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SUMMARY

The acoustical problems associated with a closed loop pulsed

gas laser ("circulatcr") involves the generation, transmission,

and reflection of the shock wave pulses produced by the periodic

ionization of the gas in the optical cavity and the noise produced

by the compressor in the loop.

This report focuses on the problems of propagation and

reflection of these waves, with special attention to the attenua-

tion and reflection and optimum design of parallel-baffle attenu-

ators and perforated plates. On the basis of these studies

an acoustical system analysip is carried out, including a discus-

sion of muffler design.

Thus, the work carried out in this project has involved

both theoretical and experimental studies and can be structured

as follows:

1. Development of a shock wave generator simulating the wave

pulses produced in a pulsed laser.

2. Planning and asembling a data acquisition and processing

system.

3. Kxperimental and theoretical studies of the propagation

of shock wave pulses In a duct with hard walls and the reflection

from discontinuities. This includes a procedure for numerical

integration of the equations of motion (with associated computer

program) as well as an approximate analysis leading to closed

form expressions for attenuation and reflection of these waves.

q. Theoretical study of the attenuation and reflection characte-

ristics of parallel-baffle attenuators with nonlocally reacting

flexible porous baffles. The results are presented in a series

of formulas and graphs and results for optimum design are given.

In this context the theory for wave propagation in a porous

flexible material is reviewed and extended. Furthermore, the

pressure, drop for the mean flow in is calculated with the results

vi
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presented in graphical form.

5. Theoretical and experimental studies of the reflection of

wave pulses from a perforated plate. This includes the determina-

tion of the optimum design for minimu, reflectlov.

6. Acoustical system analysis of the closed loop, in which

the relative significance of the reflected, transmitted, and

reverberant sound fields in the laser cavity are compared.

7. Experimental studies of the interaction of a shock wave

pulse with a porous flexible material. Compression of the mater-

ial be the wave is demonstrated and measured as a function of

the peak pressure of the incideht pulse. The related pressure

reflection coefficient is measured also.

8. Development of a FIT routine for determination of the frequency

spectrum of the shock wave pulses.

9. Measurements of the frequency dependence of the insertion

loss of a parallel baffle attenuators and other elements.

vii
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I. ACOUSTIC SYSTEM ANALYSIS

1. Introduction

In this section we shall analyze the overall acoustical characte'i

ristics of the closed loop laser duct system. Such a duct system

is shown schematically in Fig. 1.

The purpose of the analysis is to determine the relative

importance of the different contributions to the acoustic "conta-i

mination" of the optical cavity of the laser. This will aid

in design of the attenuator in the loop, both in regard to the

choice of material and dimensions. We shall use a linear acoustic

model, assuming the sound to be generated by a pulsed sound

source.

The acoustic contamination in the optical cavity can be

considered to consist of three parts:

a). Sound pulses reflected from the entrance to the acoustic

attenuator (or any other discontinuity in the duct loop).

b). Transmitted sound pulses returning to the cavity after

one round trip in the loop.

c). Reverberant sound, built up through multiple reflections

and transmissions in the loop in steady state operation of the

pulsed source. Included in the reverberant field, which can

be regarded as a "background" noise, is the contribution from

the blower or compressor, which moves the gas through the loop.

Generally, when the attenuation of the attenuator is large,

the reflection is large also, and the appropriate design involves

a trade off between attenuation and reflection, so as to minimize

to the pressure level in the laser cavity.

2. The attenuator.

In order to carry out a system analysis, we must be able to

calculate the reflected, transmitted, and reverberant contribu-

tions to the sound pressure field in the optical cavity

K. , '



in terms of the physical parameters of the attenuator and the duct

system.

We make such an analysis tractable by using the results of

our studies of the characteristics of parallel-baffle attenuators,

summarized in VI and Appendix A. By considering nonlocally reac-

ting (rather than the usually assumed locally reacting) baffles,

we are able to express in closed form the attenuation and the

reflection coefficient of the attenuator. In doing so, we have

assumed the attenuator to be acoustically compact (baffle thick-

ness and baffle separation small compared to a wavelength). As it

turns out, this assumption can be made valid over the entire fre-

quency range of interest

The interesting and important characteristic of such an

attenuator is, that at a given frequency, the attenuation per

unit length depends only on one gemometrical parameter, namely

the fraction open area of the attenuator. This means, that for a

given porous material the attenuation does not depend separately

on the thickness and separation of the baffles, only on their

ratio.

In other words, thick baffles, and a corresponding large

separation of the baffles (for a given open area fraction) are

not required for high attenuation at low frequencies. This

is a distinct advantage at high frequencies, because with thin

baffles and a corresponding small separation between them, the

problem of acoustic "beaming" and a corresponding reduction

in the attenuation at high frequencies can be avoided without

a penalty at low frequencies.

It is possible also, as shown in Appendix B, to derive

simple expressions for the optimum flow resistance of the porous

material in the baffles and the corresponding maximum attenuation.

The maximum attenuation thus obtained is compared with the optimum

attenuation curves for locally reacting baffles for different

baffle thicknesses. Here the reduction in attenuation due to

2
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beaming for an attenuator is clearly seen to occur at frequencies

above a certain characteristic value, at which the wavelength is

of the order of the width of the air gap between baffles.

3. Comparison of pressure levels.

We assume the sound source to be pulsed with an acoustic energy E

emitted per pulse. With a pulse duration r, the average acoustic

intensity is E/T, and the corresponding mean square value of the

sound pressure in the cavity <p2>=(1/pc)(E/rA), where A is the

duct area in the cavity (perpendicular to the axis of the duct).

The pressure reflection coefficient R at the entrance to thep

attenuator is calculated in Section VI as a function of the various

physical parameters of the system. Examples of the computed fre-

quency dependence of the reflection coefficient are also given.

The acoustic power reflected from the attenuator will be R2 P,

where P is the incident power, and the mean square pressure level

in dB will be

LA =1O'log(R2-) (3.1)

with respect to the reference level

L =1O-log[(0/pc)(W/rA)] (3.2)ref(3)

of the incident wave.

The attenuation characteristics of the attenuator are calcu-

lated in detail in Section VI,3V where examples of the computed

frequency dependence are given. The attenuation constant is the

imaginary part of the propagation constant, ki, and the correspon-

ding sound pressure level of the transmitted wave is

L,B=1Olog[ exp(-kiL)]-8.7 kiL dB (3.3)

.o4
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with respect to the reference level in Eq. 3.2. Both LA and LB

are independent of the cross sectional area of the attenuator.

In our calculation of the level of the reverberant field, we

*' assume, that the acoustic energy absorption in the duct occurs in

the attenuator only. The mean square pressure <Pz> in the region

between the attenuator and the optical cavity will be approximate-

ly uniform. The power entering the attenuator is then I(1-R 2 )A,
p

where I:G(<p2 >/pc) and A the duct area at the entrance to the

attenuator.

The factor G is 1 for a plane sound wave along the duct and

1/4 in a diffuse sound field. The actual value for G depends on

the duct diameter and the wavelength range of interest. With a

duct diameter D, there will be no propagating higher modes in the

duct at frequencies below the cut-off frequency c/1.7D. Below

this frequency only the plane wave can propagate and G=1. For

example, with D=12", the cut-off frequency typically will be

600-700 Hz. Actually, for the purposes of the present discussion,

the value of G is not critical.

The acoustic power absorbed by the attenuator will be

FIA, (1-R2)I1-exp(-2kiL)]. In steady state, this must equal the

average power W/T emitted by the source, where W is the acoustic

energy per pulse and T the time interval between pulses. Using

the same reference level, L ref as before, we then obtain for the

level of the reverberant field

Lc=10.log[C'/(1-R p)(1-exp(-IkiL))] (3.4)

C'=(T/T)(A/A,,)

In Figs.3-6 , we have plotted the reflected, transmitted, and

reverberant sound pressure levels as a function of the open area

fraction of the attenuator for some different values of the flow

resistance of the baffle material and the frequency. The total

length of the attenuator in this example is L=3 m, but the-result

14
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for L=1 and 2 m are quite similar, as will discussed later. The

attenuator may be split into two sections, on either side of the

laser cavity.

The parameter n=('r/T)(A/A1G) has been chosen to be .01. Ty-

pically, A/A1 =.5, and with G=.5, this parameter is approximately

equal to the duty cycle T/T of the source. Actually, the level of

the reverberant field turns out to be close to 10 log(n), which in

the present example is -20 dB relative to the reference level of

the incident wave.

As a specific example, consider Fig. 4 , for which the flow

resistance is R=.05 and L=3 m. At a frequency of 100 Hz, the re-

flected sound pressure is larger than the transmitted for open

area fractions less than .35, and the opposite holds true for

values larger than .35. The corresponding value for the open area

fraction for 500 Hz is .45. At this latter value, and with =.01,

assumed here, the reverberant level dominates. On the other hand,

an equally realistic value for n would have been .001, in which

case the reverberant level will be approximately -30 dB, below

either of the two other levels.

4. Optimum design.

Another presentation of the results, less detailed but more useful

from the standpoint of design, is used in Figs. 7-11. In these,

we have considered only the reflected and transmitted sound and

have plotted the larger of the levels of these as a function of

the flow resistance R, with the frequency F and open area fraction

S as parameters.

We note, that for each set of values of F and S, there exist

an optimum value of the flow resistance of the baffle material,

for which the sound pressure level is a minimum. For example,

with L:3 m, S=.5 and F:500 Hz, the optimum resistance is R:.06

ro-ce units/cm, and for L=2 and 1 m with the same values for S and

F, the optimum values for R are .09 and .18, respectively. The

5
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corresponding minimum values for the sound pressure level for

L=t, 2, and 3 m are -13, -20, and -22 dB, respectively. For

another value of the open area fraction, S=.25, with F:500 Hz, the

optimum values of R are seen to be .08, .043, and .03 for L=1, 2,

and 3 m, with the corresponding minimum sound pressure levels -17,

-19, and -20.5 dB, respectively.

From similar computations for other values of S, we can de-

termine, for each value of F, the set of values of S and R, which

yields the lowest minimum value of the sound pressure level. With

reference to Figs. 3-6, this corresponds to the parameter values,

for which t6e levels of the reflected and transmitted sounds are

'3 equal.

In Fig. 13 , we have shown this optimum relationship between

the open area fraction S and the flow resistance R, and in Fig. 14

the corresponding lowest value of the sound pressure level is

plotted as a function of R.

These results may serve as useful guides in the optimum

design of a parallel-baffle attenuator. The choice of parame-

ter values depends, of course, on the frequency spectrum of the

.PIS incident wave, and if a wide frequency range is involved, it may

be advantageous to have two or more attenuator sections in series,

each section being optimized for a particular frequency.

We note, that at a frequency of about 500 Hz, the optimum

flow resistance is of the order of .1 pc-units/cm, where p is the

density and c the sound speed in the laser gas. Most flow resis-

tance data refer to measurements in air at atmospheric pressure,

corresponding to the density Po and the sound speed ca. Thus, in

terms of the characteristic impedance of air, the typical optimum

value of the flow resistance is R=.1(pc/poco) p0 o0 units/cm. For

a laser operating at a pressure of 100 mm Hg, the ratio pc/p 0c.

will be approximately .1, and the corresponding optimum flow re-

sistance Ru.01 poc o units/cm.

The flow resistance of materials commonly used in noise con-

6
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trol engineering is larger than this optimum value. Furthermore,

these materials usually ar~e flexible, and, as discussed elsewhere

in this report, a rigid porous materis is preverable in the

present application.

Examples of rigid porous materials with the proper flow

resistance are porous ceramics and porous metals, such as porous%

aluminum, typically with 20-40 pores per inch.

