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Summary alphr
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Fourier transforms of indcpendently scattered random measures on locally compact
Abelian groups, some of thc basic results known for processes with finite sccond
moments and for Gaussian processes. Analytic conditions for subordination of
left (right) stationarily related proccsses and a wcak law of large numbers are
obtaincd. The main results deal with the interpolation problem. Characteriza-
tion of minimal and interpolable processes on discrete groups are derived. Also
formulas for the interpolator and the corresponding interpolation error are
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0. TIntroduction

Many features of the thecory of Gaussian processcs, in particular somc path
properties (101, linear estimation and system identification T4', nonparametric
estimates for spectral density 117 as well as linear prediction 77", T5! have
been shown to extend to appropriate classes of a-stable processes. The main
difficulty is due to the fact that, while the linear space of a Gaussian pro-
cess is a Hilbert space, the linear space of a stable process is an Lp space
and its geometry is completely different.

With the aim of carrying over Lz-stationarity type arguments to the thcory
of a-stable processes, 1<u<2, Y, losoya 71, S, Cambanis and R. Soltani 'S!
have considered the class of harmonizable symmetric a-stable scquences and nro-
cesses. This idea goes back to K. Urbanik 18], who studied first harmonizable
processes with infinite second moments and their prediction, but under a more
restrictive assumption that the processes admit independent prediction. It
turns out that such an assumption which is useful in a-stable contexts in gene-
ral, unfortunately is not satisfied for harmonizable a-stable processes. The
main obstacle here is the lack of independent random variables in the lincar
span of the process, cf. 57, th, 3.3. However, the importancc of harmonizable
processes is that their theory can he penetrated by Fourier analysis type argu-
ments.

The approach given in this paper follows the recent work of S. Cambanis and
R. Soltani [5] with the extension to our general setting which is motivated as
follows. In the development of the theory of Lz-stationary processes (xt)teT
a natural trend can be observed. First classical results derived for the pro-
cesses with discrete or continuous time T (T=%Z or R) were extended to the

. n
case of random fields on T= 7/n oron T=R , and next to the more peneral
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parameter sets such as groups or homogeneous spaces. This was motivated not
only by theoretical aims, but also hy some practical nceds. Probably the simp-
lest example is given by a class of processes considered in meteorology, where
1‘=83x 7, S3 is the unit sphere in Rs, sce (147 and references therein.
Having this in mind, it secems desirable to develop a theory for a-stable pro-
cesses at once in such a general setup. This will permit inclusion also of the
class of dyadic stationary proccsses, which for the Lz-casc has been used re-
cently for several purposes, mainly duc to computational advantages of Walsh
spectral analysis, see /121 and references therein,

The fact that the linear span of a SuS process can be considered as a semi-
inner product space with respect to the covariation r."ja’ introduced for com-
plex SaS variables by S. Cambanis 7371, will play a fundamental role in this
paper. It should also be mentioned that the norm [|-|h defined by this semi-
inner product is equivalent to the usual pth norm, where 1<p<o<2 and the conver-
gence in ||-Ha norm is equivalent to the convergence in probability.

The plan of the paper is as follows. In Section 1, we set up the basic no- .
tations and conventions, we present a general isomorphism lemma and we study the
conditions for subordination of harmonizable SaS processes. The fact that the
covariation is not linear in the second argument forces us to introduce a class
of left (right) stationarily rclated processes. Th. 1.1 gives necessary and
sufficient analytic conditions for subordination of left (right) stationarily
related processes, which is an extension of A.N. Kolmogorov's 8" and L.
Bruckner's 2] results from the symmetric a =2 case.

Section 2 is devoted to the study of ergodic properties. Th. 2.1 gives a
law of large numbers for harmonizable SaoS processes on second countable locally
compact Abelian (LcA) groups. As a corollary Prop. 2.1 and remarks related to

the Maruyama-Grenander characterization of metric transitivity are mentioned.

Y
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In Section 3 basic concepts and theorems related to intcrpolation are in-
vestigated. Using th. 1.1 on subordination, we derive a complcte characteriza-
tion of minimal harmonizable SaS processes on a discrete Abelian group, which is
an extension of Kolmogorov's theorem. This result for a =2 reduces to known
facts, c¢f. 27 and '97. Recently, minimality of harmonizable SoS processes on
the group of integers has been studied by M. Pourahmadi "13), under thc restric-
tive assumption that the reciprocal of the spectral density exists a.s. As we
prove in th. 3.1 any minimal process has such property and this restriction is
not needed. Morcover, an intcerpolation problem is considered, when the values
of the process (defined on a discrete Abelian group) on a compact subset are
missing or cannot be observed. Th. 3.2 provides formulas for the interpolation
error and interpolator related to this problem. Also a characterization of in-
terpolable (exactly predictable) processes is derived. For o =2, these results
were obtained first by A.M. Yaglom 201 for processes with discrete time and
then successively extended to processes on groups cf. 27, 167, 197 and refer-
ences therein.

Failure of the least-squares method of forecasting in economic time serics
was first explained by B. Mandelbrot, The variation of certain speculative
prices, J. Business 36 (1963), 394-419 and 45 (1972), 542-543. He introduced a
radically new approach hased on a-stable processes to the prohlem of price vari-

ation. This additionally motivated our study.
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1. Spectral domain analysis

A stochastic process (xt)t(T is called a symmetric a-stable (SuS) process
if all the linear combinations alx(tl) + ...+ anX(tn) are SaS random variables,
1<a<2. In particular, if a =2, X is a Gaussian process. Recall that a complex

random variable x==x1 +iX2 is SaS if xl,X2 are jointly SoS and its characteristic

function is written with t =tl +it2 as

E exp{iR(tX)} = E exp(i(t X, + t,X,))
= exp{-/ 2|t1x1 +t,x2|“dr‘X X (xl,x,)} ,
S - 1'72 -

2

where T is a symmetric measure on the unit sphere 82 of R™ .

