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REACIVE SHOCK PHE)MENA IN CONDENSED MATERIALS:

FORMULATION OF THE PROBLEM AND METHOD OF SOLUTION

I * INTODUCTION

Shock waves are particularly useful dynamic phenomena for qeneratinq

hjqh temperatures and pressures very quickly. They are used in practical

commercial applications such as synthesizing diamonds, in military applica-

tions such as igniting explosives, and in basic research applications such as

producing a controlled environment for studying elementary chemical reactions

rates. In this paper, we describe a numerical reactive shock model developed

at NRL which is being used to study the physics controlling the formation and

propagation of shocks in condensed phase materials. When coupled to a chemi-

cal kinetics reaction scheme, the model describes the detailed chemical

processes initiated by shock waves. When coupled to a model for energy

release, the code describes detonations.

A review of the theory and equations used in numerical modeling of

shocks and detonations in condensed phase explosives has been given by Mader

[I]. M ader describes the physics of detonations in common explosives and

presents a detailed description of the equations of state of the condensed

materials and gaseous products. The model we have developed is different in

several ways from the ones he has developed and is based on the Reactive

Shock Models described by Oran and Boris [21). The covective transport equa-

tions are solved using a highly accurate finite-difference algorithm, FCT,

which has both minimal diffusion and minimal error in the phase propagation

[31. we have added routines for external energy deposition which allow us to

simulate particular mechanism such as laser energy input. The model of the

fluid dynamics can be coupled to simple reaction models or to detailed chemi-

cal kinetics subprogram in order to study the initiation mechanism of high

energy explosives. Although we describe a one-dimensional model, the basic

Mannewipt approved September 9, 1963.



algorithms for the equations of state, energy deposition, and chemical

kinetics can be easily incorporated in two- or three-dimensional FCT codes

and so the calculations are directly extendable to multi-dimensions.

Finally, the methods allow the code to be vectorized, making it possible to

run large problems efficiently on vector computers.

In Section 11 we describe the physics and chemistry in the model and dis-

cuss the formulation of the problem. First, we describe the equation of

state used in the model for condensed phases. An Arrhenius one-step reaction

supplemented with an induction model is assumed to control the conversion of

explosive to gas products. Then we describe the equation of state for the

products. When both phases coexist, temperature and pressure equilibrium are

assumed. In Section III we describe the numerical solution. Finally,

typical results are presented in Section IV, where we first describe a

calculation in which a laser pulse deposits energy into a thin layer of

absorbing material confined between a wall and a liquid. A shock is gener-

ated in the liquid and we observe -its characteristics as it propagates and

decays. We then describe a second example in which a detonation wave

develops from a hot spot in liquid nitromethane.



Ile* FORMULATION OF THE PROBLEM

in principle, a complete, detailed numerical description of the genera-

tion and evolution of a reactive shock in a homogeneous material involves the

solution of the time-dependent Navier-Stokes equations for the reactive mate-

rial. we also must incorporate a great deal of information about the

0 chemical and physical properties of the particular material involved. We

need to specify the equations of state f or reactants and products that go

properly to the cold solid and hot gas limits. Heat transfer by conduction

is usually too slow to affect the propagation but radiation from the high

temperature products to the undecomposed reactive material surface can be

quite significant, especially when the products contain solid carbon

particles. Thus we need to know the radiative properties of the gases

produced and of the material surface. Also, we need to know the chemistry of

reactions, or at least the rate of combustion and the energy release.

Finally, we might need to describe other effects influencing the propagation

process such as species diffusion, carbon deposition and coagulation.

If the material through which the shock propagates is heterogeneous,

there are additional complexities. Most commercial explosives, for example,

are formed by compressing the explosive powder with a soft binding agent.

when such an explosive is subjected to stress, its deformation properties are

complicated by the yield of the binding acent. Heat conduction becomes an

important mechanism for the growth of the hot spots formed by wave reflcc-

tions at the complex interfaces between the powder and the binding aqent. It

would be an enormous task to develop and use a model that would treat each

element of an explosive powder or binding material as a separate homogeneous

domain with the proper compatibility conditions between one element and

3



another. Usually this problem is dealt with by using a phenomenological

composite equation of state whose parameters are derived experimentally from

measurements of shock or detonation waves propagating in the actual reactive

material.

In this work we consider one-dimensional shocks in homogeneous

materials. The effects of bulk viscosity are neglected, therefore omitting

the need for deviatoric stress terms (since shear deformations are absent in

one dimension). Radiation and heat conduction are assumed insignificant and

therefore neglected. Therefore, the propagation of the reactive shock is

reduced to solving the set of equations for mass, momentum and energy

conservation combined with the proper equation of state and a description of

the chemistry:

(1) Mass Conservation

a a-i a i -
t-( ) + par ) =0 (1)

(2) Momentum Conservation

3) pa-i ()2r a-i a-i i
S(pur ) + (pu. ) +r =-1 0 (2)

(3) Energy Conservation

3 - a--1a - a--1*

Er ( r ) + - (Eur ' ) +-L (r 'lpu) = r p (3)

where t denotes the time, r the radius, p the density, u the particle veloc-

ity and p the pressure. The total energy per unit volume is E - P1+pu 2/2,

where I is the specific internal energy (including the stored chemical

, ." ,.



energy) and I denotes the energy absorbed per unit mass per unit

time by the bulk of fluid from an external source. The exponent a is a geo-

metric index: 9 - 1,2 and 3 for planar, cylindrical and shperical qeometries,

respectively.

