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1. TIntroduction. 1In [6], we began a systematic study of nonlincar filtcring
theory with Gaussian white noise (on a finitely additive probability spacc) re-
placing the differential of Brownian motion as noise in thc conventional modcl
for nonlinear filtering based on stochastic calculus. The finitely additive ap-
proach has several advantages over the conventional approach. First, we do not
have to enlarge the sample space of observations, but instcad, we work with the
natural sample space. Secondly, the equations for the optimal filter and the
conditional densities turn out to bc partial differential equations rather than
stochastic partial differential equations. Thus, we are able to derive thesc
equations and characterize the optimum filter (or conditional densitics) as the
unique solution to these cquations. See [6] for complete formulation and various
definitions. In [6], Xt was Rd-valued and it was assumed that the function h
(in the model (1.1)) is bounded. In [7], we considered the case when the state
space of the signal process (Xt) is infinite dimensional and characterized the
optimum filter as the unique solution of certain measure valued equations. We
now return to the Rd -valued signal process and solve the problem of existence

of the unnormalized conditional density and its characterization as the unique

solution to a 'Zakai' type cquation without imposing any growth restrictions on h.

The preparatory rcsults are derived in Section 2. A principal tool, besides
the finitely additive version of the Bayes formula, is Theorcm 2.1 in which we
obtain a "dual" Feynman-Kac type formula. The work of this paper is based on re-
cent papers of Aronson and Besala, Besala, and Bodanko [1,4,5] on the existence
and uniqueness of solutions of parabolic equations with unbounded coefficients.
These results are presented in a form suitable for our purpose in Theorem 2.2.

An application of Theorem 2.1 and the Bayes formula yields our main result
(Theorem 3.1) on the solution of the nonlinear filtering problem in which the

function ht(xt) in (1.1) is unhounded and has no growth conditions imposed on it.
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The conditions of linear growth imposed in Theorem 3.1 on the coefficients of

the diffusion equation for the signal process (Xt) can be improved upon using

[5] as is indicated in the Remark at thc end of Section 3. However, in our vicw, .
this is a matter of secondary importance, our main concern being to achieve the

maximum generality for the function h and hence for the filtering model.

There have been many recent papers devoted to the case of unbounded h in the
nonlinear filtering model using the Ito stochastic calculus (Pardoux [8]; Baras,
Blankenship and Hopkins [2]; Baras, Blankenship and Mitter [3]). A detailed dis-
cussion of the rclationship of this work with the approach of the present paper
is given in Section 4.

In the remainder of this section, we briefly describe the model and statc the
Bayes formula. '

Let !l=L?G0,T],Iﬂ') with the inner product .
<f,f>= [T (£ (s),f,(s))ds
1’72 A | *2 '

Let C be the field of cylinder sets in H and let u be the canonical Gauss measure
on C. Let e==(es) be the identity map from H into itself. Then the finite dimen- ’
sional distributions of the process I;esds on (H,C,u) are the same as that of m- g
dimensional standard Brownian motion. In this sense (es) is the derivative of a

"Brownian Motion" on a finitely additive probability space and thus can be called ’,
Gaussian white noise. In [6], we had studied nonlinear filtering theory with (es)
as the noise. The model we considered was

(1.1) ys=hs(xs) +o,

where the signal (Xs) is a Rd-valued process on a countably additive probability

space (2,A,), (Xs) and (es) are independent and h:[O,T]xlF-olJ' is a measurable .
function such that
(1.2) [iing(x)|%das <= a.s. M.
- - ]
, e ——— T i
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The following Bayes formula - which is an analoguc of the Kallianpur-Striebel
formula is the starting point of our study of nonlincar filtering theory with
Gaussian white noise. The formula is given in terms of conditional cxpectation

in the finitely additive set up. See [6] for the definitions and proof.

Theorem (1.1). (Bayes Formula)

Let f be a Borel function on Rd such tﬁat

E[f(x )< .
Then
‘ ot(f,y)
(1.3 h(f(xt)l)’SZOS SSt)=a-;W
where
(1.4) o, (£.y) = [FOXDexp(foh (1 ),y )ds - 5[5 In_(x ) | Zasyan .

