
OFOS VI-'. 8 3 2 55

W.W. Hansen Laboratories

Stanford University

FINAL REPORT

INVESTIGATION OF OPTIMUM MAGNET GEOMETRIES FOR

GAIN-EXPANDED FREE-ELECTRON LASERS

15 August, 1981 to 31 December, 1982

Air Force Contract Number: F 49620-81-C-0098

Principal Investigators

A.L. Schawlow
Professor of Physics

John M. Madey
Professor of Electrical Engineering
and High Energy Physics (Research)

November, 1983 19PP ;ONO

84 0: , IL2

L l



SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1& REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified

2& SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAI LABILITY OF REPORT
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;

distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFO.-T- 83- 1255
OOa NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7& NAME OF MONITORING ORGANIZATION

Stanford University if applicable) _ 115 /1-0-o Ae
6c. ADDRESS (City. State and Zip Code) 7b. AD~Esr~y te'~ Zip code)

Stanford, CA 94305-2184 - 2 - 5

B. NAME OF FUNDING/SPONSORING ESb. OFFICE SYMBOL s. PROCURE7ME ISTRUMENT IDNTIFICATION NUMBER
ORGANIZATION I__ _pplicable)

AFOSR NP 4-C-0098
Sc. ADDRESS lCity. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNITBoEling AB, Bldg. #410 ELEMENT NO. NO. NO. NO.
BolOing APB, Bldg.#410 6110WF 2301IA

Wash DC 20332 61102F 2301 Al
11. TITLE (include Security Cklaiffeation)

INVESTIGATION OF OPTIMUM MAGNET GEOMETRIES FOR GAIN-EXPANDED FREE-ELECrRON LASERS
12. PERSONAL AUTHOR(S)
A.L. Schawlow, John M. Madey
13- TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Y 'r .., Day) IS. PAGE COUNT

Final FROM LgMTO 31n 2 Nov. 83 8
10. SUPPLEMENTARY NOTATION

17. COSATI CODES l SUBJECT TERMS (Continue on reverse if necesary and Identify by block number)

FIELD GROUP SUB. OR.

19. ABSTRACT (Continue on reuerse If necmiapy and identify by block number/
The purpose of this research was the identification of the critical magnet and storage ring
parameters for optimization of the efficiency, power output and gain of gain-expanded storag
ring free elecetron lasers. While previous research had identified the basic properties of
these devices, the approximations and simplifications employed in these efforts for solution
of the equations of motion had led to some ambiguities which were not readily resolvable
within the framework of the model employed. To resolve these ambiguities, a model was
developed for the FEL wiggler magnet which permits an exact solution of the equations of
motion. Using this model, numerical techniques have been employed to identify the
dependence of the laser power output, gain, and efficiency on the magnet parameters

L20. DISTRISUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICA

UNCLASSIFIED/VNLIMITEO 13 SAME AS RPT. 0 OTIC USERS 0 Unclassified

22* NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. SYMBOL
(Include Are Code)

DO FORM 1473, 83 APR EDITION OF I JAN 73 1 OBSOLETE. .... ___

SBaft. t Y CLr ICATION OF THIS PAGE

LA



TABLE OF CONTENTS

Page

I . INTRODUCTION ............. . .. . ... ..... * . .... * ..... 1

11. DESCRIPTION OF MODEL............ . .. ............... .. 2

111. TEST OF GAIN-SPREAD-EXCITATION RELATIONSHIPS......... o...... 22

IV. MONTE-CARLO SIMULATIONS (Low Extraction) ............o......... 26

V. POWER OUTPUT AND GAIN OF OPTIMIZED LOW-EXTRACTION
GAIN-EXPANDED SRFEL'S .. ............ ... ........ ... 31

VI. HIGH EXTRACTION OPERATION..................................o. 37

VI I. SUMMARY.................. . . . ........ 46

Acce ssion For

NTi-S GRA&I
DTIC TAB
Unannounced

Distributiton/

Availability Codes nL
AVail .:J(/or .TSC771TT1AO rDTL A O

Dist Specia~lo
s4

This__ _ __ __ _ D ~te, I. r

,pprolb ,

ID4.gtr -w



I. INTRODUCTION

The purpose of this research was the identification of

the critical magnet and storage ring parameters for optimization

of the efficiency, power output and gain of gain-expanded storage

ring free electron lasers. While previous research had identified

the basic properties of these devices, the approximations and

simplifications employed in these efforts for solution of the

equations of motion had led to some ambiguities which were not

readily resolvable within the framework of the model employed.

