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1. IlOriouN

This final report describes the work that AI&DS has performed for ONR

under the contract entitled "Dynamic Sequence Assignment." The ultimate goal

of our long-range research effort is to design and develop an interactive

3 analyticX planning aid for aircraft mission planning. The primary objec-

tive of this contract was to investigate various mathematical algorithms and

design methodologies and techniques to achieve this goal.

The decision aid to be developed should perform the functions dealing

with all the low-level procedural, computational and search tasks, enabling

the decision makers to concentrate on the important high-level planning

issues. Thus, this decision aid will provide for a successful symbiosis

between the man and the computer, utilizing the best capabilities of each of

them.

The overall control of the decision process will be in the hands of the

j human decision maker, who will be in charge of providing the overall tacti-

cal guidelines. Be will use the decision aid for: a) complex mathematical

computation of the best plans within the given tactical guidelines, and b)

evaluation and graphic simulation of tactical plans.

The following tasks were completed during this project, in preparation

* for the building of such a decision aid:

a) DesigoAd a preliminary mission planning testbed

b) Developed mathematical and structural theory of mission planning

c) Created optimal or near-optimal, human-guided algorithms, for genera-

tion of the best plans within a given strategic guideline.

Our investigation began with developing basic mathematical theory and

%M models of the forces and parameters present in modern air missions, and of

the high-level control structure involved in such missions.

After these models were developed, we implemented the most representa-

tive scenario in the form of a basic computer testbed database. The testbed,

in addition to providing a convenient environment for quick testing of human

generated mission plans, also provides some important aids to planning. In

j particular, it contains an algorithm that automatically finds the best

Uflight path for each individual sortie and evaluates the goodness of each

such sortie.

II
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Our next research goal was that of developing efficient mathematical

:1 algorithms necessary for automation of mission planning. The two major

issues to be addressed were the high level sortie assignment problem and the

low level problem of path selection. Dynamic programming (DP) formulation

provided the best conceptual framework for solution of both these problems.

The two most important mission control models have been successfully formu-

lated as DP's, and the relevant mathematical equations have been developed.

* An efficient DP formulation for the lower-level problem of path optimization

for individual sorties has also been designed and implemented.

*In the process of our research on dynamic programming we discovered a

a.- new algorithm, which combines the ideas of dynamic programming with branch-

and-bound search techniques and provides significant advantages over the

other two with respect to the mission planning problem. We called this

algorithm Depth-First Dynamic Programming (DFDP).

In addition to DFDP, which is an optimal algorithm, we designed a

number of faster heuristic solution algorithms. Most of these algorithms,

~ .~ as well as a streamlined version of DFDP, have been implemented on a PDP-20
computer. We have run a number of tests and comparisons between the

developed algorithms and found important differences and trade-offsa between

them.

To improve the algorithms we developed, and to make them adhere more

closely to real-life situations, we examined partitioning the problem, both

spatially and temporally. We approached the problem spatially from two dif-

ferent perspectives - partitioning the scenario of interest into separate

regions, and grouping sets of targets together. In analyzing it temporally,

we considered multiple attack waves, where defenses may be able to reconsti-

* tute themselves before they are hit again.

We have also studied the overall design methodology for computer-aided
3 mission planning, including decomposition of the overall problem into modu-

lar subproblems, and selection of proper utility measures.

*Finally, we have developed basic ideas for extending our methods to

several major issues involved in more complex models, including such issues

as plan compression, multiple weapon loads, and uncertainty.

This report is organized as follows. Section 2 is devoted to a

detailed description of our mathematical models of basic mission planning

2
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problems. Mathematical algorithms for the solution of such problems are

described in Section 3. In Section 4, we highlight the Streamlined Depth-

K ~ First Dynamic Programming algorithm and describe the software developed to

implement it. Section 5 explores our partitioning ideas and presents some

of the results we have obtained in implementing these ideas. In Section 6,

we present an overview of the interactive mission planning methodology. Sec-

tion 7 presents new modeling issues that need to be addressed in future

research. Finally, in Section 8 we present our conclusions. There are

71 three appendices in our report. Appendix A presents a dynamic programming

~ .* approach to mission planning. Appendix B describes the Depth-First Dynamic

Programming algorithm. In Appendix C we provide a detailed formulation of

* the Marginal Utility algorithm.

-z'
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0' 22. SItiiA O FOIMLATION

In this section we present our mathematical formulations of basic

mission planning scenarios. Subsection 2.1 introduces the basic battle

model, while subsection 2.2 describes two of the most important command

and control structures that apply to our scenario.

2.1. IASIC UDTIA SCU ItO

The current formulation is a high-level model of the surface-to-land

;battle situation. The forces involved in the battle are friendly aircraft

carriers with airplanes and/or ship/submarine-borne surface-to-land cruise

missiles on board poised against enemy land targets and enemy defenses pro-

tecting those targets.

The objective of an attack mission is to inflict the maximum possible

damage to the enemy targets, subject to aircraft survivability constraints.

Planning of this mission involves jointly making the following decisions:

a) which high-valued targets to attack,

b) which defensive threats should be destroyed to facilitate the attack,

) which attacking units to assign to each objective,

d) the sequential order of these attacks, and

e) how to optimize the performance of each attack mission (e.g., path

optimization, use of EW resources, etc.).

The rules of the battle are as follows:

There axe n targets, each target T having its own initial military

value V(T) assigned to it. There are u defenses protecting the approaches

to the targets. Friendly forces consist of q aircraft carriers with HAi

airplanes on board carrier i.

Each airplane A will carry out an assignment against one of the enemy

I objects and is allowed to choose the safest path for reaching that object

within the available fuel allowance fi. If an airplane k attacks a target

4
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T, then A will destroy T with probability PK(A -> T). If an airplane A

attacks a defense D, then A will destroy D with probability PK(A -> D). If

' an airplane A flies near a defense, then it will be shot down with probabil-

ity PK(D -> A), which depends on the proximity and the duration of the expo- .7

sure. All single events are assumed independent. For example, if an air-

- ,, plane flies over two defenses, DI and D2, then its probability of survival

Psur(A) will be equal to
* 

'.

Psur(A)-[I-PK(DI4A)] [I-PK(D2ZA)] (2-1)

The objective is to find the sequence of assignments that maximizes the

expected success E(L) of the attack, which is equal toL.A

n (2-2)
E(L)- Z V(Ti)(l-PS(Ti))

-'a 
-'

where PS(Ti) stands for the probability that Ti survives all the attacks

directed against it. The value of PS(Ti) depends on the number of airplanes

attacking it, the probability that these airplanes will avoid all the

defensive threats along their paths, and the probability of their cuccess

against the target.

Figure 2-1 introduces a small example of our scenario. This example

will be referred to several times throughout this report. Figure 2-1

represents an aerial view of the battlefield. The field is divided into an

8 x 8 square grid. There are six targets, TI through T6, in the top half of

the field. On the right we can see the value V(T) associated with each tar-

get T. For example, target T3 is the most valuable with 350 points while Ti

is the least valuable with only 100 points. Five enemy defenses, Dl through

D5, protect the approaches to the targets.

J5 -'a
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T 2PE Value:T1 T2 I21 100

03 T 6 t .9 ri 100
13 T4 D5 3 D2 .9p 12 300

D2 4 03 .9? 13 350
F Dl D4 5 D4 .?9 14 300

6 5 V TS 150
Cl 7 T6 200

'"-' I 2 3 4 3' 6 7 I

Airplanes: Al A2 A3 A4 A5 A6 A7 A8 A9

A10 All A12 (all on board Cl)

Figure 2-1 Example Scenario

There is one aircraft carrier, Cl, with twelve airplanes on it. For

simplicity of discussion, all the airplanes are presumed to have identical

, ' capabilities, as do all the enemy defenses. Each airplane has capacity for

f - 17 units of fuel. It takes two units of fuel to fly from the center of

one square to the center of the adjacent one if one is flying vertically or

,.. horizontally; it takes three units of fuel if one is flying diagonally, as

seen in Fig. 2-2.

2

2

-" 3
_3

Figure 2-2 Fuel Consumption

~ *An allowable flight path is thus a chain of vertical, horizontal and

-m diagonal transitions whose "fuel length" is no greater than 17.

The following are the values assigned to various probabilities of kill:

PK(A -> T) = .8; PK(A -> D) = 1.0; probability of kill by a defense D

6
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against an airplane A (i.e., FE(D ->A))that is flying by is computed

* accordingly to the following rule (see Fig. 2-3): every time an airplane

transitions into one of the eight squares next to defense D, the airplane

will be shot down with probability of 20%, while a transi.tion into the cen-

tral square, where D is situated, entails a 30% probability of kill.

D .2 .2 .2

.:2 '.3 .2

.2 .2 .2

Figure 2-3 Defensive Threat Probabilities

* 2.2. ]MODELS OF PLANNING AND CONTROL

There can be many ways in which attacks can be executed. For example,

they could be executed in parallel all at once, or they could be executed

one at a time, or in several attack waves. The execution structure of a

particular attack in real life depends on the situation in general and on

the time limitations and intelligence capabilities in particular.

As our initial models of control we chose the two most representative

situations. They come from the opposite extremes of the spectrum of all

available controls. They are called Closed- and Open-loop Control Models,

for the reasons that will be described subsequently.

2.2.1. Closed-loop Control Scenario

Missions are executed sequentially, each new one starting after the

completion of the preceding one, with the knowledge of its outcome. Thus we

have a perfect feedback situation.

Example 2:

* Let us consider the situation in Example I (see Fig. 2-I). A decision

maker may decide to start his attack by sending one of his airplanes, say

Al, against T2. The optimal path computation routine predicts that Al has a

322 chance of destroying T2. In the case that Al is successful, the new bat-

tle position is obtained fromn that of Figure 2-1 by deleting Al and T2 from

..................--- *. .* -*V7



consideration. Notice that we have accumulated 300 points as a result of

destroying T2. In this situation we may decide that the next target to

attack would be T3, and send A2 against it.

On the other hand, our first assignment (Al -> T2) could have failed

;..' ~with probability 68%. Then we would have faced the same position as in Fig-

ure 2-1, except that now Al is no longer available. No points have been

accumulated, of course. This situation requires its own new decision, and

- we decide to send A2 against T2, also,.

Notice that different outcomes can thus entail different future assign-

ments. For each of the two possible outcomes of the first decision, there

will be a second decision with two possible outcomes, and so on.

Example 2 illustrates the point that a complete solution to the

closed-loop problem has to be in the form of a decision tree, for example

that in Figure 2-4." " A3 - T 3

Return: 300 points3 3 vKA 2 T..3
A 

IsI.

;,.', *

13

AI ~ ~ 2 2 2[

Return: O. points 3 . <

Figure 2-4 Decision Tree for the Closed Loop Scenario

In the closed-loop scenario the equation (2) for the expected return

function becomes:

n
S(L) E V (Ti).i (M)-Prob(i)

1()C j-i T (2-3)

8
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-- where OC is the set of all final outcomes, and Prob (i) is equal to the pro-

bability of final outcome i, and

I 1 - if Tj has been destroyed (2-4)

M ~ in outcome i
0 - otherwise

2.2.2. Open-loop Control Scenario

In this scenario all missions are executed sequentially, but the out-

comes of earlier missions do not get fed back to the controller and thus do

not influence the future assignments. In the open-loop case, the proba-

bilistic outcome of each attack is predicted before its execution. Conse-

quently, there is no advanta&e in waiting for the outcome of one mission

before proceeding with the next one, and the whole attack sequence can be

planned in advance.

Exaunle 3:

Let us see how the open-loop control will work for the scenario in

Example 1. A particular open-loop attack plan is displayed in Fig. 2-5.

; N Al"-DI

" - A2 -Dl

A3 -- D3

A4 - D4

A5 '- D4

A6-'- T2

A7-- T3

A8-*-T4

A9-' T5

AI0-- T6

All-a- Ti

A12-- T3

Figure 2-5 Attack Sequence for Open-loop Scenario
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* This plan assigns five airplanes to the task of creating holes in the

enemy defensive line, as a first wave of attack. In the second wave, the

remaining seven airplanes will then proceed with their attacks against the
-~ targets: target T3, the most valuable one, is attacked twice, while the

-~ other five targets are attacked once each.

After the first wave attack is completed, all the eneumy defenses still

have to be taken into consideration, but the three defenses that were sub-

ject to our attack nov have a very low probability of existence (PE) as seen

in Fig. 2-6.

Dl .08
D2 .99
D3 .47
D4 .08
D5 .99

Figure 2-6 Probabilities of Existence
of Defenses After First Wave of Attack

Attacks against the targets are also evaluated in the "probability of

existence" sense. Fig. 2-7 summarizes the outcomes of the second wave
attack. The numbers in the second column stand for how much value we

managed to extract from each target, and the numbers in the first column

stand for its remaining value. For example, target T3, which had 350 points

in the beginning, is now worth only 72 points, with 278 having been already
extracted by airplanes A7 and A12.

Ti 25 75
T2 97 203

* .1T3 72 278
T4 136 164
T5 37 113

.~T6 104 96

Figure 2-7 Final Values of Targets

The total numnber of points extracted is thus 929, with 471 points still

* .. remaining.

The reason the two control scenarios described above are so important

is that almost all real-life feedback command and control situations can be

10



viewed as being a combination of those two.

The optimal scores for the two scenarios also provide upper- and lower-

bounds for the performance of any "combination" scenario. The closed-loop

case provides much more flexibility and responsiveness to the decision maker

than the open-loop case, and thus supplies the higher performance bound

(Rutenburg, 1982a).

Because of the importance of each of the two control scenarios, we have

worked on modeling and solving each of the two. The same mathematical ideas

I apply to both scenarios, although the algorithmic details are different.

%...

Ji
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3. K&Th? .dICAL SOLUTION ALGORIURNS

In this section we present same of our results in developing efficient

rnmathematical algorithms for finding optimal solutions to mission planning

problems.

The common denominator in our approach to the solution of problems of

this class lies in decomposition of a problem into a hierarchy of sub-

problems. In particular, the basic fundamental scenarios that we are deal-

ing with in this report can be decomposed into two levels of optimization

A sub-problems. The top level is responsible for finding the optimal overall

sequence of high-level mission assignments of aircraft to targets or

Z4 defenses, while the lower level is responsible for finding the optimal use

of resources (fuel, for example) within each flight mission and for evaluat-

ing the likelihood of success of that mission.

The idea that ties the two levels together is that finding a good

high-level plan requires the ability to estimate the needs and consequences

of individual missions, which is exactly the responsibility of the low-level

sub-problem. Therefore, the lower level can be viewed in this context

as an evaluation subroutine for the top level.

Our initial approach to path optimization is that of dynamic program-

ming, with remaining fuel representing the stage variable and position coor-

dinates being the state variables. It follows the spirit of earlier works

in this area (see, for example, Appendix A).

The low-level sub-problem, which in our scenario involves path opt imi-

zation, has been studied by many researchers over the years. The higher-

level problem of optimal mission assignment has not, to our knowledge, been

properly addressed in the past. Only highly ad hoc and heuristic solution

methods are reported in the literature (Callero, Jamison, and Waterman,

1982; Case and Thibault, 1977; Engelman, Berg, and Bischoff, 1979). It is

~. .. ~ therefore a major goal of our research to develop a systematic mathematical

theory of, and algorithmic solutions to, global mission planning.

This section consists of several subsections. The first one

presents the dynamic programming (DP) solution to the low level path

12
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optimization problem. The second subsection presents DP formulations

for both open- and closed-loop models of the high-level assignment prob-

lem. In subsection 3.3 we discuss the new depth-first DP algorithm,

developed for the mission assignment problem. The rigorous definition

of this algorithm is presented in Appendix B. We also developed a

streamlined version of this approach which is not described in this sec-

iton, but is highlighted in more detail in the next. Finally, subsec-

tion 3.4 reviews some important heuristic algorithms developed for fas-

ter solution of the sequence assignment problem.

3.1. DINAMIC MOGRAMUNIG FORMULATION FOR PATU OPTIIZATIOI

Our approach to path optimization is similar to the classical DP treat-

l meat of this problem (see Larson and Casti (1978); Bellman (1957); also

IAppendix A). In this subsection we presume that the reader is familiar with

the basic DP algorithm ideas, and we briefly present the main details of our

DP formulation.

We are given the starting position (X0, Y0 ) together with initial fuel

FO, and the final position (Xf,Yf). We need to find a path

Y {0,Y0),(XIYI), ... (XfY f )), which maximizes the probability of survival

between the starting and final positions subject to the constraint that one

.* uses?0 units of fuel or less.

The stage variable is represented by the amount of fuel left on board.- The state within a stage is specified by the geographical position (X,Y).

4Notice that time does not explicitly enter into our formulation because it

is presently modeled that fuel consumption rate is constant over time for

each airplane, and thus, time can be computed from the amount of fuel used.i-I
Let R(X,Y,F) represent the optimal survival transition function between

points (X,Y) and (Xf,yf), with F units of fuel available. As the reader

remembers, we are dealing with an integer grid model, and there are 8 possi-

ble transitions from point (X, Y) to the next point along a trajectory.

*,. These transitions and the fuel consumption along each one of then were
- described earlier (see Figure 2-2).

0 Thus, the main DP equation becomes:
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%R (X, Y, F) Max R (X + 1, Y + 1, F-3) * S (X, Y, X + 1, Y + 1),

R (X + 1, Y, F-2) * S (X, Y, X + 1, Y), R (X, Y + 1, F-2) * S (X, Y, X, Y + 1) (3-1)

where S(X, Y, X I, YI) represents the probalility of survival between p ints (2,

Y) and (X1 , Y1 ).

This can be computed using the formula

S (X, Y, X1 9 Y) - 1 - n P k (Di-.-A)

DiE NBD (X 1 , Y ) (3-2)

!1'1
where NBD (X 1 Y) stands for the set of defenses in the immediate

vicinity of (XI1 YI ).

The boundary conditions are given by

R (X y, )I1if (X.Y) -(X .Y)
:RYO) 01 = 0 otherwise f (3-3)

Wand
1 if a 0(3-4)

R (Xf ' Yfs F) if -40

The above formulation allows us to solve the path optimization problem using

a conventional backward dynamic programming algorithm.

3.2. DIIMIC ROGAIIG AMOACK TO MISSION 1LAEnIG

* Mission planning is inherently a very complex computational problem.

Trying to solve even an average-sized mission assignment problem using

methods of direct enumeration of all possible attack sequences proves to be

an impossible task due to the faster-than-exponential growth of the problem

size.

A more efficient approach is to apply the dynamic programming method to

the higher-level sequence assignment problem.

14



" ~3.2.1. Dynamic Progrming Formulation for Open-loop

The current state of the battle under this scenario is characterized by

the number of aircraft available on each carrier, by the probability of

existence of each enemy defense, and by the current value of each target.

I . Thus, a state S can be defined as

SS-(NA I 9 .... , NAq , PE(DI), ... , PE(Dm), PE(TI), ... , PE(Tn)), (3-5)

where NAi is the number of airplanes currently available on board

carrier i , and PE(X) stands for the current probability of existence

of object X.