5. Proposed attenuator configuration.

As discussed In Section IV of this report, the measured reflected

amplitude of a shock wave from 'an open end of a tube is compara-

tively large. This applies also to the reflection at a sudden

change in the cross section of the duct. The reflection can

be reduced, if the change in cross section is gradual, as it

is in the duct loop in Fig. 1 In order to be effective, however,

this gradual change has to quite small, corresponding to a longer

transition piece than that shown in Fig. 1.

With referenc-e to our measurements of the reflection from

orifice plates (or perforated plates) in Section IV, we note,

however, that the reflected wave from the open end of a tube,
(and, correspondingly, from a change in duct cross section),

can be reduced considerably by covering the open end with a

perforated plate, with a properly chosen open area fraction.

The optimum open area fraction depends on the peak pressure 0

of the incident pulse, as described in Section IV. Typically,

the open area fraction is about 60 %for an incident peak pressure

of about .75 atm., and it increases with increasing peak pressure.

This suggests, that the pressure reflection from the transi,&.

tion piece in the duct loop in Fig. 1 can be reduced by the

insertion of a perforated plate or "wedge" (or cone), as indicated

schematically in Fig. 15. This changes to transition piece

into a "lossy" diffusor. The angle of the perforated wedge

or cone can be varied to yield optimum acoustical performance

9 7
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for a given permitted static pressure drop across the perforated

plate. The pressure drop decreases with decreasing wedge angle,

of course.

This diffusor should be combined with a parallel-baffle

attenuator, as indicated, to reduce the transmitted pulse.

We did not have an opportunity to study the optimum design of

it, but the results presented in Section IV should provide guide

lines in the design. Attenuators of this kind should be placed

on both sides of the discharge cavity, as indicated.

The static pressure drop over the perforated plate due

to the mean flow in the duct is of the order of 'A:(I/S2 )-fPM*/2,

where M is the average Mach number of the flow on the upstream

side of the plate, P the static pressure, S the open area fraction

of the plate, and y the specific heat ratio. With S=.6 and

M=.03 the pressure drop will be less than 1" of water at atmosphe-

ric pressure.

Another observation, which may or may not be relevant, is

the possibility of designing the parallel baffle attenuator in

such a way, that it will function also as a heat exchanger. The

baffles could be made of porous metal, and, as shown in Sec-

tion VI, the attenuation depends only on the open area fraction

and not on the thickness of baffles. This fact possibly could be

exploited, leading to an attenuator-heat exchanger, which con-

-i sists of thin, closely spaced porous plates.

.
.-.. .

_ S.-..' . -' , ' - . .. . .. . . . , . . . - . . , . ., . . , . - .' . " . , -. ,, .



4. 0O

E-4 U

p4j

C4



RGID PARTITIONS.

S' I'"*1' " *" " .... I *' L .
"* 

' I 
* . .. . * ' * . .... . .

'" "' "' "i - y'l 
'
a S; ... S. -,..

• -*,,-.t '-.-. *S *. * ' I, 4. % i

" " '-:' . ... ": ', ", AlL.

Fig. 11.2.
LOCALLY (LM AD AIONLOCALLY (NL) REACTING PARALLEL
BAFFLE ATTENUATORS IN A DUCT.

10

41,. _



.~ M6

4.r.

40

NO

A C .
AC w

0 Lu o

LA1_

C a?

N .4 I

SP '13A31 38SS38 3A~VI3



>, 

z-.

AN

"\< % <

%,

I I C

0

Li.

.

w

SP "73A31 38rnsS38d 3A11V738

12,

-'.~~~~N .. . *0 
' -

?' ' ".. : '' ' ' " - ' """" . " _, )', -



-. J. X _

-7. -77071 ., .

go 'L L~s.________

0D

' 'r-a

\c
I \ \%=

I ___ _____ __ '-

t: a

INu

I-

fu- 0..s

14.S

I--5---cnt3

-
it.

.41 38S 8 3A--V-.SP. "13A3

13~



________LU "

C.D

LU

<C/)
ZLU

LL

LL 0
U4'Q

M. ig 4w v

iaj

C\ m
II I

8P 13AT1 38nfSS38d 3AIiVI38

14



77. -t 7

CC2,

Irl I a C

0 *u

Il: Q/ 2

I -NJ

cn'

CL U '

'-

0 w NO
* C...) W L

_____O____ O

SP ~ ~ ~ ~ ~ L "1AI3nS8 ~o

'a. _ ____ __ __ ____ _ 15



-77

0

L)
_ _ _ _ _ _ _ t-

0 ,

C3,,

o M-

4k -jL

w 9~

____ ____ t 0

L- umj

V1-4 CAN

mJm

0 Ln0 L)0 f

SP '-13A3-1 38flSS38d ONflos

16



- ~ ~ ~ ~ ~ ~ ~ ~ - 77*-.-w- . ~ ~-

.1U

.4IV

du

u LU

Lu
- ~

40 *

6-4~

LO 1:3

4-i

:,. -L .. t

________ L ~is

it

____ _ __ ___ -4 -~ -

/1000 ~~4
________ ________ ~LCD

1n 0 L 0 n

C~j <Lu

ep "3A3- 38nS38dO~no

17K



-4

Cf) mI

L) uj -

CCD

U) < 0 3:

Q C; -z
Li

LLLL

* LU ~LU
- C)

_ _ _ _ _ _~~- _ _ _ _ J

.' -

C) LrJ 00 U'

8P '-3A3- 3dnS38dO~LL

18-u-



LU

zi U

3 C') 4z

C'e) I e)

________ I
_ _ _ _ _ _ L

lk

C4 1 j ::s

0 Q "r t

'- LU Zs

Li

-. JL

LU 
c

0'-

- LU

<- j

CDL O0 nf

8IP '-13A3-1 B3fSS38d ONflos

19



* .-... . . . . -.. . . . . . . . . . . . .

*13

TSII

1-w w

I -4 r. *

CD Io N o

NI1VJV3VNd

I I .1~, ~20



-4-

NL

_ _ _~ _ _ S

z wi

vu* wU -

LLL

zu

0 C-4L-

I .4 LA oz

I -a LU

-0

.tj
- UJ

0~r Ifl g ts0 f

* 8P '-13A31 38nfSS38d ONflOS

'I 21

% 
%r



UJ 0

ILL

L o uiZ u;*1C~ (n ~

4O~q

IL

-iii

0U-

~-4

<i-. CL 0n0L

,4~ N

I1AT /8SS8 -l--J *
0

NI

I ~<L~22



49

ILE

IL..

- a *23



II. EXPERIMENAL APPARATUS

Shock tube.

An essential initial experimental problem concerned the generation

of a shock wave in a tube similar in character to the pulse

generated in a pulsed laser. Our first attempt involved the

use of spark generator. Two electrodes were inserted into a

lucite tube section perpendicular to the tube axis and the spark

gap was adjustable. The electrodes were connected to a bank

of capacitors with low internal resistance (they had formally

been used in studies of exploding wires). The capacitors were

charged by means of a high vo 'ltage power supply (15 kV) and

discharged by means of a switch through the spark gap. Although

considerable efforts were made to get this shock wave generator

to perform properly, we had serious problems with triggering,

repeatability, and electrical noise affecting our data acquisition

system. Therefore, this approach was eventually abandoned.

Instead we turned to the use of a shock tube with a short

driver section. In an ordinary shock tube, the driver section

is long enough, so that the shock wave will simulate a step

function. This type of wave was not desired in our case, however,

but rather a pulse with an approximately triangular shape.

We found, that a desired pulse shape could be obtained by using

a 4", long driver section. Drivers of lengths 1"1 and 211 were

also used, but most of the experiments reported here were carried

out with the 4"1 driver section.

A schematic of the experimental apparatus is shown in Fig. 1.

The,: shock tube, 2 m long, was made of steel with a 3 mm thick

wall, and supplied with appropriate flanges and ports for attaching

% ~the driver section, transducer(s), test sections, and tube exten-i

sions. Two extensions, one 91.8 cm and the other 213.4 cm long

were available. One of them had holes over parts of its length,

so that a transducer could bp placed at different locations
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Data acquisition system.

The transducer, a PCB 113A21 piezoelectric, was flush mounted

with the interior wall in the shock tube. It is designed for

the study of shock waves with a resonance frequency of 500 kHz,

with an excellent transient response (no r..nging). The diameter

of the transducer was 5.5 mm, which determined the "resolution"

of the system. The output of the transducer is proportional

to the average pressure over the surface of the transducer,

and with a shock speed of approximtely 480 m/sec, the travel

time over the transducer is 12 microseconds, which sets an upper

limit of 86 kHz on the meaningful sampling rate of the signal

from the transducer.

To determine the pressure from the voltage output, we used

.* the pressure-voltage calibration supplied by the manufacturer.

Ten months after we began using the transducer, it was returned

to the manufacturer for recalibration. Over this period, the

calibration remained within 1 % of the original calibration.

The uncertainty in the transducer calibration, approximately

1%, was the dominant source of error in the data acquisition

system.

The heart of our data acquisition system was a Digital

Equipment Corporation MINC 11/23 laboratory computer. We used

the Data Translation DT 2785/5714 DI 14 bit differential input

AID board for our analogue to digital conversion system. The

manufacturer claims a 10 kHz sampling rate for the board. We

found, however, that it was possible to drive the board at 19
kHz without introducing sampling errors. This sampling rate

was well below the limit resulting from the resolution of the

transducer described above. The clock signal for the A/D board

was provided by the Data Translation DT 2769 real time clock.

A graphic terminal was provided for immediate display of data.

The hardware was controlled through FORTRAN callable subrou&i

tines supplied by Data Translation software. This made possible
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along the tube.

The working gas in the tube was air at atmospheric pressure.I: The driver section was terminated with a properly chosen membrane.
We experimented with a variety of membrane materials, particularL

ly mylar films of different thicknesses to obtain a peak pressure

of the shock wave in the range from .3 to 2 atm. with corresponding

over pressures in the driver section up to 5 atm. For example,

mylar films with thicknesses .013 mm and 025 mm ruptured at

driver pressures of 2.45 and 3.7 atm. and another plastic film

.4 of thickness .0065 -m ruptured at 1.5 atm.

The rupture pressure could 'be made quite repeatable from

one membrane to the next with a proper experimental procedure.

The pressure was monitored by' means of a Heise pressure gauge.

If the pressure was raised rapidly until the membrane ruptured,

the value thus obtained would vary somewhat from one membrane

to the next. To avoid this variation, the pressure was raised

slowly to a value just below the rupture value and held there

until the mylar weakened and broke at the preset pressure value.

This- procedure assured excellent repeatability in producing

shocks of a specified peak pressure.
The needle valve attached to the driving section served

as simple check valve, to minimize the amount of gas entering

the shock tube after membrane rupture. The needle valve was

adjusted to yield a very low flow rate, so that the mass flow

entering the tube during data aquisition was only 1 % of the
mass initially flowing into the driving sextion.

The shock tube could be terminated by various elements,

such as a rigid plate, various orifice plates, or tube extensions

containing porous baffles or lined duct elements. The rigid

termination was a 1.5 cm thick steel plate, and the orifice

plates were cut from 2.5 mm Al stock.
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the initiation of clock pulses by firing one of the Schmidt

triggers located on the clock board, have the A/D board take

2046 pieces of data at the 19 kHz clock rate, and display the

data on the screen. The data could be expanded on the screen

in order to examine detailed feature, and then stored on one

of the floppy disks in the system for later retrievel.

In order to see the leading edge of the shock pulse, we

used a signal other than the signal from the pressure transducer

to fire the Schmidt trigger on the clock board. The trigger

signal was produced by a piezoelectric crystal clamped to the

flange of the driver section. When the membrane ruptured, the

crystal was strained, producing the required trigger signal.

Sample data.

