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1. INTRODUCTION

This final report describes the work that AI&DS has performed for ONR

MG EE

under the contract entitled "Dynamic Sequence Assignment." The ultimate goal

of our long-range research effort is to design and develop an interactive

analytic~\ planning aid for aircraft mission planning. The primary objec-
tive of this contract was to investigate various mathematical algorithms and

]

design methodologies and techniques to achieve this goal.

ARy AN et

The decision aid to be developed should perform the functions dealing

with sll the low-level procedural, computational and search tasks, enabling

vvy

the decision mskers to concentrate on the important high-level planning

SR B ey

Ei issues. Thus, this decision aid will provide for a successful symbiosis
between the man and the computer, utilizing the best capabilities of each of
£ 3 them.
by 3
¥

The overall control of the decision process will be in the hands of the

T,

L

human decision maker, who will be in charge of providing the overall tacti-

cal guidelines. He will use the decision aid for: a) complex mathematical

A
»% g} computation of the best plans within the given tactical guidelines, and b)
g . evaluation and graphic simulation of tactical plans.

l' The following tasks were completed during this project, in preparation
& ‘ for the building of such a decision aid:
2 .
g g§ a) Designed s preliminary mission planning testbed

b) Developed mathemstical and structural theory of mission planning

S Sk
s

¢) Created optimal or near-optimal, human-guided algorithms, for genera-
tion of the best plans within a given strategic guideline.

ptd

L B

Our investigation begsan with developing basic mathematical theory and

models of the forces and parameters present in modern air missions, and of

ey

the high-level comtrol structure involved in such missions.

e e
]
x4

e

After these models were developed, we implemented the most representa-

tive scenario in the form of a basic computer testbed database. The testbed,

b

in sddition to providing a convenient environment for quick testing of human
- generated mission plans, also provides some important aids to planning. In

perticular, it contains an algorithm that automatically finds the best

L

flight path for each individual sortie and evaluates the goodness of each

such sortie.

il

.........................
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- i; Our next research goal was that of developing efficient mathematical
% algorithms necessary for automation of mission planning. The two major

issues to be addressed were the high level sortie assignment problem and the

low level problem of path selection. Dynamic programming (DP) formulation

. . provided the best conceptual framework for solution of both these problems.

Ny - The two most important mission control models have been successfully formu-

& oY lated as DP"s, and the relevant mathematical equations have been developed.

: :Q An efficient DP formulation for the lower-level problem of path optimization

| - for individual sorties has also been designed and implemented.

i :: In the process of our research on dynamic programming we discovered a

'i X new algorithm, which combines the ideas of dynamic programming with branch-

RS and-bound search techniques and provides significant advantages over the
, other two with respect to the mission planning problem. We called this -
iﬁ algorithm Depth~First Dynamic Programming (DFDP). :%
X In addition to DFDP, which is an optimal algorithm, we designed a ;
Ei number of faster heuristic solution algorithms. Most of these algorithms, ii

: . as well as a streamlined version of DFDP, have been implemented on a PDP-20 -

: ?: computer. We have run a number of tests and comparisons between the -

‘: - developed algorithms and found important differences and trade-offs between

Il them.

To improve the algorithms we developed, and to make them adhere more

closely to real-life situations, we examined partitioning the problem, both

N

spatially and temporally. We approached the problem spatially from two dif-

ferent perspectives - partitioning the scenario of interest into separate

regions, and grouping sets of targets together. In analyzing it temporally,

AR A

N ve considered multiple attack waves, where defenses may be able to reconsti-

X tute themselves before they are hit again.

N ;F We have also studied the overall design methodology for computer-aided i

ks mission planning, including decomposition of the overall problem into modu- 5

.; b lar subproblems, and selection of proper utility measures. ﬁ

4 o L
Finally, we have developed basic ideas for extending our methods to N

f Q: several major issues involved in more complex models, including such issues ﬁ

: o as plan compression, multiple weapon loads, and uncertainty. ﬁ

~ -

B E; This report is organized as follows. Section 2 is devoted to a ¥

X detailed description of our mathematical models of basic mission planning .

]
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a problems. Mathematical algorithms for the solution of such problems are
_52 described in Section 3. In Section 4, we highlight the Streamlined Depth-
'f' ‘. 3 . » 3
.:_: ‘s First Dynamic Programming algorithm and describe the software developed to
::ﬁ ” implement it. Section 5 explores our partitioning ideas and presents some
) ! of the results we have obtained in implementing these ideas. In Section 6,
k| N . - - - . -
7 we present an overview of the interactive mission planning methodology. Sec-
ﬁ {x tion 7 presents new modeling issues that need to be addressed in future
g: EX research. Finally, in Section 8 we present our conclusions. There are
N = three appendices in our report. Appendix A presents a dynamic programming
3:'3 \: approach to mission planning. Appendix B describes the Depth-First Dynamic
4:‘ Programming algorithm. In Appendix C we provide a detailed formulation of
""i: ) the Marginal Utility algorithm.
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2. SCERARIO FORMULATION

In this section we present our mathematical formulations of basic
mission planning scenarios. Subsection 2.1 introduces the basic battle
model, while subsection 2.2 describes two of the most important command

and control structures that apply to our scenario.

2.1. BASIC BATTLE SCENARIO

The current formulation is a high-level model of the surface-to-land
battle situation. The forces involved in the battle are friendly aircraft
carriers with airplanes and/or ship/submarine-borne surface-to-land cruise

missiles on board poised against enemy land targets and enemy defenses pro-
tecting those targets.

The objective of an attack mission is to inflict the maximum possible
damage to the enemy targets, subject to aircraft survivability constraints.
Planning of this mission involves jointly making the following decisions:

a) which high-valued targets to attack,

b) which defensive threats should be destroyed to facilitate the attack,
c¢) which attacking units to assign to each objective,

d) the sequential order of these attacks, and

e) hov to optimize the performance of each attack mission (e.g., path

optimization, use of EW resources, etc.).
The rules of the battle are as follows:

There are n targets, each target T having its own initial military

value V(T) assigned to it. There are m defenses protecting the approaches
to the targets. Friendly forces consist of q aircraft carriers with NAi
airplanes on board carrier i.

o1

-
1

P 4

Each airplane A will carry out an assigmment against one of the enemy

i
objects and is allowed to choose the safest path for reaching that object !:
within the available fuel allowance fi. If an airplane A attacks a target '&

4 .
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T, then A will destroy T with probability PK(A -> T). If an airplane A
attacks a defense D, then A will destroy D with probability PK(A -> D). 1If

an airplane A flies near a defense, then it will be shot down with probabil-
ity PX(D -> A), which depends on the proximity and the duration of the expo-
sure. All single events are assumed independent. For example, if an air-
plane flies over two defenses, D1 and D2, then its probability of survival
Psur(A) will be equal to

Psur(A)=[1-PK(D1+A)]+[1-PK(D2+A)] 2-1)

The objective is to find the sequence of assigmments that maximizes the
expected success E(L) of the attack, which is equal to

n
E(L)= I V(Ti)-(1-PS(Ti)) (2-2)
1=1

where PS(Ti) stands for the probability that Ti survives all the attacks
directed against it. The value of PS(Ti) depends on the number of airplanes
attacking it, the probability that these airplanes will avoid all the
defensive threats along their paths, and the probability of their cuccess
against the target.

Exapple }:

Figure 2-1 introduces a small example of our scenario. This example

will be referred to several times throughout this report. Figure 2-1
represents an aerial view of the battlefield. The field is divided into an
8 x 8 square grid. There are six targets, Tl through T6, in the top half of
the field. On the right we can see the value V(T) associated with each tar-
get T. For example, target T3 is the most valuable with 350 points while Tl
is the least valuable with only 100 points. Five enemy defenses, D1 through
D5, protect the approaches to the targets.



PE Value:

n 12 13 1
03 81 .99 TV 100

18 2.
13 T4 ps| 3 D2 |.99 12]300
02 4 03 |.99 T3 |350
n D4 s D4 |.99 T4 |300
§ s |.yg T5]130
c1 7 T4 | 200

8

' 2 3 45 & 7 @

Airplanes: Al A2 A3 A4 A5 A6 A7 A8 A9
AlO All Al2 (all on board Cl)

Figure 2-1 Example Scenario

There is one aircraft carrier, Cl, with twelve airplanes on it. For
simplicity of discussion, all the airplanes are presumed to have identical
capabilities, as do all the enemy defenses. Each airplane has capacity for
£ = 17 units of fuel. It takes two units of fuel to fly from the center of
one square to the center of the adjacent one if one is flying vertically or

horizontally; it takes three units of fuel if one is flying diagomally, as
seen in Fig. 2-2.

Figure 2-2 Fuel Consumption

An allowable flight path is thus a chain of vertical, horizontal and

diagonal transitions whose "fuel length" is no greater than 17.

The following are the values assigned to various probabilities of kill:
PK(A -> T) = .8; PK(A => D) = 1.0; probability of kill by a defense D

-EI
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against an airplane A (i.e., PK(D -> A))that is flying by is computed
accordingly to the following rule (see Fig. 2-3): every time an airplane
transitions into one of the eight squares next to defense D, the airplane
will be shot down with probability of 20X, while a transition into the cen-

tral square, where D is situated, entails a 30X probability of kill.

.2 .2 .2

T~3 .2

.2 .2 .2

0 —_|

4

Figure 2-3 Defensive Threat Probabilities

2.2. MODELS OF PLANNINGC AND CONIROL

There can be many ways in which attacks can be executed. For example,
they could be executed in parallel all at once, or they could be executed
one at a time, or in several attack waves. The execution structure of a
particular attack in real life depends on the situation in general and on

the time limitations and intelligence capabilities in particular.

As our initial models of control we chose the two most representative
situations. They come from the opposite extremes of the spectrum of all
available controls. They are called Closed- and Open-loop Control Models,

for the reasons that will be described subsequently.

2.2.1. Closed-loop Control Scenario

Missions are executed sequentially, each new one starting after the
completion of the preceding ome, with the knowledge of its outcome. Thus we

have a perfect feedback situationm.

Example 2:

Let us consider the situation in Example 1 (see Fig. 2-1). A decision
maker may decide to start his attack by sending one of his airplanes, say
Al, against T2. The optimal path computation routine predicts that Al has a
" 32% chance of destroying T2. In the case that Al is successful, the new bat-

tle position is obtained from that of Figure 2-1 by deleting Al and T2 from

“ v o~ . - .
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L consideration. Notice that we have accumulated 300 points as a result of
,f ’ destroying T2. In this situation we may decide that the next target to
7. ' a attack would be T3, and send A2 against it,
‘-._j T
',‘._:: ~ On the other hand, our first assigmment (Al -> T2) could have failed
SN .':_:: with probability 68%. Then we would have faced the same position as in Fig-
WY
" ure 2-1, except that now Al is no longer available. No points have been
S 23 accunulated, of course. This situatiom requires its own new decision, and
_:T_Z:: - wve decide to send A2 against T2, also.
> s . . . . .
Aol RN Notice that different outcomes can thus entail different future assign-
o ments. For each of the two possible outcomes of the first decision, there
“ :-;‘ will be a8 second decision with two possible outcomes, and so on.
A
.-“\ - Example 2 illustrates the point that a complete solution to the
- n closed-loop problem has to be in the form of a decision tree, for example
'-::i: that in Figure 2-4.
S, T A, > T
e - Return: 300 points 3 3
Y
:~:::: . A, > T
‘:'-\ -
~tn
A>T
A.-_'-c - l 2
e O-
A o
.""\r h]
SOu
oy
J\:" -.'.
- Return: O, points
I Y
.-“'-n‘ [2S
L Figure 2-4 Decision Tree for the Closed Loop Scenario
&5 In the closed-loop scenario the equation (2) for the expected return
L
e function becomes:
"}: n
S E(L)= ¥ I V(T§)-I. (1)-Prob(i)
I iE0C  §=1 I (2-3)
YA
')‘:.
e o
N
e
T, . 8
'.:f'_: -
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}}g e wvhere OC is the set of all final outcomes, and Prob (i) is equal to the pro-
i M bability of final outcome i, and
L3
5{ "
: ] . 1 - if Tj has been destroyed (2-4)
; %j ITj 1) = in outcome i
22 0 - otherwise
.
g‘:' :?.
‘5§ . 2.2.2. Open-loop Control Scemario
Ay }\
SRR
= In this scenario all missions are executed sequentially, but the out-
po comes of earlier missions do not get fed back to the controller and thus do
_é: e not influence the future assignments. In the open-loop case, the proba-
L&tj < bilistic outcome of each attack is predicted before its execution. Conse-
b E quently, there is no advantage in waiting for the outcome of one mission
o before proceeding with the next one, and the whole attack sequence can be
fi{ ~ planned in advance.
g
o . Example 3:
-Eu Let us see how the open-loop control will work for the scenario in
\’;' N : i ) .
;\f tﬁ Example 1. A particular open-loop attack plan is displayed in Fig. 2-5.
G
“»
3N T A2 >D1
gﬁ . A3 ->-D3
S i
o 1': . A4 »D4
A5 » D4
ORI
DI A6~ T2
o A7-=T3
DA A8—T4
oly L4
A9+ T5
i Al0-= T6
4
od All-> Tl
> A2~ T3

Figure 2-5 Attack Sequence for Open-loop Scenario
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This plan assigns five airplanes to the task of creating holes in the
enemy defensive line, as a first wave of attack. In the second wave, the
remaining seven airplanes will then proceed with their attacks against the
targets: target T3, the most valuable one, is attacked twice, while the
other five targets are attacked once each.

After the first wave attack is completed, all the enemy defenses still
have to be taken into consideration, but the three defenses that were sub-
ject to our attack now have a very low probability of existence (PE) as seen
in Fig. 2-6.

D1 .08
D2 .99
D3 .47
D4 .08
D5 .99

Figure 2-6 Probabilities of Existence
of Defenses After First Wave of Attack

Attacks against the targets are also evaluated in the "probability of
existence” sense. Fig. 2-7 summarizes the outcomes of the second wave
attack. The numbers in the second column stand for how much value we
managed to extract from each target, and the numbers in the first column
stand for its remaining value. For example, target T3, which had 350 points
in the beginning, is now worth only 72 points, with 278 having been already
extracted by airplanes A7 and Al2.

T1 5
T2 203
T3 278
T4 164
TS5 113
T6 96

Figure 2-7 Final Values of Targets

The total number of points extracted is thus 929, with 47] points still
remaining.

The reason the two control scenarios described above are so important

is that almost all real-life feedback command and control situations can be
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:: Ej viewed as being a combination of those two.

The optimal scores for the two scenarios also provide upper- and lower-
o g bounds for the performance of any "combination” scenario. The closed-loop 1
; , case provides much more flexibility and responsiveness to the decision maker -
:“1 :'\ than the open—-loop case, and thus supplies the higher performance bound ;
S (Rutenburg, 1982a). i
) ? i
gl ol Because of the importance of each of the two control scenarios, we have 3
:i ; worked on modeling and solving each of the two. The same mathematical ideas 4

apply to both scenarios, although the algorithmic details are different.
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05 B 3. MATHF .TICAL SOLUTION ALGORITHMS

i In this section we present some of our results in developing efficient

A !! mathematical algorithms for finding optimal solutions to mission planning
;',"., problems.

AT |

ALd

>l The common denominator in our approach to the solution of problems of

- this class lies in decomposition of a problem into a hierarchy of sub-

) problems. 1In particular, the basic fundamental scenarios that we are deal-

o

g
.
%
> »

_,3'_4:: . ing with in this report can be decomposed into two levels of optimization
:’\! * sub-problems. The top level is responsible for finding the optimal overall
» sequence of high-level mission assignments of aircraft to targets or

ﬁ] :g defenses, while the lower level is responsible for finding the optimal use

:\52 o of resources (fuel, for example) within each flight mission and for evaluat-

ing the likelihood of success of that missionm.

2,
nl"

f: The idea that ties the two levels together is that finding a good
EY
3;\'{ g: high-level plan requires the ability to estimate the needs and consequences

o5 . of individual missions, which is exactly the responsibility of the low-level

sub-problem. Therefore, the lower level can be viewed in this context

\’ as an evaluation subroutine for the top level.

PR N

: :f Our initial approach to path optimization is that of dynamic program-
s ming, with remaining fuel representing the stage variable and position coor-
"_.1 E dinates being the state variables. It follows the spirit of earlier works
1’::3 in this area (see, for example, Appendix A).

Lon

SN The low-level sub-problem, which in our scemario involves path optimi-
N zation, has been studied by many researchers over the years. The higher-
h-} _ level problem of optimal mission assignment has not, to our knowledge, been
:::".;3 properly addressed in the past. Only highly ad hoc and heuristic solution
:’7‘ methods are reported in the literature (Callero, Jamison, and Waterman,

- - 1982; Case and Thibault, 1977; Engelman, Berg, and Bischoff, 1979). It is
.:‘ q therefore s major goal of our research to develop a systematic mathematical
’:; Iq theory of, and algorithmic solutions to, global mission planning.

4]

This section consists of several subsections. The first one

i

presents the dynamic programming (DP) solution to the low level path

.._:‘}"(";:! . |
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ii optimization problem. The second subsection presents DP formulations

for both open- and closed-loop models of the high-level assignment prob-

Wa ol

Foe oo

lem. In subsection 3.3 we discuss the new depth-first DP algorithm,

developed for the mission assignment problem. The rigorous definition

of this algorithm is presented in Appendix B. We also developed a

i |

streamlined version of this approach which is not described in this sec-

?; iton, but is highlighted in more detail in the next. Finally, subsec-
B 33 tion 3.4 reviews some important heuristic algorithms developed for fas-
i‘ » ter solution of the sequence assignment problem.
S
"{,}. g 3.1. DYNRAMIC PROGRAMMING FORMULATION FOR PATH OPTIMIZATION
Ny

Our approach to path optimization is similar to the classical DP treat-
ment of this problem (see Larson and Casti (1978); Bellman (1957); also

AP! -l-!' k-
. o,
NATRY

Appendix A). 1In this subsection we presume that the reader is familiar with

2w the basic DP algorithm ideas, and we briefly present the main details of our
o DP formulation.
? o
#3 3 We are given the starting position (xo, Yo) together with initial fuel
; Fo’ and the final position (xf’Yf). We need to find a path
!! {(xo.vo).(xl,yl), -oo (Xg,Yg)}, which maximizes the probability of survival
betwveen the starting and final positions subject to the constraint that one
;3 uses ¥, units of fuel or less.

The stage variable is represented by the amount of fuel left om board.
The state within a stage is specified by the geographical position (X,Y).
Notice that time does not explicitly enter into our formulation because it

e

-
.
»

i is presently modeled that fuel consumption rate is comstant over time fer

(L

¥
-

each airplane, and thus, time can be computed from the amount of fuel used.

i e
T4
w0

Let R(X,Y,F) represent the optimal survival transition function between
points (X,Y) and (Xf,Yf), with F units of fuel available. As the reader
remembers, ve are dealing with an integer grid model, and there are 8 possi-

ble trsnsitions from point (X, Y) to the next point along a trajectory.

! LEKE
[ ¥

-2 A

These transitions and the fuel consumption along each one of them were
X described earlier (see Figure 2-2).

