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ABSTRACT

The objective of the research has been to develop

engineering methodologies applicable, but not limited, to

aerospace automatic control design problems in which there are

performance specifications requiring precise control of system

behavior in the presence of stochastic disturbances (e.g., wind

gusts) and large-but-bounded uncertainties in the dynamical

response of the system (e.g., parameter uncertainty, unmodeled

nonlinearities, and so forth). During the past three years of

AFOSR supported research cohesive body of theory has been

developed that enables engineers to relate the ability of feed-

back control systems to meet such specifications directZy and

quantitativeZ to the return difference matrix associated with
4 t-

the system's feedback loops. Now results enabling L optimi-

zation of returned difference singular value Bode plots pro-

mise to be of great value in robust multivariable feedback

controller synthesis. Continuing research is currently being

aimed at further tightening the links between this theory and

the most recent developments of modern stochastic linear optimal

control synthesis thoery, and extending the results to admit

more practical problems, so that this thoery may be used more

effectively by engineers to efficiently and systematically design

the feedback gains that determine a feedback system's return

difference matrix. Such results substantially reduce the depen-

dence of control engineers on intuition, simulation, and luck

and provide the know-how to successfully and efficiently solve



the increasingly complex and demanding aerospace control

problems of the comilig decades.
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INTRODUCTION

The increased demands for quick and precise control over

aircraft and space vehicle response that are anticipated in

the coming decades will have to be matched with automatic con-

trol systems that can respond instantaneously, without moment-

to-moment human guidance, anticipating vehicle response inso-

far as is possible and, more importantly, continually and auto-

matically monitor vehicle response and re-adjust control sig-

nals to correct for unpredicted deviations from the desired

response. Such unpredicted response variations can result from

external disturbances (e.g., wind gusts) and from the impossibi-

.lity of employing a sufficiently complex and accurate model of

the vehicle's dynamics to account for every vibrational mode,

every nonlinearity, ..., every variable affecting system res-

ponse.

While the state-space-based mathematical theory for control-

ling systems without substantial uncertainty regarding dynamical

response grew relatively sophisticated during the two decades

of the 1960's and 1970's, there was almost no significant prog-

ress concerning the control of systems having uncertain response

since the 1940's and 1950's when great strides were made in the

*: development of the "classical" transfer-function-based theory

for the control of simple single-input-single-output (SISO)

linear time-invariant (LTI) systems with uncertainty. Conse-

quently, when this research project was begun in October 1979

there was no adequate theory to provide engineers with an effi-

'. - --. -. . .. .. .- .. . . - -" : . ,. .. . . . - . o. - . - . .- . .. . .. .. . . .
,W ,,' " j "h , . . ., .-.. .... .. . -. ..,.. - ... ..-. . . . . . .. .... * . .. , . .
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cient, systematic procedure for the design of precision con-

trollers for more complex multi-input-multi-output systems

such as the highly unstable, fast responding, control confi-

fured aerospace vehicles that are expected to be operating

in tomorrow's combat environment. The objective of the pre-

sent research has been to develop this badly needed theory

so that the engineers who must design tomorrow's aerospace

vehicles will have more than intuition, trial-and-error simula-

tion and mystical "seat-of-the-pants" insight for guidance

in designing uncertainty-tolerant automatic controllers for

these vehicles.

-"1
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BACKGROUND AND PROGRESS

Since work began on this project in October 1979, the re-

search effort has been generally successful in achieving its

main objective of relating the return difference matrix to

the uncertainty tolerance properties of a system. These pro-

perties are also known as robustness properties or feedback

properties. Our results, together with some related results

useful in the actual synthesis of robustly uncertainty tole-

rant feedback controllers, were reported in the paper "Feed-

back Properties of Multivariable Systems: The Role and Use

of the Return Difference Matrix" [1). This paper discusses

the central roles in feedback theory of the return difference

matrix (denoted I+L(s)) and the inverse-return difference mat-

rix (denoted I+L-1 (s)).

Among the new theoretical results in [1] are the following:

(i) A new method for exact evaluation of the sensitivity

of multivariable feedback control systems which overcomes sig-

nificant practical limitations associated with previously known

methods. Sensitivity to Zarge plant and sensor variationc ir directly

related to the nominal system'e return and inverse-return differencc mri-

ceS. (See Theorem 2.1 and Theorem 2.2 in [ 1] ).

