mapping that associatee with each path
or cycle in the graph a string in £° which is the concatenation of labels along the
path or cycle. Note that strings containing RL, DU, LR, UD as substrings do
not represent paths. Also the direction in which we traverse a path and the
starting point in a cycle are important. An example of this mapping can be found
in figure 4.3.

Next we define two topological actions on rectilinear graphs. These actions
will simplify a rectilinear graph while preserving its topological structure. Let G
be a rectilinear graph.

Action 1 - Edge Contraction: Let (abcd) be a path in G such that both d and ¢
have degree 2, and A((abcd)) = XYX where X.Y € L. Contract the edge (b.c) to
the vertex b. The resulting path (abd) will have A{(abdd)) = XX. We abbreviate

T e




Figure 4.2
Edge contraction and vertex deletion

this action by XYX -+ XX ( figure 4.2(1) ).

Action 2 - Vertex Deletion: Let (abc) be a path in G such that vertex b has
degree 2, and A((abc)) = XX where X € . Delete the vertex b and introduce
the edge (a.c). The resulting edge (a.c) will have A{{a.c)) = X. We abbreviate
this action by XX - X { figure 4.2(2) ).

In a natural way we can define inverses for the above two actions which we
will refer to as edge expansion and vertex addition respectively.

Lemma 4.1: Let G be a rectilinear graph and G' be the graph resulting from G
by the application of a sequence of the above four actions. Then G’ is also rectil-
inear and moreover G' is embeddable if and only if G is embeddable.

Proof: The proof is easy and is left to the reader. »

-1 =i |

RDLDR ~ R RDLDRULDLURDLU - RDLU

Figure 4.3
Simplification of a path and a cycle

Definition 4.1: Given a string ¥ € L" representing a path or a cycle, the
simplified formn ¥ of 7 is obtained by repeatedly applying the reduction rules
XYX -+ XX and XX -+ X, where X,Y € I, until they cannot be applied any more.
If ¥ represents a cycle then it is treated as a cyclic string.

In figure 4.3 we give a path and a cycle along with their simplified forms.
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Lemma 4.2: Every string 7 € £° has a unique simplified form.
Proof: The replacement system defined by the two reduction rules have the
Church-Rosser property [8]. =

Definition 4.2: A square is one of the cyclic strings LURD or LDRU.
Sometimes we may distinguish between two squares by their starting labels.

Definition 4.3: A spiral is a path which cannot be simplified. Equivalently a
spiral is a substring of (LURD)* or (LDRU)*.

Lemma 4.3: Every path is embeddable.
Proof: Every spiral is embeddable. Since any path simplifies to a spiral {by
definition ), by lemma 4.1 it is also embeddable.

So it is the cycles which make the problem nontrivial. The following lemma
is a crucial fact about cycles.

Lemma 4.4: A cycle is embeddable if and only if it simplifies to a square.
Proof: if: A square is embeddable and hence by lemma 4.1 any cycle which
simplifies to a square is also embeddable.

only if: Let f be an embeddable cycle and A(f) = y. By lemma 4.1, the
cycle defined by ¥ is alsoc embeddable. Let {y| = n. Look at the embedding of ¥.
Since it has no crossings the embedding is & simple polygon Therefore the inte-
rior angle of this polygon sum to (n-2).180°. Since ¥ is a spiral all its interior
angles are 90°. The only solution to n.80 = (n—2).180 is n = 4. Therefore ¥ is a
square. ®

The proof of the previous lemma suggests another useful characterization
of embeddable cycles. Going along a cycle f = wjvg - - - uyv, in the counter-
clockwise direction, let us denote by @, (v;) the angle at vertex v;, which is the
angle between (v;-;,9) and (v;,V44y).

Lemma 4.5: A cycle f =v,wp - ¥,v,,n = 4 is embeddable if and only if
o(f)= ‘291(”() = (n2).180° .
=]

Proof: Suppose f is embeddable, then its embedding is a simple polygon.
Depending on whether we sum the interior angles or exterior angles we should
get (n £2).180°.

To prove the sufficient part we show by induction of n that f simplifies to a
square. The possible values for ¢, (v;) are 80,180,270°. The basis for induction is
n = 4. In this case the given sum of the angles is either 360° or 1080°, which
implies that each angle is either 80° or 360° respectively. So f must be a
square by itsell.

Assume that the claim is true for all values less than n and let n > 4. If for

———— e



some i, ¢ (1) = 180°, then A(vy_; %) = XX. We can apply vertex deletion at
v to obtain J UVt YWy VpVy, Then
#(J') = 9(7) — ¢g{v) = ((n-1)£2).180°. and by induction we are done.

This leaves the case where all angles are either 80® or 270°. Since n > 4
and ¢(f ) = (n1+2).180" not all the angles can be equal. Hence there must be ak
such that ¢, (v,) # ¢y (ves;). Hence we have A(v,_Wat1Vpe2) = X¥YX. Apply
edge contraction to obtain f'=wv, ‘' -y _juyp.z - - - Ypv;. The edge contrac-
tion removed 380° from the angle sum and added 180°. Hence
p(f) = ((n-1)£2).180° »

Definition 4.4: A complement of a path P with respect to a square o is any
path P€in the graph such that PP¢is a cycle which simplifies to A(PP9 = 0.

Lemma 4.8: Given a path P, all its complements with respect to a square o,
which have the same start and end labels, have a unigue simplified form.

Proof: Let A(P)=a=X;Xp - X,. Since a is a spiral we have X; = X; for
i = j(4). Assume that k > 4 and that the spiral a and the square o are either
both clockwise or both counterclockwise. Then ¢ must be & substring of a. Since
o is a cyclic string we can assume that g = X, XXX,

Let P¢be a complement of P with respect to 0 and let X(P%) = 8. Since
k > 4, B must spiral in the opposite direction to a. Since both a and g are
simplified, af can be simplified only at the borders between the two strings.
¥rite 8 = B8,8:83. such that f3af, = a We are allowed to shift #3 because af is a
cyclic string. Then it is clear that B, € §X; 34X, . X, .£} and 5 € {e.X;. X, X }. Beis
the ‘essential part’' of f. Since |a| =k and o0 = 4, we must have |8, = k~4.
From the possible values of §, and £, and the fact that g is a spiral opposite in
direction to &« , we can conclude that S = X3 X3 2 - " Xy Weused k£ > 4 in
order for [ not to Dbe an empty  string. Therefore
B=1.X.X X1 Xy - - X$2.X . X, X,). which is unique but for the start and
end labels. The arguments in the cases where a and ¢ are in opposite directions
and for k < 4 are similar. »

5. Biconnected Rectilinear Graphs
In this section we discuss an algorithm for recognizing biconnected rectil-
inear graphs. Note that the ordering relation A induces a cyclic ordering of the

edges incident at each vertex v. For convenience we will need the following
definition.

Definition 5.1: Let v be a vertex in a rectilinear graph G. Define Lg(v) to be the
cyclic list of the neighbors of v in G in the counterclockwise order.

Using these lists, we can define the essential notion of a candidate face of a
biconnected rectilinear graph.

toe .
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Candidate faces

Definition 5.2: Let G = (V,£.A) be a biconnected rectilinear graph. With each
edge e = (v,.vp), {v, > vpit we associate two lists of vertices called candidate
Jaces CF,(e) and CFyle) which are defined as follows.
CF\(e) = v, ve. - - - WUy, Where v #v; for i.J #v,,,, #j and v, =y
for some ¢, 1 i < k-1, such that for each ?, 1 <! <k +1, v, is the successor
of v;_, in the cyclic list Lg(v;). CFy(e) is similarly defined but starting with
Vo V.

It is easy to see that CF; and CFy are uniquely defined. An illustration of
this definition is given in figure 5.1.

We now need a lemma about biconnected undirected graphs. Let us define
a biconnected graph to be minimal if for every edge e in the graph G-e is not
biconnected. The following lemrma is taken from [2] and is stated without proof.

Lemma 5.1: If G is a minimal biconnected graph having at least four vertices
then G contains a vertex of degree two.

Lemma 5.2: In any biconnected graph G which is not a simple cycle, there is a
simple path P = (v,,vg).(va.vs), - - - (vp-1.v,), r 2 2, with the intermediate ver-
tices ( if any ) v;, 1 # 1,7 all having degree 2, such that the graph G' = G-P is
biconnected.

Proof: Transform the given graph G to another graph G" by replacing all paths
of the form P = (v,v;).(ve.vs), - - - .(Up-1. %) where the vertices y;, i # 1.r all
have degree 2, by the edge (v,v,). So for each edge ¢ in G" we have a
corresponding path P, in G. Note that the degree of any vertex in G" is at least
three. If G” has multiple edges between some two vertices, say u and w, then in
G there must be at least two paraliel paths between u and w. Since G is not a
simple cycle any one of those paths will serve our purpose. If G" does not have
multiple edges then it must have at least 4 vertices. By lemma 5.1 G" cannot be
minima!. Therefore there is an edge ¢ in G" such that G"'-e is biconnected,

1 For convenience we assume that V is & set of integers.
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which implies that G~F, is also biconnected. s

The following theorem gives a necessary and sufficient condition for a bicon-
nected rectilinear graph to be embeddable.

l e
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Figure 5.2
Two possible embeddings of CF\(e)
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The two cycles f,.f o and the path P
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Theorem 5.1: Let G = (V,E.A) be an biconnected rectilinear graph with at least
three edges. Then G is embeddable if and only if for each edge e in the graph
both the candidate faces CF,(e) and CFy(e) represent simple embeddable
cycles in the graph (i.e. the starting and ending vertices are identical, and it
simplifies to a square). Moreover, if the graph is embeddable each such distinct

candidate face corresponds to a face in the planar embedding.
Proof:

only i{f: Supposing for some edge e =(v,v;). CF,(e) is not a cycle, ie
CFi(8) = vy, Vg, -« - Wy Wy With vy = up,, for some i, 1 <1 < k-—1. Suppose G
is embeddable. Look at the cycle v, - * - wp. %, in the embedding. Suppose
that the edge (%4-,v) is inside this cycle. There can be no other edges
(u.v;). i £ § sk dnszide this cycle, otherwise u would have appeared instead of
v;41 in CFy(¢). From the planarity of the embedding. there can be no path from
v;-; to v; other than the edge (v;.,,v). This contradicts the biconnectedness of
G. The case where (v;_,.v,) is outside the cycle is similar ( both cases are dep-

icted in figure 5.2 ).

e
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Suppose CF,(e) is a cycle but is not embeddable. Since CF,(s) ir a sub-
graph of G, G itself cannot be embeddable. Similar arguments holds for CFg(e).