L e
2a%a.s

e

Thus, the main DP equation becomes:

Lt 11

heud
A4

o
i
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N R(X, Y, F) =Max |[R(X+1,Y+1, F-3) #S (X, Y, X+ 1, Y +1),
. R(X+1,Y,F-2) *S (X, Y, X+1, ), R (X, Y +1, F-2) *x S (X, Y, X, Y + 1)| (3-1)
Jfé R where 3(X, Y, Xl, Yl) represents the probauility of survival vetween points (s,
8
xR Y) and (xl, Yl)'
R This can be computed using the formula
b e,
A \ A%.
N S (X, Y, X, ¥)) =1 - TP (Di—-A)
oy
’ ) (3'2)
iy Di€ NBD (X;, Y,)
N
S |
: (S where NBD (xl, Yl) stands for the set of defenses in the immediate
.: i vicinity of (xl.Yl ).
) The boundary conditions are given by
~ N 1 4f (X, Y) = (X_, Y_)
b R =
:; ™ &, ¥, 0) 0 otherwise £t (3-3)
) »
~ and
b4 firy)
%@' by 1 if F2 O (3-4)
Y R Yo ) o= |5 df £ < o -
L !
A '- A s . . .
:go; s The above formulation allows us to solve the path optimization problem using 4
{) :
A . a conventional backward dynamic programming algorithm. :
A ]
1 Pal
hagl 3.2. DYRAMIC PROGRAMMING APPROACE TO MISSION PLANNING i
aJ 'z:
X e Mission planning is inherently a very complex computational problem. _
- Trying to solve even an average-sized mission assigmment problem using A
is é methods of direct enumeration of all possible attack sequences proves to be
an impossible task due to the faster-than-exponential growth of the problem
:'). size,
\ 7]

A more efficient approach is to apply the dynamic programming method to

| AARAAKE
xr.

the higher-level sequence assigmment problem.
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3.2.1. Dypspic Programming Formulation for Open-loop

The current state of the battle under this scenario is characterized by
the number of airxcraft available on each carrier, by the probability of
existence of each enemy defense, and by the current value of each target.

Thus, a state S can be defined as

S=(NA,, ..., NA, PE(D), ..., PE(Dm), PE(TI), ..., PE(Tn)), (3_g)

vhere NAi is the number of airplanes currently available on board
carrier 1 , and PE(X) stands for the current probability of existence
of object X.

The stage (i.e., decision point) corresponds to the total number of
airplanes already assigned, being equal to F

q (3-6)
r (WA, -MA)),
g=1 i i

where ixi is the initial number of airplanes on board carrier i.

An action u in this formulation corresponds to assigning one of the
available airplanes from onme of the carriers on a mission against one of the
enemy forces. The outcome of this action will take us to the next stage and
a nev state with one fewer airplane available and with the targeted enemy
force having a reduced probability of existence. If that enemy force hap-

pens to be a target, say Ti, then we derive a reward L(S,u) equal to

L(S, u)=V(Ti) APE(Ti), 3-7

where V(Ti) is the initial value of Ti, and APE(Ti) corresponds to the

change in probabiiity of existence of Ti due to the current action.

The dynamic programming equation is then represented by

J(S(1))=max{L(S(1) , u)+J(S(i+1))} (3-8)
i

uel
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vhere J(8) is the optimal total reward that can be derived starting at state

8, U, is the set of all possible actions at state S(i), and S(i+l) is the
state resulting from applying action u to state S(i).

3.2.2. Dynamic Programming Formulation for Closed-loop

A state S in this scenario is similar to that in the open-loop
scenario, the difference being that an object is not represented by a proba-

bility of existence anymore; it either exists or doesn”t. Thus,

S.(NAI’ eoey NAq’ IDl’ sesny IDmI ITI’ L ] Im),

(3-9)
vhere 1 - if object X exists
Iy =

0 - otherwvise

The stage variable is the same as that for the open-loop case and is
given by (3-6). An action u corresponds to the same type of a mission assign-
ment as in the open-loop case. If the mission u is directed against an
enemy target Ti then the reward L(S,u) is given by

L(S, u)sV(Ti)+PS(u), (3-10)

vhere PS(u) is equal to the probability of success of mission u (computable
by path optimization DP).

Unlike the open-loop case, which corresponds to deterministic dynamic
programming, the closed-loop case gives rise to stochastic dynamic program-
ming, due to the random nature of mission outcomes. With probability equal
to P8(u) the outcome will be successful and will bring us to a new state
8(i+l) with one fewer airplane available, and the indicator variable for the
destroyed enemy object now reset from 1 to 0. On the other hand, with pro-
bability equal to 1 - PS(u) we will fail and result in a state S(i+l), again

A A
A, e e
Ak P LD
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vith one fewer airplane available, but with no enemy object having been des-

troyed. The dynamic programming equation now becomes

J(S(1))mmax{L(S(1), u)+PS(u)-J(S(1+1))+(1-PS(u))-I(S(1+1))} G~V

ucll1

3.3. DEPTH-FIRST DYRAMIC PROGRAMMING ALGORITHM

3.3.1. Basic Formulation

In our efforts to develop an efficient implementation of the dynamic
programming (DP) ideas, we formulated a new version of the dynamic program-
ming algorithm. This algorithm combines the best features of both dynamic
programming and of depth-first tree search algorithms. That is why it has
been named Depth-First Dynamic Programming (DFDP) (Rutenburg,1982b).

DFDP is related to depth-first tree search (DFTS) by the order in which
the states in the state-space are explored. Like DFTS (Winston,1979) it
follows an initial "path" through the state-space from the initial state to
one of the final states, thus finding an initial solutiom path. It then
backtracks to the previous state and explores other actions available at
that state, then backtracks again, and so on. In the process of the search,
the algorithm computes optimal rewards for all the visited states and also
updates the curzently best known global solution path.

DFDP is similar to dynamic programming in its use of the underlying
telescoping effects to reduce the complexity of the search involved. By
telescoping effects we mean that the structure of the state-space is not a
tree but rather a lattice, with many different paths leading to the same
resulting state. By making the optimal reward for any state S (computed for
a particular path leading to S8) available for all the other paths leading to
state S, DFDP algorithm reduces the computational complexity of the depth-
first search from exponential down to polynomial of the order

O(Ns*Nu), (3-12)

wvhere Ns is the total number of states and Nu is the average number of

actions per state. This is the same complexity as that of the traditional DP

17
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A } N
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;g, S algorithm, which can be described as a backwards breadth-first search tech-
N~
W nique.
P !l Appendix B provides a rigorous definition of a DFDP algorithm for a
X M
?}i general class of dynamic programming problems and a detailed example illus-
iEQ RS trating its performance.
S e
- Example 4:
e N
'.": < 2\'

8

. ";";f:“f!
\

Let us apply the DFDP algorithm to the open—-loop scenario described in

gy ¥
o

. Exsmples 1 and 3 (see Figures 2-1 and 2-7). Figure 3-1 shows how the
current optimal value was changing during the computation. The first solu-

tion found was worth 802 points, then the algorithm found a better solution,

Mntera

worth 870 points, and so it went until the optimal solution, worth 1097

points, was found. This is significantly better than the 929 points obtained

from manual planning in Example 3. Figure 3-2 presents the summary of the

Al .
* 4] 3 T SR
KL.; ,

= optimal plan. It involves sending two airplanes to destroy defense D2, then
:j Qﬁ sending tvo airplanes against defemse D3, thus blowing a hole in the enemy
kﬁq defensive line and also freeing the most valuable targets, T2, T3 and T4,
w
‘I from the heavy defensive protection. After the two defenses are severely
b impasired, the plan asks for two airplanes to be sent against targets T2 and
ool . .
?& o~ T3, and for one airplane to be sent against each of the other targets.
Y
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Figure 3-1

Figure 3-2

802.0592
870.2677
911.0408
960.5516
972.1386
1049.802
1094.562
1097.316

Sequence of Currently Optimal Scores

Al = D2
A2 —> D2
A3 —» 13
A4 —> D3
A5 —> T3
A6 —> T4
A7 = T2
A8 —»T5
A9 —>T6
Al10 —T1
All —» T3
Al2=—> T2

Optimal Plan
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(N 3.3.2. Uses of Depth-First DP

Although similar in spirit, DFDP acquires several advantages over regu-
lar DP from its depth-first search approach. Its first advantage lies in
its satisficing capabilities. This refers to situations when (for example,
due to time pressures) it is not necessary to find the optimal solution, but
rather a satisficing one, i.e., a solution whose value exceeds a given
= threshold on performance. Because DFDP starts with a particular solution

and then ké;ﬁs on improving it, this algorithm can terminate at the moment
when one satisficing solution is found. This contrasts with the regular DP
approach, which doesn’t find any solution until near the very end of compu-

.
=% tation.

A similar situation occurs when the algorithm is used in a real-time
situation, when it is not known in advance how much time can be spent on
solving a given problem. With DFDP, a good, currently best solution can be
produced at any moment a solution is needed, a capability unavailable from

regular DP.

Another advantage of DFDP lies in its ability to use branch-and-bound
-~ techniques to prune down the search space. Branch-and-bound is a well-known
technique, used, for example, in integer programming (Nemhauser and Gar-
finkel,1972) and in AI tree search (Winston,1979). DFDP implementation
- makes the branch-and-bound ideas applicable for the first time (to our best

knowledge) in dynamic programming.

The branch-and-bound approach involves computing an upper bound UB(S)
on the optimal return J(S) for a given state in the state space. As we men-
tioned earlier, DFDP keeps track of the current optimal performance (COP)
for the given problem throughout the computation. A state S need not be

considered when

F(S)+UB(S)<CoOP (3-13)

o
2ol e

vhere F(S) is the score obtained by arriving to state S along the currently

PR e e e
e P PO

followed path.
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The degree of success to be expected from the satisficing and branch-
and-bound methods of DFDP depends greatly on the problem at hand and on the
quickness with which near-optimal solutions can be found. The latter is a
function of the order in which various actions originating from a given
state are explored. A good order can be achieved by the use of a heuristic
guidance function h(S) to estimate the value of the optimal performance
function J(S) for a given state S. It is easy to see that if h(S) very
closely approximates J(S), then the optimal solution is going to be found
almost immediately, and that the algorithm efficiency decreases as h(S)
becomes less reliable, just like in tree search situations (Nilsson, 1980).
Finding good heuristic guidance is a hard task from the realm of artificial
intelligence, and we are currently involved in developing such heuristic

functions for our mission planning problem.

DFDP has one weak point, in that the current version has on the average
higher storage requirements. This fact hasn”t caused any important incon-
veniences so far, but it is important to try to find implementations of DFDP

with more efficient use of storage space.

3.4. RELATED MATHEMATICAL AND HEURISTIC ALGORITHMS

The mission assigmment problem is intrinsically so complex that running
even the best optimal algorithms will take a very long time on today s
mini-computers. In this section we present several heuristic algorithms
which don"t guarantee optimality but are fairly fast, and some of them do

provide optimality in most cases.

3.4.1. Sequential Asgignment Algorithm

The sequential assignmment algorithm chooses a set of airplane assign-
ments, one at a time, in a greedy but myopic fashion. It is greedy in that
during each assigmment cycle, it chooses that assigmment yielding the
highest expected return; it is myopic in that it does not consider the

effect that the current decision could have on future assignments.

Initially, only targets are considered as possible objectives since
defenses have no explicit value. During the first assignment cycle, the

expected return associated with each possible assignment of an airplane to a
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; i: target is calculated based on the probability of surviving the optimal path
- to the target, the probability of then destroying the target, and the value
v Il remaining to the target. The assignment of airplane to target having the

- largest expected return is determined, with ties being broken arbitrarily.
. The chosen assigmment, say airplane Al to target Tl, is irrevocably made,
- though not executed immediately. The value remaining to Tl for later calcu-

lations is reduced appropriately.

In all subsequent assignment cycles only those airplanes without

M assigmments are considered. Potential assigmments of airplanes to targets
;; are evaluated as before. In addition, defenses are now treated as allowable
objectives. Determining the expected value derived from attacking a defense
is more difficult than for a target. Consider assigning airplane A2 to

s defense D1 in the second assigmment cycle, remembering that the assigmment
E’ of Al to Tl, has not actually been executed yet. We calculate the probabil-
ity of existence for Dl after a hypothetical attack by A2 and calculate the
expected return for the assignment Al to Tl, given that D1 has been proba-

“ilistically weakened. The net improvement in the assigmment of Al to Tl is

< Il the value given to the assigmment of A2 to Dl. The assignment of airplane
to target or defense with the largest expected return is the one chosen in

~3 the second assignment cycle.

In general, the value associated with attacking a defense is calculated
L by determining the net improvement to all previously chosen assigmments of
e airplanes to targets. Note that the assumed order in which missions are to
be executed is not the order in which they are chosen. The evaluation pro-
cedure assumes that all missions against defemses are executed first, in the

order in which they are chosen, followed by attacks on targets in any order.

o N

YA

During any cycle, if the chosen assigmment is to a target, only the value
remaining to that target need be updated; if the assigmment is to a defense,

ne the probability of existence of that defense, all optimal paths affected by

[}
[

attacking that defense, and the value remaining to any target with a previ-

ously assigned airplane that is affected by attacking that defense must be
updated.

L AA
T

b E§ After running through as many assigmnment cycles as there are airplanes,

the algorithm terminates. Because the algorithm is myopic, there is no
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guarantee that the solution that it arrives at will be optimal.

3.4.2. Target Assigmment Algorithm

The problem of deciding on a good attack plan, which specifies not only
sorties against enemy targets but also sorties to suppress enemy defensive
units, has not, to our knowledge, been previously addressed. However, the
much easier problem of exclusively choosing sorties against enemy targets
has been looked at. The most common algorithm used for this purpose has

been what we call Target Assigmment (TA) Algorithm.

This algorithm is effectively a special case of our sequential assign-
ment algorithm, with the restriction that enemy defenses are not attacked.
As the reader can easily see, this is a very straightforward greedy algo-
rithm, whose only advantage lies in its simplicity and fast speed, at the

expense of quality of solution.

3.4.3. Sequential Reassignment

This is a modification of the sequential assigmment algorithm. It is
guaranteed to find a solution at least as good as that found by sequential
asgignment; in many cases it will find a better solution at the cost of some

additional computations.

In sequential assigmment, only airplanes that have yet to receive
assigmments are considered in each assigmment cycle. The assignment in each
cycle is chosen based on those assigmments already made in previous cycles.
It may be the case that the objective chosen for a given airplane might not
have been cliosen had it been known at the time that some other assigmment
was going to be made during a subsequent assigmment cycle. For example, the
airplane that was assigned to some objective in the first cycle based on the
initial situation may be able to derive greater value from a different
objective, given knovledge that an assigmment was made to some defensive site

during the fifth assigmment cycle.

In sequential reassigmment, maximum expected returns are calculated for

both previously assigned and previously unassigned airplanes during each




assigmment cycle. Previously assigned airplanes are considered first. If
I' at least one of these can achieve expected nmet improvement by changing its
assigmment, then the airplane with the greatest possible net improvement is
reassigned during that cycle, values are updated accordingly, and the next
o assigmment cycle begins. If no improvement is possible through reassign-

ment, then the best previously unassigned airplane is chosen, as in sequen-

tial assignmment.

Y |

This algorithm must converge, though again not necessarily to the

l‘

optimal solution. However, it does allow some mistakes in airplane to

objective assignments to be corrected.

A 3.4.4. Marginal Utility

Marginal utility algorithms are commonly used for resource allocation
N problems. Suppose that a number of decision makers are competing for the
i use of global resources and that the overall objective function is separ-
l able. Suppose further that for any given resource allocatiom, each decision
’ maker can determine its own marginal utility (resource price), i.e., the

iy price it would pay or would accept in exchange for an incremental unit of
resource.

it Assume that the utility function for each decision maker is concave.

This means that the lower the resource allocation (supply), the higher the

:i marginal utility (price). Then marginal utility theory states that a neces-—
- sary and sufficient condition for a set of resource allocations to be

I optimal is that each decision maker has the same marginal utility, this

:ﬁ value being referred to as the "equilibrium price." Marginal utility algo-

e rithms perturb the resource allocations systematically until the equilibrium
ES price is achieved.

- However, the airplane assignment problem does not satisfy the condi-

v tions required by conventional marginal utility algorithms. The objective

- function is not separable: a decision maker’s return may depend on the deci-
t! sions made by other decision makers. Also, the resource to be allocated

o

~
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(airplanes) is discrete rather than continuous. This means that marginal
utility cannot be defined incrementally as the derivative of the return
function and that s decision maker”s buying price and selling price for
resource may differ. A version of marginal utility more suited to the air-

plane assigmment problem is described in Appendix C.

3.4.5. Al Expert Planner

This system consists of seven experts working as a team in solving the
posed mission planning problem. A description of the roles played by these

experts is as follows:

1) Topological comnectivity evaluator (or pocket divider): Topologi-
cally divides the enemy targets into pockets such that targets within each
pocket are reachable from onme another without going through major defensive

threats.

2) Pocket Specialists: Each pocket is dynamically assigned a pocket
specialist that comes up with the marginal airplane utility curve, i.e.,
determines the return R(N) extractable from the pocket given N units of
resource (i.e., airplanes) and assuming that these airplames units got

safely inside the pocket.

3) Ring-Cutting Experts: There is one ring-cutting specialist per
pocket. This expert evaluates various paths of getting inside the pocket
(cutting through the ring), and chooses several (by N-best technique for

thresholding, or clustering) of the most promising paths.

4) Cooperative Planning Expert: This expert receives the sets of best
paths from each ring-cutting expert and combines them into cooperative ring-
cutting plams. It chooses several of the best of these plans on the basis
of their minimality and cooperation, i.e., needing to destroy as few

defenses as possible to accomplish the cutting, and also on the basis of the

importance of the pockets that will be accessible through these cuts.

f
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5) Mission Planning Expert: Evaluates each of the cooperative ring-

.
<1

:ﬁ . cutting schemes passed on by Expert 4 and optimizes the airplane assigmments

.§ (i.e., how many defenses to attack, which of the targets, etc.) within each

{ :ﬁ scheme using the marginal pocket utility curves passed on by pocket evalua-

> tors, and tries to choose the most valuable overall assigmment.

o "

o 6) Constraint Expert: For the proposed assignments, checks if all the

ii N constraints (like fuel constraint, time constraint, launcher constraint,

,1 Ei weapons comstraint, etc.) are satisfied. If this best plan is satisfiable,

N then we re done. If not, it notes which constraint is not satisfied,

E S; imposes it on Expert 5 and tells Expert 5 to re-do his mission planning with

X T the added constraint. Expert 5 may also call the pocket and ring-cutting

‘J -3 planners for re-evaluation, if necessary. Thus, we’ll have iteration to a

" solution.

;g 33 7) Meta-level Planner: Coordinates the performance of the above

'f — experts. Calls them in the right sequence and in parallel (like experts of
'l Type 2 and 3). If Expert 6 comes up with new constraints, the Meta-level planner

! ' will call Expert 5 and the Pocket Experts and Ring-cutters for re-evaluation

ﬁ o with the added constraints.

~

" This present structure represents a transition between mathematical

N !! algorithms and flexible AI systems. It already has a fairly flexible

{E - inter-expert control structure, but this structure will get much more flexi-

3 :ﬁ ble as the system becomes more detailed. It also has a mixture of mathemat-

i ical and rule-based experts, with experts number 1 and 2 being fairly

» E; mathematical, and experts 4 and 6 being strongly rule-based. We should also

‘éf B notice that this expert system has a strong distributed flavor. As we saw,

;3 3 there are several pocket and ring-cutting experts working in parallel with

f‘ o] each other, one of each expert for every pocket. These experts come up with

3 . local attack plans, and these plans are then merged and reconciled by the

3 ;ﬂ mission planning expert and the constraint expert.
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4. STREAMLINED DEPTH-FIRST DYNMAMIC PROGRAMMING

Of all the algorithms we studied that guarantee optimality of solu-
tion, DFDP is the fastest and most efficient. However, the mission
planning problem is intrinsically so extensive that even the best of
optimal algorithms will probably be too slow for prompt large-scale
open-loop mission planning. Thus, there is a need for faster near-
optimal algorithms that would be close to the optimal algorithms in
terms of results. Streamlined depth-first dynamic programming is such
an algorithm.

In this section, we describe the basic formulation of the SDFDP
algorithm and the software deveioped which implements it. We also com-
pare this algorithm with the target assignment algorithm presented in

the last section.