The stage (i.e., decision point) corresponds to the total number of

airplanes already assigned, being equal to

q (3-6)

where Mi is the initial number of airplanes on board carrier i.

An action u in this formulation corresponds to assigning one of the

available airplanes from one of the carriers on a mission against one of the

enemy forces. The outcome of this action will take us to the next stage and

a new state with one fewer airplane available and with the targeted enemy

force having a reduced probability of existence. If that enemy force hap-

pens to be a target, say Ti, then we derive a reward L(S,u) equal to

.L(S, u)=V(Ti)-APE(T), (3-7)

where V(Ti) is the initial value of Ti, and APE(Ti) corresponds to the

change in probabi'Lity of existence of Ti due to the current action.

IN The dynamic programing equation is then represented by

J(S(i))-max(L(S(i) , u)+J(S(i+l))) (3-8)
ueUi
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where JS) is the optimal total reward that can be derived starting at state

5. A, is the set of all possible actions at state S(i), and S(i+l) is the

S rstate resulting from applying action u to state S(i).

3.2.2. Dynamic Progrmina Formulation for Closed-loop

A state S in this scenario is similar to that in the open-loop

scenario, the difference being that an object is not represented by a proba-

bility of existence anymore; it either exists or doesn't. Thus,

S=(NA1, NAq, IDl' .T, Tn

(3-9)

here 1 - if object X exists

SX 0 - otherwise

The stage variable is the same as that for the open-loop case and is

given by (3-6). An action u corresponds to the same type of a mission assign-

sent as in the open-loop case. If the mission u is directed against an

enemy target Ti then the reward L(S,u) is given by

L(S, u) -V(Ti).PS(u), (3-10)

where PS(u) is equal to the probability of success of mission u (computable

by path optimization DP).

Unlike the open-loop case, which corresponds to deterministic dynamic

progrming, the closed-loop case gives rise to stochastic dynamic program-

ming, due to the random nature of mission outcomes. With probability equal

to PS(u) the outcome will be successful and will bring us to a new state

S(i+l) with one fewer airplane available, and the indicator variable for the

destroyed enemy object now reset from 1 to 0. On the other hand, with pro-

bability equal to I - PS(u) we will fail and result in a state S(i+l), again

16



with one fewer airplane available, but with no enemy object having been des-
troyed. The dynamic programming equation now becomes

J(S(i))-nax(L(S(i). u)+PS(u)-J(S(i+l))+(l-PS(u)).J(S(i+l)) (

ueUi

3.3. DPM-FIIRST D7XAMIC PNOGRAMNG ALGOIIR

3.3.1. Basic Formulation

In our efforts to develop an efficient implementation of the dynamic

progriming (DP) ideas, we formulated a new version of the dynamic program-

ming algorithm. This algorithm combines the best features of both dynamic

progrming and of depth-first tree search algorithms. That is why it has

been named Depth-First Dynamic Programing (DFD?) (Rutenburg,1982b).

DFDP is related to depth-first tree search (DFTS) by the order in which

the states in the state-space are explored. Like DFTS (Winston,1979) it

follows an initial "path" through the Ptate-space from the initial state to

one of the final states, thus finding an initial solution path. It then

backtracks to the previous state and explores other actions available at

that state, then backtracks again, and so on. In the process of the search,

the algorithm computes optimal rewards for all the visited states and also

updates the currently best known global solution path.

DFDP is similar to dynamic progrmming in its use of the underlying

telescoping effects to reduce the complexity of the search involved. By

telescoping effects, we mean that the structure of the state-space is not a

tree but rather a lattice, with many different paths leading to the same

resulting state. By making the optimal reward for any state S (computed for

a particular path leading to S) available for all the other paths leading to

state S, DFDP algorithm reduces the computational complexity of the depth-

first search from exponential down to polynomial of the order*311
O(Ns-Nu), (3-12)

where NS is the total number of states and Nu is the average niuber of

actions par state. This is the same complexity as that of the traditional DP

17
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algorithm, which can be described as a backwards breadth-first search tech-

nique.

SAppendix I provides a rigorous definition of a DFDP algorithm for a

general class of dynamic progremming problems and a detailed example illus-

trating its performance.

Example 4:

Let us apply the DFDP algorithm to the open-loop scenario described in

Examples I and 3 (see Figures 2-1 and 2-7). Figure 3-1 shows how the

current optimal value was changing during the computation. The first solu-

tion found was worth 802 points, then the algorithm found a better solution,

worth 870 points, and so it went until the optimal solution, worth 1097

points, was found. This is significantly better than the 929 points obtained

j from manual planning in Example 3. Figure 3-2 presents the summary of the

optimal plan. It involves sending two airplanes to destroy defense D2, then

sending two airplanes against defense D3, thus blowing a hole in the enemy

defensive line and also freeing the most valuable targets, T2, T3 and T4,

from the heavy defensive protection. After the two defenses are severely

impaired, the plan asks for two airplanes to be sent against targets T2 and

*T3, and for one airplane to be sent against each of the other targets.

S"18
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802.0592

870.2677

911.0408

960.5516

972.1386

1049.802

~ 1094.562

1097.316

Figure 3-1 Sequence of Currently Optimal Scores

AI--* D2

A2-- D2

S A3 -- D3

A4 - D3

A5 - T3

A6 - T4

A7 - T2

A8 -- T5

A9 -l- T6

A10 -00T1

All --o T3

A12 -  T2

Figure 3-2 Optimal Plan
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3.3.2. Uses of Depth-First DP

. Although similar in spirit, DFDP acquires several advantages over regu-

lar DP from its depth-first search approach. Its first advantage lies in

" its satisficing capabilities. This refers to situations when (for example,

* due to time pressures) it is not necessary to find the optimal solution, but

rather a satisficing one, i.e., a solution whose value exceeds a given

threshold on performance. Because DFDP starts with a particular solution

and then keeps on improving it, this algorithm can terminate at the moment

when one satisficing solution is found. This contrasts with the regular DP

approach, which doesn't find any solution until near the very end of compu-

- tation.

A similar situation occurs when the algorithm is used in a real-time

- situation, when it is not known in advance how much time can be spent on

, * solving a given problem. With DFDP, a good, currently best solution can be

produced at any moment a solution is needed, a capability unavailable from

regular DP.

Another advantage of DFDP lies in its ability to use branch-and-bound

,, / techniques to prune down the search space. Branch-and-bound is a well-known

-" technique, used, for example, in integer programming (Nemhauser and Gar-

finkel,1972) and in AI tree search (Winston,1979). DFDP implementation

makes the branch-and-bound ideas applicable for the first time (to our best

knowledge) in dynamic programming.

The branch-and-bound approach involves computing an upper bound UB(S)

on the optimal return J(S) for a given state in the state space. As we men-

tioned earlier, DFDP keeps track of the current optimal performance (COP)

for the given problem throughout the computation. A state S need not be

considered when

F(S)+UB(S)<COP (3-13)

~ where F(S) is the score obtained by arriving to state S along the currently

followed path.
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The degree of success to be expected from the satisf icing and branch-

and-bound methods of DFDP depends greatly on the problem at hand and on the

quickness with which near-optimal solutions can be found. The latter is a

function of the order in which various actions originating from a given

state are explored. A good order can be achieved by the use of a heuristic

guidance function h(s) to estimate the value of the optimal performance

function J(S) for a given state S. It is easy to see that if h(S) very

* closely approximates J(S), then the optimal solution is going to be found

almost immediately, and that the algorithm efficiency decreases as h(s)

- becomes less reliable, just like in tree search situations (Nilsson, 1980).

Finding good heuristic guidance is a hard task from the realm of artificial

intelligence, and we are currently involved in developing such heuristic

* functions for our mission planning problem.

DFDP has one weak point, in that the current version has on the average

higher storage requirements. This fact hasn't caused any important incon-

veniences so far, but it is important to try to find implementations of DFDP

with more efficient use of storage space.

3.4.*~ RELATED MATHEMATICAL AND HEURISTIC ALGORITHMS

* The mission assignment problem is intrinsically so complex that running

even the best optimal algorithms will take a very long time on today's

mini-computers. In this section we present several heuristic algorithms

which don't guarantee optimality but are fairly fast, and some of them do

provide optimiality in most cases.

- 3.4.1. Sequential Assigznment Algtorithm

The sequential assignment algorithm chooses a set of airplane assign-

ments, one at a time, in a greedy but myopic fashion. It is greedy in that

during each assignment cycle, it chooses that assignment yielding the

* highest expected return; it is myopic in that it does not consider the

* effect that the current decision could have on future assignments.

Initially, only targets are considered as possible objectives since

defenses have no explicit value. During the first assignment cycle, the

expected return associated with each possible assignment of an airplane to a
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target is calculated based on the probability of surviving the optimal path

to the target, the probability of then destroying the target, and the value

remaining to the target. The assignment of airplane to target having the

* largest expected return is determined, with ties being broken arbitrarily.

The chosen assignment, say airplane Al to target Ti, is irrevocably made,

* though not executed immediately. The value renamning to Ti for later calcu-

lations is reduced appropriately.

In all subsequent assignment cycles only those airplanes without

assignments are considered. Potential assignments of airplanes to targets

* a... are evaluated as before. In addition, defenses are now treated as allowable

- objectives. Determining the expected value derived from attacking a defense

is more difficult than for a target. Consider assigning airplane A2 to

- defense Dl in the second assignment cycle, remembering that the assignment

of Al to Ti, has not actually been executed yet. We calculate the probabil-

* ity of existence for Dl after a hypothetical attack by A2 and calculate the

* expected return for the assignment Al to Ti, given that Dl has been proba-

' ilistically weakened. The net improvement in the assignment of Al to Ti is

the value given to the assignment of A2 to Dl. The assignment of airplane

to target or defense with the largest expected return is the one chosen in

the second assignment cycle.

In general, the value associated with attacking a defense is calculated

qby determining the net improvement to all previously chosen assignments of
airplanes to targets. Note that the assumed order in which missions are to

be executed is not the order in which they are chosen. The evaluation pro-

cedure assumes that all missions against defenses are executed first, in the

order in which they are chosen, followed by attacks on targets in any order.

During any cycle, if the chosen assignment is to a target, only the value

remaining to that target need be updated; if the assignment is to a defense,

the probability of existence of that defense, all optimal paths affected by

attacking that defense, and the value remaining to any target with a previ-

4 ously assigned airplane that is affected by attacking that defense must be

updated.

After running through as many assignment cycles as there are airplanes,

* the algorithm terminates. Because the algorithm is myopic, there is no
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g uarantee that the solution that it arrives at will be optimal.

* 3.4.2. Tar et Assignment Algorithm

The problem of deciding on a good attack plan, which specifies not only

sorties against enemy targets but also sorties to suppress enemy defensive

units, has not, to our knowledge, been previously addressed. However, the

much easier problem of exclusively choosing sorties against enemy targets

has been looked at. The most common algorithm used for this purpose has

* been what we call Target Assignment (TA) Algorithm.

This algorithm is effectively a special case of our sequential assign-

ment algorithm, with the restriction that enemy defenses are not attacked.

As the reader can easily see, this is a very straightforward greedy algo-

>2 rithm, whose only advantage lies in its simplicity and fast speed, at the

expense of quality of solution.

3.4.3. SeQuential Reassirnment

This is a modification of the sequential assignment algorithm. It is

guaranteed to find a solution at least as good as that found by sequential

assignment; in many cases it will find a better solution at the cost of some

additional computations.

In sequential assignment, only airplanes that have yet to receive

- assignments are considered in each assignment cycle. The assignment in each

cycle is chosen based on those assignments already made in previous cycles.

It may be the case that the objective chosen for a given airplane might not

2 have been chosen had it been known at the time that some other assignment

was going to be made during a subsequent assignment cycle. For example, the

airplane that was assigned to some objective in the first cycle based on the

initial situation may be able to derive greater value from a different

objective, given knoi'ledge that an assignment was made to some defensive site

* during the fifth assignment cycle.

In sequential reassignment, maximum expected returns are calculated for

both previously assigned and previously unassigned airplanes during each
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assignment cycle. Previously assigned airplanes are considered first. If

p at least one of these can achieve expected net improvement by changing its

assignment, then the airplane with the greatest possible net improvement is

'2 reassigned during that cycle, values are updated accordingly, and the next

* assignment cycle begins. If no improvement is possible through reassign-

ment, then the best previously unassigned airplane is chosen, as in sequen-

2 tial assignment.

This algorithm must converge, though again not necessarily to the

WO optimal solution. However, it does allow some mistakes in airplane to

objective assignments to be corrected.

* 3.4.4. Marginal Utility

Marginal utility algorithms are commonly used for resource allocation
problems. Suppose that a number of decision makers are competing for the

use of global resources and that the overall objective function is separ-
able. Suppose further that for any given resource allocation, each decision

maker can determine its own marginal utility (resource price), i.e., the

- price it would pay or would accept in exchange for an incremental unit of
resource.

Assume that the utility function for each decision maker is concave.
This means that the lower the resource allocation (supply), the higher the

marginal utility (price). Then marginal utility theory states that a neces-
sary and sufficient condition for a set of resource allocations to be

* -. optimal is that each decision maker has the same marginal utility, this
value being referred to as the "equilibrium price." Marginal utility algo-

-. rithms perturb the resource allocations systematically until the equilibrium
price is achieved.

However, the airplane assignment problem does not satisfy the condi-

tions required by conventional marginal utility algorithms. The objective

6. function is not separable: a decision maker's return may depend on the deci-

sions made by other decision makers. Also, the resource to be allocated
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(airplanes) is discrete rather than continuous. This means that marginal

utility cannot be defined incrementally as the derivative of the return

function and that a decision maker's buying price and selling price for

resource may differ. A version of marginal utility more suited to the air-

plane assignent problem is described in Appendix C.

3.4.5. Al Expert Planner

This system consists of seven experts working as a team in solving the

posed mission planning problem. A description of the roles played by these

experts is as follows:

~\ . ~ 1) Topological connectivity evaluator (or pocket divider): Topologi-

cally divides the enemy targets into pockets such that targets within each

pocket are reachable from one another without going through major defensive

U threats.

2) Pocket Specialists: Each pocket is dynamically assigned a pocket

specialist that comes up with the marginal airplane utility curve, i.e.,

determines the return R(N) extractable from the pocket given N units of

resource (i.e., airplanes) and assumzing that these airplanes units got

safely inside the pocket.

3) Ring-Cutting Experts: There is one ring-cutting specialist per

pocket. This expert evaluates various paths of getting inside the pocket

(cutting through the ring), and chooses several (by N-best technique for

thresholding, or clustering) of the most promising paths.

* , 4) Cooperative Planning Expert: This expert receives the sets of best

paths from each ring-cutting expert and combines them into cooperative ring-

cutting plans. It chooses several of the best of these plans on the basis

of their minimality and cooperation, i.e., needing to destroy as few

defenses as possible to accomplish the cutting, and also on the basis of the

importance of the pockets that will be accessible through these cuts.
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5) Mission Planning Expert: Evaluates each of the cooperative ring-

cutting schemes passed on by Expert 4 and optimizes the airplane assignments

-~ (i.e., how many defenses to attack, which of the targets, etc.) within each

' scheme using the marginal pocket utility curves passed on by pocket evalua-

tors, and tries to choose the most valuable overall assignment.

6) Constraint Expert: For the proposed assignments, checks if all the

constraints (like fuel constraint, time constraint, launcher constraint,

weapons constraint, etc.) are satisfied. If this best plan is satisfiable,

then we're done. If not, it notes which constraint is not satisfied,

% imposes it on Expert 5 and tells Expert 5 to re-do his mission planning with

the added constraint. Expert 5 may also call the pocket and ring-cutting

planners for re-evaluation, if necessary. Thus, we'll have iteration to a

* solution.

7) Meta-level Planner: Coordinates the performance of the above

experts. Calls then in the right sequence and in parallel (like experts of

Type 2 and 3). If Expert 6 comes up with new constraints, the Meta-level planner

%i will call Expert 5 and the Pocket Experts and Ring-cutters for re-evaluation

* . with the added constraints.

This present structure represents a transition between mathematical

, *.. algorithms and flexible Al systems. It already has a fairly flexible

*inter-expert control structure, but this structure will get much more flexi-

ble as the system becomes more detailed. It also has a mixture of mathemat-

ical and rule-based experts, with experts number I and 2 being fairly

mathematical, and experts 4 and 6 being strongly rule-based. We should also

notice that this expert system has a strong distributed flavor. As we saw,

there are several pocket and ring-cutting experts working in parallel with

each other, one of each expert for every pocket. These experts come up with

local attack plans, and these plans are then merged and reconciled by the

.j mission planning expert and the constraint expert.
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4. STMMINED DEPTH-FIRST DIUMEIC PROGRAMII

Of all the algorithms we studied that guarantee optimality of solu-

1tion, DFDP is the fastest and most efficient. However, the mission

planning problem is intrinsically so extensive that even the best of

optimal algorithms will probably be too slow for prompt large-scale

open-loop mission planning. Thus, there is a need for faster near-

optimal algorithms that would be close to the optimal algorithms in
* "j terms of results. Streamlined depth-first dynamic programming is such

. an algorithm.

In this section, we describe the basic formulation of the SDFDP

. .*;algorithm and the software developed which implements it. We also com-

pare this algorithm with the target assignment algorithm presented in
the last section.

4.1 ASIC 1ORMLATION
; .

SDFDP is a streamlined modification of the main DFDP algorithm in

..the sense that it has the same structure and the same general control

flow, but it greatly reduces the state-space by combining many states

into one super-state. In order to compensate for this simplification,

." it uses a number of assignment and reassignment sub-algorithms which

allow it to find the best states within each super-state. These sub-

algorithms are very similar in spirit to the Sequential Assignment and

Reassignment algorithms, described in Section 3.

In this formulation each (super-) state corresponds to indicating

which sets of defenses are to be attacked, how many sorties to send

against each defense, and in what order to attack. Transition between
states is accomplished by choosing one or several new sorties against

some new defense.

Within each such super-state there is a lot of freedom in choosing

which airplanes to use against each defense, which targets to attack,

and which airplanes to use for that purpose. Notice that in this formu-

27
..

- .. ** .*.~~*******~** *...* - . . -. S * -



lation each super-state acts both as a transition and a final state,

depending on whether we plan to attack any more defenses (remember that

in open-loop scenarios defenses should always be attacked before tar-

gets).

Within each super-state, assignments of particular airplanes to the

chosen defenses is accomplished by a To-Defense Sequential Assignment

algorithm whereas the selection of targets and airplanes to attack these

.7 targets is accomplished by a To-Target Sequential Assignment algorithm

with Reassignment. As the names indicate, these algorithms represent

direct applications of the Assignment and Reassignment algorithms

described in the last section.

Finally, to take care of hasty commitment of valuable airplanes

". against defenses, the Defense-to-Target Reassignment algorithm is used.

