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I.

1. The Retransmission policies of

Hajek and Van Loon

The channel model is of the slotted packet-switched satellite

broadcast type which is described in [2, sect. 5.11]. There is

an infinite population of packet transmitting, bursty users.

The cumulative input traffic is modeled as a homogeneous Poisson

point process with intensity X messages per slot. If each of two

or more users transmits a packet during a slot, the packets

"collide" and are not successfully broadcasted. Such paickets join

the backlog of packets which must be rebroadcasted at a later

time. During each slot, each user possessing a backlogged

I packet must decide whether or not to transmit the packet in

i that slot. It is assumed that at the end of the slot (t, t+l

(t is integer valued) each user learns the value of a common

I feedback random variable,

The feedback informs the users whether slot (t, t+l] was

I empty (Zt = 0), or contained one packet (Zt = 1), or contained

>2 packets (Zt = e). Let Nt denote the channel backlog at time

t. Each user with a backlogged packet independently transmits

j the packet with the same probability ft in the slot (t, t+l].

The sequence {fttFz must satisfy 0 < ft . 1 and ft must be a

function of the channel output history (Z s:S < t) for each t.

The retransmission control policy examined in [1] is of the form

I-
P.

'A'
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f ft+l = min(a(Zt)fft' 8) (1)

for some positive constants y, 0, a(O), a(l), a(e). Next, it is

specified how the new packets access the channel. Let Yt be the

number of packets which first arrive during the slot ending at

time t. The random variables {Yt) are independent with Poisson
tEz

distribution (M). Two first-time transmission policies are

- considered, namely Immediate-First-Transmission (IFT) and

Delayed-First-Transmission (DFT). Under the IFT policy, each of

the Yt packets which arrive during slot (t-l, t] are first

transmitted in slot (t, t+l] with probability one. Under the

DFT policy, new packets join the backlog before their first

transmission is attempted, i.e. each of the Yt packets is

• independently transmitted in slot (t, t+l] with probability ft"

Let G be the total traffic intensity at time t and let
t

St be the expected throughput during slot (t, t+l], given Nt

and f Thus, St = P[Zt = liNt, ft] . Using a Poisson approximation

to the binomial distribution, a "local" Poisson approximation is

introduced in [1]. The "local" Poisson approximation consists

I ] in approximating the conditional distribution of the number of

retransmitted packets in slot (t, t+l] by a Poisson distribution

j with mean t= Ntft. Thus,

-Gt
St Gte

where Gt = + Pt for the IFT policy and Gt = t for the DFT

policy.

It is not difficult to see that the pair process (Nt. f

forms a Markov chain with state space Z+ x [0, 1]. The importance

I
Li ___



13
I of the "local" Poisson approximation hinges on the fact that

the transition probabilities of the chain (Nt, ft
) depend on Nt

and ft only through the product ut = Ntft"

Another important point is that under the retransmission

4policy considered in [i] the dynamics of the total channel traffic

suffer disturbances only of order 0(1/n) due to the fluctuation

of the amount of backlogged traffic, when the backlogged size
Nt is near n. Hence the total traffic level is nearly decoupled

from the size of the channel backlog, as long as n is large

enough. This fact justifies the use of the following "local

model" for the retransmitted traffic.

Fix an integer n > 0. The Markov chain (fn) obtained
t

by localizing the Markov chain (ft. Nt) to (Nt) = n has the

transition probabilities:

F _Gt

a(0) T with probability e

+,= M , ft x a(l)y with probability Gtet (2)

a(e)y with probability 1-(l+Gt)e

where Gt = X + nfn for the IFT policy and Gt = nfn for the DFT

policy.

n A n nIf we define t = ln(nf ) for n > 0, then ut = exp( )

Irepresents the total retransmitted traffic intensity for the
"local model". Further, (0 ) is itself a Markov chain with

transition probabilities

L

Ii
i
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C(O) with probability e

n min (ns), *t + T C(1) with probability Gtet (3)t+l t

C(e) with probability l-(l+Gt)e-t

where C(i) = ln[a(i)] for i = 0, 1 or e. The important point

I here is that the transition probabilities of t do not depend on

*n, except through the term ln(na). The minimum in (3) simply

reflects the fact that n ln(nf ) < ln(ne) for all t. As n

increases, the constraint n < ln(na) becomes less crucial. Hence,

we study only the process t with transition probabilities

-Gt

C() with probability e

Ot+l =t + Y C(l) with probability Gtet (4)

