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r Summary

This work extends to symmetric "-stable (S S) processes, I < 
< 2, which are

Fourier transforms of independently scattered random measures on locally compact

Abel ian groups, some of the basic results known for processes with finite second

moments and for Gaussian processes. Analytic conditions for subordination of

left (right) stationarily related processes and a weak law of large numbers are

obtained. The main results deal with the interpolation problem. Characteriza-

tion of minimal and interpolable processes on discrete groups are derived. Also

formulas for the interpolator and the corresponding interpolation error are

given. This yields a solution of the interpolation problem for the considered

class of stable processes in this general setting.
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0. Introduction

Many features of the theory of Gaussian processes, in particular some path

properties 101, linear estimation and system identification r4 ', nonnarametric

estimates for spectral density Ill as well as linear prediction f7,, r5l have

been shown to extend to appropriate classes of a-stable processes. The main

difficulty is due to the fact that, while the linear space of a Gaussian pro-

cess is a Hilbert space, the linear space of a stable process is an L spacep

and its geometry is completely different.

2
With the aim of carrying over L -stationarity type arguments to the theory

of a-stable processes, 1<t<2, Y. Ilosoya 171, S. Cambanis and R. Soltani IS I

have considered the class of harmonizable symmetric a-stable sequences and rro-

cesses. This idea goes back to K. Urbanik r18i, who studied first harmonizable

processes with infinite second moments and their prediction, but under a more

restrictive assumption that the nrocesses admit independent prediction. It

turns out that such an assumption which is useful in a-stable contexts in gene-

ral, unfortunately is not satisfied for harmonizable a-stable processes. The

main obstacle here is the lack of independent random variables in the linear

span of the process, cf. r51, th. 3.3. However, the importance of harmonizable

processes is that their theory can be penetrated by Fourier analysis type argu-

ments.

The approach given in this paper follows the recent work ol S. Cambanis and

R. Soltani [51 with the extension to our general setting which is motivated as

follows. In the development of the theory of L 2-stationary processes (X t)t T

a natural trend can be observed. First classical results derived for the pro-

* cesses with discrete or continuous time T (T =Z/ or 1R) were extended to the

n ncase of random fields on T =Z or on Tf=] P and next to the more peneral

9A
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parameter sets such as groups or homogeneous spaces. This was motivated not

only by theoretical aims, but also by some practical needs. Probably the simp-

lest example is given by a class of processes considered in meteorology, where

T = S3 x / , $3 is the unit sphere in 3, see fl4l and references therein.

Having this in mind, it seems desirable to develop a theory for a-stable pro-

cesses at once in such a general setup. This will permit inclusion also of the

2_
class of dyadic stationary processes, which for the 1, -case has been used re-

cently for several purposes, mainly due to computational advantages of Walsh

spectral analysis, see i121 and references therein.

The fact that the linear span of a SaS process can be considered as a semi-

inner product space with respect to the covariation [,', introduced for com-
plex SaS variables by S. Cambanis r31, will play a fundamental role in this

It should also be mentioned that the norm 11-l defined by this semi-

inner product is equivalent to the usual pth norm, where l~p<a2 and the conver-

gence in 11-Ila norm is equivalent to the convergence in probability.

The plan of the paper is as follows. In Section 1, we set up the basic no-

tations and conventions, we present a general isomorphism lemma and we study the

conditions for subordination of harmonizable SaS processes. The fact that the

covariation is not linear in the second argument forces us to introduce a class

of left (right) stationarily related processes. Th. 1.1 gives necessary and

sufficient analytic conditions for subordination of left (right) stationarily

related processes, which is an extension of A.N. Kolmogorov's 18, and L.

Bruckner's F21 results from the symmetric a =2 case.

Section 2 is devoted to the study of ergodic properties. Th. 2.1 pives a

law of large numbers for harmonizable SaS processes on second countable locally

compact Abelian (LCA) groups. As a corollary Prop. 2.1 and remarks related to

the Maruyama-Grenander characterization of metric transitivity are mentioned.

L _ _ _



0.3

In Section 3 basic concepts and theorems related to interpolation are in-

vestigated. Using th. 1.1 on subordination, we derive a complete characteriza-

tion of minimal harmonizable SaS processes on a discrete Abelian group, which is

an extension of Kolmogorov's theorem. This result for a =2 reduces to known

facts, cf. r21 and rgl. Recently, minimality of harmonizable ScS processes on

the group of integers has been studied by M. Pourahmadi F13 1 , under the restric-

tive assumption that the reciprocal of the spectral density exists a.s. As we

prove in th. 3.1 any minimal process has such property and this restriction is

not needed. Moreover, an interpolation problem is considered, when the values

of the process (defined on a discrete Abelian group) on a compact subset are

missing or cannot be observed. Th. 3.2 provides formulas for the interpolation

error and interpolator related to this problem. Also a characterization of in-

tervolable (exactly predictable) processes is derived. For a =2, these results

were obtained first by A.M. Yaglom r20 1 for processes with discrete time and

then successively extended to processes on groups cf. r21, F161, r191 and refer-

ences therein.

Failure of the least-squares method of forecasting in economic time series I
was first explained by B. Mandelbrot, The variation of certain speculative

prices, J. Business 36 (1963), 394-419 and 45 (1972), 542-543. lie introduced a

radically new approach based on a-stable processes to the problem of price vari-

ation. This additionally motivated our study.

