AD-A136 522 FILE SEARCHING PROBLEMS IN LOGIC PROGRAMMING SYSTEMS 1/'
{U) FLORIDA STATE UNIV TALLAHASSEE DEPT OF MATHEMATICS
AND COMPUTER SCIENCE C M EASTMAN FEB 83

UNCLASSIFIED AFOSR-TR-83-1252 AFOSR-81-0110 F/G 9/2 NL

g TR
JlLL & & =
—— t. m L
RS
““lg * D

B

“I25 g'

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURLAU OF STANDARDS 1963 &

oy

. wA13652

SECURITY CLASSIFICATION OF THIS PAGE

; REPORT DOCUMENTATION PAGE

s REPOAT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

25 SECURITY CLASSIFICATION AUTHORITY

3. OISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution

25. DECLASSIFICATION/DOWNGRADING SCHEDULE

unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBERI(S)

i
5. MONITORING ORGANIZATION REPORT NUMBER(S) f

IFOSR-'I'. 8S8. 1 2_52

6a. NAME OF PERFOAMING ORGANIZATION

b. OFFICE SYMBOL
(11 oppliceble)
Florida State University r

7s. NAME OF MONITORING ORGANIZATION

Air Force Office of Scientific Research i

6c. ADDRESS (City, Siate ond ZIP Code)
Department of Mathematics and Computer
Science, Tallahassee FL 32306

7b. ADDRESS (City, Stale and ZIP Code)
Directorate of Mathematical and Information
Sciences, Bolling AFB DC 20332

8s. NAME OF FUNDING/SPONSORING 8o. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicabie)
AFOSR NM AFOSR-81-~0110
8c. ADDRESS (City, State and ZIP Code} 10. SOURCE OF FUNDING NOS.
Bolling AFB DC 20332 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.
11. TITLE (Include Security Clamificotion)
SEE REMARKS ¢N ,Jeuorse- 61102F 2304 A2

12. PEASONAL AUTHOR(S)
oline M. Eastman

13a. TYPE OF REPORT
Final

13b. TIME COVERED

frROM 1/3/81 ro28/2/82

14. DATE OF REPORT (Yr., Mo., Day) 16. PAGE COUNT

FEB 83 35

[6. SUPPLEMENTARY NOTATION

17.
FIELD

COSAT! CODES
_GAoue

SUS. GR.

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

(19. ABSTRACT (Continue on reverse if necessary and identify by block number)

During this period, the investigator intended to investigate alternative approaches for
 improving searching performance in logic programming systems to a level that would be

acceptable in a production system by conducting experiments in the LOGLISP system.
to incompatibilities between the DEC 10 source computer and the CDC CYBER 760 running
under NOS, which was available at Florida State University, as well as the differences

impossible to bring the LOGLISP system to fully operational status and perform the

Ebetween the UCI LISP on the DEC 10 and the

Due

ALISP available on the CYBER, it was

-~

experiments. \O
» 04 \GRA
[20. ISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIF ICRIQN A %
uncLassisieorunLimiteo G same as aer. i oTic usens O | UNCLASSIFIED E ’ j
726. NAME OF RESPONSISLE INDIVIDUAL 22b. TELEPHONE NUMBER [22¢. oFFicE SvMBOL ;
tinclude Aree Code)

Dr. Robert N. Buchal
D0 FORM 1473, 83 APR

EDITION OF 1 JAN 73 1S OBSOLETE,

(202) 767-4939 NM

IFIED

SECURITY CLASSIFICATION OF THIS PAGE

F . TR

L e
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ;1

.Im #11."1‘1‘1'1-3: FILE SEARCHING PROBLEMS IN LOGIC PROGRAMMING SYSTEMS

as: |
Accession For
NTIS GRAXI = ¢
DTIC TAB
Unannounced O
Justification
By
Distributionlwﬂ
Availability Codes
- ‘Avail and/or
Dist | Special
A-l
k!
4
{
C
.
é
1
UNCLASSIFIED
SECURITY CLABSIFICATION OF THIS PAGE
!

AFOSR-TR. 88.1252

FILE SEARCHING PROBLEMS IN
- LOGIC PROGRAMMING SYSTEMS

Caroslne M, Eastman

rebruary 1983

A finai report on work perrormed under grant a_:osa-al-ono.

Approved for public releage H

distribution unlimited.

84 01 04

N

»
. L

AR o R LT e ol

i i ame

gov

TABLE OF OUWHENTS

i : Logic Programming 1l
!

) Loglisp _ortapiiity 4

File Organizations ror Logic Programming 10

A Logic _esign ror a .ocument Retrieva. Database ——————— 14

References 18

Appenaix A: Index to tne .LISP Reference Manuay ——————— 20

: Appendix B: Comparison or ALISP and UCI LISP 26

R
e WL ‘
ey L BCIETTYRLL
AIRECT b gttt .
o : W eae T . . .
o SN .‘
®OTI R N R SR T L e
ist) A .;t!’-a,:.;';.. K‘_4. AL

rov oy ; o
;::tl‘i‘\\u Vo e aplimdted

Ry viston
:‘Mcf fechnical I{nformstien 133

»

o A e R

LOGIC PROGRAMMING

1. Introduction

The area ot knowledge representation has received active
research interest recently as more powerrul knowiedge-based
systems have been developed. Such systems show potentiai 1in
several application areas, including database management systems,
decision support systems, and automatlc programming systems. A
variety Or techniques tor knowledge representation nave been
expiored; one oOr tne more pramising 18 the use OI resoiution
loqic,

Among the many problems which must be resoived betore such
approaches can be used in production systems 1S that Oor search
erriciency. CQurrent systems eitner nandie a variety or problem
structures at the cost of relatively unconstrained search oOr
constrain SsSearch at the cost ot rididly derined prooblem
structures. An additional search problem results trom the need
to expand the current small systems, which are primarlly in—core
systems, to much larger size.