X,,X
1°72
When X==X1 +iX, and Y==Y1 +iY2 are jointly SoS and 1l<a<2, the covariation

of X with Y is defined in 731 as

<a-1>4p

v L . :
(1.1) X, Y1, IS4(x1+1x2)(y1+1y2) XXy ¥y Y, (LY YD)

where for a complex number z and B> 0 we use throughout the convention

(1.2) 2B o) (B-D) L 7

where z is the complex conjugate of z.

Elementary, but useful propertics of the function Z<B> arc listed in the

following
LEMMA 1.1
(i) |z|® =228,
(i) [2°F) = |z|<B> ,
(1ii) if 2B = v, then 2 = |v|(1-BV/BG

The covariation of jointly SaS random variables defined by formula (1.1) is
not generally symmetric and unlike the covariance (to which it reduces in Gaussian
case 0=2) it is not linear in the second argument, but introduces on the linecar

space S of all SaS random variables a useful concept of a semi-inner product.

T
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1.2

The basic properties of covariation are contained in
LEMMA 1.2 (I31)

3 = 1 r 1]
(i) fX] +X2,Y1a le,Y.a-o XZ,YAa

<g-1>
ii 1 =
(ii) FaX,bY.a ab FX,Y]O
(iii) FX,Y]a = 0 1f X,Y are independent,

i r ] = r 2 A
(iv) X,y +Y2Ja FX,Ylla + x,Y2]a, if Y;,Y, are independent.

1

1/a

v lixll, = Txx7

i8 a norm on S equivalent to comvergence in

probability.

In the real case the I]'Ia—norm is related to the usual pth norm by Hx[h}=

C(p,a)(E|x|p)l/p, where C(p,a) is the constant depending only on a and p, lsp<a<2,

sce 41, p. 45. This is no longer valid for the complex casc, however . is
cquivalent to the pth norm, which is sufficient for our aims. Cf. also 731,

Let G be a loeally compact Abelian (LCA) group and & the dual group of G.
Then 8 is also a LCA group under the compact-open topology. Because of the

duality between G and 8 we will denote the characters of G by <g,y>, pe G, ye &.

They have the following properties.

(1.3) <g,y><h,y> = <g+h,y>
l<g,v>| =1
<'grY> = <8;Y> = <8,Y-1> .

On any LCA group there exists a non-negative measure, finite on compact sets and
positive on non-empty open scts, the so-called Trar measure of the group, which
is translation invariant. Wc will lenote usually the Haar measures on G and &
by dg and dy, respectively. But one exception will be given in Section 2. For

more information see 7151,

DEFINITION 1.1

A SaS process (xg)g G’ 1<as<2 is said to be harmonizable if there exists an
€
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1.3

independently scattered SaS measure Z(+) on the Borel o-field Be of the dual

group & such that

X,, B I(\, @Y Z(dY) , g,

where the scalar valued measure F(A) = HZ(A)"z is finite. F is called the
control measure of the process.

Some comments are in order. First we recall that a random measurc Z(*)
is independently scattered if

(i) for every sequence EI’EZ"" of disjoint Borel sets
® (o]
2(,9 B)= 1 Z(E) ,
n=1

where the series converges in probability,

(ii) for every sequence E R En of disjoint Borel sets the random varia-

1’E2""
bles Z(El),Z(Ez),..., Z(En) are independent.

In our case of SuS random variables from Lemma 1.2 follows that Z(°) is
orthogonally scattered in the sense that

rZ(El) , Z(-Ez) ]a =0 whenever ElnE2 =9 ,

and one may repeat the classical construction of the integral with respect to

Z(*). Namely, if f(+) is a simple function of the form f==§:=1 ay 1Ek then
n

o f020an = ] 28
and

"fe {OHCN =Ie|f(Y)|aF(dY) -
where

F(B) =zl
is the control measure
Next for a:n, . 1 . there exists a sequence of simple functions fﬁ-»f with
respect to Il.”a' If we put

R
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|, f(mz@dy) = 1im [, £ (V)Z(dY) ,
e n

n->x )

then this integral is well defined, does not depend on the choice of {Fn} and
defines linear isometry I: L*(F) into S.
Such processes for G = Z/ -- the integers has been introduced rccently by

Y. Hosoya 771 and for G = R -- the reals by S. Cambanis and R. Soltani 757,
| ‘ Observe that in both cases the random measure Z(°) can be realized by means of
a right continuous SaS process Et with independent increments using the formula
Z((a,b]) =£h- Ea for each a<h.

The following lemma will be used later .