Fig. 2 shows an example of the recorded pressure pulse in the

shock tube and the subsequent reflections from the ends of the

tube. Actually, the pattern consists of the traces from two

succesive firings of the tube with the same initial pressure

in the driver but with different diaphragms, of course. The

fact, that the two traces cannot be distuinguished from one

another demonstrates the excellent repeatability, which is obtained,

when the experimental procedure outlined above is followed.4 The pressure is recorded at a distance of 1 m from the

source. The first pulse arrives directly from the source.

The positive portion of the pulse has a duration of about 2.5

milliseconds. The second pulse is the reflection from the open

end of the tube. In linear acoustics the pressure reflection

coefficient from an open end is approximately -1, and we note,

that the reflection pulse is reversed in sign, as expected.

The third pulse is the reflection from the rigid end of driver

section. In linear acoustics the reflection coefficient from

the rigid wall is +1, and, again as expected, there is no sign

I reversal between the second and the third pulses. This process
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of alternate reflections from the open end and the rigid wall

continues for many more reflections than are shown here.

En Fig. 3 are shown two pressure traces obtained with driving
sections of different lengths, but with the same driving pressure,

3.7 atm. As expected, the duration of the pulse increases with

increasing driver length, but otherwise the general behaviour

of the pulses is much the same for both.

Pulses produced by different initial pressures in the driver

section are shown in Fig. 4I. The length of the driver is 4"1.

It is interesting to see, that the large amplitude pulse arrives

before the pulse with the lower 'amplitude, This demonstrates

explicitly the pressure dependence of the wave speed.
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III. STUDIES OF SHOCK WAVE PROPAGATION AND REFLECTION

Reflection from closed and open ends of a duct.

Starting from the initial static pressure in the driver section

of the shock tube, we have used the computational procedure

described in Appendix D to calculate the pressure pulse pattern

at the location of the transducer, 1 m from the driver for both

a rigid and open termination of the shock tube. The results

are shown in Figs. 1 and 2. For comparison, we have included

in Figs. 3 and 4j the results obtained from linear acoustic theory.

We note, that the linear theory fails not only to predict the

A shape but also the location of the pulses.

Of particular interest is the result obtained for the open

ended tube. In the linear theory the reflection coefficient

is close to -1 at the open end, and the reflected pulse is in

essence the mirror image of the incident pulse with respect

to the x-axis. In other words, the sudden rise in pressure

is associated with the leading edge of both the incident and

reflected waves. This ic not the case in reality, however,

as can be seen from Fig. 2; the steepest part of the pulse belongs

to the trailing edge of the pulse.

In order to explore the reason for this behaviour, we have

studied in detail the process of reflection from the open end,

with the results shown in Figs. 5-8. The x-dependences of both

the pressure and the velocity in the wave have been computed

at various times, before, during and after the reflection from

the open end.

In the first figure, corresponding to the normalized time

t/(x/c0 ).0924, a region of almost uniform flow has formed behind

-* the shock wave, and the rarefaction wave, travelling to the

left, has already reflected from the hard end of the driver

section and has begun to travel to the right. The speed of

the shock wave is smaller than the local sound speed behind
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the shock, so a disturbance within the shock will catch up with

the shock front. Thus the rarefaction wave will overtake the

-. shock, as indicated in the next two figures.

As the wave arrives at the open end of the tube, the flow

accelerates and the flow velocity remains high even after the

- pressure in the tube haj dropped below the outside pressure.

2 This pressure drop propagates back as a rarefaction wave. Now

* the sound speed is larger behind the wavre than in it, so that

the portions of the trailing part of the pulse with the smallest 6

rarefaction will have the highest speed. Consequently, the

trailing part of the wave will be distorted to form a trailing

shock, as shown in the last figure.

It should be remarked, that the result obtained here are

applicable approximately also to the reflection from a sudden

* expansion in a tube.

Reflection from an orifice plate.

As was shown in the previous section, the peak pressures of the

waves reflected from a rigid termination and from the open end

of a duct were .63 and -. 40i times the peak pressure of the incident

wave, as measured at the location of the transducer, 1 m from

the end of the tube. With a perforated plate placed at the

end of the tube, the reflected peak pressure is expected to

fall between this positive and negative values. For a large

open area fraction S of the plate, the reflected wave should

* be negative and for a small value of S it should be positive.

Thus4, the magnitude of the reflected peak pressure should be

a minimum for some value of the open area fraction. To explore

this question, we carried out a set of measurements of the reflect.

* tion from perforated plates, with S ranging from .22 to .79.

Thee results are shown in Figs. 9-12.

As we go from the smallest (.22) to largest (.79) value

of S, we note, as expected, that the positive portion of the

L:
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reflected pulse decreases. At S=.79 it has essentially disappeared,

and the dominant reflected pressure is negative. For Sz.6,

the positive and negative contributions are about the same,

and for this approximately this value of S, the magnitude ofj

the reflected pressure pulse is a minimum, about 10 % of the

incident pressure peak at the location of the plate. In other

words, it is about 4 times smaller than the reflected pressure

from the open end and 6 times smaller than from the rigid termina-

tion.

The optimum value of S for an orifice plate for minimum

reflected pressure amplitude depends on the peak value of the

* incident wave. From the nonlinear acoustic theory of reflection,

presented below, the reflection coefficient can be expressed

* in closed form in terms of the incident pressure, and the pressure

dependence of the optimum value of the open area fraction readily

can be determined.

It is interesting in this context to compare the measured

reflections with the nonlinear acoustic theory. This is done

in Fig. 13, where we have computed the reflection coefficient

as a function of the open area fraction for some different values

of the incident peak pressure, namely .2, .4, .6, and .8 times

the ambient static pressure. The frequency dependence of the

reflection coefficient is quite weak, and affects only the minimum

value of the reflection coefficient. The curves shown refer

to a frequency of 400 Hz, but the curves are essentially the

same for frequencies in the range 100-500 Hz.

The reason for the weak frequency dependence of the reflect-

tion coefficient is that the nonlinear impedance of the orifice

plate is dominated by the resistive part. En this particular

case, with the plate terminating a tube with the wave radiating

into free space, the reactive part of the impedance arises from

the inertial mass in the orifice(s) of the plate and the near

field flow at the end of the tube, as described in the theory,
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presented below.

Accounting for the nonlinear attenuation in the tube of

the incident wave pulse, which has an amplitude of .93 atm.

at 1 m from the termination, we obtain a value of .73 atm. at

the orifice plate. Correcting the reflected waves in a similar

manner, we obtain from the experimental data in Figs. 9-12 the

reflection coefficients .64, .35, .105, and .23 for the open

area fractions S=.22, .42, .60, and .79.

The results are seen in Fig. 13 to be in good general agree!c

! !ment with the predicted S-dependenee except for a slight systema .

tic shift of the data in the S-direction. With-a :mallcorrection

for the contraction of the flow in the orifices of the plate,

which in effect reduces S, this systematic shift can be eliminated.

Nonlinear acoustic theory of reflection of a shock wave from

an orifice plate.

For values of the incident peak pressure of the pulse, such

that p/P<, the interaction of a harmonic wave with a plate

with one or more orifices can be described quite well by treating

the flow through the orifice(s) quasistatically. This leads

to an acoustic characterization of the orifice plate in terms

of an amplitude dependent acoustic impedance, in which the

resistive part is proportional to the velocity amplitude in

the orifice, thus accounting for the losses related to the

flow separation in the orifice at large amplitudes. The reactive

part of the impedance decreases somewhat with amplitude, but

it is a good approximation to use the linear value of the reactanL

ce ( )

With the open area fraction of the orifice plate denoted

by S, the velocity amplitude in the orifice will be u/S, where

u is the amplitude in the duct before the flow has contracted

in the orifice. The resistive part e' of the normalized impedance

':e'+ix' of the orifice plate has been found to be proportional
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to this velocity amplitude (17)

'=uIcSS' (1)

S'=Sl(I-S2 )

where c is the ambient sound speed. The normalized reactance

is

:.xlm(l/S' )(w/ ,)0.6d=(1/S' ),/-S(w/c)O.6D (2)

where d is the orifice diameter and D the tube diameter. In

the last step, we have assumed, that the plate has only one

orifice.

With the normalized impedance of the region on the downstream

side of the orifice plate denoted by ", the total normalized

impedance in front of the orifice plate is

1; '+1¢":0+ix (3)

If the orifice plate is located in a long uniform tube,

we have C":1, the normalized characteristic wave impedance

of a plane wave.

. In the present case, the experimental data in Fig. I refer
to an orifice plate at the end of a tube radiating into free

space. For long wavelengths, the resistive and reactive parts

of the impedance 1" are proportional to (kD)2 and (kD), respect:

tively, where k:w/c. These are less then unity at wavelengths

larger than the circumference of the tube. In our case, with

D=5 cm and typical wave length of the order of 1 m, this condition

is fulfilled. Under these conditions, the reactive part dominates,

and it is approximately equal to 0.3 D/c, corresponding to

a mass "end correction" 0.3D of the tube.

The velocity amplitude in the orifice is not known a priori,
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but it can be expressed in terms of the incident pressure amplit-

tude p from the boundary condition p,/uzpcc, where p, is the

sum of the incident and reflected pressures at the orifice

plate. This condition can be expressed in terms of the incident

pressure p

"u=2p/[pc(C+)] (4)

We shall use for the total impedance the approximation

i.e. omitting the resistive part of c".

Using this expression in Eq. 4, we obtain an equation for

u. Since the reactance is small compared to the resistance,

we may omit the reactance in Eq. 24 so that u=(2p/pc)/E1+(u/cSS')]

with the solution

u/cSS' 4TT -- 1/2 (6)

B=p/YPSS' (y=specific heat ratio).

..j Having obtained the velocity amplitude, we can now express

the impedance in terms of the incident pressure amplitude

=477+--l /2+i X  ( 7)
X(wDlc)[0.3+(NfSIS' 0.6]

The reflection coefficient is then

C= (r. -1 ) / (€ + 1 ) (8)

with the magnitude IC IC (e- 2+x2]1/[(e+ .+x2 , which is
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plotted in Fig. 1 as a function of S for a frequency of 200

Hz, typical of the spectrum of the incident wave.
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IV. NONLINEAR ACOUSTIC ANALYSIS OF SHOCK WAVE ATTENUATION

The results on shock wave propagation and reflection in Section IV

were obtained from the program in Appendix B through numerical

integration of the fluid equation, and excellent agreement with

experiments were well demonstrated. Nevertheless, it instructive

and useful to carry out a simple acoustic analysis of the problem,

.. which leads to a closed form expression for the attenuation of

the peak amplitude of a large amplitude acoustic pulse wave.

The attenuation is casued by the entropy production in the

bulk of the gas and at the walls of the tube. The resulting heat

• "produced per unit length in the tube from the sudden compression

of the gas as the shock wave travels through it is given by

E, =ApTAS= A[(-(+ 1)/12y2p /P2  (1)

A~duct area

p=peak pressure of the pulse

P=ambient static pressure

T=absolut temperature

p=density

AS=entropy increase across the shock

T=specific heat ratio

There will be entropy produced also in the remainder of the

pulse, where the pressure varies continuously with position, and

the corresponding rate of heat production per unit volume is

pTdS/dt=p'(du/dx)2 +(K/T)(dT/dx) 2  (2)

pw=4p/3+n

K~heat conduction coefficient

p=coefficient of shear viscosity

in=coefficient of bulk viscosity.
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The perturbation in the temperature is T(y-1)u/c, and if we

introduce the characteristic length L. in the expressions for the

gradients, we obtain from Eq. 2 the following expression for the

heat production per unit length of the duct

H,= Ak u2ji'(1+6, ) (3)

k= 1 /L2

6=:(Y-1)K/C i'
p

In the case of harmonic time dependence, we have k=2x/X,

where X is the wavelength, and to obtain the time average, an

additional factor 1/2 should ,be used in Eq. 3. In that case the

acoustic power transmitted in the duct is Ap2 /2pc, and Eq. 3

then leads to an exponential power decay, exp(-BOx), where

$2= k' ( /pc) (1+62 (4)

a familiar result in acoustics.

