
SAD-A 36 522 FILE SEARCHING PROBLEMS IN LOGIC PROGRAMMING S STEMS 1/

(U) FLORIDA STATE UNIV TALLAHASSEE DEPT OF MATHEMATICS
AND COMPUTER SCIENCE C M EASTMAN FEB 83

UNCLASS1FIED AFOSR-TR-83-1252 AFOSR-81-0110 F/G 9/2 NLEEIIIEIIIIIIIE
EIEEEEEEEIIEEEmA-16 2 E SEHN RE MSI OGCPOGAMNGSE MS /

IW.
L 13 2

96- BA.

L.

nn1.25 11.4 1 6

MICROCOPY RESOLUTION TEST CHAR?
NATIONAL SRAO 01 ANDAROS l~t, A

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
I& REPORT SECURITY CLASSIFICATION IIb. RESTRICTIVE MARKINGS

UNCLASSIFIED_______________________

2& SECURITY CLASSIFICATION AUTHORITY 3. DISTRISBUT tON/AVAI LABILITY OF REPORT

IApproved for public release; distribution
W. DECLASSIP ICATIOI4IDOWNGRADING SCH4EDULE unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

NAMEOPERFRMINGORGANZATIO A]FOS'"eh 8 ~3 -1252
.. NME F PRFOMIN ORANIATIN Ib. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Florida State University Air Force Office of Scientific Research

6c. ADDRESS (City. Stat# and ZIP Code) 7b. ADDRESS (City. Stabe dad ZIP Code)

Department of Mathematics and Computer Directorate of Mathematical and Information
Science, Tallahassee FL 32306 Sciences, Bolling AFB DC 20332

Ba. NAME OF FUNDINGISPO#4SORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if appicable)

-AOSR INM AFOSR-8-0110
Bc. ADDRESS (City. State anid ZIP Code) 10. SOURCE OF FUNDING NOS.

Balling AFB DC 20332 PROGRAM PROJECT TASK WORK UNIT
ELE ME NT NO. NO. NO. NO.

It. TITLE (include Secumity Claamifteat4on)

SEE REMARKS ,,A) KeveuO e 61102F 2304 A2
12. PERSONAL AUTHOR(S)

Caroline M. Eastman
13&. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo.. Day) 15. PAGE COUNT

1S. ABSTRACT (Continue on revrse if necebsary and iden tf by block rnumberA

During this period, the investigator intended to investigate alternative approaches for
improving searching performance in logic programming systems to a level that would be
acceptable in a production system by conducting experiments in the LOGLISP system. Due
to incompatibilities between the DEC 10 source computer and the CDC CYBER 760 running
under NOS, which was available at Florida State University, as well as the differences
between the UCI LISP on the DEC 10 and the ALISP available on the CYBER, it was
impossible to bring the L0GLISP system to fully operational status and perform the
experiments.

40 DISTRIGUTION/AVAILADILITY OF ABSTRACT 21. ABSTRACT SECURITY CL.AzSIFti

UNCLASSIPISO/UNLIMITEO [I SAME AS RPT. QOTIC USERS 0 UNCLASSIFIED
2U. NAME OF RESPONSIBLE INDIVIDUAL 22k TELEPHONE NUMBER 2c.OFIESML

(in lude Arme Cede) 1 2.OFIESMO
Dr. Robert N. BUChal (202) 767-4939N1

00FORM 1473,83 APR EDITION OF I JAN 12I OBSOLETE. 1K QTETEfl
SCURITY CLASSIFICATION OF THIS PAGE

UNCLASIFIED
SICURITY CLAMSIPICATION Of THIS PAGE

ITEM #11, TIT.E- FILE SEACHING PROBLEMs IN LOGIC PROGRMING SYSTEMS

koossion .For
RTIS GRA&I
DTIC TAB
Unannounced 0
Justification

By
Distribution/___

Availability Codes
01.90

Avail and/or
Dist Special

UNCLASSIFIED

SECURITY CLAIISIPICATION OP THIS PAGE

A&=, !N.. .

AFOSR.Ths 8 3 12 52

PILE SPA~nc PfcKM I
wGIC PFDWM SYS'IU

CaroiLum ftI. Eastm~an

L-ebruary 1983

A final report an work perroruald Urdsr grant A.V&0-81-011O.

APProVed for publita el e-otsg
distributleftnimtd

84 01 04 103,

TABLE OF QOWOM

Logic Progruzmdng 1

Loglimp .ortaDilty

Fiie Organizations ror Logic Programing 10

A Logic -esign 2:ur a &4.cumnt Retreva.L Database 14

References 1

Appendix A: Index to tne .- LISP Reference Mana. 20

Appendix B: Caq~arimon or ALISP and UICI LISP 26

CbSf. .ah4~
1 iafmttDiviso

-4. ,."

LOGIC PROGRAMMING

The area ot knowledge representation has received active
research interest recently as more powerrul knowledge-based
systems have been developed. Such systems show potentiaL in
several application areas, including database management systems,
decision support systems, and automatic programming systems. A
variety or tecnques tor knowledge representation nave been
explored; one or tne more promising is tne use or resolution
logic.

Among the many problems which must be resolved betore sucb
approaches can be used in product.on systems is that or searcn
erriciency. Current systems eitner nandie a variety or problem
structures at the cost ot relatively unconstrained search or
constrain search at the cost or rigidly derined proolem
structures. An additional search problem resits trcm tne need
to expand the current small systems, which are primarily in-core
systems, to much larger size.

Prolog is a programming language based upon the use or
resolution logic which provides a high level nonprocedura±
rec Mr am tor writing programs and representing data. 7he Prolog

language is described in Warren e= &L (1977), and the underlying
logical theory is described in Kowalski (1974) and Robinson
(1965). Kowalski (1979) provides an extensive introduction to
logic programming witn emprisis on Prolog.