LEMMA 1.3

(1) If p(y),aq(y) € LUF) , then

rja

(ii) FEach harmonizable SoS process (xg)g€C 18 covariation stationary

POVZ(EN. f, a2 1= fy P4 " E(ay)

i.e.,
MXgs X Ty = TXg %o Ty = MXgoXg 40 = fe <g-h,y>F(dy)

(iii) There exists a preserving semi-inner product correspondence (an
isometric isomorphism 1) between the time domain
L(X,6) (= gﬁTXg,geG} in 8) of the harmonizable SaS process Xg
and the speetral domain of the process La(F) atven by

I p(Y) =f, n(Y)Z(dY) , p(*) € LYF)

¢

Proof:

(1) 1t is enough to check this formula on the dense subset of sim-

j ‘ ple functions in La(F). For this let p(Y) =zkaklAk and q(y) =2jbj1B . Then by

]
Lemma 1.2

T




Ty POOZED, [, a2 Y= ] a, b3 rz(a) 28 1
»J

]
<o-1>

E. akb

= ) F(A, nB.)
K, j k)

- f@ (e Prcay)

The rest follows from the definition of the integral with respect to Z(*).

(ii) Tt is immediste from (i).

(iii) Observe that I<g,y>=[, <g,y>2(dy) =X, By (i) I is an isometry which
prescrves a semi-inner product on éhe set of all characters onto {Xg,geﬁ}. 1
can be extended to an isometry on the linear hulls of these sets and hence to an

isometry on their closures. The closure of the latter set is L(X,G) and the

closure of the former is La(F). i

It is known, that in contrast with the Gaussian casc, there are for o <2 co-
variation stationary SuS proccsses which are not harmonizable. The simplest
example Xg==A%-Yg, where A is a/2-stable random variable independent from a
stationary Gaussian process Yg. For details, see 57, th. 3.4,

DEFINITION 1.2

A harmonizable SaS process (Yg)geG is said to be obtained by a linear truns-

formation (LT) from the harmonizable SaS process (Xq)gs if there exists a func-

G
tion p(y) ¢ La(FX) such that

Yg=f@

where ZX is the random measure and Fx the control measure of the process (xg)peC'

, . . 2 . .
The concept of subordination of stationary L”-processes was introduced, studiced

<g,v>p(V)Zy(dy) ,

and used in prediction of such processes by A.N. Kolmogorov (1941). The problem of
finding analytic conditions for subordination in terms of the spectral measurcs

leads us to study of linear transformations. We want to obtain necessary and




1.6

sufficient conditions for subordination of harmonizable SaS processes. 1In a
contrast with case a =2 the results are non-symmetric, and we need to consider
left (right) stationarily related processes to a given harmonizable SaS process.

DEFINITION 1.3

A harmonizahle SaS process (Y ) is said to be left (right) stationarily

g ge6

related to the harmonizable SuS process (X if therc exists a finite mcasure

g)geG
Pyx(Fyy) Such that [yg,xh1a==fe <g-h,Y>Fy, (dY) (or [xg,yh1a= I? <g-h,y>F (41,

It is easy to observe that if (Yg) is left (right) stationarily related

geh
- [ -
to (X)) g » them (Y X 1, = [¥p. Xy T (XY, = X Y1)
THEOREM 1.1

Tf a harmontzable SoS process (Yg)geC t8 left (right) stationarily related

to the harmonizable SaS process (xg)per s then the following conditions are

equivalent:

(7 There exists a funetion p(y)<'La(FX) such that
Y =
g Ie

(1) There exists a function p(Y) e La(FX) such that

<g.Y>P(Y)Zx(dY) geG .

Fy(®) = [ lp(n) |*Fyav)
and

<n-1>

Fyg(8) = [, POIF,(dY)  (or Fyy(8) = [, p(y) ™ Fy(d)

for all Borelian sets A on a.

(111) (Yg) 78 subordinate to (xg)geG z.e., L(Y:G) ¢ L{(X:G).

geG
Proof:
Let us consider first the left-stationarily related process.
(i) = (ii)

By L:mma 1.3 and (1.3) we have

Lr?



= <h
AR AN rIe <g.Y>v(Y)Zx(dY),,fa Y2y (A

=fe <g-h,Y>P(Y)Fy(dv).

Again by Lemma 1.3, Lemma 1.1 and (1.3) we have

YooYy 1y = 1) g B TP N p PPN,

-1
=IP <g,v>p(Y)F<h,y>p(m) 5%

3

FX(dY)

= [ <@g,y p(Y)<Fovs [<h, > | IR Ipen) |V 2R, (ay)
f\ X

=IP <g-h,v>|p(v) |*Fy (dv)

Since from the other side

FYg,Yh]a = [e <g-h,y>Fy(dy) and ‘ry!_!,xhwa:[e <g-h,y>Fy, (dy)

then by uniqueness of the Fourier transform (see 151, p. 17) we pet (ii).
(ii) = (iii)
Let ne L(Y;G), then there exists a function fe¢ La(FY) such that

n= fe £(1)Z,(dv).

Observe that the function f(Y)p(Y) ¢ UI(FX), wherc p(Y) is the function from

condition (ii). Indecd,
Jp| £ 0Pt [Py tan) = [ 1 €00 I%Fyav) = finll3
Consequently, the SaS random variable defined by
£=] g FIPNZ ()
is by Lemma 1.3 an element of L(X;G). Now condition (ii) implies that
Z,(8) =fA P(Y)Z, () for any A

and consequently

n=Ee L(X:G)

————




1.8

(iii) = (1)
Assume Ygr L(X;6G) for all g« G. Then for each pe G there exists a function

ply:g) € L"(Fx) such that

Y, = Ia p(Y; )2y (dY)

Since (Yg)gEG is left-stationarily related to (xg)geG we have
. - = =T 1 = . -
I? P(Y;R)<-h, >Ry (dY) = 1Y, X ] =T, % 7 Ia P(y:0)<g-h,y>F, (dy).

Hence

I(\ <-h,v>Tp(Yig) - p(Yi0)<q,y> 1P, (dy) =0  heG .