C(e) with probability 1-(l+Gt)et

where Gt = Gt( t)

A
I
I.
I.
Ii

[
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2. Drift and Variance Analysis of the Local Model

Equation (4) defines the following stochastic recursion

for the log-intensity $ of the "local model"

t+l = Ot + YCt( t), 40 eR (5)

Given t = the sequence {Ct( ) }tez+ is a random variable

sequence with stationary distribution

P{Ct($t) = C(0)1 t = 01 = e-G

P{Ct(0t) = C(1)itt = 0) = Ge -s

P{Ct(St) = C(e)I t = 0} = l-(l+G)eG

where G GI(S) = A + exp(O) for the IFT policy and G = GD($) exp(f)

for the DFT policy.

Recursions of the same form to the one given above have

been studied in the context of recursive stochastic algorithms

in the estimation and control literature. To analyze the recursion

described by (51, we shall employ some known theoretical results

for evaluating: (1) the motion of the "mean value" ot of $t which

will be associated with the solution of an ordinary differential

equation, (2) the evolution of the difference = i-it'which

will be described by a linear diffusion model.

!l6
* - -;
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2.1. The associated ordinary differential equation

It is known that f }tcz can be seen as a perturbed

I "discrete-time approximation of the solution of an associated ordinary

-} differential equation with discretization step y. The corresponding

result can be given in the form of a theorem (see [3) - [61, for

details and explicit required conditions).

Theorem 1: For every E > 0 and T <I:

lim Pf max t - *(Yt) > C} = 0
y+O l<yt<T

where O(tc) denotes the solution of the ordinary differential

equation associated to (5):

d*- w(), (0) = (6)

c

where w( ) = m( )/y

m( ) = E{AtI~ t = = E{YCt(ft)I4 t =

and

AOt = t+l - Ot

In the above theorem tc indicates the continuous time of the

* ordinary differential equation (6) and t the discrete time of the

recursion. Under the correspondence tc-yt, 0(yt) represents a

discretization of the solution 0(tc) of (6) with step y.

i-

Ii
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2.2. The diffusion approximation

We now introduce a diffusion approximation model describing

the evolution of the difference t - *(tc) (for tc = yt) as

y-0. For T<-, let (XY) be the continuous-time stochasticc O<t <T
process such that -C-c

X ttc , for tc = ytto

Under realistic assumptions (see [3] - [6]), we have the following

theorem.

Theorem 2: The process (XY) converges weakly as y7O to the

Gaussian process (Xt ) which is the solution of the followingt
c O<t<T

linear stochastic differential equation:

dXt A((tc))Xt dtc + Q1 / 2 (M(t ))dW X0 0 (7)
c tc

where (Wt ) is the standard Wiener process, and
c

dA()= d w( )

Q(W) = ) Cov(Ct(), C0 ( ))
tc z+

the series being assumed convergent.

Next we are interested in studying the evolution of the

difference t - (t c) when lies near some stable equilibrium

of the ordinary differential equation (6), denoted by *,.

4 I
e-*-



3. Speed of Convergence Versus Steady State

Accuracy for the Local Model

For the recursion described by (5) we have:

m(x) = yC -b T(x)

Tw~x) = m(x)/y = C -b (x)

where

c = (c(0) , c (1), c~e))

b(x) = [exp(-G(x)), G,(x)-exp(-G~x)), l-(l+G~x)).expC-G(x))]

If we define v(r(,6 tA = 0) then

VC$) =Y2(C(O) 2, C(l) 2 , c~e) 2 b T x) - m 2 )

By definition, Q( ) =tz+ cov(C (t), C0()) But IC t (W}tE:+

is, given , a sequence of i.i.d. random variables, which are also

assumed independent of C 0 (). Thus

Q(x) = cov(C t W, C t(x)) =G2(x)/y 2

= (C 2(0) , C (1) 2, C (e) 2 b~x) -w 2(x)

By the "local" Poisson approximation, the expected throughput

in slot (t, t+l1, given %t, is S t = G te- where Gt = (t)

which is maximized when Gt =1. If the goal of the transmission
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policy is to maximize the throughput then we should choose

c(O), C(1) and C(e) such that the equilibrium point , of the

ordinary differential equation (6) is unique, stable and optimal.