(ii) Significant drawbacks of characteristic locus analy-

sis methods (cf. MacFarlane and othcrs) are described. T turn

and inverse-return difference singular value plots are found to

overcome some of the drawbacks of characteristics loci. The

results have been found to be useful in quantifying some funda-

mental limits on the achievable performance of feedbaclk contrcl
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systems. (See Section 3 and Section 4 of [ 1] ).

(iii) A technique, based on stochastic linear quadratic

Gaussian (LQG) optimal control theory, has been developed to

aid the shaping of the return and inverse-return difference

singular value plots. Though the technique is to a certain

extent a trial-and-error design technique, it continues to be

substantially more systematic than any other method that is

currently available for synthesizing multivariable control

systems to meet specifications requiring a robust tolerance

of disturbances, noise and plant/sensor modeling errors.

(See Section 5 in[ 1).) To demonstrate the viability of the

of the technique, the theory has been applied to the synthe-

sis of an automatic controller for the longitudinal dynamics

of an advanced control configured vehicle (CCV) aircraft, viz.,

the NASA HIMAT remotely piloted aircraft (see Section 6 of

[1 I).

More recently research effort has focused on several issues.

First, substantial effort has been focused on the important

practical issue of how to solve the so-called "Inverse Problem

of Linear Quadratic Gaussian (LQG) Optimal Control" in the aene-

ral setting in which the controller is dynamical and the plant

is subject to plant and sensor noise. This inverse problem is

as follows: Given a realizable closed-loop control return-dif-

ference matrix, the plant transfer function matrix P(s), and

-:e ant and sensor noise power spectra matrices, say 7 (s)
a a

and In (s), find the linear quadratic cost matrices P(s) and

Q(s) such that the closed-loop system is optimal in the sense

"a , ,, " . ':¢-,:.'[' ,T - .'.V- .. . -..... . . -' ' .. i ] ."-
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that the following stochastic cost is minimized;

J = L!f' Tr (Q(s)E y (s) + R(s) Iu (s)) ds

where E y(s) and Eu(s) denote the respective closed-loop

power spectra matrices of the sensor output and control in-

put signals. We are pleased toreport that the solution to

the problem, together with extensive discussion of its ra-

mifications regarding a number of related problems is in

hand [5] . This work was supported under AFOSR Grant 80-0013.

The importance of the LQG inverse problem to the proper

understanding of robust multivariable feedback control system

design cannot be understated. LOG multivariable feedback de-

signs are preferred for a variety of reasons: Good computer

software is readily available for solving the LQG design equa-

tions (e.g.,[10] ), LQG designs optimize inherent trade-offs

between robustness properties such as sensitivity versus sta-

bility margin [i] , and many engineers in the aerospace indus-

try are familiar with the basic LQG concepts. The solution to

the inverse problem plays a vital role in our understanding

of how one can use the LQG theory to p1c-e the poles and zeros

of I+L(s) in order to achieve accept-a-, robustness and sensi-

tivity singular-value Bode plots [1] and acceptable transient

response and asymptotic tracking properties [ 5 ]. Also, as it

is common practice to iteratively adjust the LOG cost matrices

when "fine-tuning" a control desian to meet various roburtncs.

49
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specifications, the solution to the inverse problem provides

a starting point for fine-tuning non-LQG multivariable

feedback designs.

A second focus of the research effort is one of rather funda-

mental significance in linear feedback theory: realizability.

A closed-loop feedback system's return-difference I+ L(s) is

said to be realizable for a given plant P(s) if for some con-

troller C(s)

(i) L(s) = P(s)C(s), and

(ii) (I + L(s)) is stable, and

(iii) P(s) and C(s) are "coprime" in the sense that there

are no unstable pole-zero cancellations in the product P(s)C(s).

A new simplified realizability result (Lemma 1, [4] ) has been

developed which characterizes realizability directly in terms

of the poles and associated residues of the return-difference

and inverse-return difference. This is an improvement over

previous multivariable results([ 3 ], Ler.ma 3) which recuire

a solution of the so-called "Bezout" eauation and ave o:.lv

limited insight into the constraints imposed by realizabilitv

on the set of achievable return difference and inver---t'rn

difference matrices.