4.1 BASIC FORMULATION

SDFDP is a streamlined modification of the main DFDP algorithm in
the sense that it has the same structure and the same general control
flow, but it greatly reduces the state-space by combining many states
into one super-state. In order to compensate for this simplification,
it uses a number of assignment and reassigmment sub-algorithms which
allow it to find the best states within each super-state. These sub-
algorithms are very similar in spirit to the Sequential Assignment and

Reassignment algorithms, described in Section 3.

In this formulation each (super-) state corresponds to indicating
which sets of defenses are to be attacked, how many sorties to send
against each defense, and in what order to attack. Transition between
states is accomplished by choosing one or several new sorties against
some new defense.

Within each such super-state there is a lot of freedom in choosing
which airplanes to use against each defense, which targets to attack,

and which airplanes to use for that purpose. Notice that in this formu-
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lation each super-state acts both as a transition and a final state,

Xe B depending on whether we plan to attack any more defenses (remember that
i; \ in open-loop scenarios defenses should always be attacked before tar-

~ gets).

':-:: Within each super-state, assignments of particular airplanes to the

'}. < chosen defenses is accomplished by a To-Defense Sequential Assignment

.” ® algorithm whereas the selection of targets and airplanes to attack these
-~ targets is accomplished by a To-Target Sequential Assignment algorithm

\. with Reassignment. As the names indicate, these algorithms represent

‘.‘ _ direct applications of the Assignment and Reassignment algorithms

;.» - described in the last section.

.i-; Finally, to take care of hasty commitment of valuable airplanes

against defenses, the Defense-to-Target Reassignment algorithm is used.

- This algorithm allows reassignment of a committed airplane A from a
ﬁ defense D to s valuable target T, by providing a new airplane Al to
)_: ‘N replace A in attacking defense D. This algorithm is also similar in
::\ :;: spirit to the Sequential Reassignment algorithm.
B
. The streamlined DFDP algorithm provides several capabilities to
N help reduce the computational burden through the use of human guidance.
‘:‘: E In particular, the human is allowed to specify which line of defense
I each defensive threat belongs to, to suggest the preferred order for the
o DFDP search, and to pre-specify limits for the number of airplanes to be
:3 R used against enemy defenses. These guidelines greatly reduce the com-
:: o~ plexity of the feasible search space, and implementation of further such
:- s-: humap guidance capabilities holds promise for further improvements.
N
_’, = 4.2 SDFDP SOFIVARE STRSCTURE
:':J' :;-' The software which implements the SDFDP algorithm was written in
g the S8ail programming language, developed by the Stanford Artificial '
-ﬂ. O Intelligence Laboratory. The prograss wvere developed and implemented on
5;3 R s PDP-20, under the TOPS-20 operating system.
K
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The code is organized into eighteen procedures, five of which per-
form the majox functions of the algorithm: (1) dynamic programming, (2)
defense assigmment, (3) target assignment, (4) target reassignment, and
(5) defense-to-target reassignment. The other procedures handle the

bookkeeping or perform minor support functionms.

A flowchart of the general structure of the software is shown in
Figure 4-1. Initialization is performed first, and the user is prompted
for all of the scenario”s data, which he enters interactively. The
dynamic programming procedure is then called to find the probability of
survival from every launcher (carrier) to each square on the board, and
then to each target and defense.

The first super-state assignment is to attack no defenses, hitting
only targets. Thus, the target assigmment procedure is called to find
the best launcher-target pair which yields the best score. This assign-
ment is made temporarily until the target reassignment procedure is
called to determine whether a better assignment can be made. The best
assignment is then recorded. This process is repeated until all mis-

siles (airplanes) have been assigned to targets.

The program then continues by assigning one missile to the first
defense the user has deemed as most important. The defense assignment
algorithm is then called to determine the best launcher to use against
this defense. The target assignment procedure is then called, followed
by the defense-to-target reassignment algorithm. This algorithm
searches each empty launcher to determine whether, assuming it had an
extra missile, it could get a higher score than what was computed by the
target assignment. If a higher score could be obtained, and a non-empty
launcher can hit one of the defenses the empty launcher previously hit,
and still give an overall better score, the reassignment is made. Oth-
erwise, the original assignment is recorded. The target reassignment
procedure is then called. This process is repeated until all missiles

have been assigned.

This plan and its final score are then compared with the previous
plan, and the best plan is saved. The program continues to generate new

plans, repeating the same process as above, and always saving the best
29
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Figure 4-1 Flowchart of SDFDP Software (Cont'd.)
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one. The way it generates these new plans is in the spirit of a depth-
first search, with two practical heuristics incorporated to reduce the
problem size. These heuristics are: (1) a given defense can only be
attacked twice, and (2) defenses must be attacked 1n increasing order,
i.e., Dl before D2, etc. Also, the order in which the defenses are
chosen depends upon the order in which the user specifies. Thus, if
there are two defenses (Dl, D2) and the limit-to-defense is three, the

following plans will be generated sequentially.
- Plan l: no defenses, the rest targets
- Plan 2: Dl, targets
- Plan 3: D1, Dl, targets
- Plan 4: Dl, D1, D2, targets
- Plan 5: D1, D2, targets
- Plan 6: D1, D2, D2, targets
- Plan 7: D2, targets
- Plan 8: D2, D2, targets

This sequence of plans assumes that the preference array for defenses is
(p1, D2, D3).

4.3 IMPLEMENTATION DETAILS

This section describes several implementation details and capabili-

ties of the SDFDP software.

4.3.1 Ioput Data

All of a scenario’s input data is entered by the user at the start
of each run. The user is therefore able to enter any scenario that he
wishes. The data needed is: board size, defense locations, target

locations and values, probability of kill of planes (missiles), carrier

(launcher) location and number of planes on each, and the amount of fuel

each plane has onboard. i
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Weapons on different launchers are allowed to have different proba-
bilities of kill (PK) against each target and defense. Currently, all
weapons on the same launcher must have the same kill capability. How-
ever, if the scenario calls for different capabilities, the user only
needs to group like weapons on the same launcher and then colocate dif-
ferent launchers. Multiple launchers located at the same position may

be thought of as one launcher.

Currently, the PK of defense against missile is fixed at .3 for
missiles flying directly over the defense, and .2 for neighboring loca-
tions to the defense. The capability for variable PK would require only

slight modifications.

4.3.2 Scenario Size

Theoretically, any size scenario could be handled by the algorithm,
by a simple re-dimensioning of arrays. Realistically speaking, the user
is limited by both storage cost and computing time. Computing time
varies with board size, number of targets, and especially with the
number of defenses(since they comprise the super-state defined in Sec-
tion 4.1). A detailed timing study has not been performed, but as a
rule-of-thumb, any scenzrio with a board-size of larger than 13 X 13 and
more than about 8 defenses or targets, would probably taking more than
15 CPU minutes. The scenario shown in Figure 4-2 took about 4.8 CPU

minutes. More timing statistics are given in Section 5.

4.3.3 Output

The best plan found is outputted to the terminal screen or a file.
The output is simply a list of airplanes (missiles), their final desti-
nations, and the score obtained. Sample outputs are scattered

throughout this report.

4.4 EXAMPLES

This section presents two examples of the SDFDP algorithm. Both of
them show the complicating factors involved in even very small

scenarios. These factors make trying to generate an optimal plan
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"intuitively" virtually impossible.

The first example is shown in Figure 4-2, Note the position of the
two carriers. Now intuitively, a human would guess that each carrier
would most probably send its weapons to the defenses and targets closest
to themselves. But instead, we see in the solution that Carrier 1
attacks both Dl and D2 and does not attack even one of the targets only
one move away from it. Instead, it sends its final plane down around to
T9. We see, after careful examination, that this is due to the high
value of the targets on the right half of the board. But this example,
we believe, points out the necessity of a near-optimal automated algo-
rithm, such as SDFDP.

Next, we consider a more complex example. The scenario is shown in
Figure 4-3(a) along with the target statistics. In this example, the
launch platforms are air bases, and the targets are bridges, tanks, or
engineering companies. We know that the enemy is situated at the upper
left corner of the board, and not expected to reach the bridges until
the next day. We are planning today’s mission and therefore we can
assign values as appropriate. Since the bridges are not considered to
be important yet, we assign them a lower value than the tanks and espe-
cially the engineering company. We assign a very high value to the
engineering company, knowing that during our next mission, we will be

attacking the bridges, and the company will be vital to repairing them.

The two air bases have five weapons on each. The weapon statistics
are shown in Figure 4-3(b). (Note that in implementing the different
kill probabilities on each air base, we actually had to colocate two air

bases at each location, as mentioned in Section 4.3.1.)

The plan generated by SDFDP is shown in Figure 4-3(c).

This example brings out at least two important points. First, it
would be virtually impossible for a human to be able to quickly plan
such a mission, taking into account the number of complexities inherent
in the problem. Second, the SDFDP algorithm is general enough to handle
any scenario for any type of mission, provided a human is able to assign

numerical values to the targets, and a probability of kill to the
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]
1 2 3 4 5 6 7 8 7
TARGET VALUE
T2 | D7 | T4 T8 1 306‘
2 300
T1 | T3 TS5 | D5 16 3 300
4 300
6 450
8 400
FUEL = 20
2 CARRIER  # PLANES
1 5
2 3
PLAN
FROM TO LEAVES IT
LANE # CARRIER # DEFENSE # WITH PE
1 1 1 .44
2 1 1 .09
3 1 2 47
4 1 2 .12
FROM TO FOR A
PLANE # CARRIER # TARGET # SCORE_OF
6 2 7 348.69
7 2 6 333,86
8 2 8 296.76
5 1 9 274,57

TOTAL SCORE = 1,25%,88

Figure 4-2 Example of SDFDP
38

e L% 'a'aa




POt Ik e g
kD
L v - e .
SOt

L p
R
A e % et e

g - | DOty
B | GGG

vy ‘ arty

AR R

Nn.’-,'{ .
ate

.-4
NER ;1".' .

: >
“l .lA'A.

10

11

12

10 11
T3 T6
D5 T4 | Do
T5
Dy
12
D2 | T1 2
bl
TARGET DATA
TYPE TARGET # VALUE
150
BRIDGES 130
TANKS 180
200
ENSINEERING CO, 510
500
OTHER 100
100
TOTAL VALUE 1,870

Figure 4-3(a)

Planning Example
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RESOURCES/CAPABILITY
AIR BASE WEAPONS
1 1 PGM, 4 BOMBS
2 1 pPGM, 4 BOMBS

PROBABILITY OF KILL:

TARGET
1 2 3 4 5 6 7 8
I(BRIDGES) (TANKS) (ENG. cO.) (OTHER)

WEAPONS: PeM’'s (:9 .9 .7 .7 .5 5 .7 7
.5 5 .7 7 .9 .9 v 7

BOMBS
DEFENSE

1 2 3 4 5 6

' ( SAM'S ) (MAN)

WEAPONS: PGM’'S | .8 .9 .3 .9 5 .5

BOMBS .5 .5 5 .5 9 .9

FUEL:
EACH WEAPON INITIALLY HAS 25 UNITS OF FUEL,

(IT TAKES 2 UNITS TO MOVE HORIZONTALLY/VERTICALLY
3 TO MOVE DIAGONALLY.)

Figure 4-3(b) Planning Example
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SRR
S PLAN
N AIR BASE WEAPON TO DEFENSE LEAVES IT WITH PE
L - 1 PGM 4 (SAM) .496
NN 2 BOMB 6 (MAN) .496
. ) 2 BOMB 6 (MAN) .154
Y -
K] H AIR BASE WEAPON TO TARGET FOR A SCORE OF
o 2 BOMB 6 (ENG. CO.) 422.76
S 2 BOMB 5 (ENG. CO.) 361.00
= 1 BOMB 4 (TANKS) 113.01
1 BOMB 5 (ENG. CO.) 105.47
- 1 BOMB 3 (TANKS) 81.37
. 2 PGM 2 (BRIDGE) 74.88
.- 1 BOMB 6 (ENG.CO.) 58.83
- TOTAL SCORE = 1,217.32
{ TOTAL POSSIBLE SCORE = 1,870.00
TR
N
N Q
e ‘
| b »
: Figure 4-3(c) Planning Example 4
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e defenses.
S
t}j " 4.5 COMPARISONS BETWEEN SDFDP AND THE TARGET ASSIGNMENT ALGORITHM
{ y o In this section we consider several examples of plans generated by
;5 the SDFDP algorithm and compare the performance of these plans with that
véi gﬁ of the plans generated by the Target Assignment (TA) algorithm.
s -
At hes The purpose of this comparison is two-fold. First, we want to see
: - how well SDFDP solves mission planning problems in comparison to the
traditional mission planning algorithms. Second, we want to see how
? ;; . much advantage can be gained from sending some airplanes to suppress
2 S enemy defenses as opposed to sending all the airplanes against enemy
é: gi targets, as most of the models existing in literature do.
,;: |
}%; Ei We have also informally compared our algorithmic plans against
%? plans generated manually by human players. In all our comparison tests
ﬁﬁ _2 SDFDP generated what appeared to be optimal solutions, and these solu-
Eg; g tions were consistently better than not only the TA algorithm but also
Y humans. Figure 4-4 gives computer printouts for five such comparison
R ., tests.
o
:i§ : Figure 4-4(a) offers the TA solution for the scenario that was con-
b j sidered in detail in the preceding sections (see Examples 1 and Figure
\é 53 2-1). The score obtained by TA is 802 points, which is significantly
2? - smaller than 1,097 points obtained by DFDP (see Figure 3-1).
o~
K .
Ve Figures 4-4(b),(c) and (d) refer to modifications of the scenario
™o from Example 1. In Figure 4-4(b), all the enemy forces are the same as
-;3 :; in Example 1 except that there are 2 carriers with 6 planes on each,
ﬁ: . rather than 1 carrier with 12 planes as before. These carriers are
_:: és situated in different corners of the board, and, thus, have different
- capabilities.
%
:;~ . The optimal plan, generated by SDFDP, reflects this new situation.

Because airplenes from carrier C2 now don”t have enough fuel to attack
targets T5 and T6 by way of D2, we had to send one sortie to take out

defense D5, and that became the entrance point for attacking T5 and T6.
42
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0f course, the optimal result of 1011 points is not as high as the

optimal result of 1097 for the scenario from Figure 3-1.

KL PO LPa N
a‘

We can also see that the TA gives a result of almost 200 points

.

less. This superiority of SDFDP over TA was demonstrated by all our

N test examples. Figure 4-4(e) represents a typical example. It deals
X j§ with a position significantly different from the rest, but, again,
S attacking enemy defenses allows an improvement in results.
s
: - The magnitude of such improvement varies significantly from one
: - example to another. There are many factors that determine the amount of
-: ;; improvement, one of them being maneuverability of our forces. Figures
. 4-4(c) and (d) illustrate this point. They both refer to a position
2 ié derived from position 4-4(b) through minor changes, which amount to
_{ opening small holes in the enemy defensive line but allowing our forces
5 - to take advantage of these holes only by flying very roundabout routes.
' o In Figure 4-4(c), our airplanes were given 20 units of fuel, which was
¥ enough for them to reach their targets along these roundabout routes. As
§ > you can see, in this situation little advantage can be derived from
i attacking enemy defenses before going against targets. On the other

l! hand, when the airplanes were given only 15 units of fuel (as in Figure
’: 4-4(d), they couldn’t take advantage of the holes in enemy lines and had
: E: to fly over several enemy defenses. In this case blowing holes by
; N attacking enemy defenses becomes much more essential and the results in

!! Figure 4-4(d) confirm this observation.
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Flane
Flane
Flane
Hlane
Hlane
Flane
Flane
Flane
Flane
Flane
Plane
Plane

fotal score i1s 802.0592

7 froms
8 fronm
9 fronm
10 from
1t ftrom
12 fronm
1 fron
2 fronm
3 fronm
4 from
S fronm
é6 fronm

(a) TA Solution for Position in Figure 2-1

to
to
to

to target
to target
to target

to
to
to
to
to
to

target
target
target

target
target
target
target
target
target

3

2
3

» oo i B Lh

for
for
tor
tor
tor
for
for
for
for
for
for
for

100.4520
¥8.30400
84.01600
71.68000
71.97908
66.09175
61.44000
&1.585349
$51.05592
45.98989
44.43480
43.746222

Figure 4-4 Comparisons of SDFDP and

Target Assignment (TA) Algorithms
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points
pointe
points
points
points
points
points
points
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points
points .
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" POSITION

S Initial fyel 3s 17

S n 12 1S 1 1 100 0 12 300 0
SR D3 T6 |2 13 350 0 14 300 0
13 T4 D5 |3 5 150 0 16 200 0
o N D2 N Dt .99 p2 .99
S m D4 5 03 .99 na .99
N 6 DS .99
R ¢ c2 |7 C1 .99 Y A1 A2 A3 A4 AS A6
R 8 C2 .99 Y A7 A8 A9 A10 A1l A12
. 12 3 45 & 7 8

. -

W SDFDP PLAN

S Plane | from 1 to defense 1
{:'* Flane 2 fron ! to defense 2

7o N Plane Jd fronm 1 to defense I3

) tlane / ftrom 2 to defense O
ANA Flane 8 from 2 to target 3 for 237.4545 points

e Flane 9 ftrom 2 to target 4 for 203.5410 points

Flane 4 from 1 to target 2 for 133,3527 points

) Flane 10 fron 2 to target & for 121.3481 points

ﬂ Hlane 1t from 2 to target 5 for 99.80928 points

- Plane 12 fron 2 to target 3 for 76.35195 points

. Flane 5 fron 1 to tar3et 2 for 74.07423 points
e Plane &6 from 1| to target 4 for 45.4445] points

‘::2:: Total score 1s 1011.408

. TA PLAN

SO

-: {:- Plane 7 from 2 to target 3 for 100.3520 points

o r_’lane 8 from 2 to target 4 for 98.30400 points

1 ¢ klane t from 1 to target 2 for 98.30400 points

e o Flane 9 from 2 to target & for 81.92000 points

2 Flane 10 from 2 to target 5 for 74.80000 points

\. Plane 11 from 2 to target 3 for 71.57908 points

i ',;: Flane 12 from 2 to target 4 for $6.09175 points

f‘:. Flane 2 from 1 to target 2 for 64.09175 points

v Plane 3 from 1 to target 3 for 51.05%92 points
E‘lane 4 from 1 to target 2 for 44.43480 points
.:,:. lj'lane S froa 1 to target 1 for 40.946000 points
::;: - Flane & fron 1 to target 4 for 38.88045 points
i Total score 1s 834.7738

b =

e (b) Case 2

'--: .v‘_:
1. rd Figure 4-4 Comparisons of SDFDP and
_’::-: . Target Assignment (TA) Algorithms
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e