! .-



1. Spectral domain analysis

A stochastic process (X ) is called a symmatr-c a-stable (S(.S) procest tqET

if all the linear combinations aX(t 1 ) +.. anX(tn) are ScUS random variables,

l<a-<2. in particular, if ot =2, X is a Gaussian process. Recall that a complex

random variable X = 2X iX is SaS if X1,X are jointly SaS and its characteristic

function is written with t =t + it as
1 2

E exp{iR(tX) = E exp(i(t1 X1 + t2X2 ))

=exp{-fS 2 1tlxl t 2 1 x ,x 2 }
S r 2

where r is a symmetric measure on the unit sphere S2 of IR2

When X =X 1 + iX2 and Y =Y1 + iY2 are jointly SaS and 1<a<_2, the covariation

of X with Y is defined in F31 as
•.<a-i>.

(1.1) aX'Ya = f4(x + ix2)i(yl + 'y2) aldrX ,Y,Y2 (Xl'x 2 PYY 2 )
S 1'2P 2

where for a complex number z and a> 0 we use throughout the convention

t1.2) z<a> = *zl
{ 1 )  . "

where z is the complex conjugate of z.

Elementary, hut useful properties of the function z <  are listed in the

following

LEMMA 1.1

(i) Z 1 z1 = Z >

(ii) Iz<8>l = Izl<8>

(iii) if z<8> v, then z II.

The covariation of jointly SaS random variables defined by formula (1.1) is

not generally symmetric and unlike the covariance (to which it reduces in Gaussian

case a=2) it is not linear in the second argument, but introduces on the linear

space S of all ScS random variables a useful concept of a sem-inner /'r,dut.

L I



1.2

The basic properties of covariation are contained in

LEMMA 1.2 (F31)

(i) FXI +X2,YI rxl,Y i+rX 2 P Yi

(ii) VaX,bY.1a = ab< ->rX,Y1

(iii) FX,Yi1 = 0 if X,Y are independent,

(iv) Xy IY 2]o = FX ,Y I rX,y 2 1a, if Y1,Y2 are independent.

(v) IlXlla = rxXl I /a is a norm on S equivalent to convergence in

probability.

In the real case the 11_'a-norm is related to the usual pth norm by llxi1 =

C(p,rx)(EjxjP) / , where C(p,a) is the constant depending only on a and p, l-p<..2,

see [41, p. 4S. This is no longer valid for the complex case, however II'll is

equivalent to the pth norm, which is sufficient for our aims. Cf. also r3I.

Let G be a locally compact Abelian (LCA) group and , the dual group of G.

Then 8 is also a LCA group under the compact-open topology. Because of the

duality between G and , we will denote the characters of G by <g,y>, PE G;, YEC,.

They have the following properties.

(1.3) <g,y><h,y> = <g+h,y>

I<g,y>l = 1
<-g1y> = <gy> = <g1y >

On any LCA group there exists a non-negative measure, finite on compact sets and

positive on non-empty open sets, the so-called 7,ar "easure of the group, which

is translation invariant. We will denote usually the Haar measures on C and

by dg and dy, respectively. But one exception will be given in Section 2. For

more information see r151.

DEFINITION 1.1

A SaS process (Xg)g , l<cts2 is said to be harm~onizable if there exists an

. gIG-



1.3

independently scattered ScS measure Z(.) on the Borel a-field B of the dual

group A such that

XI, - f , Z (dy) , g, C,

where the scalar valued measure F(A) = IIZ(A) I1 is finite. F is called the

control measure of the process.

Some comments are in order. First we recall that a random measure Z(-)

is independently scattered if

(i) for every sequence E,E 2 .... of disjoint Borel sets

Z(n_-91 En ) n Z(En)
n=l

where the series converges in probability,

(ii) for every sequence EVE2 ... I En of disjoint Borel sets the random varia-

bles Z(E1),Z(E 2) .... Z(E n) are independent.

In our case of SaS random variables from Lemma 1.2 follows that Z(') is

orthogonally scattered in the sense that

rZ(E 1) , Z(E2)] =0 whenever E nE2 =0

and one may repeat the classical construction of the integral with respect to

Z(.). Namely, if f(.) is a simple function of the form f=nk ak 
1E then

n
f f(y)Z(dy) k. CkZ(Ek)

=

and

11If f(y)Z(dy)Ia 
= f If(y)I F(dy)

where

F(E) =izc )1i

is the control measure

Next for at., , , there exists a sequence of simple functions f -f with

respect to If we put

L



1.4

J f(y)Z(dy) I im f fn(Y)Z(dy)

then this integral is well defined, does not depend on the choice of {fn} and
n

defines linear isometry I: La(F) into S.

Such processes for G = 7/-- the integers has been introduced recently by

Y. Hosoya F71 and for G = 1-- the reals by S. Cambanis and R. Soltani rSi .

Observe that in both cases the random measure Z(.) can be realized by means of

a right continuous SaS process E with independent increments using the formula
t

Z((a,b]) = b- a for each a 5b.