The realizability question arose in connection with thc

previously mentioned LQG inverse problem, anc3 our new rc:i-

zability result in [4] plays a crucial role ir, the solutior,

of the LQG inverse problem in [5 ], in addition to :ayinc

the groundwork for stability margin optimization probler sclved

in [4J.

• * . - . . *. .-. ..' .,°° w.. . . - ". "
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The problem of stability margin optimization and the

mathematically dual problem of sensitivity minimzation with

respect to the L norm havebeen a third major thrust of our

research effort in the past year. With the aid of results

in [1 ] which show that stability margin is inversely pro-

portional to the L norm of the inverse of the inverse-return

difference matrix I + L-'(s) and the aid of our new reali-

zability result (Lemma 1 of [4 ] ), it is shown in [4] that

the problem of designing a feedback controller to maxirize

stability margin (subject to decoupling and, perhaps, asymp-

totic tracking constraints) is mathematically equivalent to

the minimization

min OD x (s) , (J = .... ., m)~xj(s)EH

subject to complex interpolation constraints of the for-

xj(sij) = wi (i = 1, ... , n), Re(s i ) > 0,

where sij and wij are complex constants and EO is

the Hardy space of stable transfer functions with the I'

norm,

ix (S) 1'" __ I.(W)1

A simple solution to this interpolation problem requir.'nq

only the calculation of certain eigenvectors and eigenvalues

is available in the mathematics literature [39 ]. This leads

in turn to the multivariable feedback controller havina maxi-

mal stabilit, robustness. It also points the wa\ tc imrrovinc
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and extending to multivariable systems certain recent results

of Zames and Frances [40] concerning single-loop feedback sen-

sitivity minimization with respect to the L' norm. The results

recently have been generalized to the decoupled multivariable

case by the principle investigator and Ph.D student B.S. Chen [4,5].

Another area which we have studied during the past year

has been the use of the so-called Hankel singular values [8-15]

as an alternative measure of the "sizes" of the return difference

I+ L(s) and inverse return difference I +L 1-(s) for purposes of

robustness continuation proposal, the Hankel singular values

are attractive for at least two reasons:

(1) There are finitely many Hankel singular values for a

finite order system whereas conventional frequency response

singular values involve an infinite continuum of w-dependent

singular values (several at each frequency w C (- =, =)). It can

be shown that this discrepancy stems from the following funda-

mental mathematical fact - the HankeZ operator is compact with

a finite, discrete spectrum (i.e., set of eigenvalues), whereas

the frequency-response method corresponds to noncompact Toeptitz

operator with a continuous spectrum (with eigenvalues equal to

the set eigenvalues of the operators frequency response matrix

as frequency w ranges over all real values .E E(-- .01).

(2) Hankel singular value decomposition of a linear sys-

tem captures the causal nature of a system and is closely re-

lated to well-understood state-space concepts such a controll-

ability and observability. In contrast frequency response

singular values do not enable one to readily distinguish realiz-

able (i.e., causal) from non-realizable (i.e., non-causal systems.

. . .
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On the encouraging side, Hankel singular values have been

found to correlate well with the practically relevant time-

response and frequency-response properties of lightly dam-

ped aerospace structures [14 ) . On the other hand, we have

found that one can synthesize classroom examples of transfer

function pertubations which have vanishingly small Hankel sin-

gular values, yet are capable of destabilizing the most ro-

bust feedback design; i.e., Hankel singular values seem to

induce an inappropriate topology in the space of transfer mat-

rices [15 ]