A stable equilibrium point , is optimal if it maximizes the

throughput St = S( t), i.e. if G($,) = 1, since then

SOO, = max(Gte t ) = e - . Hence, for &.t lying near , it is

reasonable to replace the model (7) by the following simplified

time-invariant linear stochastic differential equation:

dX AXtc + QI/ 2 dWt  (8)
t Ac tc c

where

A(x)dx w(x)

Q = Q(4+)

and w(x) is as defined in equation (6).

It is noteworthy that equation (8) is simply the Langevin random

differential equation [7, Section 7.21. The density function of

Xtc is the familiar one associated with the Ornstein-Uhlenbeck
c

process. The stationary solution of (8) is Gaussian with mean

zero and variance -Q/2A, i.e.

(Xt ) - - N(O, -Q/2A) (9)
cs

If we use the "unnormalized" difference t -
* ' then (9) is

equivalent to:

*t - $ * ' N(0,-yQ/2A) (10)

In other words, for t-- and for sufficiently small y (theoretically,

-' -0) the difference f- is a Gaussian random variable with

mean zero and stationary variance V s = -yQ/2A.
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Now using the above results we are able to derive measures

of the speed of convergence and steady state accuracy for the

"local model" of the recursive retransmission policies under

consideration.

The following conditions ensure that the point 0, is anoptimal stable

equilibrium point of the ordinary differential equation (6).

w( ,) = 0, A(O,) = d w(x) < 0 and G(O,) = 1 (11)
--

Conditions (11) are equivalent to the following conditions on

C(0), C(l), C(e) that were derived in [l)

ci; 0, C(e) 0 <c(O) and

-1

c(e) = -(C(0) + C(1)) e__ (12)1-2e -

As we can see from (4) the step sizes of the Markov chain (t)

are proportional to y. If y is fairly large, will quickly

approach the vicinity of its optimal value. A glance at the

associated differential equation leads us to the same conclusion

since y represents the discretization step size.

A first order approximation of (6) around = , gives:

d__ A = - + o - 2 (13)
dtc

From (13) we conclude that the speed of convergence of to the

vicinity of , is related to

A A( ) dw(x)
d- x=o*

- . .
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Hence, it is desirable to have A as negative as possible. Notice

that A represents the slope of the normalized expected drift

w(-) oE (4) at the equilibrium point. On the other hand, the

stationary -ariance of the linear diffusion model V = -yQ/2A

is a linear function of y (for y sufficiently small). Hence a

larger y will result in larger fluctuations of around its

optimal value *,. This in turn will result in a larger

stationary deviation of the throughput S(0t) from the optimal

S(*) = e - .

If y is very small, then approaches , more slowly, but on

the average remains closer to , after the longer transient period.

Therefore, we have here another manifestation of the usual trade-off

between speed of convergence and steady state accuracy.

From the equilibrium analysis of the diffusion model corre'sponding

to the local model (4) we, have:

limS e 1
Y.0

where St = E{S( t) } denotes the expectation of S'($t) relative to
s

the stationary distribution of Ot given by (10). Let us expand

S( t ) around 0*; we have

( t - W* S2 ( ,
S( t) = S(O ) + (t - 0,)S'(s,) + 2 _S"( ) + -

Taking expectations with respect to the stationary distribution

yields

St = e - 
- yR + o(y)

where

._ - - ,*** - ..
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R = (1/2 S"

Hence, R reflects the effect of the fluctuations of

around its optimal value 0* on the average throughput induced by

different transmission policies.

For a fixed value of y the values of JAI and R represent

measures of the speed of convergence and the steady state accuracy

respectively for different transmission policies.

I

I

I

[

Ii

[

[i
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4. Comparison of IFT and DFT in Terms of

Speed and Accuracy

- In (1] the DFT policy is proposed as a robust alternative

first-transmission policy to the IFT. The DFT policy can ensure

stability (in the sense of [8, Theorem 5.11) for any i.i.d.

arrival process (Yt) with A = E(Yt) < e-1 and E[e PYt] < +-

where E>O.

We are interested in comparing the two policies in terms of

speed and accuracy using the measures JAI and R - .