The following lemma will be used later

LEMMA 1.3

(i) If p(y),q(y) c La(F) , then

r f p(-y)Z(dy) , f q(y)Z(dy) I= p(y)q y > F(dy)

(ii) Each harmonizable ScS process (X ) is covariation stationarTi

i.e.,

rxg.Xhla=rXhXO] a  -- f <g-h,y>F(dY)

g'Y ' rXg-h" -- XO XO, Xg-h ]a

(iii) There exists a preserving semi-inner product correspondence (an f
isometric isomorphism I) between the time domain

L(X,C)(- s{X ,gG) in S) of the harmonizabe SaS prooces X

and the spectral domain of the process 1.Y(F) f ioen bu

I P(Y) =f n(y)Z(dy) , P(C) E O(F)

Proof:

(i) It is enough to check this formula on the dense subset of sim-

ple functions in L (F). For this let p(y) a and q(y) =jbjlB Then by
pl fkAk a q =

Lemma 1.2

Lo I"



1.5

if p(y)Z(dy),f q(y)Z(dy)a = a a-I>rZ(Ak),Z(

<a->
a akb' F(AknB .)

k,j

f p(,y)q(y) <0-I>F(dy)

The rest follows from the definition of the integral with respect to Z(.).

(ii) it is immediate from (i).

(iii) Observe that I<g,y> =f ̂<g,y>Z(dy) =X . By (i) I is an isometry which
C g

preserves a semi-inner product on the set of all characters onto {X ,g<C}. I

can be extended to an isometry on the linear hulls of these sets and hence to an

isometry on their closures. The closure of the latter set is L(X,G) and the

closure of the former is L (F). n

It is known, that in contrast with the Gaussian case, there are for a< 2 co-

variation stationary SaS processes which are not harmonizable. The simplest

example X =A'Y where A is a/2-stable random variable independent from a
g

stationary Gaussian process Y . For details, see F51, th. 3.4.
g

DEFINITION 1.2

A harmonizable SaS process (Y is said to be obtained by a linear trans-

formation (LT) from the harmonizable SaS process (X )gEG if there exists a func-

tion p(y) La(Fx) such that

Yg=f <gY>P(Y)Zx(dy)

where Z is the random measure and F the control measure of the process (Xg)FfG.

The concept of subordination of stationary L 2-processes was introduced, studied

and used in prediction of such processes by A.N. Kolmogorov (1941). The problem of

finding analytic conditions for subordination in terms of the spectral measures

leads us to study of linear transformations. We want to obtain necessary and

K ,'-



1.6

sufficient conditions for subordination of harmonizable SaS processes. In a

contrast with case c=2 the results are non-symmetric, and we need to consider

left (right) stationarily related processes to a given harmonizable SoS process.

DEFINITION 1.3

A harmonizabIe SctS process (Y ) is said to be left (ri,7ht stationa 'ilu

related to the harmonizablc SaS process (X if there exists a finite rneasure
g gEG

Fyx(Fxy) such that [YgXhlc=f" <g-h,Y>Fyx(dY) (or [XgYhlc = [J , <g-h.y>Fxy(dy),

It is easy to observe that if (Y ) is left (right) stationarily related
g gE(;

to (X G then [Y ,X bc = [Yo,Xh gl (X g,Y 1= fXg-bYolc0d

THEOREM 1.1

Tf a harmonizable SaS process (Y ) is left (right) stationariZ? related
g gEG

to the harmonizable SaS process (Xg) , then the folZowing conditions are

Cqiiva lent:

(V) There exists a function p(y) c L(F ) such that

Yg = <gY>P(Y)Zx(dY) gEG

(i,9 There exists a function p(y) c Lf(Fx) such that

Fy(A) = f p (y)I0FX(dy)

and

Fyx(A) = ft\ p(y)Fx(dy) (or FXy(A) = fA p(y) d)

for all Borelian sets A on

(iii) (Y )gCG is subordinate to (Xg)gEfl i.e., L(Y:G) c L(X:G).

Proof:

Let us consider first the left-stationarily related process.

(i) - (ii)

By tmma 1.3 and (1.3) we have

L _ _



1.7

r y,. c= rf <g' Y>P(Y)Zx(d-y) ,f, hy>Z (dy) I

= f <g-h,Y>p(Y)F (dY).

Again by Lemma 1.3, Lemma 1.1 and (1.3) we have

ry,Yhl rf <g,Y>P(Y)zx(dY),f <h,y>p(y)Zx(dY)l

f, <gy>p(y)r<h,y>p(y) l F x (dy)

= <g-h,y>Ip(y) IP x(dY)

Since from the other side

FygYh]cx f <g-h,y>Fy(dy) and FY g,Xh.a =f <g-h,y>Fyx dy)

then by uniqueness of the Fourier transform (see rS, p. 17) we pet (ii).

(ii

Let nE L(Y;C), then there exists a function fc L (Fy) such that

n =fA f(y)Zy(dy).

Observe that the function f(y)p(y) L(FX), where p(y) is the function from

condition (ii). Indeed,

f Jf(y)p(y)jlgFx(dY) =f If(Y)IOFy(dy) = JInII

Consequently, the SaS random variable defined by

f a f{Y)P(Y)Zx(dY)

is by Lemma 1.3 an element of L(X;G). Now condition (ii) implies that

Zy(A) =fA p(Y)Zx(A) for any A

and consequently

n =FL(X:C)

#a



1 .8

Assume Y , I(X;G) for all g, G. Then for each gcG there exists a functiong

p(y-g) -E L (Fx) such that

P(Y;g)ZY

Since (Y ) is left-stationarily related to (X ) we have
g gEC g gEG

f p(y;g)<-h'y>Fx(dy) =FYgXh'a = 'YOXh-gf(x P(y:O)<g-h'y>F (dy)"

Hence

f <-h,y.rp(y:g) - p(y;O)<q,y>IFx(dY) = 0 h C

So by the uniqueness of the Fourier transform riSi, p. 17, we have

(1.4) p(y;g) =p(y;O)<g,y>

Hence letting p(y) =p(y;O) we have that (Yg)gtG is a LT of (Xg)gFG and we qet

(i).

