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Introduction

This interim report constitutes a summary of research performed under

Grant AFOSR-81-0047 during the year beginning October 1, 1981. First we

present a list of the personnel involved in the research effort. In the

next section we present a summary of the research results that have been

achieved. Then in the following section we briefly comment upon the research

in progress. This is followed by a list of publications supported during

this grant period.
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Summary of Results

In this section we will present a brief summary of our research results

published after October 1, 1981. In the following section we will give a

brief overview of our research in progress. Then in the final section we will

present a list of publications supported by the Grant AFOSR-81-0047 since

October 1, 1981. The references in the present section are keyed to the publi-

cation list in the last section.

" Much of our work during the previous grant year was concerned with quantiza-

tion theory. Quantizatlon forms the heart of analog to digital conversion and it

is a key element in virtually all of digital signal processing.. An N-level

k-dimensional vector quantizer is a mapping Q: ]Rk- ]Rk which assigns the input

vector x to an output vector Q(x) chosen from a finite set of N distinct vectors

{yi :Yi e IR k i=l,2,...,N}. Generally, the quantizer input is modelled as a

random vector X described by a k-variate distribution F. A measure of quantizer

performance is the distortion function

D(QF) = JC[x - Q(x)]dF(x),

where C(.) is an appropriately chosen cost function, for example, C(x) = 11x112 ,

where I("11 denotes the Euclidean norm on uR k, results in the mean squared error.
Thus the quantlzlnq operation entails a coarseninq or reduction of available

information, in the sense that all points in the set Ri -{x: Q(x) = y1
) are

identified toqether.

Although quantizatlon theory has been a subject of interest for many years,

much remains to be done in this area. The difficulty in this area is compounded

by the fact that some of the commuonly held beliefs are actually misconceptions.

For example, it has often been assumed in the literature that in the scalar

case a minimum mean squared error optimum quantizer for a symmetrically distri-

buted random variable will be symmetric (i.e. the quantization levels will be

symmetrically distributed about the origin). In [10] we gave the following

result for scalar quantizers.

Theorem: Let the cost function be given by C(x) - (xlr for some positive

r. Let N be a positive even integer and let f0 be a given symmetric density

function with finite r-th absolute moment. For any given £, 0 < e ( 1, there

iI
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exists a symmetric density function h such that for the mixture density

(l-)f 0 + ch, no optimal N-level scalar quantizer is symmetric.

An open problem.in the subject of quantization theory had been the exis-

tence of optimal quantizers (i.e. could the infimum over all N-level quantizers

be achieved?). In (15] we showed that if C(x) = Co(lixtl), where Co(t) is non-

neqative, real valued, nondecreasing for t > 0, and lower semi-continuous, then

an optimum N-level quantizer exists for any positive integer N. In [10] we

extended this result to the case where if Co(t) is non-negative and non-decreasing

for t > 0, then a necessary and sufficient condition that, for any N and any

distribution function, a minimum distortion N-level quantizer exists, is that

CO(t) be lower semi-continuous. Also in [2] we showed that if the distribution

of the random vector X is continuous, then for any cost function C(x) = C0(0 xli),
where Co(t) is nonnegative and nondecreasing for t > 0, a globally minimum dis-

tortion N-level quantizer exists for every N. For example, the well-known Cantor

distribution is continuous (although singular with respect to Lebesgue measure);

nevertheless, any such cost function yields a distortion that can be minimized.

In [1] and [17] we investigated some convergence properties of sequences of

quantizers (and as a side result we established existence of optimal quantizers

via convergence arguments). Specifically, we were concerned with the following.

Suppose that a sequence {F n} of probability distribution functions on k con-
verges weakly to a distribution function F. When does the sequence of optimal

quantizers' {Q n} for the Fn 's converge to an optimal quantizer Q for F? When

does the sequence of distortions D(QnFn) converge to D(Q,F)? In [1) and (17]

we discussed conditions under which this convergence can take place. In recent

years much work has been done to investigate design algorithms for optimal quan-

tization. A popular approach is to use numerical techniques to successively

improve on a sequence of sub-optimal designs using conditions which are necessary

(but not sufficient) for a stationary point. Linde, Buzo, and Gray ("An Algorithm

for Vector Quantizer Design," IEEE Transactions on Communications, Vol. COM-28,

pp. 84-95, January 1980) recently presented an algorithm (essentially a fixed

point algorithm) for quantizer design that handles arbitrary multi-dimensional

distributions and very general distortion measures, and they conjectured that

this algorithm would converge to a global minimum but were unable to prove it

rigorously. In (1] and (17) we proved convergence of this algorithm for quantizer

design.