The above relations are supplemented by both a mechanical equation of

state and a caloric equation of state, written symbolically as

p - p(P,I,w)

T - T(p,I,w),

where T is the temperature and w is the explosive mass fraction. We use an

equilibrium equation of state for the condensed explosive and for the gaseous

products. Thus we assume that the different intermolecular and intra-

molecular degrees of freedom of a molecule are in equilibrium at every

instant in time. In other words, if the translational energy increases, the

rotational, vibrational and electronic degrees of freedom absorb enough of

the new energy to reach the same temperature instantaneously. Although this

assumption is not strictly correct (41, it is a good approximation for most

purposes and it enables us to avoid the complexities involved in a model

which takes the relaxation of the molecular degrees of freedom into consider-

ation.

The equation of state for the condensed explosive is usually derived

experimentally by determining the states behind explosion-generated shocks in

the explosive material. Since the pressure generated behind the detonation

wave in the condensed phase is of the order of 100 Kbars, the ideal gas

assumption is not valid for the gaseous products. As a consquence, we cannot

assume that the different gases constituting the products can be treated as

independent, noninteracting species. A theoretial description of the

- 1 | ... . . '- ...



products then has to consider the forces between molecules of different

species as well as those between identical ones, thus adding more complica-

tions to finding an equation of state for the mixture of products. The

BKR (51, LJD (61, and WCA [71 equations of state are all attempts to describe

mixtures of gasses at very high pressures.

Finally, we need to know the rate of decomposition of the material in

terms of the instantaneous state parameters such as temperature, and either

pressure or density. Specifically, we need an expression for the evolution

of the composition with time.

II.1. Equations of State of the Condensed Phase

The first equations of state developed for condensed phases were derived

by determining the isothermal compressibility using a method developed by

Bridqman [81. The states off the isotherm are then calculated from thermo-

dynamic relations. However, practical considerations limit isothermal or

static compression experiments to pressures which are much lower than those

encountered in shock compressed condensed phase materials, especially those

occuring in detonations.

in response to this problem, Walsh and Christian [9] developed a tech-

nique for deriving an equation of state by determining the locus of sinqle-

shocked states, i.e. the Huqoniot curve. States off the Hugoniot can be then

evaluated using thermodynamic relations. The Walsh and Christian method

involves measuring the relation between the shock velocity (produced by an

explosion) and the free surface velocity in the explosive material, and then

using the fact that the free surface velocity is almost exactly double the

particle velocity behind the shock wave. This assumption is valid to 1% for

6
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pressures up to 500 Kbar. The relation between the shock velocity, us, and

the particle velocity, up, has been found to e very nearly a linear fit

1101

u =C + s u (4)
s o op

where co is the sound speed in the undisturbed material. Once co and

s are measured, the pressure of the condensed phase, denoted from now on

by a subscript c, is given by

PC a P + .1 {I - i } (5)P H +v C H

where

p c 2(

(1-S n) 2

0

is the Hugoniot oressure corresponding to a compression,

V - V P
T1 - =1-- "

v p-7
o c

In the above relations, the subscript "o" denotes the state of the undis-

turbed material, while v is the specific volume and y is the Gruneisen gamma.

The Hugoniot internal enerqy, IH' is obtained from

IH o+ (P + Po)o . (7)

The temperature Tc is given by

7
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: I -t
T - TH + cH (8)

C
V

where TH is obtained from

In T F + G s(In v + H (in V )2 + I s(In v )3 + J (In v )4. (9)

The coefficients F, as' H , I and J of the expansion are derived from a
s  s

least squares fit to the Hugoniot temperature Tw in terms of the logarithm

of the volume. The details of the derivation of the condensed phase equation

of state are given in the Appendix Al.

Equations (4) to (9) are used when v 4 v , i.e. for compressed states.
c 0

When v )v
C o

- ( 00 v)} (10)

c v c o Y 3
c

and

I -IT = T + c o (11)
c 0

v

where Cv is the specific heat at constant volume and a is the coefficient

of linear expansion.

11.2. Equation of State of the Gas Products and the Rate of Reaction

The equation of state of the gas products expresses the pressure and

temperature in terms of the specific volume, the internal energy, and the

composition of the products. if the detailed chemistry of the reaction zone

is sought, the reaction zone composition could, in principal, be obtained

theoretically by first determining and then solving an appropriate set of

8



chemical kinetic and thermodynamic equations. On the other hand, if we

assume an infinitely fast rate of reaction, the reaction zone reduces to a

discontinuity propagating through the explosive. The composition of the

products immediately behind the wave front can then be obtained by simulta-

neously solving the chemical equilibrium relations and the jump conditions.