The proof in the case of right-stationarily related processes is very similar

and only the last implication needs some explanation.

(iii) - (i)

Let Yg r L(X;G) and Y = f p(y;g)Zx(dy) , p(y;g) E La(FX) Since (v )gcc
gg X' . isd'

right-stationarily related to (X g) g we have

.j, <g,y>p(y;h) F = rX , Yh I = 1,

=f <g,y><-h,y>p(y:0) Fx(dY)

So again by the uniqueness of the Fourier transform we have
. . .I> -I>

(1.5) p(yzh) < - >  <-,y>p(y;O)

Observe that relation (1.5) is different from relation (1.41 obtained for

left-stationarily related processes. Using Lemma 1.1 (iii) we may write (1.S)

as

1 4

________ ________ ____________________________



1.9

P(t') " "--< ,Y p Y

where pI(y) [p(y;O)<a-l> (2- )/(r-l)p(y;O)<ct-I>

belongs to LF since

xx

from the definition of the bracket power function (cf. (1.2)). Thus (Y )

is a LT of (X)g and the proof is completed.

ii

I I I
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2. law of large numbers and metric transitivity

In this section we will assume that G is a second countable LCA group and

the Haar measure on the Borel a-field B. will be denoted for convenience by

m(*). It is known (see for example F61 and references therein) that C always

possesses at least one sequence of subsets {K } satisfying the following condi-n

tions

(2.1) K is a compact for each n,n

(2.2) m(K) > (0 for sufficiently large n,

(2.3) If U is any symmetric, relatively compact, open neighborhood

of 0, then

m({gFG:g+VcK n)
lim m({Kn +UT) =

n- co

Such a sequence is called regular, and it has also the following useful property:

m{(K n + g)AK }
(2.4) lim m{K 1 0 for each g EC

n--~o n

The following result in connection with the Chebyshev inequality implies

the weak law of large numbers for harmonizable stable processes on groups.

Case (%=2 reduces to the result of F61.

THEOREM 2.1

If (X ) gC is a harmonizable SaS process on G, then there exists a SaS ran-

dom variable k such that for any regular sequence K n } of subsets of G

tim 1 Kn Xg(w)m(dg) fi(w)

in [P(Q,P) for p <a*, where L*=-o if (a=2 and ca*=z if a<2.

Proof:

By Fubini's theorem for random measures we have

-----



2.2

mg'j K n X m(dg) - f ,If 'g,y>Z(dy) Im(dg)

(2..;)

-f r.- n 'g,y>m(dg) Z(dy)
Sm(K) 'n

)enote by A (y) = -- n<g,y>m(dg) , where {K } is a fixed rc,,ular SeqLuence o"

subsets in G. Then

(2.6) - lin A n(Y) = (Cy) VycG,

where 8 is the zero element of the dual group A and 1B stands for indicator

function.

Indeed, formula (2.6) holds for y =. So assume that y # 0 and choose

g0 E G such that < 0 ,Iy> 0 1. From the following equality, which follows from

the translation invariance of the Haar measure m,

<go0 ,y' K <,y>m(dg) = f <g,y>m(dg)
n Kn+g 0

f K <g,y>m(dg) + f <g,y>m(dp) - f <a.ym(dq

n (Kn+g0 )\K n Kn \(Kn+Q0)

We conclude

An M (<go'PY> - 1) = Cn-- f <g,y--m(dl.)
SKn+go0 ) AKn

Thus by (2.4)

m((K n +g )AK n
limA n(Y) I<gO,y> -11lim m(Krn 0
n- fl-WO n

and we get (2.6). Since JAn(y) 1I and An(Y) - l{ (y) pointwise thus

f[,LAn(Y) I {81 (y)I"'F(dy) - 0 as n - ,

where F(A) z(A)II . Hence by Lemma 1.3 (iii) we pet

((



2.3

II fA n y)Z(dy) -Z({6})I 0 as n

which by (2.5) shows that

I1-(-- ) Kxg m(dg) - Z({A1) I 0 as n oe em(K n)  KXa

Finally, using the fact that for ScLS random variables the -convergence is

equivalent to 11-1 P-convergence for all p <oa* (see r31) we conclude that there

exists a SaS random variable (w) = Z({61) such that

lim m( Kn X()m(dg) = &(w)
n-o n fKn

in IP(, ) for p<(*.

Similarly as in Gaussian case the above result tells that time average of

the process is a consistent estimate of the mean if and only if the control

measure F(-) is continuous at 6 F({6}) II z({6})1 0= 0. While this is useful to

know, it is not general enough from the statistical point of view, since it only

tells us something about a particular parameter of the process, the mean, and a

particular estimate of it. To probe deeper into the consistency question, one

must consider more general parameters. The question of consistent estimation

leads us to study strictly stationary processes and their ergodic properties.