This algorithm allows reassignment of a committed airplane A from a

defense D to a valuable target T, by providing a new airplane Al to

replace A in attacking defense D. This algorithm is also similar in

spirit to the Sequential Reassignment algorithm.

The streamlined DFDP algorithm provides several capabilities to

help reduce the computational burden through the use of human guidance.

: In particular, the human is allowed to specify which line of defense

each defensive threat belongs to, to suggest the preferred order for the

DFDP search, and to pre-specify limits for the number of airplanes to be

used against ensmy defenses. These guidelines greatly reduce the com-

plexity of the feasible search space, and implementation of further such

human guidance capabilities holds promise for further improvements.

4. 2 SDMD 307111*3 STIUCTURB

The software which implements the SDFDP algorithm was written in

the Sail prograning language, developed by the Stanford Artificial

Intelligence Laboratory. The programs were developed and implemented on

a PDP-20, under the TOPS-20 operating system.
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The code is organized into eighteen procedures, five of which per-

form the major functions of the algorithm: (1) dynamic programming, (2)

'. defense assignment, (3) target assignment, (4) target reassignment, and

* (5) defense-to-target reassignment. The other procedures handle the

U bookkeeping or perform minor support functions.

A flowchart of the general structure of the software is shown in

Figure 4-1. Initialization is performed first, and the user is prompted

.~,,for all of the scenario's data, which he enters interactively. The

dynamic programming procedure is then called to find the probability of

survival from every launcher (carrier) to each square on the board, and

then to each target and defense.

%~ . ~The first super-state assignment is to attack no defenses, hitting

only targets. Thus, the target assignment procedure is called to find

7) the best launcher-target pair which yields the best score. This assign-

ment is made temporarily until the target reassignment procedure is

* called to determine whether a better assignment can be made. The best

assignment is then recorded. This process is repeated until all mis-

siles (airplanes) have been assigned to targets.

The program then continues by assigning one missile to the first

defense the user has deemed as most important. The defense assignment
algorithm is then called to determine the best launcher to use against

this defense. The target assignment procedure is then called, followed

rs by the defense-to-target reassignment algorithm. This algorithm

.1~ searches each empty launcher to determine whether, assuming it had an

4.. ., ~ extra missile, it could get a higher score than what was computed by the

target assignment. If a higher score could be obtained, and a non-empty

launcher can hit one of the defenses the empty launcher previously hit,

and still give an overall better score, the reassignment is made. Oth-

erwise, the original assignment is recorded. The target reassignment

* procedure is then called. This process is repeated until all missiles

~ have been assigned.

This plan and its final score are then compared with the previous
plan, and the best plan is saved. The program continues to generate new

plans, repeating the same process as above, and always saving the best

%~ ,-~29
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• ,'aPERFORM INITIALIZTIN.

I"FIND PS TO EACH SQUARE ON BOARD. DYNAMIC PROGRAMMING

*.* I FIND BEST PATH FROM EACH LAUNCHER
TO EACH TARGET AND DEFENSE.

r ITARGET ASSIGNMENT
*I, FIND BEST NON-EMPTY LAUNCHER

, .a [ TO A TARGET.

J

I RECORD TARGET ASSIGNMENT (NOTE.
I NO DEFENSES ARE ATTACKED IN THIS

FIRST PLAN, ONLY TARGETS)..

FOR EACH EMPTY LAUNCHER, FIND TARGET
I ASSIGNMENT IN CURRENT PLAN GIVING

LEAST SCORE.

IS THERE A
NO IFFERENT TAGET THE TARGET ASSIGNMENT

PBETTER SCORE?

YES

;. ..~RECORD BEST REASSIGNMENT.

" *' . |

IS NUMBER.
YES INPLAN<

# MISSILES

NO

Figure 4-1 Flowchart of SDFDP Software
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> # DEFENSES?YE

'S NO

FSET DEFENSE 'DEF' TO NEXT

ONE IN USER-PREFERENCE ARMAY.

NO ISEF;,,

YE

5) SET NXT ENTRYIN PLANTO EF

RESE LATH DEFENSETOhION

ET REET E CNTRON L TO E.

FIND EST PS TO THIS DEFENSE 
'DEF'

UPDATE PS OF THIS LOCATION AND

ITS EIGHT NEIGHBORS.

Figure 4-1 Flowchart of SDFDP Software (Gont'd.)
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" L UPDATE PS OF EACH SQUARE
.A-N ,D BEST PATHS TO DEFENSES, TARGETS.

.

i ~ DEFENSE ASS IGNMENT

°."FIND BEST (NON-EMPTY)LAUNCHERS TO ALL

4,

,[ DEFENSES IN THE PLAN.

1F

l ~ ~~~FIND BEST (NON-EMPTY)LAUNCHERTAGTASGET

'.9 '

• TO A TARGET.I U(DON'T UPDATE PLAN YET.)

FIDNBESPTY LAUNCHER T)L, CAN
-- ,NO IT ATTACK A TARGE AT A -~-:.* NIGHER SCORE THAN PANW COMED IN

BOABOVE BX

YES DEFENSE -TO-TARGET

aid NOCAN SOMEFI NON-ESPTY LAUNCHER ATTACKA DEFENSE PREVIOUSLYATTACKED BY LAUNCHER

0) ABOVE, AND GIVE

A BETTER OVERALLHIHR SCORE?

%"1

4... , ,

- N i

.[.' "i"Figure 4-1 Flowchart of SDFDP Software (Cont'd.)
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RECORD ORIGINAL MAKE REASSIGNMENT.jI OASSIGNMENT. RECORD PLAN.

J -p

II

-~, I FOR EACH EMPTY LAUNCHER, FIND THE
TARGET ASSIGNMENT IN CURRENT PLAN
WHICH GIVES LEAST SCORE.

"i IS THERE A

DIFFERENT TARGET THE LAUNCHER TARGET
CAN ATTACK THAT GIVES A REASSIGNMENT

No BETTER SCORE THANABOVE?

5' .r
YES

~NO

°DI

Figure 4-1 Flowchart of SDFDP Software (Cont'd.)
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one. The way it generates these new plans is in the spirit of a depth-

first search, with two practical heuristics incorporated to reduce the

problem size. These heuristics are: (1) a given defense can only be

attacked twice, and (2) defenses must be attacked in increasing order,

i.e., Dl before D2, etc. Also, the order in which the defenses are

chosen depends upon the order in which the user specifies. Thus, if

there are two defenses (D, D2) and the limit-to-defense is three, the

°* following plans will be generated sequentially.

- Plan 1: no defenses, the rest targets

- Plan 2: DI, targets

- Plan 3: Dl, Dl, targets

* - Plan 4: DI, DI, D2, targets

-Plan 5: DI, D2, targets

-Plan 6: Dl, D2, D2, targets

- Plan 7: D2, targets

- Plan 8: D2, D2, targetsI
This sequence of plans assumes that the preference array for defenses is

(D, D2, D3).

4.3 IMPLEMENTATION DETAILS

This section describes several implementation details and capabili-

ties of the SDFDP software.

4.3.1 Input Data

All of a scenario's input data is entered by the user at the start

of each run. The user is therefore able to enter any scenario that he

S.wishes. The data needed is: board size, defense locations, target

locations and values, probability of kill of planes (missiles), carrier

(launcher) location and number of planes on each, and the amount of fuel

each plane has onboard.
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Weapons on different launchers are allowed to have different proba-

bilities of kill (PK) against each target and defense. Currently, all

weapons on the same launcher must have the same kill capability. How-

ever, if the scenario calls for different capabilities, the user only

needs to group like weapons on the same launcher and then colocate dif-

ferent launchers. Multiple launchers located at the same position may

be thought of as one launcher.

Currently, the PK of defense against missile is fixed at .3 for

missiles flying directly over the defense, and .2 for neighboring loca-

tions to the defense. The capability for variable PK would require only

slight modifications.

4.3.2 Scenario Size

Theoretically, any size scenario could be handled by the algorithm

.-I by a simple re-dimensioning of arrays. Realistically speaking, the user

is limited by both storage cost and computing time. Computing time

varies with board size, number of targets, and especially with the

number of defenses(since they comprise the super-state defined in Sec-

Ntion 4.1). A detailed timing study has not been performed, but as a

rule-of-thumb, any scenario with a board-size of larger than 13 X 13 and

more than about 8 defenses or targets, would probably taking more than

15 CPU minutes. The scenario shown in Figure 4-2 took about 4.8 CPU

LJ minutes. More timing statistics are given in Section 5.

4.3.3 Output

The best plan found is outputted to the terminal screen or a file.

The output is simply a list of airplanes (missiles), their final desti-

nations, and the score obtained. Sample outputs are scattered

throughout this report.

.4.4 EjApjgS

This section presents two examples of the SDFDP algorithm. Both of

them show the complicating factors involved in even very small

scenarios. These factors make trying to generate an optimal plan

-' -36
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"intuitively" virtually impossible.

The first example is shown in Figure 4-2. Note the position of the

two carriers. Now intuitively, a human would guess that each carrier

would most probably send its weapons to the defenses and targets closest

to themselves. But instead, we see in the solution that Carrier 1

attacks both DI and D2 and does not attack even one of the targets only

- one move away from it. Instead, it sends its final plane down around to'

-= T9. We see, after careful examination, that this is due to the high P
value of the targets on the right half of the board. But this example,

we believe, points out the necessity of a near-optimal automated algo-

rithm, such as SDFDP.

Next, we consider a more complex example. The scenario is shown in

Figure 4 -3(a) along with the target statistics. In this example, the

launch platforms are air bases, and the targets are bridges, tanks, or

engineering companies. We know that the enemy is situated at the upper

" .left corner of the board, and not expected to reach the bridges until

the next day. We are planning today's mission and therefore we can

assign values as appropriate. Since the bridges are not considered to

be important yet, we assign them a lower value than the tanks and espe-

cially the engineering company. We assign a very high value to the

engineering company, knowing that during our next mission, we will be

attacking the bridges, and the company will be vital to repairing them.

The two air bases have five weapons on each. The weapon statistics

are shown in Figure 4-3(b). (Note that in implementing the different

kill probabilities on each air base, we actually had to colocate two air

bases at each location, as mentioned in Section 4.3.1.)

The plan generated by SDFDP is shown in Figure 4-3(c).

This example brings out at least two important points. First, it

would be virtually impossible for a human to be able to quickly plan

such a mission, taking into account the number of complexities inherent

in the problem. Second, the SDFDP algorithm is general enough to handle

any scenario for any type of mission, provided a human is able to assign

numerical values to the targets, and a probability of kill to the
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S -,.,, . . .J , , .. •-. " .-

1 2 3 4 5 6 7 8
TARGET VALUE

,1 T2 D7 T4 T8I.-. I300

2 300U 2 T T3 T5 D5 T6 3 300

4 300
3 D6 Ci D4 T9 300

4 D3 T7 6 40:* :7 470

5 8 400" 5DI D2:"29 400
| 66 -- ____FUEL = 20

7, CARRIER # PLANES-" C2
1 5
2 3

PLAN

FROM TO LEAVES ITPLANE # CARRIER # DEFENSE # WITH PE

1 1 1 .44
2 1 1 .09
3 1 2 .47
4 1 2 .12

FROM TO FOR A

PLANE # CARRIER # TARGET # SCORE OF

6 2 7 348.69
7 2 6 333.86
8 2 8 296.76
5 1 9 274.57

TOTAL SCORE = 1,253.88

Figure 4-2 Example of SDFDP
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1 4 5 6 7 8 9 1011

- 1 17 18- - --

2

3 T3 T6

4~ D5 T'4 Do'

5 15

6 D4l

7

8 12

9 D2 T1 D 3

10 DI

12 Al1 A 2

TARGET DATA

L ~TYPE TARGET # VALUE

(115

:~* ~BRIDGES ~2 130

TANKS ~ 8
4 200

ENGINEERING CO.51
~6 500

OTHR 7 100
18 100

TOTAL VALUE 1,870

Figure 4-3(a) Planning Example
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q RESOURCES/CAPABILITY

AIR BASE WEAPONS

"1i 1 PGM, 14 BOMBS
- 2 1 PGM, 14 BOMBS

PROBABILITY OF KILL:

TARGET

1 2 3 4 5 6 7 8
. (BRIDGES) (TANKS) (ENG. CO.) (OTHER)

WEAPONS: PGM'S .9 .9 .7 .7 .5 .5 .7 .7
BOMBS .5 .5 .7 .7 .9 .9 .7 .7

SDEFENSE

1 1 2 3 4 5 6
SAM ' S ) (MAN)

WEAPONS: PGM'S 9 s9 g 9 .5 s5
BOMBS .5 ,5 .5 .5 .9 .9

FUEL:

EACH WEAPON INITIALLY HAS 25 UNITS OF FUEL.
(IT TAKES 2 UNITS TO MOVE HORIZONTALLY/VERTICALLY;

3 TO MOVE DIAGONALLY.)

Figure 4-3(b) Planning Example
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I p

PLAN

AIR BASE WEAPON TO DEFENSE LEAVES IT WITH PE

1 PGM 4 (SAM) .496
2 BOMB 6 (MAN) .496
2 BOMB 6 (MAN) .154

AIR BASE WEAPON TO TARGET FOR A SCORE OF

2 BOMB 6 (ENG. CO.) 422.76
2 BOMB 5 (ENG. CO.) 361.00
I BOMB 4 (TANKS) 113.01
1 BOMB 5 (ENG. CO.) 105.47
I BOMB 3 (TANKS) 81.37

I 2 PGM 2 (BRIDGE) 74.88
1 BOMB 6 (ENG.CO.) 58.83

TOTAL SCORE = 1,217.32

TOTAL POSSIBLE SCORE = 1,870.00

2p
o

" Figure 4-3(c) Planning Example
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defenses.

4.5 COMPARISONS BETWEEN SDFDP AND THE TARGET ASSIGNMENT ALGORITHLM

In this section we consider several examples of plans generated by

the SDFDP algorithm and compare the performance of these plans with that

of the plans generated by the Target Assignment (TA) algorithm.

The purpose of this comparison is two-fold. First, we want to see

how well SDFDP solves mission planning problems in comparison to the

traditional mission planning algorithms. Second, we want to see how

__ much advantage can be gained from sending some airplanes to suppress

enemy defenses as opposed to sending all the airplanes against enemy

targets, as most of the models existing in literature do.

We have also informally compared our algorithmic plans against

plans generated manually by human players. In all our comparison tests

.4 SDFDP generated what appeared to be optimal solutions, and these solu-

' tions were consistently better than not only the TA algorithm but also

humans. Figure 4-4 gives computer printouts for five such comparison

tests.

Figure 4-4(a) offers the TA solution for the scenario that was con-

sidered in detail in the preceding sections (see Examples 1 and Figure

V.: ..J2-1). The score obtained by TA is 802 points, which is significantly

% smaller than 1,097 points obtained by DFDP (see Figure 3-1).

* Figures 4-4(b),(c) and (d) refer to modifications of the scenario

from Example 1. In Figure 4-4(b), all the enemy forces are the same as

in Example 1 except that there are 2 carriers with 6 planes on each,

rather than 1 carrier with 12 planes as before. These carriers are

~ situated in different corners of the board, and, thus, have different

* capabilities.

.4

The optimal plan, generated by SDFDP, reflects this new situation.

Because airplanes from carrier C2 now don't have enough fuel to attack

targets T5 and T6 by way of D2, we had to send one sortie to take out

NO defense D5, and that became the entrance point for attacking T5 and T6.
42
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Of course, the optimal result of 1011 points is not as high as the

optimal result of 1097 for the scenario from Figure 3-1.

We can also see that the TA gives a result of almost 200 points

I less. This superiority of SDFDP over TA was demonstrated by all our

test examples. Figure 4-4(e) represents a typical example. It deals

with a position significantly different from the rest, but, again,

* attacking enemy defenses allows an improvement in results.

*% 4.The magnitude of such improvement varies significantly from one

- example to another. There are many factors that determine the amount of

improvement, one of them being maneuverability of our forces. Figures
4-4(c) and (d) illustrate this point. They both refer to a position

derived from position 4-4(b) through minor changes, which amount to

opening small holes in the enemy defensive line but allowing our forces

1 to take advantage of these holes only by flying very roundabout routes.

N In Figure 4-4(c), our airplanes were given 20 units of fuel, which was

enough for them to reach their targets along these roundabout routes. As

you can see, in this situation little advantage can be derived from

attacking enemy defenses before going against targets. On the other

hand, when the airplanes were given only 15 units of fuel (as in Figure

4-4(d), they couldn't take advantage of the holes in enemy lines and had

* *~-to fly over several enemy defenses. In this case blowing holes by

attacking enemy defenses becomes much more essential and the results in

* Figure 4-4(d) confirm this observation.
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7S

Z4 lane 7 f rom 2 to target 3 f or- 100.35,20 points
Plane 8 from 2 to tar-,et 2 for 98.30400 Points
P~lane ? from 2 to tar-,3et 4 for 86.01600 points
Planie 10 from 2 to target 6 tor 71.68000 P o Ints
P-lane 11 from 2 to target .5 for /1 .b7908 points
P-lane 12 from 2 to targ3et 2for 66.0?1/5 reoints
P **Ilane I from 1 to target 5 tar 61.44000 points
Plane 2 from 1 to target 4 for 61.35349 points

-Plane 3 Irom 1 to target 3 for 51.05592 points
Plane 4 from 1 to target 6 for 45.98989 Points

*Plane 5 from 1 to target 2 for- 44.43480 points
Plane 6 from I to target 4 for 43.76222 Points

t otal score is 802.0592

,4.

