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REACTIVE SHOCK PHEN{MENA IN CONDENSED MATERIALS:
FORMULATION OF THE PROBLEM AND METHOD OF SOLUTION

I. INTRODUCTION

Shock waves are particularly useful dynamic phenomena for generating
high temperatures and pressures very quickly. They are used in practical
commercial applications such as synthesizing diamonds, in military applica-~
tions such as igniting explosives, and in basic research applications such as
producing a controlled environment for studying elementary chemical reactions
rates, In this paper, we describe a numerical reactive shock model developed
at NRL which is being used to study the physics controlling the formation and
propagation of shocks in condensed phase materials. When coupled to a chemi-
cal kinetics reaction scheme, the model describes the detailed chemical
processes initiated by shock waves. Wwhen coupled to a model for energy
release, the code describes detonations.

A review of the theory and equations used in numerical modeling of
shocks and detonations in condensed phase explosives has been given hy Mader
{1]. Mader describes the physics of detonations in common explosives and
presents a detailed description of the equations of state of the condensed

materials and gaseous products. The model we have developed is different in

several ways from the ones he has developed and is based on the Reactive
Shock Models described by Oran and Boris [2]. The covective transport egqua-
tions are solved using a highly accurate finite-difference algorithm, FCT,
which has both minimal diffusion and minimal error in the phass propagation
{3]. We have added routines for external energy deposition which allow us to
simulate particular mechanisms such as laser energy input. The model of the
fluid dynamics can be coupled to simple reaction models or to detailed chemi-
cal kinetics subprograms in order to study the initiation mechanisms of high

anergy explosives., Although we describe a one-dimensional model, the basic
Manuscript approved September 9, 1983,
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algorithms for the equations of state, energy deposition, and chemical
kinetics can be easily incorpérated in two- or three-dimensional FCT codes
and so the calculations are directly extendable to multi-dimensions.
Finally, the methods allow the code to be vectorized, making it possible to
run large problems efficiently on vector computers.

In Section II we describe the physics and chemistry in the model and dis-
cuss the formulation of the problem. First, we describe the equation of
state used in the model for condensed phases. An Arrhenius one-step reaction
supplemented with an induction model is assumed to control the conversion of
explosive to gas products. Then we describe the equation of state for the
products. When both phases coexist, temperature and pressure equilibrium are
assumed. In Section III we describe the numerical solution. Finally,
typical results are presented in Section IV, where we first describe a
calculation in which a laser pulse deposits energy into a thin layer of
absorbing material confined between a wall and a liquid. A shock is gener-
ated in the liquid and we observe its characteristics as it propagates and
decays. We then describe a second example in which a detonation wave

develops from a hot spot in liquid nitromethane.




II. FORMULATION OF THE PROBLEM

In principle, a complete, detailed numerical description of the genera-
tion and evolution of a reactive shock in a homogenecus material involves the
solution of the time~dependent Navier-Stokes equations for the reactive mate-
rial, We also must incorporate a great deal of information about the
chemical and physical properties of the particular material involved. We
need to specify the equations of state for reactants and products that go
properly to the cold solid and hot gas limits. Heat transfer by conduction
is usually too slow to affect the propagation but radiation from the high
temperature products to the undecomposed reactive material surface can he
quite significant, especially when the products contain solid carbon
particles., Thus we need to know the radiative properties of the gases
produced and of the material surface., Also, we need to know the chemistry of
reactions, or at least the rate of combustion and the energv release,
Finally, we might need to describe other effects influencing the propagation
process such as species diffusion, carbon deposition and coagqulation.

If the material through which the shock propagates is heterogeneous,
there are additional complexities., Most commercial explosives, for example,
are formed by compressing the explosive powder with a soft binding agent.
When such an explosive is subjected to stress, its deformation properties are
complicated by the yield of the binding agent, Heat conduction becomes an
important mechanism for the growth of the hot spots formed by wave reflec-
tions at the complex interfaces hetween the powder and the binding agent. It
would be an enormous task to develop and use a model that would treat each
element of an explosive powder or binding material as a separate homogeneous

domain with the proper compatibility conditions between cne element and




another., Usually this problem is dealt with by using a phenomenological
composite equation of state whdse parameters are derived experimentally from
measurements of shock or detonation waves propagating in the actual reactive
material.

In this work we consider one-dimensional shocks in homogeneous
materials. The effects of bulk viscosity are neglected, therefore omitting
the need for deviatoric stress terms (since shear deformations are absent in
one dimension). Radiation and heat conduction are assumed insignificant and
therefore neglected. Therefore, the propagation of the reactive shock is
reduced to solving the set of equations for mass, momentum and energy
conservation combined with the proper equation of state and a description of
the chemistry:

(1) Mass Conservation
3t (pr ) t 5 ( pur ) =0 (1)
(2) Momentum Conservation
2 a-1 9 o=1 o1
3¢ (pur )+3;(ouzr ) +r =0 (2)
(3) Energy Conservation
) =1 ) =1 ) -1 a=-1 _,°
a—t(Er )+3_r(mt )+¥(r pu) = r pAI (3)
where t denotes the time, r the radius, p the density, u the particle veloc-

ity and p the pressure, The total energy per unit volume is E = oI+pu2/2,

where I is the specific internal energy (including the stored chemical




energy) and A1 denotes the energy absorbed per unit mass per unit

time by the bulk of fluid from an external source. The exponent a is a geo-
metric index: & = 1,2 and 3 for planar, cylindrical and shperical geometries,
respectively.