But it is well known that ergodicity is equivalent to metric transitivity.

Assume now that a harmonizable SctS process (Xg)'RG is strictly stationary.

It is known F31 that this holds if and only if the random measure Z(-) of the

process X is isotropic (or rotationally invariant) i.e. the distribution ofg

{e iZ(A), Ac 80 does not depend on c. Since X is strictly stationary the
g

shift transformation T :Xn .X preserves distributions.
g n~g

Recall that a strictly stationary process X is called metrically transi-
g

tive if all shift invariant events have probability zero or one. This is

I-__,__ _ __ _
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equivalent to the fact that T f=f for all g4 C and fe L (dPX) implies f=const.,
* lh.., l i.s the. shi t transformation and P the canonicl prohability measure

induced by the process Xg, cf. I!.

PROPOSITION 2.1

Let (X ) be a harmonizable ScS process on a second countable LCA aroup G.

If F has no atoms, then for each E> 0 and for each finite sequence gl,g2 .... RN' (

there exists g F G such that

N
(2.7) y IF X 1 12  <i--I X i 0 i E

Proof:

Pit K(h) X h,Xo1 for h cl. Then

IK(h) h X 0rhx 1[ Q If, Ch,yF(dy)[ j <h,yl><hY2 > F (d-y1)F7(dY 2)

=Jyl,2 <h,yIy 2 >F(dyI)F(dy2)

since F(,) has no atoms and consequently the double integral over the set y =1Y2

is equal to zero. Now choosing any regular sequence {Kn I of subsets in C, as inn!
the proof of th. 2.1, it is seen that for any finite set R, ... , * N

I N

n n i=l

SfSfl 2 i~l(K) fKn<R9+i'YlY2 >dm(g))F(dy )F(dY2)

But (2.6), the translation invariance of the laar measure m and the fact

Y1 Y2 * implies that

Im(K N [K(g~gi) 2 dm(g) =0

It follows that for each - >0 and each finite set r.... RN EC there exists

gCG such that IN K({g + i ) 2 <

l-
__ _ _ _ _ _ _ _ _ _
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Hcinark: For a=2 condition (2.7) and the assumption that (X ) is strictly
g REG

stationary imply that (X is metric transitive. It is just an extension of the
9g c,(;

WrPlyama-Crenander theorem, which says that a stationary ;ajussian process is mvtric

transtivie if and only if F has no atoms, cf. F11. The proof of the necessary nart

is easily extendable to the case of (general, not necessarily SaS) harmonizable

processes. However, we don't know whether (2.7) implies the metric transitivity

nor any example of a harmonizable SaS process which is metric transitive.

I
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3. Interpolation of harmonizable ScS processes

Extrapolation of harmonizable SaS processes on Vand lRhas been studied by

Y. llosoya [71 and by S. Cambanis and R. Soltani [S]. M. Pourahmadi in a recent

paper [131 has formulated in interpolation problem on Z/ and has found an analog

of Kolmogorov's minimality condition. However, his main result was obtained

under more restrictive assumptions on the density of the control measure than

originally by A.N. Kolmogorov (1941) for stationary 1. 2-processes. In this sec-

tion basic concepts and theorems related to interpolation are investigated in

the more general setting of harmonizable SaS processes on LCA groups.

Ilsing Theorem 1.1 on subordination of right-stationarily related processes

from Section 1 we are able to obtain an analog of Kolmogorov'w minimality theorem

in full generality for SruS processes on discrete groups. Also the more general

interpolation problem on discrete grotnps, wiien a finite number of the valucs ()f

the process are missing, is studied. An analog of A.M. Yaglom's (1949) result

is obtained (th. 3.2). This provides formulas for the interpolation error and

the interpolator of a harmonizable SaS process, tinder some natural assumptions,

which are, for example, satisfied by minimal processes. Note that the results

and their proofs are more complicated when I <a< 2 as compared to the case of

(= 2, cf. 121. Also it should be pointed out that all calculations depend here

on the different fractional powers of the index a, which in the Caussian canse

reduce to integer powers *1 or *2.

Let C be any proper non-empty compact subset of G. The interpoZation Tproblel

arises if one wants to make linear predictions, if exactly X for gr (\C are

A
known. That is to say, we are looking for a predictor X of an unlknown value

s

Xs of the process basing on linear space of observations:

(1) s C l.(X;C,\C) , sEC

(2) JJx -  llj =min11x -_ ll ,
Y

____________________________________________________ a



3.2

where minimum is taken over all YE L(X;G\C). It is known, see [7] and [5] that

always exists and it is obtained by a metric projection of X in the strictlyS S

convex Banach space L(X;G). Thus it is the best approximation of X in l(X:G\C.).

For stationary L -processes there exists a general interpolation theory for

processes on groups. However, the most interesting results are obtained for

discrete groups only (see [191, [161). Therefore we will consider the case of

discrete proups here. Let us note only that in the genera l case. the cl;iss of'

trigonometric polynomials Y akgk.y> arising in the next proposition and further,

should be replaced by the class of functions on the dual group .which are

Fourier transforms of functions q(x) on G such that supp q(x) C C, q(x) ( 1 (dg)

and q(x) is positive definite, cf. [19].