2. Auxiliary results. Let (Xt), 0<tsT be an Rd -valued diffusion process on

(2,A,) with initial probability density ¢ and infinitesimal generator l.t given

by
d 32 d 3
2.1 (L, »)(x) = i,ngl a; ;(t.x) (T,;i—ﬁ;)(x) + iZlbi(t,x) ) )

where g ¢ Cz(Rd) and a,b satisfy the following conditions:

d d
2.2 C(t, )M, 2 A2
2 i.§=1 R R 121 1
for some K, >0, andall (Aj,..., A)) € R,
P 2% 2

(2.3) aij' -ﬁ;a”, Wxi ] aij, bi. Tx-i-bi
are locally Holder continuous functions satisfying the growth condition

(2.4) &t 0] sKy01 ¢ 2] D%

(Gl

b
i




A

It may be observed that given a,b staisfying (2.2),(2.3) and a density ¢, such
a process (Xt) exists and can be constructed as a solution to a martingale problem
or as a solution to a stochastic differential equation (sce [9]).

Let L; be the adjoint of Lt given by

d 2 d
(2.5 W= ) aw ('ai—i%;q) (® + 1 b3(t0 <-§§i-)<x) + e*(t,x)2(x)

i,5=1
where
d ﬁaii
(2.6) bI(t,0) = b, (£,3) +2 § —l(t,x)
=l 7
and
<21 b (t,x) - d azai.
(2'7) C*(t’x) =- — 4+ (t,x)
is1 % i,5=17%9%;

It can be easily checked that (a,b*) satisfy (2.3) and c* is also locally Holder
continuous satisfying (2.4).

The main result of this section is

Theorem 2.1: Let the initial density satisfy
(2.8) 600 | < exp(ky(1+ x| %%

for some K3<‘” and €>0. Let c:[O,TIXIfl+ R be a locally ll6lder continuous
function, bounded above. Then
(i) the PDE

(2.9) S =Lpu(t, ) +elt,Jult,*)

u(0,x) = ¢(x)

has a unique classical solution in the class G, where G is the class of

Cl'z(IO,TIXRd) functions g satisfying

(2.10) lgCe,x) | sexp(k 1+ [t]D

for some constant K4.

¢ T : T .
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(ii) For all bounded Borel measurable functions f, and()sto

t
(2.11) [e(u(ty,xdx = En(f(XtO)cxp([onc(s,xs)ds))

We will prove a couple of auxiliary results before proving Theorem 2.1.

First ohscerve that it suffices to prove (2.11) for fe (Z:(IRd). Thus, fix

o d
fe ('"(l{ ) and OSt()ST.

Let Lg,lL*p for ge C]'Z(Rd) be defined by

- a [}
(2.12) Lg = (L;-gg)gw(t, )g
and
(2.13) L*g=(Lt+§-{)g+C(t.')H .

Then we have

Theorem 2_2_ (i). The equation

(2.9)° Lu=0 on ((),T))tlld
u(0,x) = ¢(x)
has a unique solution in the class 6.
(ii). The cquation
d
(2.14) L*v=0 on (O,to)xR
v(to,x) = f(x)
1,2

has a unique solution in the class of C

< T, we have

([O,tO]XRd) functions satisfying (2.10).

a e —————

; Furthermore, thc solution v is bounded. :
; (iii). Denoting by u,v the solutions to (2.9)' and (2.14) respectively, we have
i (2.15) Jexule . x)dx = [e(z)v(0,2)dz .
’ ’ Proof of Theorem 2.2: Let ‘ »
i N
(2.16) f(t,x) = exp(Kg(1 + lez)”eet) i
IPYS where Ks and B are positive constants chosen such that
i i} (2.17) LH) <0 , L*H ] so. |
' 3
. P
J' ’ ‘ n TP
+— . — — = =
X SR - i -t
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Such a choice is possible in view of our assumptions on a,b,c. lor explicit
calculations for the first incquality, sec Bodanko [5] and the sccond inequality
can be handled similarly. Thus the conditions (i),(ii),(iii) in Besala [4] are
satisficd for L. Let T'(t,x,7,z) be the fundamental solution for L given in
Theorem 1 in [4]. Then by Theorem 2 in [4] T* defined by

(2.18) T*(t,z,t,x) = T(t,x,t,2z) , t>T

is a fundamental solution for L*., Observe that (2.8) implies that for some

choice of K6 <o we have

(2.19) l$(x) | < KH(0,%)
and hence by Theorem 3 in [4], u defined by
(2.20) T u(t,x) = fT(t,x,0,2)4(2)dz
is a solution to (2.9)' and ueG.
By a theorem of Bodanko [5] (see Theorem B, Aronson-Besala [1]) u is the

only solution of (2.9)' in the class G. Also, fe.C:(Rd)implies that for some

-1
(2.21) |f(x)|sK7H (tgsX)
and hence it follows that v dcfined by
(2.22) v(T,2) =]r*(1,z,t0,x)f(x)dx