Still there are close links between Hankel singular value

optimization problems and Lo norm frequency response robust-

ness optimization problems involving the return difference and

inverse-return difference. The stability-constrained L' op-

timal complex interpolation prohlems that yield to the solution

of sensitivity minimization problems [40] and stability marcin

maximization problems [39] also provide the solution to rela-

ted Hankel singular value optimization problems involving re-

duced order system modeling ( See [ 9] and [ 41 ] ). Thus,

although we do not presently see any future for the Hankel sin-

gular values as a measure of robustness, it is clear now that

concepts and theoretical results developed in conjunction with

* optimal Hankel model reduction theory will be useful to us in
.,

performing the realizability-constrained Lw - norm frecuency-

response singular value optimizations that naturally arise in

synthesizing optimally robust multivariable feedback controller

designs.
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CURRENT RESEARCH

The primary focus of our current research is on the synthesis

of optimally robustly uncertainty-tolerant multivariable feedback

control systems. The results presently in hand for this purpose

L2 _include the L-norm LQG optimal synthesis (1, Section 5], Lw-norm

optimal sensitivity synthesis [40], and La-norm optimal

stability margin synthesis [4]. The LOG approach developed

in [13 is at present the most useful of the three because it

allows one to establish an optimal trade-off between the us-

ually conflicting robustness requirements of sensitivity ver-

sus stability margin. One's choice of LOG cost/noise weichtinq

matrices allows one to specify in each instance how much im-

portance is to be attached to each of these two conflictina de-

sign requiremnents. However the I2-norm which is the basis for

LOG optimization is inappropriate fcr stability margin analy-

sis since even plant perturbaticns A (s) having vanishingly
p

small L2-norm,

(s "La = f Ir( T 'ju) (j)) d ,

can cause instability; i.e., the L. norm like the Hankc!-nrrr

[15 ), gives an inappropriate topology to the space or transfer

. .' - , '-',f.-. - -.I.'-"...-'-.'v +. ' .''<...'-% '. : . .' -- -- - ". --- $$.
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matrices for stability margin analysis. For stability marain

4 analysis the L norm associated with frequency response sin-

gular values is known to be much more appropriate [ 1, 17, 42,

43 J. For sensitivity optimization the advantages of the L"

norm over the L2  norm are not so clear-cut, although Zames

[44] has put forth some compelling arguments in favor of the Lm

norm for sensitivity optimization.

However, the existing L" norm robustness optimization
. '

results in [4] and [ 40 ] are inadequate for several reasons.

First, the problem formulations use only sensitivity or only

stability margin as a performance measure, making no provision

for the trade-offs between the two which are the salient fea-

ture of most practical feedback designs. Also, the L -norm

asensitivity optimization results [40J are limited to single--

loop feedback systems. The LO- norm stability margin results

[4] are only slightly better, being limited to decoupleO (i.e.,

diagonal) multiloop closed-loop transfer matrices. Addition-

ally, for both Lm-norm sensitivity optimization and for L'-norm

stability margin optimization, the solutions in [ 4] and [ 40]

become degenerate and fail to exist in the important casc ,.tere

the open-loop plant has poles or has zeros on the imaginary

axis. For example, "type-l" systems (i.e., with intearal feed-

back) are beyond the scope of the eyisting stability margin cp-

mization results. Of these limitations, perhaps the failure

to allow trade-off between minimal L'-norm sensitivity and

*1 -.
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maximal L -norm stability margin is the most serious: virtually

all practical design problems require trade-offs between sensi-

tivity and stability margin. It is our expectation that theore-

tical links between this problem and the superficially unrela-

ted but mathematically similar problems of complex interpolation

and optimal Hankel model reduction (.9,41,47]will prove useful

in this effort.

This avenue of research proved to be spectacularly

successful this year when we solved the multivariable Lw-norm

sensitivity optimization problem using this approach. The

results are briefly summarized in [47], and a more detailed

paper is currently being prepared for presentation at the

June 1983 American Control Conference. We are quite pleased

with this success because the multivariable problem had

resisted the efforts of top-notch researchers for several

years [40, 44].

Perhaps more importantly, our solution to the multivari-

able LO sensitivity optimization problem may well open the

door for the optimal solution of realistic L' singular value

shaping problems involving optimal trade-offs between

stability margin singular values and sensitivity singular

values. Current research is focusing on this important pro-

blem. In our opinion success in this endeavor would lead to

a multivariable design tool that would have significant

advantages over the rather irprecise currently available

techniques, e.g., it would be preferred over linear quadratic

optimal control methods for most applications.

o_ ,.**. ' - - ... .
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With as primary motivation the robustness issues, we are

looking more carefully at all of the norms relevant to linear

systems, their interrelationships, their connections with the

Hankel and the Toeplitz operators associated with the return dif-

ference and the inverse-return difference, and the topology the

norms induce in th space of transfer matrices. Inspiring our-
selves from [46 ], it seems that there are several norms rele-

