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ABSTRACT

The objective of the research has been to develop
engineering methodologies applicable, but not limited, to
aerospace automatic control design problems in which there are
o) performance specifications requiring precise control of system
behavior in the presence of stochastic disturbances (e.g., wind
gusts) and large-but-bounded uncertainties in the dynamical
¥ response of the system (e.g., parameter uncertainty, unmodeled

nonlinearities, and so forth).- During the past three years of
AFOSR supported researcﬁf?§jzsiesive body of theory has been
developed that enables engineers to relate the ability of feed-
back control systems to meet such specifications directly and

et

ﬁ quantitatively to the J:;turn difference matrix asso;ﬁggfd with
S\ nTiem Y

3 the system's feedback loops. Now results enabling "L¥ optimi-
: zation'9;f returned difference singular value Bode plots pro-

g mise to be of great value in robust multivariable feedback

é controller synthesis. Continuing research is currently being

N aimed at further tightening the links between this theory and

) . the most recent developments of modern stochastic linear optimal
% control synthesis thoery, and extending the results to admit

more practical problems, so that this thoery may be used more

effectively by engineers to efficiently and systematically design

LT RE

the feedback gains that determine a feedback system's return
difference matrix. Such results substantially reduce the depen-

§ dence of control engineers on intuition, simulation, and luck

and provide the know-how to successfully and efficiently solve = | , o~
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INTRODUCTION

The increased demands for quick and precise control over
aircraft and space vehicle response that are anticipated in
the coming decades will have to be matched with automatic con-
trol systems that can respond instantaneously, without moment-
to-moment human guidance, anticipating vehicle response inso-
far as is possible and, more importantly, continually and auto-
matically monitor vehicle response and re-adjust control sig-
nals to correct for unpredicted deviations from the desired
response, Such unpredicted response variations can result from
external disturbances (e.g., wind gusts) and from the impossibi-
lity of employing a sufficiently complex and accurate model of
the vehicle's dynamics to account for every vibrational mode,
every nonlinearity, ..., every variable affecting system res-
ponse.

While the state-space-based mathematical theory for control-
ling systems without substantial uncertainty regarding dynamical
response grew relatively sophisticated during the two decades
of the 1960's and 1970's, there was almost no significant prog-
ress concerning the control of systems having uncertain response
since the 1940's and 1950's when great strides were made in the
development of the "classical" transfer-function-based theory
for the control of simple single-input-single-~-output (SISO)
linear time-invariant (LTI) systems with uncertainty. Conse-
guently, when this research project was begun in October 197¢

there was no adeguate theory to provide engineers with an effi-
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% cient, systematic procedure for the design of precision con-
; trollers for more complex multi-input-multi-output systems
N such as the highly unstable, fast responding, control confi-
u
o fured aerospace vehicles that are expected to be operating
" in tomorrow's combat environment. The objective of the pre-
i sent research has been to develop this badly needed theory
At
N so that the engineers who must design tomorrow's aerospace
" vehicles will have more than intuition, trial-and-error simula-
2
- tion and mystical "seat-of-the-pants"” insight for guidance
o in designing uncertainty-tolerant automatic controllers for
; these vehicles.,
:
5
N
N
~
v
Y
*
\
~
w‘
\
-«
h:
% %
: |
i 3 o
-" q{
N :
~ ”
a ] ,‘.‘
> R
d u

o P
3
.
R




PG T,
acia 8 s & a

2

§ o 3

aTm e a8 &

)

YIS IE N

»

- Mk L d- b i a0 g S ASC AN S S e A/ S A USRI RN

BACKGROUND AND PROGRESS

Since work began on this project in October 1979, the re-
search effort has been generally successful in achieving its
main objective of relating the return difference matrix to
the uncertainty tolerance properties of a system. These pro-
perties are also known as robustness properties or feedback
properties. Our results, together with some related results
useful in the actual synthesis of robustly uncertainty tole-
rant feedback controllers, were reported in the paper "Feed-
back Properties of Multivariable Systems: The Role and Use
of the Return Difference Matrix" [1] . This paper discusses
the central roles in feedback theory of the return difference
matrix (denoted I+L(s)) and the inverse-return difference mat-
rix (denoted I+L”!(s)).

Among the new theoretical results in [1] are the following:

(i) A new method for exact evaluation of the sensitivity
of multivariable feedback control systems which overcomes sig-
nificant practical limitations associated with previously known
methods. Sensitivity to large plant and semsor variatione ic directly
related to the mominal system's return and inverse-returv. di‘ference mairi-
ces. (See Theorem 2.1 ané Theorem 2.2 in [1]).