The gas products then expand or contract isentropically (maintaining chemical

equilibrium at every point) according to the upstream boundary conditions.

Since very little is known about the mechanism of decomposition of con-

densed explosives, our preliminary model adopts the following assumptions:

a) The condensed explosive is converted to qas products in chemical

equilibrium accordinq to the global finite raction rate:

dw wZ*e-E*/RT (12)
dt

b) To avoid solving the chemical equilibrium relations for the composi-

tion every time the equation of state of the products is needed, we assume

that the states of the gas products are close to those encountered in a

steady Taylor-type detonation wave. In this type of wave, the condensed

explosive reaches the Chapman-Jouguet (CJ) equilibrium state instantaneously

after crossing the wave front and then expands isentropically to the undis-

turbed pressure. The equilibrium isentrope is therefore a good reference,

the same way the Hugoniot was a reference for the compressed condensed explo-

sive. Then we can use an averaqe Gruneisen gamma to evaluate the pressure

and temperature of states off the isentrope. The details of the derivation

of the gas products eQuation of state are given in Appendix A2.

9



The pressure of the gas products, denoted by a subscript g, is given by

pg p + - (I - I i ) (13)

i v 9g

The pressure, pi, and internal energy, Ii. on the isentrope are deter-

mined from

in pi A + B(ln v ) + C(ln v )2 + O(!n v 3 + E(ln v)I  
(14)

and

ln(Ii+Z) E K + L(ln p.) + M(In pi) 2 + N(ln pi) 3 + O(ln pi)4 .  (15)

The coefficients of the expansions in Eq. (14) and Eq. (15) are derived from

a least squares fit to the equilibrium isentrope. In the above, Y! is the1

Gruneisen gamma evaluated at the state "i" on the isentrope, and Z is a con-

stant which adjusts the standard state energy to he consistent with that of

the condensed explosive. Finally,

I - I
T= T. + g (

g 1 C'v

where

in T. - Q + R(ln v ) + S(lnv )2 + T(ln v g)3 + U(ln v )4, (17)

where C'v is the average specific heat of the products.

11.3. Equation of State for Mixtures of Condensed Explosive and Gas

Products

Since the internal energies of both the condensed explosive and gas

products are measured from the same reference energy, there is no need for a

10



heat release term explicity in the energy equation. Instead, the heat

released by the chemical decomposition appears as an increase in temperature

and pressure. In other words, for the same values of v and I, the equation

of state of the products yields a much higher temperature and pressure than

the equation of state for the condensed explosive. In between the two

extremes, w = 1, representing the pure condensed explosive, and w = 0, repre-

sentina the gaseous products, the temperature and pressure increases contin-

uously as w decreases.

The finite rate of burning expressed in Eq. (12) yields a reaction zone

of finite thickness in which 0 < w < 1 and which contains a mixture of con-

densed explosive and gas products. We assume that in those regions con-

taining such a mixture the condensed phase is composed of a large collection

of small fragments uniformly distributed over the region. Moreover, we

neglect all transient effects between the condensed and gas phases and

assume temperature and pressure equilibrium, T. = T and PC = P .

Since the volumes and internal energies of the two phases are additive,

determining the equation of state of the mixture,

T - T(v,l,w)

p - p(v,Iw),

reduces to finding the values of I c 1 g, v c and vg that satisfy

TP(v,I ) T (v ,I) (18ba)

P C (v C1 'c Pg (vg 9 1 (18b)

I - wI + (1-w)I (18c)c g

v - Wv + (1-w)v . (18d)C g

Equations (18) are four equations in four unknowns vc , Vg, I c and

Ig. They can be reduced to a single nonlinear equation expressing the

1:1
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difference in pressure (Pc - Pg) in terus of vc (or vg). To obtain

this reduction, we first enforce the temperature equilibrium

cc = Tg = T.

Then we rewrite Eqs. (8) and (16) as

Ic = 1(v c ) + C (T - Tr(vc))

Ig M Ii(Vg) + Cv(T - Ti(vg))

and multiply the first by w and the second by (l-w). After using Eq. (18c)

we solve for T:

I + w(CvTr - I r ) + (0 - w)(C'T. - Ii)
Tz yr r I• (19)

wC + (1 -w) C'
v v

In Eq. (19), the subscript r denotes the reference state of the condensed

material. As explained in Appendix Al, r denotes H when in ; 0, and c'

(Vc = v c PC, = 0) when n 4 0.

Next, we solve for the pressure difference (pc-Pg). Now that the

equilibrium temperature is known for a given choice of v (or v ),

substituting for (Ic-I) by C v(T-T r) in Eq. (21) and for (I -I i ) by Cv(T-Ti)

in Eq. (27), we get

YC#C
P-p ( (vv pTv)) + LT-T (v [T-T i (v ) (20)c- Pg r [Plc )  ivg 1  v [-rlc] " ig

c g

Euation (2) is solved by iterating on vC (or v ).