Inmati1al fuel] 15 20

2 1 ] 15 1
B D3 14 |2 It 100 0 12 300 0
13 T4 DS |3 T3 350 0 r4 300 0
. D2 4 s 150 0 I 200 0
5 .99 p2 .99
) D1 D4 $ D} .99 04 .99
. ? DS .99
- c1 €2 8 C1 .99 Y A1 A2 A3 A4 AS Ab
1 2 3 45 & 7 8 €2 .99 Y A7 A8 A? A10 A1l A12
s
- Plane 1 from 1 to defense 3
.. Flane 2 fron 1 to defense 5
- Plane 3 from 1 to defense 5
= Plane 7 frosm 2 to target 3 for 199.2704 points
Plane 4 from 1 to target 2 for 170.8032 points
N Flane 8 fron 2 to target 4 ftor 167.6711 points
o Flane 9 from 2 to tar3et &6 for 151.3583 points
Plane 10 fronm 2 to target S for 94.2395?7 points
e Plane 11 from 2 to target 3 for 85.81699 points
N Plane S5 from | to target 1 for 80.00000 points
e Plane 12 from 2 to target 4 for 273.95%11 points
Plane &6 fron 1 to target 2 for 73.55742 points
. Total score 1s 1096.476
~3
o
Plane 7 from 2 to target 3 for 179.2000 points
g Plane 1 from 1 to target 2 for 133.4000 points
o Flane 8 from 2 to target 4 for 122.8800 points
Flane 9 from 2 to target 3 for 87.44960 points
. FPlane 10 from 2 to target & for 81.92000 points
e Flane 2 from 1 to target 1 for 80.00000 points
- Flane 11 from 2 to target 5 for 76.80000 points
. Flane 3 from 1 to target 2 for 74.95680 points
T Flane 12 from 2 to target 4 for 72.54835 points
- Flane 4 fron 1 to target 4 for 42.83255 points
FPlane S from 1 to target 3 for 42,67541 points
e Plane &6 from 1 to target & for 42,3198/ points
3
fotal score is 1057.183
X
(]
(c) Case 3
EE Figure 4-4 Comparisons of SDFDP and
Target Assignment (TA) Algorithms ]
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U
N Imitial fuel 1s 15
(] 12 15 1 1t 100 0 12 300 0
I B 03 6 |2 13 350 0 14 300 0
- 13 T4 pS |3 15 150 0 16 200 0
T b2 4 pt .99 p2  .9%
A 5 D3 .99 D4 .99
O D D4 6 b5 .99
oo ? C1 .99 Y Al A2 A3 A4 AS AS
' c1 C2 8 €2 .99 Y A7 A8 AT A0 A1l A2
D 1.2 3 4 5 & 2 8 1) '
N -
s
- //#
waint ///
, /Plane 1 from 1 to defense 1
o /" Plane 2 from 1 to defense 1
) / Plane 7 from 2 to defense 2
Plane 8 frosn 2 to defense 2
- Flane J from | to target 3 for 210.5028 points
Ei Plane 9 from 2 to target 4 for 1488.43%7 points
Plane 4 from 1| to target 2 for 107.8014 points
. Plane S fron 1 to target 3 for 83.89872 points
e Flane 10 from 2 to target 4 for 73.88459 points
I Flane & fron 1 to target 2 for 49.06426 points
Plane 11 from 2 to target 5 for 41.44000 points
‘ Flane 12 froa 2 to target & for 52.42880 points
fotal score 15 827,4423
~
Flane 1 from 1 to target 3 for 114.4830 points
- Plane 7 fron 2 to target 4 for 78.64320 points
" Plane 2 from 1 +to target 3 for 77.10704 points
- Plane 8 from 2 to target 5 for 41.44000 points
) Flane 9 from 2 to target 4 for 58.02736 points
:j Plane 10 from 2 to target & for 52.42880 points
5 Plane 3 from 1 to target 3 for 51.84060 points
Plane 11 from 2 to target 4 for 42.81583 points
X Flane 12 from 2 to target & for 38.468491 points
o Plane 4 from 1 to target 3 for 34,85347 points o
FPlane 5 from 1 to target 2 for 32.2122% points :
- Flane & from 1 to target 4 for 31.59192 points :
Ej 1

fotal score is 474.3334

v e

(d) Case 4

»
T

Figure 4-4 Comparisons of SDFDP and L
Target Assignment (TA) Algorithms
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o Initial fuel is 15 -
T4 1 1 100 0 12150 0 -
12 B3 715 DS |2 T3 200 0 T4 250 0 ®
_. noo13 14 3 1S 200 0 T6 150 0
D1 D2 D4 4 D1 .99 02 .99 '
5 D3 .99 P4 .99 R
c2 ) b5 .99 :
1 £3 7 €1 .99 Y A1 A2 A3 A4 -
1 2 3 4 § 6 7 8 C2 .99 Y A3 Aé A7 AB ®
- CI .99 Y A9 A10 A11 A12 -
. ?:
) :
ey -
J
. Plane 9 fromn 3 to defense 2 "
v Flane | fromn 1 to defense 2 '
™ Flane 2 froa 1 to defense 3 N
Plane 5 fron 2 to target 4 for 171.4040 points "
- Plane 10 from 3 to target 3 for 151.3583 pointe -
E’ Plane 6 from 2 to target 2 for 113.5187 points
Flane 7 from 2 to target 5 for 111,4922 points N
Flane 11 from 3 to target & for 276.80000 points .
FPlane 8 from 2 to target 1 for 40.54331 points "
Plane 3 from 1 to target 4 for 353.3833¢ points -
) Flane 4 fron 1 to target S5 for 44.80173 points N
" Plane 12 from 3 to target & for 37.47840 points
fotal score is 820.7800 ﬁ:
;:'«‘ -
" .
- Plane S5 fron 2 to target 4 for 81,92000  points .
. Plane 9 from 3 to target S5 for 81.92000 points -
- Plane 10 from 3 to target 3 for 81.92000 points -
: Flane 11 from 3 to target & for 76.80000 points -
Plane 12 from 3 to target 2 for 61.44000 points
Plane & from 2 to target 4 for 355.07446 points
Plane 7 from 2 to target 3 for 48.34557 points
Flane 8 from 2 ¢to target 4 for J37.02900 points
. Flane 1 fron 1 to target 2 for J34.27418 points -
Ja Flane 2 from 1 to target 1 for 35.84000 points -
= Flane 3 from 1 to target 5 for J30.95394 points
- i‘fane 4 from 1 to target 3 for 28.55503 points
. lotal score 1s 656.0942
L’j (e) Case 5
Figure 4-4 Comparisons of SDFDP and J
Target Assignment (TA) Algorithms R
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5. PARTITIONING

In this section, we explore the idea of partitioning the problem,
both spatially and temporally. Spatial partitioning may be necessary to
reduce computing time and enable more realistically sized scenarios to
be studied. By temporal partitioning of the problem, we mean allowing
multiple "attack waves" to be generated, in which particular defenses
may be able to reconstitute in time for the next attack wave. This

approach also allows more realistic situatious to be examined.

5.1 SPATIAL PARTITIONING

We approached the problem of spatial partitioning in two ways. In
the first approach, presented in Section 5.1.1, we split the scenario of
interest into various regions and treat each region as a separate
problem. In Section 5.1.2, we discuss the issue of grouping like tar-
gets in the scenario together. Both approaches allow larger scenarios
to be run, using less computing time. This result will be detailed in

the outline of the first approach.

5.1.1 Partitioning the Board

Our heuristic modification to the problem of finding a near (or
possibly true) optimal plan to the dynamic sequence assignment is as
follows. Divide the board into two or more overlapping regions, where
each region includes all the launch platforms, but each defense/target
is in exactly ONE of the regions. Then use an optimization algorithm,
such as SDFDP, to find the best plan for each region separately, varying
the total number of weapons allowed between the launchers per region.
For example, if in the original problem there were two launchers, each
with two weapons onboard, we would split the board into at least two
regions and make several runs on each region, each time allowing a dif-
ferent number of weapons (from 0-4) to be used on that area. After run-
ning the algorithm on all the partitions, sum the scores of those
regions whose total number of weapons when taken together sum to the

number of weapons allowed in the original problem. In the above example,

49
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if we partitioned the board into two regions, we would sum the target
scores obtained from allowing O weapons in Region 1 (R1l), and 4 in

Region 2 (R2), 1 in Rl and 3 in R2, 2 in Rl and 2 in R2, 3 in Rl and 1
in R2, and finally 4 in Rl and 0 in R2. From these total scores, the

maximum target score would yield the best plan.

Note that as the number of launch platforms in the problem
increases, the complexity of this approach grows ravidly. When we vary
the number of weapons allowed per region, we also must decide how many
to allow on each launcher. Thus, if for a given run; we’'re allowing
three weapons to be used on a region with two launchers, there are &4
possibilities as to how to distribute these three among the launchers (0
onl]l and 3 onlL2, 1 onLl]l and 2 on L2, 2 on L]l and 1 on L3, or 3 on L1
and 0 on L2).

At first glance, the total number of runs of the algorithm that
must be performed seems unreasonably large. Our claim, however, is
that, by being "smart" about the problem, the number of times the algo-
rithm must be run can be decreased to a very reasonable and feasible
number. For example, if a given region has only a few low-valued tar-
gets or defenses, while another region is very target rich, then it is
not necessary to run the case where all weapons are allowed to attack
the first region. As a user becomes more familiar with using this
heuristic approach, he will get a "feel" for what is reasonable or

unreasonable to do.

We implemented this approach using our SDFDP software. The next
section describes a feature of our SDFDP software that was a necessary
addition in the implementation of the approach. An example of the

approach follows.

5.1.1.1 Non-rectangular boards

A first step in implementing spatial partitioning was adding the
capability to the software of handling non-r>ctangular boards. All of
the examples presented thus far in the report have been with scenarios
laid out on a rectangular grid. To be able to partition the board into
various regions, it was necessary that these regions be of any shape.
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Rectangular regions would be too constraining, especially if launch
platforms were located on either side of the board. Also, the ability
- .;‘ to outline only the essential areas of the board saves computing time.

Examples of non-rectangular boards are illustrated in the next section.

i 5.1.1.2 Example of Partitioning

e Consider the scenario shown in Figure 5-1(a). The target and

N - resource statistics are as shown below the board. Running the SDFDP '
o ;5 software on the entire region outlined in bold print took approximately i
:% . 16 CPU minutes on a PDP-20, under the TOPS-20 Operating System. The -
E ii plan generated is shown in Figure 5-1(b). !

o e Now, using spatial partitioning as described in Section 5.1.1, we

divide the board into two regions, shown in Figure 5-2 (a) and (b), out-

NI lined in bold print. The results of running the program separately on

f: o Partitions A and B are shown in the graph of Figure 5-2(c). Because of :

'EE - the number of targets in Partition A compared to the number in Partition ;

E; - B, it was reasonable to begin by allowing 3 weapons in Partition A. We E

ﬂ{ . thought that anything lower would certainly not be optimal. We then con-

!! tinued to increase the number of weapons allowed until we reached 7. We

3 ) believed that anything higher (that is 8) would also be unreasonable.

:S ;{ We then repeated the process for Partition B. Then, by summing the two }

'; - curves A and B, it is easy to see the maximum score occurs at 6 weapons 4

. = on Partition A and 2 on B. The total score was 639.70, which is the 8

N D same as that found by running the entire region at once. The total com- :

f: - puting time using this approach was 54 CPU seconds per sample point.

:3 ij Thus, a total of 9 CPU minutes were required to generate the graph of

] Figure 5-2(c). This results in a 441 decrease in computing time. .

P I .

:g A 5.1.2 Target Grouping :

. In this section, we discuss the issue of target grouping in order “
to enhance optimum dynamic sequence assignment via dynamic programming ;

- or other mathematical optimization methods. The grouping is based on a

< .. set of heuristics that groups targets with similar characteristics

1 Ei together and treats them as a set of super-targets. Assignment is then :

:3 ) done over the super-targets and final refinement is made via K

.p': o >l

Al

~
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T2
T3 | D6 D7 | T6
T4 TS DY
D1 D2 D3
L2

Figure 5-1(a)

TARGET VALUE

1 200
2 300
3 100
4 200
5 200
6 300
FUEL = 32
LAUNCHER # MISSILES
1 4y
2 4

Example of Partitioning --
Entire Board
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= 16 cPU MINUTES

SN PLAN
SR

N FROM TO LEAVES IT
' MISSILE # LAUNCHER # DEFENSE # w/PE

= 5 5 2 5 .55
1 1 5 .14

SR
'ﬁs - T0 TO FOR A
» MISSILE #  LAUNCHER ¥ TARGET # SCORE_OF

! 2 1 2 172. 50
146,73
98.30
81.92
66.09

2
S 00 N O W
NN
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SN
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- Y Figure 5-1 (b) Example of Partitioning
r Entire Board Results
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reassignment of assigned resources to a super-target to individual tar-

gets in the super-target.
We shall group targets together based on the following guidelines:

1. Expected value - we shall group targets together with similar

expected value, which 1is given by
Expected value = V Py

where V= value of target

Py= probability that the target is destroyed by one resource

Py includes the "ease" of destroying the target. Thus, two targets with

different values may be grouped together if the one with a lower value

is easier to destroy.

2. Reachability - if two targete can be reached from the same

source, we may group them together.

We shall describe in the next section how such guidelines can be
used in grouping targets for DSA. Furthermore, we shall discuss the
influence of one”s risk profile on the grouping of targets and its

implications.

5.1.2.1 Grouping in Terms of Value

Let T = {tl,...t } be a group of targets protected by a defense net
D = {dl,... dm}. The basic problem is how to allocate resources from

different locations, R; '{ril,---fiti}» i=1], ... £, to Dand T so as

to accomplish certain missions.

Let

Hi = Vi Pﬁi) = expected value of target 1i

Note that P§i) is computed as if t; is not protected by any defense
unit, and thus only relates to the physical "hardness" and the physical

location (whether it is exposed to attack or not) of the target. We
determine a subset based on expected value partition:
57
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Tv = {Ty(i), 1 =1, ... gy} where
t; € T, (i) if (1) < byo< gD, i =1,... g,

The determination of (% (i)} is subjective; but once the decision maker

specifies {3 (1)}, the computer can easily create:

TV = {Tv(i), i = 1’ e gv)

5.1.2.2 Grouping in Terms of Reachability

Let S g {s ,... s[} be a sequence of ordered critical points (OCP)

in the region. We shall use the notation:

Rj ==> 1y

to represent the fact that a resource unit from region Rj can reach the
target t; and return to the region Rj through a path that passes through
81, ... §, in an orderly fashion.* The reachability criterion is based
on fuel constraint (see Figure 5-3.) Let S = {S(1), ... s(q)} be a set
of sequences of OCP. S is said to be a complete OCP set with respect to

T if, for any t; € T, there exists some j = 1, ... m and some s{k) €S
such that

R: ———- ts
3 i
g ()

Conceptually, the specification of a complete OCP set S represents ways

one can "cover' all the targets by resources located in different

regions. Given a set of targets T and a set of regions, there are an

infinite number of different complete OCP sets one can construct. As n
we shall discuss later, the generation of a specific complete OCP set iﬂ
depends on many considerations, including individuals” risk profiles.

* We can relax the re%uirement that the resource must return to the
originating region. The extension is rather straightforward, an
therefore, for simplicity of illustration, we assume it is true in our
discussions.
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Given a OCP sequence set S, let us define

TR (5, 9) 2 {tj ¢ TIRj-?§—> ti}

The set TR(j, S) represents the set of targets that can be reached by a

resource unit in R, via the same S (see Figure 5-4). Testing of whether

ti belongs to TRtj, S) is rather straightforward: Suppose the path 1is
represented by

R

j ~T=> 8] ~==> 82 —-=> ... 83 ===> tj =-=> 8 g4]...=-==> 5, ——-> Rj.

£ J

Then assume a straight line path between the points and check to see

whether the fuel constraint is satisfied through the piecewise straight

line path as specified above. Therefore, given S, the construction of

Tp(j, §), 3 =1, ... m, is immediate.

«

Given a complete OCP set S, we can construct, for each S(k) € S, the sets

Tg (3, s(k)), 3 =1, ... m. We can now partition the target set T into groups

represented by:’

of "similar value" (determination of L(i),i=l,...g

a8l . §

TR(S) = TR(1, S) Vv TR(2,5)... v Trim, S)

TRG, $) = v T (i, s(k))
s ¢ s

where the set operation AVB is illustrated in Figure 5-5. The set TR(S)
represents grouping of targets via reachability from the source through

paths that pass through the same sequence of O0UP. The above definitions

are also illustrated by Figure 5-6.

5.1.2.3 General Grouping in Terms of Characteristics

We can view two targets to be similar if they have roughly the same
value and can be reached by resources from the same origin passing

through the same sequence of OCP. Therefore, it is reasonable to define

the grouping:

T(S)= 7, v 7x(S)

Note that the grouping as suggested above is rather subjective. From

Section 5.1.2.1, we see that 71, 4 dependent on (1) the 'value" of the
target which is a8 subjective quantity (see also [1])and (2) the notion

v). From Section
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‘ ! S ={sl, 32} where S1 = 82
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o | Figure 5-4 Illustration of the set TR(j, S)
S 61




M A A A il a e A B s b s a0 o L orn T S Ty

Figure 5-5 AVB = {A - B, ANB, B - A}

..........

..............................



B i S ad el asbi SR asah Aude Sl i Seih gl i Ak Mol ndh . et Amad R et e

|

R s(1)

= {5)s 55, 53, 5,4}

To(1, S(l)) = {t
ra(2, sty = 1
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S= (s1)y is complete

Figure 5-6: Illustration of Complete OCP S and Tp(s)
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5.1.2.2, we can see that Tr(S) is dependent on the set < being chosen.

As we shall see later, the selection of S is based on many factors:

knowledge of path condition, defense strength, and the risk profile of

the decision maker. Once {g(1),... p(gv)} and S are specified, the

grouping of targets into super-targets 1s rather straightforward.

In the next section, we shall expand our discussion on the selec-

tion of S based on different factors.

5.1.2.4 Penetration Path and Ordered Critical Points

So far, we have not incorporated the existence of defense networks
in our grouping of targets. We shall now consider its effect in group-
ing and resource allocation strategy. Surrounding a defense site, we
can map out a defense contour which represents the probability that a
resource, transversing through the region, will be destroyed by the
defense force located at the defense site (see Figure 5-7). Given a
defense net protecting a set of targets, we have a defense contour sur-
rounding the net (see Figure 5-8). From Figure 5-8, we see that there
are three penetration paths, P; P;, P3, that pass through OCP
s(1), s(1)}, (s(2), s(3), g4}, s(2)} (s(5), s(5)} respectively which
are located at the 'valley" of the defense contour. However, the path
P, that passes through {S(S), $(5)} has a "lower penetration factor" in

the sense that the probability that a resource can penetrate through the

specified path unharmed is lower.

One can modify the defense contour by assigning resources to neu-
tralize the defense, and thereby creating OCP which has a penetration
path with a higher penetration factor. In the constraint of fixed
resource, more resource allocated to defense sites will create more OCP
with higher penetration factors, but then will reduce the number of
resource units that can allocate to targets. Since the "scoring" is
only related to the destruction of targets, the allocation of resources
to defenses is more of a reflection on the security consciousness of the
decision maker; whereas reservation of more resource units to targets
reflects the decision maker”s desire to 'win big."
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5.1.2.5 Risk Profile and Problem Formulations

We shall classify two types of decision makers: an aspiration
driven type and a security conscious type. In this section, we shal.
not be concerned with why a decision maker belongs to one type or the
other; but rather, we are concerned with how such difference in risk

profile will influence the rroblem formulation for resource allocation.

An aspiration driven decision maker is more concerned with 'winning
big" and thus first defines such a notion (e.g., total value of targets
to be destroyed) and then tries to increase or maximize the chance of
winning. A security conscious individual is more concerned with first
creating penetration paths with reasonable penetration factors and then
tries to "score" as much as possible by transversing through these

paths. These can be translated into two different problem formulations.

(1) (Aspiration Driven) Given a set T to be covered to reflect one’s
winning concept, how should one select S, which is complete with
respect to T, such that the corresponding penetration paths will

have as high a penetration factor as possible?

(2) (Security Driven) Given a specific level of penetration factor to
reflect one”s security notion, how should one select a set of
penetration paths that will allow one to cover as large a subset

of T as possible with the highest total value?

5.1.2.6 Optimization Problems

In this section, we shall describe the above formulations via two
different optimization problems. For ease of discussion, we shall
assume homogeneous resource and one platform region (Rl)- The extension
to non-homogeneous resource and multiple platforms is conceptually

straightforward, but the indexing becomes very complicated.