7he basic construct useo in Prolog is the clause, whic
consists ot a series or terms. An example of such a clause is

grandparent(x,y) :- parent(x,z), parent (z,y)

The first term is tne nead; tne rest maKe up tne body. If
al or the terms in the body are true, then the nead is true. A
procedure is a set ot clauses. A clause witn an epty body is
reterred to as a unit clause. Suppose tnat tue rollowing unit
clauses are adcled to the previous clause:

parent (Jim, Jane)

parent (Jane, Jennirer)

parent (Jane, John)

parent (Joe, John)

parent (Jim, Janice)

1

parent (Josie, Jane)

gmen posing the goal grandarent (u, Jenn ter) wi.a tind
a±± or jennizer's grandarents. Posing the goal graprent
(Jim, v) will find Jim's grand=.udren. Posing the goal
grandparent (u, v) wix tin all or the pairs or grandparents and
gra dren knon to the system.

Oansider the tirst case given, that or rin ing Jenniter's
grandparents. The system attempts to snow tnat te head is true
by sawing tat botn or tne clauses parent tu, y) and parent (y,
Jennifer) are true. (Here x is replaoed by u, and z is replaced
by Jennirter.) It can do th=s by subst tung y = Jane ami u =
Jim or by substituting y - Jane ana u = Josie. Te process or
trXin ng appropriate Sbsttur1Ons roL tne variables is rererred
to as unification. 2* process ot tinding an appropriate
wLurication means traversing a search space witn mtiny possible
cnoices ot clauses and variable assigmnents am includes toe
possibility or backtracking it a particular path does not work
out. It is also possible tnat no appropriate unirxicat.on wil be
round.

7he exauple given here is quite siqnle. More elaborate
exanpLes can be round in the rererences previously given. Prolog
can De used for a variety ot applications ranging from
intelligent databases to autanatic programming systems.

Lisp is a list oriented Language based upon the -ambda
calculus. TWo ot the zmn expository descriptions are given in
Greenberg (1978) and Siklosaky (1976). A brier swuary ot Lisp
development is given in MN. tny (1978). Its predauinant use is
in artiricia intelligence work.

In Lisp, both programs and data are represented as lists and
are not explicitly distinguisred. For exanple, a (very simple)
Lisp program to evalate the square root or 3.3 + (4.1 x 5.2)
could be written as

(SW (FPLUS 3.3 (FTD 4.1 5.2)))

'This is a two item list; the second item is itselr a list.
tm tus rimotion is evaluated, the muiltiplication in the uer
subList is evaluated first. Then the 3.3 is added. Finally the
square root is taken.

Lisp contains a variety or tunctions and special constructs,
Including tnose ot taking aprt am putting togetner lists,
testing conditiM, and nnapulating muters and strings.

2

I

A-..

Prolog and Lisp are not equal.ly easy to use over a taill
range ot applications. For exaile, the gradprent exampLe use
in thie discussion ot Prolog would be imich harder to write in Lisp
sinc, a tunction which explicitly takes apart lists representing
parent intromticn would need to be written. a the otner hand,
the sizrp~e Lisp calculation given would be uuch harder to write
in Prolog sinc rem!L aritnmUstc and square roots are tuon narder
to naixale in a logic context.

Loglisp, is a system wnich combines tue advantages or botn
Prolog and Lisp. It has been developed under Air Force
sponsorap (PAX) by Roabinson anxa Sibert (1981) at Syracuse
University as an extension to UCI Lisp for the DE:-.u. * in this
language, Lisp is extended to aL.l.ow tne use ot logic
programuing. 7hle syntax and techniques are noat quire tWe ame as
in tue Prolog system, but tue some basic capebi.it.Les are
provided. 11he Lisp features and tue Logic teatures may be
zintermueu, or only one set of teatures ay be used. So born
Pattern matching (as in Prolog) and function eva.Luation (as in
idsp) mey be easi.Ly done in tue context ot an integrated

language.

32

LWGLISP PORMBILITY

IjLolisp was originally inplemented at Syracuse University; a
description of this system is given in mobinson and Sibert
(1981). It was implemented as an extension to UCI Lisp, a'
dialect ot Lisp 1.6, on the DBC-10 (Quam and vittie, undated;
Borow, Burton, and Lewis, undated). It has also been converted
to run under INTEMLISP. (Schrag, 1982).

ALISP is a Lisp dialect based on Lisp 1.5 and described in
3b& ALM user I anua l (Univ. Mass., undated). It was developed
at tne University of Massachusetts at Amherst on %.ontroi Data
maintrames. The rirst version ran on a CDC 3600/3800 under tne
UMASS timesnaring system. The current version runs on LX Cybers
under the NOS operating system. In addition to basic Lisp
features, it provides a compiler, a limited programming
envirornent (editor, file system, and pretty-printer), and
applications packages (relational database system and grapnics
routines).

Since the manual proved very dir£icult to use witnout an
index, one was constructea. It is given in Appendix A. (The
manual reters to its index, but it was not present and coula not
be located.) Since the reasability or conversion trom UCI Lisp
to ALISP was being examined, a comparison list of tunctions was
constructed. It is given in Appendix B. Ibis list snows
tunctions present in each ot the languages and includes coulents
on runcLon similarities and ditterences. It can be seen trom
tnis list that twere are substantial dirrerences between tne two
languages.

I. ~imp DUaLO=t

There are mny oaalects of Lisp in existence. There nave
been some errorts at standardization witnin tne Lisp commumity,
but these nave not met witn overwneiming success (e.g. Marti e=
a., 1979; Steele At AL, 1982). While the basic core or the
langge is the same trm dialect to dialect, the additional
features provided as part ot the system and the manner in wnich
tne system is implemented can ditfer widely. Such diversity is
not surprising and pernaps nealtny in an experumental language,
but it nas nampered tne use of Lisp in more production-oriented
environ ints.