Evaluation of A

We have

A- = C -(b T(x)) = e-l (Ce) - C(O)X'($ , (14)dx --dx-

Remark: A is independent of C(l)

Evaluation of R

We have

Q Q ) = e- (C 2(0) + C2 (1)) + (l-2e,1-)C 2 (e)

and

S" $, -e - 1 (C'( , )

Hence
Q G'

R 4(C(0) - C(e)) (15)

.o.

'jor.,I,
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Case A: Immediate-First-Transmission (IFT)

In this ase the "local" traffic intensity is

GI(0t) A + exp(ft) and 0* = ln(l-A) (16)

Substitution of (16) into (14) and (15) yields

A, = e1 (C(e) - C()) (1 - ) (17.a)

IQ

R I= 4(C(O) (1-A)T ( (17.b)

Case B: Delayed-First-Transmission (DFT)

In this case the "local" traffic intensity is

GD( t) = exp( t) and , = 0 (18)

Substitution of (18) into (14) and (15) yields

AD = e 1 (C(e) - C(0)) (19.a)

RD = 4"(C(0) - C(e)) (19.b)

Comparing (17) to (19) we conclude that, under Poisson statistics,

the two policies are equivalent in terms of speed and steady state

accuracy for the local model, if

D 1 ( - X)

A note on the selection of C

The only constraint imposed so far on the three parameters

C(O), C(), C(e) is that they have to satisfy the conditions given

rby (12).

4-

.,,,.I."i " -" . " - " , ' . . ." ,, I"" . - _ . . _- :
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We propose the following criterion. Choose C(O), C(1), C(e)

so that the steady state accuracy is maximized under fixed speed.

In other words, the objective is to minimize R for fixed A. We

fix A by setting C(O) - C(e) = 1. There is no loss of generality

in doing so since according to conditions given by (12), the

parameters C(O), C(M), C(e) are determined up to a multiplicative

constant which can be incorporated in the value of the gain y.

After this, the problem is the following:

minimize R

subject to C # 0, C(e) < 0 < C(O), C(0) - C(e) = 1

and
e-i

C(e) = -(C(0) + C(l)) e
l_2e - I

The solution to the above problem is the following:

l_2e-I  e-

C(0) 1- 1 .418, C() = 0, C(e) e-11  -.582 (C.l)1-e l-e-  "

for both IFT and DFT policies. It is noteworthy that the above

choice of C is identical to the one given in [11, derived after

the "economical" but otherwise arbitrary choice of C(l) = 0.

Substitution of the above choice of C into (14) and (15) gives:

A = -e 1 G'($,)

R e-1 (l-2e-1 ) G' ($,)

4 (1-e 1)

where

1 for the IFT policy

1-X for the DFT policy

. .i ' 
' -

_: ... .: • ; , o- - , , L '" ' .. .
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5. Retransmission Control Policies under

Binary Feedback

The retransmission control policies examined so far assume

that at the end of the slot (t, t+l], each user learns the value

of a common ternary feedback random variable Z(t). We have

Z(t) = 0, or 1, or e depending on whether slot (t, t+1I was empty,

or contained one packet, or contained > 2 packets respectively.

In a random multiple-access channel like the one considered

here, there are situations where ternary feedback might not be

available. A very interesting feature of the retransmission

policies of Hajek and Van Loon is that they can still achieve

a stable throughput of e = .3678 under certain types of "binary"

feedback.

Binary feedback uses less feedback information compared to

ternary feedback and can be available in three different types

(classification suggested by Mehravari and Berger (9]):

=C if >_ 2 packets in slot t (conflict)
[N C if < 1 packet inslot t (no conflict)

CS if > 1 packet in slot t (something)ZSN (t)=
if no packet in slot t (nothing)

if one packet in slot t (success)j ZSF(t) = if either no or > 2 packets in slot t (failure)

1.
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The conflict/no conflict (CNC) feedback informs the users only

about whether or not there was a conflict in the previous slot.

The retransmission policy given by (1) can be implemented under

CNC feedback by merely choosing a different vector C, to accommodate

an additional condition introduced by the reduction in the feedback

information. The additional condition is: C(0) = C(l). This

results in the following choice of C [1].

CNc = (0.209, 0.209, -0.582)

CNC binary feedback has recently been studied by Mehravari and

Berger [9]. Their scheme uses a collision resolution algorithm

to achieve a stable throughput of .4422. Also in [10] a very

easy to implement limited sensing-type algorithm with CNC binary

feedback is proposed which achieves a stable throughput of at

least .363.