2. Pralog

Prolog is a programming language based upon tne use ot
resolution Jlogic which provides a high level nonprocedural
mechanism tor writing programs and representing data. The Proliog
language is described in Warren et ai (1977), and tne underiying
logical theory is described in Kowalski (1974) anda Robinson
(1965) . Kowalski (1979) provides an extensive introduction to
logic programming witnh emphasis on Prolog.

The basic construct usea in Prolog is the clause, which
consists ot a series or terms, An example of such a clause 1s

grandparent(x,y) :- parent(x,z), parent (z,Yy)
The first term 18 the head; the rest make up tne body. If

ail ot the terms in the body are true, then tnhe head 1s true. A
procedure is a set ot clauses. A clause witn an empty body is
reterred to as a unit clause, Suppose that tne rollowing umt
clauses are added to the previous clause:

parent (Jim, Jane)

parent (Jane, Jenniter)

parent (Jane, John)

parent (Joe, John)

parent (Jim, Janice)

» ‘.AJ .

© e ————

POV

T e R s

ey TR

ey

o -

parent (Josie, Jane)

Then posing the goal grandparent (u, Jenmter) wiili tind
ailL or uennmirer's grandparents. FPosing the goal grandparent
(Jim, v) wiil find Jim's grandchiidren. Posing the goal
grandparent (u, v) wiil taind ali ot the pairs ot grandparents and
granachisdren known to the system,

Consider the tirst case given, that or rinding Jennmiter's
granaparents. The system attempts to show tnat tne head is true
by snowing that botn ot the clauses parent (u, Yy) and parent (y,
Jennifer) are true. (Bere x is replaced by u, and z is replaced
by Jenmirer.) It can do this by substatutung y = Jane and u =
Jim or by substituting y = Jane and u = Josie. ‘The process ot
rinding appropriate substitutions ro:r tne variables 18 rererred
to as unification, The process of finding an appropriate
unirication means traversing a Search space with many possibie
cholces ot clauses ana variable assigmments and 1ncludes tne
possibility ot backtracking it a particular patn does not work
out. It is aiso possible that no appropriate unirication wiii be
round,

The example given here 1s qute simple. More elaborate
examples can be tound in the rererences previousiy given, Prolog
can Dbe used for a variety ot applications ranging from
inteliligent databases to automatiC programming systems.

d. Lisp

Lisp is a list orientea language based upon tne lambda
calculus. Two Ot the many expository desCriptions are given 1in
Greenberg (1978) and Siklossky (1976). A briet sumary ot Lisp
development 18 given in Mciarthy (1978). Its predominanc use 18
in arctiricial intelligence work.

In Lisp, botn programe and data are represented as lists and
are not explicitly distinguished. For example, a (very sumple)
Lisp program to evalate the square root or 3.3 + (4.1 x 5.2)
could be written as

(SQRT (FPLUS 3.3 (FTIMES 4.1 5.2)))

This is a two item list; the second item 18 i1tseir a list,
when this tunction 18 evaluated, the multiplication in the inner
sublist 18 evaluated first, Then tne 3.3 18 added. Finally tne
square root 18 taken,

Lisp contains a variety of tunctions and special constructs,
including tnose tor taking aprt and putting togetner lists,
testing conditions, and manipulating mmbers and strings.

4. loglisp

Prolog and Lisp are not equalliy easy to use over a tull
range ot applications. For example, the grandparent example used
in the discussion ot Prolog would be much harder to write in Lisp
since a tunction which explicitly takes apart 118ts representing
parent inrormation would need to be written., On the otner hand,
the simpie Lisp calculation given would be much harder to write
in Prolog since real aritnmetic and square roots are much harder
to nandle in a logic context.

Loglisp is a system wnich combines tne advantages or botn
Prolog and Lisp. It has been developed under Air Force
sponsorasmap (RADC) by Robinson ana Sibert (1981) at Syracuse
University as an extension to UCI Lisp for the DBC-iv. In this
lanquage, Lisp is extended to alllow the use ot fogic
programming. The syntax and techniques are not quite tne same as
in the Prolog system, but the same basic capabilities are
provided, The Lisp features and tne logic teatures may be
intermiXeu, Or only one set of teatures may be used, So botn
pattern matching (as in Prolog) and function evaluation (as 1in
Lisp) may be easily done 1in the context of an integrated
language.

e e a—

LOGLISP PORTABILITY

l. lLoglisp Implementation

Lnalisp was originally implemented at Syracuse Umversity; a
description of this System is given in robinson and Sibert
(1981). It was implemented as an extension to UCI Lisp, a’
dialect ot Lisp 1.6, on the DEC-10 (Quam ana pitrie, undated;
Bobrow, Burton, and Lewis, undated). It has also been converted
to run under INTERLISP. (Schrag, 1982).

2. The ALISP Dialect of Lisp

ALISP is a Lisp dialect based on Lisp 1.5 and described in
The ALISP User's Manual (Univ. Mass., undated). It was developed
at the University of Massachusetts at Amherst on .ontroi Data
mainrrames. The rirst version ran on a (DC 3600/3800 under tne
UMASS tumesharing system., The current version runs on (DC Cybers
uncder the NOS operating system. In addition to basic Lisp
teatures, it provides a compiler, a 1limited programming
enviromwent (editor, file system, and pretty-printer), and
applications packages (relationai database system and graphics
routines).