PROPOSITION 3.1

Let G be a discrete Abelian group and C a compact (hence finitd subset of

G. Suppose the control measure V, of a harmonizable SaS process (X ) is

absolutely continuous with respect to the qaar measure dy and such that dF/dy >0

a.. dy. Then there exists a trigonometric polynomial I'C(-.I) = a -C"k,y> :-4oh
gkC

that

(3.1) = f SY> -P c(Y) (dF/dy)(/(a-))]Z(dy) , srC

and

(3.2) 11X 5- sla = fA[IPC(Y)Ja/(dF/dY)](C/(a- 1 ))dYs Q G

Proof:

Put 0(y) for isomorph of in L'(F), which exists by Lemma 1.3. Then p(y),

as I metric projection of <s,y> onto suhspace L (F;G\C), satisfies the following

Jamcs-orthogonality relation

O5,r (Yv) j.L~( *(;t

which reads as follows

• °
l 

,&*



3.3

<g,y<s,Y> -O(y)) F(dy) 0 for RE C\C

for ,g2 .  C Consider two functions:

(<s-y> -O(y) ->dF/dY

and

(3.3) ak<gk,y> PC(y)
k >

We see that both functions have the same Fourier coefficients, hence they

coincide. Thus

(<s,y> -(y))<-> dF/dy =P(y).

By Lemma I. I we have

- *(Y) = IPF) / c (dF/dv) }1

Hence by Lemma 1.3 (iii) we obtain formulas (3.1) and (3.2), and the proof is

completed.

Recall that a stochastic process is called minimal if for all scGC,

X s I,(X;G\{s)). Minimal processes exist only on discrete groups and theirs

study is related to the simplest interpolation problem, when C = {s) is a

singleton, cf. 191.

TlIEORFM 3. 1

Let (X ) be a discrete Abelian group and (X) a harmonizable SetS
g gCG g gEC,

process such that the control measure F of the process is absolutely continu-

ous with respect to the Haar measure dy. Then (XR)gEG is minimal if and only

if dF/dy>O a.s. -dy and (dF/dy)-(1/ (a -1}) E Ll(dy).

- Sk , -



3.4

Proof:

Assume that (X ) is minimal, i.e. IIX - 0 ( for a fixed Pr C (thusg g( C. (

for all gc G). Consider the decomposition

X +Y ,where Y =X
g g g g g g

Moreover,

A
X E L(X;G\{g}) and Y i L(X;G\{g}) i.e., [Xh,Y ] = 0 for each h g.
g g h' go

Hence

0 if h g
(3.4) [[XhY] a = I 11>0 if h g

and consequently

[XhYg]a [Xh gYo a af <h-g,y> dy

Since (Y ) is a harmonizable SoS process which is right-stationarilyg gEt

related to (X then by Theorem 1.1 there exists a function p(Y) E L'(V
g gEG Y

such that

Yg f <g"Y>p(Y)Zx(dy)

and moreover

(3.5) FXy(A) = fAp(y)a-i>Fx(dY).

From (3.4) it is seen that IXhYg]a = af <h-g,y>dy. But we also have

[XhYgl9 1Q = f <h-g,y>Fxy(dy)

so that F Xy(A) = a dy(A), where dy stands for the normalized Haar measure* on

Clearly by (3.5) we have

(3.6) dy(A) = I/a fAp(y) < - > I'(d)

Thus the derivative dy/dFX = p(y)<a-l>/a is finite a.e. with respect to FX and

*It is finite since the dual group of a discrete group is compact.

L A
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from (3.6) is finite a.e. with respect to the Iaar measure dy. Since by the

assumption the control measure F=F is absolutely continuous with respect to

dy, thus the above considerations show that dF/dy is positive a.c. with respect

to dy and by Prop. 3.1 we conclude that

(dF/dy) - ( 1/( ( - )) c IY(dY)

Conversely, if g is fixed then by (3.2) there exists a non-zero Pc y=d<-gY>

such that

Ix- g = Idlof (dF/dy)- # 0

and consequently (X ) is minimal.
g gCfl

Remark: :or c=2 this theorem reduces to the celebrated Kolmogorov's result on

G = 7/. Recently it has been extended to SaS processes on 7/ in 113], but under

-1
additional assumption (dF/dy) exists a.e. As it is easily seen from the

proof this is an essential part of the theorem. The rest follows from Prop.

3.1. Case a = 2 for any discrete Abelian group reduces to [21, th. ,1.1 and [91

Cor. 4.8.

Observe that Prop. 3.1 has an existential character only. It was enough

for obtaining Theorem 3.1, but it doesn't describe precisely the interpolation

error or (the formula for) the interpolator. In the case C = {sj, however, it

is easy to solve the problem completely. Indeed, we have by (3.6) and Lemma 1.1

IlX 11, = 11Y l -- II l py) Iy("F(dy) =fe( a-_) (a/i(a- I) (dF/dy) dy

= ~a(a1)f(dF/dy) - ( 1  - l d y

and, on the other hand, from (3.4)

Il g jglli -- I gll -- a .

i _ i
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Thus we have that

a =a ( ( -1) f (dF/dy) -( /(,1- 1) ) dy

and consequently we get

C(OROI.IAY 3. I

if (X ) is a minimal harmonizable SaS process on a discrete anoup C with
g gEb

the control measure F absolutely continuous with respect to dy, then

IX- glX 1= [f(dF/dy) -dY

and

g= f ,[<gIy>. -( )U/(a-l) Z(dy)
fg <gy dF/dy

Now we will return to a more general interpolation problem when

C= {gg 2  g I i.e., a finite number of the values of the process are

missing or cannot be observed. For stat i onary 1.2-processes this '-bI em w:

first considered by A.N. Yaglom (1949) cf. [20]. See also [21, ], 1171,

[19]. For SaS processes on Z/, see [131. Our approach is based, similarly

as in [171, on a duality relation for homogeneous functlonals on a cone in

linear space.