Smt (1981) describes a conversion system to translate
programs written in LISP 1.6 to 111ISLISP which was motivated Dy
tne need to convert a program used in a couiler testing system.
2e conversion system was designed to run under eitner version oL

4

L7 ,i ..

LISP. It depends primariLy on pattern substitution techniques
and tunction redetinitions to convert LISP 1.6 features to
InTERISP, including most tunctions, I/0 functions, the escape
character, strings, names, an numbers. Hw-er, LEXPIs, macros,
arrays, and a few tunctions were excluded from tne conversion
system.

Samet classiried saoe problems as irreconcxLable; tnese
included mainly problems witn ditrerences in data type
detinitions. A working detinition of an irreconcilable problem
in this context is one which could not be handled by a
straighttorward trans ormation or wnicn could not be bandled
witnout run-time support. The conversions tnat were perrormeu
were divided into those based on tne external torm ot the program
and those based on tne semantics ot basic constructs.

so~±Vftr CDDMtr5jgA SLUdi&&

Conversion or sortware developed in one environment to
another environment is an important activity (U.S. GAO, 1977,
1980). Despite the extensive resources devoted to conversion
errorts, little torma! attention nas been paso to it. Most or
our k ledge about sortware conversion is institu-onaL in
nature, based upon extensive experience.

Gilb (1977) defines sot tware portabi.ty as "the ease or
conversion trcm one environment to anotner; the relative
conversion cost tor a given conversion metnoo or algoritLu." He
measures portability as 1-(/ER), where ET is the cost to
transter tne system to a ditferent environment, ano ER is the
original cost ot developing the sottware.

This measure or portability depends not only on the system,
but also on the two environments. The omatablity between the
two environments can be measured as the average portability or
systems converted trom one environment to tne other. Gilb's
measures provide a measure of portability ana compatability
relative to a population or tasks, but they do not directly
address the question of predicting the ertort involved witnout
guidance tram previous experience witu tnose systems.

Boehm (1981) tackles this more ditricult question or
estimating the resources required for conversion. His estimate
or conversion costs is based on calculating a value tor EDSI,
equivalent delivered source instructions. This is estimated as

MS - (ADSI) x (AAF/100).

Here ADBI is the actual deliverea source instructions in the code
to be converted, and AAF is an adaptation aadustment tactor
calculated as

PAP"- (0.40 x EK) + (0.30 x CK) + (0.30 x IR).

5

777~

Here rm is an estuate o the percent of the design modified, Ci
is an estimate or the percent of lines of code wich must be
m dified, and n4 is an estimate or tne percent or the orrgina±
integration and testing wnich must be perrormed on the converted
sottware.

The total conversion effort in man-months can tnen be
estimated as

M9= 2.4 x (EDSI)**1.05.

Boebm includes an extensive discussion or cost driver factors
wncih can be usd to take into acccount such ractors as system
couplexity, reliability requirements, programming language, and
start experience.

Obviously these estimates, especid,.±y ror D1 and IM, must be
in large part subjective. However, this approach provides a
structured framework for the problem of estimating sottware
conversion etfort wnose wortn is supported by extensive
experience.

A -umber of incompaability problems betweeen UCI Lisp and
ALISP were encounterea. These were categorized as environment
inxwqxtabilities, feature incuwptabi ities, syntactic

cLitabites ana tundn ntal incoaiarabilities.

The envirormental inconatabiities incluaed

The character sets usea in te two systems are different
botn in size and in encoding. his created some delay in even
reading a Loglisp tape. Furtnermore, some characters used for
special purposes in Loglisp are rererrea to Dy tneir encoaea
vaLue (GEVAL)

Both systems included an editor as part or the environment.
These allow both structure editing and pattern matching. However,
the cawudm used are difterent. The editor is used by Loglisp in
order to handle editing ot knowledge bases. Ebrmatters are
provideu in both systems, but difrerent runction names are used.

Both dialects of Lisp provide functions to alow access to
the System tile system in order to Mailitate rue nandling witn
the Lisp system. The capabiuities provided are simuar, but tne
wunerLying file system are not.

6

Feature incomuptabilites included

here are many unctions present in UCI Lisp wnich nave no
corresponding runctions in ALSIP. For tne most part tnese can be
nanoled in a straightrorwara manner simruy by writing new
tunction detinitions. Appendix B contains a List ot tne
tunctions present in botn Lisp dialects.

UCI Lisp provides a macro capability; ALISP does not.

Features i.pleaented using macros tnus need to be rewritten.

Syntactic inopatabilites included

In many cases aurterent names were used in tne two clia.iects
tor the same tunction. Examples include PBSVAL (ALISP) vs. ABS
(UCI Lisp) and uIFF (ALISP) vs. DIFFERENCE (UCI Lisp). 7hese
problems are also quite straighttorward to handle by renaming.

Inonn tet umjm zu=n

I few cases the syntax used tor runctions was not
consistent. For example, the paraneter order ror MAPC is
ditterent. Although nandling tnese situations is
straigntrorward, they are more subtle since they appear correct.

Fundamental incompatabilites included

I ALISP function derintions are stored in tne vaLue ce.u.
or the appropriate ±iierai atoms. In UCI Lisp tunction
detinitions are stored on the property list. Thus tunction
detinitions are easier to change on the ry in UCI Lisp. Since
this is done in Loglisp in order to switch between Lisp ana
Logic, substantia.L conversion problems are presented.

It should be noted trat, witn very tew exceptzons, these
problems are inherent in the dialect ditterences and are not due
to tne design and implementation or oglisp. It would be
extrumently ditticult to implement a system witn omplex
fWWt3n nLLat-y wLtnour making tull use Ot the teatures available.