Since the manual proved very dirticuit to use witnout an
index, one was constructed. It 1S given in Appendix A, (The
manual reters to its index, but it was not present and could not
be located.,) Since the reasability ot conversion trom UCI Lisp
to ALISP was being examined, a comparison List of functions was
constructed, It is given in Appendix B, 'This list Shows
tunctions present in each ot the languages and includes comments
on runction sumilarities and difterences. It can be seen trom
this list that there are substantial dirrerences between tne two
languages.

d. Lisp Dialects

There are many arailects of Lisp in existence. There have
been some etrorts at sctandardization within the Lisp community,
but these nave not met with overwheiming success (e.g. Marti et
ak, 1979; Steele et al, 1982). Wwhile the basic core or the
language is the same rrom dialect to dialect, the additionas
teatures provided as part of the system and the manner in wnich
the system 18 implemented can dittrer wadely. Such diversity 1s
not surprising and perhaps neaitny in an experimental language,
but it nas nampered tne use of Lisp in more production-oriented
environments,

Samet (1981) describes a conversion system to translate
programeé wratten in LISP 1.6 to INTERLISP which was motivated by
the need to convert a program used in a compiler testing system.
The conversion system was designed to run under eitner version Os

LISP. It depends primarily on pattern substitution techniques
and runction redetinitions to oonvert LISP 1.6 features to
INTERLISP, including most tunctions, I/0 functions, the escape
character, strings, names, and numbers. However, LEXPRs, macros,
arrays, and a tew tunctions were excluded from the conversion
system,

Samet classaried some problems as irreconciiable; these
included mainly problems witn ditrerences in data type
derinations, A working definition of an irreconcilable problem
in thas ocontext is one which could not be handled by a
straightrorward transtormation oOr wnich could not be handled
without run-time support. The conversions tnat were perrormea
were divided into those based on the externai rorm ot the program
and those based on the semantics ot basic oonstructs.

4. Software Convergion Studies

conversion ot sottware developed in one enviromment to
another enviromment 1s an important activity (U.S. GAO, 1977,
1980). Despite the extensive resources devoted toO conversion
errorts, littie tormal attention nas been pa:a to it. Most or
our Kknowiedge about sortware conversion 15 1nstituciOnas 1in
nature, based upon extensive experience,

Gilb (1977) defines sortware portability as "the ease or
conversion trom one enviroment to another; the relative
conversion C©ost Ior a given conversion methoa or algoritum.® He
measures portability as 1-(ET/ER), where ET is the cost to
transrer tne system to a ditterent enviromment, and ER is the
original cost of developing the sottware.

This measure ot portabiiity depends not only on the system,
but aiso on the two enviromments. The compatablity between tne
two enviromments can be measured as the average portability or
systems oonverted from one environment to tne otner. Gilb's
measures provide a measure of portabiility ana compatabiilcy
relative to a popuiation or tasks, but tney do not directly
address the question of predicting the etrort involved witnout
guidance trom previous experience witn tnose systems,

Boehm (1981) tackles this more dirricult question oOr
estimating the resources required tor conversion., His estimate
or oonversion ¢osts 18 based on calculating a value tor EDSI,
eguivalent delivered source instructions. This 18 estimated as

EDSI = (ADSI) x (AAF/100).
Here ADSI is the actual delivered sourCe 1NStructions in the code
to be converted, and AAF is an adapration aajustment tactor
calculated as

AAF = (0.40 x M) + (0.30 x O4) + (0.30 x IM).

AN D o Bl X e i

Here DM is an estimate ot the percent of the design modified, M
is an estumate or the percent of lines of code wich must be
modified, and IM is an estimate or tne percent or the originat
integration and testing wnich must be perrormed on the converted

sottware.

) RIS LT IO g R T

The total oonversion etfort in man-months can then be
estimated as

MM = 2.4 x (EDSI)**1.05.

Boehm includes an extensive discussion or cost driver tactors
wncih can be usd to take into acccount such ractors as system
complexity, reliability requirements, programming language, and
statr experience,

Cbviously these estimates, espeCiarly ror DM and IM, must be
in large part subjective. However, this approach provides a
structured tramework for the problem of estimating sortware
conversion ertort wnose worth 1S supported by extensive
experience.

2, Specific Problems

A ~uwer of incompatability problems betweeen UCI Lisp and
ALISP were encountered. These were categorized as enviromment
1ncompatabilities, feature ancompatabilities, syntactic §
imncompatabilities ana fundamental lncompacabilities.

The envirommental incompatabilities included

character set

The character sets used in tne two systems are ditterent
botn 1n size and in encoding. This created some delay in even
reading a Loglisp tape. Furthermore, some characters used for
special purposes 1n Loglisp are rererred to by tneir encoaea
vaiue (CHRVAL).

editor
Both systems included an editor as part of the enviromment.
These allow both structure editing and pattern matching. However,
the commands used are difterent. The editor 1s used by Loglisp 1in

order to handle editing ot knowledge bases. Formatters are
provideu 1n botn systems, but ditrerent runction names are used,

lile gystem

Both dialects of Lisp provide functions to ailow access to
the systems tile system in order to tacilitate rile nandling witn
the Lisp system, The capabijities provided are simiiar, but tne
unueriying file systems are not.

C st e .,

Peature incompatabilites included
dack of function correspondence

There are many runctions present in UCI Lisp wnich nave no
corresponding runctions in alLSIP. For tne most part tnese can be
nanaled 1n a straightrorward manher simply by writing new
runction detinitions. Appendix B oontains a list ot tne
runctions present in botn Lisp dialects.

macros

UCI Lisp provides a macro capability; ALISP does not.
Features implemented using macros tnus need to be rewritten,

Syntactic incompatabijites included

Ancongigtent runction pames

In many cases airrerent names were used in tne two dialects
tor the same tunction. Examples include ABSVAL (ALISP) vs. ABS

(UCI Lisp) and uIFF (ALISP) vs. DIFFERENCE (UCI Lisp). These
problems are also quite straightrorward to handle by renaming.

inconsmistent rupnction syntax
I a2 few cases the syntax used tor runctions was not
consistent. For example, the parameter order ror MAPC is

ditterent. - Although handiing these situations 1s
straightrorward, they are more subtle since they appear correct.