So by the uniqueness of the Fourier transform 15!, p., 17, we have

(1.4) p(v;g) =p(y;0)<g,y> .
Hence lcttin = ;0) wc have that (Y is a LT of (X and we get
g p(Y) = p(y;0) V) eq (X g

(i).

The proof in the case of right-stationarily related processes is very similar
and only the last implication needs some explanation.
(iii) = (1)

Let Y < L(X;G) and Yg=J’e P(Yi£)Z, (dY), p(Y;R) € L"(FX). since (V). o is

*

right-stationarily related to (Xg)gec we have

rx

|
g-h'YO 0

" <a-1
I? <g’Y>p(Y;h)<a >Fx(dY) =rxg’th1=

[}

A1
fa <g,y><-h,y>p(y:0)* >Fx(dwr)

So again by the uniqueness of the Fourier transform we have

(1.5) p(y:h) "1 = coh yop(y;0) @Y

Observe that relation (1.5) is different from relation (1.4) obtained for
left-stationarily related processes. Using Lemma 1.1 (iii) we may write (1.5)

as

B ataat 2




1.9

——— (1= - R A URETA T
P(Y:h) = S5 p(yi0) 71> (220 (asy <o =<h,y>p (Y)

——

where P (V) =|p(y;0)<“'1>’(2-0)/(m-l)p(y:0)<a—l>

belongs to L“(Fx) since

oy %= oty ™17/ @1) 1 s

from the definition of the bracket power function (cf. (1.2)). Thus (Yg)g

is a LT of (xg)ger and the proof is completed.

«C
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2. Law of large numbers and metric transitivity

In this section we will assume that G is a second countablc LCA group and
the Haar measure on the Borel o-field BG will be denoted for convenience by
m(+). It is known (see for example 6] and references thercin) that G always
possesses at least one sequence of subsets {Kn} satisfying the following condi-
tions

(2.1) Kn is a compact for each n,
(2.2) m(Kn) >0 for sufficiently large n,
(2.3) If U is any symmetric, relatively compact, open ncighborhood

of 0, then
m(@e(hg+UcKnh

m({K_+0]) =1

lim
nw

Such a sequence is called regular, and it has also the following useful property:
m{(Kn+g)AKn}
(2.4) lim S O =0 for each geG .
: o MB,
The following result in connection with the Chebyshev inequality implies

the weak law of large numbers for harmonizable stable processes on groups.

Case a =2 reduces to the result of [67. ,
THEOREM 2.1
If (xg)yer i8 a harmonizable SaS process on G, then there existe a SaS ran-

dom variable A such that for any regular sequence {Kn} of subsets of G
. 1
lim —z—)-j X (w)m(dg) = Aw)
e MKp) Ky e

in LP(Q,P) for P <a*, where a* == if a=2 and a* =a 1f a<2.
Proof':

By Fubini's theorem for random measures we have

T
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2.2

1 =——-1—- < > H
Ay fk % ™90 =grey [ ']y cevzian) incn)

= by acylx_<e a0 2
’ n n

1 . . .
benote by An(Y) =;R?;Tivn<g,y>m(dg) , where {Kn} is a fixed rcaular scquence of
subsets in G. Then

(2.6) lin A (Y) =1 , (V) VyeG,
nesoo {6)

where 0 is the zero element of the dual group f and IB stands for indicator
function.

Indeed, formula (2.6) holds for Y=6. So assume that y # 0 and choose
g € G such that <o Y> # 1. From the following equality, which follows from
the translation invariance of the Haar measure m,

<ty v> [¢ <m,om(de) = [ <g,y>m(dg)
n

Kn‘go
=IK <g,y>m(dg) + f <g,y>m(dp) - f <o, y>m(de)
n (Kn+g0)\Kn Kn\(Kn+nn)
We conclude ,
‘ 1
AN (<> = 1) = o [ <g,vmidp)

)
n (Knogo)AKn
Thus by (2.4)

m{(K“ + gO)AKn}

=0 »
m(Kn)

limIA"(Y) | |<g0,y> -1] < 1im
N oo
and we get (2.6). Since IAn(y)I <1 and A_(Y) » 1{6}(Y) pointwise thus

!@[An(Y] -1{6}(Y]|”F(dy) +0 asn-*>o .

where F(A) = ||Z(A) II:: . Hence by Lemma 1.3 (iii) we pet




2.3

I I(s A M2 -2({BHIG ~ 0 asno e,
which by (2.5) shows that

I i('l‘T jK“ X, m(dg) -z({H|l + 0 asn e

Finally, using the fact that for SaS random variables the | -ul-convergence is

equivalent to ||-"p-convergence for all p<oa* (see "31) we conclude that there

exists a SaS random variable A (w) Z({ﬁ}) such that

. 1
lim ETK;T [Kn Xg(m)m(dg) A(w)

n—»co
in L7, ) for p<ar. "

Similarly as in Gaussian case the above result teclls that time average of
the process is a consistent estimate of the mean if and only if the control
measure F(+) is continuous at 0 F({8}) =||Z({6})||§==0. While this is useful to
know, it is not general enough from the statistical point of view, since it only
tells us something about a particular parameter of the process, the mean, and a
particular estimate of it. To probe deeper into the consistency question, one
must consider more general parameters. The question of consistent estimation
leads us to study strictly stationary processes and their ergodic properties.
But it is well known that ergodicity is cquivalent to metric transitivity.