7

lan.- Ri~~9tSmilaritV

The simiarity between ALISP and UCI Lisp can be examinea oy
comparing the tunctions avaiiable in the two languages. A simple
measure of such simlarity between two programming languages is
given by

SIM= / (Ni + N2 - OV)

where N1 is the nnber of function names used in one language, N2
is the number ot tunction names used in tne other language, and
OV (overlap) is the number of function names used in botn
languages. This measure ranges between 0 (least simi.ar) ana 1
(most similar).

There are a number of factors which are not taken into
account Joy tnis measure. Function names Ln Lisp and other
programming languages are not used witn equal frequency, and tne
most trequent ones snould pernaps be given nigner weignts. Also,
no distinction is made between a tunction name used for a
runction present in one language but not tne other and a runction
name used for a function which is present in botn languages but
called by different names.

There are 303 function names tor UCI Lisp ana 227 tor ALISP;
these are given in Appendix B. There are 80 overlaps, including
most of the "core" Lisp functions. The similarity is 0.18. It
is interesting to note that the simiuarity computed Joy the same
measure between C(OL and Ada is 0.32 (Eastman, 1982). Sc the
keyword similarity between two dialects of the same Language can
actually be less tnan that between two distinct languages.

2., Fat Donei Rf fort

The formulas given in Boen were used to estimate the
conversion effort required tor a full conversion of Loglisp to
the aLISP system. The Loglisp system contains approximately
2,000 lines of code, as tormatted Dy tne pretty-printer. The
factors iA and IM are estimateo at 30% to a..±Low for te change in
the system environment and tunction definition mechanism as well
as the more straightxorward changes. CM is estimated at 50%.
With these figures, EDSI is estimateo at 720 ana conversion
extort in man-months at 1.7. The tape conversion required about
0.25 MM (Franson and Haslup, 1981), and the conversion ot a
minimal core system required about 0.5 MM.

Of course, these tigures provide only a very rough estimate
or conversion effort. They were developed based on experience
win systems written in otter languages, and it is not at all
clear how well they apply to Lisp. Since programmuing in Lisp is
more ciuplicated than programming in C(OL or FaRNM, it is
likely that these tormulas wiL unoerestimate tne exrort

8

required. Also, the concept of "lire ot oode" is not as welL
detined for Lisp as it is tor many otner ianguages since programs
are not divided into statements in tne same way as ror many
languages. 7he approximation used nere was to simply use tne
lines ot text provided by the prettyprinter; rnoever, the Line
breaks could have been done in many dirterent ways. It would be
htgh.Ly desirable to have a working detintion ot source
instruction tor Lisp that could be used in sz= estimations and
to nave data validating tneir use in a Lisp envirorment.

9

- - ---. *-- - .-.

FILE O GANIZATIONS FOR IGIC PROGRAING

The clauses in a Logic program can be divided into the two
categories ot rules and facts. A fact is detined here as a
clause with no body and no variables. A query is a clause
containing only a body. All other clauses are rules. So a tact
will be at the end ot an inference patn and wi.i not lead to
turtner steps. A rule contains eitner varia.Les or interences
(or ooth) and can lead to a turrner unixication step. This
division follows that made by Klahr (1979) and corresponi
cluueiy to similar (but not necessarily identicai) distinctions
made by others (e.g. unit and non-unit clauses, ground ana non-
ground clauses, extensiona± aata base ano intensiona± data base,
assertions and implications.)

Searching in logic based systems can thus be broken down
into two distinguishable but related searching problems: rule
selection an fact retrieval. Rule selection involves tne choice

t or the next clause or goal to use in the inference process. Fact
retrieval involves locating a particular clause. However, the
distinction is not absolute. Located facts are used in the
interence process, and selecting rules involves tiaing them as
well. Fact retrieval is generally discussed witnhin tne context
or tne retrieval paradigm used in the database area; overviews
are provided in Knuth (1977) ana Wiederhold (1977). Rule
selection talls witnin the heuristic search paradigm used in
artiticial intelligence. In most current work, these two
searching problems are kept separate; this approach appears to be
more erxicient than intermixing them.

2L. Maba h~iaix

The rel.ive importance ot rule selection an tact retrieva.
aepenos in large part on the application. Same applications,
such as database systems, have relatively tew rules. Others,
such as theorem proving systems, have relativeLy more rules.
Since searching problems in unrestricted resolutions sytems are
not yet well understood, it is reasonable to consider only a
subset o such problems. One way to narrow tne problem is to
Consider application areas ot interest to see what the
implications ot their speciric characteristics are tor search
strategies.

Database applications are considered here since use or
artiricial intelligence techniques can provide databases witn
more tiexibility than is possible in current x Pmmrcia.L systems.
A possible def nition of an intelligent data base is that it is a
database from which implicit information wnich is not explicitly
stored can be retrieved. One well-studied class of such
databases allows the use ot logical inference. Such interential
databases are discussed in Gallaire and Minker (1978), Klahr

10

(1979), and Minker (1978). (It is possible to have otner types
or inference, e.g. statistical.)

Some of the characteristics to be expected of an inferential
database based on logic principles are

a. Low ratio ot rules to tacts

b. Low level o most proors

c. Possible need for best match and range searches

d. Rapid response tor interactive use

e. Possible need for extensive updating

t. Potentially very large size

g. Varying degrees of data accuracy and timeliness

h. Not aj.z relevant data included (open world assumption)

These characteristics are not necessarily tound in other
logic application aras. For example, none are likely to be true
or theorem proving applications. These factors intluence the
acceptable searching strategies.