The above relations are supplemented by both a mechanical equation of
state and a caloric equation of state, written symbolically as

p = p(p,I,w)

T = T(p,I,w),
where T is the temperature and w is the explosive mass fraction. We use an
equilibrium equation of state for the condensed explosive and for the gaseous
products, Thus we assume that the different intermolecular and intra-
molecular degrees of freedom of a molecule are in equilibrium at every
instant in time. In other words, if the translational energy increases, the
rotational, vibrational and electronic degrees of freedom absorb enough of
the new energy to reach the same temperature instantaneously. Although this
assumption is not strictly correct (4], it is a good approximation for most
purposes and it enables us to avoid the complexities involved in a model
which takes the relaxation of the molecular degrees of freedom into consider-
ation.

The equation of state for the condensed explosive is usually derived
experimentally by determining the states behind explosion-generated shocks in
the explosive material. Since the pressure generated behind the detonation
wave in the condensed phase is of the order of 100 Kbars, the ideal gas
assumption is not valid for the gaseous products. As a consquence, we cannot
assume that the different gases constituting the products can be treated as

independent, noninteracting species., A thecoretial description of the




products then has to consider the forces between molecules of different
species as well as those betwéen identical ones, thus adding more complica-
tions to finding an equation of state for the mixture of products. The
BXW (5], LJID (6], and WCA [7] equations of state are all attempts to describe
mixtures of gasses at very high pressures.

Finally, we need to know the rate of decomposition of the material in
terms of the instantaneous state parameters such as temperature, and either
pressure or density. Specifically, we need an expression for the ewvolution

of the composition with time.

II.1. Equations of State of the Condensed Phase
The first equations of state developed for condensed phases were derived
by determining the isothermal compressibility using a method developed by

Bridgman ([8]. The states off the isotherm are then calculated from thermo-

dynamic relations. However, practical considerations limit isothermal or
static compression experiments to pressures which are much lower than those
encountered in shock compressed condensed phase materials, especially those
occuring in detonations.

In response to this problem, Walsh and Christian (9] developed a tech-
nique for deriving an equation of state by determining the locus of single-
shocked states, i.e. the Hugoniot curve, States off the Hugoniot can be then
evaluated using thermodynamic relations. The Walsh and Christian method
involves measuring the relation between the shock velocity (produced by an
explosion) and the free surface wvelocity in the explosive material, and then
using tha fact that the free surface velocity is almost exactly double the

particle velocity behind the shock wave. This assumption is valid to 18 for
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pressures up to 500 Kbar. The relation between the shock velocity, ug, and
the particle velocity, up, has been found to he very nearly a linear fit
| (10}

u = c° + s u (4)

where c, is the sound speed in the undisturbed material. Once o and

RE SRS S

4 s, are measured, the pressure of the condensed phase, denoted from now on

by a subscript c, is given by

Y
P, =Py +3 {Ic - IH} (5)
(o4
where
p c?n
[o o]
pH=p°+——— (6)
(1-s°n)2

is the Hugoniot pressure corresponding to a compression,

V - v Do
2] .-,
pc

In the above relations, the subscript "o" denotes the state of the undis-
turbed material, while v is the specific volume and Y is the Gruneisen gamma.
The Hugoniot internal energy, Ty is obtained from

1
IH = I° + 2 (pH + po)von.

The temperature T, is given by




I -

T =T cIH (8)
c H +
(o]
v
where TH is obtained from
= 2 3 i

1ln TH = Fs + Gs(ln vc) + Hs(ln vc) + Is(ln vc) + Js(ln vc) . (9)

The coefficients Ps' Gs' Hs, Is and Js of the expansion are derived from a
least squares fit to the Hugoniot temperature TH in terms of the logarithm
of the volume. The details of the derivation of the condensed phase equation
of state are given in the Appendix Al.

Bquations (4) to (9) are used when vc < v0 , L.e. for compressed states.

Whenvc>v ,

)
p Vv cn
=Y - .20 __v
P, = v, {Ic (x, 7 3a )} (10)
and
Tc = T° + Ic-Io (11)
(o
v

where Cy is the gpecific heat at constant volume and a is the coefficient

of linear expansion.