vant to linear systems; except for the La norm associated with

LQG theory, each of these norms is the classical spectral norr

of a Hilbert space operator associated with either the system

impulse response or the system transfer matrix. Examples of

such operators are the Hankel operator and the Toeplitz operator,

the former being related to the Hankel norm and the latter being

related to the frequency response norm. Actually, as shown in

[46 J, there are myriads of relevant operators somewhere between

the Hankel and the Toeplitz structures, and, consequently, there

are myriads of norms between the Hankel norm and the freouencv--

response norm; one is tempted to speculate that the topclogy

becomes stronger and stronger as we proceed fro the Hankel ncr-

In efforts to provide a more solid link between input-

output and state-space measures of robustness, we have recently

re-examined linear quadratic optimal control theory in the con-

text of Hankel-Norm balanced state-space coordinates. The

optimal LQG compensator is well known to consist of the cascade

of the optimal filter

V. ' * .
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x AX +BU arP C(z-Cx)mm

and the optimal control gain

u--r 1 
3T *

u r 0 o B po0 x.

Pm and P0 are the stabilizing, positive definite solutions

to the fiZtering and the controZ algebraic Riccati equations:

'"mT mBT _P CTrmlCPm.0AP + PAT + q m BBT r

ATp0 + PoA + qoCTC - P 0BrlBTp 0 0.

Now, a "balancing" operation

(A,BC) I (TAT TB, CT 1) -: (A, B, C)

is utilized to simultaneously diagonalize the solutions to

the filtering and control Riccati equations:

T T
P m 0 TPmTT  [ 0

T -T2
P 0 +  T - T 0n

Little though shows that the ii's are intrinsic quantitier,

independent of the originaZ state space reaZization (A,E,C).

The rationale for "balancing" the plant (A,B,C) so as

.-- to simultaneously diagonalize the solutions to the Riccati

equations is that the so-defined i:'s provide "measures" of

the "importance" of each state component k of the plant

G(s) in its balanced realization (A,B,C). This is easily

seen using the error-(x-)-covariance interpretation of

P diagl,...,)un  and the cost interpretation of P =

diagf I, .O.., n•
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The theory of this Riccati balancing is fairly well

developed. Probably the most striking result is the fact

that deleting the compensator state components 's

corresponding to the lowest ukIs leads to a stabilizing,

reduced-order (LQG) compensator.

Within the scope of the present research project, which

is primarily concerned with robustness and sensitivity

issues in feedback design, we have investigated the robust-

nese aspects of the above described reduced-order compen-

sator design scheme.

Clearly, vk defines how much the (balanced) state com-

ponent Xk is involved in the closed-loop LQG behavior of

the system. (In particular, if vk is small, then 2-k can be

removed in the compensator, yet the design remains stable.)

But how is 1 k affected by the robustness requirement? The

robustness properties of the LQG loop depend strongly on

the parameters q and r. In particular, it is fairly well

known that in some singular situations the stability margin

is boosted. We have utilized the tetrahedral truss of

Draper Lab as a test bed to determine how the v's are

affected by the robustness requirements on the LQG loot.

This research was motivated by an attempt to derive some

'rules of the thumb" to determine which state coordinates

of a large space structure are the troublemakers and should

be taken into account for compensation. The results arc

reported in paper [48]. A fundamental result is that in

most cases the balanced coordinates are lined up with the

'/ . '. .- #. .. -. . . .- " / . .. . . . .. . . .. . . - . . . .-. . . .
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modal coordinates. Thus the pl's can be interpreted as the

importance of the corresponding vibration modes. We have

observed that the u's of the vibration modes do depend on

the robustness requirements of the loop. In general, as

the stability margin requirement increases, the p's increase

and the modes are more and more difficult to discriminate

importance wise. In case of modes with overlapping eigen-

frequencies the p's increase, as a warning that a resonance

.. can occur. Finally, in case of unstably interacting oscillators

(in contrast to 8tabZy interacting osciZZators, unstaby

interacting o8ciZZators can go 180 phase shift under arbi-

trarily small perturbations of the eigenfrequencies), the

P's are larger than for stably interacting oscillators, as

a warning that instability can occur.

.'.2J

n ni .n n II I In -mn . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I , .. l V,,~, --'~'. V.* . ,- J--m"d



19

REFEPENCES

[ 3 M.G. Safonov, A.J. Laub, and G.L. Hartmann, "Feed-
back Properties of Multivariable Systems: The Role
and Use of the Return Difference Matrix", IEEE Trans.
on Automatic Control, Vol. AC-26, No. 1, February 1981.