Let T be a given a set of targets to be considered. Let
S= {s(1), ... 5(a)} be complete with respect to T, and N(S) a specific
allocation of resources to defenses in order to create penetration paths
that pass through S.
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The event that the total value is greater than a certain value k 1is

given by
¢
Prob {i‘;l Ki2 kla, &, N(S)} = I Zégcb(lla,IS, N(S))
k

We have the following mathematical optimization problems:
(A) (Aspiration Driven) Specify K, then

max max Probt :n H :k|as 6" N(S

S, NS aed(S,N(S) | 1=l
(B) (Security Conscious) Specify 1 >a>0, and

i

max max {K] Prob{ u, > kla, S, N(S
S, NGS) ae A(S,N(S)) i‘é‘l i 2K (8§))} 20}

The optimization problems are broken into two stages where stage 1l
18 involved with resource allocation after a complete set of OCP is
specified and the number of remaining resources for targets is speci-
fied. The second stage is to utilize resources to create a complete set
of OCP with a high penetration factor. The resource constraint induces
a tradeoff between a high penetration factor with potential "big win."
It is interesting to note that the first stage is analytical,® and can
be accomplished via a mathematical optimization algorithm like maximum
marginal return, dynamic programming, etc. The second stage is more
heuristic than analytic. Judgement based on past experience, analogous
situvation, understanding of one”s own resources and enemy’s defense
capabilities, and the risk profile of the decision maker play an impor-
tant role in the determination of S and N(S). Without solving the above
optimization problems, we can, in general, conclude the solutions
characteristic of these two problems. These are illustrated in Figure
5-9., We see that an aspiration driven decision maker has a tendency to
allocate more resources to targets and 'take a chance", whereas a secu-
rity conscious decision maker has a tendency to allocate more resources

to defenses in order "to make sure."

* Once 8 is specified, o, ’n construct super-targets as discussed in
sections 5.1.2.1 - 5.1.2... and then apply a mathematical optimization
algorithm. 69
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Figure 5-9: Comparison of Security Conscious and Aspiration Driven Decision Making
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u 5.1.2.7 Interactive Dynamic Sequence Assignment

SO The dynamic sequence assignment process can also be modeled as an

- iteration of the following subprocesses.

(a) Determine T,S and N(S).

"',A.'.&" Ao g gt

(b) Construct super-targets and then perform marginal analysis to
allocate remaining resources to targets via penetration paths

o represented by S.

|
J TR

= (c) Refine paths to defense sites and targets; determine launch time

for each resource, etc.

.!
y
"

- (d) Analyze resulting allocation to see whether there are undesirable

. features; if so, iterate through A to generate a better assign-

' ment.

7 RO

4

o
(Y

We shall discuss each of these sub-processes separately.

I B GP SR R

[ Process (a):This is a process which is influenced mostly by the risk

behavior of the decision maker. If the decision maker is

aspiration driven, then he will start off by reserving a

»

i; minimum number of resources for the targets which can achieve a

. certain total value (goal), and then consider whether the

QQ remaining resources should be allocated among defense and/or
targets in order to maximize the probability of achieving the

ES goal. A security conscious decision maker will, however, first

determine the allocation of resources to the defenses in order
o to assure a certain level of penetration factor; and then allo-
cate the remaining resources to targets. In either case, the

process is a heuristic one.

Process (b):This is an analytical process. The allocation problem can
71
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be solved via mathematical optimization or maxXimum marginal

analysis.

Process (c):This is a set of path optimization problems which can be

solved by dynamic programming.

Process (d):This is a process of analytical studies via "what if" sensi-

tivity analysis.

The overall flow of the process and the tasks associated with each
subprocess are illustrated in Figure 5-10. During the iterative assign-
ment process, the decision maker may switch from "security conscious"
mode to "aspiration driven" mode depending on the analysis of the previ-
ously obtained potential assignment. When the decision maker is in a
different mode, the flow of the assignment generation process is dif-
ferent (Figure 5-10). The stage where heuristic or expert system con-
cepts is most applicable is in the determination of penetration paths to
targets of interest. The breakdown as given in Figure 5-10 offers a
guideline in the design of a decision system in enhancing the dynamic

sequence assignment process.

5.2 TEMPORAL PARTITIONING

There may exist scenarios of interest in which defenses are able to
be rewwsstituted before a second wave of attack begins. We examined
ways of extending our SDFDP algorithm to handle scenarios with multiple
attack waves. In this section, we will describe our research in this

area.

5.2.1 Basic Formulation

We have concentrated our effort on the case of two attack waves,
each beginning at a user-specified time. (Adding more attack waves
would result in only minor modifications to the algorithm.) The user is
asked to enter the times of the start of the attack waves, as well as
the l2ngth of time each defense takes to reconstitute. Thus, if the
length of reconstitution time of a defense is shorter than the time

between waves, then that defense is considered to be reconstituted by
72
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the start of the second wave. The user also must specify how many
weapons will be available on each launcher during each wave. In our
current research, we assume that weapons available during one wave will
be used during that wave and would not be allowed to be '"saved" for use
in the next wave. Relaxing this constraint certainly would be an

interesting and important topic for future research.

The algorithm begins in the same way as the SDFDP approach as
described in Section 4.2, The dynamic programming, however, is done
over all waves, not just once. The first time it is performed, both
waves will yield the same result, as nothing has been attacked. (Thus,
to save computing time, results of the first wave DP could simply be

copied to get the second wave results.)

The first super-state is again to allow only targets to be
attacked. Weapons available during the first wave are used first, fol-
lowed by those available during the second. Thus, assignment algorithms
are used just as in the conventional SDFDP algorithm. The reassignment
algorithm, however, only tries to reassign launchers to targets during
the same wave. That is, it checks all waves for a "bad" target assign-
ment and decides if another launcher could attack that target during the
SAME wave, and get an overall better score. The best plan is then

recorded, along with the waves in which assignments were made.

Now, just as in Section 4.2, plans are generated which first attack
defenses. The order in which they are generated is very similar to the
order generated in conventional SDFDP, with the following exceptions.
For every combination of defenses generated, every combination of waves
must also be generated, creating even more plans. The heuristic origi-
nally used which constrained defenses to be attacked in increasing order
is now replaced by the restriction that a defense attacked during Wave 2
cannot be followed by a defense attacked during Wave ]l. This restricts
all defenses in a given plan to be in the order in which they are actu-
ally attacked. Also, the restriction that defenses can only be attacked
twice is removed (or possibly replaced by the constraint that they only
be attacked twice during any given wave). Thus, if there are three
defenses, two attack waves, and the overall limit-to-defenses is two,

then Figure 5-11 shows the sequence of plans that would be generated
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using temporal partitioning. (Di - Wj means Di attacked during Wave j.)

Plan Combination of Defenses — Waves
1 no defenses

2 DI - w!l

3 Dl - W2

4 Dl - W1, D1 - Wl
5 Dl - Wi, Dl - W2
6 Dl - W2, Dl - W2
7 Dl - Wi, D2 - Wl
8 Dl - W1, D2 - W2
9 Dl - W2, D2 - W2
10 D2 - Wl

11 D2 - W2

12 D2 - W1, Dl - Wl
13 D2 - wl, D1 - W2
14 D2 - W2, D1 - W2
15 D2 - W1, D2 - Wl
16 D2 - W1, D2 - W2
17 D2 - W2, D2 - W2

Figure 5-11 Sequence of Plans Generated by Temporal Partitioning

Once a sequence of defenses is generated, the defense assignment
algorithm is used "0 determine the best launcher to each defense in the
plan during the specified wave. Before the first attack of the second
wave, defenses attacked during the first wave of the plan must be
checked to determine if they can reconsitute before the start of the
second. If so, then the probability of existence of that defense must
be reset to 1, and the dynamic programming algorithm must be repeated.
Now it may be possible that if the right information has been saved
along the way, the dynamic programming may not be necessary and the
information needed car just be retrieved. For example, if Dl has been
hit during Wave 1 followed by D2 during Wave 1, and now a defense is
about to be attacked during the second wave, then if Dl cannot reconsti-
tute but D2 can, the state of the system by the time the second wave
begins is as if only Dl were hit (because D2 reconstitutes). Thus,
because of the sequence in which the plans are generated, we already
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~ know the results of the dynamic programming after hitting Dl only.
Thus, the information can be retrieved. This phenomenon will not occur

‘. in general, however, and for many cases, it will be necessary to repeat

the dynamic programming calculations. This point is a very important
[ y . . . .
W . one because it means a very large increase in the amount of computing

- time in order to handle multiple attack waves.

. After all the defense assignments have been made, the target
- assignment algorithm then determines the best launcher-target pair to
assign during the first wave. If all the weapons available during the

. first wave were used to attack defenses, then the best pair during the

~ e

second wave is found instead. The target reassignment algorithm and the

r.

(A defense-to-target reassignment algorithm are used to try to improve the
j; 5 overall score. The reassignment algorithms are basically the same as

described in Section 4.2, except that reassignments must be made within
the same wave. The target assignment, reassignment, and defense-to-
target reassignment algorithms are implemented repeatedly until all the
- weapons of all waves are used. Note that weapons avallable during the

AU first wave must be used before using the weapons available during the

- second wave.

m.
L. mmma.A x e s

The generation of plans continues until all plans are processed, .

£ s 0.

and the best is finally outputted.

\
‘L!I .
¢ SAERA . .

5.2.2 Implementation Considerations

As mentioned in the previous section, this approach to handling
multiple attack waves has a serious drawhback that must be considered:
computing time. Although the theory of temporally partitioning the {
:ij 3. problem using the SDFDP algorithm is sound, the implementation of our

research so far may cause some serious difficulty. The dynamic program-

A

e A )
-

. ming calculations of the SDFDP algorithm constitute the major bulk of
computing time. Adding many more such calculations wil increase the
computing time beyond the realm of feasibility. Certainly, more
research is needed in this area to find methods of reducing the computa-

] tional burden.
Ty 16 !
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6. AN INTERACTIVE APPROACH TO DYNAMIC SEQUENCE ASSIGNMENT

6.1. INTRODUCTION

The problem of determining the dynamic sequential assignment of
multiple resources against multiple targets, defended by a set of
defense sites can be abstractly described as follows. Assume that there
are n potential targets (T),...,T ) to be attacked. These targets are
located within a net of defense sites (Dl,...,Dm). Assume that all the

resources are located at different regions (Rl""’R[)' (See Figure 6-1).

The issues to be considered are

1. how many resources in region Ri should be allocated among {D.}?=1

and the targets {Tl,...,Tn}?

2. if a certain resource in Ri is allocated to one of the {Dj} or

{Tk}, what is the path to be taken by the resource? what should be

its initial time?
3. what is the sequential order of assigmment?

4. what constitutes an "optimum" assigmment plan?
p P

In this section, we shall develop an interactive methodology that
directly addresses the main issues of the problems. The approach relies
on interaction among planners, who are more concerned with the success
of mission; experts who are knowledgeable in the general geographic lay-
out, attack strategy, possible enemy counter-measures; and a mission
planning aid which integrates experts” knowledge and performs mathemati-
cal analysis when needed in order to facilitate the planning process.

In this section, we shall describe the overall approach, specify the
necessary interaction and the different "task' functions that the plan-
ning aid needs to have. Some of the detail of the matnematical "tasks"

to be performed by :he aid will be discussed in the later sections.
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Figure 6-1 High-Level Geographical Representation

of the Sequential Assignment Problem
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6.1 AN INTERACTIVE APPROACH

The overall dynamic sequence assigmment problem can be visualized as a
two-level hierarchical optimization problem as described in Figure 6-2. The
first level is concerned with the assignment problem. However, to do so, it
needs to know the "benefit" associated with an individual assignment. This
is to be performed in the second level where it computes the resulting
optimal performance for individual assigmment by solving the path optimiza-
tion problem with initial time to be selected optimally, and computing kill
probability, etc. The truly optimal assignment is obtained by searching
through all of the possible assignments, and determining, for each assign-

ment, the resulting performance.

The above problem description is still not precise enough to allow
mathematical formulation: e.g., the performance measure associated with the
assigmment is not specified, and thus it is not clear what the second level
should input to the first level when an assigmment is made. This is prob-
ably the most difficult part in the problem solution: What should be the

performance measure? How should one compare two assigmments?

One approach is to comstruct a scalar measure which '"reflects" the sys-
tem performance; e.g., we can let

= n -
J 21,1 ai Pi (6 1)

a; = relative figure of merit associated with target i
Pi = probability that T, is destroyed
and use

E{J} (6-2)

as a scalar performance measure for the overall problem. Once a scalar per-
formance measure like that of (6-2) is given, conceptually the problem can
be solved via dynamic programming or similar search technique even though
the computational requirements may be very large. The issue of the problem,
however, is not so much the computational difficulty, but, rather, whether a
scalar performance measure always faithfully represents the system goal. As
an example, if the assigmment problem is an abstraction of aircraft and/or

missile assigmments for destroying important stationmary (or slowly moving)
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targets, then the goal is to destroy the targets while reducing casualty.

Such a goal is rather fuzzy and subject to many interpretations. The fol-

lowing are only a few possible representations.

~

n . . 1 1] .
a. Max 2£=1 a, P, subject to the constraint that y 3=1 Zis1 bi Pij 28

where Pij represents the probability that the ith  resource from region

j survives after its attack mission is completed (fj = number of

resource units in region j).

b.  Max §:f=1 E:fil b, P.. subject to the constraint that

c. Maximize P,
when allocations have been made to assure that maxi___1 n P.>
yeess

~

then try to make additional allocation to reduce Pi

i=l, ..., n as much as possible without regarding Pij’

d. Select a subset E’C:{Tl,...,Tn} of targets to be attacked; the selection is

based on the requirement that after allocating all the resources to J,

> 3 P iml, .00, 0,350,000,
Pi_a.VTieJandPij?_ﬁ,ll, ,1),31, ,

e. Similar to (4d) except the requirement that ?ij?' f is replaced by Pr {total

number of resources survive after their attack mission 2 K}2 g -

The list can go on and on. A particular choice of goal representation
is subject to the decision maker”s perception of the specific enviromment
under which the mission is to be carried out. One interesting point that we
noticed from the above list of representations is that all representations

involve the variables {Pi’ ;ij)' We shall call such variables the attri-

butes that are associated with the goal to be accomplished.

In general, specification of goal gives rise to a set of attributes
(but not the reverse direction), {Ai,...,Aq},which are directly related to
assigmments made; while individual’s subjective interpretation of the goal,
which may depend on one”s position and interest, give rise to a specific

goal representation.

Let Ji (Ai,...,Aq), i=l,...,f be a set of variables which represent the
performance associated with the attributes (Ai"“'Aq)‘ A goal representa-
tion can be quantified as a tuple (S, » ) where SCR is a subset in

kK* , £°% f and » is an ordering defined on S.
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For example, the representation (a) can be quantified as follows
_ w0 . 5 £ ~
= Lo 3 B 37 Zhag Zimp by By

S = (Jl arbitrary, J, 2B}

v
(&)
\

A PR R
s‘(Jl,JZ)GS,S _(Jll

whereas representation (d) can be quantified as

J 2) €s , sxs if N ]

~

S ={(.; i=l,..., n, P, ., k=1,... ., 3= >
1 kj : ’IJ’Jls°"’s)|Pi a,

i=],...,n, ijZ B, k-l,...,:zj, j=1,..., 2}

for any two elements (s, ) in S, s»s” and s%s .

Now, returning to the two-level hierarchical problem as described in
Figure 6-2. The dynamic sequence assigmment problem can be solved by the

following steps.

1. Evaluation: Associate a possible assigmment u with specific path and
launch time, etc., and assuming certain nominal parameters (e.g., kill

probability), evaluate the performance via
I(u,8) = {J,(a,(u,0),... ,Aq(u,e)),. cosdg (A (u,0),. .. ,Aq(u,e))
The overall evaluation is given by

Ew) & (Ju, 0); c8), B eq)

where () represents the set of plausible parameters and C(0) represents

the confidence on O.

2. Exhaustion: Exhaust all possible assiguments (denote it by U) and

evaluate E (u),V ueu.

3. Preferred Assignment: A partial ordering >> is induced on U via
(s, ) and (C(0),9¢efN) such that if
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Uy » U > U, is preferred over u,-

A .
The set UP = {u € U there exists no © € U with u >> u} is called the
set of preferred assigmnment. Note that it is possible that neither

U1 >> U2 nor U2 >> U

1’ in which case both assignments cannot be "com-
pared”. Given the set of preferred assignments Up, among many other
things like individuval risk profile, the final choice may depend on

many factors which cannot be accounted for quantitatively.

While exhaustive search will give the set of preferable assigmments, it
is impractical and sometimes infeasible if the number of possible assign-
ments is large. A mission planning aid is a system that facilitates the
mission planning process. A planning process can be modeled as a sequence
of iterative processes as illustrated in Figure 6-3. It is useful to dis-
cuss the main feature of each of the processes within the decision process,

and indicates the needs for support in each process.

We started off with the prccess of identification of issues. This is a
process where, by matching goal representation and conditional assignment
evaluation (initially exogenous assessment is used instead), it identifies
the main issues to be focused on in generating new assignments. This
is a process where creativity is needed with support from very simple
analysis which is centered around how different combinations of attributes
will contribute to the goal satisfaction: why a certain target is more
important that the others, why certain defenses should be avoided, etc. The
outcome of such a process will help us to focus on generating a new assign-

ment.

The process of assigrment generation is to determine a new assignment
based on either the issues to bec focused on or modification of previous
assignment, We shall elaborate on this in the next section. The main point
to emphasize here is that the process of assignment generation is heavily

dependent on domain expertise and analytical manipulation.

The process of determining optimal path and launch time, etc., is a
rather straightforward analytical problem and can be handled by using an

optimization technique and/or mathematical programming.
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ii 2_ The process of assigmment evaluation consists of two stages:
S
- 1. Evaluation of J(U, 6) for a nominal 8. This is a straightforward
(;‘ -! analytical problem involving mathematical manipulation.
3? o 2. Sensitivity evaluation of {J(u, 8), 6 €§2}, and the determination of C(0),
:i: :ﬁ 0 | These involve both mathematical manipulation and a subjec-
— tive view of what possible values C(8) can take as well as how likely
i; these values would be. This sub-process requires very tight interac-
i tion between experts” evaluation and value assessment. )
o 4
. < We shall further elaborate on this in Section &.4. The output of this l
AR process is either that the assigmment is satisfactory or that it will pro- '
-Ef SE vide input to re-generate new assigmments either by introducing new issues 1
’% . to be incorporated in assigmment re-generation or recommending possible
;: ég modification. This "filtering" process requires subjective judgement and l
) maybe some simple analysis.
o
{g ¥ The iterative process will generate a set of preferred assigmments,
- denoted by Up‘ The set Up is built up as follows. Let U;i) be the set of
e !l preferred assigmment at the end of the ith iteration. By definition, U(O) =
:ﬁ ) 0. Let ui+1 be the new assignment generated at the i+1th iteration. Ig :
‘ii Ej uitl is “satisfactory", then j
G p(t) o i) Ugitly
SUNK P P .
ﬁ and if ui+1 is not satisfactory, U(i+l) = U(i). The fact that U(i+1) is i
'fﬁ i; included in U;i) LJ(ui+1) implies that somepof the assigmments in U(i) may
e " be conceived to be not as good as ui+1 and therefore are not included in
U§1+1). ‘
L Depending on time constraint, patience, and satisfaction level, the |
;' E; iterative process will stop after a finite nuzfezngsay M) of iterations; and
;Q ~ the set of preferred assignments would be U = Up . The set Up may or may
{j 2} not be singleton, and if it is not singleton, then it either implies that |
53 o the assigmments in Up are indifferent, or that other exogenous factor other ;
i g than goal consideration will determine the final assigmment to be selected.
o i
Eﬁ Now we can describe the interactions among planners, experts and the E
N ]
O Y




planning aid in different stages of the planning process. This is summar-

ized in Figure 6.4.