In (6] we considered asymptotic properties of the r-th power distortion,

. .. .........



i.e. {I1 X-Q(X)Ilr1, associated with quantized k-dimensional random variables.
Subject only to a moment condition,we showed in [61 that the infimum over all

N-level quantizers of the quantity Nr/k times the r-th power distortion measure

converges to a finite constant as N * =. This result might be utilized in the

following way. Let QN denote an optimal N-level quantizer. How big should N

be so that the r-th power distortion is acceptably small? Since

Nr/k i X-QN(X)Ir) k, if N is sufficiently large we might invoke the approx-

imation E{IlX-QN(X)1lr) - k N r/k. Notice that our work In [6], where we con-
sidered an example involving the Cantor distribution, stands in marked contrast

to the following statement, taken from Yamada, Tazaki, and Gray ("Asymptotic
Performance of Block Quantizers with Difference Distortion Measures," IEEE

Transactions on Information Theory, Vol. IT-26, pp. 6-14, January 1980):

"The initial fundamental assumption in all studies of asymptotic quantization

is that the probability density p(x) is sufficiently 'smooth' to ensure that

p(x) is effectively constant over small bounded sets."

In the context of scalar quantizers, any quantizer can be realized via

the companding approach; that is, a strictly increasing nonlinearity (the com-

pressor) mapping the reals into [0,1] followed by a uniform quantizer on (0,1

followed in turn by the inverse of the first nonlinearity (the expander). In

[16) we investigated the situation where the output of the uniform quantizer is

tranimitted through a noisy channel and the output of this channel is then put

through the expander. The compressor was designed taking into account both

the effects of quantization errors and channel errors. Then in (3] we considered

a slightly different approach to companding, where the compander was constrained

to be piecewise linear. We designed the (asymptotically) optimal compander sub-

ject to the constraint that it be piecewise linear, and we investigated several

properties of such piecewise linear companders.

In [11) we investigated an existing method (E.J. Delp and O.R. Mitchell,

"Image Compression Using Block Truncation Coding," IEEE Transactions on Commun-

Ications, Vol. COM-27, pp. 1335-1342, September 1979) for image compression

known as block truncation coding. The basic block truncation coding approach

employs a one bit (i.e. two level) nonparametric quantizer whose output levels

are obtained through matching the first two sample moments of the data before

and after quantizatlon. In [11) we generalized this basic block truncation

coding approach by employing one bit nonparametric quantizers which preserve

higher order moments. This generalization offered the potential for improved

performance. We Illustrated by way of example that such improvement was
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indeed possible under the criteria of mean absolute error and/or mean squared

error.

The matched filter has been of practical interest for some time. This

filter, which maximizes the output signal to noise power ratio, requires know-

ledge of the signal input for its design. In many cases it is reasonable to

expect that the signal will be known at various discrete instants, thus admitting

the design of the discrete time filter. Unfortunately, while it is reasonable

to expect that the input signal will be known at Jiscrete instants, it is another

matter to assume that it will be known exactly as a closed form analytical

expression over, for example, an interval of time, wrich would be necessary for

the design of a matched filter In continuous time. Design of the continuous time

filter is thus inhibited by such inexact knowledge of the signal input.

While the signal may be incompletely known, it is reasonable to expect that

in many cases it could be modeled as bandlimited. If we furthermore assume the

signal is known at a fixed number of instants, we might hope that a continuous

time filter could be designed which is insensitive to the remaining inexactness

in our knowledge of the signal. In (2) and (18) we presented an approach toward

inproving the signal to noise power ratio of a discrete time matched filter by

employing a continuous time filter. This approach exploited the bandlimited

nature of the unknown continuous time signal, and resulted in a filter which is

robust to this inexact knowledge.

The relative efficiency between two detectors is a measure of the amount

of data one detector requires, relative to the other detector, to attain a pre-

scribed level of performance. Often the asymptotic relative efficiency (ARE)

is employed as a criterion for comparison of detectors. (In the context of

hypothesis testing, this is known in the statisticai literature as the Pitman

efficiency.) The ARE is generally held to be appropriate in the case of large

sample size and small signal strength. Moreover, the employment of the ARE

generally yields mathematically tractable results, due largely to the applica-

bility of central limit theorems. While it is not our intention to disqualify

the ARE as a measure of detector performance, our investigations do question its

validity as a universal measure of detector performance. In [9 we investigated

the behavior of two pairs of popular detection systems, and we found that in

some cases the ARE can be a poor indicator of finite sample size detection

performance even for some fairly large sample sizes. Thus, in some cases if the

relative efficiency is assumed to converge quickly, the "wrong" detector might

I _ _ _ _ _
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be chosen for a particular application. This behavior was seen to be particularly

true for heavy-tailed noise models such as Laplace noise.

Kassam and Thomas ("A Class of Nonparametric Detectors for Dependent Input

Data," IEEE Transactions on Information Theory, Vol. IT-21, pp. 431-437, July 1975)

considered detecting a constant signal in m-dependent noise. This scheme consisted

of summing the first n samples, skipping (i.e. throwing away) the next m, summing

the next n, skipping the next m, etc. They then applied the classical sign

detector to the sequence of sums, and they concluded that, asymptotically, n

should be chosen as large as possible to maximize performance. In (8] we inves-

tigated the performance of this nonparametric scheme in both the asymptotic case

and the case of a finite number of samples. We showed that the design of the

detector with a finite amount of data can be radically different from the design

based on the asymptotic limit.