* (a) TA Solution for Position in Figure 2-1

Figure 4-4 Comparisons of SDFDP and

Target Assignment (TA) Algorithms

o .- 4
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POSITION

Initial fQe1 is 17
% T1 12 15 1 T1 100 0 12 300 0

D3 T6 2 T3 350 0 14 300 0
1 3 T4 D5 3 r5 150 0 16 200 0

2 1 4 D .9Y 02 .-9
D4 5 03 .99 ['4 .99

6 05 .99
Cl C2 7 Cl .99 Y A1 A2 AJ A4 A5 A6

1 8 C2 .99 Y A/ AB A9 A1O All A12
1 2 3 4 5 6 7 8

SDFDP PLAN

P lane I from 1 to defense I
Plane 2 from 1 to defense 2

- Plane 3 from I to defense 3
Plane / from 2 to defense 5
-'lane 8 from 2 to target 3 for 237.4645 points
Plane 9 from 2 to target 4 for 203.5410 points
Plane 4 from I to target 2 for 133.3527 points
Plane 10 fron 2 to target 6 for 121.3681 points
Plane 11 fron 2 to target 5 for 99.80928 points
Plane 12 from 2 to target 3 for 76.35195 points
Plane 5 fro I to target 2 for ?4.07623 points
Plane 6 from I to target 4 for 65.44453 points

fotal score is 1011.408

TA PLAN

Plane 7 fro 2 to target 3 for 100.3520 points
Plane 8 fro 2 to target 4 for 98.30400 points
Plane I fron 1 to target 2 for 98.30400 points

C.. Plane 9 from 2 to target 6 for 81.92000 points
. Plane 10 fro 2 to target 5 for 76.80000 points

Plane 11 fro 2 to target 3 for 71.57908 points
Plane 12 fro 2 to target 4 for 66.09175 Points

• Plane 2 fro 1 to target 2 for 66.09175 points
Plane 3 fro 1 to tar-get 3 for 51.05592 points
Plane 4 fron 1 to target 2 for 44.43480 points
Plane 5 fro 1 to target 1 for 40.96000 points
Plane 6 from 1 to target 4 for 38.88045 points

rotal score is 834.7738

(b) Case 2

Figure 4-4 Comparisons of SDFDP and

Target Assignmcnt (TA) Algorithms
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Initial fuel is 20
11, r2 r5s

03 16 2 I1 100 0 12 300 0
13 T4 D3 3S 350 0 f4 300 0

* 02 4 15150 0 16200 0
5 Dl .99 D2 .99

DI 04 6 DJ .99 04 .99
7 D5 .99

Cl C2 8 Cl .?9 Y Al A2 A3 A4 A5 A6

1 2 3 4 5 6 7 8 C2 .99 Y A7 AB A9 AlO All A12

P1

Plane 1 fron 1 to defense 3
Plane 2 fron 1 to defense 5

'" "Plane .1 Iron 1 to defense 5

Plane 7 fron 2 to target 3 for 199.2704 points

Plane 4 fron I to target 2 for 170.8032 points

* Plane 8 fron 2 to target 4 for 167.6711 points

Plane 9 fron 2 to target 6 for 151.3583 points

Plane 10 fron 2 to target 5 for 94.23957 points

Plane 11 fron 2 to target 3 for 85.81699 points

* Plane 5 fron I to target 1 for 80.00000 points

- Plane 12 fron 2 to target 4 for 73.95911 points

Plane 6 fron I to target 2 for 73.55742 points

Total score is 1096.676

; J

Plane 7 fron 2 to target 3 for 179.2000 points

S Plane I fron 1 to target 2 for 153.6000 points
Plane 8 fron 2 to target 4 for 122.8800 points
Plane 9 fron 2 to target 3 for 87.44960 points

Plane 10 fron 2 to target 6 for 81.92000 points

Plane 2 fron I to target I for 80.00000 points

Plane 11 fron 2 to target 5 for 76.80000 points
Plane 3 Iron I to target 2 for 74.95680 points
Plane 12 fron 2 to target 4 for 72.54835 points
Plane 4 fron 1 to target 4 for 42.83255 points

Plane 5 fron I to target 3 for 42.67541 points

Plane 6 fron I to target 6 for 42.31987 points

Total score is 1057.183

(c) Case 3

Figure 4-4 Comparisons of SDFDP and

Target Assignment (TA) Algorithms
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Initial fuel is 15
I r2 5I 1 100 0 2 300 0

DJ 16 2 13 350 0 14 300 0

Tj 1T 14 D3 3 T5 150 0 16 200 0

02 4 0l .99 02 .99

5 03 .99 [4 .99

-l 04 6 D5 .99
7 Cl .99 Y Al A2 A A4 A5 A6

Cl C2 8 C2 .99 Y A7 AB A? A1O All A12

1 2 3 4 5 6 7 8j

Plane I f ran 1 to defense 1
Plane 2 from I to defense 1I
Plane 7 from 2 to defense 2
Plane 8 from 2 to defense 2
Plane 3 from I to target 3 for 210.5028 points

Plane 9 from 2 to target 4 for 168.4397 points
Plane 4 fram I to target 2 for 107.8014 points
Plane 5 from 1 to targ~et 3 for 83.89872 points
Plane 10 from 2 to target 4 for 73.86659 points
Plane 6 fran I to target 2 for 69.06426 paints
Plane 11 fran 2 to target 5 for 61.44000 points
Plane 12 fron 2 to target 6 for 52.42880 points

total score is 827.4423

Plane 1 fron 1 to target 3 for 114.6800 points
Plane 7 fron 2 to target 4 for 78.64320 points

qPlane 2 fron 1 to target 3 for 77.10704 Points

Plane 8 from 2 to target 5 for 61.44000 points
Pae 9 from 2 to target 4 for 58.02736 points

Plane 10 fron 2 to target 6 for 52.42880 points
J Plane 3 from 1 to target 3 for 51.84060 points

Plane 11 iron 2 to target 4 for 42.81583 points
Plane 12 from 2 to target 6 for 38.68491 points
Plane 4 from 1 to target 3 for 314.13347? points

***Plane 5 from 1 to target 2 for 32.21226 paints
Flane 6 from 1 to target 4 for 31.59192 points

total score is 674.3334 e

(d) Case 4

Figure 4-4 Comparisons of SDFDP and

Target Assignment (TA) Algorithms
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+7

Initial fuel is 15
T4 1 T1 100 0 12 150 0

T2 D3 T5 D5 2 T3 200 0 T4 250 0
I TI T3 T6 3 15 200 0 T6 150 0

D 02 04 4 Dl .99 D2 .9?
5 03 .99 04 .99

C2 6 05 .99

CI C3 7 Cl .99 Y Al A2 AS A4
I 2 3 4 5 6 7 8 C2 .99 T A3 A6 A7 AB

C3 .99 Y A? A1O All A12

Plane 9 fron 3 to defense 2

Plane I fron I to defense 2

Plane 2 fron I to defense 3

Plane 5 fron 2 to target 4 for 171.4040 points

• Plane 10 fron 3 to target 3 for 151.3583 point!

Plane 6 fron 2 to target 2 for M13.5187 points

Plane 7 from 2 to target 5 for 111.4922 points

Plane II fron 3 to target 6 for 76.80000 points

Plane 8 from 2 to target 1 for 60.54331 points

Plane 3 fron I to target 4 for 53.38339 points

Plane 4 fro 1 to target 5 for 44.80173 points

" Plane 12 fron 3 to target 6 for 37.47840 points

rotal score is 820.7800

- .%

Plane 5 fron 2 to target 4 for 81.92000 points
Plane 9 fron 3 to target 5 for 81.92000 points

Plane 10 from 3 to target 3 for 81.92000 points
Plane 11 fron 3 to target 6 for 76.80000 points
Plane 12 fron 3 to target 2 for 61.44000 points

Plane 6 fron 2 to target 4 for 55.07646 points
Plane 7 from 2 to target 3 for 48.36557 points

Plane 8 fron 2 to target 4 for 37.02900 points

* Plane 1 fron 1 to target 2 for 36.27418 points

V Ilane 2 fron 1 to target 1 for 35.84000 points

- Plane 3 fron 1 to target 5 for 30.95396 points

Ilane 4 fron 1 to target 3 for 28.55503 points

" - lotal score is 656.0942

9 (e) Case 5

Figure 4-4 Comparisons of SDFDP and

Target Assignment (TA) Algorithms
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5. PARTITIONING

p In this section, we explore the idea of partitioning the problem,

- both spatially and temporally. Spatial partitioning may be necessary to

reduce computing time and enable more realistically sized scenarios to

be studied. By temporal partitioning of the problem, we mean allowing

multiple "attack waves" to be generated, in which particular defenses

*? may be able to reconstitute in time for the next attack wave. This

approach also allows more realistic siLuations to be examined.

5.1 SPATIAL PARTITIONING

We approached the problem of spatial partitioning in two ways. In

the first approach, presented in Section 5.1.1, we split the scenario of

interest into various regions and treat each region as a separate

problem. In Section 5.1.2, we discuss the issue of grouping like tar-

gets in the scenario together. Both approaches allow larger scenarios

to be run, using less computing time. This result will be detailed in

*the outline of the first approach.

5.1.1 Partitioning the Board

Our heuristic modification to the problem of finding a near (or

* .possibly true) optimal plan to the dynamic sequence assignment is as
follows. Divide the board into two or more overlapping regions, where

* each region includes all the launch platforms, but each defense/target

is in exactly ONE of the regions. Then use an optimization algorithm,

such as SDFDP, to find the best plan for each region separately, varying

the total number of weapons allowed between the launchers per region.

For example, if in the original problem there were two launchers, each

with two weapons onboard, we would split the board into at least two

regions and make several runs on each region, each time allowing a dif-

. ferent number of weapons (from 0-4) to be used on that area. After run-

ning the algorithm on all the partitions, sum the scores of those

regions whose total number of weapons when taken together sum to the
number of weapons allowed in the original problem. In the above example,
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LU if we partitioned the board into two regions, we would sum the target

scores obtained from allowing 0 weapons in Region 1 (Ri), and 4 in

Region 2 (R2), I in RI and 3 in R2, 2 in Rl and 2 in R2, 3 in RI and I

in R2, and finally 4 in Rl and 0 in R2. From these total scores, the

maximun target score would yield the best plan.

Note that as the number of launch platforms in the problem

increases, the complexity of this approach grows raoidly. When we vary

the number of weapons allowed per region, we also must decide how many 0

- to allow on each launcher. Thus, if for a given run; we're allowing

three weapons to be used on a region with two launchers, there are 4

possibilities as to how to distribute these three among the launchers (0

on Li and 3 on L2, I on LI and 2 on L2, 2 on Li and 1 on L3, or 3 on Li

*" and 0 on L2).

At first glance, the total number of runs of the algorithm that

must be performed seems unreasonably large. Our claim, however, is

. that, by being "smart" about the problem, the number of times the algo- 1Z

• .rithm must be run can be decreased to a very reasonable and feasible

number. For example, if a given region has only a few low-valued tar-

gets or defenses, while another region is very target rich, then it is

not necessary to run the case where all weapons are allowed to attack

the first region. As a user becomes more familiar with using this

heuristic approach, he will get a "feel" for what is reasonable or

* unreasonable to do.

We implemented this approach using our SDFDP software. The next

section describes a feature of our SDFDP software that was a necessary

addition in the implementation of the approach. An example of the

approach follows.

5.1.1.1 Ron-rectangular boards

' A first step in implementing spatial partitioning was adding the

" capability to the software of handling non-i ,ctangular boards. All of

the examples presented thus far in the report have been with scenarios

laid out on a rectangular grid. To be able to partition the board into

various regions, it was necessary that these regions be of any shape.
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, j kRectangular regions would be too constraining, especially if launch

platforms were located on either side of the board. Also, the ability

to o-itline only the essential areas of the board saves computing time.

Examples of non-rectangular boards are illustrated in the next section.

5.1.1.2 Example of Partitioning

Consider the scenario shown in Figure 5-1(a). The target and

resource statistics are as shown below the board. Running the SDFDP

software on the entire region outlined in bold print took approximately

16 CPU minutes on a PDP-20, under the TOPS-20 Operating System. The

plan generated is shown in Figure 5-1(b).

Now, using spatial partitioning as described in Section 5.1.1, we

divide the board into two regions, shown in Figure 5-2 (a) and (b), out-

lined in bold print. The results of running the program separately on

Partitions A and B are shown in the graph of Figure 5-2(c). Because of
the number of targets in Partition A compared to the number in Partition

B, it was reasonable to begin by allowing 3 weapons in Partition A. We

thought that anything lower would certainly not be optimal. We then con-

Utinued to increase the number of weapons allowed until we reached 7. We

believed that anything higher (that is 8) would also be unreasonable.

-. 'We then repeated the process for Partition B. Then, by summing the two

curves A and B, it is easy to see the maximum score occurs at 6 weapons

on Partition A and 2 on B. The total score was 639.70, which is the

'" same as that found by running the entire region at once. The total com-

" * puting time using this approach was 54 CPU seconds per sample point.

Thus, a total of 9 CPU minutes were required to generate the graph of

Figure 5-2(c). This results in a 44% decrease in computing time.

5.1.2 Target Grouping

In this section, we discuss the issue of target grouping in order

to enhance optimum dynamic sequence assignment via dynamic programming

or other mathematical optimization methods. The grouping is based on a

set of heuristics that groups targets with similar characteristics

-- together and treats them as a set of super-targets. Assignment is then

done over the super-targets and final refinement is made via
4 51
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- - 1 2 3 4 5 6 7 8 9 10 11 12 13

S TI T2

2 D5 T3 D6 D7 T6

3T4 T5 D4

4 D1 D2 D3

5
1.

- 7

12 LI L2

*TARGET VALUE

1 200
2 300
3 100
4 200
5 200
6 300

FUEL = 32

LAUNCHER # MISSILES

1 4
42 4U

" Figure 5-1(a) Example of Partitioning --
Entire Board
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16 CP MINUTES

8 2 5 6.5

2 1 2 27 3 .51

-~ *~TOTAL 
=639.70

Figure 5-1 (b) Example of Partitioning
Entire Board Results
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S 2 3 5 6 7 8 9 10 11 12 13

2 D7 T6

3 T5 D4

-- D2 D3
7L
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1.0

12 Li L2

PARTITION B

V * Figure 5-2 (b) Board Partitioning
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S800

* MAX

700

-• A

~ 600

500

.. 4.70

' .. ' TOTAL

* SCORE 400

300

200
B

100

A: 3 4 5 6 7

-. B: 5 4 3 2 1

# MISSILES

.-. " -.

AVERAGE OF 54 CPU SECONDS PER SAMPLE POINT

(TOTALS9 CPU MINUTES)

S.- €Figure 5-2(c) Board Partitioning
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..% I reassignment of assigned resources to a super-target to individual tar-

gets in the super-target.

We shall group targets together based on the following guidelines:

I. Expected value - we shall group targets together with similar

expected value, which is given by

Expected value = V Pk

where V= value of target

k= probability that the target is destroyed by one resource

SPk includes the "ease" of destroying the target. Thus, two targets with

different values may be grouped together if the one with a lower value

is easier to destroy.

2. Reachability - if two targete can be reached from the same

source, we may group them together.

We shall describe in the next section how such guidelines can be

I used in grouping targets for DSA. Furthermore, we shall discuss the

influence of one's risk profile on the grouping of targets and its

implications.

5.1.2.1 Grouping in Terms of Value

.Let T - t ,... n be a group of targets protected by a defense net
D I  d M The basic problem is how to allocate resources from

different locations, Ri  ={ril,...rit }, i = 1, ... 2, to D and T so as

to accomplish certain missions.

Let

Nti Vi pi) = expected value of target i

Note that Pti) is computed as if ti is not protected by any defense

unit, and thus only relates to the physical "hardness" and the physical

14 location (whether it is exposed to attack or not) of the target. We

determine a subset based on expected value partition:
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~A

Tv = {Tv(i), i = 1, "- gv} where

tj f TV(i) if Tj(i) < .j -(i+1) =b.gv
I p-

The determination of {i (i)} is subjective; but once the decision maker

specifies {-i (i)} the computer can easily create:

T v {TV(i), i = , ... gv)

-

5.1.2.2 Grouping in Terms of Reachability

: .Let S {s ,...s be a sequence of ordered critical points (OCP)

in the region. We shall use the notation:

SRj ---- > t i

S

to represent the fact that a resource unit from region Rj can reach the

target ti and return to the region Rj through a path that passes through

SSl, ... s in an orderly fashion.* The reachability criterion is based

on fuel constraint (see Figure 5-3.) Let S = (SO), ... s(q)} be a set

of sequences of OCP. S is said to be a complete OCP set with respect to

T if, for any t i f T, there exists some j = 1, ... m and some s(k) E S

such that

• : 2 s(k)
S

Conceptually, the specification of a complete OCP set S represents ways

one can "cover" all the targets by resources located in different

regions. Given a set of targets T and a set of regions, there are an

infinite number of different complete OCP sets one can construct. As

- we shall discuss later, the generation of a specific complete OCP set

depends on many considerations, including individuals' risk profiles.

4 ,

We can relax he requirenent that the resource must return to the
* originating region. The extension is rather straightforward, and

therefore, for simplicity of illustration, we assume it is true in our
discussions.
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. . . ...

Given a OCP sequence set S, let us define

TR (j, S) ' {ti t TIRj----> ti)

The set TR(j, S) represents the set of targets that can be reached by a

resource unit in Rj via the same S (see Figure 5-4). Testing of whether

ti belongs to TRkj, S) is rather straightforward: Suppose the path is

represented by

j -- > Sl --- > s2 --- > ... Sa --- > ti --- > S a+l...- -> s - Rj.

Then assume a straight line path between the points and check to see

whether the fuel constraint is satisfied through the piecewise straight

line path as specified above. Therefore, given S, the construction of

T R, S), j i .... m, is immediate.

Given a complete OCP set S, we can construct, for each s(k) c S, the sets
TR(J S(k)), j = 1, ... m. We can now partition the target set T into groups

represented by:'
T R(S) TR(l, S) V TR(2,S)... V TR(m , S)

"R(i,S) = V T( i, S(k))

s(k)E S

where the set operation AVB is illustrated in Figure 5-5. The set TR(S)

represents grouping of targets via reachability from the source through

paths that pass through the same sequence of OP. The above definitions

are also illustrated by Figure 5-6.
o '4

5.1.2.3 General Grouping in Terms of Characteristics

We can view two targets to be similar if they have roughly the same

value and can be reached by resources from the same origin passing

- through the same sequence of OCP. Therefore, it is reasonable to define

.Ithe grouping:

T(S)= Tv V TR(S.)

a Note that the grouping as suggested above is rather subjective. From t

Section 5.1.2.1, we see that Tv is dependent on (1) the 'value" of the

target which is a subjective quantity (see also Ili) and (2) the notion

of "similar value" (determination of (i),i1.. gv) From Section
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5.1.2.2, we can see that T R(S) is dependent on the set S being chosen.

As we shall see later, the selection of S is based on many factors:

knowledge of path condition, defense strength, and the risk profile of

the decision maker. Once {2 1 . -g)}and -S are specif ied, the

grouping of targets into super-targets is rather straightforward.

tinIn the next section, we shall expand our discussion on the selec-
tinof S5 based on different factors.

*5.1.2.4 Penetration Path and Ordered Critical Points

* *So far, we have not incorporated the existence of defense networks

in our grouping of targets. We shall now consider its effect in group-

ing and resource allocation strategy. Surrounding a defense site, we

can map out a defense contour which represents the probability that a

resource, transversing through the region, will be destroyed by the

defense force located at the defense site (see Figure 5-7). Given a

defense net protecting a set of targets, we have a defense contour sur-

* -rounding the net (see Figure 5-8). From Figure 5-8, we see that there%

- are three penetration paths, P 1, P2 1 P3 1 that pass through OCP*

I f(1), S(1)}, {S(2), SM S(4), S(2)} {g(5), S(5)) respectively which
are located at the "valley"~ of the defense contour. However, the path

Pthat passes through {S (5) (~5)) has a "lower penetration factor" in

the sense that the probability that a resource can penetrate through the

* specified path unharmed is lower.