/: The proof of this part is by induction on the number of edges. The basis
for the induction are simple embeddable cycles, for which the claim is true by
lemma 4.4. Assume that the claim is true for any biconnected rectilinexr graph
which has less than k edges. Let G be a biconnected rectilinear graph which is
not a simple cycle and which has k edges. By lemma 5.2, there is a simple path
P = (v,v;).(vgvs), - - - .(vy_,, 1) with the vertices v;, £ # 1,7 all having degree
2. such that the graph G' = G-P is biconnected. v, and v, will have degree
greater than two. Also assume that vy > vg and e, = (v,,vg).

Since all our candidate faces are cycles, if an edge & lies on a candidate
face f Lhen either CF(¢) = f or CFy(s) = f. So each edge will be present in
exactly two of these candidate faces. Hence the path P will appear in CF,(e ;p)
and its reverse path will appear in CFp(e ). Let

J1=CFy(ep) =v,vp -y uy, - - ay v,
Ja=CFp(e2) =% vy, ' - VW, ' W Y, and
!s = Ul,wl, cr .w.,v'.ul, cr lu,lv"

It follows from the definition of the candidate faces f, and f; that the vertices
u; v, w, appear consecutively in that order in Lg(v,) and that w; v, ,u,
appear similarly in Lg{v,) ( see figure 5.3 ). Therefore for each edge in £, or f,
which is not in P, the new candidate face in G' will be f 5 which is a simple cycle.

We still have to show that f5 is embeddable. Since f, and f, are both
embeddable ¢(f,) = (r+512).180° and ¢(f2) = (r+k £2).180° . However, since
J 1 and fg share the edge e it is implied by the definition of candidate faces
that ¢(f,) = (r+5+2).180° and ¢(fs) = (r +k +2).180° is impossible. With a little
bit of algebraic manipulation we can show that ¢(fs) = ((§ +k+2)+2).180°. Since
J s has j+k +2 vertices by lemma 4.5, it is embeddable. Thus the candidate faces
for G’ are the same as those for G, excepting for f s replacing the two faces f,
and f . So for each edge in G’ its two candidate faces are again simple embedd-
able cycles. By induction hypothesis ' is embeddable and each distinct candi-
date face corresponds to a face in its embedding. The orderings of the edges at
the vertices v, and v, imply that the end edges (v, vg) and (v,-,.u,) of the path
P are both trying to go inside the face corresponding to fs.

We are left to show that we can add the path P back without destroying
embeddability. Find any rectilinear path P’ in the face corresponding to fs in
the embedding of G'. that starts and ends with A((v,.vg)) and A((vy-;.vp))
respectively. This is clearly possible although we may have to extend the grid in
order for P’ to lie on the grid lines. P’ creates a face in the embedding with the
path P, =vwuuz - -wv, If fs is not the outside face then
APP) = N{J1) = N(P,P) = 0. The case when [ is the outside face is slightly
more complicated. There are two such different paths P' depending on the new
outer face that is created. However, for one of the two the above holds and sup-
pose this is the one we chose. By definition both P and P’ are complements of
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P, with respect to o, they also share the same start and end labels, and by
| lemma ¢.6 we have A(P) = A[P). Therefore G'+P’' can be obtained from G by
applying a sequence of the four topological actions, and since G'+P’' is embedd-
able, by lemma 4.1 G is also embeddable. It is easy to see that the two new
faces we get after inserting P in the embedding of G’ correspond to f,and fo. =

The above theorem leads to the following algorithm for recognizing embedd-
! able biconnected rectilinear graphs. The algorithm also outputs the faces of the
embedding if the graph happens to be embeddable.

Algorithm chack-biconnscted(G),
begin
if G is an edge then refurn;
it |E|>3|V|-6then
begin
write( not embeddable’);
quiit
' end;
for each edge e do
begin
mark[e,1].:= false;
mark{e ,2]:= false
{ end,
for each edge e do
fori:= 1to2do
begin
if not markje i] then
l begin '
J := candidate-face( e, i ),
if not embed —cycle (f) then
begin
write( ‘not embeddable’ ),
! quit
end;
for each edge e’ = (v,.vp) in [ do
if v, > vp then mark{e' . 1]:= true
else mark[e'.2]:= true;
output (f)
end
end
end

Boolean function embed-cycle(f) returns value true if £ is an embeddable

cycle. If £ is a cycle then we simplify using the reduction rules and check if we
end up with a square. This can be done in time linear in the size of f. Function
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call candidate-face(e.i) returns the candidate face CF(e) and the function can
be implemented exactly as described in definition 5.2. In the calls to this func-
tion, each edge ¢ can be traversed at most twice, due to the flags mark[e,1] and
mark{e ,2]. Therefore the algorithm runs in time O(}V|). We conclude this sec-
tion with a lemmma which will let us identifiy the outer face in a rectilinear graph.

Lemma 5.3; Let G be an embeddable biconnected rectilinear graph. For all
interior faces f in the embedding of G, ¢(f) = (n-2).180°, and for the unique
exterior face f.. ¢(f.) = (n +2).180".

Proof: Consider the embedding of G. The faces of the embedding are deter-
mined by G, and are simple polygons in the plane. By the definition of ¢, for
every interior we count the interior angles, and for the exterior face we count
the exterior angles. The lemma follows. ( Remember that if G is a simple cycle,
the embedding has two faces ). »

mo
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Figure 5.4
Shapes Uand W

Lemma 5.4: Let G be an embeddable biconnected rectilinear graph, f, the
exterior face in its embedding and v a vertex on f,. If ¢, (v) = 180° then G
can be embedded inside a polygon of shape U, as shown in figure 5.4a. 1If
¢s, = 270° then G can be embedded inside a polygon of shape W, as shown in
figure 5.4b.

Proof: Easy and left to the reader.s

8. Articulation Vertices

In this section we examine the conditions under which the embeddability of
the biconnected components of the graph implies the embeddability of the
graph itsell. Clearly, this will depend on the way components meet at articula-
tion vertices. In figure 3.2, we showed two examples of nonembeddable rectil-
inear graphs, each of which decomposes into two embeddable biconnected rec-
tilinear graphs.

In those cases, the two biconnected components are not "compatible” at
the articulation vertex. However, the situation need not be so local. Figure 6.1
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Decompositions of nonembeddable graphs

depicts two nonembeddable graphs, each of which decomposes into three
embeddable biconnected components, so that the components meeting at each
articulation vertex are compatible. Note that an edge is a (trivial) biconnected
component.

If v is an articulation vertex in a graph G, then its removal results in
several connected subgraphs G; of G. We will refer to the subgraphs G +v, as
the subgraphs meeting at v. Throughout this section we will implicitly assume
that we are dealing with rectilinear graphs whose biconnected components are
embeddable.

Definition 8.1: Let B, and B; be two nontrivial biconnected components of a
rectilinear graph G that share an articulation vertex v. Then B, and B; are said
to interlace if the horizontal edges at v belong to B, and the vertical edges
belong to B,. We also say that v is an interiace vertex. Any articulation vertex
that does not have this property is said to be intsriace-free.

Lemma 8.1: A rectilinear graph G which has an interlace articulation vertex v is
not embeddable.

Proof: let B, and B3 be the two biconnected components sharing the vertex v.
Since B, and B are nontrivial, the horizontal edges at v lie on a cycle in B, and
the vertical edges lie on a cycle in Bp. It is impossible to draw G on the plane
without these two cycles crossing. =

Definition 6.2: Let B, and F; be two non interlacing biconnected components of
G that share an articulation vertex v, and assume B, is nontrivial. Then B; is
said Lo be inside B, ( or B, dominates By at v ) if either (i) v is not on the exte-
rior face of B), or (ii) edges (v.u) and (v,w) at the vertex v are on the exterior
face of B,, and u,w are consecutive in that order in Lg(v) ( note that they are
always consecutive in Lg (v) ). If neither B, dominates 5p nor By dominates B,

then B, and B are said to be outside each other.
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The intuition behind the above definition is that in the embedding. one
biconnected component must lie wholly inside some face of the other if one
edge of it does. This is due to the planarity criterion. Clearly, if biconnected
components B, and B, that share an articulation vertex v dominate each other,
the graph is not embeddable ( this is the case in figure 3.2b ).

Let B, and B; be two biconnected components of a graph G that share an
articulation vertex v, such that B, dominates By. Let G’ be the subgraph of G
meeting at v, that contains B,. If G is embeddable then in any embedding of G,
all of G' should lie inside one face of B,. This suggests extending the relation
“dominate” as follows:

Definition 6.3: Let B = {8, B, - - - ,Bn] be the set of biconnected components
of G. We say that B, dominafes B if there exists a biconnected component B,
and an articulation vertex v, such that ({) B, and B; share v, (ii) B; dominates
B, at v, and (fii) B; and B, are both subgraphs of the same connerted sub-
graph meeting at v.