II.2. Bquation of State of the Gas Products and the Rate of Reaction

The equation of state of the gas products expresses the pressure and
temperature in terms of the specific volume, the internal energy, and the
composition of the products. If the detailed chemistry of the reaction zone
is sought, the reaction zone composition could, in principal, be obtained

theoretically by first determining and then solving an appropriate set of
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chemical kinetic and thermodynamic equations. ®n the other hand, if we
assume an infinitely fast rate of reaction, the reaction zone reduces to a
discontinuity propagating through the explosive, The composition of the
products immediately behind the wave front can then be obtained by simulta-
neously solving the chemical equilibrium relations and the jump conditions.
The gas products then expand or contract isentropically (maintaining chemical
equilibrium at every point) according to the upstream boundary conditions.

Since very little is known about the mechanism of decomposition of con-
densed explosives, our preliminary model adopts the following assumptions:

a) The condensed explosive is converted to gas products in chemical

equilibrium according to the global finite racticn rate:

=RB%*
B, gee EY/RT

3t (12)

b) To avoid solving the chemical equilibrium relations for the composi-
tion every time the equation of state of the products is needed, we assume
that the states of the gas products are close to those encountered in a
steady Taylor-type detonation wave. 1In this type of wave, the condensed
explosive reaches the Chapman-Jougquet (CJ) equilibrium state instantaneously
after crossing the wave front and then expands isentropically to the undis-
turbed pressure. The equilibrium isentrope is therefore a good reference,
the same way the Hugoniot was a reference for the compressed condensed explo-
sive, Then we can use an average Gruneisen gamma to evaluate the pressure
and temperature of states off the isentrope. The details of the derivation

of the gas products equation of state are given in Appendix A2.




The pressure of the gas products, denoted by a subscript g, is given by

i

pgspi +V—(Ig-Ii) (13)
 f

The pressure, Py and internal energy, Ii' on the isentrope are deter-

mined from

ln p,

A+B(lnv) +C(lnv)2+D(lnv)d+ E(ln v )* (14)
i q q q q

and

= 2 3 L
1n(Ii+Z) K + L(1ln pi) + M(1ln pi) + N(1ln pi) + 0O(1ln pi) « (15)

The ccefficients of the expansions in Eq. (14) and Eq. (15) are derived from
a least squares fit to the equilibrium isentrope. 1In the above, Y; is the
Gruneisen gamma evaluated at the state "i" on the isentrope, and Z is a con-
stant which adjusts the standard state energy to he consistent with that of

the condensed explosive. Finally,
I - Ii
T =T, +-j—,— (16)
g i o
v
where

In T, = 0+ R(ln vg) + s(lnvq)2 + T(ln vg)3 + U(ln vq)“, (17)
where C'v is the average specific heat of the products.
ITI.3. Bguation of State for Mixtures of Condensed Explosive and Gas
Products

Since the internal energies of both the condensed explosive and gas

products are measured from the same reference enerqgy, there is no need for a

10
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heat release term explicity in the energy equation. Instead, the heat
released by the chemical decomposition appears as an increase in temperature
and pressure, In other words, for the same values of v and I, the equation
of state of the products yields a much higher temperature and pressure than
the equation of state for the condensed explosive. In between the two
extremes, w = 1, representing the pure condensed explosive, and w = 0, repre-
senting the gaseous products, the temperature and pregssure increases contin-
uously as w decreases,

The finite rate of burning expressed in BEq. (12) yields a reaction zone
of finite thickness in which 0 < w < 1 and which contains a mixture of con-
densed explosive and gas products. We assume that in those regions con-
taining such a mixture the condensed phase is composed of a large collection
of small fragments uniformly distributed over the region. Moreover, we
neglect all transient effects between the condensed and gas phases and
assume temperature and pressure equilibrium, TE = Tg and Pc = Pq.
Since the volumes and internal energies of the two phases are additive,
determining the equation of state of the mixture,

T a T(v,I,w)
p = p(v,I,w),

reduces to finding the values of Ic, I

g’ Ve and vq that satisfy
Tc(vc,Ic) = T&(vq,Iq) (18a)
pc(vc,Ic) = Pq("g'Iq’ (18b)
I =wl_ + (1=-w)I (18¢)
c a
Ve ww 4+ (1-w)v . (18d)
¢ g

Equations (18) are four equations in four unknowns Ver vg,

Ig. They can be reduced to a single nonlinear equation expressing the

Ic and




)

difference in pressure (pc - pg) in terms of v

o (or vg). To obtain
this reduction, we first enforce the temperature equilibrium

cchg"ro

Then we rewrite Eqs. (8) and (16) as

I

= I.(v) + Cy(T = T,.(vy))

)
I; = I;(vg) + Cu(T = Ty(vy))

and multiply the

first by w and the second by (l-=w),
we solve for T:

After using BEq. (18c)

- - L] -
. I + w(CvT} Ir) + (1 w)(CvTi Ii)

wC + (1 -w} Cf (19)
v v

In Eq. (19), the subscript r denoteg the reference state of the condensed
material.