In several applications of discrete time signal processing, a nonlinear

scheme called median filtering has achieved some very interesting results. The

implementation of a median filter requires a very simple nonlinear operation.

Consider a fixed nonnegative integer N. At a given time instant, the output of

the median filter is the empirical median of the samples lying within a window

centered at the given time instant and spanning 2N+l adjacent samples. Tukey

is generally credited with introducing the concept of median filters, and he did

much of the pioneering work in this area. Although the concept of median filters

was first introduced in the statistics literature, it soon found applications

in the area of signal processing. Loosely speaking, linear filtering tends to

smooth out abrupt changes in a sequence of data, but a median filter is capable

of preserving sharp changes in data. In (4] we presented the first rigorous

analysis of the properties of median filters. We precisely characterized which

signals could pass through a median filter unchanged, we characterized the conceot

of a root of a median filter, and we showed that with repealed median filtering

we would eventually produce a root signal of the median filter. In (5) we con-

sidered the effect of a median filter upon the spectral density of a homogeneous

Markov chain. In [12] we analyzed the effect of a median filter on an inDut

which consisted of the sum of a known constant siqnal and indeDendent identically

distributed noise. Specifically, we studied the probability that the difference

between the output of the filter and the constant signal is close to zero. This

probability can be used to determine the performance of the filter on a per-sample

basis. Some examples were presented to illustrate the results.

Noa
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A model that frequently arises in engineering applications is given by

the differential equation

X(t) = A(t)X(t)

where t > 0, X(t) e I , X(O) = xO , and A(t) is a k)"k random matrix. For

example, by taking

A(t) = G + N(t)H,

where N(t) is a random process and H and G are kxk matrices, we arrive at a

bilinear system. (Bilinear systems and their relations to more general non-

linear systems, e.g. Volterra systems, have been investigated by other researchers.)

Systems of this general form also arise in modelling faulty systems (the random

changing of A(t) is used to represent the effects of faulty devices in a system).

Numerous investigations have been concerned with the establishment of conditions

guaranteeing that as t 11 X(t)jI - 0 in some probabilistic sense, where lii
is some norm on Rk. We have recently established conditions [13] guaranteeing

that jIX(t)j - 0 with probability one, and these conditions are more general than

others dealing with this form of problem. We do not require the components of

A(t) to be ergodic, and we permit them to even possess "badly behaved" sample

functions; for example, sample functions possessing a discontinuity of the

second kind at every point and that are unbounded in any interval of positive

length. Our conditions are expressed in terms of second moment properties

of the components of A(t).

In [7] we considered the prediction of a time series, where our predictor

was constrained to have the form of a zero memory nonlinearity followed by a

linear filter. Systems such as this can always perform at least as well as

linear systems, and in many cases significantly outperform linear systems.

Minimum shift keying (MSK) is a popular digital modulation technique which

is known for its property of bandwidth conservation. Boutin and Morissette ("Do

All MSK-type Signalling Waveforms Have Wider Spectra than those for PSK?," IEEE

Transactions on Communications, Vol. COM-29, pp. 1071-1072, July 1981) made

an erroneous attempt to provide a bound on the width of the center spectral

lobe of MSK-type signaling waveforms. In [14] we provided a correct development

of this property which yielded a bound on the width of the center spectral lobe

of MSK-type signaling waveforms.
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Research in Progress

During the present grant year our research is concentrating upon several

problem areas. One problem area which we are vigorously pursuing is quantiza-

tion theory. Our earlier work had dealt with difference-based distort4on

measures, that is, distortions such as

f C[x-Q(x)]dF(x).

We are presently extending this to nondifference-based distortion measures of

the form

fd[x,Q(x)]dF(x).

It is known that difference-based distortions are not always satisfactory,

especially when held up against subjective evaluations. Recently, more com-
plicated cost functions have been investigated in an effort to obtain more

meaningful distortion measures. We plan to investigate existence of optimal

quantizers and also convergence properties of sequences of quantizers. Also,

we plan to extend the space being quantized from R k to metric spaces. Quanti-

zation of metric spaces may be potentially useful as a tool in extending theorems

in information theory and coding theory to function spaces.

Another problem area we will be concerned with is the theory of signal

detection. We plan to study several questions concerned with approximations

in detection systems; for example, the digital implementation of an analog

scheme for detection. Also, we plan to study the relative efficiency (i.e. with

a finite number of samples) between pairs of detectors for time-varying signals.

Another problem we are considering is concerned with the effect of a zero

memory nonlinearity on the spectrum of certain classes of random processes.

That is, let X(t) be a stationary random process possessing a spectral repre-

sentation, and let g: JR- R be a Borel measurable function such that

E{(gEX(t)])2  < . Then what can we say about the spectrum of g[X(t)] as

compared to that of X(t)? When is one more spread out than the other? This

problem thus relates to the bandwidth of nonlinearly distorted random processes.

*
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