12



11.4. Induction Model

Since an Arrhenius one-step reaction alone cannot represent an extended

period with no apparant temperature or pressure change, the reaction rate

given in Ea. (12) must be supplemented with a model for such an induction

time. Thus if it is required, an induction time can elapse before the reac-

tion rate of Eq. (12) an thus the enerqy release and conversion to products

is switched on. If the steady state induction time (at constant temperature,

To, and pressure, pO) is denoted by T (T°,p°), the quasi-steady

induction time for varyinq temperature and pressure, T, is determined from

the solution of the integral equation

T dt

o tO(T(t),p(t))

In our algorithm, T is obtained from the solution of f(T) = 1, where

df 1
(T)(21)t TO (T, p)

and f(O) a 0. Moreover, To may be determined emperically or using detailed

chemical kinetics calculations. Here we will assume it takes a simple

Arrenius form:

0°  E $ /RT°.

13
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III. NUMERICAL SOLUTION

We must solve the set of conservation equations (1) to (3), the rate of

reaction, Eq. (12), and the induction time lapse, Eq. (21). These are

supplemented by the equations of state for the range 0 4 w 4 1. First we

write Eqs. (12) and (21) in the same transport form as Eqs. (1) to (3). This

is accomplished by transporting pw and pf instead of w and f, namely

3 , + a- 3 ( I,-I e-E*/RT (22)Tt(pr ) + a- pwur ) Pr wz* 2)

and
1 pr1

pf r +-1 = pr (23)
P  

(p,T)

Equations (12) and (22) are equivalent, as are Fos. (21) and (23). The

inteqration step starts by evaluatinq the time step 6t using the Courant

condition

6x
6t min (T-x. )

where c is the sound speed. This quarantees the stability of the numerical

solution of Eqs. (M)-(3) and (22)-(23). 1he expressions for the sound speed

in the condensed phase, gas phase, and the mixture of both phases are given

in Appendix A3.

14



The solution of Eqs. (M)-(3) and (22)-(23) is obtained by operator

splitting the fluid dynamic step, the chemical reaction step, and the energy

deposition step. The fluid dynamic step is solved using JPBFCT (a modified

version of ETBFCT [3]), a fourth order flux-corrected transport algorithm.

Equations (1), (2), and the fluid dynamic components of Eqs. (3), (22) and

(23), the left hand sides, are transported using JPBFCT to advance p, u, I,

w, and f. The explosive mass fraction w is then limited between 0 and 1

using

w = max {O, min(1,w)} (24)

and the equation of state is used to get p and T.

Next, the program checks if the induction time has elapsed (f > 1) and

if so, switches on the chemical reaction. The fraction of induction time, f,

is advanced and if switched on, the mass fraction, w, is also advanced, by

solving the ordinary differential equations:

(Pfr a-' Pr (25a)( pfr ) T9(T,p)

and

*3 w o,-i1 oa,1'-E/RT(2b-( )-= 'r Zte "E  2

the right hand sides of Eqs. (22) and (23). The solution for f is given by

the explicit formula

15
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fnew .fold + 6t (26a)

t°(T,p)

and the new value of w comes from the implicit formula

new old *e-E /RTv m /( +z e 5t,(26b)

The equation of state is then used again to determine p and T, after the

burning process.

Finally, if energy is deposited from an external source, it is added to

the specific internal energy I, and the equation of state is used again to

obtain p and T in preparation for a new integration time step.

16
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IV. TYPICAL RESULTS

IV.1. Laser-Induced Shock Wave Structure

The calculation presented below was performed to assess the ability of

long duration laser pulses to create a shock wave structure with a reasonably

wide plateau behind the shock. Since the plateau would provide an

environment with constant pressure and temperature in which optical probes

measurements would be relatively easy to analyze, it is a potentially impor-

tant feature of an experiment. In an upcoming report we will discuss those

properties of the material and laser pulse which control the evolution of the

plateau. In this section we describe one test calculation in some detail.

Consider a 30um layer of plexiqlass confined on one side by a rigid wall

and on the other by a semi-infinite slab of water. A 20 ns half-width laser

pulse is deposited into the plexiglass in such a way that the energy depos-

ited per unit volume decays linearly with the depth into the plexiglass and

vanishes at the edge where the plexiglass meets the water.

The computational grid spacing in each material is uniform, but varies

with the material. The initial cell size in the plexiglass zone is taken as

1.5 um. The initial cell size in the water zone is then determined such that

the ratio of the cell sizes is nearly equal to the ratio of the local sound

speeds. Thus the Courant time-step is nearly equal in both regions. The

number of cells in each zone is fixed. The interface of the last cell in the

plexiglass zone moves with the local particle velocity. As a result the

cells in the plexiglass zone expands while those in the water contract.

However, each region maintains uniform grid spacing at all times. The power

of the laser pulse is assumed to be triangular in shape with a 40 ns base

17



width. The initial temperature and pressure are 3000K and I atm,

respectively. The parameters used in the different equations of state are

given in Table I.