In calculating the heat production at the boundaries of the

duct, we can use Eq. 2 if we replace p' by p and let x be the

coordinate normal to the boundary. The characteristic lengths,

which determine the gradients are now the thicknesses of the vis-

cous and thermal acoustic boundary layers. For harmonic time

dependenc these thicknesses are

d : 121.lwp (5)v

dt: 12K /poC (6)

With the perimeter of the duct denoted by D', the volume per

unit length of the duct of a boundary layer will be dD', and the

time average power lost per unit length of the duct is then
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=D'(pl4pc)q (p=pcu) (7)

q=( 1+6 )!12w/pc2

6 , =(- I)/W P r

P r=C p/K (Prandtl number)

The corresponding exponential power decay will be exp(-83 x),

where

O,=(D'/2A)q" (8)

with q given in Eq. 7.

Next we express the total energy of the pulse by integrating

the energy density over the length of the pulse to obtain the

expression aALp2 /pc2 , where p is the peak pressure and L the

length of the pulse. The numerical factor a depends on the

shape of the pusle. For rectangular, sinusoidal, and triangular

pulses, the values of a are 1, 1/2, and 1/3, respectively.

For pulses with pronounced narrow peaks, the values ofa can

be considerably smaller.

Returning to the Eq. 1, we note, that it expresses the

energy lost per unit length in the duct due to the entropy produc-

tion in the shock front. The visco-thermal boundary losses

in Eq. 8, on the other hand, refers to the power loss, and we

have to integrate over the duration T of the pulse to obtain

the energy loss. In this integration we again obtain a numerical

factor expressing the shape of the pulse, and we shall assume

here that this factor is a, i.e. the same factor as we used

in the expression for the total energy of the pulse. Thus,

• in order to get the energy loss per unit length we have to multi-

ply H 3 in Eq. 7 by aT=aL/v.

Having now determined the energy of the pulse and the losses

per unit length, we can calculate the rate of decay of the pulse
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energy from the energy balance equation

-~.*dW/dx=-EL -E; (9)

W=XciLp;

xcompressiblity of gas, 1/pc2

11 %10E.: (see Eq. 1)

The average value £.is (L +L)/12, where L~is the reference

value at x=4 and L the value at the point of observation x.

In other words, L depends (weakly) on x, and the same holds

true for the factor QL/v in the expression for E,., In the first

approximation, we shall neglect this x-dependence and use the

values NO(v +cO )T/2, where v, is the value of v at x~x, , c

the ambient sound speed, and T. the duration of the pulse at

Under these conditions Eq. (13) can be written in the form

*dp/dx=-B,,p-B.p 2  (10)

Bl.=0/4A)(/ )q(q; see Eq. 7)

!2.C1 /2aL.P)( lvy)/127

and the solution can be expressed as

* . ~~(x)/p(X,)=E(x')/[1+F(x')/x;](1

F(x' )=[1-E(x')]/B1

The quantity x~ is inversely proportional to the pressure

ratio p(x0,)/P, so that for a weak pressure pulse, the denominator
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simply reduces to 1. The pressure then decays exponentially

as exp(-B~x'). This is also the asymptotic form of the attenua-

tion as x' goes to infinity, indendent of the value of p(x,)/P.

In the other limit, for small values of x' and with

p(x, )/P not negligible, we approximate F(x') by x' and obtain

p(x)/p(x.)=I/[1+(x-x4)/x ] (12)

From this relation we note, that the pressure amplitude

is reduced by a factor of 2 (i.e. by 6 dB) after a travel distance

the "half pressure distance".

As we shall see shortly, the appropriate value for a in

our case is .26 (recall that for a triangular wave a=1/3), so

that the half pressure distance will be 3.6[P/p(xo)]L. With

L typically .82 m in our experiments Fid with p(xo)/P 1, the

half pressure distance will be 3 m.

Pulse length. In determining the viscothermal losses at the

duct walls, we used the result for harmonic time dependence

with the frequency chosen to be that, which yields the dominant

contribution to the lcss contribution in the frequency spectrum

of the pulse. To go into further details and express the visco-

thermal losses for an arbitrary time dependence does not seem

to be justified in this context.

In selecting a frequency or the corresponding characteristic

period to be used in the evaluation of the visco-thermal losses,

we account for the fact, that the pulse length and its duration

increases with the distance of wave travel. The leading (shocked)

portion of the wave travels with the speed v(x), which depends

on the pressure amplitude

v(x)=c [1+(p(x)P)(I+y)I22(] (13)
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and the trailing part of the pulse travels with the ambient

sound speed co .

The length of the pulse x is then

~L(x) =L(xo )+f(v-oo-)dx/v= L(xo )+x(O-co /, (14)

"-'2"," = (vo +v)12

If we use the x-dependence of the pressure in Eq. 11, we

can determine the corresponding x-dependence of the propagation

speed v(x) and evaluate the integral. For the present purpose,

however, we approximate the integral as shown in Eq. 14.
The duration of the wave, pulse at location x is

,.-'. -T(x ) L(x) Iv( x ) Lo Ic +(xlqr) ( Ico - 1) ( 15 )

where L and vo ae the values of length and wave speed at xx 0 .

In the expression for the viscothermal losses, we used

the duration T and the corresponding characteristic frequency

w=:2/T, obtain at the half pressure point x~x,

T, =L, /c, +(x, /) (/co -1)(v o co )TO [ 1+(x, /L )(v, /c,- 1) (16)

wi th x/L=(P/p. )24y/I(+y)=(P/p, )8 y/(1+T) and .a=1"/3, and

where pop(xo) is the peak pressure at x:xo.

Comparison with experiments. In Fig. 1 is shown an example

of the recorded pressure pattern resulting from multiple reflec-

tions of a pulse wave in our shock tube, when it was terminated

by a rigid wall. The distance from the membrane in the driver

section of the tube to the termination was 2 m, and the length

of the driver sesction was .1 m. The pressure transducer was

W.- located at a distance from the membrane of x0 -1 m, where the

peak pressure of the original pulse in this example was
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Po =p(x,):.94P, where P is the ambient static pressure.

Sixteen reflections are shown in the figure, corresponding

to a total travel distance of 32 m, and several more can readily

be observed. The average pressure in the tube increases slowly

toward the asymptotic value (L /L)P above ambient where, Ld
d dd

is the length of the driver section, L the length of the shock

tube (including the driver section), and P the initial pressure
d

above the ambient in the driver section. In our case P was

3.67 atm., so that the asymptotic pressure should be .17 atm

above ambient, which is in good agreement with the observed

value. (L=2.1 m, L -.1 M).

The travel distance of a pulse versus time obtained from

this record is shown in Fig. 2. The slope of the curve is the

wave speed. According to Eq. 13, the wave speed at x =1, where

p(1)=.9 4 P, should be 1.34 times larger than the ambient sound

speed in air (with y=1. 4 ). Within the experimental accuracy,

the data in Fig. 2 are consistent with this prediction.

Of more interest is the x--dependence of the peak pressure

of the pulse, as shown in Fig. 3, where p(x)/p(x0 ) is plotted

as a function of x. The solid curve in the figure is the decay

curve obtained from Eq. 11, in which we have chosen the "pulse

shape factor" to be .28, i.e. close to the theoretical value

for a triangular pulse.

The agreement between the measured and predicted results

is quite satisfactory. We note that the "half pressure distance"

x_ corresponding to a 6 dB reduction in the peak pressure is

xx :3 m, as predicted.

In Fig. 4 are shown the computed curves for other values

of the initial peak pressure. Unfortunately, experimental data

for these were not obtained. The initial reduction in pressure

per unit length is considerable, being about 4.7 db/m for the

pulse with a peak pressure p(l)=2 atm. It is important to account

for this decay in the acoustic analysis of the overall system.
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V. THEORY AND DESIGN OF NONLOCALLY REACTING

PARALLEL BAFFLE ATTENUATORS

1. Introduction.

The propagation of sound in attenuating ducts have been the sub-

ject of numerous studies ranging from routine attenuation

measurements to complex mathematical studies. In most of the ma-

thematical analyses, starting with those of Morse (18) and

Brillouin (19 the duct liners have been assumed to be locally

reacting with a normal acoustic impedance known a priori, ex-

pressing a characteristic property of the liner independent of the

nature of the sound field, to which it is exposed.

One notable exception is the analysis by Scott (20) of sound

propagation in a duct with a rigid porous layer, which did not

rely on the assumption of local reaction. The general expression

for the dispersion relation was derived and numerical analysis

for a few modes was carried out.

In the present study, the general analysis is extended to in-

clude a flexibi, porous liner and a uniform mean flow in the duct.

Furthermore, and rnlre important from the standpoint of design and

system analysis, we. d-rive closed form expressions for the fre-

quency dependence of the attenuation and phase velocity for long

wavelengths, which makes a parametric study of the characteris-

tics of the attenuator tractable. For example, simple formulas

are given for the optimum design for maximum attenuation at a

given frequency.

The results can be applied not only to a lined duct but also

to a "parallel-baffle" attenuator, which contains several porous

baffles in a duct, as shown in Fig. 1.

2. The dispersion relation.

The porous material in the liners or baffles is assumed to be ho-

mogeneous and isotropic. To account for the flexibility in a
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simple manner, we neglect the structural stiffness and treat the

material as "limp" with a mass density M. The results corre-

I.V sponding to a rigid material is then obtained by putting M equal

to infinity in the final formulas. The assumption of limpness is

valid if the compressional wave speed in the porous structure is

considerably smaller than the speed of sound in the surrounding gas.

To analyze wave propagation in a duct lined with a nonlocaily

reacting porous layer, we consider a two-dimensional duct with a

hard wall at y=D and a porous layer of thickness d placed at the

wall at y=O. The axis of the duct is in the x-direction.

Ths sound pressure fields in the two regions are then

p=Acos[k y(D-y)1 exp(ik x) (gas) (2.1)

p'=Bcos(q y) exp(ik x) (porous material) (2.2)
y x

where

k2 +k(2 =k2 =(W/ C)2 (2.3)
x y

x y

The quantities 8 and A are the complex sound velocity and

-~ the complex inertial mass density in the gas in the porous mate-

rial, as defined in Appendix .We have

A / p:H+iz / (p (2.5)

z'r-iwgHp (X=1/pc
2 

,

where H is the porosity, M the mass density, and r the flow resis-

tance per unit length of the porous material. The factor g is the

Spinduced mass factor defined in Appendix

The y-component of the velocity in each of the two regions

follows from Eqs. 2.1 and 2.2,
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u =(1/iwp)ap/0y=(A/ipc)K ysin[ky (D-y)] exp(ik xx) (2.6)

ut =(/iwpl)pl/y=-(B/ipc)[QO1(A/.P )]sin(qyy) exp(ik x) (2.7)

Continuity of pressure and normal mass flow at the boundary

of the porous material require, that p=p' and u =Cu' for y=d,
y y

where C=(H+iz /wM)/(1+iz /wM). Applying these conditions on

the expressions for pressure and velocity above, we obtain

K ytan[K yk(D-d) ]=-C(p/ )Qytan( Qkd) (2.8)

K =ky/k, %=%/k, k=w/c
* y y

Having obtained K from this equation, we determine the pro-
y

gation constant of interest

K =11--.Kr (See Eq. 2.3) (2.9)
x y

From the real and imaginary parts of this propagation con-

stant, we obtain the phase velocity along the axis of the duct

v =(k/K )c (2.10)p r

c=free space sound speed. K =K r+iK.x r '.

and the x-dependence of the wave amplitude, exp(-K kx), correspon-
i

ding to an attenuation in dB per unit length

A=20,log(e)'K k=8.7 K k (2.11)
i i

These results are valid also for a two dimensional duct with

both walls lined if we consider the wave modes symmetrical with

respect to the center plane of the duct. The dimension D is then

half of the duct width, and the fraction open area of the duct is

S=(D-d)/d.
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For modes, which are anti-symmetrical with respect to the

center plane of the duct (a nodal plane for pressure), Eq. 2.8 has

to be replaced by

K ycos[K yk(D-d)]=(p/A)Q ytan(Q ykd) (2.12)

If several ducts lined on both sides are arrange in parallel

we obtain a "parallel-baffle" attenuator, each baffle having a

thickness 2d and with a separation between adjacent baffles of 2D.