To resolve these ambiguities, we have developed a model

for the FEL wiggler magnet which permits an exact solution of

the equations of motion. Using this model, we have employed

numerical techniques to identify the dependence of the laser power

output, gain, and efficiency on the magnet parameters. Using the

same magnet model, Kroll, Rosenbluth and Wong have developed a

series of analytic relations for the electrons' radiated energy

spread and emittance. The Kroll, Rosenbluth and Wong results

serve both as a cross-check to our numerical results, and as a

means to extend considerations to cases not explicitly reviewed

in our research.

Our research indicates that the most important parameters

for gain-expanded storage ring FEL's in the low-extraction regime
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is the betatron phase advance per period in the wiggler magnet,

which should be as large as possible to optimize the power out-

put and efficiency. In high extraction systems, the critical

parameter is the damping time between laser shots. In quantitative

terms, efficencies of the order of 2% appear possible using

existing technology in the low extraction regime, while

4% appear attainable in the high extraction region. Advances in

storage ring technology could raise the efficiency to beyond 10%.

The optical amplification factors attainable with gain-expanded

wigglers at these efficiencies are 10-100 times larger the- at-

t ,inable using a conventional wiggler magnet.

Background: The gain attainable in a FEL is typically a

strong function of the electron current density. As an example,

for optimized constant-period wigglers, the gain at long optical

wavelengths is given by: 
(3 1

G "x 0.96 x 10 - 4 X3/ 2 X ( + a)

2 2
a a

1j w  2 2 i

w -(J ( w c)
1 + a w  I + a w (aye),

where G = gain per pass

A = wiggler period (cl)

A = optical wavelength (c t-4

2 2 2
a = K = (X eB/2nmc)
w

B = wiggler RMS magnetic field
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* -v

i/(SyE) = ncrmalized current density

i = electron current (ameye %

Ymc2 = electron energy jerls)

C= electron beam emittance (assumes equal

vertical and horizontal emittance) (cm - /

while at s-.ort wavelengths; the gain can be approximated by:4

,. -IP L

P -I:- (2~pc~ -A r C .1L

(1-2)

The long wavelength result (1-1) applies when the electron beam

falls within the dimensions of the optical mode with which the

e- beam interacts, while the short wavelength results (1-2) applies

when the e beam dimensions are larger than the optical mode.

-3-
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In both the short and long wavelength limit, the current
2

density i/( yE) required for FEL operation increase systematically

as an inverse function of the optical wavelength.

Other factors may also increase the current density required

for FEL operation. In particular while the tapered-wiggler geometry

offers the possibility of substantially improved efficiency, the

variation in period or magnetic field required to enhance efficiency

systematically reduces the small signal gain. The electron current

required for such devices must therefore be raised over and above

the values indicated in equations(l-l) and (1-2).

Since the current density for linear accelerators is typical'y

fixed by the Lawson-Penner relation:
3

(> 4

Ye (1-3)

where < i> H average electron current, operation of linac-based

FEL's can be expected to become progressively more difficult as

the desired laser wavelength is reduced from the infrared to the

visible and ultraviolet spectral regions.

Substantially higher current densities can be obtained in

electron storage rings in which synchrotron radiation damping

actively reduces both the radius and angular divergence of the

circulatiDg electrons. Existing low-emittance storage rings
6

2
are believed operable at current densities i/(2ye) as large as

8 210 amperes/cm , higher by four orders of magnitude than the

characteristic Lawson-Penner current density for linacs (1-3).

-4-



But to provide useful gain at high power, a storage ring

based FEL must provide a means to cope with the electron energy

spread induced by the interaction. For constant period wigglers,

Renieri 7 has shown that the power output and efficiency of a SRFEL

are determined by the relation:

' (1-4)

where < Plaverage laser power output

Ps= net power rdkci or incciierentsynch

synchrotron radiation

= fractional electron energy spread

COLLM~ei by laser operation,

and it is assumed that both the storage ring and the FEL wiggler

have an energy acceptance comparable to or larger than the energy

spread a,/.

As is apparent from (1-4), operation of a SRFEL at high power

and/or efficiency will require that both the storage ring and the

FEL have a large energy acceptance. But, the only way to increase

the energy acceptance of a constant period wiggler is to decrease

the number of periods. Unfortunately, this step also reduces the

gain, nullifying the storage ring's fundamental advantage in current

density.