(ii) Significant drawbacks of characteristic locus analy-
sis methods (cf. MacFarlane ané othcrs) are described. Feturn
and inverse-return difference singular value plots are found te
overcome some of the drawbackes of characteristics loci. The
results have been found to be useful in cuantifying some funda-

mental limits on the achievable performance of feedback contrcl
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systems. (See Section 3 and Section 4 of[1]).

(iii) A technique, based on stochastic linear quadratic
Gaussian (LQG) optimal control theory, has been developed to
aid the shaping of the return and inverse-return difference
singular value plots. Though the technique is to a certain
extent a trial-and-error design technique, it continues to be
substantially more systematic than any other method that is

currently available for synthesizing multivariable control J

systems to meet specifications requiring a robust tolerance
of disturbances, noise and plant/sensor modeling errors.
(See Section 5 in[1].) To demonstrate the viability of the
of the technique, the theory has been applied to the synthe-
sis of an automatic controller for the longitudinal dynamics
of an advanced control configured vehicle (CCV) aircraft, viz.,
the NASA HIMAT remotely piloted aircraft (see Section 6 of
1.
More recently research effort has focused on several issues.
First, substantial effort has been focused on the important
practical issue of how to solve the so-called "Inverse Problem
of Linear Quadratic Gaussian (LQG) Optimal Control” in the acene-
ral setting in which the controller is dynamical and the nlant
is subject to plant and sensor noise. This inverse problem is
as follows: Given a realizable closed-loop control return-cdif-
ference matrix, the plant transfer function matrix P(s), and
e ' ant and sensor noise power spectra matrices, say :_(g)

a
and Zn(s), find the linear quadratic cost matrices R(s) and

Q{s) such that the closed-loop system is optimal in the sense
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that the following stochastic cost is minimized;

+j
3 = L Tr (Q(s)Z (s) + R(s) I (s)) as
273 -5 .

where Zy(s) and Zu(s) denote the respective closed-loop
power spectra matrices of the sensor output and control in-
put signals. We are pleased toreport that the solution to
the problem, together with extensive discussion of its ra-
mifications regarding a number of related problems is in
hand [5] . This work was supported under AFOSR Grant 80-0013.

The importance of the LQG inverse problem to the proper
understanding of robust multivariable feedback control system
design cannot be understated. LQG multivariable feedback de-
signs are preferred for a variety of reasons: Gooé computer
software is readily available for solving the LQG design ecua-
tions (e.g.,[lo] ), LOG designs optimize inherent trade-offs
between robustness properties such as sensitivity versus sta-
bility margin [l] » anéd many engineers in the aerospace indus-
try are familiar with the basic LOG concepts. The solution to
the inverse problem plays a vital role in our understanding
of how one can use the LQG theory to place the poles and zeros
of I+L(s) in order to achieve acceptallc robustness and sensi-
tivity singular-value Bode plots [l] and acceptable transient
response and asymptotic tracking properties [5 ]. Alsc, as it
is common practice to iteratively adjust the LOG cost matrices

when "fine-tuning” a control desian to meet various robuctness

e
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’§§ specifications, the solution to the inverse problem provides
é; a starting point for fine-tuning non-LQG multivariable

o feedback designs.
'ig A second focus of the research effort is one of rather funda-
gi mental significance in linear feedback theory: realizability.

; A closed-loop feedback system's return-difference I+ L(s) is

ff said to be realizable for a given plant P(s) if for some con-
E} troller C(s)

?‘ (i) L(s) = P(s)C(s), and
%ﬁ (ii) (I+L(s))"* 1is stable, and

AN

&5 (iii) P(s) and C(s) are "coprime" in the sense that there

are no unstable pole-zero cancellations in the product P(s)C(s).
{g A new simplified realizability result (Lemma 1, [4] ) has been
é} develcoped which characterizes realizability directly in terms
:? of the poles and associated residues of the return-difference
:3 and inverse-return difference. This is an improvement over
;: previous multivariable results([ 3 ], Lemma 3) which recuire
N
a solution of the so-called "Bezout" equation ané cive orlv

;E limited insight into the constraints imposed by realizability
.EE on the set of achievable return difference ancd inverse-returr
;ﬂ difference matrices.