The fraction open area of the attenuator is S=(D-d)/D, as before.

3. Optimum design.

It is clear, tht for the two limiting values of the flow resis-

tance, zero and infinity, the attenuation will be zero. Conse-

quently, there exists an optimum value for the flow resistance,

for which the attenuation is a maximum. This optimum value is ex-

pected to depend on frequency. To determine it in the general

case requires extensive numerical parameteric studies.

On the other hand, it is of considerable practical impor-

tance to determine the attenuation at long wavelengths, which

is most cases play the most important part in the design of the

attenuator. In this long wavelength regime, it is possible to

simplify the dispersion relation considerably.

Thus, if we assume, that both d and D are much smaller than

a wavelength, so that both kD and kd are small compared to unity,

Eq. 2.9 can be written

K =:aZ/(Z+b) (3.1)
x
K =k /k k=w/c
x x
Z=A/p (See Eq. 2.5)

V a=[I (i/x)CS']=I+HS'

b=CS1' C:(z-iHwM)/(z-iwM)=H(x/i)

S'=(1-S)/S. S=(D-d)/D=fraction open area of the attenuator.
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We note, that for S=O we obtain K =1( Ip)(,/,), the result for a
x

porous material, and for S=O we get K =, which is consistent

with the value for propagation in the gas.

The right hand side of Eq. 3.1 is a complex number A+iB,

which readily can be determined in terms of the physical parame-
ters of the porous material and the duct system. The correspon-

ding expressions for the real and imaginary parts of the propa-

gation constant K :K +iK. are then
x r 1

Kr=( 1/ 42) (A2+-+A) (3.2)
r 1"].:tK. = ( 1 / 2 ) ( Jr -A ) (0 x =A+iB ) (3.3)

1 x

As already indicated, the corresponding values for the phase

velocity of the fundamental mode in the duct system is then

vP =(k/K )c (3.4)

and the attenution in dB per unit length of the duct is

A=8.7kK.z54.6K.f/c (3.4)

where f is the frequency.

i Examples of the frequency dependence of the phase velocity,

computed from Eq. 3.4, are shown in Fig. B.1 In this particular

case the porous material is assumed to be rigid. But even for

a comparatively light limp material, with M=.05 g/cm3 , for

example, the results are approximately the same. The motion of

the porous material reduces the friction coupling slightly, and

the phase velocity becomes somewhat higher. The difference in-

creases with increasing flow resistance, however.

Of more interest in this context is the attenuation and

its frequency dependence. Examples of computed attenuation curves

A versus f for some different values of the flow resistance and
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the open area fraction are shown in Figs. 3-6 .. It can be seen

from these curves, that for given values of frequency and open

area fraction, the attenuation has a maximum for a certain value

of the flow resistance.

In order to see this dependence on R more clearly, we have

plotted the attenuation versus R with frequency as a parameter, as

shown in Figs. 7-10 . By comparing Figs. 7 and 8 we get an idea

*'.*"of the difference in attenuation between limp and rigid baffles.

For the particular open area fraction involved, S=.2 and the mass

density, corresponding to m=38, the difference is small. The

rigid baffle yields a somewhat higher attenuation and the optimum

resistance is slightly larger than for the limp material.

It is interesting in this context to note, that for a rigid

porous material, the value of the optimum resistance and the cor-

responding maximum attenuation can expressed in a simple closed

form in terms of the open area fraction and the frequency. This

follows, after some algebra, by maximizing the expression for K.

in Eq. 3.3 with respect to the flow resistance. We find, that the

optimum flow resistance can be expressed as

R=r/pc=kH(G+S')[(4G+S')/(4G+3S')]1  (3.5)

S':(I-S)/S

G:1+g:structure factor of porous material

The correspnding expressions for the maximum value of K. and the

corresponding attenuation in dB per unit length are

K.==(1/2v/2)S'[(1+HS')/(G+S')(2G+S')] (3.6)

A=8.7 kKi=54.6 K f/c

k:2xf/c

f= frequency

c=sound speed in gas

H=porosity
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Thus, for an acoustically compact duct or baffle attenuator

with nonlocally reacting porous material, the optimum flow resis-

tance, as well as the corresponding maximum attenuation, is propor-

tional to the frequency, and the constants of proportionality are

functions of the open area fraction, as shown in Figs. 11-12.

These results have been derived for a rigid porous material,

-" but in most.,cases they are good approximations for the optimum

design of flexible porous baffles. The flexibility reduces

somewhat the values of both the optimum resistance and the maximum

attenuation.

It is significant, that for the nonlocally reacting baffles

considered here, the dependence of the geometry of the attenuator

on the attenuation is expressed by the single parameter S, the

open area fraction. This means, that for a given value of

S, we can make the baffles quite thin without reducing the low

frequency attenuation. The corresponding width of the channel

between two adjacent baffles then will be small also, which

reduces the effect of the "beaming" of sound and the corresponding

loss in attenuation at high frequencies. In the selection

of a baffle thickness, nondcoustical factors must be considered

aJ.o, such as the pressure drop in the presence of a mean flow.

4. Effect of mean flow.

Again, we consider the two dimensional duct with a rigid wall

at y=D and a porous, nonlocally reacting porous layer of thick-

ness d applied to the wall at y=O. Uniform flow in the duct is

assumed with a velocity U and the corresponding Mach number M=U/c,

not to be confused with the mass density M of the porous material.

The determination of the dispersion relation is quite similar

to what we did earlier in the absence of flow. The difference can

be expressed simply by assigning a different value for the con-

stant C, which was defined in the discussion of Eq. 2.8.

The factor C now contains the propagation constant k
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nthrough the additional factor (O-MK ), where n is 1 or 2 depen-x

on whether continuity of particle velocity or displacement is

assumed just outside the boundary layer of the porous material.

Which boundary condition to use is an open question. In a special

case, involving flow over a side branch cavity in a duct, a tran-

sition from n=2 to n=1 with increasing flow speed was found to be

consistent with experimental data (4).

Thus, for an acoustically coLrpact parallel baffle attenuator,

the dispersion relation can be expressed as

K =a'Z/(Z+b') (4.1)
x

K =k /k, k=w/cx x

Z=A/p
b'=C(1-MK n, a'=1+b'

x
M=U/c, U=mean flow velocity.

.1

5. Pressure reflection coefficient.

In most engineering problems involving mufflers, the reduction of

the transmitted sound is of primary interest. In the application

considered in this report, howeer, the pressure pulses reflected

from an attenuator (or any other discontinuity in the duct loop)

is an equally important factor to consider.

To determine the reflection coefficient at the entrance

to a parallel baffle attenuator or lined duct, we start by deter-

mining the characteristic wave impedance. In the long wavelength

approximation it is the ratio between the complex pressure ampli-v
rude and the amplitude of the average velocity across the duct.

With the pressure field given by Eqs. 2.1 and 2.2, the x-com-

ponent of the velocity in the gas and in the porous material are

U :(I/wp)k Acos[k (D-y)] exp(ik x) (5.1
x x y x
ux'= (1/w)k xBcos(q y ) exp(ik x)x x y x
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The average value of the velocity across the duct is

u:Su +(1-S)u' (5.2)
x x

With A B, the normalized wave impedance becomes (see Fig. 13)

Z(l/pc)p/u=(I/K )Z/(SZ+1-S) (5.3)
x

S=open area fraction=(D-d)/D

To obtain the input impedance of the attenuator, we must mo-

dify the average flow velocity somewhat to account for the boun-

dary condition at the leading edge of the porous baffles. As ex-

plained in Section A4, the flow velocity in the gas outside the

porous material is Cu', where C is given in Eq. 3.1. This modifi-
x

cation applies only to the part of the duct occupied by the baff-

les, and the input impedance becomes

Z:=(l/K )Z/[SZ+C(I-S)] (5.4
x

Comparing this with the expression for K in Eq. 3.1, wex
obtain

Z, =Kx/[H+S(I-H)] (5.5)
x

The pressure reflection coefficient at the entrance to the

attenuator then can be expressed as

R =(Z,-I)I(Zl+I) (5.6)
p

Fig. 14 shows the results of the computed frequency dependence

of the reflection coefficient for some different values of the

open area fraction S for rigid baffles. For a solid baffle,
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we have K =1, and with H=1, the reflection coefficient reduces to

the value (1-S)/(I+S), corresponding to the change in the area of

the duct.

It should be emphasized, the the reflection coefficient in

Eq. 5.6 refers to the reflection from the front end of the attenu-

tor. There will be a reflection also at the other end, but the

corresponding reflected wave will be attenuated by an amount cor-

responding to a travel distance equal to twice the length of the

attenuator.
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Fig. VI.1.
DUCT WITH ONE WALL LINED WITH A POROUS LAYER AND THE CORRESPON
DING PARALLEL BAFFLE ATTENUATOR.

74~



I 
I

_ _ 
I I---

I . ~-. =oeJ

I CIA

it 
CL_ 

_ _ _

________ 
_______ __ ___ -

__ _ 1 _ ICNe) rL

[__________ _________ __________ _________ _________ 
__________0____y____ 

i- 1

__ __I 0L

____~ /1 I I33 ___________ 
_____ wLd



C0

______~~~~~Q ________r ___

10 u
-. ~~ ~~ ~ ~ z 4 _ _I_ _ __ I __

_ _ _ L r 1

* It

I W-

\~ A li c-91

_ _ _ _ _ _ I _ _ _ _ I _ _ I C_

1 0____

(NJ_________ _____ z
_ _ GA 83d 8P _ _ _ _ __ __ C L

761~



CDa

-I - 0

--- _ _ _

* _ -9-
I ___ _______

Z3 (J.17

N

L C3

L u -

I <

I LZU

CD -< ~ ,

0 0J

833 fd8 'Olvn-i

I 77



C)

k-_j
____ IC U

_ _ ____4 .0L

-~~~) ....-.-

IZ .z g i

0 ---t 110

83A aI 8P 'N~inNi

I N. I _78



_ _ _ _~~~~~~~- 7_ _ 7 1__ _ _ _ _ _ _ _ _ _ _

_ _ I _ _ _

_ _ - - *car- _ _ _ -

- e

.< -

~~C/)
wz J&

_ _ _~~~~~~ ___ ____ __ _ _ _ __ L
.- O-~ <

0CA,

01

831.3W 3d8 'NOliJvFNJ.lLV

* 79



_ _ _ _ _ U
____________ __ _ _ _ _ ___ _ _ _ __ _ ) I

0n

I -A
__ _ _ _ _LL) J -4 

_ _ _ _ _~~L Cie__ _ _ _ _

4 I ii -I

t'- x- C-a -

00 0
m C\J -

d~~i3H LdUd 4"P aNI~l3

80L



4,.. - ___ ____.11Z

wJ

U-,U

- - C-.4i -_ '-

0- LA 0

I.L

P- 3 3-4 e
-n I- N w

IL-
Is - -

- -1 0_

.C3- S: C

-0- z-
_ _ _ ____ ;

1-4~

O >LLJ ice -

0 0 0 w

CD c, %j

8i313I1 83d COP "NOlivlNK.IY

81



I.--

I Is
J 4 W LA-

I--

<10a -4e

CL cb 4

1~~~i SC1--- II

________V_ __410__ __ _ -

Ij c

83I3N 63d OP 'NOIivfN31iV

82



-..-. I... w~ jL~ii ''~ --

_ _ _ _ c.) Z

-- ELU z

L) L

ci 4:; to

-y I-JM
IIC ck

w <e
_ _ _ _ _ _ _ _ _ ~r<

________Z LU o

_____ Ca 0J

0 C: 0

83AW~~~~ 83 _P'~in~i

_ _ _ _ _ _ _ _ _ _ 83



L-J

10 0

C-

Al IM\

CZ,

-o QQ

o s

C/I

Q) Its Q Q

~-t *ue

824



CD it

IC.