[2 3 D.C. Youla, J.J. Bongiorno, and H.A. Jabr, "Modern
Wiener-Hopf Design of Optimal Controllers - Part I:
The Single-Input-Output Case", IEEE Trans. on Automatic
Control, Vol. AC-21, pp. 3 - 13, 1976.

[3 3 D.C. Youla, H.A. Jabr, and J.J. Bcngiorno, "Modern
Wiener-Hopf Design of Optimal Controllers - Part II:
The Multivariable Case", IEEE Trans. on Automatic Control,
Vol. AC-21, pp. 319 - 338, 1976.

[4 * M.G. Safonov and B.S. Chen, "Multivariable Stability
Margin Optimization with Decoupling and Output Regu-
lation", IEEE Conf. on Decision and Contr., Dec. '82, (see Appendix).

[5 ] B.S. Chen, "The Inverse Problem of LQG Control via
Frequency Dependent Cost/Noise Matrices", Ph.D. Dis-
sertation, University of Southern California, June 1982,
(see Appendix.)

[ 6 ] R.E. Kalman, P.L. Falb, and M.A. Arbib, 1'x'iccs ir ?' -

maticaZ System Theoru. New York: McGraw-Hill, 1969.

[ 7 3 W.A. Porter, 7I dern Foundation of Sustems Erainceri-r.. New
York. McMillan, 1966.

[ 8 3 B.C. Moore, "Principal Component Analysis in Linear
Systems: Controllability, Observability, Model .eF"uc-
tion", IEEE Trans. on Automatic CortroZ, Vol. AC-26, No. 1,
pp. 17 - 31, 1981.

[ 9 3 V.M. Adarjan, D.Z. Arov, and M.G. Yrein, "Anal'ytic Trc-
perties of Schmidt Pairs for a Hankel operator and th'-
Generalized Schur-Takagi Problem", M:tr L SS r :r ,
Vol. 15, pp. 31 - 73, 1971.

[10 3 L.M. Silverman and M. Bettayeb, "Optimal Apprc>:irat:'r
of Linear Systems", to appear .7=Er 7r. or A:- " ::

Asterisk denotes work supported in whole or in part by ;,FCF
Grant 80-0013.

W' . *... ,& . % ,- - . .. • -.- . . • *, " . . . ' .,.. ; *. .. - .



20

[11] S. Kung, "A New Low-Order Approximation Algorithm via
Singular Value Decompositions", Submitted to IEEE Trz:s.
on Automatic ControZ.

[12] M.G. Safonov, "Mathematical Theory of Control Proces-
ses", Lecture Notes for USC Course EE 599, Fall 1978.

[13) M. Bettayeb, L.M. Silverman, and M.G. Safonov, "Opti-
mal Approximation of Continuous Time Systems", IEEE
Conf. on Decision and Control, Albuquerque, NM, December
10-12, 1980.

[14] E.A. Jonckheere and L.M. Silverman,"Singular Value
Analysis of Deformable Systems", Proc. IEEE Conf. on
Decision and Control, San Diego, California December 16 -

18, 1981.

[15] E.A. Jonckheere, M.G. Safonov, and L.M. Silverman,
"Topology Induced by Hankel Norm in the Space of Trans-
fer Matrices", IEEE Conf. on Decision and Control, San Diego,
CA., December 16 -18, 1981. (see Appendix.)

[16) G. Stein, "Generalized Quadratic Weights for Asymptotic
Regulator Properties", IEEE Trans. on Automatic Contro7, Vol.
AC-24, pp. 559-566, 1979.

[17) J.C.Doyle and G. Stein, "Multivariable Feedback Design:
Concepts for a Classical/Modern Synthesis," IEEE Trans.
on Automatic Control, Vol. AC-26, No. 1, pp. 4 - 16, 1981.

[18] N.K. Gupta, "Frequency-Shaped Cost Functionals: rxten-
sion of Linear-Quadratic-Gaussian Design Methods", J.
Guidance and Control, Vol. 3, No.6, November - December
1980.

de. [19] A.J. Laub, "A Schur Method for Solving Algebraic Piccati
Equations", IEEE Trans. on Automatic Control, Vol. PC-24,
No. 6, pp. 913 - 921, December 1979.

• [20) M. Athans, "The Role and Use of the Stochastic Linear-
Quadratic Gaussian Problem in Control Syste- Design",
IEEE Trans. on Automatic ControZ, Vol. AC-16, pp. 529 -552,
1971.