SLiaitALM Qkhot

C -rent artiticial intelligence systems depend heavily on
hashing. When it is feasible, hashing is extremely rast ana is
otren the metnod o choice. This reliance upon hashing has
allowed researchers to concentrate on the problem structure and
heuristic search without getting bogged down in the details ot
tact retrieval. And this approach has not created any problems
in the relatively malJ in-core systems preduinant in artiricial
intelligence work. However, hashing has sane limitations which
may cause problems in such systems; tnse involve update problems,
best match and range searching, and locality o± reterenoe.

Hash indices degenerate unoer update to a greater extent
than many other index systems (e.g., B-trees). This requires
more garbage collection and possible rehasn ig. whi.Le the
pointer chasing involved in Lisp garbage collection does not
present a problem in in-core systems, it may in systems tnat
involve storage over several levels of Memory hierarchy.

A second problem is tnat, unless tne hean tunction used Is
order preserving, it is very hard to handle situations involving
best match or range searches. The respond to such a request, the
system is reduced to hashing on ai± possible values that might
tal within th desired range or to a sequential search. Index
techniques which preserve order intormation are much better able
to handle such questions.

11

management of a memory hierarchy is far more ertective when
tnere is a nigh degree ot locality of reterence. This allows tne
I/0 overhead to e spread over a greater number ot accesses.
large syste wil presuably depend on tne use ot a memory
hierarcty and will need to use storage techniques which preserve
locality ot reterence.

It would be desirable to exploit the advantages or nasning
even in a much larger system. However, mechanisms which preserve
order and locality wll be required.

M oia 9L LUS ena

Almost all of the work on selection of twe organizations
has rocused on situations in wnich the workload to be handled is
botn precisely known and stable. Under tnose conditions, there
are mnwy aigoriunms know which can be used to determine optima,
riLe organizations anca/or parameters. However, these appoacnes
are not necessarily as userul when the workload is neitner
precisely known or stable, as is to be expected in an intel igent
database.

In such a context only partia± intormation wiL be available
about the classes and frequencies or queries wnich wuil be posed
to the system, the tields which wil be used in queries, and the
frequencies with which those rieLas will be used. The relative
umportance ot update and retrieval is also unlikely to be known
precisely.

Consider a ground relation wnich has mive possible tields
which could be used for indexing. If the frequencies witn which
the ditterent combinations or fields will be used in retrieva.
and update are known, it is possible to determine a reasonable
solution to the problem ot determining wnicn or the tieLds should
be indexed (e.g. Anderson ano Berra, 1977).

However, if little is known about the workload that the
system will handle, such algoritrm are not directly applicable.
They must be sujppLmented by other approaches, wach might
include worklad sanpling, risk analysis, statistical analysis,
possibility theory, and expert systems. The system can maintain
statistics on requests posed over time in order to estimate tne
workload at a given ti e. This information can be used to select
an optimsl or near optimal configuration based on tnis
information. However, this may not be adequate it tne workload
is highly variable. The use of logic procedures to analyze
useage data and determine appropriate storage organizations is
consistent with the goal of an integrated logic system.

It wll be difticult to extend the size ot current
Intellient systems by one or more orders of magnitude witnout tue
use or ditterent narawre architectures. The are two main
directions in this architectural work: the use ot multiple

12

prooessors and the use of content addressabie (or associative)
storage. multiple processors, whicha could be in a distributed
system# could be used to explore, in yaraL.LIi, a.terflate patna
tnrou'jh te search upsoe. Assocatie storage can be usd for
tau retrieva.L. (Scirag 1981) describes a possioJie .&..uJ
architecture tor hand]in logic databse applications. Even ir a
wmqxziter architecture vell adopted to trese types or anL ications
is used, it viii stui neew to be used etrectively. So storage
organizations viii contiue to be a pcoblem even troigh tne
probim parameters wiii change.

13

A LOGIC DESIGN FOR A DOCW REIRIEVAL IATSE

IL D.AD t~J le a tm

Te term intormation retrievai is widely used in both a
broad sense and a narrow sense. In its narrower meaning, an
informat.ion retrieval system is a reterenoe retrieva. system. It
is this use which will be considered here. Such systems provide
lists of reterenoes to documents in response to user queries
oaseu on topics, authors, dates or publication, and similar types
or information. Information retrieva.L systems dirrer trm
database management systems tor tormattet data in thneir emphasis
on textual data.

The index terms used to retrieve tne documents may be chosen
tram a caretu lly controlled thesaurus of allowed terms. Or the
important words from the title, the abstract, or the entire text
may De used in a less oontro.Led situation. Norma.lzation to a
standard torm is generally allowed in order to eliminate
variation caued by plurals, verb endings, and orner sufrixes.
In current commercial systems, boolean combinations or index
terms are generally used in queries. More elaborate matching
functions have been used in experimental systems, and research
indicates that they might be more etrective than conventiona.
boolean matching.

Information retrieva.L systems are in cmon use today. They
range from extensive comercial services, such as Locheed' s

IAEG system, which provide access to dozens ot diterent
databases (collections ot documents) to small systems intended
tor personal use to experLwentai systems. An introduction to
intormation retrieval systems may be found in Salton and McGill
(1983).

Evaluation of information retrieva± systems is based on
petormance effectiveness as well as eticiency. The response to
a query tor documents on a particular topic will generally
incluKe item which are not reievant to the query and taii
to include some items which are relevant. The extent ot such
failures is measured by recall and precision. Recall is detined
as the traction of the relevant documents wnich are retrieved.
Precision is defined as the traction of the retrieved documents
wnicn actually are relevant.

Databeen performedd An Unt

Extensive work has been pertormed on tne application ot
logic to databases. 7he volume edited by (iallaire and vinker
(1978) contains mny pcunir Ly theoretical papers on tne subject.

Daru (1982) describes a database application wit a Spanish
language intertace which was implemented in Prolog. The eaxple
appli .ation is a ml1 uplayee database.