Fundamentai incompatabiliites included
handlang of tunction detimitions

I ALISP function derinitions are stored in tne vaiue ceisi
or tne appropriate iiteral atoms, In UCI Lisp tunction
detinitions are stored on tne property list, Thus tunction
derimtions are easier to change on tne riy in UCI Lisp. Saince
this is done 1n Loglisp in order to switch between Lisp ana
Logic, substantiai conversion problems are presented.

It should be noted that, witn very tew exceptions, tnese
problems are inherent in tne dialect ditterences and are not due
to tne design and implementation or oglisp. It would be
extremently dirticult to implement a System witn complex
functionalicty without making full use of the teatures avaiiable.

N

by e,

WV & A = -9 S SudiodliSh, L Shade b

ey

6. language Similarity

The similarity between ALISP and UCI Lisp can be examined by
comparing the tunctions avaiiable in the two languages. A simple
measure of such simiiarity between two programming languages 1s
given by

SIM=OW/ (NL + N2 - V)

where Nl is the number of tunction names used in one language, N2
is the number of tunction names used in tne otner language, and
OV (overlap) is the number of tunction names used in botn
languages. This measure ranges between 0 (least simiiar) ana 1
(most similar).

There are a humber of tactors which are not taken into
account by this measure, Function names in Lisp and otner
progranming languages are not used with equal trequency, and tne
most rrequent ones should pernaps be given nigher weignts, Also,
no distinction is made between a tunction name used for a
tunction present in one language but not tne otner and a runction
name used for a tunction which 1s present in botn languages but
cailed by dirterent names.

There are 303 function names tor UCI Lisp ana 227 tor ALISP;
these are given in Appendix B. There are 80 overiaps, including
most of the "core®™ Lisp functions. ‘The simiiaraty is 0.18, It
is interesting to note tnat tne simiiarity computed by tne same
measure between COBOL and Ada is 0.32 (Eastman, 1982). Sc tne
keyword similarity between two dialects of the same ianguage can
actually be less tnan tnat between two distinct languages,

1. Estamate or Conversion Effort

The formulas given in Boehm were used to estimate tne
conversion eftort required tor a tull conversion of Loglisp to
the aLISP system. The Loglisp system contains approximately
2,000 lines of code, as formatted py tne pretty-printer. The
tactors uM and IM are estimatea at 30% to ailow ror the change in
the system enviromment and function definition mechanism as well
as the more straightrorward changes, M is estimated at 50%.
With these tigures, EDSI is estimated at 720 ana conversion
errort in man-months at 1.7. The tape conversion required about
0.25 MM (Franson and Hasiup, 1981), and tne conversion ot a
mimmal core system required about 0.5 MM,

Of course, these tigures provide only a very rough estimate
or oonversion efrort., ‘They were developed based on experience
witn systems written in other languages, and it 1s not at ali
clear how well they apply to Lisp. Since programming in Lisp 1s
more complicated than programming in CQOBOL or FORIRAN, it s
likely that these rormulas will underestimate tne errort

required. Also, the concept of "line of code” is not as welil
detined for Lisp as 1t 1s tor many other languages since programs
are mot divided into statements in the same way as I0r many
languages. The approximation used here was tO siumply use tne
lines of text provided by the prettypranter; however, the line
breaks could have been done 1n many ditterent ways. It would be
highly desirable to have a working detimition ot source
instruction tor Lisp that could be used 1r cuch estamations and
to have data validating their use in a Lisp enviromment,

TSRS . A5 S Y A

FILE ORGANIZATIONS FOR LOGIC PROGRAMMING

d. Introduction

The clauses in a 10gic program can be divided into tne two
categories ot rules and facts, A fact is detined here as a
clause with no body and no variables. A query is a clause
containing only a body. All other clauses are rules. So a tact
will be at the end ot an inference patn and wiil not lead to
turtner steps. A rule contains eitner variables Or 1lnrerences
(or both) and can lead to a turther umiriication step. This
division follows that made by Klanr (1979) and corresponas
Ciuseiy to similar (but not necessarily ildenticai) distinctions
made by others (e.g. unt and non-umit clauses, ground ana non-
ground clauses, extensionai data base and intensionai data base,
assertions and implications.)

Searching in logic based systems can tnus be broken down
into two distinguishable but related searching problems: rule
selection and fact retrieval, Rule selection involves tne choice
ot the next clause or goal to use in the inference process. Fact
retrieval 1involves locating a particular clause, However, the
distinction is not absolute., Located facts are used in tne
interence process, and selecting rules involves finding them as
well. Fact retrievar 1is generally discussed witnin tne context
or tne retrievai paradigm used in tne database area; overviews
are provided in Kauth (1977) ana Wiedernoid (1977). Rule
selection talls within the heuristic search paradign used in
artiticial intelligence. In most current work, these two
searching problems are kept separate; this approach appears to be
more erricient tnan intermixing them,

2. Database Applications

The relacive importance or rule selection ana tact retrieva.
aepenas 1n large part on the application. Some applications,
such as database systems, have relatively tew rules. Others,
such as theorem proving systems, have relativeiy more rules.
Since searching problems in unrestricted resolutions sytems are
nhot yet well understood, it 1s reasonable to consider only a
subset of such problems. One way to narrow the problem 18 to
consider application areas ot interest to see what the
amplications ot their speciric characteristics are tor search
strategies,

Database applications are oonsidered here since use ot
artiricial intelligence techniques can provide databases witn
more riexibility than 1s possible in current commerciai systems,
A possibie definition of an intelligent data base is that it 18 a
database from which implicit information wnich is not explicitly
stored can be retraieved. One well-studied class of Buch
databases aliows the use ot logical inference. Such inferentiai
databases are discussed in Gallaire and Minker (1978), Klahr

10

. —— -
- C- - B -I ui‘ : .y . r.sﬂ,;,..n.a' LA A 1

(1979), and Minker (1978). (It is possible to have other types
ot inference, e.g. Statisticai,)

Some of the characteristics to be expected of an inferentias
database based on logic principles are

a. Low ratio ot rules to tacts

b. Low level ot most proots

c. Possible need for best match and range searches

d. Rapid response tor interactive use

e. Possible need for extensive updating

t. Potentiaily very large size

g. Varying degrees of data accuracy and timeiiness

h. Not ail reilevant data included (open world assumption)

These characteristics are not necessarily tound 1in other
iogic application aras. For example, none are likely to be true
or theorem proving applications. ‘These ractors intiuence tne
acceptable searching strategies.