-5-
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8

The gain expanded wiggler was proposed by Smith as a

solution to this dilemrma for the storage ring FEL. By in-

corporating a transverse gradient in the magnetic field of

the wiggler magnet, and dispersing the electrons in transverse

position according to their energy, the gain can be made in-

dependent of energy spread. By increasing the gain attainable

using an electron beam with a large energy spread, such a system

could permit the power output of the SRFEL to be optimized without

reducing the gain, thereby permitting high power operation at

wavelengths unreachable using linear accelerator technology.

These possibilities encouraged several enquiries into the
1

detailed properties of gain-expanded FEL's,. Though less sen-

sitive to energy spread than conventional FEL's, the gain-expanded

FEL couples more strongly to the bend-plane emittance. The trans-

verse acceptance of the gain-expanded wigglers, the laser-induced

emittance growth, and the evolution of the emittance distribution

in the ring must therefore be considered as key issues in the

analysis of gain-expanded SRFEL performance.

In general, the early analyses assumed a sinusoidal wiggler

field and developed the solutions to the "averaged" equations of

motion for transverse po5ition, energy, and optical phase. While

these analyses revealed the basic features of operation, the use of

the averaged equations of motion led to conflicting or ambiguous

-6-
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results with respect to the laser-induced emittance growth.

This study was undertaken to resolve these difficulties, and

to provide specific guidance in the development of gain-expanded

wigglers optimized for high-power operation.

Methodology Since most of the difficulties of the

earlier analyses of the gain-expanded FEL occurred as a con-

sequency of the use of the averaged equation of motion, we chose

to develop a model in which the exact equations of motion could be

integrated directly, without penalties in computation time, and

matrix methods used to characterize the basic transport

properties of the wiggler. These objectives were satisfied thiough

the use of a "thin-lens" model for the FEL wiggler, in which the

individual magnets in the wiggler are represented as having a

thickness small compared to their spacing, and electron motion bet-

ween magnets is unaffected by the static magnetic field. The

electrons motion between wiggler magnets can be integrated analytically

in this model, while the computation of the angular deflection by

the magnets requires knowledge only of the magnetic field at the

point through which the electron passes.

Given this model, we examined the relationship between energy

loss, energy spread, and emittance growth in both single pass

operation and storage ring oeration. Where appropriate, we have

compared these numerical results with the analytic experiments

described by Kroll, Rosenbluth and Wang for operation in the small

extraction region.

-7-
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Finally, based on our numerical results and the analytic

results of Kroll, Rosenbluth and Wang, we have identified the

critical wiggler and storage ring parameters for optimization

of gain-expanded SFREL power output, efficiency and gain, and

have estimated the performance attainable in an optimized system.

In the following sections, we review the details of the

model, the principal numerical results, the comparison with the

analytic results of Kroll, Rosenbluth and Wang, the identification

and role of the critical system parameters, and the characteristics

of operation in the low and high extraction regimes.

8
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II. DESCRIPTION OF THE MODEL

The storage ring FEL (SRFEL) system studied in this research

is shown schematically in Figure 1. The system consists of (1) an

FEL wiggler insertion, (2) the bulk of the storage ring (SR) trans-

port line, and (3) an RF cavity which replenishes (on the average)

the energy loss of the electron due to laser action and synchrotron

radiation. The electron trajectories through this system were

treated numerically in the energy phase and bend-plane betatron

coordinates x and x'.

To Jollow electron motion through the full SRFEL system the

tracking program integrated the detailed equations of motion through

the wiggler, then used the first-order transport matrix to pro-

pagate the electrons through the ring and RF cavity. To study the

single-pass behavior of the wiggler, the programs followed the

electron's motion only within the wiggler, starting with the specific

desired initial conditions at the input to the wiggler, and con-

cluding with the electron's coordinates at the end of the wiggler.

The key parameters for the FEL wiggler, storage ring and rf

cavity are summarized 3.n Table I. The FEL insertion is a split-

magnet type, which employs two wiggler sections joined by a matching

section in which E = 0 (Fig. 2). Each wiggler section is a con-

stant period array of discrete thin lens magnets. Quadrupole terms

in the thin lenses supply the transverse gradient needed for gain

expansion. The matching section provides for additional design

parameters, which may be used to control the laser-induced betatron

-9-



excitation and energy spread. The thin lens model simplifies

analytic and numerical calculations while retaining character-

istics applicable to all transverse gradient wigglers.