14

.. !

To describe a database, Dahl ues domain detinitions, which
a-Lso include hierarchica! relationshps, relation declarations,
to serve as relation templates, and relation detinitions, which
include the actual data. Coemlo (1979) describes an adaptation
of this approach to Portuguese.

L. ani £MtuWm = a M Sytm

Documents in an information retrieva± system need to be
described by their contents and by the appropriate bibliograpnic
information. A possible set of relation declarations tor this
intormation is

title (document title)

author (document autnor order)

date (document puJblication-date)

publisher (document publisher)

topic (document concept)

The first four relations (title, author, date, and
publisher) provide the basic bibliographic information tor the
document. Here it is assumed that, for a given document, tnere
is only one title, one publication date, and one publisher.
There may however, be more that one author. The order is
preserved tor an author so that it is possible to tell the oLder
in whch the authors were listed.

The domain for document is assumed to be a set or unique
document identi£iers. It is not possible to reliably identiry a
document by author, by title, by publisher, or even by date; so a
unique identirier is required. (The need for unique identirier
tor the various entities about wnich information is stored has
been glossed over in work on logic databases.)

A document may contain intormation about many topics, and a
topic may be discussed in many docu emts. It is possible to
obtain all the topics contained in a document or ail the
documents discussing a topic by posing the symmetric queries:

<- topic (document x)

<- topic (x concept)

where either a specific document or a specific concept is
indicated.

A bibliographic description of a document may be detined
using

15

description (u v w x) <- title (u v),
publisher (u w),
date (u x)

<- author (document x y)
<- description (document v w x)

Usually a combination ot topics is specified in a query
rather than a single topic. Boolean queries invoviing the
operators h and OR could be readily handled using the Loglisp
boolean operators or other extralogical teatures to avoid
repetition in query specitication.

Retrieval pertormance can be enhanced y tne use or synonym
information. Even it one term is used in a query, documents
ciassiried with synonyms of that term can be retrieved. 2his
reature could be handled by the tollowing ground relation

synonym (wordl word2)

and the tollowing rules

synonym (x y) <- synornm (y x)

synonym (x y) <- synonym (x z), synonym (z y)

topic (document x) <- topic (document y), synonmm (x y)

A more elaborate thesaurus could be inpleented to nancle
hierarchical reLatonsnips.

Ooncept weights are rrequently used in order to indicate tne
relative ixortance or topics ciscussed in *cuent. Sucn
concept weights could be handled by using an expanded ground
relation

topic (document concept weight)

A query which request documents which are about a speciric topic
can tam specity a cutotr weight

<- topic (document concept x), greater (x cutort)

Since, in most systas, concepts w.xn zero weights are uike.ty
to be explicitly entered, testing the weight to see it it is
greater than zero Mould be unnecessary.

AMere is som evidence that retrievas perrormence can be
enhanced by using matching functions other than esipe booLean
,mtcdig. sggeuons includ the use o smilarity tunctions
baed on vector nodels ot documents and queries and tne use or
tizzy set theory. Such munures could be plimented in Logic

16

but might be more easily izilenented in extralogical teatures
sucha as those avau.able in Loglisp.

!dw closed world assumption that ail re.Levant information is
]present in the kcnowledge base is not viable in information
retrieval systemls. It is generally accepted tnat, a documnt
may contain intormation about a concept even though tnat, concept
has not been used to index it. Thbus failure can niot be
interpreted as negation.

17

RERENCES

Henry D. Anderson ana P. Bruce Berra, "Minimum cost selection or
secondary indices for formatted rlies, &Z TXAD&IgJ1f on
tanas am, Vol 2, No 1, March 1977, pp 68-90.

Robert J. Boorow, Richard R. Burton, and Daryle Lewis, UIa LISP
ManurL, undated.

Barry W. Boehm, Software E aeg F m r, Prentice-Hall,
I E 'ewood Clirts, New jersey, 1981.

Heicer (oehlo, "A program conversing in Portuguese providing a
library service", PhD thesis, University ot Edinburgh, December
1979.

Veronica Dahl, No database systems developnent tnrough Logic",
AX X!a=IQ= DA n b SatM, Vol 7, No 1, March 1982, p
102-123.

C. M. Eastman, "A lexical analysis of keywords in high level
programming languages", submitted for publication.

Jo n Franson and Lee Haslup, "Implementing Loglisp at FSJ",
Florida State University, 1981.

Herve Gallaire ana JacK Minker (editors), "Vig A an a, Ba&
Plenum Press, New York, NY, 1978.

Tom Gilb, ftwae at m, Winthrop rublishers, Cambridge,
Massachusetts, 1977.

P. Klahr, "Conditional answers in question-answering systems",

kia g M 1, pp 481-483, 1979.

D. E. Knuth, b A t g g XL * r. r=Zd±n.. olue II."
5...r an AW 5rtajn, Mdison-Waley Publishig Campny, Reading,
Massacusett, 1973.

Robert Kowaski, LJa Lor plm -AgSAM, Elsevier worth
Holland, Inc., New York, NY, 1979.

Robert Kowalski, "Predicate logic as programming language", Zo=
I= 2A, North HolLana Publishing Oo., Amsterdam, pp 569-574,
1974.

J. arthy, "History of LISP", f£gaE ZiaLgM Vol 1, No 8, pp
217-224, 1978.

J. Marti, A. C. Hearn, M. L. G(iss, and C. Grims, "Standard LISP
report", SIGUM U, Vol 14, No 10, October 1979, pp 4-8.

18

Minker, "Search strategy and selection tunction tor an
inferential relational system", AM gn t on &taas
&Am, Vol 3, No 1, pp 1-31, 1978.

Lynn H. Quan and Whitfieeld Diffie, Stford LISP I.& Mia ,
Stanford University, undated.