IS

U 0.)

0C3/

_ _ _ _Its

IN4

___ __ L - ~ t

W LL

Z) Q
ew 49

N CN J

I LL -J

jr ~

833 3 PA~in31 niv

85U



fil 0

I IiI

1X Z) a_

I~~ ~ iIi-

itt L -.. I
LL I -

-_j

Ll Ii'I

OX~ T IOJ= uiN0dI ISHi,)6

86_



ALRU
-

L J

___ _ _ /7 ,~ ILU
J ujI

//

Ii 0s

,C/1

/t It I

0)LU c~ l
/~Z I - es

__ 0 __ _ _ o I _ _

iN33I490 NO 3 ws~

_ _ __ __ IA _ _ _ L87



-_ .,. .

VI. PRESSURE DROP IN A PARALLEL-BAFFLE ATTENUATOR

The pressure drop in a parallel baffle attenuator is due to the

friction loss at the baffle surfaces and to the entrance and exit

flow losses. In expressing these contributions to the pressure

drop in terms of the attenuator parameters, we shall assume first,

that the flow through the baffles themselves can be neglected.

Then, in fhe mean flow velocity in the main duct is U, the

velocity in the channels between the baffles will be U':U/S, whee

S is the fraction open area of the attenuator.

The total wall area in a channel between two baffles is 2HL,

where H is the height and L the length of a baffle. 1.-e cross

sectional area of the channel is HD, where D is the width of the

channel, and the ratio between the two areas is tien 2L/D.

The pressure drop in a length L due to wall friction can then

be expressed as f(pU'2 /2)(2L/D), where f is the friction coeffi-

cient (fpU' 2 /2 is the shear stress). At sufficiently large Rey-

-"- nolds numbers, f is approximately independent of the Reynolds num-

ber and dependent only on the wall roughness parameter e/D, where

is the average size of the wall roughness, i.e. the protusions

of the wall. For e/D equal to .01 and .1, the values of the fric-

tion coefficient are approxim-tely .01 and .025. In our computa-

tions we shall use .015 as a typical average.

The pressure drops due to the flow losses at the entrance and

the exit of the attenuator depend on the open area fraction S, and

we shall use the approximate expressions .4(1-S)P' and (1-S) P'
d a

for these contributions, where P'=pU'/2 is the "dynamic" pressure

of the channel flow.

Normalizding the the toral pressure drop with respect to the

dynamic pressure P =PU 2 /Z of the flow in the main duct, we obtain
d

• ." ~AP/Pd=( S )[2fL/D+.4(1-S)+(I- )2 ]_,_

d
P :PLd /2

.% ,d
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We do not expect this result to be valid for arbitrarily small

values of S, since at some point, the flow through the porous mate-

rial itself will become significant. The value of S, for which

this occurs will depend on the flow resistance of the porous

material. Actaully, in the limit S=O, the pressure drop will

be AP=rUL, where r is the flow resistance of the material per

unit length.

To account for the flow through the porous material, we

start by expressing the total average flow velocity U in the main

duct in terms of the velocities U' and U"' in the channel and in

the porous isaterial, respectively,

U-SU'+( 1-S)U" (2)

The pressure drop per unit length in the channel and in the

porous material must be the same, i.e.

rU"=(2f/D) (PUI /2) (3)

where r is the flow resistanc per unit length in the porous mate-

rial, r=R c.

With the thickness of a baffle denoted by d and the width

of the channel between two baffles by D, the fraction open area

of the attenuator is S-D(D+d). The normalized flow resistance

per unit length is R, as before, and the Mach number of the flow

in the main duct is M=U/c. From Eqs. 2 and 3 we then can express

the velocity of the channel flow as

U'/U=(Y/2)['€1+4(/Ys) -1] (4)

Y =((Rd/tM)e/(1-S)'

and the total pressure drop is

89



&P/rd d(U'/U)*[2fL/D+.I(1-S)1+(I-S)2] (5)

P d =p /2

As an example, we have computed AP/Pd as a function of L/D

with S as a parameter for the values Rd=.2 c units and f=.015,

which can be considered rather typical. For comparison, we have

included the result in Eq. 1, which was obtained on the assump-

tion of no flow through the baffles. The results are given in

Fig. 1. We note, that the two results, corresponding to Eqs. 1

and 5, deviates significantly only for values of S less than .2.

It should be emphasized, that the dynamic pressure Pd refers

to the average flow speed in the duct before the area contraction

created by the attenuator. With the attenuator mounted in a duct

section with an area larger than that of the main duct, the velo-

city U and the pressure drop can be reduced accordingly.
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VII, INTERACTION OF SHOCK VAVES VITH A FLEXIBLE POROUS LAYERS

In our experimental studies of transmission of sound pulses

in duct line with a flexible porous layer or containing a flexible

porous baffle, the attenuation generally was found to be signifiv:

cantly dependent on the peak pressure of the pulses. Often

the attenuation-decreased with increasing pressure, a rather

* unexpected result.

In order to gain some insight into the mechanism, which

might be responsible for this effect, we carried out some experi-c

ments on the reflection of the Oulse waves from a porous flexible

layer, placed at the end of our shock tube and backed by a rigid

termination.

The waves involved had peak pressures ranging from .33

to 1.4 atm., as measured at a distance 1 m from the source. Of

particular interest is a series of measurements involving a

porous flexible material (Solimide) with layer thicknesses from

2 to 8 inches. The recorded time dependence of the incident

and reflected wave pulses are shown in Figs. 1-3.

Fig. 1 refers to a layer thickness of 2 inches. For compari"

son is shown in the same figure the result obtained with a rigid

termination. The pressure patterns obtained in the two cases

are barely distinguishable, except for the somewhat larger value

of the peak pressure of the pulse reflected from the porous

material. This may be somewhat unexpected, at first, but it

will be explained shortly.

First we analyze the data obtained for the 4 inch sample.

Again we have shown the reflection, labelled A, from a rigid

termination. With the incident amplitude being .9 atm., the

amplitude of the reflected wave is in good agreement with the

value predicted by our nonlinear acoustic analysis, given else-

where in this report.

The pressure pulse labelled B is the reflection from the
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front surface of the porous material, and B' is the reflection

from the rigid backing wall. By comparison with A, we can estima-

te the reflection coefficient at the surface, but to do this

accurately, we have to account for the difference in the nonlinear

attenuation of the waves A and B along the path from the terminao&

tion to the transducer (in this case 1 m long).

The wave B', reflected from the rigid backing, has travelled

back and forth through the porous layer, and from the difference

in amplitude of A and B', we can estimate the attenuation of

the wave in the porous material. Again, to do this correctly,

we have to account for the difference in the nonlinear attenuation

of the waves A and B'.

The pressure waves labelled A, B and B' in the same figure,

refer to the waves reflected from the rigid wall of the source

end of the tube. An interesting observation is, that along

the path of propagation from the transducer to the source end

and back again (path lengthz2.2 in), the pressure peak B' has

almost overtaken B, because of the difference in wave speed

of the two pulses. As a result, the resulting total wave peak

is somewhat larger than the peak A obtained in the case of a

rigid termination. Thus, at this point of observation, the

effect of the porous termination actually is a slight increase

of the peak pressure.

Going back to Fig. 1 and the results obtained for the 2

inch porous layer, we can explain the larger amplitude B' of

the wave reflected from the porous layer. In this case the

wave reflected from the rigid backing has already overtaken

the wave reflected from the front, resulting in a total peak,

which is larger than the peak A reflected from the rigid wall.

The results obtained for the 8 inch sample are shown in

Fig. 3. Here the reflections B and B' from the porous surface

and from the rigid backing, respectively, are clearly separated.

Their amplitudes are about the same, so that there is little
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difference in their wave speeds. Thus, after reflection from

the source end, they return with approximately the same separation.

The subsequent reflections will be more difficult to separate,

since the reflections from the surface of the porous material

and from the rigid backing of the incident "doublet" pulse tend

to overlap. This can be seen also in Fig. 4, where the refleci.

tions are recorded over a longer time span. It should be mentioned,

that the results obtained with a porous layer with a higher

flow resistance, R=.61 pc units/cm, were essentially the same.

Amplitude dependence of reflectfons coefficients. Using the

8 inch thick sample of the porous material as a termination

of the shock tube, we studied next the reflection as a function

of the peak pressure of the incident pulse. Examples of the

measured reflected waves are shown in Figs. 5-7.

As before, the peak pressures of the incident waves refer

to the location x9=1 m from the source and .8 m from the surface

of the porous sample. In each case the reflected wave consists

of a "doublet" B, B', where B refers to the reflection from

the surface of the porous layer and B' to the reflection from

the rigid backing. The range of pressures of the incident pulse

was .33 to 1.4 atm. At .33 atm. the amplitude of B' is considerb.

ably smaller than the amplitude of B, but as the incident peak

pressure increases, the amplitude decreases for B but increases

for B'. At an incident pressure of 1.4 atm. the amplitude of

B' is larger than that of B.

To describe this effect quantitatively, we introduce two

pressure reflection coefficients C=B/A and C'=B'/A, where the

reflected pressures and the incident pressure A refer to the

location of the surface of the porous material. The pressures

are measured at a distance .8 meter from the surface of the

porous material, however, and to determine C and C', we have

to account for the nonlinear attenuation of the waves in the
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tube to determine the pressure amlitudes at the surface of the

material. This is doen by using the results of our theoretical

analysis of the x-dependence of the pressure, given elsewhere in

the report. We find, for example, that for the measured incident

amplitudes .33, .54, .95, and 1.4 atm., the corresponding amp-

litudes at the surface of the material will be .30, .47, .75, and

1.05 atm., respectively. The measured reflected ampliutdes are

corrected in similary manner.

The amplitude dependence of each of the reflection coeffi-

cients thus obtained is shown in Fig. 8. The reflection coeffi-

cient R decreases with amplitude, whereas the opposite holds true

for R'. At a certain value p* of the incident amplitude, R and R'

will be the same. In the present case this amplitude is approxi-

mately .85 atm. at the surface of the material (corresponding

to 1.1 atm. a distance .8 in front of the material). This charac-

teristic pressure is expected to decrease with decreasing thick-

ness of the material.

As a result of this interesting nonlinear effect, we note,

that as the amplitude increases beyond the pressure p*, the re-

sulting reflected amplitude will increase with increasing amp-

litude, with a corresponding decrease in the absorption coeffi-

cient. This is consistent with the observed reduction of the

attenuation with increasing amplitudes.

Deformation of the material. We found, that the pressure dependen-

ce of the raflection coefficient is associated with a deformation

of the porous material, caused by the incident shock wave.

In these exploratory studies, the compression of the material

was measured simply by letting the surface of the material leave

a mark on a thin rod, which was inserted along the axis of the

material. This was achieved by means of a small amount of india

ink, which was applied to the surface of the material in contact

with the rod, and, upon compression, left a clear record on
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the rod of the maximum deformation of the material.

For incident waves with peak pressures .30, .75, .90, and

1.05 atm. at the surface of the material, the peak compressions

d of the porous sample (thickness D=8 inches) were 2.5, 4.8,

5.75, and 6.25 inches, respectively. The corresponding relative

displacements dID are plotted in Fig. 9 as as function of the

* peak pressure at the surface of the material. At the highest

pressure involved, 1.05 atm., the thickness of the material

at maximum compression is only 1.75 inches.