3. Limitations or Hashang

C -rent artiticial intelliigence systems depend heavily on
hashing. When it 1s treasible, hashing is extremeiy rast ana is
orten the method ot cholce. This reliance upon hashing has
aliowed researchers to concentrate on tne proplem structure and
heuristic search without getting bogged down in the detaiiss ot
tact retrieval. And this approach has not created any proobiems
Ain the rejatively small in-core sysStems predominant in artiriciai
intelligence work. However, hashing has some limitations which
may cause problems in such systems; thse involve update problems,
best match and range searching, and locality of reference.

Hash 1ndices degenerate unaer update to a greater extent
than many other index systems (e.g., B-trees). ‘This requires
more garbage collection and possible rehasning., Whiie tne
pointer chasing involved in Lisp garbage collection does not
present a problem in in~core systems, it may in systems tnat
involve storage over several levels of memory hierarchy.

A second problem 18 that, unless tnhe hash tunction used 1s
order preserving, it is very hard to handle situations invoiving
best match or range searches, The respond to such a request, the
gystem is reduced to hashing on ali possibie values that mght
tall withan the desired range or to a sequential search, Index
techniques which preserve oraer intormation are much better able
to handle such questions.

11

IUPREUH O SOV

ORI

A M W e s S

Management of a memory hierarchy 1s far more ertective when
there 18 a high degree ot locality of reterence. This aliows tne
I/0 overhead to Dpe spread over a greater number Orf accesses.
large systems will presumably depend on tne use ot a memory
nierarchy and will need to use storage techniques which preserve
locality ot reterence.

It would be desirable to exploit the advantages or hnhashing
even i1n a much larger system, However, mechanisms which preserve
orader and locality will be required.

Almost all of the work on selection of file orgamizations
has tocused on situations in which the workload to be handled is
both precisely known and stable, Under tnose conditions, there
are many aigoritnms know which can be used to determine optimai
riie orgamizations and/or parameters. However, these approaches
are not necessarily as userul when the workload is neitner
precisely known or stable, as is to be expected in an inteiligent
database,

In such a context only partiai. intormation wiili be avaiiable
about the classes and frequencies of queries which wiil be posed
to the system, the tields whach wiil be used in queries, and the
trequencies with which those rieids wiil be used. The rejative
importance ot update and retrievai is also unlikely to be known
precisely.

Consider a ground relation which has tive possible tields
whach could be used for indexing. If the trequencies with which
the ditterent combinations or tieilds wiil be used 1n retrievais
and update are known, it is possible to determine a reasonable
solution to the problem ot determinang wnich or the tieids should
be indexed (e.g. Anderson ana Berra, 1977).

However, if 1little is known about the workload that tne
system will handle, such algoritnms are not directly applicable.
They must be suppiemented by otner approaches, wulch mght
include worklad sampling, risk analysis, statistical analysis,
possibility theory, and expert systems. The system can maintain
gtatistics on reguests posed over time in order to estimate tne
workioaa at a given time. This information can be used to select
an optimal Or near optimal oonfiguration based on ths
intormation, However, this may not be adequate ir the workload
is highly variable, The use of logic procedures to anaiyze
useage data and determine appropriate storage organizations 1s
consistent with the goal of an integrated logic system.

It wiii be difticult to extend the size of current
inteilient systems by one or more orders of magnitude witnout tue
use or ditterent harcware architectures, The are two main
directions in this architectural work: the use ot multiple

12

B Al e s 11 S——

A it e SRS s e b e =

processors and the use of content addressable (or associative)
storage. Multiple processors, which could be in a distributed
system, ocould be used to explore, in paraiilei, aiternate patns
throuyh the search space, Associatie storage can be used for
tast retrieval. (Schrag 1981) describes a possible ..U
architecture tor handling logic database applications. Even ir a
computer architecture well adapted to these types or applications
18 used, it will still need to be used etrectively. So storage
organizations will contiue to be a problem even though tne
problem parameters will change.

13

T TR yW T

I DT M R+ W £ k- e one oo

A LOGIC DESIGN FOR A DOCUMENT RETRIEVAL DATABASE

1. .information Retxieval Systemg

The term inrormation retrievai 1s wideliy used in botn a
broad sense and a narrow sense. In its narroser meaning, an
information retrievai system is a reterence retrievas system, It
is this use which wiil be considered here. Such systems provide
l1sts of reterences to documents in response to user yueries
paseu on topics, authors, dates or publication, and simiiar types
or information. Intormation retrievar systems ditrer tram
database management systems tor tormatted data 1n thelr emphasls
on textual data,

The index terms used to retrieve tne documents may be chosen
trom a carerully controiied thesaurus of aliowed terms. Or the
inportant words from the title, the abstract, or the entire text
may pe used in a less controiied situation., Normalization to a
standard torm is generally ailowed in order to eliminate
variation caused by plurals, verb endings, and other sutraxes,
In current commercial systems, boolean combinations or 1index
terms are generally used in queries. More eiaborate matching
tunctions have been used in experimental systems, and research
indicates that they might be more ertective than oconventionai
boolean matching.