As explained in Appendix A1, r denotes H when n » 0, and c¢'
(v , v Py £ Q) when n < 0,

Next, we solve for the pressure difference (pc-pg). Now that the

equilibrium temperature is known for a given choice of v

o (or vg),
. - _ . _ ' (e
substituting for (Ic Ir) by CV(T Tr) in BEgq. (21) and for (Ig Ii) by CV(T Ti)
in Eq. (27), we get

YC, *qc;,
P pg = [pr(vc) - Pi("q)] +—v: [T‘Tz("c” - "g ['r-'ri(vg)l . (20)

Equation (2) is solved by iterating on v_ (or vg).

12




II.4. Induction Model

Since an Arrhenius one-step reaction alone cannot represent an extended
period with no apparant temperature or pressure change, the reaction'rate
given in Bg. (12) must be supplemented with a model for such an induction
time. Thus if it is required, an induction time can elapse before the reac-
tion rate of Bg. (12) an thus the energy release and conversion to products
is switched on., If the steady state induction time (at constant temperature,
°, and pressure, p°) is denoted by ro(To,po), the guasi-steady
induction time for varying temperature and pressure, T, is determined from
the solution of the integral equation

T

dt
)
o T (T(t),p(t))

In our algorithm, T is obtained from the solution of £(T) = 1, where

T (21)

and £(0) = 0. Moreover, t°

may be determined emperically or using detailed
chemical kinetics calculations. Here we will assume it takes a simple

Arrenius form:

o _$E/Rr°.
= A e

T
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III. NUMERICAL SOLUTION

We must solve the set of conservation equations (1) to (3), the rate of
reaction, Eg. (12), and the induction time lapse, Ea. (21). These are
supplemented by the equations of state for the range 0 € w € 1, First we

write Bgs. (12) and (21) in the same transport form as Fgs. (1) to (3). This

is accomplished by transporting pw and pf instead of w and £, namely

te Ry TN o -

~E*/RT

) a=-1 ] =1 a1
sz(pwr ) + sz(pwur ) = pr WZ* e (22) !
and
3 a-1
-a—t-(pfr“") +—g-r-(pfur°""') =-"-§———- . (23)
T (p,T)

Equations (12) and (22) are equivalent, as are Fgs. (21) and (23), The
integration step starts by evaluating the time step 8t using the Courant

condition

St < min (Tﬁ-’;‘-c—)

where ¢ is the sound speed. This quarantees the stability of the numerical

solution of Bgs. (1)=(3) and (22}=-(23). The expressions for the sound speed

in the condensed phase, gas phase, and the mixture of both phases are given

in Appendix A3.
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The solution of Bgs. (1)=(3) and (22)=(23) is obtained by operator
splitting the fluid dynamic stép, the chemical reaction step, and the enerqy
deposition step., The fluid dynamic step is solved using JPBFCT (a modified
version of ETBFCT (3)), a fourth order flux-corrected transport algorithm.
Equations (1), (2), and the fluid dynamic components of BEgs. (3), (22) and
(23), the left hand sides, are transported using JPBFCT to advance p, u, I, é
i w, and f. The explosive mass fraction w is then limited between 0 and 1

using
w = max {0, min(1,w)} (24)

and the equation of state is used to get p and T.

Next, the program checks if the induction time has elapsed (f » 1) and
if so, switches on the chemical reaction. The fraction of induction time, £,
is advanced and if switched on, the mass fraction, w, is also advanced, by

solving the ordinary differential equations:

] =1 ar°-1
ey (pfx" ) = > {25a)
T (T'p)
1
and
3 « -g"/RT
¥y (awra'-1) = Ma—1z e-E /R ' (25b)

the right hand sides of Eqs. (22) and (23). The solution for f is given by

the explicit formula

15




gev ol & (26a)

r°('r,p)

and the new value of w comes from the implicit formula

w
new -E /RT

w = w°ld/(1+zte 8t), (26b)
The equation of state is then used again to determine p and T, after the
burning process.

Finally, if energy is deposited from an external source, it is added to

the specific internal energy I, and the equation of state is used again to

obtain p and T in preparation for a new integration time step.
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IV. TYPICAL RESULTS

IV.1. Laser-Induced Shock Wave Structure

The calculation presented below was performed to assess the ability of
long duration laser pulses to create a shock wave structure with a reasonably
wide plateau behind the shock. Since the plateau would provide an
environment with constant pressure and temperature in which optical probes
measurements would be relatively easy to analyze, it is a potentially impor-
tant feature of an experiment. In an upcoming report we will discuss those
properties of the material and laser pulse which control the evolution of the
plateau, In this section we describe one test calculation in some detail.

Consider a 30um layer of plexiglass confined on one side by a rigid wall
and on the other by a semi-infinite slab of water., A 20 ns half-width laser
pulse is deposited into the plexiglass in such a way that the energy depos-
ited per unit volume decays linearly with the depth into the plexiglass and
vanishes at the edge where the plexiglass meets the water.