J. A. Robinson, "A machine oriented logic based on the resolution
principleO, Jo uaU of tb A M, Vol 12, pp 23-41, 1965.

J. A. Robinson and E. E. Sibert, "Logic programming in LISP",
RADC-'I-80-379, Vol 1, Rome Air Development Center, Grirtiss mir
rorce Base, New York, 1981.

Gerard Salton and Michael McGill, I to Modern
LRetrieal, McGraw-Hill book Lmpany, New York, NY,
1983.

Hanan S -et, "Experience witn sottware conversion", SQ waL1z
Eaw D r , Vol 11 105-1069, 1981.

Robert C. Schrag, "Logical data base machines", Syracuse
University, 1981.

Robert C. Schrag, personal comumnication, 1982.

Guy L. Steele, Jr. r& Al, "An overview of Oammn Lisp", AC4
Syqmsium on Lisp ano Functional Programing, 1982.

U. S. General Accounting Office, "Millions in savings possible in
converting programs from one computer to another", FED-77-34,
1977 (reterencea in U. S. GAO, 1980)

U. S. General Accounting Office, "Wider use or better cmputer
sotware technology can improve management control ana reduce
costsm, FGNSD-80-8, 1980.

University of Massachusetts, ALM5P Reference aA, Universityor asachusetts at Amherst, undated.

D. H. D. Warren, L. M Pereira, and F. Pereira, "PRLCG-tn
language and its implementation -a red witn LISP", IGPLAN
Ntia, Vol 1, No 8, pp 109-115, 1977.

G. Wiederhold, DLJ b Dwa, McGraw-Hill Book Cumpany, New
York, NY, 1977.

G. A. Wilson and J. Minker, 'Resolution, retineaents and search
strategies: a cmparative study", I= Dn n
Zstua, Vol C-25, No 8, Rp 182-801, 1976.

19

APPfIOIX A

rfi= TO TM ALLSP WFMEWNC MAMM~

20

ALISP INDEX

* 48

aboval 108
addP. 102
addgt 90
addlt 90
addi 108
and 76
append 96
aply 54
apply* 54
argn 59
array 116
arrayp 117
arrayl 116
arrtype 117
as.ii 149
atiength 39
atmhash 33

backprn 120
backtrk 119
bnum 116
break 131

c r 95
car 95
cars 95
cdr 95
cdrs 95
close 146
clrbit III
nTm ent 170
Ocmpile 199
Conc 97
concons 96
cond 75
cons 96
copy 98
COPfi.Le 168
cos 109
cshift 110

dooW 98
de 63
decfile 174
dstprop 93
deletel 102
df 63
diff 107
dim 117
dispose 147
divide 107
do 79
dooons 81

21

' ___t______II il lli

ALISP INDEX

echo 11,150
edit 178
ettace 102
entry 138
eofmark 153
eotskip 153
eotstat 152
eo.LL 9
eow 25
eq 83
eqp 84
eqs 114
equal 88
err 124
errprin 120
errset 121
esnitt 110

eva. 45,53
evalquote 45
exit 49,138
exp 109

filestat 145
fix 106
fixp 106
flambda 57
float 107
floatp 106
fntype 65
frunno 145
fuzz 86

gc 14
genchar 7
gensym 37
get 93
gettun 65
getval 42
go 77
greaterp 87
grinu 168
gts 114

haitpri 30
hprnwn 30
hw 116

if?7
illegal 40
irbase 15
initfile 164
input 164
intadd 90
intern U25
imunit 9

22

ALISP INDEX

label 60
lanbda 57
lap 204
last 95
length 95
lessp 87
list 96
list lie 168
litp 36
lnum 116
load 154
log 109
logand 110
logical 107
lognot 110
logp 106
logor 110
logxor 110
its 114
local 147

mapc 71
mapcar 71
mapoon 71

mapoonc 71
mapl 71
maplist 71
max 87
mmb 83
meier 8
min 87
minus 108
minusp 87

nconc 101
ril 37
normtab 152
null 37
numberp 106

oblist 33
Oddp 87
open 144
or 76
outbase 16
output 165
outputa 165
outuflut 24

pack 39
packl 32
paget iLe 2
paramtl 141
paramgt 141
parami 125

23

i.- - I]

ALISP MM

plist 34,42,93
plus 107
plUap 87
]Iprine 177
wrint 177
prinarray 117
prinb 32
prinbeg 70
prinend 24,30
prinlen 30
print 25
prinI 30
prog 77
progn 79
prompt 10
prop 93
purge
purgfi-ie 167
put 93

qsetcq 40
quotient 107

randy 110
read 12
readhrray 117
reabeg 22
readch 23
readend 22
readent 22
readlen 22
readrib 2
readnm 23
readk 23
reanter 12
r iob 34
remprop 93
repeat 81
return 77
reverse 99
rewinW 152
rplaca 100
rplacd 100
runtim 126

save 154
aeLe q 76
set 40
setblt 111

sin 109
slash" 152
Special 33
sqrt 109
status 13

24

ALLSP IN

strcars 113
strcdrs 113
strconc 114
strrinca 114
strtest 114
SUDi 108
Sys 45
sysin 47
sysprin 48
sysout 47

teread 22
terpri 25
tints 107
togbit 11n
traoe 135
tracflg 135
tatbit il1
ttyckiar 11

uflitflos 145
unpacK 39
untrace 135

va.Luep 42

wipe 34
wipelist 34

zerop 87

25

APPEND~IX B

A cflARL90N BE'11iEM ALISP AND~ UCI LISP

26

t=i LM, ALMB amom

abs aboval

aos (U) aboval abs,

aa&l

allot
and and
and= (u)

apply apply
apply*

apply- (u)
arg

argn
array array

arrayl
arrayp

asciiarrtyps
asciiascii

wsin
asuoc(u)
atsom (u)
auuon (u)

atlength

atcm atntam

bacllprn
backtrk

bakgag
bigium

bnum
boole logand, logior, logxor

bporg
break break
break (u)
breakd (u)
bresiwip (U)
breai (U)
breaibacrom (U)
brokent z (u)

car car
cars

odc odr

chrct

dirva± (U)