Eg The realizability guestion arose in connection with the

?E previously mentioned LQG inverse problem, anc¢ our new reocli-

": zability result in [4] plays & crucial role in the sclutiorn
i% of the LQOG inverse problem in [5 ], in addition to lavinc

?E the groundwork for stability margin optimization probler sclved
3

in [4].
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9
o The problem of stability margin optimization and the
v
iéﬁ mathematically dual problem of sensitivity minimzation with
ol respect to the L norm havebeen a third major thrust of our
3
ﬁﬁ research effort in the past year. With the aid of results
';E in [1 ] which show that stability margin is inversely pro-
2 portional to the L’ norm of the inverse of the inverse-return
jg difference matrix I + L *(s) and the aid of our new reali-
ﬁﬁ zability result (Lemma 1 of [4] ), it is shown in [4] that
b the problem of designing a feedback controller to maxirize
§E stability margin (subject to decoupling and, perhaps, asymp-
<
‘32 totic tracking constraints) is mathematically equivalent to
1) \
) the minimization
2
o
% '
e min hxj(s)Lw , (3 =1, ..., m)
\“ (- -3
5 %5 (s)€H
ﬁi subject to complex interpolation constraints of the form
§:
> .
Aﬂ? xj(sij) = wij’ (i=1, ..., n), Re(s;) > O,
QE where sij and wij are complex constants and E® is
o
fﬁé the Hardy space of stable transfer functions with the 1
s
= norm,
3 )
o Ix(s) i, & sup|x(3w |.
DY
tﬁ kh simple solution to this interpolation problem requir.ng
Y
1. only the calculation of certain eigenvectors and eigenvalues
%3’ is available in the mathematics literature [39 ]. This leads
Y
o in turn to the multivariable feedback controller havinc maxi-
LN’
mal stability robustness. It also points the way tc imrrovinc

>
o' »




10

and extending to multivariable systems certain recent results

of Zames and Frances [40] concerning single-loop feedback sen-

L&

sitivity minimization with respect to the L® norm. The results

C'—O!‘.

&
o5

recently have been generalized to the decoupled multivariable

R4

case by the principle investigator and Ph.D student B.S. Chen [4,5].

Another area which we have studied during the past year

Teat~
N

2 has been the use of the so-called Hankel singular values [8-15])
‘ as an alternative measure of the "sizes" of the return difference
I+L(s) and inverse return difference I*-L-l(s) for purposes of
robustness continuation proposal, the Hankel singular values
are attractive for at least two reasons:

;5 (1) There are finitely many Hankel singular values for a
2 finite order system whereas conventional freguency response
singular values involve an infinite continuum of w-dependent
singular values (several at each frequency w € (- =, «))., It can
be shown that this discrepancy stems from the following funda-
mental mathematical fact - the Hankel operator is compact with

a finite, discrete spectrum (i.e., set of eigenvalues), whereas

operator with a continuous spectrum (with eigenvalues equal to

<
E% the freguency-response method corresponds to noncompact Toepiitz
o,
o the set eigenvalues of the operators fregquency response matrix
.

as frequency w ranges over all real values w € (-= ,=)).

(2) Hankel singular value decomposition of a linear sys-
tem captures the causal nature of a system and is closely re-
lated to well-understood state-space concepts such a controll-

ability and observability. 1In contrast frequency response

singular values do not enable one to readily distinguish realiz-

able (i.e., causal) from non-realizable (i.e., non-causal systems.
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N
fJf On the encouraging side, Hankel singular values have been
;f\ found to correlate well with the practically relevant time-
SE response and frequency-response properties of lightly dam-
3§: ped aerospace structures [14] . On the other hand, we have
3; found that one can synthesize classroom examples of transfer
'gg function pertubations which have vanishingly small Hankel sin-
f? gular values, yet are capable of destabilizing the most ro-
NN bust feedback design; i.e., Hankel singular values seem to
éE induce an inappropriate topology in the space of transfer mat-
3:?‘: rices [15] .
i§; Still there are close links between Hankel singular value
ig optimization problems and L® norm frequency response robust-
?& ness optimization problems involving the return difference and
) inverse-return difference. The stability-constrained L* op-
;ﬁ timal complex interpolation prollems that yield to the solution
*ﬁ of sensitivity minimization problems [40] and stability marcin
:;i maximization problems [39] also provide the solution to rela-
15; ted Hankel singular value optimization problems involving re-
A duced order system modeling ( See[ 9] and [41 ] ). Thus,
:;: although we do not presently see any future for the Hankel sin-
ng gular values as a measure of robustness, it is clear now that
EE concepts and theoretical results developed in conjunction with
:i? optimal Hankel model reduction theory will be useful to us in
§§ performing the realizability-constrained L% - norm frecuency-
.;f response singular value optimizations that naturelly arise in
?ﬁ: synthesizing optimally robust multivariable feedback controller
{ﬁ; designs.