The calculated pressure at different times is illustrated in Fig. (1).

The position of the interface between the plexiclass an water is denoted by a

dot on each of the shown profiles. As the input power increases for the

first 20 ns, the pressure near the wall increases continuously. When the

power begins to decrease, the pressure at the wall starts to drop and a

propagating wave develops (26 ns). The calculation predicts a 10-20 ns

plateau behind the shock wave with a peak pressure which is essentially

constant for a time longer than the duration of the laser pulse (44 ns).

Later in the calculation, the details of the initial energy deposition

process are essentially forgotten. Then the wave continously approaches the

classical blast wave profile which would result if a fixed amount of energy

is deposited instantaneously in an infinitismally thin layer of water. Such

a blast wave calculation is illustrated in Fig. (2). Here we notice that the

shock wave pressure decays faster than in Fig. (1).

The plateau results from the interaction betwen the way the laser energy

is deposited and the way it is transported to the water. In Fig. (1), we

notice that during the power rise-time of the laser pulse and up to 22 ns,

the pressure profile decays away from the wall. During this period, the

pressure builds up in the plexiqlass faster than the material can expand.

While the pressure is building up within the plexigless, compression pressure

waves emanate from this region and propagate into the water. As a result,

the pressure profile follows the trend of the energy deposition curve.

18



TABLE I.

Plexiqlass Water

Po =1.18 gm/cc Po =1.0 gm/cc

=. .01483 cm/Ps

c - 0.243 cm/Ps c/
00

= 1.5785 s 0 1.97
0

a = 10-4 OK 
a =6 x 10 - 5 °K-1

y = 2.157 
y = 1.65

C - 0.35 cal/gm 0 C = 1.0 cal/gm K

v
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0 50 100 150 200 250

r (MICRONS)
Figure 1 Calculated pressure profiles for a 20 ns half-width laser pulse

deposited in 30 microns of plexiglass in contact with water. The
dot on each curve denotes the position of the interface between
plexiglass and water.
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Figure 2 Classical blast wave solution in water for the same amount of

energy deposition as in Fig. 1.
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When the power begins to drop, the pressure in the plexiglass drops even

faster due to material expansion. A rarefaction wave is created near the

wall and propagates into the water, while the compression waves downstream

steepen up to form a shock. The rarefaction and the compression waves

combine to create a zone of relatively uniform pressure right behind the

shock. During this period the peak pressure remains nearly constant for a

period of time. Eventually at 40 ns in Fig. (1), the rarefaction wave catch

up with the shock resulting in a plateau immediately behind it, and later

(51 ns) the plateau disappears. As the shock wave propagates downstream, the

rarefaction waves cause the profile to change from convex to concave, and

approach the classical blast wave profile.

Finally, Fig. (3) illustrates the calculated pressure waves for the same

conditions of Ficg. (1), except that all cell sizes are twice as large. This

serves as a test of the convergence of the numerical solution. A close

comparison between the two figures reveals that the pressure waves corre-

sponding to the same time are nearly coincident. T11hose of Fig. (3) are

slightly lower in value near large pressure gradients due to the larger numie-

rical diffusion associated with larger cell sizes.

!V.2. Evolution of a Detonation Wdave from a Hot Spot

The next calculation shows that heating a high energy explosive

uniformly does not necessarily lead to homogeneous ignition. Ignition may

start at hot spots caused by the inhomogenieties of either the material or

the heating mechanism. The reaction would then propag~ate, consuming the

material between hot spots before any significant reaction occurs in the

background material which is at slightly lower temperature.

22



25

2020 - 30 37 44l 51 58

. 0

5

0 L
0 50 100 150 200 250

r (MICRONS)
Figure 3 Calculated pressure profiles for the same physical conditions as

in Fig. 1, but for computational cell sizes twice as large.
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Here we model a sample of liquid nitromethane which is 1.2 cm long. It

is assumed that the sample is initially at 1000°K. This is beyond its

ignition temperature so that, in principle, it should start reacting. The

pressure is initially I atm yielding a background density of 0.692 gm/cc.

The hot spot is modelled by superimposing a Gaussian temperature profile

2000 K higher than ambient and 0.1 cm wide on the background temperature at

the center of the sample. This symmetry allows us to perform the

calculations for half the sample only, and the center of the Gaussian is

formally equivalent to a rigid wall.

The computational grid is uniformly spaced with a fixed cell size of

0.01 cm. The parameters of the eaution of state and the rate of reaction for

liquid nitromethane are given in Table II. We notice that A* = 0. in this

case, it is assumed that the parameters of the one-step Arrhenius reaction

are adjusted to crudely incorporate any induction time.

The calculation predicts the formation of a detonation wave within

0.4 us. As illustrated in Fig. (4), the detonation pressure builds up

quickly towards a steady wave pressure of 65 Kbars that propaqrte at

0.54 cm/us (Mach number = 3.72). At 1.28 us, the detonation wave initiated

at the hot spot has almost consumed the whole sample before any significant

reaction occurs at the background temperature. Without the presence of the

hot spot, the material would have exploded 31.2 us, much later than it has

here.
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TABLE II.