Let us denote by V(G) the vertex set of the graph G and by E(G) the edge
set. :

Lemma 6.2: If in a rectilinear graph G, there exists some pair of biconnected
components B, and B, that dominate each other, then G is not embeddable.
Proof: ]f 7, and 5, share an articulation vertex v, then as mentioned earlier G
is not embeddable. Suppose that B, and B, are disjoint. Since B, and B, dom-
inate each other, there must be articulation vertices v, v, biconnected com-
ponents B,'.B;'. and subgraphs G,,Ge. such that for i = 1,2, (i) B; and B;' share
v;, (i) B, dominates B;' at v;, and (i) & is one of the subgraphs meeting at v;
and contains B;'. Let us assume that G is embeddable. From (i) vg € V(G,).
(i) G, lies wholly inside B, in the embedding, and ($ii) V(G,)nV(B,) = lv,{, we
can conclude that v, must be properly inside a polygon defined by the face S, of
B, containing v,. Similarly v, should be properly inside the polygon defined by a
face f, of B, containing v,. Therefore some vertices of f, rmust lie outside 1,
and the two faces must intersect, and hence G is not embeddable. »

Given a rectilinear graph G, with set of biconnected components B and set
of articulation vertices A, we can construct a tree T of biconnected components
such that V(T) = AuB and E(T) = {(v.B) |v € A B € B v € V(B)|.

Lemma 8.3: Let G be a rectilinear graph with the set of biconnected com-
ponents B and tree of biconnected components 7. Let B be a leaf in the tree 7
which is adjacent to an articulation vertex v of degree 2in T. If B dominates B’
the other biconnected component adjacent to v in T, then B dominates every
other biconnected component in B.

Proof: The only two subgraphs meeting at v are B and G-F5+v and the proof
follows from definition 8.3. »
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If no two biconnected components dominate each other, then the relation
"dominate” induces a partial order on B. A nondominating element in this partial
order is a biconnected component which does not dominate any biconnected
component.

Cordllary 6.1: If for a rectilinear graph &, "dominate” is a partial order, then
there exists a nondominating biconnected component which is a .eaf in the tree
T of biconnected components.

Proof: Any trivial biconnected component ( which is just an edge ) must be non-
dominating. If any vertex in T ( corresponding to an articulation vertex in G ) is
adjacent to two leaves, then either the two leaves are nontrivial and not dom-
fnating, or one of them is a trivial biconnected component. If no vertex in T is
adjacent to two leaves, then all leaves are adjacent to vertices of degree 2, and
there are at least two such ieaves. It two of these leaves are dominating, then by
lemma 6.3 the two leaves dominate each other which is a contradiction that
"dominate” is a partial order. In fact all of these leaves must be nondominating. »

Theorem 6.1: Let G be a rectilinear graph anc B its set of biconnected com-
ponents. G is embeddable if and only if

(i) every biconnected component B in B is embeddabie,

(1) every articulation vertex in G is interlace-free, and

(i) "dominate" induces a partial order on B.

Proof: The necessary part follows from lemma 6.1 and lemma 6.2.

The sufficient part is shown by induction on the number of vertices. The
basis for induction is any biconnected rectilinear graph. Let G be not bicon-
nected with | V(G)| = n. Assume that the claim is true for all smaller graphs.
Look at the tree T of biconnected components. By corollary 8.1, there exists a
leaf B in T which is nondominating. Let v be the articulation vertex shared by B
and G' = G-F+v, the rest of the graph. ' being a subgraph of G also satisfles
the conditions of the claim. By induction hypothesis G' is embeddable. By condi-
tion (i), B is also embeddable. If B is a single edge it is easy to add the edge to
the embedding of G'. Assume P is nontrivial. Since B is nondominating, v must
lie on the exterior face f, of B and ¢, (v) # 80° (why?).

Embed G’ and B separately and consider the vertex v in both embeddings.

It ',‘(v) = 180°, then v is on only one edge in G'. Add- new grid lines to the

embedding of G', create the shape U as shown in figure 6.2a, magnify the embed-

ding. and embed B in the U as in lemma 5.4a. If ¢, (v) = 270°, then v is either

on just one edge in G', or on two perpendicular edges in G'. In both cases, add
new grid lines, create the shape W and embed 5 as shown in figure §.2b.»

Before we describe an algorithm for testing embeddability, we need an algo-
rithm for testing whether "dominate” is a partial order on the set of biconnected
components. From the tree T of biconnected components, we construct T a
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@) Figure 8.2 (b)
Adding B to the embedding of G

partially directed tree as foliows. Assume that no biconnected component dom-
inates and is dominated at the same vertex. If so then "dominate” is not a par-
tial order. Direct edge (v.B) from B to v if B dominates at v. Direct edge
(v,B) from v to B if B is dominated at v. Leave all the other edges undirected.

This partially directed tree T can be constructed in linear time as follows.
Find the faces of each of the biconnected components using the algorithm
check-biconnected This takes O{|V|) time. Check for dominations at each
articulation vertex as described in definition 6.2. There are at most 4 bicon-
nected components at each articulation vertex and hence there are at most 12
(ordered) pairs to be tested for domination ( in fact only 2 tests are necessary,
how? ). Construct T by directing the edges of T as described earlier. Note that
articulation vertices and biconnected components can be found in O(}V|) [1].
For each vertex z in T, denote by di,(z), deye(z). and d(z), the number of
incoming arcs, the number of outgoing arcs, and the number of undirected
edges respectively. The rest of the algorithm is given below.

Algorithm check-dominate-po(G).
begin
construct T;
for eachvertex z in T do
if dn(z) > 1 then
begin
write ( ‘not a partial order’ ).
quit
end,
if search (T) then write ( Yyes, portial order’ )
else write { ‘not a partial order’)
end,

function search(T): boolean;

begin
if 7 = & then ssarch = true
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else begin
if 3 B € Bwith dy; (B)=0, d (B)+d(B)=1 then
begin

Let v be the neighbor of B;
if dipy (V) +dpg (v)+d (v )=1 then search = search(T~{B})
else search:= search(T—§{5 v})
end else search:= false
end

The above algorithm can be easily shown to be correct using definition 6.3
and corollary 6.1. The boolean function search can be implemented nonrecur-
sively to run in linear time by maintaining & queue of the leaves of 7.

Given the biconnected components and articulation vertices, checking that
the articulation vertices are interlace-free can be done in O(|V]) time. Let
check-interlace-free be a procedure that checks a given articulation vertex for
interlace-freedom. We end this section with a O(|V}) algorithm for testing
embeddability of rectilinear graphs.

Algorithm check-rectilinear(G).

begin
Decompose G into its biconnected components;
for each biconnected component B do check-biconnected(B).
for each articulation vertex v do check-interlace-free(v),
check-dominate-po(G)

end

7. An Embedding Algorithm

In the previous section we gave an algorithm for testing embeddability
This algorithm can be easily modified into an algorithm which gives an embed-
ding. However, the complexity of this naive algorithm would be O{| V1|%). The rea-
soning is as follows. The path P’ that we find in the proof of theorem 5.1 could be
O(]|V]) long. For each topological action that we apply on this path to transform
it to the path P, we update the coordinates of the vertices in the embedding
once. Thus for each path added we require O(|V|?) time. There can be O(|V})
such paths and hence the complexity of the algorithm is O(| V|3). To reduce the
complexity to O(|V|)%), we have to make sure that the path P’ is never longer
(asymptotically) than the path P. In this case the sum of the lengths of all such
paths P'is O(|V|), and the O{| V|?) complexity follows. In the following, we show
how we can always find such paths, describe the algorithm, and analyze its com-
plexity.

Lemma 7.1: Let G be a planar biconnected multigraph with minimum degree




-19-

three. Then any embedding of G has an interior face of size at most five.
Proof: The dual G® of G is also a planar graph. Since G has minimum degree 3,
G¢ is a simple graph. Hence G% has at least two vertices of degree 5 [2]. G is

biconnected and hence one of the vertices must correspond to a face of size < 5.
a

Lemma 7.2: Given an embedding of a planar biconnected graph G, which is not a
cycle, there is a simple path P, such that (i) the interior vertices of P all have
degree 2, (il) the end vertices of P have degree & 2, (iii) P appears in an inte-
rior face f in the planar embedding, and (iv)5.|P| 2 |f |
Proof: As in the proof of lemma 5.2, transform G to G’ by replacing all paths
with property (i) and {4i) by edges. By lemma 7.1, G' has an interior face f of
size at most 5. The longest of all the paths in G corresponding to the edges of f
will satisty conditions (iii) and (iv). e

To get an embedding of a given rectilinear graph, we first test if the graph is
embeddable and then apply the following algorithm.

Algorithm embed-rectilinear(G),

begin
for each biconnected component B do embed-biconnacted (B).
Join-the-embeddings,

end

Algorithm embed-biconnected(B),
begin

get-longpath ( P, P,. o );

embed-biconnected (B - P );

Jind-path-inembedding ( P', P,. 0 ),

apply-actions-and-transform ( P', P )
end

Proredure get-long-path returns paths P.P;, and square o, such that P
satisfles the conditions of lemma 7.2, and the interior face f = PP, simplifies to
0. By lemma 7.2 such a path exists.

Procedure find-path-in-embedding traces a path P’ in the embedding of
B-P, such that P’ starts and ends in the same directions as P, and P'P,
simplifies to ¢. P' and P are both complements of P, with respect to the square
o. Since PP, is an interior face, P’ can be oblained by starting in the required
direction, then following the path P, in the embedding of B-P, and ending in
the required direction (figure 7.1). This will result in P’ being a complement of
P, with respect to 0. We have |P'| = O(|P,|) = O(|P|).

Procedure apply-actions-ond-transform applies a sequence of the four
topological actions to P’ in the embedding of B—FP+FP’ and transforms it to P
thus resulting in a embedding of B. This is done by first simplifying the path P’
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Path addition, simplification and expansion

and then expanding the simplified path to get the path P (figure 7.2). The
number of actions applied will be O(|P|+|P'{) = O(|P]).

Procedure join-embeddings takes the embeddings of the biconnected com-
ponents and puts them together to get an embedding for G. This is done essen-
tially following the proof of theorem 6.1. Find a nondominating component B.
Recursively embed G'= G — B. Join the embeddings of F and G' using the
shapes U or W as shown in figure 8.2

The algorithm can be shown to be correct using the material developed in
the previous Lhree sections. We now analyze the complexity of each step in the
algorithm and show that the total complexity is O(| V|2).

Procedure join-embeddings updates each coordinate at most once per
recursive call. The total number of calls is bounded by the number of bicon-
nected components. Hence this procedure takes O(|V|® time.

