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A. DEFORMATION OF SOLIDS

Our progress on this topic is written as a separate report, which is
attached. Currently, we are working on the quantum mechanical issues that will

determine the transition rates for the crack growth process.

B. MARKOV AND SEMIMARKOV MODELS OF DETERIORATION

With high-reliability devices, the time and expense needed for'life tests
are prohibitive, and techniques like accelerated life testing and using censored
data introduce difficulties of another sort. In an effort to circumvent such
difficulties, the concept of a de;epioration procéss is introduced, and the
lifetime is defined to be the hitting time of a thresholé value by th;
deterioration process.

The attached p;per on this topic discusses the explicit structure of some
general models for deterioration processes and solves for the lifetime
distribution in general. Using thevrecent characterization theorems obtained
by CINLAR and JACOD, the deterioration processes are described in terms of a
"deterioration process in intrinsic time" and an "actual time process' as a
function of the intrinsic time. This enables us to parameterize fairly general

processes in terms of deterministic functions that can be obtained by laboratory

tests.,

C. REGENERATIVE SYSTEMS AND MARKOV ADDITIVE PROCESSES

A system is called regenerative if it enjoys the strong Markov property at
stopping times that belcng to a certain random time set (called the
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regeneration set). If the strong Markov property is strengthened to
independence of past and future at stopping times belonging to a regeneration
set, the system is said to be strictly regenerative. In the strict
regeneration case, the regeneration set is the image of an increasing Lévy
process (this is due to MAISONNEUVE), and conversely, the image of an
increasing Lévy process is a strict regeneration set (this is due to MEYER).
For the general case of regeneration, the role of the Lévy system is taken over
by Markov additive processes. This was shown by JACOD under the assumption
that the regeneration set has no isolated points. In joint work with Haya KASPI,
we now have a complete characterization of .regenerative systems in terms of

Markov additive processes. The galley proof of the paper is attached.

D. EXCURSIONS OF MARKOV PROCESSES

This was joint work with Paavo SALMINEN who was supported as a post-
doctoral fellow by this grant. Two papers by SALMINEN on this topic' are
attached.

The one titled "Mixing Markovian laws, with an application to path
decompositions” gives a simple condition for the mixture of a family of
¥arkovian laws to be Markovian, and then uses the result to derive generaliza-
tions to J. PITMAN's 2M-X theorem and D. WILLIAMS's path decomposition theorem,

The other paper by SALMINEN, "Brownian excursions revisited,” the
fundamental works of ITO and D. WILLIAMS on path decompositions are re-done
from the point of view of LEVY's: instead of the maxima of excursions, the

lengthe of excurcions are made the primary objects, Thie yiclds more intuitive

Jescriptions of the excursion laws.

.




E. BROWNIAN MOTION ON RIEMANNIAN MANIFOLDS

This work was carried out by Mark Pinsky. It has focused omn local
properties of Brownian motion on Riemannian manifolds. The specific problem

areas under investigation are the following:

a) Mean exit time of Brownian motion from small geodesic balls.

b) Higher moments of the exit time from small geodesic balls.

c) First eigenvalue of the Laplacian on a small geodesic ball.,

d) Mean exit time of Brownian motion from tubes about a curve,

The first problem has been solved in collaboration with Alfred Gray, in a
paper to appear in the Bulletin des Sciences Matbematiques. The second problem
has been solved in a paper to appear in the Proceedings Pf the Intern;tional

Symposium in honor of Laurent Schwartz. Wenow describe the setting of these

works.,
(M,g) 1is an n-dimensional Riemannian manifold and A is the Laplace-

Beltrami operator which is canonically associated to the metric g. Using
stochastic differential equations we may construct the Brownian motion (xt’Px)’
a conservative strong Markov process with infinitesimal generator A. The exit
time from a ball is defined as T¢ = inf{t>0: d(X_,m) = ¢ where d is the
Riemannian distance and m M. This random variable has the scaling property

’ ng s c TS//E in the sense of probability law for any ¢ > 0.% This implies
that we have the following limit theorem: TZ’/:2 has a limiting probability
distribution when € - 0, independent of the metric g. This is the exit time |

dictribution of Lu-lidean Brownian motion from the unit ball,

A more detailed study revesle the geometric ctructure of the manifcld from

.
the diztribution of the exit time, Let Em(Tc) and Em(TZ) be the firet and

second momente of the c¢xit time. We have the following acymptotic expancion:

U

“kointed out to ul by C. Lmcth.




when ¢ - 0O
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2
Em(Tc) 0 1

where cCpy ce.es dS depend only on n = dim M, Tt is the scalar curvature,
¢ is the Ricci tensor, and R 1is the Riemann curvature tensor. The constants
satisfy €,Cq < 0, d2d3 < 0. From these expansions one deduces the following

results onretrieving the knowledge of the metric g from the Brownian motion:

2

if the Riemannian manifold (M,g) _satisfies Em(Tg) = Cyf for all meM,e > o
and 2<sn< 5, then g is flat metric. Similar results are available for

any metric of constant curvature as well as the other rank one symmetric spaces

cP®, QP and cap’.

The methods used are a combination of stochastic analysis and Riemannian

gecometry. We begin with Dynkin's formula and its extension, the so-called

"stochastic Taylor formula." These are written in the form

g
T
. €

Ef(Xp ) - f(m) = E_ [ af(x)ds

€ 0
. 2
LE(Xy ) - £(w) = £ Toaf(Xp ) - B [* sl £(x,)ds
€ € 0
In particular the first moment u, = Em(Tg) cutisfies the equution wu

9
while the function wu, =% Lm(Tg) catisfies the equation 4u, =

both ul s u2

emall ball, we develop the following expansion in « systen of nornal

12-+c5Ar] + O(ee)

ae’ +a, e’ 4 ee[dle(2-+d3Ip|2-+dur2-+d5ArJ + 0(el%)

= ¢ on the boundary of the ball. To study the Laplacian in a

Ao
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coordinates:

A= A_2 + Ao + Al t vess

where A_2 is the Laplacian in the tangent space at m and the operators

{Aj}jzo are second order differential operators with polynomial coefficients.
This is used to develop a suitable "perturbation theory" for the Laplacian on a
small geodesic ball of a Riemannian manifold. The successive correction terms
to the Euclidean mean exit time are expressed as solutions of certain
inhomogeneous Poisson equations relative to the Euclidean Laplacian b_, where
the inhomogeneous terms are expressed in terms of curvature information through
the operators {Aj}jzo' The validify.of this.perturbation series is justified
totally within the probabilistic framework, by repeated use of Dynkin's formula
and its extensions.

The third problem also fits into thé above context, where we look for the
solution (Ae,fe) of the problem Af + Af = 0 where f is zero on the
boundary of the e-ball and is positive on the intericr.l It is proved that we
have an.expansion of the type
2

T 4+ 52[02!R|2 +a3|p|2 ta, 7 +a.81] 4 ofet)

521‘
L

%
where Ogs eveees Og depend only on n = dim M, This may be used to recover
the metric from knowledge of the fundamental frequency of a peodesic ball in
low dimensions.

The fourth problem cencerns the exit time of Brownlan motion about o curve

or submanifold of Luclidecan space. We develol an expancion of the Laplacian in

a system of "transversce coordinstes." This leads te o devilopment of the mean




exit time in an asymptotic power series, where the coefficients are certain

integrated curvature invariants. It is shown for example, that we may

recognize a circle or a closed geodesic from knowledge of the mean exit time

of Brownian motion from an. e-tube about a simple closed curve in a flat

manifold.




