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A. DEFORMATION OF SOLIDS

Our progress on this topic is written as a separate report, which is

attached. Currently, we are working on the quantum mechanical issues that will

determine the transition rates for the crack grdwth process.

B. MARKOV AND SEMIMARKOV MODELS OF DETERIORATION

With high-reliability devices, the time and expense needed for life tests

are prohibitive, and techniques like accelerated life testing and using censored

data introduce difficulties of another sort. In an effort to circumvent such

difficulties, the concept of a deterioration process is introduced, and the

lifetime is defined to be the hitting time of a threshold value by the

deterioration process.

The attached paper on this topic discusses the explicit structure of some

general models for deterioration processes and solves for the lifetime

distribution in general. Using the recent characterization theorems obtained

by CINLAR and JACOD, the deterioration processes are described in terms of a

"deterioration process in intrinsic time" and an "actual time process" as a

function of the intrinsic time. This enables us to parameterize fairly general

processes in terms of deterministic functions that can be obtained by laboratory

tests.

C. REGENERATIVE SYSTEMS AND MARYOV ADDITIVE PROCESSES

A system is called regenerative if it enjoys the .ttronE Maikov Ircperty at

stopping times that belorn to a certain random time set (callud the
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regeneration set). If the strong Markov property is strengthened to

independence of past and future at stopping times belonging to a regeneration

set, the system is said to be strictly regenerative. In the strict

regeneration case, the regeneration set is the image of an increasing Levy

process (this is due to MAISONNEUVE), and conversely, the image of an

increasing Ldvy process is a strict regeneration set (this is due to MEYER).

For the general case of regeneration, the role of the Lfvy system is taken over

by Markov additive processes. This was shown by JACOD under the assumption

that the regeneration set has no isolated points. In joint work with Haya KASPI,

we now have a complete characterization of regenerative systems in terms of

Markov additive processes. The galley proof of the paper is attached.

D. EXCURSIONS OF MARKOV PROCESSES

This was joint work with Paavo SALMINEN who was supported as a post-

doctoral fellow by this grant. Two papers by SALMINEN on this topic-are

attached.

The one titled "Mixing Markovian laws, with an application to path

decompositions" gives a simple condition for the mixture of a family of

Markovian laws to be Markovian, and then uses the result to derive generaliza-

tions to J. PITMAN's 2M-X theorem and D. WILLIAMS's path decomposition theorem.

The other paper by SALMINEN, "Brownian excursions revisited," the

fundamental works of ITO and D. WILLIAMS on path decompositions are re-done

from the point of view of LEVY's: instead of the maxima of excursions, the

lvrgths of excursion. are mad( thc primary objects. This yields more intuitive

dLcriptionL of the excursion laws.
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E. BROWNIAN MOTION ON RIEMANNIAN MANIFOLDS

This work was carried out by Mark Pinsky. It has focused on local

properties of Brownian motion on Riemannian manifolds. The specific problem

areas under investigation are the following:

a) Mean exit time of Brownian motion from small geodesic balls.

b) Higher moments of the exit time from small geodesic balls.

c) First eigenvalue of the Laplacian on a small geodesic bal.

d) Mean exit time of Brownian motion from tubes about a curve.

The first problem has been solved in collaboration with Alfred Gray, in a

paper to appear in the Bulletin des Sciences Mathematiques. The second problem

has been solved in a paper to appear in the Proceedings of the International

Symposium in honor of Laurent Schwartz. We now describe the setting of these

works.

(M,g) is an n-dimensional Riemannian manifold and A is the Laplace-

Beltrami operator which is canonically associated to the metric g. Using

stochastic differential equations we may construct the Brownian motion (X,P x),

a conservative strong Markov process with infinitesimal generator A. The exit

time from a ball is defined as T& = inf{t>O: d(X ,m) = E where d is the
E t

Riemannian distance and m M. This random variable has the scaling property

c ,  in the sense of probability law for any c > 0.* This implies

that we have the following limit theorem: T g/ 2 has a limitin_ probability

distribution when E - 0, independent of the metric Z. This in the exit time

distribution of Eu'lidean Brownian motion from the unit ball.