1. The Thin Lens Wiggler Equations9

Each wiggler section consists )f a lattice of repeated cells

with period X (Fig. 2(b)). The magnets are assumed to be "thino

lenses" which produce a magnetic field = B(x)y over an effective

length A z which is small compared to their separation 1/2 X

dx
The laser-off electron trajectories have constant slope x' - dz

= L.an ej between thin lenses j-1 and j. The deflection in x' at

tile j-th lens is

(2-1)

Nominal Trajectories: Orbits with mean position <x> = constant

are sawtooth functions = - . = (-)J8 with amplitude X:

(2-3)

where y =y0 (1 + <x>/n). For gain expansion, 8, should be

-10



independent of <x> for nominal orbits, which gives the condition:

I = (2-4)

In this study the thin lenses contain dipole and quadrupole

contributions:

+I (2-5)

where X. = -(-)J X(O). The constants aj are determined fiom

the y =y orbit through Eqns. (2-2) and (2-3). Gain expansion

2
through order 0 +0(<x> ) is obtained by choosing the

JJ 10

= (B'j/B ) to satisfy Eqn. (2-4) at <x> = 0. This solution
J j jx=X.

is conveniently written in terms of the effective focal lengths

f. for <x> = 0:

/ (2-6)

where X'. = -(-) X'(0) and
J

is a dimensionless inverse focal length.
- 11 -



The wiggler cell structure is therefore determined by the

parameters yo, 11 Jlo and X'.

Relation to W and q: A general orbit will not maintain

constant < x> but will perform betatron oscillations as illus-

trated by Fig. 3. The transport matrix for (X,) through ax

single cell is written in terms of the focal lengths as

If the betatron period is M cells in length, then SM = 1,

and one finds

S. 2

The < x> values for f1 ,2 from Eqn.(21-6) relates the

betatron phase advance per period XO W to the f.:

f+

-12- 4
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When X 0 A << 1 this simplifies to:

The nominal optical phase advance is

q 2 L 2

where X is the operating wavelength.

The above relations can be used to determine the wiggler cell

from q, A, A, X and X'. Tn the split-magnet design, these para-0

meters may be independently specified for the two sections. The

first and last cell in each section are set at half strength to

better match trajectories into the FEL.

Laser-On Equations of Motion: At each thin lens, the orbit

is deflected according to Eqn. (2-1). Between the lenses the

radiation field is

CC_ X (2-7)

so the Lorentz force on the electron is

- kZ (2-8)

l±

- 13-
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The first of these may be integrated at once

QL a.rr1cz _S(CO S -C ' ) (2-9)

Hence, x,y, satisfy the coupled system

J ii

(2-10)

where 811 ,0 and x' = / are known through (2-8) and

(2-9).

2. a Correction on Entry or Exits

On entering the laser-field region from a field-free region

the trajectory slope undergoes a correction resulting from the

fact that the canonical and kinetic momenta differ by the vector

potential term (Fig. 4). If the field is given by Eqn. (2-7) for

x > 0, then by conserving both components of ymck - e As/c across

the boundary

-- f(2-11)

-14-
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where - applies to the cases of entering and exiting from the

field respectively.

Since the field build-up must take place over a finite region

6, there is actually some -ev • E energy loss as well. This

can be estimated by considering the field produced by two oscil-

lating current sheets

with -A¢ = k • 62 = r/2. This generates a field c = 0 for

z < 0, a standing wave for 0< Z< 69., and a travelling wave like

Eqn. (2-7) for z > 6H. Integrating the work done on the electron

from 0 to 6Z for a trajectory x' = const. results in

- •-
S7 4( _~l Cos)

3. Matching Section

The first-order transformation matrix for a transport line

of static magnetic fields is customarily written1
0

2, z 0 I v '

r i r, (2-12)

- 15 -
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where x,x' are the transverse position and slope, Z is the

trajectory path length difference from the nominal orbit, and

6 is the fractional energy deviation (E - E )/E from the nominal
0 0

energy. The functions in the upper left-hand block are written in

terms of the betatron function 8(s) and betatron phase s)

