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1. Introduction. In [61, we began a systematic study of nonlinear filtering

theory with Gaussian white noise (on a finitely additive probability space) re-

placing the differential of Brownian motion as noise in the conventional model

for nonlinear filtering based on stochastic calculus. The finitely additive ap-

proach has several advantages over the conventional approach. First, we do not

have to enlarge the sample space of observations, but instead, we work with the

natural sample space. Secondly, the equations for the optimal filter and the

conditional densities turn out to be partial differential equations rather than

stochastic partial differential equations. Thus, we are able to derive these

equations and characterize the optimum filter (or conditional densities) as the

unique solution to these equations. See [6] for complete formulation and various

definitions. In [6], Xt was Rd valued and it was assumed that the function h

(in the model (1.1) is bounded. In 171, we considered the case when the state

space of the signal process (X t) is infinite dimensional and characterized the

optimum filter as the unique solution of certain measure valued equations. We

now return to the Rd -valued signal process and solve the problem of existence

of the unnormalized conditional density and its characterization as the unique

solution to a 'Zakai' type equation without imposing any growth restrictions on h.

The preparatory results are derived in Section 2. A principal tool, besides

the finitely additive version of the Bayes formula, is Theorem 2.1 in which we

obtain a "dual" Feynman-Kac type formula. The work of this paper is based on re-

cent papers of Aronson and Besala, Besala, and Bodanko [1,4,5] on the existence

and uniqueness of solutions of parabolic equations with unbounded coefficients.

These results are presented in a form suitable for our purpose in Theorem 2.2.

An application of Theorem 2.1 and the Bayes formula yields our main result

(Theorem 3.1) on the solution of the nonlinear filtering problem in which the

function ht(Xt) in (1.1) is unbounded and has no growth conditions imposed on it.

-~ I 4-, -4 -
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The conditions of 1 inear growth imposed itt Theorem 3.1 on the coefficients of

the diffusion equation for the signal process (Xt) can be improved upon using

151 as is indicated in the Remark at the end of Section 3. However, in our view,

this is a matter of secondary importance, our main concern being to achieve the

maximum generality for the function h and hence for the filtering model.

There have been many recent papers devoted to the case of unbounded h in the

nonlinear filtering model using the Ito stochastic calculus (Pardoux [8]; Baras,

Blankenship and Hopkins [21; Baras, Blankenship and Mitter [31). A detailed dis-

cussion of the relationship of this work with the approach of the present paper

is given in Section 4.

In the remainder of this section, we briefly describe the model and state the

Bayes formula.

Let It= L2([0,T,ej with the inner product

<fl1 f 2
> =fT (fl(s),f 2 (s))ds

Let C be the field of cylinder sets in H and let i be the canonical Gauss measure

on C. Let e= (e s) be the identity map from H into itself. Then the finite dimen- i
sional distributions of the process ft e ds on (H,Ci) are the same as that of m-

0Os

dimensional standard Brownian motion. in this sense (e) is the derivative of a

"Brownian Motion" on a finitely additive probability space and thus can be called

Gaussian white noise. In [61, we had studied nonlinear filtering theory with (es)

as the noise. The model we considered was

(1Y.) s zhs(Xs) 3 es

where the signal (X s) is a R d-valued process on a countably additive probability

space (SI,AfI), (Xs ) and (es) are independent and h:[O,T]xl d*IRm is a measurable

function such that

(1.2) fo Ihs(Xs) I2 ds < ® a.s. Tl

, I ' a.,I S l
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TI'he following Bayes formula - which is an analogue of the Kallianpur-Striebel

formula is the starting point of our study of nonlinear filtering theory with

(aussian white noise. The formula is given in terms of conditional expectation

in the finitely additive set up. See [61 for the definitions and proof.