27I

UCI lisp ALISP Qu~~

cirbit
cczueft

cxu ie
concon

co ~neo
cono cons
cons cons
coW (U) o

copy (U) COPY

cood (U)O
coed (u)

cshit

dcopy
ddlt (U)
ddtin
d&tt

de de
decf ile

derprop detprop
deletel

deposit
df d

dift ditterenoe
clitter~eCLM ditt

dispose
divide divide

do
clocons

dreawn (u)
dreverfie (U)
drm (u)
dakin (U?)
dekout (u)
do (u)
deutat (U)

edm
edit

editom (U)
.ditdstault (u)
edite (U)
edit (U)
editf 1ld (U)
eatfils (U)
adittyt (U)
editi (U)
eatp (U)

28

MIC LIS awI Comm=

editracstn (u)
editv (u)
editye (u)

ettace
entry
eowak
eorskip
eotstat,
eo.Lr
eo.Lw

eq eq
eqp
eqs

equal equal
err err

errprinf
error (M
errse Mu
errset, errset

esrurt
eva~l eval,

evalquote
evaiv (u)

exarray
excise

exit
exp (u) exp

explode
expodec
expr

texpr

t3uestat
tix tix

tixia

fautda
tiatsize
tJlatsitzec (u)
float (U) float

fioatp

toro,
torkpt, (u)

fntype
free MU
freelist (u)

frunno
faftr
runarg
function

29

UCX LISP ALISP ctuu"fl

f urction.LL
tuzz

gc 9c
god

gctlm
genchar

gensym

greaterp greaterp,
grind

grirxet
grini MU
grinprops MU

gts

hairpri
k~lcor (u)
h~hend (M
hghorg (uI)

hprnim

ibas inbase
identitier

iliegal
inbaae ibase

inc
initfue

initfn
initpracp (u)
input input

integer
intern intern

inunit,

label label
lambda lambda,
lap (u) lap
lapist (u)
last last
lastword (u)
lastpos (u)
lconc (u)
idiff (uI)
length le1 t
lessp, lesup
lexorder (u)
lexpr

30

UCI LI. ALISP CMET

linelength
lineread (u)
list list

listf iie
litatom (u)

litp
lnwn

load load
log (u) log

logmnd boole
logical
logP
logor boole
logxor boole,

lab
lsubr
laubat (u)

its

macro
maknam

Map
MRpc mawc ditterent p~arameter order
umpcan (u)
umpear mapear
mapoon (u) mapoon
aqMpoW (u) mapoonc

naplist maplist
maux (ii) manx
muxievel (u)
minb (u) mm
memer memb*er

ittr- (u)
mwq

mq.(u)
min (u) min
minus minus

modaeaar (u)

nooncnoonc
noons rm
nug (u)
nxtev (u)
nil nil
nil (u)
nocall. (u)

normtab
not

nti (u)

null null

31

Uci LISP ALLSP ODWM~I

flmbery, flLmerp

Oblist oblist
oddP

or or
or- (u)

outbase
outc
output output

outPuta
Outunit

outval (11)

pack
packi
pegetile
parau
paramgc
paruumi.

patcn (u)
pgiLine

plus plist
plus plus

plusp,

pprine
wprint

prevev (U)
prinl prini

prinarray

prirtbeg
primc

prinend
prinlen

print print
printliev (u)
prog prog
progi (u)
prog2
progn progn

*prmt (U) promupt
prop
purge
purgfiJle
put

putprop
Piurm

quote st
quotient quotient

32

UCI LimP ALISP (XOUflS

ranzm (u) randy
randy rand=

read read
readarray
readbeg

reacdch readch
readenti
readent.

readlistreadLen
readldnp

readn
readp (u) raL

ree, (u)
reoiainder remainder
rb rei~
remove (u)
raiprop remprop

repeat
reset
retrrom (u)
return return
reverse reverse

rewind
rplaca rplaca
rplacd rplacd

runtine

sassoc uses eg
save

se.Lectq (u) selectq
set set
setarg

setjDit
setchr (u)

setq
sin (u) sin
Simd (U)
Sima (u)

slashes

spxbind
special (u) special
specstr
spdlxr (u)
spdlpt (u)
spdlrt (u)
sRxedo (u)
OpceaL (u)
sprint
airt (u) uqrt

Status
stkaount (u)
trnm (u)

33

L *,-"A

UCI LISP ALISP COMEY'S

stkntn (u)
stkprt (u)
stksrch (u)
store

strcars
strcdirs
strconc
strtiMd

stringp (u)
strtest

sul ~ SUbl
sutlis (u)
suopair (u)
subr
subst

Sys
syscir (u)

sysin
sysprin
sysout

t
tab (u)
taiip (u)
tan (u)
tamn (u)
toonc (u)

teread
terpri terpri

tines tims
togbit

trace trace
tracedfns (u)
tracet

tracflg
tstbit
ttychar

ttyecho (u)
tyij
tyo

unbound (u)
unbreak (u)
undoist (u)
unfind (u)

unitnos
unpack

untrace (u) untrace
wntyi (u)
upfindlg (u)

valuep

wipe

34

U)CI LISP ALISP CONU11'S

wipelist

xcons
zerop, zerop

$eof $

*amake

*append
wdit
*evai

expandi

*less
*max (u)
*min (u)
*nopoint,
*plus
*pUtsymh
*quo
*rset

35

0 1