Assume now that a harmonizable SaS process (Xg) is strictly stationary.

geG
It is known 37 that this holds if and only if the random measurc Z(°*) of the
process Xg is isotropic (or rotationally invariant) i.e. the distribution of
{ei¢Z(A), Ae Be} does not depend on ¢. Since Xg is strictly stationary the
shift transformation Tg:xn-»xn+g preserves distributions.

Recall that a strictly stationary process Xg is called metrically transi-

tive if all shift invariant events have probability zero or onc. This is

F ‘




o

2.4

equivalent to the fact that T f=£ for all g G and fe Ll(dPX) implies € = const.
where 'l'g is the shift transformation and Py the canonical probability measure
induced by the process Xg, cf. 111,

PROPOSITION 2.1

Let (xg)gec be a harmoniaable SaS process on a second countable LCA aroup G.
If F has no atoms, then for each € >0 and for each finite sequence RysBpseres By G

there exists g€ G such that

N 2
.
(2.7) izll x(g+gi),xowa| <€ .

Proof:

Put K(h) =X, ,X," for heG. Then

0

2 2 2 —_—
INGIIRERLS 4% SO =1y wvFn] = [ J<h,v > R Fdy)F(dy,)

Cx
_ -1
= Iy, Py YR

since F(*) has no atoms and consequently the double integral over the set Yl =Y,
is equal to zero. Now choosing any regular sequence {Kn} of subsets in G, as in

the proof of th. 2.1, it is seen that for any finite set 8pseve Py

N
sy | [K(geg,)|? dm(g)
m Kn K Xl i

ni=

N
1 -1
= [ V(= [ <B*8;.YyY, >dm(g))F(dy,)F(dy,)
Yy oy ™K K 177172 ! 2
But (2.6), the translation invariance of the Haar wmeasure m and the fact
Y1 Y, implies that
AT 2
lim ) |K(g+g.,)] dm(g) =0 .
M-(Kn i=1 1

It follows that for each € >0 and each finite set Pyseeor Ry€ G there exists

g € ( such that 2:"1|K(g¢gi)l2 < f o, m




Remark: Tor a=2 condition (2.7) and the assumption that (Xg)ge is strictly

G

. is metric tramsitive. 1t is just an extension of the

stationary imply that (xg)geb

Maruyama-Grenander thcorem, which says that a stationary Gaussian process is metric
transtivie if and only if F has no atoms, cf. '11. The proof of the necessary nart
is easily extendable to the casc of (general, not necessarily SoS) harmonizable
processes. However, we don't know whether (2.7) implies the metric transitivity

nor any examplc of a harmonizable SaS process which is metric transitive.




3. Interpolation of harmonizable SaS processcs

, Extrapolation of harmonizable SoS processes on Z and Rhas been studied hy
Y. Hosoya [7] and by S. Cambanis and R. Soltani [5]. M. Pourahmadi in a rccent
paper [13] has formulated an interpolation problem on Z and has found an analog
of Kolmogorov's minimality condition. However, his main rcsult was obtainced
under more restrictive assumptions on the density of the control measure than
originally by A.N. Kolmogorov (1941) for stationary Lz-proccsses. In this secc-
tion basic concepts and thcorems related to interpolation arc investigated in
the more general setting of harmonizable SaS processes on LCA groups.

Using Theorem 1.1 on subordination of right-stationarily related processcs
from Section 1 we are able to obtain an analog of Kolmogorov'w minimality thcorem
in full generality for SuS processes on discrete groups. Also the more general
interpolation problem on discrete groups, wiien a finite number of the valucs of
the process are missing, is studied. An analog of A.M. Yaglom's (1949) result
is obtained (th. 3.2). This provides formulas for the interpolation error and

the interpolator of a harmonizable SaS process, under some natural assumptions,

which are, for cxample, satisfied by minimal processes. Note that the results
and their proofs are morc complicated when 1 <a <2 as compared to the case of
. : . a=2, cf. {2]. Also it should be pointed out that all calculations depend here
on the different fractional powers of the index a, which in the Gaussian casce
reduce to integer powers 3l or #2.
. Let C be any proper non-cmpty compact subset of (.. The interpolation problem

ariscs if one wants to make linear predictions, if exactly Xg for ge G\C arc

. A
{ known. That is to say, we arc looking for a predictor Xs of an unknown valuc
X, of the process basing on linear space of observations:

(1 Qsc L(X:G\C) , seC

a_ . a
@) lx- 315 = minllx - VI




iy
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where minimum is taken over all Ye L(X;G\C). It is known, see [7] and [5] that
%;always exists and it is obtained by a metric projection of XS in the strictly
convex Banach space L(X;G). Thus it is the best approximation of XS in L(X:G\C).

For stationary Lz-processcs there exists a general interpolation thcory for
processes on groups. However, the most interesting results are obtained for
discrcte groups only (sce [19], [16]). Therefore we will consider the case of
discrete proups here.  Let us note only that in the general case, the class of
trigonometric polynomials X akzﬁzjvgharising in the next proposition and further,
should be replaced by the class of functions on the dual group ¢ which arc -
Fourier transforms of functions q(x) on G such that supp q(x) cC, q(x)e€ Ll(dg)
and q(x) is positive definite, cf. [19].