The computational grid spacing in each material is uniform, but varies
with the material. The initial cell size in the plexiglass zone is taken as
1.5 umes The initial cell size in the water zone is then determined such that
the ratio of the cell sizes is nearly equal to the ratio of the local sound
speeds. Thus the Courant time-step is nearly equal in both regions. The
number of cells in each zone is fixed. The interface of the last cell in the
plexiglass zone moves with the local particle velocity. As a result the
cells in the plexiglass zone expands while those in the water contract.
However, each region maintains uniform grid spacing at all times. The power

of the laser pulse is assumed to be triangular in shape with a 40 ns base
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width. The initial temperature and pressure are 300°K and 1 atm,
regspectively. The parameters used in the different equations of state are
given in Table I,

The calculated pressure at different times is illustrated in Fig., (1).
The position of the interface between the plexiglass an water is denoted hy a
dot on each of the shown profiles. As the input power increases for the
first 20 ns, the pressure near the wall increases continuously. When the
power begins to decrease, the pressure at the wall starts to drop and a
propagating wave develops (26 ns)., The calculation predicts a 10-20 ns
plateau behind the shock wave with a peak pressure which is essentially
cons“~ant for a time longer than the duration of the laser pulse (44 ns).
Later in the calculation, the details of the initial energy deposition
process are essentially forgotten. Then the wave continously approaches the
classical blast wave profile which would result if a fixed amount of energy
is deposited instantaneously in an infinitismally thin layer of water. Such
a blast wave calculation is illustrated in Fig. (2). Here we notice that the
shock wave pressure decays faster than in Fig. (1).

The plateau results from the interaction betwen the way the laser enerqgy
is deposited and the way it is tranaported to the water. In Fig. (1), we
notice that during the power rise~time of the laser pulse and up to 22 ns,
the pressure profile decays away from the wall, During this period, the
pressure builds up in the plexiglass faster than the material can expand.
While the pressure is building up within the plexigless, compression pressure

waves emanate from this region and propagate into the water. As a result,

the pressure profile follows the trend of the enerqy deposition curve.




TABLE I.

Plexiglass Water
p° = 1,18 gm/cc po = 1,0 gm/cc
c, = 0.243 cm/us co = ,01483 cm/us
s, * 1.5785 s, = 1.97
a = 107% %} « =6 x 1075 %1
Y = 2.157 Y = 1.65
CV = 0,35 cal/cm °x Cv = 1,0 cal/gm %k
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0 50 100 150 200 250
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Figure 1 Calculated pressure profiles for a 20 ns half-width laser pulse
deposited in 30 microns of plexiglass in contact with water. The
dot on each curve denotes the position of the interface between

plexiglass and water.
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Figure 2 Classical blast wave solution in water for the same amount of
energy deposition as in Fig. 1.
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when the power begins to drop, the pressure in the plexiglass drops even
faster due to material expansion. A rarefaction wave is created near the
wall and propagates into the water, while the compression waves downstream
steepen up to form a shock. The rarefaction and the compression waves
combine to create a zone of relatively uniform pressure right behind the
shock. During this period the peak pressure remaing nearly constant for a
period of time., Eventually at 40 ns in Fig., (1), the rarefaction wave catch
up with the shock resulting in a plateau immediately behind it, and later
(51 ns) the plateau disappears. As the shock wave propagates downstream, the
rarefaction waves cause the profile to change from convex to concave, and
approach the classical blast wave profile,

Finally, Fig. (3) illustrates the calculated pressure waves for the same
conditions of Fig. (1), except that all cell sizes are twice as large. This
serves as a test of the convergence of the numerical solution. A close
comparison between the two fiqures reveals that the pressure waves corre-
sponding to the same time are nearly coincident. Those of Fig., (3) are
slightly lower in value near large pressure gradients due to the larger nume-

rical diffusion associated with larger cell sizes.

IV.2. Evolution of a Detonation Wave from a Hot Spot

The next calculation shows that heating a high energy explosive
uniformly does not necessarily lead to homogeneous ignition., Ignition may
start at hot spots caused by the inhomogenieties of either the material or
the heating mechanism. The reaction would then propagate, consuming the
material between hot spots hefore any significant reaction occurs in the

background material which is at slightly lower temperature,
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Figure 3 Calculated pressure profiles for the same physical conditions as
) in Fig. 1, but for computational cell sizes twice as large.




Here we model a sample of liquid nitromethane which is 1.2 cm long. It
is assumed that the sample is initially at 1000°k. This is beyond its
ignition temperature so that, in principle, it should start reacting. The
pressure is initially 1 atm yielding a background density of 0.692 gm/cc.
The hot spot is modelled by superimposing a Gaussian temperature profile
200° x higher than ambient and 0.1 cm wide on the background temperature at
the center of the sample., This symmetry allows us to perform the
calculations for half the sample only, and the center of the Gaussian is
formally equivalent to a rigid wall.

The computational grid is uniformly spaced with a fixed cell size of
N.01 cm. The parameters of the egqution of state and the rate of reaction for
liquid nitromethane are given in Table II. We notice that A% = 0, 1In this
case, it is assumed that the parameters of the one-step Arrhenius reaction
are adjusted to crudely incorporate any induction time.