A more detdilvd study rucveal- the V-ometric structure of thc nanifzd(1 fron,

the diztribution of thf exit time. Let EL(T ) and E (T' ) bt the first and

second moment, of the exit time. W.; have the following a-.ymptotic exr;an-1on:

i qcirtec. out to uu. by C. Lm,.



4

when -. 0:

E m (T c0 E2 + C TC4 +C26 c 2 +c3 12 +c4= 2C5 AT + o(C 8

E Era(T 2) d 0E 4 + d T :6 + c8(d 2 d 12 1R 12da +d r2 +d AT] + 010
m C 0 1 2 31 4 5

where c 0 . . . .., d5 depend only on n = dim M, T is the scalar curvature,

P is the Ricci tensor, and R is the Riemann curvature tensor. The constants

satisfy c2c3 < 0, d2d 3 < 0. From these expansions one deduces the following

results on retrieving the knowledge of the metric g from the Brownian motion:

if the Riemannian manifold (M,g) satisfies E (Tg) = CoC2  for all meM,c > o

and 2 -n -< 5, then g is flat metric. Similar results are available for

any metric of constant curvature as well as the other rank one symmetric spaces

CPn, Qpn and CaP.

The methods used are a combination of stochastic analysis and Riemannian

geometry. We begin with Dynkin's formula and its extension, the so-called

"1stochastic Taylor formula." These are written in the form

E f(X ) - f(m) = E f f(X)ds
C 0

Emf(X T ) - f(m) : E
(m EI T C Lf (XT ) f(x )ds

C C 0

in particular the first moment u I = L (T9) satirfiet the equation uI = -l

whilu tht: fuUAct i on u) E M (T[ ) Latizfiet the equaticn Lu 2 = -u witt,

both uI z u2  0 on the boundary of the ball. To study the L placian in a

sniaII ball, wL dve.lol., th, following expansion in sy,:ter. of normal
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coordinates:

-2 + 0 + 1 +

where A-2  is the Laplacian in the tangent space at m and the operators

{A } I 0 are second order differential operators with polynomial coefficients.

This is used to develop a suitable "perturbation theory" for the Laplacian on a

small geodesic ball of a Riemannian manifold. The successive correction terms

to the Euclidean mean exit time are expressed as solutions of certain

inhomogeneous Poisson equations relative to the Euclidean Laplacian A 2 where

the inhomogeneous terms are expressed in terms of curvature information through

the operators (A.}. The validity of this.perturbation'series is justified
I j 0O

totally within the probabilistic framework, by repeated use of Dynkin's formula

and its extensions.

The third problem also fits into the above context, where we look for the

solution ( -,f C) of the problem Af + Xf = 0 where f is zero on the

boundary of the E-ball and is positive on the interior. It is proved that we

have an expansion of the type

A¢ = Z0 -2 + O1T + C2 [Ca 2 RI 2 * c 3 1p1 2 +04T2 +05L'] + 0(C4)

where aO. ..... a 5 depend only on n = din M. This may be usud to recover

the metric from knowledge of the fundamental frequency of a geodesic ball in

low dimensions.

The fourth problcrm ccncerrns tlc exit time of Browniani mctio.n alout i curvt

or Submanifold of Euclidua space. Wu d.rvcloj, an expmn:.ion of tht Lalla-cir, in

d system of "transverse coordin.jtez." hi,-; lu:adc tc z. dtvAcopment of th, r. -i

SEM
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exit time in an asymptotic power series, where the coefficients are certain

integrated curvature invariants. It is shown for example, that we may

recognize a circle or a closed geodesic from knowledge of the mean exit time

of Brownian motion from an. c-tube about a simple closed curve in a flat

manifold.

_____I
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