= it f0dx, (2> 1),

is the unique solution of (2.14) in the class G. Further, (2.21),(2.22} and the
estimate (3.7) in [4] on T* implies that
(2.23) |v(T,2)]| < K7H'1(T,z)
and hence v is bounded by K7. Finally, the estimate (3.2) in [4] on T implies

that

(2.24) [Tty x,0,2) [ |6(2) [d21| f(x) [dx <

— ——— &
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and hence by Fubini's theorem, we have
Jfuct, x)dx= [I[T(t),x,0,2)$(z)dz] f(x) dx
= [[JT(t,,x,0,2) f(x)dx]é(z)dz
= fv(0,2)d(2)dz .
This completes the proot of Theorem 2.2.

Lemma 2.3: Let (M(t),Ft) be a continuous local martingale and let A(t)
be a continuous Ft-adapted process such that A(0) is integrable and for all
w,t *A(t,w) is of bounded variation on bounded intervals. Then

N(t) =M(t)A(L) - [(M(s)dA(S)

is also a local martingale.

Bzggf:v Choose stopping times Tn increasing to « such that for all n,

M(taT ) - M(0), IAI(tATn) arc hounded where [Al(t,w) is the total variation of
the map s +A(s,w) on |0,t]. Then by intcgration by parts formula for martingales
(theorem 1.2.8 in Stroock-Varadhan [9]), it follows that N(tA1n) is a martingale

and hence the result follows.

Lemma 2.4:
t
(2.25) [v(0,2)6(2)dz = B (£(X, yexp(f, e (T, x(1)d1)) .
0
Proof: Since (Xt) is a diffusion process with generator Lt’ it follows that
for all gc(%’z([O,T]de)with compact support,
t_ 3
g(t.x,) - [o(mr+ LIR(T,X )dr

is a martingalc. Thus, by using an obvious stopping timc argument, it follows

that

M(t) = v(t,xt\ - j;(g,-{o LT)v(r,xT)dt

pm——c

_

—n
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is a local martingale. lLect A(t) be the process defined by
A(t) =oxp(f8c(s,xq)ds).

Then it can be checked that

N(t) = M(DACE) - [TM(s)dA(s)
- t, 9 .
= v(t,X )A(t) - [oGr* L+ c(T,X ) v(T, X)A(T)dr
t
-v(t,Xt)exp(fOc(s,Xs)ds),
since v is a solution of L*v =0, lience by Lemma 2.3 , N(t) is a local martin-

gale. Since v is bounded and ¢ is bounded above, it follows that N(t) is bounded
and hence N is a martingale., [Lguating its expectations at t=0 and t =t,, we get
the required identity (2.25). {1

Proof of Theorem (2.1): Part (i) follows from (i) of Thcorem 2.2. Part (ii)

follows from (2.15) and (2.25). 1

3. The solution of the nonlinear filtering problem. We now return to the

filtering model (1.1). Let the signal process (Xt) be as in Section 2. Let

(3.1) hifo, xRS > R™

be a locally Holder continuous function. Since the paths of (Xt) are continuous,

we have

T 2
(3.2) n"‘s(xs” ds < a.s. Tl

50 that we can usc the version of the Bayes formula given by equations (1.3) and
(1.4). The Bayes formula and Theorem 2.1 yield our main result given below.

Theorem 3.1. Let (Xt) be a Rd -valued diffusion process with generator (Lt)
satisfying (2.1)-(2.4) and initial density ¢ satisfying (2.8). Let

", = {yen: Y is Holder continuous}.




#——k
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.

Then for all y« II( the PPDE

))

I, (x,¥) 5
(3.4) —57— = Lip (x,y) + [(h (x),y,) "/2"15(7()] 1p, (x.¥)

has a uniquc solution in the class G.

Furthermore, for ye HO’ the solution pt(x,y) of (3.4) is the unnormalized

conditional density of (Xt) given {yS:OSsst}, i.e. for all Borel measurable

bounded f and y ¢ HO’

(3.5) o, (F,y) = [f(x)p, (x,y)dx .

Proof: Fix ycll(). Let

2
(3.6) c(t,x) =(ht(x),yt) -’ilht(x)l
Then c(t,x) is locally Holder continuous and

(3.7 c(t,x)s?ﬂytlzsl(
for some K<x, Now the required assertions follow from Theorem 2.1.
Remark 1: Tt is easy to sec that y-»ot(f,y) is a continuous function of y for
f, t fixed. Since II0 is dense in H, Theorem 3.1 gives a complete solution to
the nonlincar filtering problem.
Remark 2: The growth conditions (2.4) on the diffusion and drift coctfficicnts
can be weakened. A1l that is requirecd is the cxistence of a function I satisfying
(2.17). One such set of conditions is given below (sce [5]).