The calculation predicts the formation of a detonation wave within
0.4 Us. As illustrated in Fig. (4), the detonation pressure builds up
quickly towards a steady wave pressure of 65 Kbars that propaasies at
0.54 cm/us (Mach number = 3,72). At 1.28 us, the detonation wave initiated
at the hot spot has almost consumed the whole sample before any significant
reaction occurs at the background temperature, Without the presence of the
hot spot, the material would have exploded 31.2 us, much later than it has

here.
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Figure 4 Formation and evolution of a detonation front from a 1200 X hot
spot in liquid nitromethane at 1000 K.
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APPENDICES

A1, Equation of State of the Condensed Phase
Here we adopt the Walsh and Christian method (9] for deriving the
equation of state of a condensed explosive., This method begins by fitting

the measured shock velocity, ug, and measured particle velocity, u_., to

p

the linear relation,

and conservation of momentum

across the shock, we get

p
pc 2(1 - =2
[} DH
‘, PH - pO = po ’ (A1.1)
(1 -s°(1 - ;—)]2
H

where the subscript "o" denotes the state of the undisturbed material, and
the subscript "H"” denotes a point on the Hugoniot. Denoting the volumetric

compression by n,

Yo ~ VH o

2 | -

(a1.2)

v DH




I oa s oo

where v is the specific volume, Bq. (A1,1) reduces to

oocgn
pH=p°+——— R (A1.3)
(1-s_m)2

Finally, from energy conservation across the shock front, the internal

energy, I, can be written as
I, -1 =4(p. +p)(v =v.) =s(p. +p) vn (A1.4)
H o =2 ‘Put P’ H 2 ‘Pg ¥ Byl Vohe ¢

By using the fact that temperature has a relatively small effect on
compressibility, Walsh and Christian [9] were able to determine the variation
of the temperature along the Hugoniot by assuming that C, and (39/3’1‘)v

are constants:

- bv v,
T =T eb(vo- VH) + e H f A ebv f(v)dv (A1.5)
H o) ———— A4

Cv o)

where C, is the specific heat at constant volume. 1In Bg. (A1.S5),

dp
1 __H - il
flvy 23 av,, Vo=vy) * 3 Py
while
- (3p/3m)
- - c L ]
v

By performing the integration in Bg. (A1.5), we obtain the temperature along

the Hugoniot. Since in a typical calculation, ®g. (A1.5) has to be evaluated
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each time the temperature is needed, Mader (1] fit the Ty = v, curve

using a fourth degree polynomial in log of the volume:
= 2 3 4
n TH Fs + Gs(ln vH) + Hs(ln vg) + Is(ln vH) + Js(ln vH) « (A1.6)

Bquations (A1.1) to (A1.5) are quite general and are equally valid for
solids and liquids. For some solids, however, a kink in Fg. (4) occurs at
the point where there is a change of phase to liquid, In this case, ancther
set of coefficients, =N and $,, are required in addition to c° and S e

In reactive-shock phenomena, the states attained after compression are
expected to fall near the Rankine-Hugoniot locus, making this line a good
reference state., Thus with the ugse of the Gruneisen* Y, defined as
Y = v(ap/a:)v, we can reach any state off the Hugoniot from point H which
has the same specific volume as this state, This is illustrated schemati-
cally in Fig. (A1.a). Denoting the condensed explosive by the subscript "c®,
we have for constant v,

Y
P, - pﬂ(vc) = v [rc - In("c”' (A1.7)

. . ) §
Similarly, since cv z (3¥)v' for a constant Cv

I - Ia(vc)
C
v

Tc - TH(VC) = (A1.8)

*Por an ideal gas Gruneisen gamma, Y = v(ER) - (2132) (s denotes the
9T v dlnv s

entropy) is related to the adiabatic index v;, = (%%EE) by ¥ = Y{q=1,
v s
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Figure A1 (a) Path used in deriving the equation of state of a compressed
condensed explosive beginning from its undisturbed state,
(b) Path used in deriving the equation of state of an expanded
condensed explosive beginning from its undisturbed state.,
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where pa(vc), Iﬂ(vc), and Th(vc) are evaluated using Bgs. (A1.3), (A1.4), and

(A1.6) when Vg = Vg
Bquations (A1.') to (A1.8) are used to determine the state of a
compressed condensed explosive, For an expanded explosive, however, a

different method is used to obtain the state properties, This is illustrated

in fig. (A1.b). Since going from o to o' is a constant volume process, we

obtain
I, =1 -~ %% (a1.9)
Y
where pé- 0 by definition., Also,
T' = T +ro' -Io Y (A1o10)
° o ——————
C
v