Liquid Nitromethane

p = 1.128 qm/c0

c = 0.1647 cm/ps
0

s = 1.637
0

= 3 x 10- 4 °K-1

y = 0.6805

C = 0.414 cal/m0 KV

C' = 0.556 cal/gm°K
v

Z= 0.1

Z* = 4.0 x 108 ls - 1

E* = 5.36 x 104 cal/mol

F3  +5.41171

Gs =-2.72959

Hs  -3.21986

i s  -3.90757

is +2.39028

A = -3.11585 K = -1 .39937 Q = +7.79645

B = -2.35968 L = +4.79350 x 10-1 R = -5.33007 x 10- 1

C = +2.10663 x 10- 1 M = +6.06708 x 10- 2  S = +7.09020 x 10- 2

D = +3.80357 x 10- 3  N = +4.10673 x 10- 3  T = +2.06150 x 10 - 2

E - -3.53455 x 10- 3  0 +1.13327 x 10-4 = -5.66140 x 10- 3
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Figure 4 Formation and evolution of a detonation front from a 1200 K hot
spot in liquid nitromethane at 1000 K.
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APPENDICS

Al. Equation of State of the Condensed Phase

Here we adopt the Walsh and Christian method [91 for derivinq the

equation of state of a condensed explosive. This method beqins by fitting

the measured shock velocity, us, and measured particle velocity, u., to

the linear relation,

U -c + U .
s 0 o P

Then combining the above equation with statements of conservation of mass

(U -U p)pH = U s

and conservation of momentum

PH -p 0 = P 0 u uP

across the shock, we get

P
P c 2 (1 --

P -Po Po (All)

(1 -s (1 -- ) ]

where the subscript "o" denotes the state of the undisturbed material, and

the subscript "H" denotes a point on the Hugoniot. Denotinq the volumetric

compression by n,

TI V 0-VH POS- 1 -- (Al.2)V P
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where v is the specific volume, . (A1 .I ) reduces to

PR I Po 00 (Al .3)
PH '(1-s 0n) 2

0

?inally, from energy conservation across the shock front, the internal

energy, IH, can be written as

I - Io - (P + Po)(vo - vH) =7 (PH + Po ) von' (Al.A)
H a 2 HI a 2 Hpovf (l4

By using the fact that temperature has a relatively small effect on

compressibility, Walsh and Christian [9] were able to determine the variation

of the temperature along the Rugoniot by assuming that Cv and (Op/3T)v

are constants:

b(v-v H- by H  by
TH  T e o e + e fv e f(v)dv (At.5)C 0

v

where Cv is the specific heat at constant volume. In M. (A1.5),

1dPH 1

f (v) - _ (V -V ) + PH

while

(Op/3T)
b -

Cv

By performing the integration in Eq. (A1.5), we obtain the temperature along

the Huqoniot. Since in a typical calculation, M. (A1.5) has to be evaluated
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each time the temperature is needed, Mader I1 fit the TH - v. curve

using a fourth deqree polynomial in loq of the volume:

Ja T u F + G (nv) +Hs V ) + is v )3 + JsUn v ) . (Al.6)
H + s( H s H 8 + H

aquations (Al.1) to (Al.5) are quite general and are equally valid for

solids and liquids. For some solids, however, a kink in Mq. (4) occurs at

the point where there is a change of phase to liquid. In this case, ancther

set of coefficients, c1 and sj, are required in addition to co and so .

In reactive-shock phenomena, the states attained after compression are

expected to fall near the Rankine-Hugoniot locus, making this line a qood

reference state. Thus with the use of the Gruneisen* Y, defined as

Y = v(aP/aI)v , we can reach any state off the Hugoniot from point H which

has the same specific volume as this state. This is illustrated schemati-

cally in Fig. (A1.a). Denotinq the condensed explosive by the subscript "c",

we have for constant Y,

P - PR(vc) hI Ic - IH(vc)1  (At .7)
c

Similarly, since Cv  ( )v' for a constant C
v 3T~v v

I - I (v c

T - T H(Vc c (Al.8)

*For an ideal qas Gruneisen gamma, Y - v(.P) - (.InT) (s denotes the
a iv 3lnv s

entropy) is related to the adiabatic index Yjs 3. (3I2p) by Y = Yj5 -1.
3Lnv s
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PH - H

HUGONIOT 0
C (ADIABATIC) Po

0 ____

Po- PC

_-VH--Vc Vo  /
Po'=PC, 0  0' C'

Vo = 0' Vc  Vc ,

Figure Al (a) Path used in deriving the equation of state of a compressed
condensed explosive beginning from its undisturbed state.
(b) Path used in deriving the equation of state of an expanded
condensed explosive beginning from its undisturbed state.
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where pH(vc), IH(vc), and TH (v ) are evaluated usinq Es. (A1.3), (A1.4), and

(AI.6) when v. M vc .