PROPOSITION 3.1

Let G be a discrete Abelian group and C a compact (hence finitd subset of
geG? i8
absolutely continuous with respect to the Yaar measure dy and such that dF/dy > ¢

G. Suppose the control measure ¥, of a harmonizable SaS process (Xg)

a.s. Jdy. Then there exists a trigonometric polynomial Pc(n) =y “k(“k’y; such

that g e
<1/{a-1)>
(3.1) Qs = I@[<S'Y> - Pe(Y) (dF/dY)-(l/(a-l))]Z(dy) L secC
and
(3.2) lx_- & 1S = IA”pC(Y)Ia/(dp/dy)](l/(a-l))d,y _
i G

Proof:
Put ¢(y) for isomorph of Qe in LG(F), which exists by Lemma 1.3. Then ¢(Y),
o] .
as a metric projection of <s,y> onto subspace L (F;G\C), satisfies the following
James-orthogonality relation
<5,y> - 0(v) 1 LY (F16\0)

which reads as follows

4 e o




!P<z.Y>(<S-Y> o) PEWUy) =0 for ge G\C .

<q-1>
Put fp<ﬂk-7>(<5.y> - o gy =a,
for g,,8,,...0 g€ Ce Consider two functions:

(<s,v> - 6y dar/dy
and

(3.3) Y a<R v IRV
gkeC

We seec that both functions have the same Fourier coefficients, hence they
coincide. Thus

(<s.v> - (1) ¥ dr/dy =P (1) .

By Lemma 1.1 wc have

<8, - 6() = [P | -V CDFRy (dpgayy (/)

<1/(a-1)>

= Py (aF/ay) "1/ (@-10)

Hence by Lemma 1.3 (iii) we obtain formulas (3.1) and (3.2), and the proof is

completed. 1

Rccall that a stochastic process is called minimal if for all seG,
X f L(X:6\{s}). Minimal processes exist only on discrete groups and their
study is related to the simplest interpolation problem, when ¢ = {s} is a
singleton, cf. [9].

THEORFM 3.1

Let (xg)ch be a discrete Abelian group and (X a harmonizable SaS

2)geG
process such that the control measure F of the procese is absolutely continu-
oug with respect to the Haar measure dy. Then (xg)gGG i8 minimal if and only

if dF/dy> 0 a.s. -dy and (dF/dy)” 1/ (@ 1) ¢ 1 legyy




3.4

Proof:
. s . Q o 8 .-
Assume that (X ) is minimal, i.c. HX - ” £ 0 for o fixed g G (thus
g pc g el
for all gc G). Consider the decomposition

X =Q +Y , where Y =X -9.
g g 4 2 8 b4

Moreover,

A . _ .

xg e L(X;6\{g}) and Yg.LqL(X;G\{g}) i.e., [Xh,Yg]a = 0 for each h # g.
Hence

0 if h# g

(3.4) [x.,Y ] =
h gla { a=|ly ||®>0 ifh =g
g n

and consequently

= afa<h-g,y> dy .
Since (Yg)gef is a harmonizable SaS process which is right-stationarily
related to (Xg)geG’ then by Theorem 1.1 there exists a function p(Y) ¢ UY(FX)

such that

Y = <€ p(NZy(dy)

L

and moreover

<q-1>

(3.5) Fyy(® = [p(n) ™ Fy(d).

From (3.4) it is seen that [Xh’Yg]a = afe<h-g,Y>dy. But we also have

[Xh,Yg](l = f <h_gxy>FXY(dY)

8

so that FXY(A) = a dy(A), where dy stands for thec normalized Haar measurc* on

6. Clearly by (3.5) we have

(3.6) dy(4) = 1/a IAP(Y)<a'1>FX(dY)

Thus the derivative dy/dFX = p(y)<a'l>/a is finite a.e. with respect to F, and

X

*Tt is finite since the dual group of a discrete group is compact.

!
+
nn




from (3.6) is finite a.c. with respect to the Haar measure dy. Since by the
assumption the control measure F = Fx is absolutely continuous with respect to
dy, thus the above considecrations show that dF/dy is positive a.c. with respect

to dy and by Prop. 3.1 wc conclude that

(@rsayy (7= Teayy
Conversely, if g is fixed then by (3.2) therc exists a non-zero P.(Y) =d<g,y>
such that

Ixg- R NS - [d|a[e(dF/dy)'(]/(a'l))dY £0

1

and consequently (Xg)g€ is minimal. m

G

Remark: 'or a=2 this theorem reduces to the celebrated Kolmogorov's result on
G = 7 . Recently it has been extended to SaS processes on Z/ in [13], but under
additional assgmption (dF/d\()_1 exists a.e. As it is easily seen from the
proof this is an essential part of the thcorem. The rest follows from Prop.
3.1. Casc a=2 for any discretc Abelian group reduces to [2], th. 4.1 and [9],
Cor. 4.8.

Observe that Prop. 3.1 has an existential character only. It was enough
for obtaining Theorem 3.1, but it doesn't describe precisely the interpolation
crror or (the formula for) the interpolator. In the case C = {s}, however, it

is easy to solve the problem completely. Indeed, we have by (3.6) and Lemma 1.1
-1
I, ~ R 115 = HYgllzﬁelp(v)I“F(dY) =J'P(W;’d;) @71 (4 sayy ay

and, on the other hand, from (3.3)

o _ o
1 - R II% = Iy )12 = o
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Thus we have that

a= “(u/(a'l))fe(dF/dY)_(l/(“'lndY

and conscquently we get

COROLLARY 3.1

1f (Xg)gef is a minimal harmonizable SaS process on a discrete aroup G with

the control measure F absolutely continuous with respect to dy, then
- -(1/(a-1)), -1-a
oz [X - & 1%= ([ (dar/ay) ¢ d
X, - R, [fe /dv) vl

and

o )(1/(a-1))]

8, - Jalewv - Grray 2(dy)

Now we will return to a more general interpolation problem when
C= {gl,gz,..., gn} i.e., a finite numbcr of the values of the process arc
missing or cannot he obscrved. lor stationary Lz—procosscs this i rablem was
first considered by A.N. Yaglom (1949) cf. [20]. Scc also [21, 'is], 171,
[19]. For SaS processes on 7 , sec [13]. Our approach is based, similarly

as in [17], on a duality relation for homogeneous functionals on a cone in

linear space.