A sz I A A 4
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Figure 6-4 Interactions among Planners, Experts and Planning Aid

The arrow indicates input and the cross represents mathematical manipu-
lation. Thus for example, issue identification requires inputs from planner
to planning aid so that certain mathematical calculations can be carried
out, and then the mathematical solution is displayed to the planner in some

appropriate manner.

6.2.1. ASSIGNMENT GENERATION

The inputs to this process are che targets to be destroyed and their
relative values. The problem is that of assignment of resources to these
targets and defenses s0 as to accomplish the mission which is reflected by

the goal r~presentation.
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We shall break the assigmment generation into two problems: the first
problem is to determine which targets are to be attacked and the nominal
penetration paths; the second problem is allocating resources to the targets
and their related defense units, assuming that the specified penetration
paths are to be used. The first problem relies more heavily on heuristic
and experts” knowledge while the second problem is a well specified resource
allocation problem once a mathematical performance measure is specified. We

shall discuss these two sub-problems separately.

6.2.2. Nominal Penetration Paths

The determination of nominal penetration paths is based on experts”
knowledge of the tactical situation. Sometimes simple analysis can help in
such determination. It is also stressed that interactions between planner
and planning aid, planning aid and experts would facilitate this process.

We shall discuss some of these interactions in this subsection .

A threat contour and terrain masking display by the planning aid to the
planner would greatly help the planner to identify plausible avenues for
penetration. A plausible penetration path is selected and appropriate
experts are consulted to comment on the feasibility of the path (whether
this can be done within the physical constraint of the resource capability
and, if the resource is to be transported by human, the physical limitation
of the human), the likelihood of encountering counter-measure of the enemy,
etc. The decision aid can facilitate the interaction between planner and
the appropriate experts; e.g., it can guide to locate the appropriate
experts, extract relevant knowledge from experts and present the knowledge
to the planner in an appropriate representation form. Some simple analysis
based on experts” information can be employed to determine the desirability
of the proposed plausible path. Several iterations between the planner and
the experts may be necessary to arrive at a reasonably "good" penetration
path. It is possible, also, to allow multiple penetration paths to one tar-
get.

For a more detailed discussion of determining penetration paths, see

Section 5.1.2.4.
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6.2.3. Resource Allocation

Given the penetration path to the targets, the next question 1s how
resources should be allocated among the targets and defenses. In this sub-
section, we shall discuss a possible mathematical formul~tion to deal with

such problems.

Let {Tl""’ T,} be the subset of targets to be attacked. Associated
T

ik’
which passes through

with each T. is a set of penetration paths, denoted by L

k=l,...,ti. We
shall say that Ti is defended by Dj if there exists Lf

k

the defense region of Dj’ and we shall represent it by the symbol LE

K € Dj'

For a given set of penetration paths {ij}, we can ldentify a subset

Dl""’ Br sach that Bj is nonempty, j=l,..., r. Let X be the resource
units allocated to take path Lfk. Define the following symbols

x=(xik ; k=l,...,t. ; i=1l,..., t}

1

(Dj = 1}: the event that Dj is operational

(Dj = 0}: the event that Dj is non-operational

a= {al,..., ar} ; a; can be either 1 or 0

D(a) = {Dl =aj,..., D =0, i=2,..., r, then

= ar} (thus if a = 1, a.

r i :
D(a) represents the event that D, is operational and the rest of D, are .i
non-operational). 'j

Using a defense network model, we can evaluate ;ﬂ

-]

P(XID(a); X) = Probability that X of x;, leak through the defense i’
netwnrk, k=1, ..., t. i=l,..., s cond.tional on the event D(a). 1

]

1

By analyzing the hardness and the geographical outlay of Ti’ one can g

§

evaluate o
9

P;k = probability that T. will be destroyed by a resource unit

delivered to it via L{k.

L e

Now to generate an assignmment, we introduce a mathematical performance

measure which is in-line with our goal. One possible choice 1is
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J = Expected (relative) military value destroyed
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where W, represents relative weights on the military value for each site

represents the probability that Ti is destroyed. J is a function of X and

APTI* vl T .

P(a):
. ‘. X ;]
o JEGRG@) = p i v pap - TE -t HIpEina)s0Rca) ¥
X < X ‘4
P(a) can be influenced by assignment resource Uj to D., via path L?, ]
j=1, ..., r. The selection of L? can be carried out by path optimization or .
E; penetration discussed earlier. Let us define this by
. P(a) = P(alY) ; Y = (9&,,.., Ur}

and thus

t. . X .
s 1 1k, “ik T
. = - ~ T - .
J(X;Y) a2, Zx <X (-7 . (1 P ) TT)P(XID{a);X)P(alY)
=I5 f(XGY) L K24 ) i
i=1 20 2T My Xy K
- i -
i ik, Vik -
- . = - -7 - . -
» where f(Xi,Y) v. T, EXiS X, (1 k=1 (1 P ) )P(XiID(a),X)P(aIY) -
' M
;ﬁ To generate a reasonably good assignment, we may want to solve the following ]
- optimization problem: >
,.V-_‘ s N
had Max Zi’l f(xi;y) L
such that xi >0, Y2>0; and sum of all resource units originated from a
L source must equal to the total resource units in that source. 1
5
The problem can be solved via dynamic programming; or, if the tunction
f(Xi;Y) has certain concavity conditions, can be handled by extended

t4 89 [
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marginal analysis as discussed in Appendix C. The decision aid should be
capable of solving the optimization problem very quickly so that the user

does not have to wait for a long time to have one assignment generated.

6.3. ASSIGNMENT EVALUATION

This process is input by an assignment generated via solving the above
mathematical optimization problem. To evaluate such an assigmment, we first
evaluate the set of attributes associated with an assignment. Possible

attributes are

(1) P;, 1=l,..., s (related success of mission)

(2) PXIX) = Z:a P(XID(a);X)P(a) (related cost if resource itseli has value)

The evaluations of these attributes are first carried out using nominal kill
ik
K
Next, we carry out sensitivity analysis by varying P

probability (e.g., P , defense contour, and relative weightings {wi}.
ik
k ?
investigate their impact on the deviation in the attributes. The following

defense contour and

issues are to be considered in order to decide whether the assignment is

desirable.

1. Would one of the attributes fall below a certain security level with
ik
k
sonably plausible (i.e., 3 60 € £ such that J(U,§)€ 8)?

variation in either P, defense contour which is considered to be rea-

2. What would the scenario be to give a "bad" outcome? How likely would

such a scenario be? Can one modify plan as such situation arises?

3. What would the scenario be for the "best" outcome? Can we promote the
likelihood for such scenario to happen? How good is this "best" out-

come? Does it achieve over the aspiration level?

Note that the evaluation is not based on one single numerical measure, but
rather, a set of measures under different "what if" conditions. This also
implies that evaluation must also be carried out in an intersctive manner

(see Figure 6~4). The above dialogue can identify the weakness of present
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assigmment; and if the assigmment is considered to be unsatisfactory*, such
identification would guide in the next iteration in generating new assign-

ment. If the assigmment generated is satisfactory, it is compared with the
set of preferred assignments U;‘) that had already been generated.

6.4. COMPARISON

Let u(l’l) be the newly generated assignment and U(i) be the set of

previous assigoment. If u(l*l) >> uj for some u. ¢ u(1 , then

glis]) o gy, Giel)y Y (i)

{u.); whereas if there exists some “j € Up such

| 4 P . . -
that uj >> u("l), then U(lll) = U(‘); and finally if neither
u("l) >>uj nor uj > U(g’l) for all uj € Uél), then U(i+l) = {u(i+l)}kj u(i),

P

N . %i+l)
boils down to pairwise comparison between u

Thus the construction of U(i’l)

(i)
p
It is felt that the comparison issue should be resolved by the planner.

and u. for eachu_ ¢ U
h) h]

However, since there are many dimensions to be considered in a multi-
attribute situation, the planning aid can be used to help in setting up
structure for priority assessment for the different attributes which would
facilitate the comparison process. One possible tool is one based om the
analytical hierarchical process discussed by Saaty [Saaty, 1980], yet
another is one based on multi-attribute utility theory discussed by Keeny
and Raiffa.

*Each assigmment has & weakness, regardless of whether it is a satis-
factory assigmment or not.
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7. EXTENSIONS OF BASIC SCENARIOS

In this section ve discuss ways of extending the basic scenarios
presented in this report to reflect many of the remaining issues involved in
real life mission planning. We have already resolved some of these issues,

while others merit further research.

7.1. TIME-COMPRESSION OF SEQUENTIAL SOLUTIONS

Our algorithms generate mission plans in the form of a sequence, which

"~ corresponds to the assumption that each new sortie has to wait for the com-

pletion of all the previous ones before even starting its flight. In real
life situations one usually doesn’t have this luxury and needs to send all
the sorties out as soon as possible. Fortunately, there exists an efficient
procedure to derive an equivalent time-compressed, concurrent mission plan

from a given sequential one.

The reason that makes this possible lies in the fact that many sorties
do not depend for their success on completion of their predecessors. For
example, all attacks on distinct targe*s are completely independent of each
other. Also, certain targets can be attacked without waiting for some
defenses to be destroyed. Going back to Example 4 (see Figure 2-1, Figure
3-2, and Figure 7-1) we can see that the attack (A9 ->.T6) can be executed
without waiting for A3 and A4 to attack D3, since the trajectory to T6 does
not come into contact with the area of coverage of D3.

I1f we consider the amount of completion of each sortie as an “event,"
then we can construct a "delay" graph G on these events. Let V represent
the set of vertices (events) and E represent the set of edges of G. If V

1
and Vz are two events, then (VI,VZ) belongs to E if event Vz has to occur

after event Vl.

With each such ordered pair (vl'v2) we can associate the delay function
d(Vl,Vz), vhich is equal to the minimal necessary delay between events

Vl and Vz. This delay can be easily computed from the available ontimal
flight paths. Going back to Example 4, let v, = (A2 = D2) and

vV, = (A9 -> T6). The delay function can be computed as follows: before the
moment when A2 attacks D2, airplane A9 should be outside of the zone of
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coverage of D2. Thus, A9 cannot be any further along its path (see Figure
7-1) than square (4, 6). After A2 attacks D2, it will require an additional
12 units of time for A9 to travel the rest of its path to reach T6. There-

fore, d(Vl,Vz) = 12.

Directed graph G satisfies the monotonicity (no loops) relation, as
wvell as the weak triangle inequality [d(Vl’Vz) < d(vl,v3) + d(V3’V2)]. This
allows for a simple reduction of this graph into a directed tree (arbores-
cence), with the starting point as the root and attacks against targets as
leaves. Figure 7-2 depicts such arborescence for the optimal sequential
plan of Figure 3-2. Notice that the longest path within this tree is that
between the start and (Al2 -> T2), which is 6+ 3 + 7 + 3 + 7 = 26 units of
time long. If we subtract the maximal time/fuel allowance of 17 units from
26, we see that Al2 can lift off any time after time 9 and complete its mis-
sion at time 26. The earliest times for lift-off of all the other airplanes
can be computed in the same way. The numbers in brackets underneath each
assigmment in Figure 7-2 represent these times. The above procedure can be
applied to any consistent sequential plan and will produce a time-compressed
version of it. In particular, the plan in Figure 7-2 can be executed in 26

units of time, as opposed to approximately 180 units of time needed for its

sequential prototype in Figure 3-2.

7.2. VARIATION IN ENEMY DEFENSE TYPES

Just like airplanes, enemy defenses can differ from each other. These
differences can be msnifested in terms of the sizes and shapes of their
areas of coverage, their kill strengths within those areas, and their sur-

vival capabilities agsinst aircraft attacks. As in the case of airplanes,

T 12 15
03 3
13 7 [H
(]
(]] D4
ct

1 2 3 4 5 & 7 B

W NN N -

Figure 7-1 Optimal Path from Cl to T6
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Figure 7-2 Optimal Compressed Plan
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these differences are accommodated by our models and algorithms in a

straightforvard manner.

7.3. URCERTAINTY 1IN ENEMY LOCATIONS :

All the battle models that we discussed so far have presumed near per- ‘.

3

fect knowledge of the number of enemy forces and their positions and

strengths. The case of reliable knowledge of the number of enemy defenses

.

and their approximate locations and strengths, can be accommodated by blur- o

ring, i.e., spreading out their "probabilistic" area of coverage. On the

(%

other hand, the case of unknown enemy defenses (pop-up threats) at unknown

locations presents a challenge for future research. Both of these ideas are

L7 57

-

important topics for further research. "
.

LN

L
v

7.4. DEFENSE SUPPRESSION

When several sorties have some part of their trajectories in common, it

is often advantageous for them to travel together. In particular, when many N

-

airplanes fly over a defensive site, it is harder for that defense to handle
all of them simultaneously. Thus, the airplanes will have, on the average, a
better probability of survival by flying together than by flying separately.

This possibility presents a new attack option, and could be modeled by
our planning system. One way to deal with this issue would be through a .

“doubling up" procedure, which can be viewed as a generalization of the Plan

Compression procedure. It converts a sequential plan into its time-

B
7,

compressed counterpart with the maximum number of sorties executed together.

0,
2L

g 7.5. ATTACKS WITH MULTIPLE WEAPON LOADS by

In our models we presumed that each aircraft was carrying a single -
:“s wvespon load and thus was carrying out am attack against a single objective. ,.
* This is the case in most real life missions. However, multiple loading is -

One possible way to model this issue is to allow for one-against-many

E sn important option and can be addressed in future research.
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assignments to be included as single controls in our DP formulation. Intro-
duction of multiple objectives will bring an extra wrinkle to the path
optimization problem because there will be a new problem of allocating the
svailable fuel between several legs of the flight mission. This, however,
can be easily taken care of by an iterative procedure which computes optimal
returns for the last leg of the trip, starting at the location of the
second-to-last way point for a spectrum of feasible fuel allocations.

These returns then become a part of the pay-off function for the second-to-
last leg of the trip, which permits the computation of optimal returns for
that leg for a spectrum of feasible fuel allocations. This defines a back-
ward induction, which will solve the fuel allocation problem.

The solution proposed above has, however, a drawback in the sense that
this type of modeling will increase the already large decision space, and it

remsins to be seen how much this would slow down the computation speed.
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8. conQ.usiOnNs

In this research contract we have made significant progress in several

areas of the mission planning problem.

We have developed basic mathematical wmodels of battle forces and con-

trol options. We have modeled a variety of issues dealing with multiple

[ . e e

carriers, multiple aircraft types, aircraft fuel constraints, multiple enemy

targets vith variable importance, and multiple enemy defenses of variable

;é g% strength. Electronic warfare, defense suppression, multiple weapon loads,
(54 wveapon selection, recognizance and pop-up threats are issues that warrant
LV

13 further research.

Our major effort involved designing algorithms for finding optimal

solutions to our battle scenarios. We have developed dynamic programming

e

kY (DP) algorithms for low-level path optimization and for high-level mission
‘ planning scenarios. In the process we discovered a new version of DP,
called DFDP, that provides a number of advantages over the standard DP.

Because of the extensive computational requirements of the Dynamic

Sequence Assignment problem, we found it essential to modify optimal DP
algorithms vith some heuristic procedures designed for reducing the feasible

.

state space. For that purpose, we have developed, implemented and compared
a number of heuristic algoritbhms. These algorithms proved to be most effec-
tive vhen incorporated into the DFDP algorithm. We have also researched

Lt

the practice and methodology of combining human guidance into our algorithms

in order to achieve search space reduction.

In order to be able to study more realistic scenarios, we examined two ;

‘E gg ways of partitioning the problem. Spatial partitioning led to a decrease in
N . computing time, so that larger scenarios could be studied. By partitioning
'? i! the problem in time, we developed an approach that would enable multiple
é% attack waves to be handled. Future research is necessary to improve this

-

approach so that it can be actually implemented.

We have also looked at the methodology of dynamic sequence assignment,
including such issues as hierarchical problem decomposition, multi-planner

approach, selection of proper objective functions, and plan evaluation.

L . -
NG D N T

The interactive approach developed in Sections 6.2 and 6.3 focuses on

solving the dynamic sequence assignment problem via a decision unit which

’.’

consists of man and computer. As such, it avoids as much as possible the
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use of the computer to solve complex mathematical optimization problems;
instsad it promotes the use of human judgment to break the complex problems
into simple optimization subproblems that can be solved without wuch compu-
tational requirement. The decision aid enhances the decomposition process
and provides analytical capability to solve the simple subproblems. There-
fore, it is quite feasible to develop a decision aid system as discussed in
Sections 6.2 and 6.3 for use on practical sized boards. The decomposition
process allows one to break a very large assigmment problem into a sequence
of smaller sub-assignment problems and thus the requirement of the machine
capability does not grow exponentially, but only linearly with the number of

aircrafts, launchers, targets and air defenses.

Our research has made significant progress into the mathematical algo-
rithms and techniques necessary to an aircraft mission planning aid. There

are still many issues that warrant future effort and research.
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APPENDIX A

Single Resource Unit Assignment
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Appendix A

Single Resource Unit Assignment

This Appendix gives a method of approach and example results for a
single assignment resource allocation problem. This approach was de-
scribed in (Wishner, 1979) and in (Marsh, 1978) of the foregoing text.

The example utilized will be that of an aircraft on an interdiction
mission but the methodology will be applicable to a variety of single
force unit resource allocation problems. The performance measure utilized

is "current military value" defined as

V(R) = v,r PM + vA Ps

where:
R = Vector of applied resources
V.. = Value of the target (objective)

T

PH = Probability of accomplishing the objective (which is euqal to

the probability the aircraft survives to the target times the
probability of killing the target given that {t survives to the

target).
VA = Value of the aircraft for future missions
Ps = Probability that an aircraft survives this mission.

For two targets the above formula becomes

The above formulas can be normalized by dividing them by the future
value of the aircraft for future missions. The resulting performance
measure is used in the examples below. Note that PM and PS and therefore
V depend on the trajectory flown and the resources utilized. Thus, we

can define our optimization problem as

Al
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maximize V(R)
R

where R is the vector of resources available including
flight path,
RF jamming power used against given threat,
the number of decoys used at a given time, and

the number of ARMS used against a given threat

subject to the constraint that: (1) the fuel used be less than or equal
to the available fuel, and (2) the allocated instantaneous jamming power,
number of decoys, number of chaff packages, and number of ARMS be less

than or equal to that available.

We first explain the solution approach with only flight path optimi-
zation. Consider Figure A.l. Each cell in Figure A.1 contains the probabi-
lity of survival of the aircraft from the enemy threats that can attack

that cell. The ground is represented by probability of survival equal
to zero.

" To determine the optimal trajectory, we must effectively examine
all trajectories to a target and back to a landing point that satisfy
the constraints, calculate the probability of survival (Psx zj at each
grid point (x,y,z) on the trajectory, and multiply all the
Psxyz together to obtain an overall Ps. To accomplish this, the volume
in which the aircraft can fly is divided into cubes (see Figure A,1). The
cube dimension depends on the aircraft maneuverability and the degree of
variation in the aircraft's probability of survival, PS’ across the

cell. A backward dynamic programming algorithm is then used to find the
optimal £1light path.

Dynamic programming provides an approach for solving optimization
problems involving multi-stage decision processes. These problems are
characterized by the fact that the control decision taken at the present
time affects the behavior of the system at future times, and hence the
solution 18 a sequence of decisions over the entire duration of control,
not just a decision at the present time. Basically, dynamic programming
converts the oimultaneoué determination of the entire optimal control
sequence into a tractable sequential solution of vastly simpler inter-
mediate optimization problems. The resulting solution is precisely the
one obtained by exhaustively searching all possible control conbinatiéns
without actually performing such a computationally prohibitive scarch.
A2
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5; ij With the dynamic programming formulation, the motion of the aircraft

P is described by a Markovian state equation, where the state contains the
g! position of the aircraft as a function of an independent variable known

as the stage variable. The stage variable, represents motion of the

‘5 aircraft through the quantized state space. Since the length of time
the aircraft stays in each quantized cell is dependent on its velocity
and path through the cell (e.g., along a diagonal or straight through),
the stage variable is only loosely related to time.