Let P= {p(y) on [p(y) = <s,y> + I ck<gk,y>}
geC
gjs

For any pfP denote by C the following cone
P

(3.7) C { L'(F)If t, p(y)y)dy exists}, pc P,

where F is the control measure of the harmonizable S(uS process. Let us intro-

duce the following homogeneous functional J(p) on C
P

(3.8) J(p) = inf {j I0(Cy)jF(dy)jf (y(y)dy!l}

p4- - - - . - __ __ ___ __ _ _ ___ __ ___ __ ___ P
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The following duality relation is a special case of a more cencral rl:ition.

which is frequently used in approximation theory in linear spaces. For an

elementary proof see, for example, 1171, p. 24.

For each pr P we have

J(p) =inf F lap(dy)lf dy - I
OEC

(3.9) P

[sup f *pdy jf 1ll Cd' 1) 5 1f s- (p).
OE p

Now we may state the following main result.

THEOREM 3.2

Under the assumptions of Prop. 3.1 we have

(3.10) 11X- I11 max(J [Ip(Y) Ia/(dF/dy)](l/(-l)dY)

Tf p, P and fulfills condition (3.10) with I1x lla= u, theng ga

(3.11) = f [<s,y> -0I/(l)) p(y)l((2-)/(a-l))p(Y (dF/dy)-(l/(-l))Z(dy).

Proof:

We shall split the proof for several steps. I
Step one:

11X s - 11, - max J(P)
pP

Pick pc P and let 0 be the isomorph of s in L (F). Then we have

11x5 - Il = f l<s,Y> - (Y)IlF(dy)

= inf f I<s,y> - . bk<gk,y>j't(dy),
A,b gkEA

where infimum is taken over all finite subsets AcG\C and finite complex sequences

b = (bk), gk A. For brevity we shall use the symbol

L .-
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(Y) <--"gY>Y
(PA,h ) k <sy- <gk 'y"

and thus we have

(3.13) lIXs - s -- f ~lA,b Y)t (dY) •

A,b

Since A nC =0 and the 1laar measure dy is finite (G is compact as the dual

group of the discrete group G) and consequently normalized, then for any PE P

fIP (yA,b)p(Py)dy = f <s,y>2 dy = I

Thus q) C for all pc P and (3.13) and (3.8) imply that for ail p, PAb P

11xs X l, U (p)

Step two:

llX., - t _< max J(p)
pEP

If IIX 5- sIla = 0 then nothing remains to be proved. So we may assume

jIXs- s : a> 0. In an entirely analogous manner as in the proof of Prop. 3.1.

cf. (3.3) we have

0 < a Oix - = I = [X< - = f P.<s,Y>(<s,y> - Vy)) < -lF(dy)
5(t .S ,

f <sY>[(<s,y> -cO(Y) <c-I>)dF/dyldy f <s,y> Pc(y)dY

=f,<sly>gEC ak<gky> dy = a sfY<sy> 12dy=as

In the last equality for the integrals we use the fact that characters are

orthonormal, when G is discrete, see [151. If we put now

(3.14) po(y) =<s,y> + Tak/a<gk Y> 1/a P ()
gk C

gk OS

= 1/a(<s,y> - 40(y))<-l>dF/dy



Then'l p) ( is anl C'IL-IlIIlt of- P) and ha'. to he( taIke'i ilito ai'')ii car;it:lc'illi loll

(of' iiix .()). clet ' , C ;lich that
PO

(.1 S) I 1f ,IY)0 CYTd Y I

We will show now that

(3.1I6) <sY>- , (Y) IOF(dy) -< f I -P(y) F (dy)

For this split tp in I' (F) in such a way that

;(y) = 6('s,y> -4(Y),+ EP(Y)

where 6,c are constants and

(3.17) <s,y> - {y) 1 p(y) in I,L(F).

ThLus by (3.14)

0 = f p(y)(<s,y> -(y))-> dF/dy-dy

= a'f p(y)po(y)dy

Consequently, (3.15) implies

l il Yf( ,> - 4l(Y) ) () rd-y -"

More specifically, note that by (3.14)

If A(<sy> -V(Y))p°(Y)dyl =Y s,y> -*(y)IFl(dy) =I

and we conclude that 161 -1. Moreover

f a Ip(y) I"F(dy) = ,5(<s,y> -(y)) +EP(Y)I('F(dy)

> 1611f I<,y> -0(y) IF(dy)

where the last inequality follows from (3.17) and the property of James ortho-

gonality (lx+ 1:011 li xil for all c >0 if xi (%). Hence we get the desired

inequality (3.10).