(2-13)

and rllr22 - rl2r21  1. There is also the general relation11

r3 ) = r (rl4 (2-14)

r32 -r22 r12 r24

The transformation

1 0 0 -n(s

H 1 0 0 (2-15)
0 0 1 0

0 0 0 1

L -- l



brings one to the betatron coordinate x = x - n6 . Since

x = x = 0 is a constant for any nominal orbit, the 14-

and 24- components or R = H sRH must vanish. This estab-

lishes two more relations

r 14 = n(s)- r11  (0)

(2-16)
r 2 4 = n(0) r 2 1

In the non-saturated regime, an on-axis beam is excited by

the laser into an ellipse in x8 , x p chase space whose aspect

ratio and inclination determine the betatron function 8(s) and

3' (s) and whose area is the emittance A. Each position on this

emittance ellipse corresponds to an entering on-axis electron with

a given initial optical phase. A transformation of the form of

Eqns. (2-12) to (2-15) will rotate the ellipse at the matching

section through an angle A m = O(s) - 0(0) together with a change

of scales according to 8(0) and 8(s). The phase space area is

invariant since detR = 1.

In addition to the above relations, which apply to transport

lines in general, the following conditions are probably desirable

for the matching section in a split-magnet FEL:

(1) In order to connect nominal orbits, require n(0)=n1 and

n(s) = n be given in terms of the wiggler parameters

through Eqn. (2-4)

(2) The transverse beam size in the second section will

- 17 -
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be most compact if a(O) a and (s) = 2

and their derivaties match the intrinsic B

functions for the two sections.

3. The optical phase shift between sections is:

I . k(?s)2K) 1  (2-17)

where Lm and A m are the nominal path length and optical

phase advunce. For gain expansion in the second section, it

is sufficient that the transport be isochronous in the sense

= 0. Using Eqn. (2-17) and the 34-component of R

to find the energy dependence of i(s) - Z(0), this condition

is equivalent to:

?1 (2-18)

4. Storage Ring Transformation Matrix

The general transformation from s=C to s=A in Fig. 1 is again

a matrix R as in Eqn. (2-12) as long as damping is ignored.

Damping is introduced by altering the betatron transformation

R = H ARHc to RBd Bd R , where

A 0 0 0
0 Ax  0 0

Bd = 0 0 1 0

0 0 0 AE

-18 -
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and Ax, AE are the betatron amplitude and energy damping

coefficients discussed below. The total transformation matrix

with damping is then R = H 1 R H
d A d C*

Axrll Axrl2 0 Ax(rl4 - nA) + nA AE

Rd A Ax r21 A x r22 0 A x r24

r31 r 32 1 r 34

0 0 0 AE

The damping coefficients are (see ch. IV of ref. 10):

1 - 0  (2 + D)AE syn

1 - U0

syn

1 Uo

A 1 + DU
x 2 syn

where U0yn is nominal fractional energy loss E syn/Eo per turn

due to synchrotron radiation and D is the damping partition

parameter. The characteristic number of turns to damp is ND=l/Uyn*

The matrix element r3 4 is aLr, where a is the momentum compaction

factor and Lr is the ring circumference traversed from C to A.

- 19 -
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Using the equations in this and in the previous section we

find that the betatron phase advance over the ring A r together

with 8(A) = a 1 ,8(C) = a2' n(A) = rl' n(C) = n 2 ,

Ax  AE and Lr fully characterize the storage ring by

determining all the coefficients of R . The ring tune vx is

the total number of betatron periods per turn

;x + + (A L) L

5. RF Accelerating Cavity

The RF cavity provides a purely longitudinal acceleration

so that the electron's energy and slope are changed according

10
to

S0

(2-20)

where UO is the RF voltage and erf Wf t is the RF phase.

The c.Kanye in RF phase over the ring is

-x + r(2-21)

-20 -
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where xx', 6 refer to the previous orbit values, and r31, r32,

a, L are the ring parameters defined above. In Eqn. (2-21) wr r

has been taken to equal the revolution frequency (a higher harmonic

must be used for multiple bunch operation).

-21-
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III. TEST OF GAIN-SPREAD-EXCITATION RFL,4-OJC 

In a transport line without damping, electrons advance in

betatron phase about the perimeter of an x, x phase space

ellipse whose area A is an invariant (the emittance).

In storage ring operation, A is exponentia 1ly damped over many

turns due to radiation damping, a combined effect of synchrotron

radiation in the bends and the longitudinal momentum gain in the

RF cavity. In steady-state, this is balanced by the emittance

excitation due to quantum f'uctuations.