Procedure get-long-path can be implemented to run in O(|V|) time each
time it is called. Remember that we can get the faces of a biconnected graph
from the tesling algorithm, and searching all faces to get the required face
takes linear time. Procedure find-path-in-embedding takes O(|P,|) = O(|V])
time. These two procedures will be invoked at most O(|V|) time. Hence total
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time spent in these calls is O(| V|¥).

Procedure apply-actions-and-transform applies a sequence of O(|P|)
actions. Each edge in G will appear in only one such path P. Hence the sum of
the lengths of all such paths P is O(|V|). Each action updates at most O(|V|)
coordinates. Therefore the time spent in calls to this procedure is O(|V|9).

8. Consistent Rectilinear Grapha

Certain rectilinear graphs cannot be drewn on the grid even if we relax the
planarity criterion. We say that a rectilinear graph G(V,E.\) is consistent if it
can be drawn on the grid satisfying the ordering relation A. In other words, G is
consistent if the set of equality and inequality constraints generated in part 1 of
definition 2.2 is consistentl.

The equality constreints define an equivalence relation on the set of coordi-
nates of the vertices of G. Let us denote by e (z) the equivalence class contain-
ing the coordinate z. Denote by /; and J, the sets of x-coordinate and y-
coordinate inequality constraints respectively. Construct two directed graphs
Ge (V. .E;) and G, (V, .E,) as follows:

V =le(z) |z =z(a). a e Vjand E = {(z,.%2) | 3, > z2 € Iy}

¥, and E; are similarly defined.

It can be easily shown that G is consistent if and only if the two directed
graphs G; and G, are both acyclic. A solution to the coordinates which satisfies
the constraints will correspond to a nonplanar embedding of G on the grid. This
can be obtained by performing the topological sort operation [4] on the two acy-
clic digraphs. In fact this will yield a solution that minirnizes the area of the rec-
tangle bounding the embedding.

In a nonplanar embedding of a consistent rectilinear graph on the grid, all
crossings are between horizontal edges and vertical edges. The vertical edges
can be assigned one layer, and the horizontal edges can be assigned a second
layer. In other words the 'thickness’ [2] of a consistent rectilinear graph is less
than or equal to two. A generalization of the rectilinear graph embedding is the
problem of embedding a rectilinear graph with layers preassigned, in which no
two edges belonging to two different layers cross. This remains an open prob-
lem.

9. Extensions and Open Problems

As mentioned in the previous section, the embedding problem for layer
assigned rectilinear graphs is still to be solved. This has important applications
in VLS]. It is easy to show that if a rectilinear graph is allowed to be discon-
nected, then the optimal area embedding problem is NP-complete ( reduction
from two dimensional bin packing ). However, the question is open for con-
nected rectilinear graphs.
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On a more theoretical side, we can define ‘triangular’, ‘hexagonal' and other
polygonal graphs, and consider the embedding problems on appropriate grids.
However, it seems that the work in this paper does not generalize easily. This is
mainly because these polygonal graphs lack the nice simplification properties of
rectilinear graphs. Geometry seems to dominate over topology in these polygo-
nal graphs.

We conclude with a note that our O(]|V|?) embedding algorithm will be
implemented in ALl In ALl layouts are described in a hierarchical fashion, and
hence the algorithm can be applied hierarchically on a cell by cell basis. In this
case the complexity of obtaining the embedding is the sum of the quadratic
complexity over all cell instances.
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On Driving Many Long Lines in a V1LSI Layout
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Abstract We assume that long wires represent large
capacitive loads, and investigate the effect on the ares of
a VLSI] layout when drivers are introduced along many
long wires in the layout. We present s layout for which
the introduction of drivers along long wires squarss the
area of the lJayout; we show, however, that the increase in
area is never greater than this, if the driver can be laid
out in & square region. We also show an ares-time trade-
off for a single long wire by which we can reduce the area
of its driver to 8((7).g <1. from 8(l), if we can tolerate a
delay of 8(1'"7) rather than 8(log I); and we obtain tight
bounds on the worst-case area increase in general lay-
outs having these drivers, using the Brouwer fixed-point
theorem. We also derive results for the case when drivers
are embedded in rectangles that are nol square. Finally,
we extend the use of our upper-bound technique to other
layout problems.

1. Introduction

The presence of long wires in 8 VLSI layout slows
down the performance of the circuit due to signal propa-
gation delays. This effect can be minimized by using &
driver at the head of each long wire. However, the
drivers themselves occupy space, and the question
arises whether drivers can be introduced efliciently
when there are manyv lonz wires in a lavout, For exam-
ple. consider Lhe simple case of a long bidirectional wire.
A driver needs to be introduced at each end of the wire,
and tbe presence of each driver increases the length
along which the otber driver has to drive the signal. A
large network with many long wires may contain several
instances of mutual interactions of this and other kinds,
and it is not clear whether drivers can be introduced in
an ares-eflicient manner under these conditions (or even
whether they can be introduced at all). This is the prob-
lem we anaiyze in this paper.

The question of deiays aiong long wires is a compiex
one, and no consensus has been reached as yet on the
correct way of modeling this. Some papers (e.g., [BKBO],
[v80]) assume that a constant propagation delay models
the current situation quite well. But it is generally
accepted that this is not a good approximation of the
physical situation. Mead and Conway [MC80] and
Chazelle and Monier [CMB1] suggest that a wire is basi-
cally s distributed RC-network, and the delay thus is pro-
portional to the square of its length. This delay can be
reduced to a linear delay by using repeaters along the
wire. Linear delay is also the asymptotic limit imposed
by the speed of light. Thompson [T80, T81] suggests that

This research was supported in part by NBF under Gramt MCS-
6203803, and in part by DARPA under ONR NOOO) ¢-88-K-0049.

the resistance of a long wire can be ignored and that the
wire can be viewed as a large capacitive load whose capa-
cilance is proportional to its length. This view is also
presented in [MR79) and is supported by Bilardi, Pracchi,
and Preparata [BPP81] who solved the diffusion equation
for s long wire and suggest that, for predicted future
guins in technology. the wire can, indeed. be modeled as
@ purely capacitive load. For such a load, it is well-known
that the delay can be reduced to the logarithm of the
capacitance by introducing s sequence of drivers which
occupies ares proportional to the capacitance [MC8C].

In this paper, we assume that the wire can be
modeled as a purely capacitive load. We address the fol-
lowing question that arises naturally in this context, but
has not been examined before: What is the effect on the
area of a layout whan drivers are introduced fo speed up
signals along meny long wires? We justify our
capacitive-model assumption by appealing to the simula-
tion results of [BPP81]. Furtber, if a long wire must,
indeed, be modeled as an RC-network, then the introduc-
tion of repeaters to reduce the delay will increase the
area only by a constant factor. This is because such
repeaters are of constant size, and a long wire may thus
be modeled as 8 sequence of short wires connected by
nodes of fixed size. In the cepacitive model, on the other
band, the area occupied by a driver increases with the
length of the wire it drives, and thus, drivers cannot be
abstracted as constant-size nodes. In fact, we show that
there can be definite area penalties when there are
many drivers in a layout. Qur results are of particular
significance for upper-bounds in area-time products for
VLS!] layouts, since most previously derived bounds have
ignored the deley along long wires. Either linear delay
should be assumed along connecting wires (this would
represent either “RC" wires with repeaters, or “capaci-
tive” wires without drivers). or the area expansion
caused by drivers for capacitive wires should be taken
into consideration; alternatively, some intermediate
design for drivers can be used from the spectrum of
designs we suggest in section 4. But upper-bounds
derived using constant delay along all wires, and no area
expansion for drivers do not mode! the physical situation
well.

For a wire of length I, the most familiar type of
driver occupies 8(l) ares while reducing the delay from
o(l) to 8(log !). In this paper, we present s layout for
which the introduction of such drivers along long wires
sguarss the area of the layout; we show, however, that
the increase in area is never greater than this, if the
driver can be laid out in a squars region. We prove the
upper-bound by a new technique that uses a fixed-point
theorem; we bslieve the proof technique is important in
its own right. We also show an sres-time trade-off for a
single long wire by which we can reduce the area of its
driver to 8(1%),g <1. trom 8(1), if we can tolerate a delay
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of 8(2!"*) rather than B(log {); and we obtain bounds on
the worst-case area incresse in general layouts heving
these drivers, again using the Brouwer fixed-point
theorem. We also examine Lhe case when drivers cannot
be laid out efliciently in square regions.

The paper is organized as follows: Section 2 presents
the VLS| model we use. In section 3 we present a graph
on n? vertices with 8{n ) long wires for which the layout
ares sxpands from 6(n®) to @(n?) after introducing
drivers for the long wires. Section 4 examines the ares-
time trade-off for drivers. and sections 5 and 8 use the
Brouwer fized-point theorem to find general tight upper-
bounds for the area expansion causcd by drivers in arbi-
trary layouts. Section 7 generalizes the technique to
other layout problems., and section B concludes the
paper with a review and some open questions.

2. The Model

We assume s layout model similar to the one used
by Thompson[T80} and Leiserson[L80). The VLS] circuit is
abstrected as a graph having bounded vertex degree and
it is embedded on a planar grid subject to the following
constraints:

1) Eech vertex represents a processing element and
occupies a constant area. Distinct vertices of the graph
are embedded ot distinet grid intersection points.

2) Edges have unit width and are routed along grid lines
with the restriction that no two edges touch one anotbher
excep!l possibiy when crossing perpendicular to each
other. Also, an edge cannot be routed over a vertex it
does 7ot connect. Each edge represents a tonnecting
wire. We will refer to an edge as & unre or a line.

We assume thet we are given such a layout for a cir-
cuit with certain edges identified as long wires. Note that
the number and positions of long wires is layout-
dependent, and the same circuit may bave another lay-
out wmith shorter lines. We shall not go into the question
of derigning layouts to minimize the presence of long
lines. Some work bas been done on minimizing the length
of the fongest line in a layout for certain classes of
graphs ([PRS8:), [RSB1], [BL82]), but, a3 we mention in
section 8, the minimization eriterion in our case is a
different one, which has not been studied so far. We will,
therefore, assume that the layout is given, and we wil]
introduce drivers wbere needed by making local szpan-
gions without distorting the lsyout configuration.