There exists 0<a<1 such that for all i,j, for some K> 0

lag (0] skae Jx]BH1

2 1
'3‘271 ag (60| skai s [x|H?

2
3 2.0
lz,yij-;; aij(t,X)l s K(1+ [x[9)

Ib, (£, < K1+ x1)"
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) . 2.a
I'ai’]; ho(t,x) | =K+ x| .

For 0<a <1, for a suitable choice of Kl,B,

H(t,x) =oxp(K1(1 +|x|2)aeBt)

satisfies (2.17). For a=0, the corrcsponding choice is

e, =Pt s |x|?).

Sce Bodanko [5] for the computations in these cases.

4. Concluding remarks. [In the conventional approach to nontincar filtering

theory, the canonical model is

t
(4.1) Yt = Ohs(xs)ds +Bt

where (XS) as before is the signal process, assumed to be an Ifi-valued diffusion
process and the noisc Bt is m-dimensional standard Brownian motion. 1In this casc
it can be shown that formally, the unnormalized conditional density pt(x,Y) satis-
fies the Zakai cquation

2 . =L*n (o . .
(4.2) dp, (+,Y) = L¥p, (+,¥)dt +p (+,Y)h ()dY, .

If we let

-(h (x),Y,)
(4.3) v (x,Y) =c P, (x,V) ,

then it follows that formally, for cach Ye C([O;F],Rm) P satisfics

-(ht(x),Yt)L* (ht(x),Yt) sh

4.4 Fw (V) =e e b, (X, Y) = (e (0),Y,) * 9, (x,1)

t't

Assuming that spatial derivatives of h of first and second orders exist, this
reduces to a partial differential cquation, also called the ‘robust' form of
the Zakai cquation.

In most of the treatments of nonlincar filtering theory, h has been assumed




e e e
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to he bounded.  Recently under the assumption that h has at most lincar prowth
and imposing other growth conditions on (3h)/(bt), (Sh)/()xi),

(Dzh)/(axiaxj), Pardoux [8] showed that (4.4) has a unique solution P and further
that if p is defined by (4.3), then p ois the unnormalized conditional density.
For this, Pardoux also assumes that the drift cocfficient b of (xt) has at most
lincar growth and the diffusion coefficicnt a of (Xt) is houndcd.'

Baras, Blankenship and Mitter [3] and Baras, Blankenship and Hopkins [2]
have also considered this problem for the unbounded case. However, their results
do not seem to be satisfactory from the point of view of filtering theory for
the following rcasons:

(i). Under certain conditions, in both these papers, thcy show that the ro-
bust form of Zakai's cquation (4.4) has a uniquec solution. llowever, they do not
address themselves to the problem of identifying this solution as the unnormalized
conditional density. This part of the problem is by no means trivial and doces

need a lot of work cven under more restrictive conditions,
(ii). Baras, Blankcenship and Mitter |3] do need the existence of deriva- ,

tives of h and growth conditions on them even for proving existence and unique-

ness for (4.4). Our conditions are weaker than theirs.

(i). 1n |2], Baras, Blankenship and lopkins have considered the one dimen-
sional problem. FEven in this case, their conditions are complicated and involve
relative growth of a,b,h and their derivatives. Moreover, the cxamples discussed |
in [2] implicitly imply that their conditions allow them to consider the casc of
'polynomial’ drift and diffusion cocfficients of arbitrarily large degree. But,
if a,b prow too fast, it is well known that the martingale problem for (a,b) is
not well posed and thus the condition AS in [2] is violated. (The authors seem

to be awarc of this difficulty as their comments on p. 205 of 2] show).

o
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It may not be out of place here to point out that the generality of our re-
snlt {as far as h is concerned) is a consequence of the finitely additive white
noise model adopted in this paper. Specifically, since we do not need to use the |
transformation (4.3) to get a PDE, it is not nccessary for us to assume the exis-

tence of derivatives of h. Furthcrmore, the potential term in the white noisc ¢

' version of the Zakai equation which is also the cxponent appearing in the Baves

(11

[21

[31

f41

[5]

[61

(71

(81

i}

~

G.

.S.

formula is bounded above in our set up, regardless of any growth condition on h.
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