Information retrieva. systems are in comon use today. They
range from extensive comercial services, such as Lockheed's
+»JALOG system, which provide access to dozens ot ditterent
databases (collections of documents) to small systems intended
tor personali use to experimentai systems., An introduction to
t?;g:;n)muon retrieval systems may be found in Salton ana McGill

Evaluation of information retrievai systems is based on
petormance ettrectiveness as well as efriciency. The response to
a query tor documents on a particular topic wiil generaiLly
mncilude same 1tems which are not reievant to the query and taii
to include some items which are reilevant. The extent ot such
taiiures 18 measured by recall and precision, Recall is detined
as the fraction of the relevant documents wnich are_ retrieved.

Precision is defined as the traction of the retrieved documents
wnich actually are reievant,

2. Databases Implemented in Logic

Extensive work has been perrormed on tne application ot
logic to databases. The volume edited by Gaillaire and minker
(1978) contains many pramarily theoreticai papers on the subject,
Dahi (1982) describes a database application witn a Spamsh
language intertace which was implemented in Proiog. The example
application is a amall employee database,

14

BARY. vy

AT AT 45,7 A 7 W g, VBT AR > [T SPRRP

TN AT rm g PR

To describe a database, Dahi ues domain detimitions, which
also include hierarchicai reiationsnips, reiation declarations,
to serve as relation templates, and relation defimitions, which
include the actual data. Coehio (1979) describes an adaptation
Ot tnis approach to Portuguese.

d. Basic Features of an IR System

Documents in an information retrievair system need to be
described by their contents and by tne appropriate bibiiograpnic
information, A possibie set of relation declarations tor tnis
inrormation 1S

title (document tatle)

author (document author order)
date (document publication-date)
publisher (document publisher)
topic (document concepr)

The first four relations (titie, author, date, and
publisher) provide the basic bibliographic information tor tne
document., Here it 1s assumed that, for a given document, tnere
1s only one title, one publication date, and one publisher.
There may however, be more that one autnor. The order 1s
preserved tor an author so tnat it 15 possible to tell tne order
in whch the authors were listed,

The domain for document 1s assumed to be a set ot unique
document identitiers. It is not possible to reliably identiry a
document by author, by title, by publisher, or even by date; so a
umique identirier 18 required, (The need for unique identirier
tor tne various entities about wnich information 18 stored has
been glossed over in work on logic databases.)

A document may contain intormation about many topics, and a
topic may be discussed in many documemts. It is possibie to
obtain all the topics contained in a document or ail tne
documents discussing a topic by posing the symmetric queries:

<= topic (document Xx)
<= topic (x concepc)

where either a specitic document or a specitic concept 1S
1ndicated,

A bibliographic description of a document may be detined
using

15

description (u v w x) <~ tatle (uv),

publisher (u w),
date (u x)

<= author (document x y)
<~ descraption (document v w Xx)

Usually a combination ot topics 18 specified in a query
rather than a single topic. Boolean gqueries invoviing tne
operators AND and OR cowid be readily handled using the Loglisp

boolean operators or other extralogical teatures to avoid
repetition in query specitication.

4. QOther Features
Retrieval pertormance can be enhanced by tne use or Synorym
information. FEven 1t one term 1s used in a gquery, documents
classitied with synoryms of that term can be retrieved. This
teature oould be hardled by the tollowing ground reiation
synonym (wordl word2)

and the tollowing rules
synorym (x y) <- synomym (y X)
synonym (x y) <- synonym (x z), synonym (z y)
topac (document x) <- topic (document y), synorym (x y)

A more elaborate thesaurus could be implemented to handle
hierarchical relationships.

Concept weights are rrequently used in order to indicate tne
relative importance ot topics aiscussed in document. Such
concept weights oould be handled by using an expanded ground
reiation

topic (document concept weight)

A query which request documents wnich are about a speciric topic
can then specity a cutorr weight

<~ topic (document concept X), greater (x cutotr)

Since, in most systems, ooncepts witn zero weights are uniikeliy
to be explicitly entered, testing the weight to see ir it 1s
greater than zero should be unnecessary.

shere is same evidence that retrieva. perrormance <can pe
ennanced by using matching functions other tnan swmple booliean
matchig. Suggestions include the use Oor simiiarity functions
based on vector models ot documents and queries and the use ot
tuzzy Set theory. Such measures could be implemented in logic

16

but might be more easiiy implemented in extralogical features
such as those avaiiable in Loglisp.

The closed worid assumption that ail reievant information is
present 1n the knowledge base 1s not viable 1in information
retrieval systems., It is generally accepted tnat a document
may contain intormation about a concept even tnough tnat concept
has not been used to index it. Thus faijure can not be
interpreted as negation.

REFERENCES

Henry D, Anderson ana P. Bruce Berra, "Minimum cost seiection ot
secondary indices for formatted tiies-, ACM Transactions on
Database Systems, Vol 2, No 1, March 1977, pp 68~90.

Robert J. Boorow, Richard R. Burton, and Daryle Lewis, UCI LISP
Manual, undated.

Barry W. Boehm, Software Engineecring Econamics, Prentice—Hall,
I E ‘ewood Clitts, New versey, 1981.

Helaer Coehlo, "A program conversing in Portuguese providing a
library service™, PhD thesis, University ot Edinburgh, December
1979.

Veronica Dahli, "On database systems development tnrough iogic”,

ACM Transactions on Database Systems, Vol 7, No 1, March 1982, pp
102-123.

C. M. Eastman, "A lexical anaiysis of keywords in high level
programuing languages®, submitted tor publication,

John Franson and Lee Haslup, "“Implementiny Loglisp at FSU",
Florida State University, 1981.

Herve Gallaire ana Jack Minker (editors), [Logic and .ata Bases,
Plenum Press, New York, NY, 1978.

Tom Gilb, Software Metrics, Winthrop rublishers, Cambridge,
Massachusetts, 1977.

P. Klahr, "Conditional answers in guestiomanswering systems”,
Proceedings of the Sixth International Joint sonterence on
Acfuaticias Intelligence, Yol 1, pp 481-483, 1979.