. ) Each cell in Figure A.l has an associated propability of aircraft
survival obtained from threat models. The negative logarithm of the

W probability is used in practice so that the overall path survival probabi-
e lity can be obtained by susmation of positive numbers (logs of probabili-

-~ ties are negative) rather than multiplication. Maximization of the
a probability of survival, therefore, results from minimizing the sum of
the negative logs. The target is located at some specified cell in the

rd Ed
e

o state space.’ At the last stage, the state space is loaded with values
pertaining to the probability of accomplishing the mission dependent
upon arriving at each location. PFor the case of an overflight require-
ment, this boundary condition amounts to placing a zero probability of
survival at every location except the target's location, where the

threat model dependent value of probability of survival is used. This
forces all solutions to end at the target.

Cay
whea

LS
hfa'

The problem is to find the path and associated velocities through
the space which maximize the performance measure (i.e., net military
value) constrained by available fuel. The aircraft is constrained to
always move at least one cell (quantized position) from stage to stage.
Permissible movements (transitions) are to any of the cells adjacent to
the one containing the aircraft. Thus, for a space partitioned into
cubes, 26 different transitions are possible from each cell because the

space containing the cell under consideration is 3 x 3 x 3 = 27 total cells

X

2.

Y.L
s e

LAl
e byt

G

in sizq and the solution is constrained to move to a new cell.

.- The dynamic programming solution starts out at the next-to-the last
E; stage (the performance measure at the last stage is the negative log of

- the probability of accomplishing the mission conditioned upon arriving .
ﬁi at each position). For each state in the (n-l)th stage (with n total :;
b
o a
PN Al’ F e T . . . . .. ,»-.."“
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th stage that mini-

stages), the transition to an adjacent state in the n
mizes the performance measure is determined and stored, along with the per-
formance measure itself. The optimal transition includes a direction and
a velocity. Now that a performance measure has been determined for each
state in the (n-l)th stage, similar calculations are performed for each
state in the (11-2)"'h stage. This process continues to move back through
successive stages until the calculations have been performed for the

first stage, which contains only the initial position of the aircraft.

The overall optimal trajectory can now be found by tracing through the
optimal state transitions from stage to stage. The solution vector of
positions and velocities is then mapped into a time-ordered control vec-

tor which is the desired solution form.

In order to include a fuel constraint, the performance measure is
augmented by a LaCrange multiplier which multiplies time and the fuel
rate. Then a search over the value of the LaGrange multiplier occurs.

In practice, only a few iterations are required for this search.

The optimization over trajectories and EW resources such as chaff,
jamming, decoys and anti-radiation missiles can be performed in a sequen-
tial fashion. With a given onboard resource assignment to air defense
units a dynamic programming algorithm was utilized to find the optimal
trajectory and thence for the given trajectory the optimal EW resources
vere formed using a maximum marginal return algorithm.

Iteration over the trajectory for fixed EW and EW for a fixed
trajectory continued until convergence. Conceptually both the trajectory
and the EW resource optimization problem can bé embedded in one dynamic
programming problem, but there are some computational issues. Note that
if a llqw computer is to be used, it is always possible to reduce the
computational problem by enlarging the grid size.

e ASENE: f A At A I B S %% Yl s SERE . e AT ar YO

A few example results are now given [1,3]. Figure A.2 shows the symbols
used in describing the scenarios and results. Figure A.3 shows a set of
eneay threats, two targets, the optimal trajectory, and the optimal EW
resources allocation. The threat models used, albeit crude, are three-
dimensional models. Although only a two-dineﬁsional aircraft trajectory

“LAERAL S ¢« . oW -

is shown, in fact, the computer program took into account fuel consumption
and probability of survival, Ps. variations with altitude and velocity,
and determined an optimal three-dimensional trajectory. t
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Note in Figure A.3 that the aircraft flies around the threat Cl whose
location is uncertain (see Figure A.2) and uses chaff and jamming against
Al. The aircraft uses decoys against Bl, but does not jam Bl. The
aircraft uses chaff and jamming against C2.

The case where the location of Cl is known is shown in Figure A.4.
Here we assume that the aircraft discovers Cl at the end of the dotted
line and then computes the optimal trajectory subject to his remaining
fuel (14,600 pounds). The new optimal trajectory flfes around Cl, uses
chaff and jaoming against Al, and jams Bl. Since the aircraft trajectory
is shorter in the first leg, it has more fuel remaining and uses it to
avoid C2 and now does not use chaff or jamming against C2. The ﬁétfom—-

ance measure, current military value, and Ps are, of course, higher in

this second case vhere we know the location of Cl.
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INTRODUCTION

In this Appendix, we present a nev dynamic programming algorithm. This
algorithm is a symbiosis of the traditional DP algorithm and the depth-first
branch-and-bound search method. Thus, it can be called Depth-First Dynamic
Programming (DFDP).

. “
i

LY IR
FRIR Y &)

While guaranteed to have complexity of the same order of magnitude as the

- traditional DP algorithm in the worst case, DFDP has many advantages over the
N latter. Among them are:

- Ability to incorporate heuristic, Al guidance methods.

=~ Ability to rigorously reduce the state space using

"branch-and-bound" pruning techniques.

::f: - Suitability for satisficing and for real-time on board computations
o - Applicability to the analysis of robustness as an alternative to the
ﬁ "colored corridor” algorithm.
- Therefore, DFDP algorithm promises to be helpful in our Dynamic Sequence
~ Assignment research (for both path optimization and mission assignment).
L

This Appendix is organized as follows:
! The first section provides some intuition about the main idea behind the DFDP
) algorithm.
"
o The next section provides the mathematical background and definitions of
T dynamic programming systems.
ﬂ. The third section gives a rigorous mathematical definition of the DFDP
7o algorithm in the form of a program flow-chart.
o The last section walks the reader through a fairly large example, illustrating
:?‘ the workings of the new algorithm.
= 1. Intuitive Exsmple
L

Before we give a rigorous description of this new depth-first dynamic
ra programming (DFDP) algorithm and go through a large example illustrating this
] algorithm, let us consider a small example which illustrates an advantage that DFDP

has over classical tree search.
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R This simple problem can be easily solved by inspection, or by classical DP. But N
ad suppose that we didn“t know about DP and tried to solve this problem by enumerating J
" all possible paths and choosing the shortest. 3
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. :;: The search tree would look like this: N
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-: Even for this tiny example, the search tree is pretty large, and it will grow s
37: j exponentially with the number of stages. However,there is much redundancy and .
S repetition in this search. :
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;& 29 For example, the upper branch of the tree visits Node 4:
g
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.",; y - \3 4/ etc.
Eaty
A but the lower branch also visits Node 4:
q
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! 0
0

and, therefore, the trees from Node 4 on in both cases look the same:

]
‘.‘ :
¥ -
30 T 9
R
22 . 3
2 N
2 9
K/
i 9
20
;:i: ) Since the cost functiom is separable and thus sstisfies the optimality principle, we
ADNEENN can cut down on computation by first exploring the upper branch and tree, and later,
G .
. : vhen arriving at Node 4 in the lower branch, just use the optimal cost to go from
. Node 4, slready computed by the first branch.
ﬁ:j > Of course, the upper branch itself is not free of redundancy, since both Nodes 7 and
e 8 were visited in two separate places, and, thus, we can achieve even more
By computational reduction. Both DFDP and classical DP exploit this computational

b2y Eﬁ reduction.

RN 2. Mashemstical Background

ot "

'.. LJ

'{f Let us use the traditional definition of Dynamic Programming problem, (see

iy ii [Larson], for example).
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3)

(4)

(5)
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(8)

Let X;, i=0, 1, 2, ..., N be the state-space at stage i.

S RP, i=0, 1, 2, ..., N, where i represents the stage variable.

Let U; (x) be the set of available actions in the state x € X; at stage i.
Let the system equation be

X(k + 1) = g (x(k), u(k)), k=0, 1, ..., N-l
where u(k) is the action chosen at stage k, stage x(k).

Without loss of generality (W.L.0.G.), let us assume that x(0) is specified,
and so is x(N), i.e., initial and terminal conditions are specified. Let the cost
function

J(x(0), u(0), x(1), u(l), ..., x(n))

be given. The problem is to find the optimal controls {u(0), u(l),...,u(N-1)},
which minimize the function J within the system defined by

x(i) ¢ X4

u(i) ¢ Uy (x(i))

x(0) = ¢ - Constant

x(n) = 4 - Constant
and by the system equation (1).

For the following discussion, let us make the traditional assumption that the
sets Uf(x) are finite for all x and all i (otherwise the problem would be
computationally infeasible).

Let m,;(x) be the cardinality of set U;(x).

Notice that the state-spaces Xj(i ¢ {0, 1, ..., N}) need not be restricted to be

finite. In fact, if the assumption (4) is true, then set Rj(RjCXj) of reachable
states is finite for all i. One of the strong points of the proposed algorithm is
its ability to handle such situations with ease and without having to pre-generate

all reachable state-spaces R .

Nevertheless, for the simplicity of notation, let us assume that, unless
otherwise specified, sets I; are finite and

let By be the cardinality of X;.
Also define T; as the cardinality of the set Ry C X;.

One of the features of DFDP algorithm is that it can comfortably handle any
cost function that satisfies the Markovian, '"optimality principle”™ conditions. But

for reasons of simplicity, we shall follow the common practice (see [Larson]
[{Bellmsn], etc.) of assuming that J is a separable function:

B4
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N-1
J(x(0), u(0), x(1), u(l), ..., x(N)) = ézoLi(X(i)' u(i)).

o
.'-1
»

N-1
Since the action space U = }Jo U; is finite (by (3)), we can assume W.L.O.G. !;
18

that Ly is non-negative for any i.

Also, W.L.0.G., we can assume that for a given i and given x, the set of —
actions

1 2 m
Ug(x) = (ui(x), ui(x) . . ui(x)}

is in the increasing order of L, i.e., if1 <38k < mi(x), then
k
Ly (x, ui(x)) < Ly (x, ug(x)).

(Actually, if that is not the case, the algorithm will work just as well; so this is
assumed purely for notational convenience).

There is one more assumption: W.L.0.G. we can safely assume that the final
state is a sink, i.e., XN = {d}. (See (3)).

3. The Algorithm Flow-Chart

Let us define the meanings of the variables used in the flow-chart (Fig. B-0).

s - current state

i - current stage

1, (s) - the currently shortest path length (cost-to-go)
from state s to the final state d

BCi(s) - the currently best control at state s

Fy (s) - the currently shortest path length from

the starting state c to state s

Expl. [s, i) - this boolean variable is equal to 1 if the state
s has been explored completely, (i.e., if the
optimal cost-to-go from stage s is known),
and 0 othervise

. . e
L e e te el

Predecessor [s] - the latest state from which we arrived at state s

Cur.Opt. - the currently shortest path between the starting
state (c, i) and terminal state (d, i)

.
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INLEIAL LZATION

BCl(s)v 0, all 5,1

Kl

li(s) - wall s, i

IN(d) «0

4
.

A

CC‘.(s) « 0, all s, i
F'(s) «w, all s
ll((.) )

C. Upt, «w

.
x|

Expt [s, i) « False
fxpL [d, N] « True

|

START

ivo

s+ i

!

s £xpl [s, i) = True?
i.e., has the state been
already explored?

Is €Ci(s) 2 my(s)? \

f.e., have all the controls from Expt [s, 1] « True
state s been explored?

1s i=0
<{|d s=c?

DESCEND ALONG THE NEXT CONTROL
1) CCi(s) - Cci(s) ¢+l

High-level Flow-ufart of the DFDP Algorithm

2) ”qi(s' cci(s)) BACK-TRACK:

i.e.. apply the next t) t « Predecessor [s]

control to consider new iei-l
state and the next stage.

ri(t) * llill(rf(s) + Li(so cci(s))- Fi’l(t))

Fig . B-o .

2) SUM « L(t, CCi(t)) ¢ Li(s)
3) If suM < 1 (t)

then  1,(t) « SUM and
BC;(t) « €Cy(t)

PRUNING 16 Fo(e) » [(t) < c. ope.
is Fi(‘) >L.0. ? then C. Opt. ~ Fi(c) + 1‘(1)

(1f true, then this branch s+t

annot be optimal),

Predecessor {t) + s

s+t

feis]

Go to the new state.

D)
0 .

ST IR N

,-.._»



C ci(s) - the currently considered control at state s

All the other variables and constants in the flow chart have been defined in
the previous section.
4. A detailed Example

- Let us illustrate the DFDP algorithm with a detajiled example. Please refer to
Fig. B-1 through B-17.

-
B 1) The problem is finding a minimum cost path through the network in Fig. B-1. The
node numbers are given above each node, the transition cost for each arc is written
above it.
— The starting state is 1, the terminal state is 22.
o 2) Fig. B-2. At state 1, we chose arc (1, 2) because it has the lowest cost of the §
- arcs originating from state 1. .

~ Thus we come to state 2. The circle above each state represents the data stored for -
ii this state. The top number (in this case it is 6) represents the value of F(s), the i
shortest known (at present) path length from the starting state.

D The bottom number (in this case it is infinity) represents the value of I(s), the ;
- currently shortest known path length to the terminal state. At present it is
infinite because no path to the terminal has been found yet.

. At state 2 we chose to transition to state 7 because that is closer to 2 than state
- 8.

:i The next transition is to state 12.

‘_L

3) Figure B-3. Here we followed our path all the way to state 22, the terminal

=N state. Note that the arrows originating from the visited states represent the best
g currently known control at that state.
. Notice the circles above state 22. The number 31 is, of course, the length of the
= path we’ve traveled.
The check mark below represents the fact that all paths from that state have been
N explored (there aren’t any). The number 0 below the check represents the cost-to-
hN go.
o 4) Figure B-4. Here we see that we have found a path of lengtlt 31 from start to
éﬁ finish. Thus the value 31 gets placed on the bottom of the circle of state 1 as the
current optimum. “
Now we back-track to state 17. We put 10 as the currently best cost-to-go, and .
looked for another arc to take from state 17. There are none. Thus state 17 has K
been explored. We put a check on it, and 10 becomes the official cost-to-go from )
- that state. =
i1 H
— Al
!
:
1
. ]
B
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Now we need to back-track more.

5) Figure B-5. We back-tracked to state 12. The current best cost-to-go from 12
is equal to the cost-to-go from state 17 plus the cost of arc between 12 and 17,
that is 10 + 2 = 12,

From state 12, we chose another arc to traverse, and visited state 18. The number
in the circle there is equal to the "length-from-start" to state 12 plus the arc
length of arc (12, 18), which is 19 + 5 = 24,

From state 18, we took arc (18, 22) and came to state 22 with the total length
traveled being 29.

6) Figure B-6. Since 29 is better than 31, we put 29 as the current optimum from
state 1.

Since there are no other arcs originating from state 18, we marked it as checked,
with cost-to-go being 5.

Then we back-tracked to state 12. Notice that the total cost-to-go from state 12
following arc (12, 18) is 5 + 5 = 10, which is better than the 12 currently there.
Thus, we should substitute 10 for 12 on the bottom of the circle, and also point to
arc (12, 18) as the new best known arc-to- take.

7) Figure B-7. As you can see, we did that. Since there are no other arcs to try
from state 12, we back-tracked to state 7. The cost-to-go from there becomes 10 +
10 = 20. Then we try another arc, which takes us to state 13.

8) Figure B-8. From state 13 we go to state 17. Since it has a check mark, we
don“t have to do anything with it, just copy the cost-to-go from it (which is 10)
and back-track.

9) Figure B-9. We back-tracked and came back with 10 + 4 = 14 as the cost-to-go
from state 13.

Since the two numbers in the circle above that state add up to 35, which is larger
than 29, no change to the current-best-solution need to be made.

10) Figure B-10. Then we explored arc (13, 19), and found that taking it costs a
total of 12, which is better than 14, the previous best.

Then we wanted to visit state 19. But because the total length is already 38, and
we are not "there" yet, we know that this path cannot be optimal, so we back-
tracked. ’

11) Figure B-11. We back-tracked to state 13, put a check on it with 12 as the
minimal cost-to-go.

Then we back-tracked to state 7 to discover that 12 + 12 = 24 is not as good a
cost-to-go as 20, so no changes need to be made.

State 7 was done, we put a check and back-tracked to state 2 and put 20 + 3 as the
current cost-to-go. Then we went to state 8 and put 6 + 6 = 12 as the current
cost-to-get-there.
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12) Figure B-12. From state 8 we went to state 12. Since it has a check on it, we
just recorded its cost-to-go 10 and are ready to back-track.

13) Figure B-13. The cost-to-go from state 8 becomes 10 + 4 = 14. Notice that the
two numbers in the circle above state 8 add up to 26, which is smaller than 29 - the
currently best known total cost.

14) Figure B-14. Thus we put 26 as the new current optimum.

Then from state 8 we went to state 13. Since it had a check on it we back-tracked
with 9 + 14 = 23 as the cost-to-go, which is much larger than 14 that we currently
had.

Then we wanted to go to state 14, only to discover that the cost of arc (8, 14) is
21 which in itself is larger than the current cost-to-go 14 + 6 = 20, which is
better than 23 that is currently there.

15) Figure B-15. So we changed that 23 to 20, put a check mark on state 2 and
back-tracked to state 1. Then we took arc (1, 3) with cost 1l1l.

From state 3, we first went to state 7, and since it has a check mark on it, we
didn“t have to go any farther, we recorded 20 as the cost-to-go, added it to 2 (the
cost of arc (3, 7) and put 22 as the current cost-to-go from state 3.

Then we went to state 8, recorded its cost-to-go 14, added it to 5, and came up with
a better cost-to-go: 19.

Then we visited state 9 on the arc of length 18, which brought the total cost-to-
get-there to 29, which is larger than the curremt best total cost 26. No further
exploration is needed.

16) Figure B-16. Thus we were done with state 3, back-tracked to state 1 and tried
state 4 next on an arc of length 14.

From state 4 we went to state 8 which had a check and gave us 14 + 9 = 23 as the
cost-to-go. Then we tried state 9, but the cost-to-come added up to 27, which is
too large already. Then we tried state 10, but that gave us 29, no good either.

Thus state 4 was explored, we put a check next to it, and back-tracked.

We then tried going to states 5 and 6, but both of them required more than 26 units
of cost, so we didn“t have to explore them.

Thus the exploration has been done. The optimal solution is of length 26.

17) Figure B-17. Following the arrows, which represent the best-arc-to-take from
each explored state, we can now reconstruct the optimal solution path.

If we look back at Figure B-16, we shall see that we needed to explore only 26 out
of the total of 49 arcs in this network.
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Appendix C
A DISTRIBUTED RESOURCE ALLOCATION
ALGORITHM BASED ON EXTENDED MARGINAL ANALYSIS
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1. INTRODUCTION

Marginal analysis is commonly applied to resource allocation problems

2 with separable return functions. However, in many applications, the
x return function is nonseparable, and thus the classical marginal analysis
- is not applicable. In this section, we shall extend the marginal

analysis to a certain case where the return function is nonseparable.
A set of necessary and sufficient conditions for optimal allocation

is given. The analysis easily lends itself to distributed implementation.

2. PROBLEM STATEMENT
The allocation problem is given as follows:

o =]

N a

8
! s.c.iz-:l x1+ j;k yj-R > ?)