[21) R.E. Kalman, "When is a Linear Control System Optimal",
Trans. ASME (J. Basic Eng.), Vol. 86, pp. 51 - 60, March,
1964.

Asterisk denotes work supported in whole or in part by AIWC7
Grant 80-0013.

• ', . , . , . , ,.. .-.', . . , . . . , . . . ' . '



L 21

[ 22] B.D.O. Anderson, "The Inverse Problem of Optimal Con-
trol", Stanford Electronics Laboratories Technical
Report No. SE-66-038 (TR No. 6560-3), Stanford, CA.,
April, 1966.

[ 23) R. Yokoyama and E. Kinnen, "The Inverse Problem of
an Optimal Regulator", IEEE Trans. on Automatic Control,
Vol. AC-17, No.4, pp. 497 - 504, August 1972.

[ 24] B.P. Molinari, "The Stable Regulator Problem and Its
Inverse", IEEE Trans. on Automatic Control, Vol. AC - 18,
No.5, pp. 454 - 459, October 1973.

1 25) P.J. Moylan and B.D.O. Anderson, "Nonlinear Regulator
Theory and an Inverse Optimal Control Problem", IEEE
Trans. on Auroa=tic ControZ, Vol. AC- 18, No.5, pp. 460 -
465, October 1973.

[ 26) J. Park and K.Y. Lee, "An Inverse Optimal Control Prob-
lem and its Application to the Choice of Performance
Index for Economic Stabilization Policy", IEEE Trans. on
Systems, Man 4 Cybernetics, Vol. SMC - 5, No. 1, pp. 64 -
76, January 1975.

[ 27]* E.A. Jonckheere, "On the Existence of a Negative Semi-
Definite, Antistabilizina Solution to the Discrete-Time
Algebraic Riccati Equation", IEEE Trans. on Automatic Con-
trol, Vol. AC-26, No. 3, pp. 707 - 712, June 1981.

L 28]* E.A Jonckheere, "Lagrancian Theory of Larae Scale Sys-
tems", European Conf4. or, Circuit Theory and Lesiar., The Haque,
The Netherlands, August 25 -28, 1981.

[ 29]* E.A. Jonckheere, "Spectral Theory of the Linear-Quadra-
tic Optimal Control Problem: Review and Perspectives,"
European Conf. on Circuit Theory and Deei.-n, The Hacue, The
Netherlands. August 25- 28, 1981.

[ 30 ] J.C. Willems, "Least Squares Stationary Optimal Control
and the Algebraic Riccati Equation", IEEE Trans. or, Autor.
Ccnrrc7, Vol. AC-16, pn. £21 - 634, December 1971.

[ 31 ] J.C. Willems, "On the Existence of a Nonpositive Solu-
tion to the Riccati Equation", IEEE Trans. or Auto-oatic
Control, Vol. AC-20, pp. 804 - 806, December 3975.

[ 32 ] B.D.O. Anderson, "Aloebraic Properties of Minimal flecrce

Asterisk denotes work supported in whole or in part by PFOFr'
Grant 80-0013.

S .



22

Spectral Factors", Automatica, Vol. 9, pp. 491 - 500,
1973.

[ 33 ) B.D.O. Anderson, "Corrections to: Algebraic Proper-
ties of Minimal Degree Spectral Factors", Automa=! cc,

. Vol. 11, pp. 321 - 322, 1975.

[ 34 ] E.A. Jonckheere and L.M. Silverman, "Spectral Theory
of the Linear-Quadratic Optimal Control Problem:
Discrete-Time Single-Input Case", IEEE Trans. on Cir-
cuits and Systems, Vol. CAS - 25, pp. 810 - 821, Sept.
1978.

[35 J E.A. Jonckheere and L.M. Silverman, " Spectral Theory
of the Linear-Quadratic Optimal Control Problem: A
New Algorithm for Spectral Computations",
on Automatic Control, Vol. AC-25, pp. 880 - 888, Oct.
1980.

[36 ) E.A. Jonckheere and L.M. Silverman, "Spectral Theory
of the Linear-Quadratic Optimal Control Problem:
Analytic Factorization of Rational Matrix-Valued
Functions", SIAM J. Control and Optimization, Vol. 19,pp. 262 - 281, March 1981.