It is important to knox what effect the iase, insertion has

on the emittance and energy of an electron, since the ring can

recirculate only those particles which lie within an acceptance

set by physical apertures. If E0 , Arare input energy and emit-

tance, and E, A are their values at the laser output, one may

expand in powers of the laser field

E E 0 + E1 + E 2o 1 2(3-1)

A A 0 + A 1 + A 2

We use A in this report to designate the area enclosed by the
x - x' phase space ellipse. This differs by a factor of it

', the product of the beam radius and angular divergence
f i~'c~l used as an alternative definition of the emittance, 12
and is 2itimes the invariant J defined by Kroll and Rosbenbluth.

- 22 -
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11
where E., Ai Ci Kroll and Rosenbluth1 have shown that

the gain-spread-excitation (GSE) relations

00

hold in the small signal limit under very general circumstances.

The averages are made over both betatron phase and initial optical

phase.

When the FEL ex.itation is dominated v terms in the hamiltonian

near a single harmonic m of the betatron oscillation, one obtains

the Manley-Rowe relation

(3-3)

where = --- 0 0

The fundamental formulae Eqn. (3-2) and (3-3) were explored

numerically. First the output emittance ellipse parameters 8

and 8' were established from a distribution of electrons entering

on-axis at different optical phases. This determined A as a

- 23 -



function of the output x 8 , x' for a single electron. For each

input condition, the output was calculated at two values of the

laser field c in order to decompose E and A into the first and

second-order terms of Eqn. (3-1). The phase averaging was accomp-

lished by dividing the range from 0 to 27 into N (or N ) equally

spaced betatron (or optical) phase angles. The total AA in

Eqn. (3-3) is just the area of a plane figure, and was computed

directly by cubic spline integration, which has the advantage of

no' introducing errors due to distortion of the emittance figure

from its initially determined (on-a:is) elliptical form B, $'

For this study, the two wiggl sections were chosen to be the

same, and the matching section trausformation was the identity.

In all cases tested, Eqns. (3-2) were verified, up to th'.Ez

precision of the numerical methods. Two representative cases

are listed in Table II. The first case is typified by transverse

gradient wigglers dominated by m = 1. The energy derivative GSE I
terms are negligible and the Manley-Rowe relation holds. The

second example was constructed for a non-negligible m = 0 contri-

bution by making qL and small. In this case the first GSE

relation has a noticeable energy-derivative terms, and there is an

additional emittance growth about 8% larger beyond that predicted

by Eqn. (3-3).

The a correction described in the previous section is important

even at low fields. This is demonstrated by the results of Table III,

where the Manley-Rowe relation is examined when the a correction is
s

-24-



applied with the wrong phase or omitted entirely. This causes

the emittance excitation, which is correctly given by Eqn. (3-3)

to be underestimated.

2

- 25 -
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IV. MONTE CARLO-SIMULATIONS (LOW EXTRACTION)

1. Description of the Simulation.

A Monte Carlo technique was used to investigate the

equilibrium energy and emittance distributions in the low extraction

regime iin which the GSE relations apply. In this simulation, the

transformations from section II were applied to propagate a single

electron repeatedly through the SRFEL. According to the ergodic

theorem, a histogram of the single-electron energy or emittance

values after manypasses should give the equilibrium distribution

for a circulating electron bunch. of course, this neglects electron-

electron interactions(such as space charge and wake field effects)

which are known to be important at high current.

Because the ring is not isochronous, the electron's arrival

time at the laser insertion is essentially uncorrelated with the

rapidly varying optical phase. In the simulation, the initial

optical phase 7o in Eqn. (2-7) was treated as a stochastic variable

and was chosen randomly in (0, 27) for each pass. A longitudinal

optical pulse shape may be accounted for by letting the amplitude

e in Eqn. (2-7) depend upon time. We assume that the laser reson-

ator length is turned so that an optical pulse is coincident with

the electron bunch on each pass (a general scheme might allow for

more than one electron and/or optical bunches). Then e is a

function of the electron's RF phase erf For this study, a

gaussian pulse
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was used, where 6 is the synchronous RF phase. A cw pulse! s
is simulated by taking a >> 27r

2. Convergence

The characteristic time scale over which an electron's

position in phase space remains correlated is given by the number

of turns to damp ND. That is to say, a many-particle bunch will

achieve its equilibrium distribution after a few damping times.