X0y €1, = {0,1,2,...}

Sic{l,...,s} ;i=1,...,n

/

L ]
s’

where f1 has the following properties:

:S (a) fi(o;yj’jesi) =0 for all yjeI+
- (b) fi is nondecreasing in each component while holding the
= rest of the components fixed
(c) For all i=l,....n (x > 0,y, > Oy v > 0)
fov) . -1 .
fi(xi4-1,yj.jesi) + fi(xi l’yj'Jesi) £ 2fi(xi’yj’jesi)
f,‘.: fi(xi+ l;yt - l.yj.Jesi- t)+ fi(xi - l;yt + 1.yj »jes, - t) € 2f1(xi;yj yjeSy) ;VtCSi
i £i(xg 3y +1,y4,3€8 ) + £, (x 3y, - Ly, J€Sy - £) € 2f, (x5y4 +JeS )V ees,
@ £y (g3 + Ly - 1,368, - {e,e' D+ € (xg 5y -1,y + 1,565, - (£,e'D)

£ Zfi(xi;yfjcsi) v t.t'ESi

Note that this corresponds to ‘'concavity” of f,.
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3 - Note that (P) is more general than the usual resource allocation :
i I' problem where the return function is separable. One class of problems j
é N that has the above formulation is in mission planning where we are to :f
{ " allocate R resource units to n targets which are defended by s defense ::
s ig sites. Si represents the subset of defense sites that can "protect” ;i
| - target i. The function fi(xi;yj’jesi) represents the probability of .
g ;j destroying the 1th target, and its functional form implies that the

B success of destroying target i depends on (1) allocation of X units

§ é; to target 1 and (2) allocation of yj units to those defense sites

-

which protect target 1i.

3. A TRADING MODEL

Let us define a concept of price which will be utilized in the later

discussions. For a given allocation {xi}.(yj}, define for x; > 0

. A
A;(xi;yj-jesi) - fi(xi;yj.jesi) - fi(xi-—lzyj.Jesi)
A A
and for yj>0. Gj = {iljesi}. yj = {yl"'"yj—l'yj+1""’ys}

N o;(yj.yj;xi.iecj) 4 Z (£, (x;3y,,8e8,) - £, (xg3y5-Loy g 9@1‘5)}

1€G_
» 3

For completeness, we define A;(O;-) = oo, p'(O,yj;°) = o,

3

Note that A; is equal to the marginal decrease (in absolute value) in
S return if one resource unit is taken away from the ith

]

s

»

target from its ‘ -
nominal allocation. Now if we imagine that there are n agents, each of

them controlling resource units {xi} assigned to the gth target, then for agent
Ei i to give up one resource unit, he must charge a price equal to the !

marginal decrease in return due to the reduction of one resource unit.

e one can interpret AI as the "selling price'" for one resource unit asked -

by agent i who controls X .

Therefore,

!

Similarly, if we imagine that there are s agents controlling

th - it
the resource units {yj} assigned to the j defense site, then pj has -
e g
g: the interpretation of "selling price'" for one resource unit asked by the -
agent controlling yj. ]
Y
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e T Analogous to the concept of selling price, we have a concept of 'buying"
. price." Define )
SRR X
7 2 ix s S) =¢
.:: ':;‘ i(xi,leje i 1(xi + j., yj,jCSi) - fi(xi,yj,jesi)
PR

- This has the interpretation of rhe buying price that the agent controlling b,
f v x; is willing to pay for an additional resource unit from an outside g
- source. Similarly, one can derine
AR
SR

i, :

I\ -
2 a :
¥ With the above notion of prices, we have easily the following
4 R, properties:
4 ¢
4 ts - + .

i )

- 3) o.( I:x, ,1e6 ) = p+(y -1 yj'x ieG,)

‘ SIS R S M e A S

.- - j + 3 “
X - . J.
* . 4) pj(yj,y ,xi,iecj);pj(yj,y ,xi,iecj) [from (c)] :
., ;ﬁ Properties (1) and (3) come from our definition and the implication of ;
-, A 3

properties (2) and (4) is that at each agent, the selling price for one

. h; unit resource is greater than the buying price for one unit resource. R
,i . With the above concept, we can investigate the'trading" pattern among
f; ﬁs agents, where the result of a trading yields a better overall performance;
o, i.e., J increases. Let us divide the agents into two groups: X-group and Y-
: ﬂi group. The X-group controls the resource units allocated to the targets and the
,; Y-group controls the resource units allocated to the defenses. We have the
F Ej following trading patterns:
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o (1) agents in X-group trade among themselves

J' L
) R
q .. (2) agents in Y-group trade among themselves Y
- --. n“
& = (3) agents in X-group trade with agents in Y-group »
3 bt
w We can also have hierarchical trading patterns as illustrated in Fig. 1. .i
3 .;
& Trade between
. X (as a unit) and Y (as a unit)
n -
Rt
E Rx Ry
Trade among Trade among
X-group Y-group
II Figure A-l Hierarchical Trading Pattern
n 4. TRADING EQUILIBRIUM AND OPTIMAL ALLOCATION
In this section we shall investigate the above trading patterus, and
relate the concept of trading equilibrium to optimal allocation.
Theorem 1: Let (xi}iyj} be a given feasible allocation. Assume now trading -
e ———— .
takes place among X-group with {yj} remaining the same. If there exist some i,1i’ :%
- such that _;
: :

Ap(xg3y,9E5,) > AL, (g iy yadesy)s (L

o,

then trading will take place between agents 1 and i' where at least one

i

resource unit will be transferred from i' to 1.
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. Proof: Equation (1) implies that '®.
fj_(x1 + 1; Yy Jesi) - fi(xi;yj.jesi) > fi,(xi,;yj,jesib - fi,(xi.—l;yj,jesi‘) ;::;:
- and thus for the new allocation {xc;_ }.{yj} where '@,
)

| x: = x, + 1 "‘1? =x0 -1 x, =x,  t#fi,1 i
we have —

o

}: n n S
-, L
) o, . . o

Z fi(xi.yj.jesi) > Z fi(xi,yj,Jesi) 2

- i=1 i=1

.-

P

]
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and thus trading will take place between agents i and i' which results in
f::: a better overall performance.
T Consider the situation where {yj} is held fixed, then trading among
. agents in group X continues as long as (1) is satisfied for some i, 1';

. 8

and every' time a unit resource transaction is completed, the overall

performance is improved. The trading sequence will result in a final

allocation where no more trading will take place. We shall call such an
- allocation an equilibrium allocation among the X-group while (yj} is
i held fixed.
s
= Theorem 2: Let {yj} be given with Z Yy < R. The equilibrium allocation
" j=1
- among the X-group, {Xi}, is characterized by
.‘i

! i=1,...,n

- 4+ A - ~
N (%,3y,,365,) € AJ (X, 13y, ,4€S,,) 1'=1,...,n (2)
N » ] N ! 1y ’. t 3r ey
P 17173 i 1771774 i 1 #14r
o Moreover, {xi} solves the optimization problem
n
S - . €
i max  J 1-21 £, (xgiy 38 )
N s P(y)
s.t. Exi = R - Z y.Jj H x1€1+
i-1 j-1
e c5
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g Proof: From theorem 1, we see that (2) must be satisfied if no trading occurs. 1
All we need to establish is that if (2) is satisfied, then no trading occurs.

- Let us consider an allocation {xg},{yi} where :

- x: = xi + ki H E ki =0
i=1
One can imagine {x:} as the resulting allocation, as deviated from {;ci}, if

h i a trade has occurred among agents in X-group who are having initial allocation
- {;(i}. For any 1, ki can either be positive or negative. Suppose ki > 0, then

.

o}

. € = H €
| &
N kg1 e A s ]
N = 1 xiw,yj,jesi) + fi(xi,yj,je i) (3)
Pt - =0
- By the first inequality in assumption (c), we have
' £, (x, 3y, »J€5¢) > = £ (x.+1;y,,4€5.) +% £, (x,-13y,,4€S,)
4 137073005000 7 g B ARG TRIY e R ) T By KT 4080y .
3 :
P4 ]
ARTE or for all x,> 0 ‘
. + ] +, . 1‘
:.1 :_.: )i(xi—lgyj’jssi) > Ai(xi’yj,jesi) B
-_.:‘; - which implies that )\I(xi;-) is decreasing in x;. Using this fact, (3) ]
T becomes i
- :';' + 9
'~ e o, L. %, N S
50 £, (x3y4,365,) € kA (Ry3yy,3€8,) + £y (Ry3yy03€5) q
.':‘ . :
2.3 If k, < 0, then usinT t'l'_\e similar argument, we have 3
k,1
o, - . YT s e + X, 3Y.»3€S. .
.,:' ‘e fi(xi,yj,jesi) )\i(xi) ,yj'jcsi) fi( i yJ Je 1)
o =0
;-'; J
Y. (% iy . .jeS,) - (4) ]
N Let M= min A (x,;y,,J€S,), then (1),(3) and (4) gives :
S 1 717] i .
G i=]1,...n .
I. - .
1

-'j,‘ o, cé ‘




ere

fi(x‘i’;yj.jesi) € kg T+ £,(R5y,,3e5) (5)

FS~ n

. since z: ky = 0, thus

S 1=1

‘.'::; .- n n

N X £ Oy ie,) € 2 £ (xiy,d€S,) (6)
aalihs o St H4 AR e S S i

SRS

B

N
S ss and therefore no incentive for such trading to occur. Note also that (6)
; implies x, is an optimal allocation for P(y).

;ii N Next, we shall consider trading among agents in Y-group. We shall
::*: . say that j and j' are related 1if Gj N Gj' # 0; otherwise they are unrelated.

‘3

:::;; ) Theorem 3: Let {x:t },{yi} be a feasible allocation. Assume trading takes
::::: '.:_: place among agents in Y-group with {xi} remaining the same. If j, j' are
Y
(3,3")
. related and if (y = {y.,...,yt-{y.,y. D)

S R 1 s J J
.a
""":'. “.." + - (j ] ! ) . : >0 j' .
:__: :_ Dj(yj»ij l,y ’xi’mcj) pj'(yj"y sxiviscj) 7N
1™

oy

.:: -~ then trading occurs between j and j' where at least one resource unit is
.;f transferred from agent j' to agent j. On the other hand, if j, j' are
f{; unrelated, trading occurs by transferring one unit from j' to j if we
- have

:‘::‘: ’ p+(y ’yj;x ,1€G ) > C‘T'(y n)’j';x »y1€G |) (7')
DA 3773 i b 3773 i i
fj Proof: The unrelated case is similar to the case of trading in X-group and
;4: the proof is similiar to that for Theorem 1. Therefore we shall concentrate
I\.
}} only on the related case.
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Let us partition the set In 4 {1,2,...n} 1into Gj n Gj" GjIGj" -
t
<;j,|c;j and InIGjUGj. If j, j' are related, c;j ncj, is nonempty. ]

- o
e Consider a new allocation {y9} with e
) .

o o ‘ (o}
= 4+ 1 sy, = -1 :
yj yj ’yJ ' yj ' y

t=yt t#3,3' "

'SRy S M. T 4 .., Tl
% "
i

For ieG, N G,,, we have

b 3
£y (xyiypa0eS) = £, (xi5y +lay -1, vyt 8-{1,3'H

= £ 03y L vyl ypaRes-{5,3" D

- £ Gxyiy0mLeya2e8,-3") + £, (x4 0-Loy . 068, -5 ")

- fi(xi;yj,jesi) + fi(xi;yj.jesi) (8)

for ieGjIGj,, we have

o . - — .
fi(xi’yﬂ'zesi) = fi(xi,yj+l,y£,2.es1 i) f(xi,yz.lesi)
+ fi(xi;yz,lesi) €] i;
o
for 1ecj.|cj, we have ip
e
p Z
he e -
- ey - . - 5Ty . s
r k
L ,
o + fi(xi,yz,le Si) (10) ﬁﬁ
E and for i€ Inbj L)Gj,, we have
b
o
) fi(xi’yl’zesi) = fi(xi’yl’lesi) (11)
k4

3 *AlB = {acA|a¢B}
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l' Combining (8)-(11) and using the price definitions, we have
b 3 o + (1.1
[ 2} . = - ’ :
>, - ' n
- -0 3, .

T pj.(yj,,y ,xiecj,) + g;i fi(xi’yl’gesi) (12)

;ﬁ . therefore if (7) is true, trading will occur between j' and j which results

S ig in a better allocation.

’: o We can define equilibrium allocation among Y-group as we did for X~
IR ‘
A group.

A n

) c\v Z

. ‘: Theorem 4: Let {xi} be given with xi< R. The equilibrium allocation

i=]1

1. among the Y-group, {fj}, is characterized by

A

._3'. p‘f‘(,\ 9 -1 A(j!j').x ieG.) ¢ O- (9 9j'.x ieG.,) (13) :
J ' jyj’ j' ,}' » i! j ~ j' j') ] i’ jl q
T if j and j' are related, and ;
_::: : + Aj. - A Aj' . X
v 'ﬂ 1
jﬁ o if j and j' are unrelated. Moreover {§j} solves J
o ]

SR max Z:f (x,;y.»3€81)

- Yy

P(x)

e s n +

o .t. =R - 1Y€

i' s.t E:yj. R :E: xg ,yj 1 )

=1 i=1

1. a

Et A

e o
PRI

ﬁi _ Proof: The proof is similar to that for Theorem 2 while utiiizing (8), (9),(10),

= Ei (11) and the third and fourth inequalities in assumption (c¢); but algebrically is

’ %

L more complicated because of the "relationship" among the agents in Y-group.
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Finally, we shall consider trading between agents in X and Y groups.
We shall say that an agent i in X-group and an agent j in Y-group are
dependent if jESi (or equivalently iEGj).

Theorem 5: Let {xi},{yj} be a feasible allocation. If i in X-group and
j in Y-group are dependent, and if

03(7yoy) % -Lx SteC,=1) > A](x iy 0e8,) (14)

trading occurs between these two agents with at least one resource

unit being transferred from i to j; and if
+ - j
ki(xi;yj-l.yz.lesi-j) > pj(yj,y ;xt.teGj) (15)

then trading occurs with at least one resource unit being transferred

from j to 1i.

If, however i and j are not dependent, then trading occurs with

at least one unit being transferred from i to j if
Dy, s¥ iX L tEG,) > AT(x;y,,L€S,) (14")
37737 ety S il A i

and one unit being transferred from j to i 1if
2ix, 5y,.2€8,) > pT(y. yd;x_ ,teG,) (15")
i i’ 2’ i j J-’ ] t’ j

Proof: This proof is similar to those for Theorem 1 and Theorem 3. In the proof,

‘the second inequality in assumption (c) is utilized.

* *
We shall say that a certain allocation {xi},{yj} is in global equilibrium

if there is no incentive for any agents, either in X or Y group, to trade

Qith each other.
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Theorem 6: A global equilibrium allocation {xI}.{y j} is characterized by

. the following conditions )
. 4
' . - -
(@ J\I(xi;yj.jesi) $ Ago(xfiiyyadesy); 1'=1,..0,m 5
o i=1,...,n 5
- + . ¢ * - * x4 o
S (2) pj()?oYSl"lnY*(j 3 );xioiecj) < pjl(}'jny ] ;x;.iecj) ‘;
; for all (j,j') which are related g
Ky

+, k Ky % T
pj(yj 4 .x1|1€cj) spj|(nggy ,xi,iecj,)

o for all (j,3') which are not related

N (c* x4 * - *
~] ){ (3) p;(y;.y J;xi-l.x::.t:e:cj-i) 3 li(xz;yvlesi); VieGj. j=1,....s8

x % * - R
p;(yj.y j.xt.tecj) £ ki(xi;y;.zesi) Vi¢ Gj, j=1,...8

'! 4+, k % * -, Kk ky kK
Ai(xi:yj-l.yz.zesi-J) < oj(yj.y ;xt.tecj) vies;, 1 = 1,....n

+ *' * -, * *j. * v
L Ai(xi, yl','ssi) £ R.j(yj.y ,xt.teGj) _ﬂ:Si, i=1,....n

* *
Moreover, if {xi},{yj} is a global equilibrium allocation, it also

%

-~ solves (P).

_'l Proof: This comes directly from combination of Theorem 1 to Theorem 5.

d C* is the necessary and sufficient condition for both the global
equilibrium allocation for the trading problem and the optimal solution for

<.

o the allocation problem (P). An interesting interpretation of (* is possible.

".'
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Let us interpret

'
p}-(yj,yj—l,y(j’j );xieGj) —— buying price j will offer for one
additional resource from a related
agent j' in Y-group
p;(yj;xi-l,xt,xtecj-i) == buying price j will offer for one
additional resource from a dependent
agent 1 in group X
AI(xi;yj-l,yz,zesi—j) -- buying price that agent i 1in X-group

will offer for one additional resource
from a dependent agent j in group G

Then each agent has a selling price for one unit of resource; but dependent

on where he buys his resource, has different buying prices for one more
unit of resource. The global equilibrium is achieved when all the buying
prices each agent is willing to give is lower than all the selling prices
offered by the agents.

5. A DISTRIBUTED ALGORITHM
In this section, we shall describe a distributed algorithm based on
Theorem 6. The algorithm is based on a sequence of "distributed trading"
which leads to the trading equilibrium. Each trading cycle consists of
two phases:
Phase 1: 1information exchange

Phase 2: unit resource trading

The purpose of Phase 1 is for each trading agent to compute his
selling price and his set of buying prices (from different agents) for
additional resources; in Phase 2, trading is to be carried out among

agents in a distributed manner such that J 1s increased.

Phase 1: Information Exchange

"

DR e
L.
&L,

o
L 3

R o e

Let us assume that, in order to evaluate

{fi(xim;yj‘O-B,jSSi)} a=<,0,1; B= -1,0,1

information exchange between agents { in X-group and j in Y-group (jesi)
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‘ . must be carried out; which will, in turn, determine
BN + . + ey - :
-.z - Ai(xi:yjajesi)» A:L(xi»y.j 1-}’2,1531), Vjssi
. and
’,‘\? Ai (xi;yj IjESi) .
After
-
i {fi(xi-m;yj+8,jesi)} o = -1,0,1; B=-1,0,1
;ii are determined for all i = 1,...n; then
-
+ + '
pj(yj,yj;xi,iecj), oj(yj.yj.—l,yu’j );xi,iecj)
i; and
A, - i
sx ,1eG,
. pj (eryj ] J)
- are determined for each agent j 1in Y-group.
o Phase 2: Unit Resource Trading
N We shall distinguish between three trading patterns:
' . (a) Trading among X-group
(b) Trading among Y-group
. (c) Trading between X and Y groups
< To describe how trading is to be carried out, we need to specify the set
of agents that each agent is allowed to trade with. For trading pattern (a),
N T each agent in X-group is allowed to trade with any one or more agents in
Al
S X-group. For trading pattern (b), each agent in Y-group is allowed to
' ;{ trade with all related agents and one or more unrelated agents in Y-group.
..
For trading pattern (c), each agent in X-group is allowed to trade with
% ';: all its dependent agents and one or more independent agents in Y~group.
A From Phase 1, selling and buying (dependent on agent to buy from)
Eg prices are computed; then depending on the trading pattern each agent
trades with the allowable trading agent for one unit of resource. The -
: ﬁj trading is to be carried out in the following sequence. -
i 'q - -
: (1) Each agent determines, from the set of allowable trading .
v agents, a subset of agents who offer a buying price higher 2]
Ei than the agent's selling price (denote this subset as a list v
. of buyers). An agent with a nonempty list of buyers is -
ARIRR denoted as a selling agent. A
R 3
3
2
]
RPN
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With the imposed '"concavity conditions'", one can show that successively
iterating between Phase 1 and 2 will yield a sequence of monotanic

improving resource allocations that will converge to the optimal allocation.

[ N

Each selling agent goes through his list of buyers and offers to
the highest "bidder" a unit of resource at his selling price.

A "buyer" who receives multiple offers chooses to receive
one unit of resource from the seller who has the lowest
selling price.

Those selling agents whose offers are not accepted will form
new lists by deleting the buyer who offered the highest price
but chose to buy from other selling agents; these will be

the new set of selling agents.

If the set of selling agents is empty, Phase 2 is terminated,
otherwise go back to (2) and iterate.
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