A long wire is @ bidirectiona! element electrically,
but i, & VLS] circuit, it usually connects active unidirec-
tional! devices, so that the signal always originates st one
fixed end of the wire (vhich we will call the Asad of the
wire) and propagsates towards the other end. For the rest
of this paper, we assume that wires come with the direc-
tion of signal flow specified. and that bidirectional wires
are deromposed (conceptually) as two edges connecting
the same vertices, but having opposite signal flow.

As mentioned in tbe introduction, we sssume that
the line is pursly capacitive, and the delay thus grows
lineariy with I, the length of the line. This delay can be
reduced by using drivers to speed up the signal. Many
different types of driver designs are possible, and they
differ in the signal speed-up they offer, and the area they
occupy. We analyze these time-space trade-offs in sec-
tion 4. For the present, we assume the most familiar
type of driver, which reduces the delay to ®{log i) at the
expense of occupying §(1) area. We also assume that the
driver can be laid out in & square of side kVT, for some
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wire w

figure 1
A driver introduced along
part of e long wire

constant k. This is not strictly true, since the driver has
8 transistor whose channel is (1) wide, and hence it is
more naturally lsid out in & long. narrow rectangle.
Clever design methods. however, such as the use of 8
gig-zag poly line for the gate in MOS technology. can be
used to overcome this problemn. We have more to say on
this point in section 6.
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figure 2
Introducing a driver by making
cuts in a layout

Civen a long line w of length I in & layout, an srea-
eflicient way to achieve signal speed-up would be to
introduce a long skinny driver (Lthe natural design) slong
s portion of w (see figure 1). However, ViS] layouts are
dense in general, and the above scheme will not work if
there are vertical lines present in this region. In such a
case, we make two “cuts” or “slices” (a notion introduced
by Leiserson [L80]) at the head A of w, each kv] wide,
one sach in the vertical and horizonta! directions (figure
2). Any edge that is broken by the cut is then joined
across the cut by a straght line. This forms a square
region of k V] side at A with no sedges or vertices from
the original layout. We introduce the driver in this
region. Thiz construction does not disturd the layout
configurstion. and introduces the driver by loccal expan-
sions. It increases the length of each side of the layout
by the size of the cutl. /t also tncreases by kVI. the
length of each horisontal wire in the layout which inter-
sscts the vertical line drawn tArough A end each verfical
wire that intersects the homzontol line drawn through A
These other wires will now require larger drivers than the
ones they would have nesded in the absence of a driver
st A. The introduction of drivers st these other lines will,
in turn, affect the lengths of more lines. and could even
increase the length of w so that the ares of its driver
would have to be revised upward.




We are now in a position to state the problem we are
going to analyze:

Given a VLS/ layout unth certain edges specified as
long uires, what is ftAe increase in the area of the layout
tn the worst case when drivers ars used (o spesd up 8ig-
nals along these long wires?

3. A Vorst-case Example

Congider the graph layout of figure 3. It consists of
@ square mesh on n? vertices (assume n even), together
with /2 long horizontal lines w,, wp, " * * ,wpn e I we
assume the vertices to be laid out in an nxn grid (there
will be a slight expansion needed to accommodate the
long wires along grid lines. but we can ignore this for
“order-of-magnitude” arguments) and let m= n /2, then
w, runs from vertex {(m.1) to vertex (n,1), wp runs from
(m=-12) to (n-1,2),---. and w,, runs from (1.m) to
(m +1.m). The signal goes from left to right along each of
these of these lines.

(in) n.n)

4

’ >

>
)
(1.1) >}n.l)
n=g
figure 3

A grapb layout with 8(n?) area and 8(n) iong lines
of length 8(n) each

We consider now the increase in Lthe area of the lay-
out when we introduce drivers on wires w, to w,,. Notice
that the presence of the underlying square-mesh struc-
ture forces us to meke cuts to introduce the drivers.
Since n/2 drivers are introduced diagonally, and the
length of each wire is O(n) to start with, the len’th of
each ride of the layout increases to st least 8(n n'/?), so
that the area of the layout increases from 6(nf) to at
least 8(n?). However, this does not account for the
increese in the lengthe of some wires due to the intro-
duction of drivers on other wires. We now derive a non-
linear recurrence relation Lhat accounts for this effect,
and use it 1o bound Lhe incrsase in ares as 8(n¢).

Since the signal travels from lefl to right along each
of the long wires, the length of w, is not affected by the
introducticn of drivers st the heads of the other long
wires. In general, the length of w, increases by exactly
the leagths of the drivers introduced on w, to w, ;. If we
jet d, be the width of each side of the driver for wire w,,
then we have

d'gmlll
dyzk (M“l)".

“Ck (m Oild,)".
o1

[

Let 5, be a new variable defined by

s, sm+d,
Sg=m +d,¢+d,

q-nttd,
FET]
gty
e tk(ma$a)ve
1
=8 vk Vs,

For convenience, define sg=m. Note that s,+i gives the
width of the layout from the rightmost end to the left
ond of the ith driver, and s, +m gives the length of each
side of the layout after the introduction of drivers on all
of the long wires. We find bounds for this value below:

lemma: There exist constants &, and kp such that for
any integer m >0,
kpitem 2 3, 2 k,i%m fori 2V .

Proof We prove both sides of the inequality by induction.

Assume sk it+m
Since sp=m, the assumption holds for s for all values of
&,. Assume the result holds up to s,. Then,

811 =8, +k V5,
2k 12em +k(k i%+m )2
Sk,item +kk MY
sk,(i+1)2¢m +(kk }/2 -2k, )ik,

Hence, 5, @m+k, (i+1)® for &,<(k%/4) and for
sufficiently large i. For k ,£(k%/ 9), the result holds for
all values of i. So we bave s,2(k?/ 8)i2+m for all 120.

Assume 5;skgi’+m
Assume the result holds up to &,. Then,

.(.]'l"kvi_‘
€kqiem +k(kgitem)V/?
‘k.i'ﬂn:k((k.’l)i )/2 tor izm /2
sko(i+1)24m ~(2k gk (ko+ 1)V 4} -k
<kg(i+1)P+m for kex(k?/8) (1+Vie 16/ k?).

Hence we bave g,<(k%/8)(14V1+167kY)i%em for
t2Vm. For {=Vm , we need s ~skym+m, and since

svm <mekVm Vm+2k(I+kJm ., the inequality holds
when kexk V1+2k +2k°.
Therefore, s;skyi®¢m for all {2V when

kgemnax( (k% BY(V1+16/kY). kVIegk +2kT ).

The required result foliows from combining the two
inequalities.e

Thus, the width of the layout after tne introduction
of drivers, which is given by s, +m. is 8(m?)=0(n?) end
the area thus grows Lo exactly 8(n*), the square of the
initial ares. The widih of Lhe driver for u, is given by:

d,zk(m +S:'¢,)V'
=k Vs, ™
=0(1 ). for savVm .

Hence there are @(n) drivers of width @(n) in this lay-
out. Note aiso Lthat many of the short wires have their




lengths greatly increased by the introduction of drivers
for wires w, to wy. For instance, the wire connecting the
vertex (1,n) to the vertex (2,n) has its length increased
from 1 grid unit to 8(n) grid units. We may now want to
introduce drivers for these wires, too, but since we &
deriving e lower bound in this section, we will ignore tLhis
point.

The layout of figure 3 is simple in the sense that it
has no mutual interaction: there do not exist wires wy
and w; such that the driver of u, increases the length of
w, and the driver of w, increases the length of w,. In
general, we could have a more complex pattern of long
wires in which such mutua! interactions occur in many
weys. However, in section 8, we present the surprising
result that the penalty in ares never becomes worse
than the square of the original area

4. Ares-Delay Trade-off for a Driver of a Long Wire

When a large cespacitive load ¢, is driven by an
inverter with resistance r,, the delay is the product ric;
(note that v, bhere refers to an "sverage” resistance,
since the resistance and the delay vary depending on
whether the input is low or high. In what follows, we
make some other simplifications of the physical situa-
tion, but these will affect the constant factor only. so
that tae “order-of-magnitude” results hold). If the resis-
tance and capacitance of a minimum-size inverter are #;
and ¢, respectively, then the basic unit of delay is ¢t =r,c;
and this represents the delay when a minimum-size
inverter drives the gate of another minimum-size
inverter. In terms of this unit t, & minimum-size inverter
driving a joad capacitance c; csuses s delay of c 2/ ¢.
and this grows linearly with the load capacitance. When
the load is a long wire, this delay grows linearly with I,
the length of the wire, assumning the width and thickness
of the wire remain fixed.

..p.__-.____.D‘-

£35S, C ce=fyfece
ri=r/ S re=r/ S e

channel width of inv. 1 = f,- (minimum channel width)
channel width of inv. 2 = £, (channel width of inv. 1)

figure 4

Delay on one stage of a driver sequence

T> reduce the delay to more scceptable levels, we
use s sequence of drivers with successively wider chan-
nels to drive the load capacitance. To understand why
this scheme works, consider the delay when one inverter
with channel width f, times the minimum-size inverter
drives the gate of another inverter whose channel is fg
times wider than that of the driving inverter (ses figure
4). The rssistance of the first inverter is r;/ f, and the
capacitance of the second inverter is f ,f ¢, and hence
the delay of this stage is f4f. If we now have n inverter
stages, starting with 8 minimum-size inverte: as the first
stage, a driver with a very wide channel as the nth stage
to drive ¢;, and intermediate stages with successively
wider channels, than the tota) delay is the sum of the
delsy through the n stages. Let f, be tbe ratio of the
channel width of the ¢+1st inverter to that of the (th

inverter for {=1.2, - - - m =1, and let £, be the ratio of c;
Lo the capacitance c,, of the last driver (figure 5).

channe] width

(normalized) 1

b 5 Jafle  fan

(cap. = ¢cy) 1&';
figure 5

A sequence of drivers for load ¢,

We have £,fs" ‘- Sa=c1/ ¢ and the total delay through
the n stagesis To(f ¢S+ - - - +f,)t. I we fix each f,
to be equal to a constant f, then the delay
T=log,(c;/c;). and this is the minimum delay we can
obtain up to s constant (see [MCBO0)). However, the areca
occupied by the drivers in this case grows linearly with
€1, as we show below, and it may be desirable to reduce
this area pensity at the expense of a slightly greater
delay. We show below that such s space-delay trade-of!
exists. Some of these results are implicit in the work of
Lin and Linholm [LL75] and Jueger[J75].