D. E. Knuth, The Act of Computer Prograpming, Volume AIL:
S _rching and Sortung, Addison-Wesley Publishig Campany, Reading,
Massacusetts, 1973.

Robert Kowalski, Logic for Problem solving, Elsevier wnorth
Holland, Inc., New York, NY, 1979,

Robert Kowalski, "Predicate logic as programming language", Proc
.517:2 24, North Holiana Publishing Co,, Amsterdam, pp 569-574,
4.

J. McCarthy, "History of LISP", SIGPLAN Noticeg, Vol 1, No 8, pp
217-224, 1978.

J. Marti, A, C, Hearn, M. L. Griss, and C. Griss, "“Standard LISP
report®, SIGPLAN Notices, Vol 14, No 10, October 1979, pp 48-68.

18

uv. Minker, "Search strateqy ana selection tunction tor an

inferential reiationai system", ACM Transactions oD .dtabase
Systems, Vol 3, No 1, pp 1-31, 1978.

Lynn H. Quan and Whitfieid Diffie, Stanford LISP 1.6 Manual,
Stanford University, undated.

J. A. Robinson, "A machine oriented logic based on tne resoiution
principle®, Journal of the AM, Vol 12, pp 23-41, 1965.

J. A. FRobinson ana E. E. Sibert, "Logic programming in LISP",
RADC~TR-80-379, Vol 1, Rome Air Development Center, Grirtiss air
rorce Base, New York, 198l1.

Gerard Salton and Michael McGill, Introduction to Modern
I formation Retrieval, MoGraw-Hill pook Company, New York, NY,
1983,

Hanan S=met, "Experience with sottware conversion”, Software—
Practice and Experience, Vol 11 105-1069, 1981.

Robert C, Schrag, "logical data base machines", Syracuse
University, 198l.

Robert C. Schrag, personal communication, 1982.

Quy L. Steele, Jr. et al, "An overview ot Common Lisp", AM
Symposium on Lisp and Functionai Programming, 1982.

U. S. General Acocounting Office, "Millions in savings possible in
converting programs from one computer to another", FGMSD-77-34,
1977 (reterencea in U. S. GAO, 1980)

U. S. Generai Accounting Office, "Wider use ot better computer
sortware technology can improve management control ana reduce
costs®, FGMSD-80-8, 1980.

University of Massachusetts, ALISP Reference .anuai, University
or assachusetts at Amherst, undated,

D. H. D. Warren, L. M Pereira, and F. Pereira, "PROLOG—th
language and its implementation compared witn LISP", SIGPLAN
Noticesg, Vol 1, No 8, pp 109-115, 1977.

G. Wiederhold, Database Design, McGraw-Hill Book Company, New
York, NY, 1977.

G. A. Wilson ana J. Minker, 'Resolution, retinements and search

strateqies: a comparative study®, IEEE Transactions on
Camputerg, Vol C-25, No 8, pp 182-801, 1976.

19

N P € R I T T P Y YR SRV Y6, = o

HE T

e CeLEL L

et G e

APPENDIX A

INDEX TO THE ALISP REFERENCE MANUAL

ALISP INDEX

* 48

absval 108
addel 102
addgt 90
addit 90
addl 108
and 76
append 96
apply 54
apply* 54
argn 59
array 116
arrayp 117
arrayl 116
arrtype 117
ascil 149

atiength 39
atmhash 33

backprn 120
backtrk 119
bnum 116
break 131

Ceesel 95
car 95
cars 95
cdr 95
cdrs 95
close 146
clrbit 111
comment 170
compile 199
conc 97
concons 96
cond 75
cons 96

cshift 110

dcopy 98
de 63
decfile 174
detprop 93
deletel 102
a 63
aiff 107
dims 117
dispose 147
divide 107
do 79
docons 81

21

a2 o et A o . s

T Y

ALISP INDEX

echo 11,150
edit 178
ettace 102
entry 138
eofmark 153
eotskip 153
eofstat 152
eorr 9
eolw 25

eq 83

eqp 84

egs 114
equal 88
err 124
errprin 120
errset 121
esnirt 110
evalL 45,53
evalquote 45
exit 49,138
exp 109

filestat 145
fix 106

fixp 106
flambda 57
float 107
floatp 106
fntype 65
frunno 145
fuzz 86

gc 14
genchar 7
gensym 37
get 93
gettun 65
getval 42
go 77
greaterp 87
grinua 168
gts 114

haitpri 30
hprnum 30
hw 116

if 7
illegal 40
inbase 15
initfile 164
input 164
intadd 90
intern 115
inimact 9

iase

22

ALISP INDEX

label 60
lambda 57
lap 204
last 95
length 95
lessp 87
list 96
listtile 168
litp 36
lnum 116
load 154
log 109
logand 110
logical 107
lognot 110
logp 106
logor 110
logxor 110
les 114
local 147

mapc 71
mapcar 71
mapcon 71
mapconc 71
mapl 71
maplist 71
max 87
memb 83
member 8
min 87
minus 108
minusp 87

nconc 101
mi 37
normtab 152
nuii 37
numberp 106

oblist 33
oddp 87
open 144
or 76
outbase 16
outpuc 165
outputa 165
outunit 24

pack 39
packl 32
pagetile 2
paramtl 141
paramgc 141
paramti 125

23

ALISP INDEX

plist 34,42,93
plus 107
plusp 87
pprine 177
pprant 177
prainarray 117
pranb 32
prinbeg 70
prinend 24,30
prinlen 30
print 25
prinl 30
prog 77
progn 79
prampt 10
prop 93
purge
purgfile 167
put 93

gsetq 40
quotient 107

randy 110
read 12
readarray 117
readbeg 22
readch 23
readend 22
readent 22
readlen 22
readnb 2
readném 23
readpk 23
remainder 12
remob 34
remprop 93
repeat 8l
return 77
reverse 99
rewind 152
rplaca 100
rplacd 100
runtame 126

save 154
selectq 76
set 40
setbit 111
setq 40
sin 109
slashes 152
special 33
aqrt 109
status 13