Something/nothing (SN) feedback informs the users about

whether or not the previous slot was empty. This type of feedback

is characteristic of public-key secure computer communications.

IThe retransmission policy given by (1) can be implemented under
SN feedback by choosing CSN = (.462, -0.269, -0.269) [1]. In

[91 a stable throughput of .279 is achieved by using a collision

I. resolution algorithm.

1. 5.1. Retransmission control policy under success/failure (SF)
feedback

I. The success/failure (SF) feedback informs the users about

whether or not the previous slot contained exactly one message.

I. This situation arises if the receiver cannot distinguish between

L "
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channel noise and collision noise. As it is pointed out in [91,

spread-spectrum random access systems result in SF-like feedback

in the event that the users attempt to disguise the fact that they

are communicating by keeping the transmitted power very low. In

this case, the noiselike waveform that results from the collision

of two ore more transmitted signals is difficult to distinguish

reliably from noise alone.

The policies introduced by Hajek and Van Loon [11 do not

cover success/failure feedback. The reason for this is simple.

SF feedback introduces the following condition on C(0), C(M),

C(e) in addition to the conditions given by (12):

C(0) = C(e) C(Oe) = common constant (20)

It is easy to see that there is no choice of C that satisfies

both (12) and (20).

Let us now use the associated ordinary differential equation

model introduced in section 2.1 to get some insight. The

stability of the differential equation given by (6) depends on

the sign of A( ,) of the linearized equation given by (13).

Consequently, the existence of a stable equilibrium point ,

depends on whether A(4*) < 0, or equivalently on whether

(C(l) - C(Oe))(l - G,)G',exp(-G,) < 0 (21)

where

G; x G(x)
dx X2s

G: = O (x
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I(In deriving (21) we have used condition (20).)

Now the difficulty in the SF feedback case is apparent. If

we insist in establishing a stable equilibrium point , which

is optimal in a throughput maximizing sense, i.e. S( ) = e- 1

or equivalently G, = 1, then we cannot guarantee stability since

from (21) we have A( ,) = 0.

The only way to get around this difficulty is to relax the

optimality requirement G, = 1. If we fix Gs # 1, then any s

such that G(s) = Gs can be made the only stable equilibrium point

of the associated differential equation by an appropriate choice

of the parameters C(l) and C(oe). The required conditions are:

w() 0 and A( s) < 0

or equivalently

-G -G
C(Oe) (1 - Gse s) + C(1)G e s 0 (22)

and
-G

(C(1) - C(oe))(l - Gs )G s e s< 0 (23)
S

For fixed G s > 1 conditions (22), (23) are equivalent to the

following:

C(1) > 0, C(oe) < 0, and
" G

CMl 1 e- -- (24)
C(oe) s

If we further impose the normalizing condition

IC(l) I + 21C(oe)l = 1, then we have:

G - Gs
C(Gs ) = (C(0), C(M), C(e)) = (e + GS ) (-Gs, e - Gs , -Gs)

(25)

[
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For this choice of C we have:

-Gs
lirS = Gse for any fixed G > 1 (25)0Y-o

Hence, the retransmission control policy given by (1) can cover

the case of success/failure (SF) binary feedback with the choice-G
of C given by (25) and is stable for A < Gse s for any fixed

Gs > 1, if y is sufficiently small. For example, if Gs = 1.2

then for C(1.2) = (-.265, .469, -.265) and sufficiently small Ythe

scheme is stable for A < .3614.

Note that we can satisfy conditions (22) and (23) by fixing

0 < Gs < 1. The above results are valid for this case too except

that now we have to choose C(l) < 0 and C(oe) > 0. For 0 < Gs < 1

the choice of C is the following:

G -G
C(Gs ) = (e s + Gs) (Gs, Gs - e , GS ) (27)

5.2 Measures of the speed of convergence and steady state

accuracy for the S/F retransmission control policy

After simple calculations, we have:

-G s
A(G s ) = (C(l) - C(oe))(l - G s)G s' e (28)

i (G - (G ) 2 )  (1 - G ) - (G s ) 2 ]
[(G - (29)

R(G )= Q(G ) S G5 )( -(29) G'
s s 4(C(l) - C(oe))(i - Gs)G s (

whereI
I.
Ii
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2-Gs C2-s
Q(G) = C2 (1) Gse + C (oe) (1 - Ge

, d
Gs = J- G(x) X=

G" = d G(x)s dx2
X=

and C(1), C(oe) are given by (25) or (27).