For the singie particle simulation, this means that ND turns are

required to .plore each region of phase space. It was found that

40 damping times was sufficient for two digit accuracy in moments

of the distribution. This is demonstrated by Fig. 5, which plots

one such derived value over the length of the simulation. Six

simulation runs are illustrated, three of which have been run to

80 damping times. They differ only in the choice of the initial

electron coordinates or the seed value used to generate the uniform

distribution for the stochastic variable io . Computation time

becomes prohibitive for simulation runs much longer than this.

3. Energy and Emittance Distributions

The equilibrium energy distribution due to quantum

fluctuations in a normal storage ring is gaussian. This was also

found to be true in our simulations, as illustrated in Fig. 6.

Note, however, that in many cases the gaussian was modulated

near the central maximum by two symmetrically placed peaks. The

depleted region between them does not in general correspond in

- 27 -
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RF phase to the optical pulse width, and has been seen for CW

operation as well (Fig. 7). But in all cases, the wings of the

distribution were found to retain the gaussian form. This is

important, since the beam lifetime would be reduced if the

distribution approached zero more slowly.

The electrons' emittance distributions showed a generally

smooth fall-off from a maximum at zero or slightly off-axis
(Fig. 8). Structure off-axis was a frequent feature of the simu-

lation runs, but was not found to be correlated from run to run.

4. Extracted Energy vs. Energy Spread

The width of the energy distribution, as given by its

stand~ard deviation a is important since even for gain-expanded

wigglers the ring energy acceptance sets an upper limit on the

allowable energy spread. As can be seen from Fig. 9 (wiggler

parameters: qL = L= 87T, l-X' 2 = .99, L = 20 m; cw optical

pulse.X = 1 pm); the extracted energy is proportional to the energy

spread for laser intensities below saturation. This may be ex-

pressed as the ratio

"efficiency ratio" A- laser> ND/a (4-1)

= laser/a6 Psynchrotron

where Pa = - < A61aser > E I. The efficiency ratio below

saturation for the example of Fig. 9 is % 1.5, as estimated by

Kroll and Rosenbluth. 12
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5. Extracted Energy vs. Emittance

The laser must not induce emittance growth which exceeds

the acceptance of the storage ring. Below saturation, Kroll
1 3

has shown that the mean emittance < A > is proportional to the

laser extracted energy

>- ( i-D )<LC>~ ( 14-2)

This has been verified by the numerical simulations, as shown in

Fig. 10 (same wiggler parameters as for Fig. 9). The bend plane

14
acceptance for a TGW has been estimated. For a thin lens wigg] ,r

this sets a limit on the emittance A of

-(4-3)

For the conditions of Fig. 10, this predicts saturation at < A >

2.5 x 10-6 cm-rad, in agreement with the simulation results.

6. Efficiency vs. Damping Partition

According to Robinson's theorem, the total damping between

the energy and transverse dimensions is a constant specified by ND*

This may be written in terms of the partition parameter D

JE + Jx = 3

where

JE = 2 + D

J2 1 - D. - 29- 1



For "separated-function" storage rings the energy damping

is normally twice the transverse damping (D=O). We explored the

idea of adjustinj D to control the laser-induced emittance growth.

As D approaches -2 the energy spread grows, while the D - 1

limit kills the gain. Kroll and Rosenbluth1 5 have shown that the

efficiency ratio of Eqn. (4-1) for a cw optical beam is a parabola

1
with a maximum at equal damping in both dimensions (D = - ). This

behavior is generally confirmed in the unsaturated regime by the

Monte Carlo results (Fic 11). At saturated power levels the

parabolic shape is defwjimed and has a peak usually near = 0.

The results for short optical pulses are generally s <iilar

and indicate best operation for -1 , D < 0. There is evid, jice for

a shift in the optimal operating point towards greater transverse

damping at higher power densities (Fig. 12).

7. Efficiency vs. Betatron Phase Advance

Figure 13 is a plot of the efficiency ratio vs. WL

with the number of periods L/X held fixed. The three curves are0

for different values of X'. The detailed behavior is complicated,

but the efficiency is seen to be relatively insensitive to h as

long as AX0 does not approach n, where the wiggler orbits

become unstable.