24

ALISP INDEX

strcars 113
strcdrs 113
strconc 114
strtina 114
strtest 114
supl 108
sys 45
sysin 47
sysprin 48
sysout 47

teread 22
terpra 25
times 107
togbit 111
trace 135
tracflg 135
tstbit 111
ttychar 11

unitnos 145
unpack 39
untrace 135
vailuep 42

wipe 34
wipelist 34

2erop 87

APPENDIX B

:
:
g
:
i
m

26

acos (u)
addl

alist

and= (u)
apply
apply= (u)
arg

array

ascii
asin
assoc(u)
assoo= (u)
atan (u)

atom

bakgag
base
bignum

boole

bpend

bporg

break

breakl (u)

g:oakd (u)
eakexp (u)

breakin (u)

breakmacros (u)

brokenfns (u)

Coaeol
car

odr

chret
chrval (u)

clrbfi (u)

argn
array
arrayl
arrayp

arrtype
ascii

atlength
atmhasn

backprn
backtrk

logand, logor, logxor

break

c..'.r
car
cars
cdr
cdrs

close

2?7

.&F‘

[VY PN

copy (u) copy
copyfile
co8 (u) 08
cosd (u)
cosh (u)
csym
cshatt
doopy
dat (u)
dadtin
ddtout
de de
decfile
detprop detprop
deletel
deposit
af at
dift ditterence
ditterence ditt
dims
dispose
divide divide
dm
do
docons
dremove (u)
dreverse (u)
drm (u)
dskin (u?)
dskout (u)
damn (u)
dsubst (u)
echo
ed
edfun
edit
editcomsl (u)
editdetault (u)
edite (u)
editt {u)
editeinap (u)
oditens (u)
edittpat (u)
editl (u)
editp (u)
28

s e

UCI LISP

editracetn (u)
editv (u)
editye (u)

eq

equal

err

error (u)
errse (u)
errset

eval

evalv (u)
examine
exarray
excise

exp (u)
explode
explodec
expr

rexpr
filein
Ilienames

Iix

fixla
fixnum

tiatsize
tiatsizec (u)
float (u)

tionum
torce
tnabrkpt (u)

free (u)
freelist (u)

fsubr
tunarg
function

ALISP

ettace
entry

eorskip
eofstat
eoLr
eoiw

egs
err
errprin

errset
eshirt
eval
evalquote

exit
exp

tijestat
tix

tixp
flambda

float
floatp

fntype

frunno

functionay

go
greaterp

grindet
grinl (u)
grinprope (u)

hghcor (u)
hghend (u)

hghorg (u)

ibase
identatier

inc

initfn
initpramp (u)
input

integer
intern

label
lambda

lap (u)
laplst (u)
last
lastword (u)
lastpos (u)
lconc (u)
14iff (u)
length
lessp
lexorder (u)
lexpr

tuzz

genchar
get
getfun
getval

greaterp
grind

ir

lllegal

ibase
initfile

input

intadd

intern
inumt
label
lambda
lap

last

length
lessp

30

UCT LISP

linelength
lineread (u)
list
litatom (u)

load
log (u)

1sh
1lsubr
1subst (u)

macro

mapc

ALISP COMMENTS

list
listfile

litp

1num

load

log

logand boole
logical

logp

logor boole
logxor boole

lts

mapc ditterent parameter order

P NN TR

L e ey g

number
nunberp

oblist

or
or= (u)

outc
outpuc

outval (u)

patom (u)
P3ilne

prevev (u)

prinl

pranc

print

printiev (u)

prog
progl (u)
prog2
progn
prompt (u)

numberp
oblist

open
or

output
outputa

outunit
pack
pagetile
paramt
paramgc
paramcy
plist
plusp

pprine
pprant

pranl
prinarray

Prinbeg
prinend

prinlen
print

prog

progn
prampt

UCI LISP

random (u)
read

readch

readlist

readp (u)

ree (u)
remainder
remob
remove (u)
remprop

reset
retrrom (u)
return
reverse

rplaca
rplacd

8a880C
selectq (u)
set

setarg
setchr (u)

sin (u)
sind (u)
sinh (u)

speak
specbind
special (u)
specstr
spdirc (u)
spdipt (u)
spdlrt (u)
spredo (u)
spreval (u)
sprint
sqrt (u)

stkoount (u)
stkname (u)

ALISP QOMMENTS

randy
randy random

remainder
remob

remprop
repeat

return
reverse
rewind
rplaca
rplacd
runtime

uses eq
save

selectq

set

setbit

setq

sin

slashes

special

sqrt
status

r————— e

UCI LISP

stknen (u)
stkprt (u)
stksrch (u)
store

stringp (u)

supbl
sublis (u)
subpair (u)
subr

subst

sysclr (u)

t

tab (u)
tailp (u)
tan (u)
tann (u)
toonc (u)

terpri
time
times

trace
tracedfns (u)
tracet

ttyecho (u)
tyi
tyo

unbound (u)
unbreak (u)
undolst (u)
unfind (u)

untrace (u)
untys (u)
upfindlg (u)

ALISP

strcars
strcdars
stroonc
strrind

strtest
subl

sysin
Sysprin
sysout

teread
terpri

times
togbit

trace

tracflg
tstbit
ttychar

unitnos
unpack
untrace

valuep
wipe

3¢

UCI LISP

xcons
zerop

eof'

b

*amake
*append
*dif
*eval
*expand
expandl

*getsym
*great
*]lcall
*less
*max (u)
*min (u)
*nopoint
*plus
[*putsym
i *quo
: *rset
»times

—_—

*function

ALISP

wipelist

zerop

35