In the linear regime, without a significant compression

of the material, the wave B' reflected from the rigid termination,

travels a distance of 2D (16 inches in this case), and its ampli#.

tude is reduced accordingly through friction in the material.

When. the material is compressed, on the other hand, this distance

is reduced, as are the friction losses, and the reflection coeffita'

cient will be corresponding larger than in the linear regime,

as observed. Apparently, the losses due to the compression

of the porous material we used were small compared to the friction

* losses due to the relative motion of the air and the steucture.

For another material, with a different internal damping, the

relative significance of the compression losses may be markedly

different, however.
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The shock tube can be a useful tool also in general acoustic trans-

mission measurements, if it is combinated with a Fourier transform

routine for the determination of the power spectrum of the pulses

generated. We developed and incorporated such a routine in

our data acquisition system, and the related FFT program is

included in Appendix C . This enabled us to obtain the power

spectrum of our pulses in the frequency range between 18 to

4000 Hz.

The time dependence of a typical pulse wave generated in

our shock tube is shown in Fig. 1 and the corresponding power

spectrum in Fig. 2. The bulk of the energy of the pulse is

in the frequency range below 300 Hz. The duration of the positive

portion of the pulse is .0027 sec., the inverse of which corre*

sponds to a frequency of 370 Hz.

It should be mentioned in this context, that in most sound

sources used in acoustic laboratory transmission measurements

suffer from a low frequency power deficiency, and to get adegquate

low frequency power, special large loudspeakers often have to

be used. In the shock tube, on the other hand, the bulk of

the energy is at low frequencies, and offers a simple means

of solving the source problem at low frequencies, when combined

with a FFT capability.

The main reason for developing this capability in our case

was to make possible studies of the frequency dependence of

the attenuation of various attenuators and to check experimentally

the theory for sound transmission in parallel baffle attenuators

presented elsewhere in this report.

Most of these studies involved insertion loss measurements,

i.e. the measurements of the power spectrum of a pulse at a

fixed location before and after the attenuator (or other acousti-:

cal element) was introduced. It is necessary in such measurements,
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that the pulses (and the related spectra) are repeatable. With

our experimental procedure, as discussed earlier, repeatability

was assured with a high degree of accuracy, as can be seen from

Figs. 1 and 2. The curves in these figures actually represent

the superposition of the curves for pulses from two experimental

runs. It can be stated, that the spectra from one pulse to

the next could be reproduced within half a decibel at frequencies

up to 1000 Hz.

Measurements of the insertion loss of flexible porous baffles

of lengths ,1' and 2' and with flow resistances of .75 and 1.5

c units per inch were made. In each case the baffle was inserted

in the center of the shock tube (5.1 cm in diameter) and the

thickness of the baffle was such, that the open area fraction

of the attenuator was 50 %. Insertion loss measurements were

.1 made on other elements also, such as orifice plates, lined duct

elements, and period structures.

Considering now the results obtained for the porous baffles,

we present first the calculated attenuation per foot in such

an attenuator. It should be pointed out, that this attenuation

is expected to be approximately equal to the insertion loss

only at high frequencies, at which the effect of the reflection

from the entrance to the attenuator is negligible. (The frequency

dependenc of the reflection coefficient has been computed elsewhere

in this report). In the frequency range considered here, the

computed attenuation curves for the two baffles have the same

general behaviour, and do not differ much even quantitatively.

TO study the possible amplitude dependence of the insertion

loss, we used pulses with two different peak pressures, .2 and

.7 atm. These pulses and the their spectra are shown in Figs.

6 and 7.

The measured insertion loss curves for the two attenuators

are shown in Figs. 7 and 8. Each-figure contains the curves

corresponding to the two different peak pressures of the incident
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wave. At high frequencies the measured insertion loss follows

the same general trend as the computed attenuation. At low

frequencies, as expected, the insertion loss is larger than

the attenuation, which can be explained on the basis of the

reflection from the entrance to the attenuator.

More significant, however, is the unexpected decrease

in the insertion loss with frequency, particularly pronounced

at the higher incident pressure. For the .7 atm. Pulse, the

decrease starte approximately at 250 Hz and for the .2 atm.

pulse at about 700 Hz. The effect is more pronounced for the

baffle with the higher flow resistance.

Initially, we considered the possibility, that the effect

might be related to the flexibility of the material, and this

led to a study of the compression of a porous material by a7

shock wave, as described earlier. Although this effect may

contribute to some extent to the anomalous behaviour, a more

likely explanation involves the flow noise produced by the "Jets"

discharged from the end of the attenuator (or from the "wake"

of the baffle).

The peak frequency of the noise spectrum from the flow

is proportional to the flow speed. This is Consistent with

the observed result, that the frequency, at which the reduction

in insertion loss is largest, increases with the incident pressure

and hence with the velcoity.

Also supporting this explanation is the fact, that in the

measurements of the insertion loss of orifice plates, the same

general effect was observed. Furthermore, the weakness of the

power spectrum Of the incident pulse at high frequencies makes

even a relatively low level high frequency flow noise at the

attenuator exit dominating, thus reducing the insertion loss.

In other words, the flow noise effect on the insertion loss

will depend not only on the strength of the Incident Pulse but

also on its spectrum.
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In experiments with a periodic baffle attenuator, consisting

of 1" long porous elements placed a distance 2" apart, we found

that the flow effect on the insertion loss was significantly

smaller than for the uniform baffle.
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Appendix A

ACOUSTICAL PROPERTIS OF FLEXIBLE POROUS MATERIALS.

1. Introduction.

We present here a brief discussion of some acoustical properties

of flexible porous materials, which have been used on our study

of sound attenuation in lined ducts and parallel-baffle attenu-

ators in .Section VI.

Although numerous papers have been written on the acoustics

of porous materials, few have i~cluded the effect of flexibility

of the material. This omission is justified at sufficiently high

frequencies, when the inertia of the porous structure prevents it

from participating in the oscillatory motion in the sound field.

In a general analysis, the inclusion of flexibility and the elas-

tic properties of the elastic structure makes it quite complex,

and the effect of the various parameters on the acoustical proper-

ties of the material cannot be expressed in a simple manner.

On the other hand, most of the porous materials used in

acoustical applications have a relatively small elastic modulus.

so that the longitudinal wave speed in the structure is small

compared to the wave speed in the surrounding gas. Under such

conditions, the porous material can be considered to be "limp" (aswill be shown), and the effect of flexibility czn then be accoun-

ted for in a simple manner.

2. Physical parameters.

We begin with a brief review of the macroscopic physical quanti-

tities, which will be used in our acoustical analysis.

Porosity, H, is the volume fraction of the material occupied by

the "voids" in the material. In the present case the voids are

filled with the ambient gas, and the average gas density in the
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material is then

p=Hp (2.1.)

where p is the ambient gas density. Similarly, if the mass den-

sity of the solid constituent (such as fibers) of the material is

p', the bulk mass density of the porous structure is

M=Hp+(1-H)p'=(1-H)p' (2.2)

For the materials of interest here, the mass density M typi-

cally lies in the range from .025 to .25 g/cm3 ,corresponding to

a weight per unit volume of approximately 1 to 15 lbs/ft3 , between

20 to 200 times heavier than air.

With a value of p'zl.5 g/cm3 , which is typical for most syn-

thetic fibers, the corresponding range of the porosity, as ob-

tained from Eq. 2.2 is .85 to .98. In special cases, considerably

smaller values of the porosity are encountered. For example, in

studies of sound propagation over ground, the ground material of

ten is treated as a porous material with a porosity between .3 and

.5, corresponding to the values for the type of sand normally en-

countered.

In terms of the average gas density in the porous material,

as given by Eq. 2.1, the average mass flux in the material is ex-

pressed as Hpu, where u is the average velocity, the averaging

beeing made over all directions and magnitudes of the velocities

in the pores and channels of the material.

Ordinarily, no distinction is made between mass density and

inertial mass density. In the macroscopic description of the mo-

mentum balance of the gas in the porous material, however, we must

include an "induced" mass density to account for the microscopic

tortuous motion of the gas in the pores. (Compare the induced mass

of an oscillating sphere in a fluid or the mass end correction of
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an open ended pipe). We shall denote the induced mass density by

gp, and the total inertial mass density is the ( I+g)p, where

G=I+g usually is called the "structure factor". Included in

the structure factor is the (small) effect of the constriction

produced by the viscous boundary layers in the flow channels in

the material.

The structure factor, which normally has a value be tween 1.2

and 2, should be regarded as an empirical parameter, which can be

measured. Fortunately, the overall acoustical characteristics of

a porous layer do not depend strongly on the structure factor.

Flow resistance, r, per unit length of the porous material

is defined by the relation ru"=-gradp, where u"l is the average

relative velocity of the gas and the porous material, and gradp

the pressure gradient. For small values of u"l, usually less than

10 cm/sec, the flow resistance is independent of velocity. At

higher velocities, flow separation and turbulence may occur within

the material, and the relation between u"l and gradp then becomes

nonlinear.

The flow resistance often is measured by means of a steady
flow apparatus, and the DC flow resistance thus obtained is

assumed to be applicable also in the description of the acoustic

interaction between the gas and the porous material. This is not

entirely correct, however; simple microscopic models indicate,

q that the acoustic flow resistance increases slowly with frequency.

and in some cases it can be considerably different from the DC

value.

The physical parameters introduced so far are not all inde-

pendent; their interrelationship depends on the details of the

microstructure of the material. For example, it follows from di-

mensional considerations, that, for a given porosity, the viscous

flow resistance is inversely proportional to the square of the

fiber diameter (or pore size) and directly proportional to the
P.. shear viscosity coefficient. The fiber diameter, in turn,
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is related to the porosity and the mass densities M and p'.

In the limits 0 and 1 for the porosity, the flow resistance

should be zero and infinite, respectively. A simple empirical

expression for the flow resistance, which meets these conditions,

is r=(const)[(1-H)/H] n , where n is positive. If we introduce

1-H--M/p' and use the fac-, that H is close to unity for most
nmaterials of interest herj, we obtain ro(const)(M/p') . In

other words, for a given value of p', the flow resistance is

proportional to some power of the mass density M. Experimental

data indeed are consistent with this relation for most materials

over the range of commonly encountered K-values, if n=1.4-1.5.

Making use of this result and the dimensional considerations

mentioned above, we arrive at the relation

r=(const)(/p')n (/cd) (2.3)

where p is the coefficient of shear viscosity of the gas and

d the fiber (or pore) diameter.

Since the shear viscosity is independent of the gas density,

it follows, that the same holds true also for the flow resistance.

In other words, if the flow resistance is measured at atmospheric

pressure, the value obtained can be applied also when the material

is used (in a closed loop laser, for example) at reduced pressure.

The numerical value of (const) in Eq. 2.3 depends on the

geometrical arrangement of the fibers and pores, and, if the

material is anisotropic, also on the direction of the flow in

the material. For synthetic fibers the diameter d typically

is of the order of 10-3_10 -4 cm. Using this range in Eq. 2.3

and typical measured values of r, M, and p', we find the range

of values for (const) to be of the order of 15 to 1500 1/cm,

depending on the fiber (or pore) size.

If the porous material is flexible, additional parameters,

elastic constants and internal damping must be included in the
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description. The general analysis then involves the study of

coupled wave motions. Fortunately, for most flexible materials

of interest in this context, the longitudinal wave speed in

the material is small compared to the speed of sound in the

surrounding gas. As we shall show, it is then a good approxima*- o

tion to treat the material as limp.

3. Characteristic frequencies.

In the discussion of the acoustical properties of a porous materi.

al it is instructive and useful to introduce some characteristic

frequencies. The first (angular) frequency is

u= zr/p, (3.1)

p, =GHp

where r is the flow resistance per unit length and p, the inertial

mass density of the gas in the material. The normalized frequency

wlu then can be interpreted as the ratio between the inertial

force and the friction force per unit volume in the porous materi

al and thus can be regarded as a type of Reynolds number.