Let the area occupied by a minimum-size inverter
be A,. Then. an inverter whose channel is f times as
wide as 8 minimum-gsize inverter requires an ares of
about fA,. Hence the total area A occupied by the
ssquence of drivers with logarithmic delay is given by

A=A (14f4f% - 47
=8(f")
39(5;).

Now, consider the general sequence of drivers described
above. The ares occupied in this case is

A=A (10 40 ot -t fife  Iacr)

Assumc that we can tolerate s delay of 8(17).0<g <!
(=8((c;)¥)). Since the area of the last driver dominates
the above expression for area, we look for the smallest
size for the last driver which will still result in a delay of
not more than 6(I?). Since c,®=c;/ f.. and the delay
through the last stage is fo!. the best we can do is to set
J+*6(17), and this results in an area of 8(1'¥) for :,.
Now, the question is whether we can sccommodatle the
olher drivers to occupy not more than &(1-%) area and
cause no greater than 8(17) delay. The answer Lo this is
‘yes’, and in fact, we can accomplish this in many ways.
We describe one method of doing this, which minimizes
the constant on the delay term. For this. we make ¢,
the load so that we need to drive a load of O(('°?). We
know from the design for drivers with logarithmic delsy,
that this can be done w.th 8{(1-g)log ) delay and arca
O(1'*) using O((log £,/ £;)) stages. Hence the tolai arca
for the n stages remains 8(1'“?) while the delay is incre-
mented by only a 8(log {) term and hence remains 8(1').

We have thus shown the following interesting arca-
delay trade-off for the driver of a single long wire of
length {: For eny g.0<g <1, we can design 8 driver with
delay 8(I?) ond erea-delay product B(l). Jf. Aowever, ue
need 2o vreduce the daloy to O(logl). which is the
minimum delay schisvable, then the srea-deloy product
goes up to O(l-log 1).




5. An Upper-Bound Proof Technique Using Fixed-Points

Let F(z,.2,. - -
defined by

‘\2m) be & mapping from R™ to R™

Fizy o ap)efy(z @) w2 Em))

where esch f, is a mapping from R™ to R Then, &
Jized ~point of F is 8 vector (2. * - - 5m }ER™ such that

F(z, - xn)=(z, - X)L,
!((3;- S Em )EX, fOP iYL, M.

The toUovrmg are some well-known resuits from real
analysis (see e.g.. Bartie [B64]).

Brouwer Fized-Point Theorem let B>0, and let D be the
hypersphere defined by U = {z€R™ |z |<5{. Then, any
contiruous function with domain D and range contsined
in D has a fixed-point.

Fact } Any real continuous function on a bounded closed
set in R™ has & maximum and & minimum.

Pact 2 For B>0, the hypersphere defined by D =
{zcR™ |z €5 is a closed bounded set.

We will need the following two definitions:

Definition 1 Let f(z,. - - .z, ) be 8 continuous mepping
from R™ to R. and iet g(z) be the mapping from R* to R*
such that for each R20, p(R) gives the maximum abso-
iute value of f in the closed bypersphere of radius
R~P . We call g the behavizr function of f . Note that by
facts ! and 2, p always exists.

Definition 2 A function g(z) from R* to R* is sudlinear
in 2 if there exists an r20 such that, for all 227, we have
g(x)sz. We callr a dreakpoint of the tunction g.

We now prove

Theorem 1: Let F be a continuous mapping from R™ to
R™ given by

F(zy a2z zw) o Sml(Z 3,
and for each f,, Jet the behavior function g, be sublinear
in z, with breakpoint v,. Then,

1) the tunction F has s fixed-point within a hypersphere
of radius RVm , where R=m‘n r.. and

2) each component of the fixed-point is no greater than
R in magnitude.

Proof To prove 1), it is sufficient, from Brouwer’s
theorem, to prove that the range of F is contained on or
within the prescribed hypersphere when the domain is
similarly constrained. For this, it is sufficient to prove
that, for esch ¢, g,(R)SR. since this will guarantee that
the Euclidean length of the range is no greater thean
~mR But this follows immediately from definition 2,
since the functions g, are sublinear with breakpoints r,
and for sach{.rER.

Note that, by requiring g(R)sR for esch {, we are
constraining the range to lie within a closed hypercube
inscribed within the hypersphere of the domain. This
sdditional restriction ensures that each component of
the fixed-point is at most R in magnitude, and this
proves 2), and the theorem s

In our application to layout probiems, and in partic-
ular, to the probiem of drivers, we will be interested in &
special class of functions f.(2,, - - 8, ) R®<R defined

by

Julxy. o )mk (G4 2}‘\1'1"- when “t“,: 6yz, )20,
- =)

=0, otherwise, (1)

where k& and [ are positive constants, O<p<l. and
OsdysX. for some positive constant K. Usually, §,, is
sither 0 or 1. For such functions, we bave the following
corollary to Theoram 1.

Corullary 1.1: Let F be & mapping from R™ to R® given
by
Flz, - 2n)e(fyle)  Em) - Smiz - za))

where the f's are given by (1). Tben F has s fixed-point,
each component of which is po:mve .nd has magnitude
no rccter where
Re=max(k,(1,), .&.(l.)’.k.,,m”“"’) the &,'s
being politive eomunu independent of m.

Proof }t is easy to prove that each £ has behsvior func-
tion g((z )3‘(3. - &) Let r¢=(a solution of the equs-

tion k(l‘+ 64z ¥ =z). Then, since p<1. g, is sublinear

with bnnkpoim. r,. Hence from Theorern 1, each com-
ponent of a fixed-point of F has magnitude no more than
R, where Rtm‘n r,.

Case) Assume thal each ‘\‘(2 éy7,). Then we require
e‘(ﬁcu Y(r,V=r,, for some constent ¢,€£2k, or,

r‘sr‘(LJ »/(-9), where c',=(c,)’**?), The maximum

possxblt vllue for erch 4, is X. Hence, each coordinate
of the fixed-point is guaranieed to have a value no
grester than Rsk, . ,m?/("P) for some constant &,.,
(that depends on & and X).

Case2 There exist {'s such that each l.>(§6,,r,

Let 4 be the maximum value of such ' s Then
6yr = O(L). snd hence we need v =k, iP tor some con-
=

stant k,<2k. Hence, in this case, each cosrdinate of the
fixed-point is gusranteed to have 8 valuc st most
R=max(k Pk, ., mP (' ?),

By combining the two cases, the required result {ol-
lows. Clearly, since the range of F lies entirely in the
positive oribant, sach component of the fixed-point must
be positives

Corollary 1.2: If at most v of the §; can be nonzero for
sach function f, in (1), then each eompomnl of  fixed-
point of F is positive and hn magnitude no greater than
R.where Remax (k{8, - kpll kg o i??7 0P}

Prool lmmediate from the proof of Corollary 1.1

6. General Upper Bounds for Ares Penailty in lLayouls
with Drivers

We initiafly assume thet a driver for & wire of length
i can be embedded in & squere of side ki® (ps1/2)
When ps=3/2 this corresponds to the standard driver
with logerithmic delay. Since we are now proving upper
bounds, we will sssume all wires in the layout Lo be long
This may bs s necessary assumption, since & wire that




was short initially may become long due to the introduc-
tion of érivers on other wires (as we saw in gection 3).

Now. sssume that the layout is in an nin' grid
(nxn'). Hence the area of the Jayout before introducing
drivers is Axnn’'. We note the following points sbout long
lines and their drivers in this layout:

1) If each long line is ! units long. then there are at most
24/ long lines in the layout.

'
A

- 4 3 >-

A

%

figure 6
The position of a cut for a drniver

2) The cut perpendicular to the direction of the wire 1s
siweys made with the position of the head fixed. and on
the side the wire extends (igure €;. Thus, if there are
two wires with the.r heads along the same vertical {(or
horizental) line end with oprosite signal flow, their
drivers do nol overiap the same horizonial {or vertical)
regior. Since this simplfication at most doubles the
effect of drivers at any singie vertical or horizontal posi-
tion, the “order-of-magnitude” results remain
unaflected. The cut in the direction paralle] to the wire
is made on the side of the wire which lies on a clockwise
rotation from the wire (see again figure 8). With this
convention. we can introduce drivers on all four lines at
s vertex, if needed.

fw,
| w,
|- >-- w,
! >=
|
|
|

Wy

> T

figure 7

The effect of long wires with their with heads aligned

3) Consider the situation in figure 7. All of the lines
u, W, w;.w, have their heads along the verlical line
through w;. and the signal flow on each wire is such that
8 cut is required immediately to the right of w;, to
sccommodate the driver for ssch wire. In such s case,
the wmdth of the widest cut is sufflicient to include all

drivers. A similar resull bolds for horizontal cuts. Note
thet this means that we need make at most two cutz at
each vertical and horizontal grid position (the factor of
two arires from the convention we adopted in observa-
tios, 2 above, regarding the position cf the cut). Thus, at
most 2(nen’) cuts will be nesded to sccommodate
drivers in any nxn’ layout. The widtAs of the cuts need
to be determined, and we bound these values later in
this section to obtain tight upper-bound:s on the worst-
case srea expansion ctaused by the introduction of
drivers.

4) If a wire bends (i.c.. goes both vertical and borizontal),
the analysis still holds. We assume, however, that s wire
bends at most » constant number of times, and hence a
wire can bave length no more than Kn, for some con-
stant X.