- - .One can modify the defense contour by assigning resources to neu-

tralize the defense, and thereby creating OC? which has a penetration

* path with a higher penetration factor. In the constraint of fixed

-. . resource, more resource allocated to defense sites will create more OCP

with higher penetration factors, but then will reduce the number of

resource units that can allocate to targets. Since the "scoring" is

only related to the destruction of targets, the allocation of resources

* to defenses is more of a reflection on the security consciousness of the

* decision maker; whereas reservation of more resource units to targets

* reflects the decision maker's desire to "win big."
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5.1.2.5 Risk Profile and Problem Formulations

We shall classify two types of decision makers: an aspiration

driven type and a security conscious type. In this section, we shal,

not be concerned with why a decision maker belongs to one type or the

other; but rather, we are concerned with how such difference in risk

profile will influence the problem formulation for resource allocation.

An aspiration driven decision maker is more concerned with "winning

big"o and thus first defines such a notion (e.g., total value of targets

to be destroyed) and then tries to increase or maximize the chance of

winning. A security conscious individual is more concerned with first

creating penetration paths with reasonable penetration factors and then

tries to "score"~ as much as possible by transversing through these

* Paths. These can be translated into two different problem formulations.

(1) (Aspiration Driven) Given a set T to be covered to reflect one's

winning concept, how should one select 5, which is complete with

respect to T, such that the corresponding penetration paths will

have as high a penetration factor as possible?

(2) (Security Driven) Given a specific level of penetration factor to

reflect one's security notion, how should one select a set of

penetration paths that will allow one to cover as large a subset

of T as possible with the highest total value?

* 5.1.2.6 Optimization Problems

In this section, we shall describe the above formulations via two

different optimization problems. For ease of discussion, we shall

assume homogeneous resource and one platform region (R1). The extension
to non-homogeneous resource and multiple platforms is conceptually

straightforward, but the indexing becomes very complicated.

Let T be a given a set of targets to be considered. Let

S (), ... 3(q)) be complete with respect to T, and N(S) a specific

allocation of resources to defenses in order to create penetration paths

that pass through S.
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Associated with S(i) and Ni(S(i)) is the penetration factor

1ASiN(())

U Let R be the total resource at RI and define

j 1. N( S a ()9 ; i=1, ...n S , (k.)----- R
1 =

as the set of admissible allocation vector-s for targeL, where the

resources are to travel along paths characterized by the set of complete

OCP S. Let

J9 set of all subsets of {1,. ..n)

and

m
V

.9 ={IE.91 = il,...im), M < n s.t. j.1 Vi k).

*Thus,,9k represents the set of all subsets of .9 with a total value

greater than or equal to K.

Since there is only one platform, we can assume that all units

*allocated to the same target will take the same path. Thus, we have

Prob (Ti is destroyed IS, N (S.), a 4F A(S3, N(S)) ki I Pi)

* where

A, (ki).c~ -:~~k AS N(S))
k. i

Let us denote

T -(T ilIi -EI).

We have

La n

-~.,Prob {TI is destroyed IN(S), a E A(S, N(S)) = i1 ]Vi(I Ias, N(S))

4)Ci(1 la, S5, N(S))

where

1 -Oi~l Pi)ai i
0 aS N (S a

( 1 -Pid

68



The event that the total value is greater than a certain value k is

given by

Prob {i A1 i? kia, S, N(S)} I a ,IS, N(S

- Egk

:We have the following mathematical optimization problems:

(A) (Aspiration Driven) Specify K, then

max max Probi ka, , N(S

" () S, N(S) acA(S,N(5))

.(B) kSecurity Conscious) Specify 1 >a>O, and

mat max {KJ Prob( t . > kja, S, N(S))} >a)
S, N(S) a c_-A(S,N(S))

The optimization problems are broken into two stages where stage 1

is involved with resource allocation after a complete set of OCP is

specified and the number of remaining resources for targets is speci-

fied. The second stage is to utilize resources to create a complete set

of OCP with a high penetration factor. The resource constraint induces

a tradeoff between a high penetration factor with potential "big win."

-.. ..- It is interesting to note that the first stage is analytical,* and can.J.-.'

be accomplished via a mathematical optimization algorithm like maximum

marginal return, dynamic programming, etc. The second stage is more

heuristic than analytic. Judgement based on past experience, analogous

situation, understanding of one's own resources and enemy's defense

capabilities, and the risk profile of the decision maker play an impor-

tant role in the determination of S and N(S). Without solving the above

optimization problems, we can, in general, conclude the solutions

characteristic of these two problems. These are illustrated in Figure

5-9. We see that an aspiration driven decision maker has a tendency to

allocate more resources to targets and "take a chance", whereas a secu-

rity conscious decision maker has a tendency to allocate more resources

to defenses in order "to make sure."

* Once S is specified, o. en construct super-targets as discussed in
sections 5.1.2.1 - 5.1.2... and then apply a mathematical optimization
algorithm.
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CONSCIOUS)' -...

NEW ALLOCATION:
. .- ONE MORE RESOURCE ORIGINALLY

ALLOCATED TO DEFENSE IS NOW
ALLOCATED TO TARGET NEW ALLOCATION

IS PREFERRED

SPECIFY K TOTAL
(ASPIRATION VALUE

DRIVEN)

Figure 5-9: Comparison of Security Conscious and Aspiration Driven Decision Making
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5.1.2.7 Interactive Dynamic Sequence Assignment

The dynamic sequence assignment process can also be modeled as an

iteration of the following subprocesses.

(a) Determine T,,S and N(S).

(b) Construct super-targets and then perform marginal analysis to

allocate remaining resources to targets via penetration paths

represented by S

(c) Refine paths to defense sites and targets; determine launch time

for each resource, etc.

(d) Analyze resulting allocation to see whether there are undesirable

features; if so, iterate through A to generate a better assign-

ment.

We shall discuss each of these sub-processes separately.

Process (a):This is a process which is influenced mostly by the risk

behavior of the decision maker. If the decision maker is

aspiration driven, then he will start off by reserving a

minimum number of resources for the targets which can achieve a

certain total value (goal), and then consider whether the

remaining resources should be allocated among defense and/or

targets in order to maximize the probability of achieving the

goal. A security conscious decision maker will, however, first

determine the allocation of resources to the defenses in order

to assure a certain level of penetration factor; and then allo-

cate the remaining resources to targets. In either case, the

.2 process is a heuristic one.

Process (b):This is an analytical process. The allocation problem can
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be solved via mathematical optimization or maximum marginal

analy sis.

Process (c):This is a set of path optimization problems which can be

* solved by dynamic programming.

Process (d) :This is a process of analytical studies via "what if" sensi-

tivity analysis.

The overall flow of the process and the tasks associated with each

subprocess are illustrated in Figure 5-10. During the iterative assign-

ment process, the decision maker may switch from "security conscious"

mode to "aspiration driven" mode depending on the analysis of the previ-

*ously obtained potential assignment. When the decision maker is in a

different mode, the flow of the assignment generation process is dif-

ferent (Figure 5-10). The stage where heuristic or expert system con-

cepts is most applicable is in the determination of penetration paths to

* targets of interest. The breakdown as given in Figure 5-10 offers a

* guideline in the design of a decision system in enhancing the dynamic

sequence assignment process.

-4 5.2 TEMPORAL PARTITIONING

* There may exist scenarios of interest in which defenses are able to

be refrxi stituted before a second wave of attack begins. We examined

ways of extending our SDFDP algorithm to handle scenarios with multiple

attack waves. In this section, we will describe our research in this

area.

5.2.1 Basic Formulation

We have concentrated our effort on the case of two attack waves,

u each beginning at a user-specified time. (Adding more attack waves

would result in only minor modifications to the algorithm.) The user is

asked to enter the times of the start of the attack waves, as well as

the langth of time each defense takes to reconstitute. Thus, if the .
I . Alength of reconstitution time of a defense is shorter than the time

between waves, then that defense is considered to be reconstituted by '
4.. 72
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the start of the second wave. The user also must specify how many

weapons will be available on each launcher during each wave. In our

current research, we assume that weapons available during one wave will

be used during that wave and would not be allowed to be "saved" for use

in the next wave. Relaxing this constraint certainly would be an

interesting and important topic for future research.

The algorithm begins in the same way as the SDFDP approach as

- described in Section 4.2. The dynamic programming, however, is done

over all waves, not just once. The first time it is performed, both

waves will yield the same result, as nothing has been attacked. (Thus,

* to save computing time, results of the first wave DP could simply be

copied to get the second wave results.)

The first super-state is again to allow only targets to be

attacked. Weapons available during the first wave are used first, fol-

loved by those available during the second. Thus, assignment algorithms

are used just as in the conventional SDFDP algorithm. The reassignment

... ,-.algorithm, however, only tries to reassign launchers to targets during

the same wave. That is, it checks all waves for a "bad" target assign-

5 ment and decides if another launcher could attack that target during the

SAME wave, and get an Overall better score. The best plan is then

recorded, along with the waves in which assignments were made.

Now, just as in Section 4.2, plans are generated which first attack

defenses. The order in which they are generated is very similar to the

order generated in conventional SDFDP, with the following exceptions.

For every combination of defenses generated, every combination of waves

must also be generated, creating even more plans. The heuristic origi-

* - nally used which constrained defenses to be attacked in increasing order

is now replaced by the restriction that a defense attacked during Wave 2

cannot be followed by a defense attacked during Wave 1. This restricts

all defenses in a given plan to be in the order in which they are actu-

ally attacked. Also, the restriction that defenses can only be attacked

twice is removed (or possibly replaced by the constraint that they only

be attacked twice during any given wave). Thus, if there are three
defenses, two attack waves, and the overall limit-to-defenses is two,

then Figure 5-11 shows the sequence of plans that would be generated
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using temporal partitioning. (Di -Wj means Di attacked during Wave j.)

. Plan Combination of Defenses - Waves

1 no defenses
:tm2 D1 W1

3 DI -W2

4 Di- W, D1 - W1

5 D1 -W1, D1 - W2

6 D1 - W2, D1 - W2

7 D1 - W1, D2 - W1

8 D1 - W1, D2 - W2

9 Dl - W2, D2 - W2

- 10 D2 - W1

11 D2 - W2

12 D2 - WI, D1 - W1

13 D2 -WI, DI -W2

14 D2 - W2, D1 - W2 S

15 D2 - WI, D2 - WI

16 D2 - WI, D2 - W2

17 D2 - W2, D2 - W2

*
Figure 5-11 Sequence of Plans Generated by Temporal Partitioning

Once a sequence of defenses is generated, the defense assignment

-algorithm is used -o determine the best launcher to each defense in the

plan during the specified wave. Before the first attack of the second

wave, defenses attacked during the first wave of the plan must be

checked to determine if they can reconsitute before the start of the

second. If so, then the probability of existence of that defense must

be reset to 1, and the dynamic programming algorithm must be repeated.

Now it may be possible that if the right information has been saved

along the way, the dynamic programming may not be necessary and the

information needed can just be retrieved. For example, if Dl has been

hit during Wave 1 followed by D2 during Wave 1, and now a defense is

about to be attacked during the second wave, then if D1 cannot reconsti-

tute but D2 can, the state of the system by the time the second wave

begins is as if only DI were hit (because D2 reconstitutes). Thus,

because of the sequence in which the plans are generated, we already
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know the results of the dynamic programming after hitting DI only.

Thus, the information can be retrieved. This phenomenon will not occur

in general, however, and for many cases, it will be necessary to repeat

the dynamic programming calculations. This point is a very important

one because it means a very large increase in the amount of computing

time in order to handle multiple attack waves.

After all the defense assignments have been made, the target

- assignment algorithm then determines the best launcher-target pair to

assign during the first wave. If all the weapons available during the

first wave were used to attack defenses, then the best pair during the

second wave is found instead. The target reassignment algorithm and the

defense-to-target reassignment algorithm are used to try to improve the

overall score. The reassignment algorithms are basically the same as

described in Section 4.2, except that reassignments must be made within

tthe same wave. The target assignment, reassignment, and defense-to-

target reassignment algorithms are implemented repeatedly until all the

weapons of all waves are used. Note that weapons available during the

first wave must be used before using the weapons available during the

second wave.

The generation of plans continues until all plans are processed,

and the best is finally outputted.

5.2.2 Implementation Considerations

As mentioned in the previous section, this approach to handling

multiple attack waves has a serious drawback that must be considered:

computing time. Although the theory of temporally partitioning the

problem using the SDFDP algorithm is sound, the implementation of our

research so far may cause some serious difficulty. The dynamic program-

ming calculations of the SDFDP algorithm constitute the major bulk of

6 computing time. Adding many more such calculations wil increase the

computing time beyond the realm of feasibility. Certainly, more

researcn is needed in this area to find methods of reducing the computa-

tional burden.
II ' '/6



6. AN INTERACTIVE APPROAOI TO DYNAMIC SEQUENCE ASSIGNMENT

6.1. INTRODUCTION

The problem of determining the dynamic seqtential assignment of

multiple resources against multiple targets, defended by a set of

defense sites can be abstractly described as follows. Assume that there

are n potential targets (TI, ... ,Tn) to be attacked. These targets are

located within a net of defense sites (D1 , .. , Dm). Assume that all the

resources are located at different regions (R .... ,R). (See Figure 6-1).

The issues to be considered are

1. how many resources in region R.i should be allocated among {D} j= l

and the targets {T1 ,...,Tn )?

2. if a certain resource in R. is allocated to one of the (D.} or
1 J

{Tk}, what is the path to be taken by the resource? what should be

its initial time?

3. what is the sequential order of assignment?

4. what constitutes an "optimum" assignment plan?

In this section, we shall develop an interactive methodology that P

directly addresses the main issues of the problems. The approach relies

on interaction among planners, who are more concerned with the success

of mission; experts who are knowledgeable in the general geographic lay-

out, attack strategy, possible enemy counter-measures; and a mission

planning aid which integrates experts' knowledge and performs mathemati-

cal analysis when needed in order to facilitate the planning process.

In this section, we shall describe the overall approach, specify the

necessary interaction and the different "task" functions that the plan-

ning aid needs to have. Some of the detail of the mathematical "tasks"

to be performed by The aid will be discussed in the later sections.
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Figure 6-1 High-Level Geographical Representation

of the Sequential Assignment Problem
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6.1 AN INTERACTIVE APPROACh!

- . The overall dynamic sequence assignment problem can be visualized as a

two-level hierarchical optimization problem as described in Figure 6-2. The

first level is concerned with the assignment problem. However, to do so, it

needs to know the "benefit" associated with an individual assignment. This

" is to be performed in the second level where it computes the resulting

optimal performance for individual assignment by solving the path optimiza-

tion problem with initial time to be selected optimally, and computing kill

* " probability, etc. The truly optimal assignment is obtained by searching

through all of the possible assignments, and determining, for each assign-

ment, the resulting performance.

The above problem description is still not precise enough to allow

mathematical formulation: e.g., the performance measure associated with the
assignment is not specified, and thus it is not clear what the second level

should input to the first level when an assignment is made. This is prob-

ably the most difficult part in the problem solution: What should be the

performance measure? How should one compare two assignments?

One approach is to construct a scalar measure which "reflects" the sys-

mI tem performance; e.g., we can let

=J J - i- a. P. (6-1)

ai - relative figure of merit associated with target i

SP. - probability that T. is destroyed

and use

E{j) (6-2)

as a scalar performance measure for the overall problem. Once a scalar per-

formance measure like that of (6-2) is given, conceptually the problem can

be solved via dynamic programming or similar search technique even though

the computational requirements may be very large. The issue of the problem,

however, is not so much the computational difficulty, but, rather, whether a

scalar performance measure always faithfully represents the system goal. As

an example, if the assignment problem is an abstraction of aircraft and/or

missile assignments for destroying important stationary (or slowly moving)

" -79
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targets, then the goal is to destroy the targets while reducing casualty.

Such a goal is rather fuzzy and subject to many interpretations. The fol-

* lowing are only a few possible representations.

' )2 a. Max - n~l a. P1 subject to the constraint that x-" .- b. .e,1 1 z_ J= i -

where P.. represents the probability that the ith  resource from region
3

j survives after its attack mission is completed (C. = number of

resource units in region j).

b. Max F_.-I EiJl bi Pij subject to the constraint that

n
i=l P a

c. Maximize Pi i1, ..., n as much as possible without regarding Pij

when allocations have been made to assure that maxi,>

then try to make additional allocation to reduce ij.

d. Select a subset J C{TI,...T n ) of targets to be attacked; the selection is

C- based on the requirement that after allocating all the resources to J

P> a, V T i e and P.. > f,il,...,jl,..

e. Similar to (4d) except the requirement that P..> A? is replaced by Pr {total

number of resources survive after their attack mission > K)_

The list can go on and on. A particular choice of goal representation

is subject to the decision maker's perception of the specific environment

under which the mission is to be carried out. One interesting point that we

noticed from the above list of representations is that all representations

involve the variables (Pi' Pi.}. We shall call such variables the attri-

butes that are associated with the goal to be accomplished.

In general, specification of goal gives rise to a set of attributes

(but not the reverse direction), {Ai,...,A ),which are directly related to

_ assignments made; while individual's subjective interpretation of the goal,

which may depend on one's position and interest, give rise to a specific

goal representation.

Let J. (Ai,...,A) i-i,.. f be a set of variables which represent the

1 1 q
performance associated with the attributes (Ai,. ..A , ). A goal representa-

tion can be quantified as a tuple (S,m ) where SCR is a subset in

R' f' < f and = is an ordering defined on S.

81
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For example, the representation (a) can be quantified as follows

. .'.."= y = l a l P i S _ =j bjs Zi i
a. p ,oj -°"I il i 2 L-s i- i

S={J 1 arbitrary, J 2 
> 3}m2

21, 2s J , S s s if J -J

whereas representation (d) can be quantified as

S = ((P ; i=l , n, kj' k-l,... 1 j, j-il....S)Ip i  _

P .- . . .l p - ' . ' Z

for any two elements (s, S') in S, s-os and s~cs

Now, returning to the two-level hierarchical problem as described in

Figure 6-2. The dynamic sequence assignment problem can be solved by the

following steps.

1. Evaluation: Associate a possible assignment u with specific path and

launch time, etc., and assuming certain nominal parameters (e.g., kill

probability), evaluate the performance via

U ~J(u,0) - {J (A (u,e),. ..,A (u,e)),. ..,Jf(A (u,O),. .. ,A (u,e)}
q f1q

The overall evaluation is given by

E(u) - {J(u, 0); C(e), Ba en

where Q represents the set of plausible parameters and C(O) represents

the confidence on 0.

2. Exhaustion: Exhaust all possible assignments (denote it by U) and

evaluate E (u) ,V u U.

3. Preferred Assignment: A partial ordering >> is induced on U via

(s,a) and (C(O),(}e) such that if
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UI >>U2 .. U. I is preferred over U 2.

These UA A
The et = u C U there exists no u E U with u >> u) is called the

set of preferred assignment. Note that it is possible that neither

U >> U2 nor U >> U1, in which case both assignments cannot be "com-

pared". Given the set of preferred assignments Up, amon6 many other

things like individual risk profile, the final choice may depend on

many factors which cannot be accounted for quantitatively.