At frequencies below uh, the friction force dominates,

and as the frequency decreases, the wave motion in the material

degenerates into a diffusion process. In this diffusion region

the phase velocity can be considerably smaller than the ordinary

sound speed, as will be shown in more detail later.

At frequencies much above an, on the other hand, the inertial

force dominates, and the wave motion in the material is much

like the motion in free space, except for the attenuation, which

in this region becomes proportional to the flow resistance.

For porous materiaals, such as bonded glass wool or mineral

wool, with a bulk mass density in the range between .05 and .17

g/cm3 , corresponding to 3-10 lbs/ft3 , the flow resistance lies

in the approximate range .5-3 pc units per cm, and the correspon-
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ding characteristic frequencies (w/2) are apporoximately 1000 to

5000 Hz.

A second characteristic frequency is

oh =r/M=(p, /M)% (3.2)

For a flexible porous material, the frequency ratio w/% can be

thought of as the ratio between the inertial force related to the

motion of the porous material and the drag force on it per unit

volume. This'motion will be significant only at frequencies lower

than w.

At frequencies much larger than % , the inertia of the

material prevents it from moving significantly, and it can be

regarded as rigid. Typically, this second characteristic frequen-

cy lies between 65 and 100 for fibrous materials.

Another characteristic frequency is related to the oscillatory

heat flow in the material, that results from the compressions and

rarefactioijs of the gas. The heat conductivity of the solid

material is much larger than that of the gas, and it follows then

from dimensional considerations, that the characteristic frequency,

being the inverse of the the characteristic time of diffusion,

will be of the form

to K/pc ps2  (3.3.)

where K is the heat conduction coefficient of the gas, p the gas

density, c the specific heat per unit mass at constant pressure,
P

and s the average pore size or distance between fibers.

At frequencies much lower than % , the conditions in the

porous material can be regarded as isothermal, whereas at frequen-

cies considerably higher than w ,the change of state in the gas

will be approximately isentropic. In the frequency range of tran-

sition, i.e. in the vicinity of w, the thermodynamic changes of
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the gas are irreversible, and some of the acoustic energy will be

converted into heat as a result of' the heat exchange with the po-

rous material. The effect is small, however, compared to the los-

Fraflexible material, there are additional intrinsic cha-

raceriticfrequencies. The strain in the material can give rise

to inenldamping through a number of different mechanism*,

with related characteristic relaxation frequencies. In a fibrous

plyarole.

Iaddition to these intri~xsic frequencies, there are others,

wihmight be termed geometrical, related to the time of wave

trvlacross a porous layer. Several wave speeds can be invol-

vednotonly the sound speed in the gas but in the structure as

wel, bthlongitudinal and transverse.

Because of this multiplicity of characteristic frequencies,
the acoustic scaling laws for for flexible porous materials are

not simple, and it is not possible, in general, to express the

frequency dependence of the acoustical properties in terms of a

single normalized frequency. For a rigid material, on the other

hand, only the intrinsic frequency ak is important.

4. Flow impedance and boundary conditions.

The interaction force resulting from the relative motion of' the

porous material and the gas is the sum of the friction force and

the inertia force due to the induced mass, as defined earlier. We

*~ express this force as

F=z(uu(41

z :-r-iwgHp

assuming harmonic time dependence. Here u-u' is the difference

between the gas velocity u and the velocity u' of the porous
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structure. As expressed in Eq. 4.1, the force F refers to the

force on the structure. The force on the gas is equal and oppo-

site, of course. The quantity z will be called the flow impedance

It contains the induced mass facior g, which can be epxressed in

terms of the structure factor G, g=G-1.

If the restoring force in the structure due to its stiffness

is so small, that only the inertia of the material needs to be
accounted for in determining the motion resulting from the inter-

action with the air, the material is "limp". Under these condi-

tions, the velocity u' of the structure becomes

• .'

~u':uz/(z-iwm) (4.2)"

where, as before, z=r-iwgHp and u is the average velocity ampli-

tude of the gas in the porous material.

This relation between u and u' plays an important role in

establishing the acoustic boundary conditions at the boundary bet-

ween a porous material and the gas outside.

For an "open" boundary, i.e. one without an impervious skin

or layer, the continuity of mass flow normal to the boundary re-

quires, that p(u,-u'):Hp(u-u'), where u, is the velocity in the

gas outside the boundary. In addition, continuity of pressure

requires p,p. Making us Eq. 4.2 these boundary conditions can

be expressed as

u,=Cu (4.3)

3.=P

C=H(I+iz/HwM)/(I+iz/wM)

z=r-iwgHp

For a "closed" boundary, i.e. with the porous material co-

vered with an impervious skin or layer, the velocity of the skin

is the same as that of the structure. Continuity of normal
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velocity now requires u1 =u', and for the pressure we have the con-

dition p, =p-iwmtu', where m, is the mass per unit area of the

impervious layer. Again, making use of Eq. 4.2, these relations

can be summarized as

U. :C'u (4.4)

pp-iwm1 C'u

C'=z/(z-iwm), z=r-iwgHp

5. Equations of motion.

In terms of the quantities defined in Section 2, we can express

the equations for conservation of mass and momentum for the gas

and for the porous structure as

O(Hp)/8t+div(Hpu) :0 (5.1I)

a(Hpu)/at:-gradp-r(u-u')-a[gHp(u-u')]/at (5.2)
a[( 1-H)p1]/at+div[ (1-H)p'u']=0 (5.3)

a[( l-H)plu']/at=-r(u'-u)-8)[Hgp(u 1-u)]/a)t+v2MV2 E, (5.4)

u,=aE,/at, M=(l-H)PI

In the momentum equation 5.4 for the structure, the last

term represents the elastic restoring force, where v is the longi-

tudinal wave speed in the structure and C' the longitudinal part

of the displacement. In a general analysis of the problem, this

term must be included, of course. For many porous materials,

however, it is small compared to the viscous interaction term. In

order to see this, we consider harmonic time dependence and esti-

mate the ratio between the elastic and the visous force.

With k=w/v p, where v is the phase velocity of the acoustic' p

wave in the porous material, the elastic force will have a magni-

tude of the order of v3 (w/v )2Mu'/w. Estimating the magnitudes of

the other terms in similar manner, we can determine u'/u and the
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ratio between the elastic force and the friction force. It fol-

lows, that this ratio goes to zero as (v/v )2 . Typically, thep
longitudinal wave speed in a porous material is quite small, of

the order of the order of 10-15 m/sec. The phase velocity in the

porous material, as we shall see, typically is about half the

sound speed in the gas. This means, that v/v will be ot the
p

order of .1, with a corresponding ratio between the elastic force

and the friction force of the order of .01. Under these condi-

tions, the omission of the elastic force is Justified.

On the basis of this estimate of the relative importance of

the forces, we shall assume the material to be limp and omit the

last term in Eq. 5.4.

We consider now harmonic time dependence and linearize the

equations of motion. In addition to the perturbations in density,

pressure, and velocity, there will be a perturbation also in the

porosity, which will be denoted by h. Strictly speaking, there

will be small changes also in the flow resistance and the struc-

ture factor, but these will not be included here. The linearized

equations for the complex amplitudes are then

-iw(xp+h/H):-divu (5.5)

(-iwHp+z)u:-gradp+zu' (5.6)

-iwh/(1-H)=divu' (5.7)

-iwMu':-z(u'-u) (5.8)

z~r-iwgHp

where we have introduced the compressibility x of the gas. The

effect of heat conduction losses can be accounted for by letting

the compressibility be complex.

From the complex amplitude equations 5.5-8, we can elimi-

nate the velocity u' and obtain equations for u and p. Then,

if we incorporate the variation in the porosity in the compressi4i

bility, and introduce a complex density, the equations can be
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brought into the "standard" form

-iwip=-divu (5.9)

-iwou=-gradp (5.10)

i=x[ l-z(I-H) /(z-iwHM) ]

0/p=H+z' l/wp

z':z/(1+iz/wM)

z=r-iwHgp

From these equations we obtain the wave equation

V2 p+(W/t)2 p=O (5.11)

For a rigid material and at low frequencies, such that

r/wP<<1, we have 1/82 -i(r/wpc2 ) and the wave equation reduces to

V2 p+i(wr/PC )p=O (5.12)

which corresponds to the diffusion equation

8p/at=(pc2 /r)V2 p (5.13)

6. Phase velocity and attenuation.

We shall consider now a harmonic wave travelling in the positive

y-direction, so that the spatial dependence of the complex ampli-

tude is exp(iqx), where q=qriqi is the propagation constant. The

phase velocity of the wave is w/qr and the spatial rate of attenu-

ation is determined by qi" It follows from the wave equation that

the propagation constant can be expressed as

q =wl8=Cwlc)[(Alp)(ilx)]i (6.1)
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The real and imaginary parts of (0/p)(i/x) readily can be

determined from the relations associated with Eqs. 5.9-10. The

orresponding real and imaginary parts of the propagation constant

are

-... =r:(1/142)4 C )+C] (6.2)

S=( I/42)C4[C-CT)-C]7 (6.3)
1

The phase velocity v is determine by the real part q
. p

v ~w/q r(6.2)

and the attenuation per unit length by the imaginary part q.i"

The corresponding attenuation in dB of the wave amplitude in a

distance x is

20"log[p(O)/p(x)]=20"log(e)'qix= 8 .7 qix (6.4)

Examples of the computed frequency dependence of the real

and imaginary parts of the normalized propagation constant Q=q/k,

n in Figs. Al and A2. For comparison we have considered both ri-

gid and limp materials.

Of particular interest is the reduced attenuation in the

flexible material at low frequencies, below the characteristic

frequency r/2xM. As in the present case, this frequency is compa-

ratively low, but it increases with the flow resistance. Due

to nonlinear effects, the resistance is known to increase with

the wave amplitude, and this may explain, at least in part,

the reduced energy absorption and attenuation observed at large

amplitudes, as described elsewhere in this report.

It should be noted also, that the real part of the propaga-

tion constant is reduced at low frequencies, as a result of the
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flexibility, but in the frequency range of interest here, this

effect is significant only at relatively large values of the flow

resistance.

Examples of the computed frequency dependence of the phase

velocity are given in Fig. A3. The flow resistance is in the

range of interest for the optimum design of parallel baffle

attenuators, as discussed in Section VI, and for these values,

we see, that the difference between a rigid and a limp material

is rather small as far as the phase velocity is concerned.

The frequency dependence of the attenuation, corresponding to

the parameter values of Fig. AS, is shown in Fig. A4. Here the

effect flexibility of the material is more apparent, but for

frequencies above 100 Hz in this case, it is still small. This

transition frequency, of course, increases with increasing flow

resistance.

7. Characteristic impedance and reflection coefficient.

The characteristic impedance of the porous material (i.e. the

ratio between the complex pressure amplitude and the complex

velocity amplitude in a wave travelling in the positive x-direc-

tion) is obtained from Eq. 5.10,

z0 :=A/pl/X=cPCIU/p)(n/l) (7.1)

where we have made use of q=w/c and c2 =1/i. The normalized cha-

racteristic impedance Z0 =z,/pc can be expressed in terms of the

normalized propagation constant Q=q/k as

Z0 =(x/i)Q (7.2)

Accounting for the boundary condition, discussed in Section 4,

the velocity amplitude outside an "open" boundary is u,=Cu, where

C is given in Eq. 4.3. The corresponding normalized input impe-
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dance of a semi-infinite porous layer is then Z,:ZO/C. Introdu-

cing the expression for x/i, given with Eqs. 5.9-10, we find

Z =Q/H., The corresponding pressure reflection coefficient at

the boundary is then

R = =(2 -1)/(Z' +1) (7.3)
P

Z,=Q/H

Examples of the computed frequency dependence of the reflec-

tion coefficient are given in Fig. A5.
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