Let P={p(y) on e[P(Y] = <5,Y> + 2 Ck<gk,Y>}
geC
g#s

For any pe P denote by Cp the following cone

(3.7) Cp= {6 L(F) ][ $(VIP(Ydy exists}, pe P,

&

where T is the control measure of the harmonizable SaS process. Let us intro-

duce the following homogencous functional J(p) on Cp

(3.8) J(p) = inf {f

[6() |®Fdv) | [, 6 (M PV dy 2 1}
¢€Cp 8 &

8
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The following duality relation is a special casc of a morc eencral relation,
which is frequently used in approximation thcory in linear spaces. lor an
clementary proof sece, for example, {17], p. 24.

For each pe¢ P we have

I(p) =inf {f |o|%Fay) |f, opdy = 1}
¢€C ] e
(3.9) P

= [sup {f ¢pav|[ |6]%F(ay) <1117 =57 ().
¢ccp 8 d

Now wc may state the following main result.
THEOREM 3.2

Under the assumptioms of Prop. 3.1 we have

(3.100 x-S = g:;(fellp(v)la/(dF/dy)](1/(“'1))@)1‘0‘ i

If pe P and fulfills condition (3.10) with ||X - lel((’:: U, then
£

(3.11) Q = [<s,y> -
NS

Proof:
We shall split the proof for several steps.
Step one:

lIx_ - &% = max J(p)
; cP

s'a
P

Pick pc P and let ¢ be the isomorph of Qs in La(F). Then we have

lixg - R

S sta

Ie|<s.v> -6 |%F(dy)

inf [ l<s,y>- T b <g v |"F(dn),
Ab G gkeA

wherc infimum is taken over all finite subsets AcG\C and finitc complex sequences

l)=(bk), 8 € A. For brevity we shall use the symbol

rh

o (/@130 5 (2= /(a-1)smy (gppayy = 1/ (@D 74y




3.8

wA,l)(Y) = <8,Y> - 5 ')'((Rk’Y)
gkc/\

; and thus we have

a . a,
(3.13) lIxg - &M% = /l\nnf fel‘”A,b(Y” F(dY).

.. A,
Since AnC=@ and the Haar measure dy is finite (G is compact as thc dual

group of the discrete group G) and consequently normalized, then for any pe P

Jo oa,p PTGy = [yl<sielay = 1

8

Thus ¢ « C for all pe P and (3.13) and (3.8) imply that for all p¢ P
A,b P p r

Ixg - & 119 = I
Step two:

X - 2 ”Z < max J(p)

s s peP

If ”XS - Qsllg = 0 then nothing remains to be proved. So we may assume

HXS - Qq”g- a>0. In an entirely analogous manner as in the proof of Prop. 3.1,

cf. (3.3) we have '
. 2o _ <a-1>
0<a=lix - X I = 0x.x -] = Jyes v (ss.v -0 R Gan)

=fe<s’Y>[(<9’Y>"¢(Y)<u'1>)dF/dY]dY==f@<s»v> P.(Y)dy

—_ 2
—Ie<s’y>gkzec ak<gk’Y> dY = aSIe,<S‘Y>l dY:as .

In the last equality for thc integrals we use the fact that characters are

orthonormal, when G is discrete, see [15]. If we put now

. (3.1)  py(v) =<s,v +g5,€C a, /a<g ,y>=1/a P.(Y) |
g:#s

<a-1>

=1/a(<s,y> - ¢(Y)) dF/dy




3.9
Then Pyy) is an clement of P oand has to be taken into account For o caleulation
: ! of max J(p). sScleect ¢ € such that
. 0
(3.15) |qu,(y)p”'(‘ﬁdy| -1,
We will show now that
(3.16) Iel<s,Y> -6 |*Fdm = felw(v)l“r-(dw
For this split ¢ in L“(F) in such a way that
(y) = 8(<s,¥> - d(¥),+ ep(Y)
where §,€ arc constants and
(3.17) <s,y> - 0(Y) 1, p(Y) in LHE).
Thus by (3.14)
! )
b 0 = fy P00 (s -0 gk 7dy-ay
| )
|
= a]e p(Y)py(Y)dy .
Consequently, (3.15) implics
|5|”a((5‘,Y>-¢(Y))P0(Y)dY| = 1. ,
More specifically, note that by (3.14)
_ 1 )
”P(<S.Y> - 6()P M dv| =5—I?|<S'Y> -6 |"F(dy) =1
and we conclude that |[8] 21. Moreover
Ielwm |"'r (dy) = fel6(<s.v> - 6(M) +epty) | “F(dy)

! > lslfel<s,v>-¢(v)l°‘r=(dv) ,

where the last inequality follows from (3.17) and the property of James ortho-
gonality ([|x+ coll 2 ||x|| for all e¢>0 if x4, 0). Hence we get the desired

i incquality (3.10).