Mow the path o' to ¢' is a constant zero-pressure process, so that the

enthalpy, H, is equal to the internal energy, l1. We then can write

3
(_3_1_) i (a:/a% i (u/ 'r)p
v (3v/aT) (sv/aT)_ °
P P P

The numerator is the gpecific heat at constant pressure, cp, while the

denominator is related to the coefficient of volummetric expansion

- 1,3v -
uv H v(&T)p' For zero presgsure, Cp z Cv. Moreover, for condensed phases

(solid or liquid), Ve is expected to be close in value to Vg Thus

c
)
P o

(

where a is the coefficient of linear expansion (av = 3a). Integrating
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mn. (a1 011)' we obtain

C
I =1 + v (vc - vo) o (Al.12)

Also, since cp 2 Cv along o' =~ ¢',

cl_ Iol
TC' = TO‘ + C . (A1 «13)
\'4
Combinina Egqs. (A1.9) and (At1.12) yields
Pa¥o cv Povb Cvn
I =L - % +?a—\§(vc-vo)310’ Y T T3a (A1.14)
Combining Eqs. (A1,10) and (A1,.,13) yields
Ic' - Io
T, =T + . (A1.15)
c o Cc
v
Finally for the constant volume process c' =~ c,
P =a-(I_-1I_,(v)) (A1.16)
c v c c'' ¢
c
and
I -1 ,(v)
< c'
T, = Tc,(vc) + = . (A1.17)

Equations (A1.14) to (A1.,17) are referred to as the Grunéisen equation of

state,




Y

In summary, p (vc,Ic), T(vc,Ic) are expressed in terms of a

reference state, denoted froﬁ now on by a subscript r, namely

Y
p(vc,Ic) = pr(vc) +t < (Ic- It(vc) {A1,18)

. (A1,19)

T{v ,I ) =7 (v ) +
¢’ e r ¢

For v £ v, r 2 H; while for v > vV, . T c'.
It remains, finally, to define a standard state at which the internal
energy is set equal to zero by definition. Here we pick I, = 0. As men-

tioned earlier, this is the undisturbed state, namely P, % 1 bhar, To £ 300K.




A2, ™uation of State of the Gas Products

The gas products are assumed to reach chemical equilibrium instantane-
ously after their production. To solve for an equilibrium state we need an
equation of state for the mixture of agas products in terms of the composi-

tion. According to Cowan and Fickett [11], the BKW equation of state for a

1 mixture of gases can be written in the form
3 p v
ng 21 + x esx (A2.1)
where
- X
X = a ’
v{(T+8)

k being the average covolume defined in terms of the individual covolumes,

ki' as X = <Z xiki, where X is the molar fraction of specieg i. The a, B,
i

9 and < are constants adjusted to reproduce the detonation Chapman-Jouquet
pressure and velocity obtained experimentally. If we Xnow the internal

energy and entropy of the mixture of products at the ideal gas limit (p=0),
we can extend their validity to the hundreds of Xilobars pressure range by

using the thermodynamic relations
JI

(3;)T = T(QT)V =P

ds v

(3;)T = -(si)p

together with Bg. (A2.1). The equilibrium state is then obtained by

minimizing the Gibbs free energy. Note that because of the possible presence




of solid carbon in the products, a solid equation of state for graphite is
needed. According to Cowan and Fickett, the carbon pressure 1s expressed in
terms of a second deqree polynomial in T, the coefficients of which are them-
selves polynomials in the compression of the solid carbon relative to its
normal crystal density.

To avoid solving the chemical equilibrium relations every time the equa-
tion of state of the products is needed, it assumed that the states encoun-
terd in a typical calculation are close to those encountered in a steady
Taylor-type detonation wave, i.e., states on the equilibrium isentrope through
CJ point. Mader (1] fit the equilibrium isentrope throuah the CJ point for

different explosives to a set of polynomials of the form

- 2 3 N
in pi = A 4+ B (4n vq) + C(in va) + 2(tn vq) + E(in vq) (A2.2)
. 2 3 / 4
in Ii = K + L(2n pi) + M(in pi) + N(4in pi) + N(in pi) (A2,.3)
iINT =0+RAv) +S(nv)2+T(tnv)dsuin v, (A2.4)
i g q q g

The shifted internal energy Ii = Ii + Z, where Z is a constant used to

change the standard state to be consistent with the condensed explosive one.
For points off the isentrope, the definition of Gruneisen Y' and c; (for

gases we use an apostrophe) provide the transition from point i to g, as

shown in Fig. (A2). 3ince we need the equilibrium p(v,I) and T(v,I), and we

do not need to obtain the composition of the products, the change in composi-

tion along the constant volume process i-g in Fig. (A2) can be absorbed in

the definition of Y' and C;. As foo Y', since g is expected to be near i, we

] 1 L}
can take Y average * v where A takes into account the change in Sp/6I due
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Figure A2 Path used in deriving the equation of state of an explosive's gas
products beginning from its undisturbed state.




to change in composition along the equilibrium constant volume process.