While exhaustive search will give the set of preferable assignments, it

is impractical and sometimes infeasible if the number of possible assign-

ments is large. A mission planning aid is a system that facilitates the

mission planning process. A planning process can be modeled as a sequence

of iterative processes as illustrated in Figure 6-3. It is useful to dis-

cuss the main feature of each of the processes within the decision process,

and indicates the needs for support in each process.

We started off with the process of identification of issues. This is a

process where, by matching goal representation and conditional assignment

evaluation (initially exogenous assessment is used instead), it identifies

the main issues to be focused on in generating new assignments. This

is a process where creativity is needed with support from very simple

analysis which is centered around how different combinations of attributes

weill contribute to the goal satisfaction: why a certain target is more

important that the others, why certain defenses should be avoided, etc. The

outcome of such a process will help us to focus on generating a new assign-

ment.

-7. The process of assignment generation is to determine a new assignment

based on either the issues to be focused on or modification of previous

assignment. We shall elaborate on this in the next section. The main point

to emphasize here is that the process of assignment generation is heavily

dependent on domain expertise and analytical manipulation.

The process of determining optimal path and launch time, etc., is a

rather straightforward analytical problem and can be handled by using an

optimization technique and/or mathematical programming.
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Figure 6-3 A Planning Process
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The process of assignment evaluation consists of two stages:

1. Evaluation of J(U, 0) for a nominal 0. This is a straightforward

Uanalytical problem involving mathematical manipulation.

2. Sensitivity evaluation of {J(u, 0 ) c d7A}, and the determination of C(9)

9 E 2 These involve both mathematical manipulation and a subjec-

_, tive view of what possible values C(O) can take as well as how likely

these values would be. This sub-process requires very tight interac-

tion between experts' evaluation and value assessment.
.1

We shall further elaborate on this in Section *&.4. The output of this

process is either that the assignment is satisfactory or that it will pro-

vide input to re-generate new assignments either by introducing new issues

to be incorporated in assignment re-generation or recommending possible

modification. This "filtering" process requires subjective judgement and

maybe some simple analysis.

The iterative process will generate a set of preferred assignments,

denoted by U . The set U is built up as follows. Let U (i) be the set of3 p (0)
preferred assignment at the end of the i iteration. By definition, =

0. Let u i+l be the new assignment generated at the i+lth iteration. If

u i+l is "satisfactory", then

u(i+l)c U(i) U {ui+l)

and if u i+ 1 is not satisfactory, U(i+l) = U~i). The fact that U(i+l) is
(i) i+l p p p ( i)

uincluded in U u implies that some of the assignments in U may
, "p P

be conceived to be not as good as ul+l and therefore are not included in

u(i+l)
p

Depending on time constraint, patience, and satisfaction level, the

iterative process will stop after a finite number (say M) of iterations; and

-* the set of preferred assignments would be U U(M). The set U may or may
p p •p

not be singleton, and if it is not singleton, then it either implies that

* the assignments in U are indifferent, or that other exogenous factor other
0 p

than goal consideration will determine the final assignment to be selected.

Now we can describe the interactions among planners, experts and the
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2 -" planning aid in different stages of the planning process. This is summar-

ized in Figure 6.4.

•_._Planner Planning Aid Experts

Issue
= X

. Identification

Assignment

-] Generation

Path

Determination X

What If-

Eval- What
uto Might-uation

Calculat.-
& x

[Disla ____ _ --- - ~-

Comparison

Figure 6-4 Interactions among Planners, Experts and Planning Aid

The arrow indicates input and the cross represents mathematical manipu-

lation. Thus for example, issue identification requires inputs from planner

to planning aid so that certain mathematical calculations can be carried

out, and then the mathematical solution is displayed to the planner in some

appropriate manner.

6.2.1. ASSIGNMENT GENERATION

The inputs to this process are Lhe targets to be destroyed and their

L relative values. The problem is that of assignment of resources to these

targets and defenses so as to accomplish the mission which is reflected by

the goal ripresentation.
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I We shall break the assignment generation into two problems: the first

* problem is to determine which targets are to be attacked and the nominal

!penetration paths; the second problem is allocating resources to the targets

and their related defense units, assuming that the specified penetration

paths are to be used. The first problem relies more heavily on heuristic

% . ~ and experts' knowledge while the second problem is a -ell specified resource

allocation problem once a mathematical performance measure is specified. We

shall discuss these two sub-problems separately.

6.2.2. Nominal Penetration Paths

The determination of nominal penetration paths is based on experts'

~1 knowledge of the tactical situation. Sometimes simple analysis can help in

such determination. It is also stressed that interactions between planner

and planning aid, planning aid and experts would facilitate this process.

We shall discuss some of these interactions in this subsection

A threat contour and terrain masking display by the planning aid to the

planner would greatly help the planner to identify plausible avenues for

U penetration. A plausible penetration path is selected and appropriate

experts are consulted to comment on the feasibility of the path (whether

this can be done within the physical constraint of the resource capability

* and, if the resource is to be transported by human, the physical limitation

p of the human), the likelihood of encountering counter-measure of the enemy,

* etc. The decision aid can facilitate the interaction between planner and

the appropriate experts; e.g., it can guide to locate the appropriate

experts, extract relevant knowledge from experts and present the knowledge

to the planner in an appropriate representation form. Some simple analysis

* based on experts' information can be employed to determine the desirability

* of the proposed plausible path. Several iterations between the planner and

the experts may be necessary to arrive at a reasonably "good" penetration

6A path. It is possible, also, to allow multiple penetration paths to one tar-

get.

For a more detailed discussion of determining penetration paths, see

Section 5.1.2.4.

.A
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6.2.3. Resource Allocation

Given the penetration path to the targets, the next question is how

resources should be allocated among the targets and defenses. In this sub-

. section, we shall discuss a possible mathematical formula.tion to deal with

such problems.

_.p Let {TI,..., Tt} be the subset of targets to be attacked. Associated

with each T i is a set of penetration paths, denoted by LTk' k=l, . .,t.. We

shall say that T. is defended by D. if there exists LT which passes through
Sj ik

* the defense region of D., and we shall represent it by the symbol LTik c D..

For a given set of penetration paths {L T ), we can identify a subset

Dip...I $ Dr such that D. is nonempty, j=l,..., r. Let Xik be the resource

units allocated to take path LT  Define the following symbolsik"

X={xik ; k=l,...,t i ; i=l... , t}

{D. = 0}: the event that D. is operational

{D = 0): the event that D. is non-operational

a (al.... , ar ; ai can be either I or 0

" D(a) -{D 1 = al,..., Dr = ar (thus if a1 = 1, ai = 0, i=2,..., r, then

D(a) represents the event that DI is operational and the rest of Di are

non-operational).

Using a defense network model, we can evaluate

P(XID(a); X) Probability that Xik of Xik leak through the defense

netwnrk, k-1, ..., t. i=l,..., s cond.tional on the event D(a).

By analyzing the hardness and the geographical outlay of Ti., one can

evaluate

ik = probability that T. will be destroyed by a resource unit
" 'k

delivered to it via LTik"

Now to generate an assignment, we introduce a mathematical performance

measure which is in-line with our goal. One possible choice is

4, ,
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J = Expected (relative) military value destroyed

U1."= 1s ik

where w i represents relative weights on the military value for each site

represents the probability that T. is destroyed. J is a function of X and
1

P(a):

x
%t

_ J(X;,a)) i=l wi Za Z_ [i- ! (I ik]p (XD(a);x)P(a)

P(a) can be influenced by assignment resource Y. to D., via path D
Djl, ... , r. The selection of L. can be carried out by path optimization or

* .:-
b penetration discussed earlier. Let us define this by

P(a) = P(aIY) ; Y = {Y.

and thus

J(X;Y) w a (I- 7rkIl (l-Pk )x  )P(XID(a);X)P(aIY)

s= f(Xi;Y) X. {xil ... x
i=l 1 1 = it.

trik ik
. -kwhere f(X.;Y) w (l - * k) )P(X .D(a);X)P(a1Y)

1 a - Xk 1

To generate a reasonably good assignment, we may want to solve the following

optimization problem:

Max S. f(Xi;Y)

such that X. > 0, Y > 0; and sum of all resource units originated from a

source must equal to the total resource units in that source.

The problem can be solved via dynamic programming; or, if the function

f(Xi;Y) has certain concavity conditions, can be handled by extended
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marginal analysis as discussed in Appendix C. The decision aid should be

capable of solving the optimization problem very quickly so that the user

does not have to wait for a long time to have one assignment generated.

6.3. ASSIGNMENT EVALUATION

This process is input by an assignment generated via solving the above

- mathematical optimization problem. To evaluate such an assignment, we first

- -evaluate the set of attributes associated with an assignment. Possible

attributes are

(1) ~ P.,, (related success of mission)

(2) P(XIX) = aP(RID(a);X)P(a) (related cost if resource itself has value)

The evaluations of these attributes are first carried out using nomiinal kill

probability (e.g., Pl ), defense contour, and relative weightings {w.}k ik1
Next, we cryout sensitivity analysis by varying P kdefense contour and

investigate their impact on the deviation in the attributes. The following

issues are to be considered in order to decide whether the assignment is

desirable.

1. Would one of the attributes fall below a certain security level with

variation in either Pk defense contour which is considered to be rea-

*sonably plausible (i.e ., S2 such that J(U,0)EC S) ?

2. What would the scenario he to give a "bad" outcome? How likely would

* such a scenario be? Can one modify plan as such situation arises?

3. What would the scenario be for the "best"* outcome? Can we promote the

likelihood for such scenario to happen? How good is this "best" out-

come? Does it achieve over the aspiration level?

Note that the evaluation is not based on one single numerical measure, but

*- rather, a set of measures under different "what if" conditions. This also

implies that evaluation must also be carried out in an interzctive manner

(see Figure 6-4). The above dialogue can identify the weakness of present
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assignment; and if the assignment is considered to be unsatisfactory*, such

identification would guide in the next iteration in generating new assign-

sent. If the assignment generated is satisfactory, it is compared with the

set of preferred assignments Ui) that had already been generated.

6.4. COARISOU

Let u ( i+ l ) be the newly generated assignment and U ) be the set of(i~l) .(3 te
previous assignment. If u >> u. for some uj f U then

U(L+l) U(i)U{u(i+)- (-.); whereas if there exists some u3  W such

that u. >> ul ), then U - U ); and finally if neither(i+l)j (?+I) ) ,  U( i+ 0)  {(i+0)L 0)-
>>u. nor u. > u for all u. (up then U = {u

Thus the construction of U(il) boils down to pairwise comparison between u( i+l)

and u. for each u. f Ujj P

It is felt that the comparison issue should be resolved by the planner.

However, since there are many dimensions to be considered in a multi-

attribute situation, the planning aid can be used to help in setting up

structure for priority assessment for the different attributes which would

facilitate the comparison process. One possible tool is one based on the

analytical hierarchical process discussed by Saaty [Saaty, 1980], yet

another is one based on multi-attribute utility theory discussed by Keeny

and Raiffa.

I,1

.. %

*Each assignment has a weakness, regardless of whether it is a satis-

factory assignment or not.
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7. EXTrNSIONS OF BASIC SCENARIOS

In this section we discuss ways of extending the basic scenarios

presented in this report to reflect many of the remaining issues involved in

real life mission planning. We have already resolved some of these issues,

while others merit further research.

7.1. TIM-COMPRESSION OF SEQUENTIAL SOLUTIONS

Our algorithms generate mission plans in the form of a sequence, which

N ~ corresponds to the assumption that each new sortie has to wait for the com-

pletion of all the previous ones before even starting its flight. In real

life situations one usually doesn't have this luxury and needs to send all

the sorties out as soon as possible. Fortunately, there exists an efficient

procedure to derive an equivalent time-compressed, concurrent mission plan

from a given sequential one.

The reason that makes this possible lies in the fact that many sorties

do not depend for their success on completion of their predecessors. For

example, all attacks on distinct targe's are completely independent of each

other. Also, certain targets can be attacked without waiting for some

defenses to be destroyed. Going back to Example 4 (see Figure 2-1, Figure

3-2, and Figure 7-11 we can see that the attack (A9 -> T6) can be executed

without waiting for A3 and A4 to attack D3, since the trajectory to T6 does

not come into contact with the area of coverage of D3.

If we consider the mount of completion of each sortie as an "event,"

then we can construct a "delay" graph G on these events. Let V represent

the set of vertices (events) and E represent the set of edges of G. If V1

and V2 are two events, then (Vl,V 2) belongs to E if event V2 has to occur

after event V1.

With each such ordered pair (V1 ,V2 ) we can associate the delay function

* d(V1 ,V2 ), which is equal to the minimal necessary delay between events

V1 and V2. This delay can be easily computed from the available ontimal

flight paths. Going back to Example 4, let V1 = (A2 -> D2) and

V2 - (A9 -> T6). The delay function can be computed as follows: before the

moment when A2 attacks D2, airplane A9 should be outside of the zone of
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coverage of D2. Thus, A9 cannot be any further along its path (see Figure

7-1) than square (4, 6). After A2 attacks D2, it will require an additional

12 units of time for A9 to travel the rest of its path to reach T6. There-

fore, d(VV) 12.

Directed graph G satisfies the monotonicity (no loops) relation, as

well as the weak triangle inequality [d(V1 V2) < d(V1 V3) + d(V3 V2)] . This

allows for a simple reduction of this graph into a directed tree (arbores-

cence), with the starting point as the root and attacks against targets as

leaves. Figure 7-2 depicts such arborescence for the optimal sequential

plan of Figure 3-2. Notice that the longest path within this tree is that

between the start and (A12 -> T2), which is 6+ 3 + 7 + 3 + 7 - 26 units of

time long. If we subtract the maximal time/fuel allowance of 17 units from

26, we see that A12 can lift off any time after time 9 and complete its mis-

sion at time 26. The earliest times for lift-off of all the other airplanes

, can be computed in the same way. The numbers in brackets underneath each

assigment in Figure 7-2 represent these times. The above procedure can be

applied to any consistent sequential plan and will produce a time-compressed

version of it. In particular, the plan in Figure 7-2 can be executed in 26

units of time, as opposed to approximately 180 units of time needed for its

% sequential prototype in Figure 3-2.

7.2. VRJIMON1U IN D= S1PrI5S

Just like airplanes, enemy defenses can differ from each other. These

differences can be manifested in terms of the sizes and shapes of their

areas of coverage, their kill strengths within those areas, and their sur-

vival capabilities against aircraft attacks. As in the case of airplanes,

TI T 2 75 1
33 62.J

T3 DT 3 3

D 1 0 4 3

82 3 4 5

Figure 7-1 Optimal Path from Cl to T6
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these differences are accommodated by our models and algorithms in a

straightforward manner.

7.3. 3NCUZAIT IN 3131! LOCKTIOIS

All the battle models that we discussed so far have presumed near per-

fect knowledge of the number of enemy forces and their positions and

strengths. The case of reliable knowledge of the number of enemy defenses

and their approximate locations and strengths, can be accommodated by blur-

ring, i.e., spreading out their "probabilistic" area of coverage. On the

other hand, the case of unknown enemy defenses (pop-up threats) at unknown

locations presents a challenge for future research. Both of these ideas are

important topics for further research.

7.4. n uR SUiPPUSSION

When several sorties have some part of their trajectories in common, it

is often advantageous for them to travel together. In particular, when many

3airplaues fly over a defensive site, it is harder for that defense to handle

all of them simultaneously. Thus, the airplanes will have, on the average, a

~ better probability of survival by flying together than by flying separately.

This possibility presents a new attack option, and could be modeled by

our planning system. One way to deal with this issue would be through a
"doubling up" procedure, which can be viewed as a generalization of the Plan

'rid Compression procedure. It converts a sequential plan into its time-

compressed counterpart with the maximum number of sorties executed together.

9.

7.5. ATUMS I IKLTIPLE VRAM LOADS

In our models we presumed that each aircraft was carrying a single

!.4 weapon load and thus was carrying out an attack against a single objective.

This is the case in most real life missions. However, multiple loading is

an important option and can be addressed in future research.

One possible way to model this issue is to allow for one-against-many
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assignments to be included as single controls in our DP formulation. Intro-

duction of multiple objectives will bring an extra wrinkle to the path

optimization problem because there will be a new problem of allocating theUavailable fuel between several legs of the flight mission. This, however,

can be easily taken care of by an iterative procedure which computes optimal

returns for the last leg of the trip, starting at the location of the

second-to-last way point for a spectrum of feasible fuel allocations.

These returns then become a part of the pay-off function for the second-to-

last leg of the trip, which permits the computation of optimal returns for

S that leg for a spectrum of feasible fuel allocations. This defines a back-

ward induction, which will solve the fuel allocation problem.

The solution proposed above has, however, a drawback in the sense that

this type of modeling will increase the already large decision space, and it5remains to be seen how much this would slow down the computation speed.

I9



1S. couosioa-.

In this research contract we have made significant progress in several

* areas of the mission planning problem.

U We have developed basic mathematical models of battle forces and con-

trol options. We have modeled a variety of issues dealing with multiple

carriers, multiple aircraft types, aircraft fuel constraints, multiple enemy

targets with variable importance, and multiple enemy defenses of variable

strength. Electronic warfare, defense suppression, multiple weapon loads,

weapon selection, recognizance and pop-up threats are issues that warrant

further research.

Our major effort involved designing algorithms for finding optimal

solutions to our battle scenarios. We have developed dynamic programming

(DP) algorithms for low-level path optimization and for high-level mission

planning scenarios. In the process we discovered a new version of DP,

called DIM, that provides a umber of advantages over the standard DP.

Because of the extensive computational requirements of the Dynamic

Sequence Assignment problem, we found it essential to modify optimal DP

algorithms with some heuristic procedures designed for reducing the feasible

state space. For that purpose, we have developed, implemented and compared

a nuber of heuristic algorithms. These algorithms proved to be most effec-

tive when incorporated into the DYDI algorithm. We have also researched

the practice and methodology of combining human guidance into our algorithms

in order to achieve search space reduction.

In order to be able to study more realistic scenarios, we examined two

ways of partitioning the problem. Spatial partitioning led to a decrease in

computing time, so that larger scenarios could be studied. By partitioning

the problem in time, we developed an approach that would enable multiple

attack waves to be handled. Future research is necessary to improve this

approach so that it can be actually implemented.

We have also looked at the methodology of dynamic sequence assignment,

including such issues as hierarchical problem decomposition, multi-planner

approach, selection of proper objective functions, and plan evaluation.

The interactive approach developed in Sections 6.2 and 6.3 focuses on

solving the dynamic sequence assignment problem via a decision unit which
consists of son and computer. As such, it avoids as much as possible the
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use of the computer to solve complex mathematical optimization problems;

instead it promotes the use of human judgment to break the complex problems

into simple optimization subproblems that can be solved without much compu-

tational requirement. The decision aid enhances the decomposition process

and provides analytical capability to solve the simple subproblems. There-

fore, it is quite feasible to develop a decision aid system as discussed in

Sections 6.2 and 6.3 for use on practical sized boards. The decomposition

process allows one to break a very large assignment problem into a sequence

of smaller sub-assignment problems and thus the requirement of the machine

capability does not grow exponentially, but only linearly with the number of

aircrafts, launchers, targets and air defenses.