Equations (A1.1) to (AI.8) are used to determine the state of a

compressed condensed explosive. For an expanded explosive, however, a

different method is used to obtain the state properties. This is illustrated

in ?ig. (A1.b). Since croinq from o to o' is a constant volume process, we

obtain

0oo , (A1.9)

where po- 0 by definition. Also,

To, T r - I°  (AO0)
0' ~ C

V

mlow the path o' to c' is a constant zero-pressure process, so that the

enthalpy, H, is equal to the internal energy, I. We then can write

31 (31/3T) P (3v/3T)( v ) = ( v / T ) p ( v / T )

The numerator is the specific heat at constant pressure, C p, while the

denominator is related to the coefficient of volummetric expansion
a v~g For' C • Moreover, ocnese

Cv -v For zero pressure, Cfor condensed phases

(solid or liquid), vc is expected to be close in value to v .. Thus

3I) _ Cv (A1 .11)

where a is the coefficient of linear expansion (a, a 3a). Inteqratinq
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14. (Al .11), we obtain

ICg lot + v (V - v ) (AI.12)
3 v

0

Also, since C P- Cv alonq o' -c',

Ic, Io

T *T +. 1 (A1.13)
ct of C

V

Combinina Eas. (A1.9) and (A1.12) yields

poV Cv ov Cri

I 1 -00 -- (v - - 00 v°  (AI.14)
c o Y 3a v C 0 7 3a

Combininq Eqs. (AI.10) and (AI.13) yields

T T ICt 0 (A1.15)
T c , -+

C 0 C
V

Finally for the constant volume process c' - c,

C 1- (I - IC (VCv co c

and

Ic - Ic,(vc
T T, Cv)+ - . (A.C7)

Bquations (A1.14) to (A1.17) are referred to as the Grunlisen equation of

state.
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in summary, p (v0 1I0), T(v c I ) are expressed in terms of a

reference state, denoted from now on by a subscript r, namely

p(v ,I ( rv + I I (v )(A1,18)
c c rC v c r c

C

I-I(v
T(v ,I ) T r(v c + C _r c (A1.19)

For v 4 v., r SH; while for v > vo 0  r r f

It remains, finally, to define a standard state at which the internal

energy is set equal to zero by definition. Here we pick I0 0. As m~en-

tioned earlier, this is the undisturbed state, namely p. 1 bar, T 0 300K.
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A2. Bquation of State of the Gas Products

The gas products are assumed to reach chemical equilibrium instantane-

ously after their production. To solve for an equilibrium state we need an

equation of state for the mixture of aas products in terms of the composi-

tion. According to Cowan and Fickett (iI], the BKW equation of state for a

mixture of gases can be written in the form

-g g9 + x e Sx(A2.1)

RT

where

k

V(T+O)

k being the average covolume defined in terms of the individual covolumes,

k., as k -I xiki, where x. is the molar fraction of species i. The a, 8,

@ and i are constants adjusted to reproduce the detonation Chapman-Jouquet

pressure and velocity obtained experimentally. If we know the internal

energy and entropy of the mixture of products at the ideal aas limit (p=0),

we can extend their validity to the hundreds of Kilobars pressure ranqe by

using the thermodynamic relations

T(L --2)v

aTv T 3

as) -(.L( T 3v

together with E. (A2.1). The equilibrium state is then obtained by

minimizing the Gibbs free energy. Note that because of the possible presence
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of solii carbon in the products, a solid equation of state for graphite is

needed. According to Cowan and Fickett, the carbon pressure is expressed in

terms of a second deqree polynomial in T, the coefficients of which are them-

selves polynomials in the compression of the solid carbon relative to its

normal crystal density.

To avoid solving the chemical equilibrium relations every time the equa-

tion of state of the products is needed, it assumed that the states encoun-

terd in a typical calculation are close to those encountered in a steady

Taylor-type detonation wave, i.e. states on the equilibrium isentrope through

CJ point. Mader (11 fit the equilibrium isentrope throuch the CJ point for

different explosives to a set of polynomials of the form

in pi = A + B (Xn v ) + C(2n v )2 + D(n v )3 + E(Zn v )4 (A2.2)I.q q g

Xn I! = K + L(Zn p .) )+ W Xn p 4(n pi ) 3 + O(n pi) 4  (A2.3)

In T. = Q + R(n v )+ S(2n v ) 2 + T(n v )3 + jU(n v ) 4 . (A2.4)I. g q q g

The shifted internal energy 1! I. + Z, where Z is a constant used to1 1

change the standard state to be consistent with the condensed explosive one.

For points off the isentrope, the definition of Gruneisen y' and c' (forv

gases we use an apostrophe) provide the transition from point i to a, as

shown in Fig. (A2). Since we need the equilibrium p(v,I) and T(v,I), and we

do not need to obtain the composition of the products, the change in composi-

tion along the constant volume process i-g in Fig. (A2) can be absorbed in

the definition of y' and C'. As foz y', since q is expected to be near i, we
v

can take y'arg Y! where Y! takes into account the change in 6p/61 due
averaqre i1
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p.9

Pg
p 0 0

Ni  Vg Vo

Figure A2 Path used in deriving the equation of state of an explosive's gas
products beginning from its undisturbed state.
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to change in composition along the equilibrium constant volume process.