Theorem (1.1). (Bayes Formula)

Let f be a Borel function on R d such that

Elf(Xt)< 00

Then

L(f(X ly :o!5 s S t) = a ,y)

where

(1.4) 0 (f ,y) = ff(Xt)exp(J (hsCX) ,ys)ds - liflhs(X) I2ds)dTT

2. Auxiliary results. Let (Xt), 0! t ST be an Iid -valued diffusion process on

(SI,A,l) with initial probability density 0 and infinitesimal generator Lt given

by
d 2 d

(2.1) g)x a. (tx)( bi(t,x)(39 (x)
i j ' (~ X) + IXi it.

where g C (2 IR )and a,b satisfy the following conditions:

(2.2) 2 a.(t,x)Ai.j dK 2

x a I A(~) AjzK17'

i ,j-l i;l i

for some K1 >0, andall( ,..., d) ER d

j a. 2

(2.3) a3 ~ a ~ a ,, b't, b

are locally H51der continuous functions satisfying the growth condition

(2.4) Ig(t,x)I IS( + Ixl2)h' jii2 1
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It may be observed that given a,b staisfying (2.2),(2.3) and a density 0. such

a process (X ) exists and can be constructed as a solution to a martingale problem
t

or as a solution to a stochastic differential equation (see [9]).

Let L be the adjoint of Lt given byt

d a2  d - (
(2.5) (L*g)(x) = ), aij(t,x)( C )(x) a bW+ (t,x)( x- ("  +c*(t,x)g(x)

i,j=l i i=l

where
d ~.

(2.6) h(tx) -b.(t,x) +2 '(tIx)
j=l j

and

d 3bi(t,x) d 2a..
(2.7) C*(tx) X. + .

i=l 1 i,j=l x j

It can be easily checked that (a,b*) satisfy (2.3) and c* is also locally H6lder

continuous satisfying (2.4).

The main result of this section is

Theorem 2.1: Let the initial density satisfy

(2.8) (x) I !< exp(K3 (1 + Ix12) -  j
dfor some Ks <w and >0. Let c:I0,Tlx]R+ R he a locally 111der continuous

function, bounded above. Then

(i) the PDE

(2.9) =Lu(t,-) +c(t,*)u(t,")

u(0,x) = (x)

has a unique classical solution in the class G, where G is the class of

C 1,2(O,T]id ) functions g satisfying

(2.10) Ig(t,x) I S exp(K4 (l + It 12) )

for some constant K4 .

4't



(ii) For all bounded Borel measurable functions f, and O!<t 0O !5T, we have

t 0
(2.11) ff(x)uCt0 ,x)dx= Ef(Xto )exp(f0 c(s,XS) ds))

0

We will prove a couple of auxiliary results before proving Theorem 2.1.

First observe that it suffices to prove (2.11) for f, (:'(IRd). Thus, fix

fE 0)(I d and 0< t !<T.

Let lg,l.*g for gc )2(IRd  be defined by

(2.12) Lg (L - g+c (t.g

t at

and

(2.13) L*g= (L t +3t-)g+c(t,*)g

Then we have

Theorem 2.2. (i). The equation di
(2.9)' ,1u1=0 on (0,T)xR d

u(0.x) = V(x)

has a unique solution in the class r.

(ii). The equation

(2.14) L*v=0 on (O,to)]Rd

v(t 0 ,x) = f(x)

has a unique solution in the class of C1,2([o,t 0 ]xmRd) functions satisfying (2.10).

Furthermore, the solution v is bounded.

(iii). Denoting by u,v the solutions to (2.9)' and (2.14) respectively, we have

(2.15) ff(x)ui(to,x)dx =fu (z)v(0,z)dz

Proof of Theorem 2.2: Let

(2.16) Il(t,x) = exp(K(l le t )

where KS and 8 are positive constants chosen such that

(2.17) L(H) 0 , L(H 1)!5 0.

! ,
JlI
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Such a choice is possible in view of our assumptions on a,b,c. For explicit

calculations for the first inequality, see Bodanko [5] and the second inequality

can be handled similarly. Thus the conditions (i),(ii),(iii) in Besala [41 are

satisfied for L. Let r(t,x,T,z) be the fundamental solution for L given in

Theorem 1 in 141. Then by Theorem 2 in [4] r* defined by

(2.18) r*(T,z,t,x) = r(t,x,t,z) , t >T

is a fundamental solution for L*. Observe that (2.8) implies that for some

choice of K6 <-' we have

(2.19) I (x) 1 - 11(O,x)66

and hence by Theorem 3 in [41, u defined by

(2.20) u(t,x) =fr(t,x,O,z)0(z)dz

is a solution to (2.9)' and uEG.