[ 37 3 U. Shaked, " A General Transfer Function Approach to
Linear Stationary Filtering and Steady State Optimal
Control Design", Int. J. Control, Vol. 24, No. 6,
pp. 741 - 770, 1976.

[ 38J M.G. Safonov and K. Karimlou, " A Separation Princirle
for Linear Control Systems with Large Plant and Sensor
Uncertainty", Proc. Aslomar Conf. on CiCuite, S,"temr ar'; Co... rs,
Pacific Grove, CA, Nov. 9-11, 1981. (see Appendix.)

[ 39 3 D. Sarason, "Generalized Interpolation in Hc", r
A14S, Vol. 127, pp. 179 - 203, 1967.

[ 40 ] G. Zames and B.A. Francis, "A New Approach to Classical
Frequency Methods: Feedback and Minimax Sensitivity"",
Proc. IEEE Conf. on Decision and Contr.r, San Dieao, C7.,
December 16 - 18, 1981.

[41 3 Y. Genin and S.Y. Kung, " A Two-Variable Approach to
the Model Reduction Problem with a Hankel Criterion",
IEEE Trans. on Circuite and SzszsemE, Vol. CAS - 26, pp. 912 -

924, 198).

Asterisk denotes work supported in whole or in part b\ ;.T'nS
Grant 80-0013.



23

[ 42 ) M.G. Safonov and M. Athans, "A Multiloop Generali-
zation of the Circle Criterion for Stability Margin
Analysis", IEEE Trans. on Automatic Control, AC - 26,
pp. 415 - 422, 1981.

[43] N.A. Lehtomaki, N.R. Sandell, Jr., and M. Athans,
"Robustness Results in Linear-Quadratic Gaussian
Based Multivariable Control Designs", IEEE Trans. on
Automatic Control, AC 26, pp. 75 - 92, 1981.

* .[ 44 1 G. Zames, "Feedback and Optimal Sensitivity: Model
Reference Transformations, Multiplicative Seminorms,
and Approximate Inverses", IEEE Trans. on Automatic Con-
trol, AC-26, pp. 301 - 320, 1981.

" 45 ] E.A. Jonckheere and P. Delsarte, Inversion of Toen-
litz Operators, Levinson's Equations, and Gohberq-Krein
Factorization - a Simple and Unified Approach for the
Rational Case", Technical Report R407, Philips Research
Lab., Brussels, Belgium. November 1979; see also,
Journal of Mathematical Analysis and Application, 1982.

[46 ] E.A. Jonckheere, "Open-Loop and Closed-Loop Approxima-
tions of Linear Systems and Associated balancec ?eali-
zations", International Symposium on Circuits and Systems,
Rome, Italy, May 1982.

47 ] M.G. Safonov and M.S. Verma, "Lo sensitivity Optimization
Via Hankel Norm Approximation," summary submitted 10/82
to American Control Conference, San Fv:ancisco, CA, June 1983.
Copy of summary appended to this report. (see Appendix.)

48 ] E.A. Jonckheere, "A Closed-Loop Principal Component
Analysis of a Tetrahedral Truss," NASA Workshop on Large
Scale Structures, Jet Propulsion Lab, Pasadena, Ca, July
14-16, 1982.

49 ]* E.A. Jonckheere and L.M. Silverman, "Singular value
analysis of defermable systems," to appear in Jou': z of
-?stems, Circuits, and Signal Processing, 1993.

50 ]* E.A. Jonckheere, "Principal component analysis of flex-
ible systems - open-loop case," to be presented at the
Symp. on Mathematical Thoery of Networks and Systems, Beer Sheva,
Israel, June 1983.

Asterisk denotes work supported in whole or in part by AFOSR
Grant 80-0013



24

[ 51 3' E.A. Jonckheere, "A tighter condition number for the
Lypunov equation in the modal case," to be presented
at the Symp. on the Mathematical Theory of Networks and
Systems, Special Session on Numerical Methods, Beer Sheva,
Israel, June 1983.

[ 52 ]* M.G. Safonov, "Stability Margins of Diagonally Perturbed
Multivariable Feedback Systems," to appear Proc. 1EE,
Part D ControZ Theory, (Special Issue on Robustness and
Sensitivity), November 1982. (See Appendix.)

*m

Asterisk denotes work supported in whole or in part by AFOSR
Grant 80-0013.

4a



~11

UO

0TI