5
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CURRENT RESEARCH

The primary focus of our current research is on the synthesis X
of optimally robustly uncertainty-tolerant multivariable feedback ;
control systems. The results presently in hand for this purpose
include the Lz-norm LQG optimal synthesis (1, Section 5], L*-norm

optimal sensitivity synthesis [40), and L®-norm optimal

stability margin synthesis [4]. Tke LQG approach developed

in [1] is at present the most useful of the three because it

allows one to establish an optimal trade-off between the us-
ually conflicting robustness requirements of sensitivity ver-
sus stability margin. One's choice of LOG cost/noise weichting
matrices allows one to specify in each instance how much im-
portance is to be attached to each of these two conflictina de-
sign requirements. However the I -norm which is the basis for
LQOG optimization is inappropriate fcr stability margin analy-
sis since even plant perturbaticns Ap(s) having vanishingly

small L%*-norm,

"

17 -7 . . y
{ ?—]f Tr (A fJe)e(ju))y @™ ’
-cr

can cause instability; i.e., the 1. norm like the Hankecl-nerm

15 ], gives an inappropriate topology to the space or transfer
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matrices for stability margin analysis. For stability margin
cﬁ analysis the L” norm associated with frequency response sin-
!
“ gular values is known to be much more appropriate [ 1, 17, 42,

43 ]. For sensitivity optimizatior the advantages of the L%

f;} norm over the L® norm are not so clear-cut, although Zames

5?% [44] has put forth some compelling arguments in favor of the L~
| norm for sensitivity optimization.

3&3 However, the existing L” norm robustness optimization

'%? results in [4] and [ 40 ] are inadequate for several reasons.

ol First, the problem formulations use only sensitivity or only

oty

stability margin as a performance measure, making no provision

Pt d

for the trade-offs between the twe which are the salient fea-

ture of most practical feedback designs. Also, the L -norm

N sensitivity optimization results [40] are limited to single--
N
:{ﬁ loop feedback systems. The L™- norm stability margin results
C“..y

- [4] are only slightly better, being limited to decoupled (i.e.,

331 diagonal) multiloop closed-loop transfer matrices. Addition-
Al

ﬁ& ally, for both 1%-norm sensitivity optimization and for L®"-norm
. stability margin optimization, the solutions in [4] and [ 40]
ég . become degenerate and fail to exist in the important case where
gﬁ the open-loop plant has poles or has zeros on the imaginary

%i axis. For example, "type-1" systems (i.e,, with intearal feed-
’;5 back) are beyond the scope of the evisting stability maragin op-
?ﬁ mization results., Of these limitations, perhaps the failure
:: to allow trade-off between minimal L%-norm sensitivity and
.

L
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maximal L ~norm stability margin is the most serious: virtually
all practical design problems require trade-offs between sensi-
tivity and stability margin. It is our expectation that theore-
tical links between this problem and the superficially unrela-
ted but mathematically similar problems of complex interpolation
and optimal Hankel model reduction (9,411,471 will prove useful
in this effort.

This avenue of research proved to be spectacularly
successful this year when we solved the multivariable L®-norm
sensitivity optimization problem using this approach. The
results are briefly summarized in [47], and a more detailed
paper is currently being prepared for presentation at the
June 1983 American Control Conference. We are guite pleased
with this success because the multivariable problem had
resisted the efforts of top-notch researchers for several
years [40, 44].

Perhaps more importantly, our solution to the multivari-
able L*® sensitivity optimization problem may well open the
door for the optimal solution of realistic L® singular value
shaping problems involving optimal trade-offs between
stability margin singular values and sensitivity singular
values. Current research is focusing on this important pro-
blem. 1In our opinion success in this endeavor would lead to
a multivariable design tool that would have significant
advantages over the rather imprecise currently available
techniques, e.g., it would be preferred over linear quadratic

optimal control methods for most applications.

.........
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With as primary motivation the robustness issues, we are
looking more carefully at all of the norms relevant to linear

systems, their interrelationships, their connections with the

g v
DL R AT .l...