Our research has made significant progress into the mathematical algo-

rithas and techniques necessary to an aircraft mission planning aid. There

are still many issues that warrant future effort and research.I

.
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APPENDIX A
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Appendix A

Single Resource Unit Assignment

This Appendix gives a method of approach and example results for a

single assignment resource allocation problem. This approach was de-

scribed in (Wishner, 1979) and in (Marsh, 1978) of the foregoing text.

The example utilized will be that of an aircraft on an interdiction

mission but the methodology will be applicable to a variety of single

force unit resource allocation problems. The performance measure utilized

is "current military value" defined as

*V(R) VTP M +V AP S

~ * where:

R - Vector of applied resources

V VT -Value of the target (objective)

PM = Probability of accomplishing the objective (which is euqal to

the probability the aircraft survives to the target times the

probability of killing the target given that it survives to the

target).

~.>.V = Value of the aircraft for future missions
A

P S =Probability that an aircraft survives this mission.

For two targets the above formula becomes

V-V P + V P + V P
T M TH A S1 1 2 2

The above formulas can be normalized by dividing them by the future

value of the aircraft for future missions. The resulting performance

measure is used in the examples below. Note that Pand Ps and therefore

V depend on the trajectory flown and the resources utilized. Thus. we

can define our optimization problem as

Al



maximize V(R)

RI.where R is the vector of resources available including

flight path,

RF jamming power used against given threat,

the number of decoys used at a given time, and

the number of ARMS used against a given threat

subject to the constraint that: (1) the fuel used be less than or equal

to the available fuel, and (2) the allocated instantaneous jamming power,

number of decoys, number of chaff packages, and number of ARM4S be less

than or equal to that available.

We first explain the solution approach with only flight path optimi-

zation. Consider Figure Al. Each cell in Figure A.1 contains the probabi-

- lity of survival of the aircraft from the enemy threats that can attack

that cell. The ground is represented by probability of survival equal

to zero.

To determine the optimal trajectory, we must effectively examine
all trajectories to a target and back to a landing point that satisfy

the constraints, calculate the probability of survival (PS at eachSxyz
grid point (x,y,z) on the trajectory, and multiply all the

PS 5  together to obtain an overall P S To accomplish this, the volume
* ,,,.In which the aircraft can fly is divided into cubes (see Figure Al). The

- cube dimension depends on the aircraft maneuverability and the degree of

variation in the aircraft's probability of survival, P, across the
cell. A backward dynamic programming algorithm is then used to find the

optimal flight path.

Dynamic programming provides an approach for solving optimization
problem involving multi-stage decision processes. These problems are

characterized by the fact that the control decision taken at the present
time affects the behavior of the system at future times, and hence the
solution is a sequence of decisions over the entire duration of control,

9,.not just a decision at the present time. Basically, dynamic progrming

converts the simultaneous determination of the entire optimal control
sequence into a tractable sequential solution of vastly simpler inter-

mediate optimization problems. The resulting solution is precisely the31 one obtained by exhaustively searching all possible control combinations
* without actually performing such a computationally prohibitive search.

'.
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Withthe dynamic~ progrmming fomlain themoiono the aicrf

is described by a Markovian state equation, where the state contains the

position of the aircraft as a function of an independent variable known

as the stage variable. The stage variable, represents motion of the

aircraft through the quantized state space. Since the length of time
'~4the aircraft stays In each quantized cell is dependent on its velocity

testage variable is only loosely related to time.

Each cell in Figure A.1 has an associated pro bability of aircraft

survival obtained from threat models. The negative logarithm of the

probability is used in practice so that the overall path survival probabi-

liycan be obtained by summation of positive numbers (logs of probabili-

tiesarenegative) rather than multiplication. Maximization of the

I probability of survival, therefore, results from minimizing the sum of

the negative logs. The target is located at some specified cell in the

- state space.' At the last stage, the state space is loaded with values

pertaining to the probability of accomplishing the mission dependent

upon arriving at each location. For the case of an overflight require-

ment, this boundary condition amounts to placing a zero probability of

survival at every location except the target's location, where the

threat model dependent value of probability of survival is used. This

* forces all solutions to end at the target.

The problem is to find the path and associated velocities through

the space which maximize the performance measure (i.e., net military

value) constrained by available fuel. The aircraft is constrained to

* always move at least one cell (quantized position) from stage to stage.

Permissible movements (transitions) are to any of the cells adjacent to

the one containing the aircraft. Thus, for a space partitioned into

cubes, 26 different transitions are possible from each cell because the

N space containing the cell under consideration is 3 x 3 x 3 - 27 total calls

in size and the solution is constrained to move to a new cell.

The dynamic progranming solution starts out at the next-to-the last

stage (the performance measure at the last stage is the negative log of

the probability of accomplishing the mission conditioned upon arriving
th

at each position). For each state in the (n-I) stage (with n total

A4
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stages), the transition to an adjacent state in the n th stage that mini-

mizes the performance measure is determined and stored, along with the per-

formance measure itself. The optimal transition includes a direction and

In a velocity. Now that a performance measure has been determined for each
th7state in the (n-1) stage. similar calculations are performed for each

state in the 0n-2) thstage. This process continues to move back through

successive stages until the calculations have been performed for the

first stage, which contains only the initial position of the aircraft.

A4 The overall optimal trajectory can now be found by tracing through the
optimal state transitions from stage to stage. The solution vector of

positions and velocities is then mapped into a time-ordered control vec-
tor which is the desired solution form.

In order to include a fuel cohstraint, the performance measure is
augmented by a LaGrange multiplier which multiplies time and the fuel
rate. Then a search over the value of the LaGrange ultiplier occurs.

In practice, only a few iterations are required for this search.

The Optimization over trajectories and EU resources such as chaff,
jamming, decoys and anti-radiation missiles can be performed in a sequen-
tial fashion. With a given onboard resource assignment to air defense
units a dynamic programing algorithm was utilized to find the optimal

trajectory and thence for the given trajectory the optimal EW resources
wore f ormed using a maxinum marginal return algorithm.

Iteration over the trajectory for fixed EU and EU for a fixed
trajectory continued until convergence. Conceptually both the trajectory

and the ZU resource optimization problem can be embedded in one dynamic
* programing problem, but there are some computational issues. Note that

:4 *.if a slow computer is to be used, it is always possible to reduce the
computational problem by enlarging the grid size.

*A few example results are now given (1,3]. Figure A.2 shows the symbols
Sused in describing the scenarios and results. Figure A.3 shows a set of

enemy threats, two targets, the optimal trajectory, and the optimal EU

resources allocation. The threat models used, albeit crude, are three-

dimensional models. Although only a two-dimensional aircraft trajectory
is shown. in fact, the computer program took into account fuel consumption
and probability of survival, pS, variations with altitude and velocity,
and determined an optimal three-dimensional trajectory.

-~. . . . . .. . . . .*>:-.,.-...- - A,5 . -'' * - . . .
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Note in Figure A.3 that the aircraft flies around the threat CI whose

location is uncertain (see Figure A.2) and uses chaff and Jaamnin anainst

Al. The aircraft uses decoys against Bl, but does not Jam BI. The

*aircraft uses chaff and jamming against C2.

The case where the location of Cl is known is shown in Figure A.4.

Here we assume that the aircraft discovers Cl at the end of the dotted

line and then computes the optimal trajectory subject to his remaining

fuel (14,600 pounds). The new optimal trajectory flies around Cl, uses

chaff and jamming against Al, and Jams Bl. Since the aircraft trajectory

is shorter in the first leg, it has more fuel remaining and uses it to

avoid C2 and now does not use chaff or jamming against C2. The perform-

*nce measure, current military value, and P are, of course, higher in

this second case where we know the location of Cl.
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THREAT SYMBOLS USED IN SCENARIOS

-THREATS KNOWN WITH CERTAINTY

KNOWN POSITION OF THREAT

LETHALITY AREA OF THREAT

- THREATS WITH UNCERTAINTY IN LOCATION
.4 .

I, ACTUAL POSITION OF THREA7

(NOT KNOWN TO PROGRAM)

j -ACTUAL LETHALITY ZONE

(NOT KNOWN TO PROGRAM)

'k AREA OF POSSIBLE LETHALIT',

v EXPENDABLES

# . &
# A # DECOY .A. -CHAFF & A & -ARM

.4 N &

Fieure A. 2
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INTRODUCTION

In this Appendix, we present a new dynamic programming algorithm. This
algorithm is a symbiosis of the traditional DP algorithm and the depth-first
branch-and-bound search method. Thus, it can be called Depth-First Dynamic
Programming (DIDP).

While guaranteed to have complexity of the same order of magnitude as the

traditional DP algorithm in the worst case, DFDP has many advantages over the
SA•latter. Among them are:

- Ability to incorporate heuristic, AI guidance methods.

- Ability to rigorously reduce the state space using
'"branch-and-bound" pruning techniques.

- Suitability for satisficing and for real-time on board computations

- Applicability to the analysis of robustness as an alternative to thej"colored corridor" algorithm.
Therefore, DFDP algorithm promises to be helpful in our Dynamic Sequence

Assignment research (for both path optimization and mission assignment).

This Appendix is organized as follows:

The first section provides some intuition about the main idea behind the DFDP
algorithm.

The next section provides the mathematical background and definitions of
dynamic programing systems.

The third section gives a rigorous mathematical definition of the DFDP
algorithm in the forn of a program flow-chart.

The last section walks the reader through a fairly large example, illustrating
Y ~the workings of the new algorithm.

IntuhM&itiv EUKamZ

Before we give a rigorous description of this new depth-first dynamic
programing (DIDP) algorithm and go through a large example illustrating this

dalgorithm, let us consider a small example which illustrates an advantage that DFDP
has over classical tree search.

BI



Consider the problem of finding the shortest path in the following network:

® ® 25 (D
.4 f4

SSink

This simple problem can be easily solved by inspection, or by classical DP. But
Ai suppose that we didn't know about DP and tried to solve this problem by enumerating

all possible paths and choosing the shortest.
.X
* The search tree would look like this:

- bi 7
s 9

5 5
* 7 9

I 8
19

3! 4 7 9

N6

49

Even for this tiny example, the search tree is pretty large, and it will grow
exponentially with the number of stages. Hoveverthere is much redundancy and
repetition in this search.

B2
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For example, the upper branch of the tree visits Node 4:

1 4 etc.

but the lover branch also visits Node 4:

.2 4 etc.

*i and, therefore, the trees from Node 4 on in both cases look the same:

-. 7 9

9..9

Since the cost function is separable and thus satisfies the optimality principle, we
can cut down on computation by first exploring the upper branch and tree, and later,
when arriving at Node 4 in the lower branch, just use the optimal cost to go from
Node 4, already computed by the first branch.

- Of course, the upper branch itself is not free of redundancy, since both Nodes 7 and
S were visited in two separate places, and, thus, we can achieve even more

-' i"computational reduction. Both DFDP and classical DP exploit this computational
reduction.

Let us use the traditional definition of Dynamic Progrmming problem, (see
[Larson], for example).

B3
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Let X1 , i-0, 1, 2, ... , N be the state-space at stage i
• " n

XiC I , i-0, 1, 2, ... , N, where i represents the stage variable.

Let Ui (x) be the set of available actions in the state x e Xi at stage i.

Let the system equation be

(1) X(k + 1) - gk(x(k), u(k)), k-0, 1, ... , N-i

where u(k) is the action chosen at stage k, stage x(k).

Without loss of generality (W.L.O.G.), let us assume that x(O) is specified,
and so is x(N), i.e., initial and terminal conditions are specified. Let the cost

2 function

(2) J(x(O), u(O), x(l), u(), ... , x(n))

.. , be given. The problem is to find the optimal controls {u(O), u(l),...,u(N-l)},
which minimize the function J within the system defined by

X (i)C

u(i) e Uj (x(i))

.~ x(O) - c - Constant

x(n) - d - Constant

and by the system equation (1).

.'- .iFor the following discussion, let us make the traditional assumption that the
*:* (4) sets Ui(x) are finite for all x and all i (otherwise the problem would be

computationally infeasible).

M
' '. (5) Let m(x) be the cardinality of set U(x).

Notice that the state-spaces Xj(i e {0, 1, ... , N)) need not be restricted to be
finite. In fact, if the assumption (4) is true, then set Ri(RiCXj) of reachable
states is finite for all i. One of the strong points of the proposed algorithm is
its ability to handle such situations with ease and without having to pre-generate
all reachable state-spaces R

Nevertheless, for the simplicity of notation, let us assume that, unless

*.., (6) otherwise specified, sets Ii are finite and

(7) let B, be the cardinality of Xi .

" (8) Also define T, as the cardinality of the set Ri C Xi .

One of the features of DFDP algorithm is that it can comfortably handle any
cost function that satisfies the Markovian, "optimality principle" conditions. But

for reasons of simplicity, we shall follow the common practice (see [Larson]
[Bellman], etc.) of assuming that J is a separable function:

SB.'4
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N-i
' .* (9) JWxO), uMO) x(1)l), , ... x(N)) =; ioL WO~, u(M).

i=0

N-i
Since the action space U U Ui is finite (by (3)), we can assume W.L.O.G.

that Li is non-negative for any i.

Also, W.L.O.G., we can assume that for a given i and given x, the set of
- actions

1 2 m

U.(x) ( {ui(x), u1 (x) u W(x)}

is in the increasing order of Li, i.e., if 1 < j:5 k < mi (x ), then

jk
.. L.1(x, uj(x)) < Li(x, uj(x)).

(Actually, if that is not the case, the algorithm will work just as well; so this is
assumed purely for notational convenience).

There is one more assumption: W.L.O.G. we can safely assume that the final
state is a sink, i.e., X = {d). (See (3)).

N

g i3. The Algorithm Flow-Chart

Let us define the meanings of the variables used in the flow-chart (Fig. B-O).

s - current state

i - current stage

I(s) - the currently shortest path length (cost-to-go)
from state s to the final state d

BCi(s) - the currently best control at state s

F li(s) - the currently shortest path length from
the starting state c to state s

Expl. Is, i] - this boolean variable is equal to 1 if the state
. has been explored completely, (i.e., if the
optimal cost-to-go from stage s is known),
and 0 otherwise

".' ,~!Predecessor [s] - the latest state from which we arrived at state s

Cur.Opt. - the currently shortest path between the starting
state (c, i) and terminal state (d, i)

B5
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C Cs -the currently considered control at statesa

All the other variables and constants in the flow chart have been defined in
the previous section.

4. A detailed Example

Let us illustrate the DFDP algorithm with a detailed example. Please refer to
Fig. B-1 through B-17.

1) The problem is finding a minimum cost path through the netvork in Fig. B-i. The
node numbers are given above each node, the transition cost for each arc is written
above it.

*The starting state is 1, the terminal state is 22.

* 2) Fig. B-2. At state 1, we chose arc (1, 2) because it has the lowest cost of the
arcs originating from state 1.

Thus we come to state 2. The circle above each state represents the data stored for
this state. The top number (in this case it is 6) represents the value of F(s), the
shortest known (at present) path length from the starting state.

The bottom number (in this case it is infinity) represents the value of I(s), the
currently shortest known path length to the terminal state. At present it is
infinite because no path to the terminal has been found yet.

At state 2 we chose to transition to state 7 because that is closer to 2 than state
8.

The next transition is to state 12.

3) Figure B-3. Here we followed our path all the way to state 22, the terminal
state. Note that the arrows originating from the visited states represent the best
currently known control at that state.

Notice the circles above state 22. The number 31 is, of course, the length of the
path we've traveled.

The check mark below represents the fact that all paths from that state have been
explored (there aren't any). The number 0 below the check represents the cost-to-I
go.

4) Figure B-4. Here we see that we have found a path of lengtl 31 from start to
S finish. Thus the value 31 gets placed on the bottom of the circle of state 1 as the

current optimum.

Now we back-track to state 17. We put 10 as the currently best cost-to-go, and
looked for another arc to take from state 17. There are none. Thus state 17 has
been explored. We put a check on it, and 10 becomes the official cost-to-go from
that state.

B7
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Now we need to back-track more.

5) Figure B-5. We back-tracked to state 12. The current best cost-to-go from 12
-is equal to the cost-to-go from state 17 plus the cost of arc between 12 and 17,
Sthat is 0 + 2 t 12.

From state 12, we chose another arc to traverse, and visited state 18. The number
. in the circle there is equal to the "length-from-start" to state 12 plus the arc

length of arc (12, 18), which is 19 + 5 = 24.

From state 18, we took arc (18, 22) and came to state 22 with the total length
traveled being 29.

6) Figure B-6. Since 29 is better than 31, we put 29 as the current optimum from
%.% *. state 1.

Since there are no other arcs originating from state 18, we marked it as checked,
with cost-to-go being 5.

Then we back-tracked to state 12. Notice that the total cost-to-go from state 12
following arc (12, 18) is 5 + 5 - 10, which is better than the 12 currently there.
Thus, we should substitute 10 for 12 on the bottom of the circle, and also point to
arc (12, 18) as the new best known arc-to- take.

-: :7) Figure B-7. As you can see, we did that. Since there are no other arcs to try
from state 12, we back-tracked to state 7. The cost-to-go from there becomes 10 +
10 - 20. Then we try another arc, which takes us to state 13.

18) Figure B-8. From state 13 we go to state 17. Since it has a check mark, we
don't have to do anything with it, just copy the cost-to-go from it (which is 10)
and back-track.

. 9) Figure B-9. We back-tracked and came back with 10 + 4 - 14 as the cost-to-go
from state 13.

Since the two numbers in the circle above that state add up to 35, which is larger
than 29, no change to the current-best-solution need to be made.

L 10) Figure B-10. Then we explored arc (13, 19), and found that taking it costs a
total of 12, which is better than 14, the previous best.

Then we wanted to visit state 19. But because the total length is already 38, and

we are not "there" yet, we know that this path cannot be optimal, so we back-

tracked.

11) Figure B-I. We back-tracked to state 13, put a check on it with 12 as the
minimal cost-to-go.

Then we back-tracked to state 7 to discover that 12 + 12 = 24 is not as good a
cost-to-go as 20, so no changes need to be made.

State 7 was done, we put a check and back-tracked to state 2 and put 20 + 3 as the
current cost-to-go. Then we went to state 8 and put 6 + 6 - 12 as the current
cost-to-get-there.

B8
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12) Figure B-12. From state 8 we went to state 12. Since it has a check on it, we
just recorded its cost-to-go 10 and are ready to back-track.

13) Figure B-13. The cost-to-go from state 8 becomes 10 + 4 - 14. Notice that the
I two numbers in the circle above state 8 add up to 26, which is smaller than 29 - the
-"currently best known total cost.