5) If & wire is { grid units long. then its length is affected
by at most 2/ other drivers. This worst case bappens
when there are the heads of two long wires (either verti-
cal or horizontal) at each of the ! -1 inner grid positions
of w, and the signal flow on these wires is directed so
thet cuts are required on both sides of the grid position;
and there is 8 long wire at each end grid position of u,
and each of these wires requires a cut on the side
affecting the length of wire w. This situation is shown in

figure 8

LN
v
!

:; Dl

-<

-<

length of wire w = 3 units

figure 8
Worst-case eflect of other drivers on the length of o wire w
initially & grid units long

Consider & general layout with m long wires
Wy Wp - Ay, Of initial lengths {lg - - . As men-
tioned earlier, bidirectional wires are treated as two
separate wires, with opposite signal flow. Let the driver
for the {th wire bc embedded in a square of side d,. We
need to solve for the d,'s, £=1.2, - - ,m. For this, we
note that the length of the ith wire. 4, is increased to a
new value {,' by the presence of drivers on some of the
other wires, i.e., we have

Ley+ $ogd, =1 om,
L))

where §,, is nonzero if the driver of wire w; increases the
length of w,. and is D otherwise. Since we allow a wire to
bend s constant number of times, a single cul can
expand a wire by up to A" times the width of the cut. and
hence §,; is » nonnegative integer having value no morc
than X. Now, the driver of w, will increase the lengths of
all horizontal wires that intersect the vertical lLine
through the bead of w,, and all vertical wires that inter-




sect the horizontal line through the head of w, (see
figure 9).

Wy
=
bt
>
We
N SR
W,

.‘.,‘1.‘.,‘1.6"=.1.6"=°.6.’=0. . )
The signal flow can be in either direction in
each of wires w, tow,.

figure 9
Determining 6

Hence e simple preprocessing of the layout gives the
values for §y.8.5=1, - - - .m. Note that we can treat both
horizontal and vertical wires uniformly because of our
assumption that the driver occupies & square region.
lLater, we will need to modify our equations when we con-
sider drivers embedded in rectangles theat are not
square. The value for each d, is given by

&=k (L)
=k(g¢’ 8yd; ). @
L2

Let us rewrite equation (2) by defining d, in ® func-
tional form, and extending its domain to R™ as follows:

d=s,(d, - .d,,)sk(l.+ﬁ6‘,d,)’. =1, - -, m, when
i

i+ S 64d,)50.
=0 otherwise. =
let F(d,. ' - - .dn) be the mapping from R™ to R™ defined
by
F(dy. - - dm)=(fy(dy. - udm). o fm(d, o ).

Then the solutions of the system of equations (2)
correspond exactly to the fixed points of the function F,
i.e.. tc the values of d;. ' - - &, such that

F(d,. - du)=(d, - dey)

From the results of the previous section, we can now
immediately derive upper bounds on the width of each
driver. We first determine this for the case when the lay-
out is in a square nxn grid. We later show that this is the
worst case.

Assume that each L is { units long, and hence, from
observation 5, up to 2 of the §, can be nonzero for sach
€. Her.ce, by Corollary 1.2, each component of the fixed-
point bas magnitude no greater than R, where

Remax(k 12, - - kg l? kg (2007 07))
go(p/( -’))_

Hence the width of any driver in this layout will never

become greater than ci?/('~?) for some constant c. The
mazximum width occurs in the case when {=£8(n) (since
this is the maximum value for [, by observation 4), and
this width is bounded by en?/{!"?). The worst-case over p
occurs when p=1/2 and in this case the width is O(n).
But we know from the example of ssction 3 that a driver
can indeed becomne as wide as 8(n ). Hence this bound is
tight. There can be up to 8(n) wires in the layout (by
observation 1), and hence we may have to make &(n)
cuts in each of the two directions, so that the layout area
will increase from A=nf to 8(n¢)=8(4%). This upper
bound in the increase in ares is again matched by the
lower bound of section 3. For p<1/2, the area increases
to O((n¥ (1-2))2)= o4 1/ (1-P)),

I 1=9(n”).0<r <], then the width of each driver is
O(n"/U-?)) put by observation 1, there can be up to
O(n*T) such lines in the layout. We thus have more than
6(n ) drivers in this case; however, by observation 3, if we
make two cuts of width 8(n") at each vertical and hor-
izontal grid position where drivers are needed (there are
at most 4n such cuts), then we can sccommodate all
drivers. Each side of the layout will expand to at rnost
o(nte/ ("”g and the area grows to
O(nt 9/ (1p))=g(A1*/ (1P} Since <1, this increase is
less than the increase for the case whenrx1.

I we had a mixture of wires of varying length. the
width expansion is still O(n'/(?)) by the same argu-
ment. in the worst case, we may have to make a cut for
a driver at each side of each vertical and horizontal grid
position. There are 4n such vertical and horizonta! grid
positions, and the worst case occurs when 8(n) cuts of
width @(n#/(-?)) are required in each of the two direc-
tions. We have thus proved the foliowing theorem:

Theorem 2 Mf the driver of a long wire of length I can be
embedded in a square region of side O(i”).0<ps1/2,
then the area A of any VLS] layout embedded on a square
grid increases to at most O(A (1-?)) with the introduc-
tion of such drivers along long wires.

We have already shown that this bound is tight when
P=1/2. We now show that this holds for any p<1/2.

Lemma: If the driver of & long wire of length ! can be
embedded in & square region of side 8(!®).0<psi/2
then there exists s VLS] layout whose area increases
from A to 01(A'/{!-?)) when such drivers are introduced
along long wires.

Proof We use, once again, tbhe layout of figure 3. The
recurrence relation for s, is now

s=s . +k(s, ).

with sg=m=n/2. As before, s,+m gives the width of
each side of the layout after the introduction of drivers.
We prove by induction that 5, = OQ(m /-9,

Assume s, 2 ¢ iV ("Plem.
The result bolds for sp for all values of ¢. Assume that
the result hoids up to s,.,. Then.

=8 +ki{s, )
2c (=10 Plem 4k (c(t=1)/ O Plem )
e (i =10 0Plem 4kecP(i-1)p/ 0P
-cil/(l-')((l-unl/ﬂ-n
#(k/(c"'\'?)(l-ll()"“‘”)*m
BtV P11/ PPN Yo ((k 7V P)=1)/5)om.




. — — - —— -

Since pg1/2, we bave p/(l-p)si, and hence
(1-1/7i)»70-2)x(1-1/4). Hence,

8,200 1-1/4)(1+((k /' ?)=1)/t)em
2ci/0-Plem when i22 and cx(k / 3)}/11-9),

We also need s, =m+kmPace+m. Hence,
s2eiV 0 Plem for all 1 and for
csmin{ (k/3)/0?), km? ). Set m =1 in the min expres-
sion to obtain a value for ¢ that is independent of m.

Tne width of each side of this layout after the intro-
duction of drivers is sg +m =0(m 1/ 03))=Q(n ¥/ 19)), and
the required result for the area increase follows.s

Next, we consider the case when the driver is
embedded in & rectangle that is not square. In this case,
we show below that, in the worst case, the longer side of
the driver dominates the summation in equation (2) by
proving the foliowing theorermn:

Theorem 3: Assume that the driver for wire uy of length
4 can be embedded in & rectangle that bas length
a,=k,lf along ‘be direction of the wire and width b =k,lf
ir. the perpendicular direction. If 0<s.t<l, then the
worsi-case increase in the area 4 of a VLS! jayout on a
squarc grid is max(8(A4}/ (1)) 8(41/0-%))) when such
drivers are introduced at the heads of long wires.

Proof Since the driver is no longer symmetrical in the
two direclions, we must now modify the equations for the
Ji's to: ’

8,21 (2, ....0n.b,....0n)zk ,(l..+’§l(cwa,+6wb,))'

b=fnla,.....an.b l-"'-bm)=kz("|"i (6)u¢, +6Nb, N (3)
-]

where the domains of £, and f ere exitended to R®* as
in the previous case. The &,;'s and Lhe 85;'s are deter-
m.ned as before (see figure 9‘3 except that the first sub-
script of } refers to lines paralle! to wire i, and that of 2
refers to lines perpendicular to it. Thus, in figure 9, we
have the following values: §,4;%1, 8g4,=0, §,y,=0. 8a),=1,
6c;=1, 83,;=0, and the other values are all zeros. We
now rcquire tbe fixed-point of the function

Flaj...omd i dm)=(f e Sam S el gz S em)

(where the arguments on each f; on the right hand side
are g,. ... ,Gm.b;. . ... .b,.) Again, if each long wire is
8(n") long to start with, we obtain from Corollary 1.2,
the fo.lowing upper-bound for the width of each driver:

R=mex(0(n™/1179)),8(n"/ (1-1)))
=8(n"?/ (1-9)), where p =max(s,t).

As belore, the worst case occurs when r=i, and tbis
gives us a maximum width of O(n?/(1-?)) for each driver
along its longer side. We still may nced 8(n) cuts of this
widlh in each of the two directions to introduce the
drivers., and this gives us the required result for the
meximurn incresase in area.s

This bound is once again tight, and the lower bound
can be proved using the layout of figure 3 with n/ 2 verti-
cal long lines added on with their heads along a diagonal.
Note that in this case, s or § mey be grester than 1/2,
and so the area biow-up will be more than the square of
the original layout. In particular, if ps}, the above bound
ceases to hold. (This will be the case for a long driver
whose area is proportional to the length of the wire it

drives, i.¢., the natural design for & stendard driver.) In
this case, the convergence of the system of equations (3)
for specific lsyouts depends on the constant k,. If k21,
then, clearly, drivers cannot be introduced in any layout
conlaining e long bidirectional wire. In fact, for any fixed
value for k,, we can design layouts in whic}, drivers can-
not be introduced. as we show in the following theorem.

Theorem 4: If the driver of a wire of iehgth { must be
embedded in a rectang!e whose length is kl, for some
constant k, then there exist layouts in which drivers can-
not be introduced on all long wires.