L ,__ __
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I'inilly, (3.10) :ind arbitrary choice of ti, C ' atisfyin$, ( I .15I iInl ic

- . J(p0 ) <max Jtp)
XS s OtPCP

and the second step of the proof is completed. Consequently we have

(3.18) IlXs- = max J(p)

pP

Step three:

S(p) = ,lp(y) l/(dF/dy)l(l/ dl)dY((r-l)/")

where S(p) is defined in (3.9) and pe P.

Takc pe C w ith1 f fq,(y) :dy) - I. Then

if P (y)p(y)dy If ,IJ(y) (dF/dy)'5l " ] (dF/d )-P-(y)I dy

by tli6lder's inequality

< (f 1q,(y) 1 (dF/dy) dy) 31[f I-ly (dF/dy)-(/ ('I

by the above choice of ip

! ( [ p(Y)la/(dF/dy)](l/(t-l))dy)((,-l)/a)

Consequently,

(3.19) S(p) = sup if ,(y)p(y)dyj < f[p(y)l/(dF/dy)]l dy) ((cI-I)/h)
PEC A

To prove the converse, let's introduce the following two sequences of

auxiliary functions

&n (y) = max(dF/dy(.), l/n) n = 1,2,...

I n(T} = (cnPCy)<(c -1)>/(n()1/-1) n =12..

where p(y)c P and cn = (f[Ip(Y)10,l&n(Y)I l/(al))dy)
"(ll a)

These definitions make sense in view of

1~I --
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]p(Y) l /( -l) F l ( - )(y) < n(1/(rl-l)) p(y) (L[ l ~ (dy)

n

Icn P(Y)< I ( -l > (y)( / l) l -< n I a l In p(-y) I / ( -l (d')"

Observe first that

scafIp(y) -  ) drF dyn(C ny d dy

c(fIp() (Ot/Ca-M /rnC(Y) (,/ a y c Q -(x
=Cn>f IP(Y)lIa/C(ll()/r ) = Cn.Cn = 1

nn n n

and

f1n (y)p(Y)dy = f CnP(y) <C(1(- / y) 0/0-l) (y)dy

Cf Ip(y)Ic/r (Y)/- 1 )dy = c • C
n n n n

Thus (y)c C and

n p
S(p) = sup If ,W(Y)p(y)d-yl If n (y)p--(T)dyl

IPC p tA

= 1C-C = {(f [[pCYlla,/[ nfy)](1/(a-1)) ((- 1) /00

n-*

(3.19) gives

(3.2o) S(p) = (fjp(-y) 1n/(dF/dy) (/(-I) (Cl- I)

The final step:

To complete the proof of the theorem it only remains to observe that

formula (3.10) is an immediate consequence of (3.18) and (3.20), and formula

(3.11) follows from (3.1) and the fact that, similarly as in (3.14), PC(Y) E P

if PC(y) (I/o)p(y), where p(y)E P.

V _
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Recall that a process is interpolable if it can be errorless predicted for

missed values from a compact set, cf. 1191. The proof of the following resilt

is an immediate consequence of Th. 3.2. For the case ,t=2, c"'. 121 and 1l,1I.

COROLLARY 3.2

If (X ) is a harmonizable ScS process satisfying asswnptions of Irop.
g gEG

;.1, then it is interpolable if and only if [p( / I /a / [(d'

flor any nof.-zero P(y) C P

Remark: It is rather surprising that, unlike the case a= 2, for I < -< 2 the

Ilellinger integral technique seems not to be useful in studyi'ng the interpola-

tion problem. For a =2 the error space Nc = {Xg-, gE C) has an isometric

description as a subspace of those complex valued measures Di which are

Hlollinger square integrable with respect to F and with the Fourier transforms

1(g) =0 for gE C, cf. [19]. This approach is not suitable for SaS processes

because of the fact that the .ames-orthogonality used here is not a symmetric

relation. Consequently, the above convenient description of the error space

NC is no longer valid.

I
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,1. Append i x

For the cases that occur most often in appl icat ions the charactcr are

giveti it the following tahle.

Group G Characters <g,y>, gcG, YCA )ual Group

F, exp igy
!11 ep[i n  l n

e p i k 1 gkYk ]

T exp igy 7/

Tn  exp [i.k=I gkYk ] I

7/ exp i gy

C/ xp I i k= I kYk ]

7/k  exp i g y

g=1,2.. , 2 4r

1P Walsh function W(g,y) U

Where we use the following convention: R - the reals, 7/ - the integers,

T - one-dimensional torus (circle), Z/k- cyclic group over k-object, P-dyadic

group of non-negative integers with dyadic addition ., and P- dyadic group of

all sequences x= {Xn }, where x n  ( or xn  1, n=l ,2,... with the group operation

defined by z=x+y if x,yE I), where z n  x 1 +yn (mod 2). There is a topology

for 1), based on the system of neighborhoods of O= (0,0 .... ), with which 1) be-

comes a LCA group. To each xc Pone may assign a real number x=d(x) =i x.2>-

in the interval [0,1). The Walsh functions {W(n,x), n=0,1 ... 0< 05x< 11 are

defined as follows:

I I



4.2

(ii) If n has the dyadic expansion n= 1 = x 2' with x. or x

and x =0 for i >m then

W(n,x) {Rm. W)
i 1

where m 1 ..., m correspond to the coefficients x =1 and where {Rk(X)} are

the Rademacher functions. For more details see 1121, 1151 and references thcrii'.

I
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