——-
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Finally, (3.10) and arbitrary choice of ¢« Cl satisfving (3.15) imnlices
})

X - R ||gs J(py) <max J(p)

s peP

and the second step of the proof is completed. Consequently we have
(3.18) X - & 1% = max J(p) .
s s'a
peP

Step three:

() = (f, Tl %7 (ar7ay) |/ 1D gy LD /0
G

where S(p) is defined in (3.9) and pe P.

Take Pe cP with fe|w(y)|”r(dy) ~1. Then

], vONTEaY] 5 Jwe) (or/an -1 @/ 305 oy
by Holder's inequality
s(felw(v)l“(dF/dy)dv)%%IeIET?TIdF/dy)‘%I(a/(“")’)‘(“"’/“‘
by the above choice of ¢
< Uyl pon % car/an ) (0Dl ay (0D

Consequently,

(3.19)  S(p) = sup U

veC 8

bRl s (f pen [/ arrany ) /00Dy (10,
P

To prove the converse, let's introduce the following two sequences of

auxiliary functions

£,(Y) = max(dF/dy(+), 1/n) n=1,2,...
U0 = e pn /Oy g /D)y o

where p(Y) ¢ P and ¢, = (Ie[Ip(Y),a/gn(y)](l/(a-l))dy)-(l/m) )

These definitions make scnse in view of

i kL TS




3.11

and
'Cn p(Y)<(l/(a'1)>/€n(Y)(l/(a'l))I < n(l/(a'l))cn,p(Y)'(]/(U’l)) - ll(dy)

Observe first that

(a/ (@-1))

AR R CAREN AT 768/ 1) (ypcay)
G )

SchE‘p(Y)‘(a/(a-l))/(ggl/(a-l))(Y)°g£3. <F gy

= (a/(a-1)) /(-1 ,  _ o, -
= alp PN /8,0Y) dy = Teer =1

and

<(1/(“-1))>/£n(y)(1/(0-1))FT?TUY

"

Jpeap®)

[ o, (P dy
6 o

u

(a/(a-1)) (1/(a-1)),  _ I BN
cnfalp(v)l /6,(Y) dy = ¢ cc = .

Thus wn(Y)e Cp and

s(p) = sup |f w(pmdy] > [ v (mpMdy|
en

W¢Cp 8

cn = Uyllpen %7, o] (/7 (D7,

Since lim F“(Y] = dF/dy(y) for all yc ﬁ, thus the limit incquality topcther with

[ e

(3.19) gives

(3.20m S(p) = (I@HP(Y) l“/(dF/dy)]“/("“”)\((“'”/“).

The final step:

To complete the proof of the thcorem it only remains to observe that
formula (3.10) is an immediate consequence of (3.18) and (3.20), and formula
(3.11) follows from (3.1) and the fact that, similarly as in (3.14), Q;Y)e p

if Po(Y) = (1/0)p(y), where p(y) € P. i




-

Recall that a process is interpolable if it can be errorless predicted for
missed values from a compact sct, cf. [19]. The proot of the following result
is an immediate conscquence of Th. 3.2. For the casc =2, ¢¥, |2] and l19].

COROLLARY 3.2

1f (Xg)
3.1, them it is interpolable if and only if llp(Y)|“/(dF/dy)|(]/("'])) ¢ thdy)

2€G is a harmonizable SaS process satisfying asswnptions of Prop.

for any non--zero ply) e P .

Remark: 1t is rather surprising that, unlike the case a=2, for 1 <a<2 the
Hellinger integral technique scems not to be useful in studying the interpola-
tion problem. For a=2 the error space NC=={Xg 'Qg' g<C} has an isometric
description as a subspace of those complex valued measures u which are
Hellinger square integrablc with respect to F and with the Fourier transforms
ﬁ(g) =0 for ge C, cf. [19]. This approach is not suitable for SaS processes
because of the fact that the James-orthogonality used herc is not a symmetric
rclation. Conscquently, the above convenient description of the error space

NC is no longer valid.

ﬂh
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4. Appendix
l'or the cases that occur most often in applications the characters are

given in the following table.

Group G Characters <g,y>, g¢G, Yeé Dual Group 0 o
R exp igy R
.en n
R’ expli}, ., 8] R
T exp igy /4
" explily_) #%,] 7"
/) oxp igy T
R .vn SN
7 expl il ) gy, |
4, exp ipy 7/k
g=1,2,...,k on 4w
Ty e v ey 2T
k 3 k ’ »

‘Y =
P Walsh function W(g,Y) D

Wherc we use the following convention: R - the rcals, Z - the integers,

T - onc-dimensional torus (circle), Z/k - cyclic group over k-object, P -dyadic
group of non-ncgative intcgers with dyadic addition %, and D - dyadic group of
all sequences x = {xn}, where x =0 or x =1, n=1,2,... with the group operation
defined by 2=x+y if X,ye D, where 2 =X Yy (mod 2). There is a topologv
for D, based on the system of ncighhorhoods of 0=(0,0,...), with which D be-
comes a LCA group. To each Xe Donc may assign a real number x =d(x) = Y;:I xiz’i

in the interval [0,1). The Walsh functions {W(n,x), n=0,1,..., 0<x<1} are

defined as follows:

T

e e e e e ke e



e ke

(i) WO, x)=1, 0<x<1
(ii) TIf n has the dyadic expansion n =ZT=O xizl, with X, =0 or X, =1,
and x. =0 for i >m_, then
i r

T
W(n,x) = 1 {R_ ()},
i=1 Ui

where ml,..., mr correspond to the coefficients xm =1 and where {Rk(x)} are
i
the Rademacher functions. lor more details sce [12], [15] and references thercin.,

¢
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