By a theorem of Bodanko 15] (see Theorem B, Aronson-Besala [11) u is the

only solution of (2.9)' in the class G. Also, fE CO(IR ) implies that for some

K7 <

(2.21) If(x) 1 5 K7H (toX)

and hence it follows that v defined by

(2.22) V(T,Z) =fr*(T,Z,t ,x)f(x)dx

-SF(toX,T,z) f(x)dx ,(t O >T ) ,00

is the unique solution of (2.14) in the class G. Further,(2.21),(2.22) and the

estimate (3.7) in [4] on r* implies that

(2.23) Iv(T,Z) I 5 KH- I(T,Z)

and hence v is bounded by K7. Finally, the estimate (3.2) in [4] on r implies

that

(2.24) frfIr(to,X,Oz)II,(z)IdzlIf(x)Idx <-

I I
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and hence by Fuhini ts theorem, we have

Jffxlu(to, xldx =/[/r(to~x,O,z)@(zldzl f(xldx

= f[r(toX,O,z)f(x)dx]*(z)dz

This completes the proof of Theorem 2.2.

Lemma 2.3: Let (M(t),F ) be a continuous local martingale and let A(t)
St

be a continuous F -adapted process such that A{O) is integrable and for all

w,t A(t,w) is of bounded variation on bounded intervals. Then

N(t) = M(t)A(t) -foM(S)dA(s)

is also a local martingale.

Proof: Choose stopping times Tn increasing to - such that for all n,

M(tAT ) -M(O), AI(tAT) are bounded whcre IAI(t,w) is the total variation of

the mal s-A(s,w) on 10,t,. Then by integration by parts formila for martinglies

(Theorem 1.2.8 in Stroock-V;aradhan [91), it follows that N(tAt ) is a marti gale

and hence the result follows.

Lemma 2.4:

(2.25) fv(O,z)o(z)dz = Iii(f(Xt )exp(f 0 c(T,x())dT))

Proof: Since (Xt) is a diffusion process with generator Lt, it follows that
C1,2

for all g cC ([O,TlxlRd ) with compact support,

g(t,xt) _ f0(a + L }g(-TX )dr

-is a martingale. Thus, by using an obvious stopping time argument, it follows

that

M(t) =v(txt) -J0(i+LT)v(T,X )dT

A -4--



is a local martingale. Let A(t) he the process defined by

A(t) = exp(f0 c(s,Xg)ds).

Then it can be checked that

N(t) =M(t)A(t) -ftM(s)dA(s)

=v(t,XtSA(t) -f0(L-+L +c(T,x ))vC, X )A(T)aT

= v(t,x )exp(ftc(s,Xs)ds),

since v is a solution of l*v=O. Hence by Lemma 2.3 , N(t) is a local martin-

gale. Since v is bounded and c is bounded above, it follows that N(t) is bounded

and hence N is a martingale. Equating its expectations at t = 0 and t =t o, we get

the required identity (2.25). 1

Proof of Theorem (2.1): Part (i) follows from (i) of Theorem 2.2. Part (ii)

follows from (2.15) and (2.25). H

3. The solution of the nonlinear filtering problem. We now return to the

filtering model (1.1). Let the signal process (XIt) be as in Section 2. Let

d m
(3.1) h:fO,T0 x R

be a locally Ilder continuous function. Since the paths of (Xt) are continuous,

we have

(3.2) fJTIhs(X )12ds<-o a.s. TI

so that we can use the version of the Bayes formula given by equations (1.3) and

(1.4). The Bayes formula and Theorem 2.1 yield our main result given below.

d
Theorem 3.1. Let (Xt) be a IR -valued diffusion process with generator (Lt

satisfying (2.1)-(2.4) and initial density 0 satisfying (2.8). Let

11 0= fy11: Yt is Ilder continuous}.



'lh n or all Y, IIO ,  the PIDV

)P t (x, y Y)2,

(3.4) t = LPt(x'y) + t(h (X) ys) - lh(x)l2]pt(xY)

has a unique solution in the class G.

Furthermore, for ycfHO, the solution pt(x,y) of (3.4) is the unnormalized

conditional density of (Xt) given {y5 :O
5s!t}, i.e. for all Borel measurable

bounded f and yrH0,

(3.5) t f,y) = ff(x)pt (x,y)dx

Proof: l:ix y( IIC . Let

(3.6) c(t,x) = (ht (x),yt) - lht(x) 2

Then c(t,x) is locally Iilder continuous and

(3.7) ct,x) t12

for some K <-. Now the required assertions follow from Theorem 2.1.

Remark 1: It is easy to see that y-ot(f,y) is a continuous function of y fortIf, t fixed. Since 110 is dense in H, Theorem 3.1 gives a complete solution to

the nonlinear filtering problem.