For the IFT policy Gs = G( s + exp(4s), hence

G" = Gs -
S

For the DFT policy G= G( ) exp( ) hence

G= G" = Gs
S S

From (28) and (29), it is not difficult to see that in order to

maintain "sufficiently good" speed and steady state accuracy we

have to keep Gs "sufficiently" away from 1. This,of course, will

result in reduced stable throughput, since according to (26)
-G

lim S = Gse s It is noteworthy that if we accept the ratio q = R0 s R

as a measure of the efficiency of the policies considered here under

different feedback information, then:

qTern. > qCNC > q SN > qSF

The order of the above inequalities is in agreement with the

classification given in (91, where the SF binary feedback is

classified as the least informative.
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6. Effects of Channel Errors

Thus far it has been assumed that all users receive perfect

information regarding the channel output. In other words, after

each transmission slot, all users correctly detect whether the slot

was empty ("0"), or contained one packet ("1"), or contained a

collision ("e").

We now consider the more realistic situation where channel

noise can affect the detections. In this case the updation of

the retransmission probabilities will be based on information that

inaccurately represents the outcome of the previous transmission.

In modeling detection errors we assume only system-wide errors,

i.e. when an error is made, all users make the same error. This

is realistic if the users are relatively close together, or if the

feedback information is received in the form of an acknowledgement

froma central facility. Although in some applications different

users may receive different information about the channel status,

the system-wide error analysis could still be used as a measure of

the degradation of the system's performance.

The effect of channel feedback errors will be analyzed using

the local model. We consider the following six possible types of

detection errors:

ia.
4''
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P0 Ol Pr (I detectedJ0 sent)

? ~oe = Pr (>2 detectedlo sent)

P 10 = Pr ( detectedli sent)

P le = Pr (>2 detectedf1l sent)

Pe = P (0 detectedl> 2 sent)

P el = Pr(1 detectedf> 2 sent)

The notation P. is used to indicate both the type of error and the

corresponding probability.

At time k let the total traffic intensity be G( k) = G. Also

let b0 = Pr (o sent), b1  Pr 1 sent) and be r (>2 sent).

If p0 po' Pl e denote the probability of detecting an empty,

successful, collided transmission respectively, given G, then

P =bP

where p = (potP1 '~ b= (b0, bi, b)- (exp(-G), Gexp(-G),

l-(l-+G)exp(-G)) and

01 oe 01 Poe

p eo P el 1-P eo-P el

The local model recursion is now the following

yC (0) with prob. po (Gt)

t+l = t + yCM1 with prob. pl(Gt) (30)

yC(e) with prob. Pe (Gt

where Gt G( t
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Given a specific choice for C, an equilibrium point e of

(30) satisfies the following equation.

TTC P b = 0 (31)

The equilibrium point $e will be stable if and only if

(C pT bT)I < 0 (32)

Notice that in the error-free case P is the unit matrix and (31),

(32) reduce to the conditions given by (12).

In what follows, we study (31), (32) under the assumption that

P 01 = PI10 = P el = Pc0O = 0.

It can be argued that under usual operation of the system,

Poe and P are the more likely errors to occur. It is unlikely

that noise would be interpreted as a "single packet" (P0 1) because,

in practice, each packet transmitted would be encoded with a

sufficiently powerful error detecting code. For the same reason it

is unlikely that a "collision" would be interpreted as a "single

packet" (Pel), unless the system is operating as a public-key

secure computer communication system where any user other than the

intended recipient cannot distinguish between a "single packet" and

a "collision." A signal to noise ratio argument could be used to

justify that is also very unlikely that one or more messages would

be undetected (P1 0 or Pc0
) . This is not true only in special

purpose random access systems like the one employing spread spectrum

modulation techniques where the users cannot distinguish between

channel noise and collision noise because they attempt to disguise

- - --, -
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the fact that they are communicating by keeping the transmitted

power low.

On the other hand, an empty slot could, because of noise on

the transmission channel, reach the users as a "garble" that they

are forced to interpret as a "collision" (Poe). Also a "single

packet" slot might result in a "collision" interpretation because

of detected bit errors in the encoded packet on the noisy channel.

The probability Ple of this type of error could be significantly

decreased if some error-correction were employed in addition to

error detection.