v(%&)v

y' = v(_g%)v =— (a2.5)
(3;)v

First, we write

then substitute for (Bp/as)v and (31’/33)v from the first law of

thermodynamics (I = Tds - pdv), yielding

BlnT)
3lnv's

Voo ou(e JT -
Y = v( ev)S/T =

Thus Yi is expressed as

dainT,
i

L] N e—
Yi dinv
q

= - {R+ 2s0aav ) + 3T lnvq)z + 4u( 9mq)3} (A2.6)
therefore inferring the change in compositon along the constant volume
process i=-g in Fig. (A4) from the change along the constant entropy process

through i, expressed in Egs. (A2.4). Integrating Bq. {(A2.5), we get

Y!
pg = pi(vq) +-;£ (Ig - Ii(vg) . (n2.7)
g9

Finally, we assume that C; is insensitive to the change in composition,

giving

(A2.8)




A3. Expressions for the Sound Speed

Generally, the sound speed, c, is defined as

Since p = p(v,I), let I = I(v,s), so that

%, . dp, 2
(Gv)s (av)I + (SI)V(W)S *

Substituting for (3I/3v)s by -p (dI = Tds -pdv) we get
2 29238 L u20dR, . 3e
c vl v)S v [p(al)v (av)I] . (A3.1)

Condensed Phase

The pressure is expressed in terms of a reference pressure, Opr and a

reference internal energy, Ir' both functions of specific volume only:
P=p (V) +2 (I -1 (v)) .
r v r

Substituting the above relation in Eq. (A3.1) we obtain

2 dpr dIr
c =v[Yp-v-dT-+(p-pr)+YdTl. (a3.2)

Since the reference state r depends on whether the condensed explosive

is compressed or expanded we consider the two cases:




ETIR

(1) v < v, » £ = H: From K. (A1.3) and the definition of n in Bjy.

(a1.2),

- 2
dp, dp, 1 Pu TPy 4 4gn (P (1 + 8 M)
Ev—zd—v-ﬂ-“; ( n )(1 -Sn) = ’ (A303)
° (1-s°n)3

whereas Fas. (A1.2) and (Al1.4) give

dIr dIH ] dp
dv

H = (n
dv dv 290

H

- (pH+ po)po] (a3.4)
At the undisturbed state (p,, T,), n = 0. Bq. (A3.2) gives then
c? = coz, as it should be. Note that o and s, are replaced by Cir S,
when dealing with a solid that exhibits a kink in the linear relation between
the particle velocity and shock velocity at the point where a phase change to

a liquid occurs.

dp
- . r
(2) v » vo, r £ ¢': Since pc, = 0, el 0. From Bq. (A1.14),
dIr dIc, cvpo
v -3 =35 At the undisturbed state (po, To), BEq. (A3.2) yields
YC
2 . 4
c (Y+1) PV * 35 ¢
thus giving an estimate of ¢, as
YCV 172
c, = {(y+1) PV, * 3T] . (a3.5)

For liquid nitromethane, for example, Mader (1] gives the following set of
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parameters
Cy = 1.647 x 10~} cm/ usec
Y = 6.805 x 10~1
a =3 x 1074 %-~!
-1
-1 cal  _ 4.14 x10 2
cv = 4,14 x 10 — = 33890 (cm/usec)
qm K
Yo, 1/2
so that [(Y+1)p°v° + 33-] z 1,145 x 10~! cm/usec. The discrepancy hetween

<, given and that evaluated from Eq. (A3.5) indicates a kink in the thermo-
dynamic properties at the interface between the two regimes v < v, and

v > v,. However, since the sound speed is only used to derive the Courant
time step, which is an upper limit for the actual time-step used, this

discrepancy presents no problem in the calculations.

Gas Phase
The equilibrium isentrope through the CJ point is the locus of reference

states. Upon substituting Bg. (A2.7):

Y (V)

p = pi(v) + {1 - Ii(v)]

in Bq. (A3.1), we get a relation similar to Bg. (A3.2) except for a correc-

tion term attributed to the dependence of Y{ on v, namely

2 dpi dIi in
= ! - - ! — - - - . .
c v(Yip Arrealig (p pi) AR e (1 Ii) dv] {A3.6)
|
| 4




-

Noting that &n P and Y{ are given in terms of in v, whereas in Ii is given

in terms of in Dy Eq. (A3.6) can be rewritten as

5 dlnpi dlnIJ." d!-npi dY{

= ] -  commsm— - [ ] ——— — - ————

c v[Yip VPR (p pi)] + Yi(Ii + 2) dfnpi % (1 1:.1)(”‘w (A3.7)
dlnpi dlnli day!

where

i . . . s
3inv ' dlnpi , and Iinv are obtained by direct differentiation of

Eqs. (A2.2), (A2.3), and (A2.6), respectively.

Mixture of Condensed Phase and Gas Phase

Since the sound speed in the mixture is known a priori to be between the
values of sound speeds of the condensed phase and gas products, it is
satisfactory to assume

14
Clixture = max(cc,cq) {A3.8)

when determining the Courant time step. Here, c, and cg are evaluated at

the common temperature and pressure of the mixture.