Icmark 2: The growth conditions (2.4) on the diffusion and drift coefficients

can be weakened. All that is required is the existence of a function II satisfying

(2.17). One such set of conditions is given below (see 151).

There exists 0<asl such that for all ij, for some K>0

laij(t,x)l !K(1+ lxl 2)l
-a

I a 1 (t,x)l 1 5K(l + lxi 2)

IX i

SIX b. aij (t,x) S K(1 + Ixl2)

1 i(t,x) I K( + X 2



Iii-_  h,(t,x) I < K(l + Ixl 
*1

For 0< <- 1, for a suitable choice of K1,8

I1(t,x) = exp(Kl(1 + IxI 2 'e t )

satisfies (2.17). For (%=0, the corresponding choice is

n(t,x) =eC t(1 + x2).

See Bodanko [I1 for the computations in these cases.

,1. Concluding remarks. In the conventional approach to nonlinear filtering

theory, the canonical model is

(4.1) Yt =-fohs(X )ds+

d
where (Xs) as before is the signal process, assumed to be an IR-valued diffusion

process and the noise t is m-dimensional standard Brownian motion. lit this case

it can be shown that formally, the unnorralized conditional density Pt (xY) satis-

fies the Zakai equation

(4.2) dpt(-,Y) =L*p (.,Y)dt +p (-,Y)h (")dYt

If we let

'p (x,) -(ht (x) ,Yt)
(4.3) Ipt(xY) =C Pt x,Y)

then it follows that formally, for each YEC([O,T],] M ) ip satisfies

-(ht(x),Y) (ht(x),Yt) Pit
(4.4) t- t(x,Y) = e L*e tt(x,Y) - (- T-.x) ,Yt • it(x,Y)

Assuming that spatial derivatives of h of first and second orders exist, this

reduces to a partial differential equation, also called the 'robust' form of

the Zakai equation.

In most of the treatments of nonlinear filtering, theory, I has been assumed

I -
4- ,.
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to he bounded. Recently under the a ssumption that h has at most Iinear .trowth

and imposing other growth conditions on (ah)/(,)t), (h)/(1x.)

(1'h)/(3x ix.), Pardoux [81 showed that (4.4) has a unique solution ip and further

th1t i 1p is defined l1y (4.3). tien p is the tinnorma i .ed (ond i t i on1 d ens i ty.

For this, IPardoux also assumes that thha drift soel'icient b of (Xt ) has at 1ost

linear growth and the diffusion coefficient a of (X ) is hounded.
t

Baras, Blankenship and Mitter 13] and Baras, Blankenship and Hopkins [2]

have also considered this problem for the unbounded case. However, their results

do not seem to be satisfactory from the point of view of filtering theory for

the following reasons:

(i). Under certain conditions, in both these papers, they show that the ro-

bust form of Zakai's equation (,1.4) has a unique solution. Ilowever, they do not

address themselv es to the problem of identifying this solition as the umnnorn ali:-cd

conditional density. This part of the problem is by no means trivial and does

need a lot of work even under more restrictive conditions.

(ii). Barns. Blankenship and Mitter 131 do need the existence of deriva-

tives of h and growth conditions on them even for proving existence and unique-

ness for (4.4). Our conditions are weaker than theirs.

(iii). In 121, Baras, Blankenship and Ilopkins have considered the one dimen-

sional problem. lven in this case, their conditions are complicated and involve

relative growth of a,b,h and their derivatives. Moreover, the examples discussed

in 121 implicitly imply that their conditions allow them to consider the case of

'polynomial' drift and diffusion coefficients of arbitrarily large degree. But,

if a,b grow too fast, it is well known that the martingale problem for (a,b) is

not well posed and thus the condition AS in [21 is violated. (The authors seem

to ie aware of this difficulty as their comuents on p. 205 of 121 show).

rt

. li li ,II _n l.
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it may not he nut of place here to point out that the generality of our re-

;it (Is far as b is concerned) is a consequence of the finitely additive white

noise model adopted in this paper. Specifically, since we do not need to use the

transformation (4.3) to get a P1., it is not necessary for us to assume the exis-

tence of derivatives of h. Furthermore, the potential term in the white noise

version of the Zakai equation which is also the exponent appearing in the Bares

formula is hounded above in our set up, regardless of any growth condition on h.
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