First, we write

v(-ks ) v

C-) -(A2.5)

as v

then substitute for (ap/as) v and (ai/9s) v from the first law of

thermodynamics (di Tds - pdv), yielding

= v(- LTJT/T = --nT)
a = ( s

Thus Y! is expressed as
2.

dInT.
1= - {R + 2S( nv ) + 3T(Inv )2 + 4U(Inv )3} (A2.6)

i dinv g 9 q

therefore inferring the change in compositon along the constant volume

process i-g in Fig. (A4) from the change along the constant entropy process

through i, expressed in Eqs. (A2.4). Integrating Eq. (A2.5), we get

Pg = (vq) + - (I - I (v) . (A2.7)g v g 9 . g
g

Finally, we assume that Cv' is insensitive to the change in composition,

giving

I - Ii(vg

T -T(v)+ - 2 C (A2.8)
9 i g CO

v
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A3. Expressions for the Sound Speed

Generally, the sound speed, c, is defined as

c 2 = (P) -V2(

Since p = p(v,I), let I - I(v,s), so that

ap Ip p 3r
3( s Y ()T + (' ')v(-5)s"

Substitutinq for (al/v)s by -p (dl = Tds -pdv) we get

C2  2 = V2  pa- (-)]_ (A3.1)av 3 31 v -

Condensed Phase

The pressure is expressed in terms of a reference pressure, pr , and a

reference internal energy, I r , both functions of specific volume only:

p = Pr(v) +-I -I (v))r v r

Substituting the above relation in Eq. (A3.1) we obtain

dpr d l

C2 . v(yp - v dr + (p - p ) + y Al r (A3.2)
dv r dv

Since the reference state r depends on whether the condensed explosive

is compressed or expanded we consider the two cases:
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(1) v ( v0 , r H: From Eq. (Al.3) and the definition of rl in Eq.

(Al .2),

dPr dPH 1 PH- Po 1 + sn) (poCo) 2 (l + s"n)

dv dv v ( 1-sn (s n)3 (A3.3)

00

whereas Eas. (A1.2) and (AI.4) give

dIr 4d1 dPdr dH dp CpA3.4)

djv d v' 2p dv H 0
0

At the undisturbed state (po, TO), 0. Eq. (A3.2) gives then

c2 x c2, as it should be. Note that c and so are replaced by cl, s i

when dealing with a solid that exhibits a kink in the linear relation between

the particle velocity and shock velocity at the point where a phase change to

a liquid occurs.

(2) v P Vo r S c': Since p' = 0, _ = 0. From Eq. (A1.14),

dl dI Cp
dIr _ c I  

C P0r-- - ---. At the undisturbed state (p., TO), Eq. (A3.2) yields
dv d.1v oa

cz , (Y+1) p V - - ,

thus giving an estimate of c0 as

YC
c o = ((y 1) p v 0 + --v 1 12 . (A3.5)

For liquid nitromethane, for example, Mader [1] gives the following set of
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parameters

c o = 1.647 x 10- 1 cm/Usec

y - 6.805 x 10- 1

a= 3 x 10 - 4 OK 1

= 4.14 
- cal 4.14 x10 - 1

C 2389 (cm/ isec) Zv crMO0K 23890

so that [(y+1)pov + -v-- 1.145 x 10-1 cm/msec. The discrepancy between

c given and that evaluated from Eq. (A3.5) indicates a kink in the thermo-

dynamic properties at the interface between the two reqimes v 4 v. and

v ) v.. However, since the sound speed is only used to derive the Courant

time step, which is an upper limit for the actual time-step used, this

discrepancy presents no problem in the calculations.

Gas Phase

The equilibrium isentrope through the CJ point is the locus of reference

states. Upon substituting Eq. (A2.7):

r! (v)
p = pi(v) - ( - I.(v)]Sv

in Eq. (A3.1), we get a relation similar to Eq. (A3.2) except for a correc-

tion term attributed to the dependence of Y? on v, namely

dv i  id I dv

d p + Y d ~~i .d !( 3 6i ~C I(~ I + (p II p ) I I ,. _-
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Noting that Ln oi and Y? are given in terms of Xn v, whereas In I' is given

in terms of Xn p., Eq. (A3.6) can be rewritten as

I Unv dinp dpIn d nv

di£npi d nI! dy'
where u- - , and - are obtained by direct differentiation of

Eqs. (A2.2), (A2.3), and (A2.6), respectively.

mixture of Condensed Phase and Gas Phase

Since the sound speed in the mixture is known a priori to be between the

values of sound speeds of the condensed phase and gas products, it is

satisfactory to assume

Cmixture = max(c,,c) (A3.8)

when determining the Courant time step. Mere, c0 and c are evaluated at

the common temperature and pressure of the mixture.
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