14) Figure B-14. Thus we put 26 as the new current optimum.

Then from state 8 we went to state 13. Since it had a check on it we back-tracked
- ,with 9 + 14 - 23 as the cost-to-go, which is much larger than 14 that we currently

had.

Then we wanted to go to state 14, only to discover that the cost of arc (8, 14) is
21 which in itself is larger than the current cost-to-go 14 + 6 - 20, which is
better than 23 that is currently there.

15) Figure B-15. So we changed that 23 to 20, put a check mark on state 2 and
" . .back-tracked to state 1. Then we took arc (1, 3) with cost 11.

From state 3, we first went to state 7, and since it has a check mark on it, we
4didn't have to go any farther, we recorded 20 as the cost-to-go, added it to 2 (the

cost of arc (3, 7) and put 22 as the current cost-to-go from state 3.

0 .Then we went to state 8, recorded its cost-to-go 14, added it to 5, and came up with
a better cost-to-go: 19.

Then we visited state 9 on the arc of length 18, which brought the total cost-to-
U. get-there to 29, which is larger than the current best total cost 26. No further

exploration is needed.

16) Figure B-16. Thus we were done with state 3, back-tracked to state 1 and tried
state 4 next on an arc of length 14.

From state 4 we went to state 8 which had a check and gave us 14 + 9 - 23 as the
cost-to-go. Then we tried state 9, but the cost-to-come added up to 27, which is

"4< too large already. Then we tried state 10, but that gave us 29, no good either.

Thus state 4 was explored, we put a check next to it, and back-tracked.

We then tried going to states 5 and 6, but both of them required more than 26 units
- iof cost, so we didn't have to explore them.

Thus the exploration has been done. The optimal solution is of length 26.

17) Figure B-17. Following the arrows, which represent the best-arc-to-take from

each explored state, we can now reconstruct the optimal solution path.

If we look back at Figure B-16, we shall see that we needed to explore only 26 out

of the total of 49 arcs in this network.
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Appendix C

A DISTRIBUTED RESOURCE ALLOCATION

ALGORITHM BASED ON EXTENDED MARGINAL ANALYSIS

.4

rn

4.

~

-S

-S

.~4 -m

5,

SI

SI

*........... .



- a.. - S -7' 7*- .

* 1. INTRODUCTION

Marginal analysis is commonly applied to resource allocation problems

with separable return functions. However, in many applications, the

., :. return function is nonseparable, and thus the classical marginal analysis

is not applicable. In this section, we shall extend the marginal

analysis to a certain case where the return function is nonseparable.

A set of necessary and sufficient conditions for optimal allocation

is given. The analysis easily lends itself to distributed implementation.

* 2. PROBLEM STATEMENT

The allocation problem is given as follows:

max J f (x fix;yjs Si

sx. + y - R
1- J-k (P)

XitYjCI+ - 10,1,2....

SCi l ... ,sl Ju

4where f has the following properties:

:(a) f (O;Yjtics) 0 for all yE

(b) f is nondecreasing in each component while holding the
* rest of the components fixed

* .(c) For all i-i,..n (x i> Oy t ,tW>0

f (x ;y+l;yjcSi + fi fi ;Ytj~icJci)t < 2fi ~xx1;YjE;SicVi)

f fi(x ±;y + 1 ,yt, - l~ji -{t,t1) +f fi(xiy t - 1 ,y t + l,JES~ - (t,t1))

Note that this corresponds to Vcnaiy"o ~

- .-. C1
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Note that (P) is more general than the usual resource 
allocation

i n problem where the return function is separable. one class of problems

that has the above formulation is in mission planning 
where we are to

allocate R resource units to n targets which are defended by s defense

sites. Si represents the subset of defense 
sites that can "protect"

target i. The function fi(xi;Yji Si) represents the probability ofp > th
destroying the i target, and its functional form implies that the

success of destroying target i depends on (1) allocation of x, units

to target i and (2) allocation of y, units to those defense sites

which protect target i.

3. A TRADING MODEL

Let us define a concept of price which will be utilized in the later

discussions. For a given allocation (x Myj} define for xi > 0

- )(xi;yjJcSi) I fi(xi;YjjiS 1 ) - fi(xi-1;yjjcSi)

, and for yj>O, G f (ilJ jSi, yJ {Y ... . 'Yj-l'Yj+l'""Ys

P (yjyJ;xi.icG P {fi(x ii;YG XSi) - fi(xi;Yj-l.Y-sY us-J)}

ieG.
p 3

For completeness, we define X(O;.) =., p-(O,yJ;) W -.

Note that XJ is equal to the marginal decrease (in absolute value) in
return If one resource unit is taken away from the i target from its

.. nominal allocation. Now if we imagine that there are n agents, each of

.. them concroiling resource units {x)i assigned to the target, then for agent

i to give up one resource unit, he must charge a price equal to the

marginal decrease in return due to the reduction of one resource unit. Therefore,

one can interpret ) as the "selling price" for one resource unit asked

by agent i who controls xi.

Similarly, if we imagine that there are s agents controlling

the resource units {yj} assigned to the jth defense site, then P- has

*" the interpretation of "selling price" for one resource unit asked by the

agent controlling yj.

. ."C2



. "Analogous to the concept of selling price, we have a concept of "buying"

price." Define

A )i(xi;yjJcSi) fi(xi + i.; yj 9iS i) - fi(xi;YjjcSi)

This has the interpretation of the buying price that the agent controlling

x iis willing to pa2 for an additional resource unit from an outside

source. Similarly, one can dei'ie

+
(y,~ X!, iccG

I-r

With the above notion of prices, we have easily the following

properties:
(1) X:(xi;yjjeS.) + - 1; y.,jeS.)

+

(2) xi(xi;yieSi) >i(xi;yJeS i) [from property (c)]

""+ - j E~

(3) p.(y(yyJ;xifG +. - 1,y ;x iG

- +

(4) p-(yjy J;xiiEG)> G P(Yj,yJ ;xi,ieG.) [from (c)]

Properties (1) and (3) come from our definition and the implication of

properties (2) and (4) is that at each agent, the selling price for one

unit resource is greater than the buying price for one unit resource.

With the above concept, we can investigate the"trading" pattern among

agents, where the result of a trading yields a better overall performance;

i.e., J increases. Let us divide the agents into two groups: X-group and Y-

group. The X-group controls the resource units allocated to the targets and the

Y-group controls the resource units allocated to the defenses. We have the

1following trading patterns:

C3
411
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(1) agents in X-group trade among themselves

(2) agents in Y-group trade among themselves

(3) agents in X-group trade with agents in Y-group

We can also have hierarchical trading patterns as illustrated in Fig. 1.

*Trade between

X (as a unit) and Y (as a unit)

X y

*1I.

Trade among Trade among
X-group Y-group

Figure A-i Hierarchical Trading Pattern

p 4. TRADING EQUILIBRIUM AND OPTIMAL ALLOCATION

In this section we shall investigate the above trading patterns, and

relate the concept of trading equilibrium to optimal allocation.

Theorem 1: Let {xj,{yj} be a given feasible allocation. Assume now trading

" takes place among X-group with fyjI remaining the same. If there exist some i,i'

such that

A ) (xi;yjjcSi) > XI,(xiv;yjgjFSi), (1)

then trading will take place between agents i and i' where at least one

resource unit will be transferred from V to i.

C4



U Proof: Equation (1) implies that0

fi(xi + 1; Yjs JCS)- fi(xi;yjpJCS) > fiV(xiI;yj~iESj -) fiI(xiI-1;yj~iESi

and thus for the new allocation {xO ).{y1 where

0 0 0x~ x~ + I ;xi I xi, xt x~ t ~~j

we have __

n n

and thus trading will take place between agents i and iV which results in

* a better overall performance.

Consider the situation where {yj is held fixed, then trading among

3 agents in group X continues as long as (1) is satisfied for some i, 1';

and every time a unit resource transaction is completed, the overall

performance is improved. The trading sequence will result in a final

allocation where no more trading will take place. We shall call such an

* allocation an equilibrium allocation among the X-group while {yj is

held fixed.
5

Theorem 2: Let {yl be given with y <R. The equilibrium allocation
J-1

*among the X-group, {X Iis characterized by

Ai(x i;y~ES) $ Xi (^xiV;yj9JESi.) 1, l...,n(2

M oreover, {X ) solves the optimization problem

n

max 3 - I f(x ;yjgiES)

n 5

S.t. x- R - xi YCI
J-1 i-

C5



U Proof: From theorem 1, we see that (2) must be satisfied if no trading occurs.

All we need to establish is that if (2) is satisfied, then no trading occurs.

Let us consider an allocation (xO},{yI where
i

0 A
- x i -x + ki E kI  0

One can imagine fxo} as the resulting allocation, as deviated from {xU} if

a trade has occurred among agents in X-group who are having initial allocation

Ixi } . For any i, k can either be positive or negative. Suppose ki > 0, then

fi(x ;yjjeSi) f(xi + ki; YjjS
ki_1 +.

ki.1 xi(x +Y;Yj ticsi + f ( ̂ X ;YjoiES (3

A By the first inequality in assumption (c), we have

' f .f (x ;yj JJ Si )  > f f (xi + I ; y , ' j cS i ) + .I fi(x -1;yjoJS i21 1 1

or for all xi> 0

"i'J i'-" )'(x -I'yJ'JESi) X+(xi;YJ'JcS)

which implies that Xi(xi;) is decreasing in xi Using this fact, (3)

becomes

0; + f^ y~C
fi(x ;yj,Jisi)-< kiAi(xi;YjpjiS±) + fi(ci;YjjE~j)

If k < 0, then using the similar argument, we have" o ~ ~ ~ Ik~-l. ( i ; ;,]S)+f(iy C i

fi(x;yjsi) S + f(

Y-0

< kiX i(ti;YjJrSE) + fi(2i;YjujESi). (4)

Let T- min , then (1),(3) and (4) gives

C6
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fix~y~i~) r k1 + fi(iYci (5)

since k 0 thus

i~l

n n

;-E f(xi;0' yiJS ) . i fi(xi;YjJFSi  (6)

and therefore no incentive for such trading to occur. Note also that (6)

implies x i is an optimal allocation for P(y).

Next, we shall consider trading among agents in Y-group. We shall

say that j and J' are related if G nl G # 0; otherwise they are unrelated.

14 Theorem 3: Let {x },{yi} be a feasible allocation. Assume trading takes
-grou remaining the same. If J, if are

i

related and if ( J =y,.,s-y-

- -...n
P, . i fiYisy l y , ; i i< C >f( ifY ,JE i i ()

i. i'ly''~l

then trading occurs between j and if where at least one resource unit is

transferred from agent ji to agent J. On the other hand, if J, if are

unrelated, trading occurs by transferring one unit from i to j if we

have

+ 1

Proof: The unrelated case is similar to the case of trading in X-group and

the proof is similiar to that for Theorem i. Therefore we shall concentrate

only on the related case.

,..•.Y.
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Let us partition the set I n {1,2 ... .n) into G nl G G

G,IGJ and I IGu C If j, j' are related, G fl C, is nonempty.
n ni J* j

Consider a new allocation {y?} with

y Yj + 1 ;y, y, - y 1 t i i'

For icC n0 we have

f (x ;y UtS) f f(xi;yj+1~yjt-1, y2,,e si-fij'}~)

f f(x ;Y' +1, Yjrl, ytjtECSr{j'j'l)

-f (x (8)ly'Ci-' ,xy,-~tts-,

f. i x;yjltics ) + f i(x i;yjjs1)(8

for ieCGIG~1 we have

f 0f -J) f~xtcsi) (9)

f (x(xyp;US f cNS1 ) - f1 x1 Y'-ltjR.CSi)f x;~2E

++ (x xiyyt 1zcSi ()

adfor i~CGJIGJ U we have

+ f f(x ;yt,c S) (10)

t
AI - {acAIaOB1
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Combining (8)-(11) and using the price definitions, we have

n
o + (J)).i~f i l f (xi; y I  =Les (Yj yj -l'y ;x i ,ie

" - pjt(yj,,yJ-';xtCGJ ) + 2 ft(xi;y9IRSi) (12)

therefore if (7) is true, trading will occur between J' and j which results

in a better allocation.

4- rWe can define equilibrium allocation among Y-group as we did for X-

group.
n

Theorem 4: Let {x i be given with x I< R. The equilibrium allocation
i-li

..- ,. among the Y-group, is characterized by
YI'

9" y ^ ,l,( ;xi ieG1 ) .< 0(9j,, ;xiicGj,) (13)

if j and j' are related, and

P(9 jYJ ;xipicG) < p 1 (yj , ,J ;xi,iEGJ,) (13')

if j and j' are unrelated. Moreover {} solves

n

max Efi(xi;yj,jcSi)
i=l 

P(x)

s .t . R -
I P+x

Proof: The proof is similar to that for Theorem 2 while uti.izing (8), (9).(10),

(11) and the third and fourth inequalities in assumption (c); but algebrically is

more complicated-because of the "relationship" among the agents in Y-group.

C9
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Finally, we shall consider trading between agents in X and Y groups.

We shall say that an agent i in X-group and an agent j in Y-group are

dependent if JES i (or equivalently ieG.).

Theorem 5: Let {x },{y be a feasible allocation. If i in X-group andi Yl
j in Y-group are dependent, and if

trdn :(:yZ::; x -1x : i) > A (x ;Y,,LeS) on (14)

i i! +

"trading occurs between these two agents with at least one resource

unit being transferred from i to J; and if+ii+
x (xi;Yj-l'YZ'tESi-j) > P (yjy ;Xt'teGj) (15)

then trading occurs with at least one resource unit being transferred

from j to i.

If, however i and j are not dependent, then trading occurs with

at least one unit being transferred from i to j if

-+ •yi;x tcGj) > X1 (x;y2 ,LES i ) (14')j

and one unit being transferred from j to i if
-:,-= ;: ]+ p](yj,yJ ;xttG)(5

+i(x ;y ,t£Si) > ,tG (15'),+ i oI
Proof: This proof is similar to those for Theorem 1 and Theorem 3. In the proof,

the second inequality in assumption (c) is utilized.

We shall say that a certain allocation {x }.(y*) is in global equilibrium

. if there is no incentive for any agents, either in X or Y group, to trade

with each other.

LA C IO,. . . . - - . - , , ,--.. . -
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Theorem 6: A global equilibrium allocation {x*),{y is characterized by

* the following conditions

:i "'=p d < i.l....n

+(2) (y*,y ,-l , y * (J');x*,iGJ) <P,(Y ivy*J',x*,ieG

for all (j,j') which are related

+ *J' ,
PJ(Y.Y ;xivieG j) $p<j:(Yj iY ;x,,ieGj,)

for all (J,J') which are not related

(3) p+( yi ;x -. xteG-i) .< i(x;yt,S); VicGvj = 1 .... s

* .+* *4

"" . (Yvy xttcG) .< xi(x ;yRtS ) Vi4 Gj, j "....
- .J +t,• L X*,i J

)4(xi;yj-l,yLcSi-) < p(Y*Y*);xtcG VjeSi' i - 1,.n

+ * ** *J * t£aitS i 1.n-ix N Y£,A£S ) < L. (yj,y ;xt tG v~i ,..

Moreover, if {x*},(y } is a global equilibrium allocation, it also

"" .solves (P.).

r -> 'Proof: This comes directly from combination of Theorem 1 to Theorem 5.

Ca is the necessary and sufficient condition for both the global

equilibrium allocation for the trading problem and the optimal solution for

the allocation problem (P). An interesting interpretation of L* is possible.

4
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Let us interpret

+ yOJ ')+ (yipy -, ;x e - buying price j will offer for one
additional resource from a related
agent J' in Y-group

P (y ;x-, xt xtEGj -i) -- buying price j will offer for one
additional resource from a dependent

agent i in group X

X • (x i;yj-IyVLSi-J ) -- buying price that agent i in X-group

will offer for one additional resource

from a dependent agent j in group G

Then each agent has a selling price for one unit of resource; but dependent

on where he buys his resource, has different buying prices for one more

unit of resource. The global equilibrium is achieved when all the buying

prices each agent is willing to give is lower than all the selling prices

offered by the agents.

5. A DISTRIBUTED ALGORITHM

In this section, we shall describe a distributed algorithm based on

Theorem 6. The algorithm is based on a sequence of "distributed trading"

,. which leads to the trading equilibrium. Each trading cycle consists of

two phases:

S.' Phase 1: information exchange

Phase 2: unit resource trading

The purpose of Phase I is for each trading agent to compute his

selling price and his set of buying prices (from different agents) for

additional resources; in Phase 2, trading is to be carried out among

agents in a distributed manner such that J is increased.

Phase 1: Information Exchange

Let us assume that, in order to evaluate

{f(x 40;y +O,JCS)} a--1,0,1; 8- -1,0,1

information exchange between agents i in X-group and j in Y-group (JCSi)

C12
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must be carried out; which will, in turn, determine' +
x, .i(xi;Y J ,j eS i ) Xi(xi;yj -I ,y ,,kS

and

X" 4 (xi;yjeSi).

After

{fi(xi4;yj+BJSi)} j a -1,0,1; 1=-l,O,1

are determined for all i = 1,...n; then

-'-+ 13 ) (yj, y 111P(j, 1-Iy ( j i~

and

are determined for each agent j in Y-group.

Phase 2: Unit Resource Trading

We shall distinguish between three trading patterns:

* (a) Trading among X-group

(b) Trading among Y-group

, (c) Trading between X and Y groups

To describe how trading is to be carried out, we need to specify the set

of agents that each agent is allowed to trade with. For trading pattern (a),

-: .'-each agent in X-group is allowed to trade with any one or more agents in

X-group. For trading pattern (b), each agent in Y-group is allowed to

trade with all related agents and one or more unrelated agents in Y-group.

For trading pattern (c), each agent in X-group is allowed to trade with

all its dependent agents and one or more independent agents in Y-group.

From Phase 1, selling and buying (dependent on agent to buy from)

prices are computed; then depending on the trading pattern each agent

trades with the allowable trading agent for one unit of resource. The

trading is to be carried out in the following sequence.

(1) Each agent determines, from the set of allowable trading
agents, a subset of agents who offer a buying price higher
than the agent's selling price (denote this subset as a list
of buyers). An agent with a nonempty list of buyers is
denoted as a selling agent.

C13"4



(2) Each selling agent goes through his list of buyers and offers to
the highest "bidder" a unit of resource at his selling price.S

(3) A "buyer" who receives multiple offers chooses to receive
one unit of resource from the seller who has the lowest
selling price.

-,(4) Those selling agents whose offers are not accepted will form
new lists by deleting the buyer who offered the highest price
but chose to buy from other selling agents; these will be
the new set of selling agents.

(5) If the set of selling agents is empty, Phase 2 is terminated,
otherwise go back to (2) and iterate.

With the imposed "concavity conditions", one can show that successively

* . iterating between Phase 1 and 2 will yield a sequence of monotonic

A improving resource allocations that will converge to the optimal allocation.
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