In a realistic random-access situation one would anticipate

the inequality

Poe < Ple << 1

Under the previous assumption equation (31) yields

C(O) a exp(-G) + C(1)B G exp(-G) + C(e)(l - (a+5G)exp(-G)) 0

(33)

where

a 1 - Oe' a 1 -Ple

and

A + exp(e) for the IFT policy
G =G( e) =

e exp( e ) for the DFT policy

From the stability condition (32) we have

A = (c(C(e) - C(0) + a(C(1) - C(e)) (1-G))G' exp(-G) < 0 (34)

where

I.
,. .-* "
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G'= dG(X) exp(0e)dx X e

If we know or have an estimate of POe and Ple using (33) we can find

a vector C such that the equilibrium point 0e is unique, stable and

optimal in the throughput maximizing sense, i.e. 0e = * where

G(.) = 1. This is true if and only if

-I

C(e) = -((x C(O) + 8C(l)) e (35)
1- (c+a) e

and

C # 0, C(e) < 0 < C(0) (36)

For the measure IAI of the algorithm's speed of convergence to the

neightborhood of . we have

A = -a(C(0) - C(e))e G'(4) (37)

-i
For the measure R of the stationary accuracy we have

R (".) (38)

4AS"(.) = 4a(C(O) - C(e)) G(

Next, as it was done in the error-free case, we choose

C(0), C(l), and C(e) to be the solution of the following optimization

problem:

Rq subject to conditions (35) and (36)

The solution to this problem is

i 4-
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C(1) = 0

C(0), C(e)cR such that C(e) < 0 < C(0) and

-i
c e C(O)C(e) = - l-(a+B) e-

The parameters C(0), C(e) are determined up to a multiplicative

constant. Without loss of generality we fix JAI by setting

C(0) - C(e) = 1.

Under this normalizing condition we have the following choice

for C

C = C(P e, P) = 1 -- (2-P~e-Ple)e- 0
l-(l-P)le)e

- (1-Poe )e- 1  (39)

Substitution of (39) into (37) and (38) gives

A = A(P0 = -(l-P 0 e)e G' ( .) (40)

e- (1- (2-P0 e-P le)e-i)R -=- G' ( . (41)
4(i-(l-Pie)e

where

1 for the DFT policy

1-X for the IFT policy

Some comments are in order now. From the form of the solution

to the maximization problem of q, it is apparent that the choice

of C as a function of POe' Ple given by (39) is the choice that

maximizes the steady state accuracy R- of the algorithm with JAI

ii
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fixed as in (40). The speed of convergence of the algorithm is

proportional to yiAI and can be set to any desired level by an

appropriate choice of the scalar y. Hence the choice of C given

by (39) also achieves the greatest maximum stable throughput

S e -1 - yR, for any fixed value of y, i.e. for any desired speed

of convergence.

As it can be seen from (40) the speed of convergence depends

only on POe which is intuitively pleasing, since with C(l) = 0

(inaction) the updating process of the algorithm is based solely on

the discrimination between the rewarding event "empty" (C(0) > 0)

and the penalizing event "collision" (C(e) < 0).

The steady state accuracy depends on both POe and Ple' as it

can be seen from (41). In Fig. 1 the stationary throughput St

is plotted as a function of the probability of error Pe = POe = P le

for the optimal choice of C given by (39) and for different values

of y. The values of C(0), C(e) used were normalized so that all the

curves in Fig. 1 correspond to JAI = e- I . Notice that for y small

the decrease of St is very moderate even for unrealistic values of

the probability of error.

Next we consider the case where the error-free optimal choice

of C given by (C.1) is used in the presence of errors. In this case

it can be proved by studying (33) and (34) that an equilibrium

point *e exists for any 0 < Ple < 1 if and only if POe < C(0) = .418.

Furthermore, it can be proved that if an equilibrium point exists

then it is unique and stable. The unique stable equilibrium point

is no longer optimal and the distance from its optimal value *,
increases as the probability of error increases. For example, if
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P e = .05 then E is such that G(OE) .94, while if Pe= .2 then

E is such that G(OE) = .63. This results in degradation of the

I maximum stable throughput St that becomes severe as the probability

of error increases. This is apparent comparing the curves of St

for the error-free choice of C to the corresponding curves for the

optimal choice in Fig. 1.

I.

i!'~
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