(in ~q(n.n)
A >§
¢- ha >Ja>----4
(1.1)é-— il i n.1)
n=s
figure 10

A layout to prove Theorem 4

Proof Consider the graph of figure 10. It is the same as
the one in figure 3. except that all long wires are b.direc-
tional. We will prove that, for n22/k, drivers cannot be
introduced on all long lines in this iayout. As before, let
us write out the equation for each d,. For instance,

LTI IO IPURERY B
dozk (lg¢d +dy, 2+ - - - +dy).

(where m=(n/2)), end the equstions for the other d,'s
can be written out by inspection. Since this is 8 system
of linear squetions, this can be rewritten in matrix form
as

Ad=kl,

where 4 is an nxn matrix of the coeflicients of the 4, °'s. {
is & vector of the L's, and d is a vect he d.'s We
need a solution of this system of eguati. vhe ' od
nonnegative. For this, we note that the niairix / n
M-matrix when n<(2/k), and from the theory o’ «
matrices, it is simple Lo prove that the system o:

tions bas a solution with all components of d nonnega..ve
only whenn< 2/ k [BP78).

For psrticular layouts, we may still obtain conver-
gence. but with a large area penalty. For example, the
layout of section 3 (which has m> mutusl interaction
between drivers and wires) will require ares Q((1+&)™)
after the introduction of such drivers. This result s
oasily verified from Lhe recurrence relstion for s, which.
in this case, is s, (1+k)s,_,.

We pointed out in section 4 that Lthe dniver has a last
stage with a very wide channe! that dominates the area
of the driver Thus such a driver will, indeed. de very
long. and have conrtant width. The introduction of such
e driver in the circuit can be disastrous in terms of area
blow-up (if not impossibie). However. it should be poss:




bie to redesign the channel to occupy a more square
regior, possitly with some penslty in the total area
required. Thus, if the driver originally required area
©8(17), then this design might result in & driver of length
8(!*) and width O(l') with ©(1"**)>8(i'), but with
0<s.t<1. Ir such a case, drivers can always be intro-
duced in any lsyout of long wires with a polynomial blow-
up in area given by Theorem 3 (tbe degree of this polyno-
mial will be very igh if 3 or t is close to 1). In practice,
we expect driver designs in square areas with no extra
arca penalty, and this results in the squaring of the area
in the worst case.

Finally, we look into the case of a rectangular VLS]
layout in an nxn' grid (nxn'). As before, if each long
wire is | units long., then the width of any driver is
O{IP/11-#)} by Corollary 1.2. By observation 1, the
number of wires in the layout is O(nn'/1)=0(A/1'),
where A 1s the area of the layout before the introduction
of drivers } I=0(n’), then we may have to make 2n
cuts along the longer side, increasing its length to
O(n tP/0-P)) and similarly, 2n' cuts monf the shorter
side, increasing its length to O(n {?/(1-?)) Hence the
area increases frori nn' to O(nn' I8/ 0-3))z p(4)/(1-9)),
If 1=Q(n’'}, then, since the number of wires in the layout
is O(nn /). the number of cuts along the longer side is
alro no greaicr than O(nn'/ 1), so that the length of that
side increases to O((nn /1)IP/0-P)). The increase in
lengtt of the shorter side remains O(n’-1#/(+-?}). Hence
the area increeses to no more than
O((nn' /1) n 1%/ (1-Py= (A U-PY)  sgince 1=0(n) by
observation 4. Henze the worst case area expansion for
rectangular layouts due to the introduction of drivers is
no greater than that for square ones

To summarize, we have shown that

1) if the drivers described in section 4 can be embedded
in & sguare reg.on without extra area penalty, then in the
worst case, the area of a V1S! layout grows quadratically
with the introduction of drivers for long wires. This worat
case occurs when drivers require area proportionsl to
the length of the wire they drive (i.e., the standerd
desigr.), when the layout is in an nxn square and has
©/n ) long wires of lengih 8(n) each; and when the intro-
duclicn of drivers requires O(n) cuts of width 8(n ) in the
leyout in each of the two directions.

2) if a driver requires e rectangular embdbedding. then the
worst case increase in arca is ©(4'{'"P)), where the
longer side of a driver rectangle for & wire of length { is
B8(1P) grid units long 1f p21, then there exist layouts for
which drivers cannot be introduced.

7. Application Lo Other Layout Problems

The technique developed in the previous two sec-
tions can be used in other related problems in VLS. Con-
sider the following question:

OGiven s VLS/ loyout, what is the global sffect of making
many local gpu. o' ezrpanviors tha! mutually interact®

The introduction of drivers for long lines i one
example of this problem. Another example is fault-
tcierant computing in VLSI. Von Neumann[vN58] bas
suggested a method of constructing reliable combina-
torial circuitry using components that bave a certain
probabdility of failure. The construction requires replica-
tion of the basic components many times.This method

does not carry over directly to VLS] circuits. since the
connecting wires here are also likely to fail. and the pro-
bability of failure increases with the length of the wire
This probebility can be reduced by increasing the width
It is generally accepted that a fau!t can occur arywhere
on the surface of a silicon wafer with s constant probat.l-
ity, and thus, the occurrence of a feult can be modeled
as a random variable with a Poisson distribution Urder
this model, it can be shown that the probability of fauure
along ® wire can be bounded by any constant ¢>0 by
making the width of the wire proportional to the log of
the length. But if the width is increased after the circu:?
is laid aut (and this is the only logical way, since the the
lengths of wires in the layout cannot be known before the
circuit is laid out), then this will result in increasing the
lengths of other wires, and it is not clear what the giobal
eflect of many such local transformations is

We anslyze the general problemn by assuming that.
in the worst case, a "cut” (as described in section 2)
wovuld be required to make any expansion of one dimen-
sion of an element in the layout. Thus, to introduce »
driver of length ! and breadth b at the head of a wire. we
would require a cut of width ! perpendicular to the wire,
and a cut of width d, parallel to the wire, both et the
heead of the wire, in order to accommmodate the driver 0Of
course, in particular layouts, it may so happen tha: com-
porents are sparse at this region, and 8o the driver can
be introduced as it is without any expans:on of the ley-
out But we are looking at worst-case situations. and we
will thus assume that the introduction o! any element
can be achieved only by making cuts of the appropriate
widths. Similarly, for wide wires in fauli-tolcrant com-
puting. the width of a wire is increased tou by msking a
cut of width w pareliel to the wire.

Our general construction is as follows
0) Lay out the circuit (or assume that the circuit layou:
is given}.
1) Number the spatial elements thst are to be varied
(usually this is 8 subset of the lengths and widths of the
lines, or the dimensions of processing elements or
drivers, but could conceivably inciude other objects) as
V), Vs, - WV insome arbitrary order.
2) For each spatial element v,, identify the other ele-
ments v, that are made to expand by its presence For
each such element, set 8a=k, where v, is made to
expand &k times by the presence of v,.
3) The following system of equetions defines the final
values of the v,'s:

T,

v=f L+ }:‘_d.,v,). i=12,
=

where !, is a constant corresponding to the initia' value
of some linear dimension in the layout. and f, deler-
mines the functional dependence of v, on the v,'s I for
each f,. the behavior funclion p, is sublinear with break-
point r,. then an upper bound for the v,'s is given by &
where

Remaxr,.
‘

Examples:

1) For drivers embedded in & square, v, is the length of

e side of the driver of the iLh linc. and L 1s the length of
the ith line. and f((x)=k 2?, for soine constant k. and
for some p<1.




2) For fault-tolerant computing. v, is the width of the
ith line, L is its length, and f((z)=k In 2, for some con-
stant k.

8. Conclusion

In this paper we have analyzed the effect of intro-
ducing drivers to speed up signals along many long wires
in & VLS] layout. We have shown that, under all but the
most naive of designs for a driver (i.e., the case when
drivers have constant width, and occupy area propor-
tional to the Jength of the wi:-e they drive), these drivers
can be introduced witb only a polynomial increase in
area. With the sdditional assumption that drivers can be
embedded in a square region, we have shown that the
area at most squares by their introduction. All results
bave matching upper- and lower-bounds. We have also
shown an area-delay trade-ofl in the design of drivers,
and we have generalized the upper-bound proof tech-
nique. Some open probiems that remain are:

1) Given s VLS! circuit, is it possible to design a layout
for it so thet the presence of many long wires is "minim-
ized” according to a suitably defined criterion? Some
work has been done on minimizing the length of the long-
est wire in a layoul for certain classes of graphs. [PRSB1]
and [RS81] heve derived bourds for trees and [BLB2)
have extended the result to classes of graphs with
separator nl/2-5 ;50 or vV log*n .k20. Leiserson's lay-
out technique [LB0] minimizes the maximum edgelength
for classes of graphs with separator n”, r>1/2. Some
lower-bound results are presented in Leighton [L81].
However, our resulls on drivers indicate that it is not the
presence of a single long wire that causes the worst-case
increzse in area, but rather the presence of many long
wires in a configuration that requires many cuts. Even
heuristics to prevent such undesirable configurations of
long lines should be very useful.

2) I= it possible to incorporate the presence of drivers in
our layout model, for example, by using nodes of variable
size, and can we obtain area-eflicient layouts under this
model? Using such & model, we can re-examine the
upper-bounds that have been obtained for the layout
area of many common circuits. In particular, upper-
bounds for AT%.a>0, should be re-examined under the
context of aree-expansion caused by drivers of long
wires.

3) The numerical golution of equation 2: In section 6, we
used the Brouwer fixed-point theorem to prove results
on the existence and worst-case behavior of the solution
of equation 2 under various azsumptions. However, the
actual solution of the system of equations for particular
fayouts still needs to be investigated.

4) Mcodeling poly lines in MOS technology: We have
modeled the wire as a purely capacitive load. However,
pely lines have rather bigh resistance, and may be
better modeled as distributed RC-networks. At present.
the best that can be done for such structures is to use a
driver of constant size after each fixed interval of the
wire and this reduces the delay from 8(i?) to 8(1), where
L is the length of the poly line. It will be very useful to
find a better way to speed up signals along such wires.
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