I+ JU NS R .5

Hankel and the Toeplitz operators associated with the return dif-

ha s

ference and the inverse-return difference, and the topology the

norms induce in th space of transfer matrices. Inspiring our-

selves from [46 ], it seems that there are several norms rele-
vant to linear systems; except for the L, norm associated with
LQG theory, each of these norms is the classical spectral rorr
of a Hilbert space operator associated with either the system
impulse response or the system transfer matrix. Examples of
such operators are the Hankel operator and the Toeplitz operator,
the former being related to the Hankel norm and the latter being
related to the frequency response norm. Actually, as shown in
[46 ], there are myriads of relevant operators somewhere between
the BHankel and the Toeplitz structures, and, conseguently, there
are myriads of norms between the Hankel norm and the frecuencv--

response norm; one is tempted to speculate that the topclocy

becomes stronger and stronger as we proceec from the Hankel ncrrm

In efforts to provide a more solid link betweern input-
output and state-space measures of robustness, we have recently
re-examined linear gquadratic optimal control theory in the con-
text of Hankel-Norm balanced state-space coordinates. The

optimal LQG compensator is well known to consist of the cascade

of the optimal filter




s adax e w24
3
,

ROENCuEm
Mt T
- - .- PR 2

o
R
a

’ .
IRAN

O
IR LL8

‘ L ,

AWMLY

w
he %

. | X8

' 16

X = AX + Bu + rm PmC (z-Cx)

and the optimal control gain

-1 8T .

us= -7y
o (o]

Pm and Po are the stabilizing, positive definite solutions

to the filtering and the control algebraic Riccati equations:

T T T -1
AP+ P A" 4+ qBB - PCr CP =0,

T T 1.T
A'P_ + PA+qC

C - PoBro B Po = 0.
Now, a "balancing" operation

1 1

(A,B,0) 3 (rar”}, B, cT™) = (A, B, C)

is utilized to simultaneously diagonalize the solutions to

the filtering and control Riccati equations:

T T
Pm g TPmT Ul 0
= u
T -T "1 2.
P » T PT .
© 0 L
n

Little though shows that the u's are intrinsic quantitiec,
independent of the origiral state epace realization (4,E,C).
The rationale for "balancing" the plant (A,B,C) so as
to simultaneously diagonalize the solutions to the Riccati
eqguations is that the so-defined u's provide "measures" of
the "importance"” of each state component %, of the plant
G(s) in its balanced realization (A,B,C). This is easily
seen using the error-(x-x)-covariance interpretation of

’ i4 : -3 =
P, = dxagtul,...,un} and the cost interpretation of P

diag{ul,...,unl.
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The theory of this Riccati balancing is fairly well
developed. Probably the most striking result is the fact
; that deleting the compensator state components gk's
: corresponding to the lowest uk‘s leads to a stabilizing,
reduced-order (LQG) compensator.
- Within the scope of the present research project, which
is primarily concerned with robustness and sensitivity

issues in feedback design, we have investigated the robust-

K A

nese aspects of the above described reduced~-order compen-

& &

sator design scheme. ?

Clearly, uk defines how much the (balanced) state com-

e s

ponent X, is involved in the closed-loop LQG behavior of ﬁ

1"

the system. (In particular, if My is small, then %k can be

removed in the compensator, yet the design remains stable.)

K N

But how <8 Yy affected by the robustness requirement? The

b
oA A

robustness properties of the LQG loop depend strongly on
the parameters g and r. 1In particular, it is fairly well

known that in some singular situations the stability margin

Kol .

is boosted. We have utilized the tetrahedral truss of

Draper Lab as a test bed to determine how the u's are

—
.' -

LAY ¥ I

affected by the robustness regquirements on the LQG loog.

').‘

This research was motivated by an attempt to derive some
"rules of the thumb" to determine which state coordinates
x of a large space structure are the troublemakers and should
5 be taken into account for compensation. The results are
“ reported in paper [48). A fundamental result is that in

most cases the balanced coordinates are lined ur with the
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modal coordinates. Thus the u's can be interrreted as the
tmportance of the corresponding vibration modes. We have
observed that the u's of the vibration modes do depend on
the robustness requirements of the loop. 1In general, as
the stability margin requirement increases, the u's increase
and the modes are more and more difficult to discriminate
importance wise. 1In case of modes with overlapping eigen-
frequencies the u's increase, as a warning that a resonance
can occur. Finally, in case of unstably interacting oscillators
(in contrast to stably interacting oscillators, unstably
interacting oseillatore can go 180 phase shift under arbi-
trarily small perturbations of the eigenfrequencies), the
u's are larger than for stably interacting oscillators, as

a warning that instability can occur.
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