8. Wiggler with Odd-7 Phase Advance

The simulation showed essentially no difference between

operation at even and odd multiples of 7 betatron phase advance,

as shown by the comparison of Table IV.
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V. POWER OUTPUT AND GAIN OF OPTIMIZED LOW EXTRACTION GAIN-

EXPANDED SRFEL's

The research on the relation of radiated energy <5>, energy

spread <62> and emittance <A > in low extraction gain-expanded

SRFEL's indicates two basic saturation mechanisms, emittanc.-

growth and energy-spread accumulation. Emittance growth will

result in saturation of the radiated energy per electron if the

emittance exceeds the finite acceptance of the gain-expanded

wiggler, while energy spread accumulation wilL result in loss of

the net electron current if the energy spread exceeds the accept, LCe

of the ring. As discussed below, these saturation mechanisms can

be minimized by operation of a high betatron phase advance per period,

a negative damping partition function D - 0.5, and a large storage

ring energy acceptance.

From equation (4-2) and Figure 10, the mean emittance and

radiated energy in a gain-expanded SRFEL at low power are related

as

<

- - D [ L5 A (4-2)

But as the mean radiated energy <6> increases, the emittance < A>

will eventually approach the transverse acceptance of the wiggler,

at which point the radiated energy will fall. Assuming a limiting

emittance < A> equal to the wiggler acceptance as defined in Eq. (4-3),
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we obtain the emittance-induced upper limit to <6>

°S N1 7 ...

To secure the largest possible value of radiated energy <6> and

efficiency <6> /'A.*-,equation (5-1) indicates that we should

operate at the largest possible value of betatron phase advance/

period /\, " and a large negative value of D. From Figure 13,

the betatron phase advance per period is li:>ited to values less

than 0.8 to insure stability. Assuming a maximum betatron phat.

advance 1\6A- 3-r/L and D = - 0.5, we obtain an upper limit to

, (5-2)

While higher values of efficiency could be obtained by using a more

negative value of D, such a choice would increase the energy spread

as discussed below, which would likely set an independent upper

limit to the radiated power below that allowed by (5-2).

With respect to the energy spread, tht theoretical and numerical

analysis of the relation of energy spread and radiated energy indi-

cate a relationship of the form:

L ( (5-3)
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where the maximum value of the function F occurs near D - 0.5,

F(-0.5) = 1.5. If the system is actually operated at the radiated

energy allowed by (5-1), the storage ring must have an energy

acceptance compatible with the spread a6 indicated by (5-3), eg:

~(5-4)

:: 1 4,&J ,j. = L=/ -.. '--,

For steady state operation, the storage ring acceptance must

exceed the energy spread 7 6 by a factor of four to six to assure

an adequate lifetime (as electrons outside the energy acceptance

of a storage ring are generally quickly lost). For the i energy

spread computed in Eqn. (5-4), this would require an accepiance of

the order of ± 40-60%, a number which exceeds the acceptance of

existing ring designs by an order of magnitude.

Whether it will be possible to design rings with an energy

acceptance adequate to take advantage of the power output allowed

by Eqn. (5-1) is not presently known. For rings of smaller accep-

tance, the allowable FEL power output can be computed from (5-3).

Assuming a partition function D = -0.5 and an upper limit to the

energy spread a, equal to 1/6th the storage ring acceptance, we

obtain:

° i (5-5)

Cp aA

-- -....... r " c-I pI he. I A I c



Assuming a fractional energy acceptance . 8%, as in the LEPA
16

ring design developed at Frascati, a laser power output

equal approximately to 2% of the synchrotron radiation could

be obtained.

As discussed in the next section, a higher energy spread

a6 may be allowable in transient operation in the high-extraction

regime if the non-gaussian nature of the electron distribution

function is exploited to permit operation at an energy spread more

nearly equal to the storage ring acceptance.

Gain: Given that the initial rational for the gain-expanded

SRF-, was the desire to optimize the gain of high-acceptance SRFEL's,

it is appropriate to determine the extent to which the gain-expanded

system actually accomplishes this purpose. As discussed below, a I
comparison of the gain attainable in conventional and gain-expanded

wigglers of equal acceptance indicates that this objective has, in

fact, been achieved.

The energy acceptance of conventional, constant period wigglers

is determined by the number of periods. Inspection of the width of

the gain curve indicates that, allowing >- a 50% reduction in gain,

the acceptance of a conventional constant-period wiggler is

IT- (5-6)
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where N E L/\. is the number of magnet periods. Assuming the

optimum optical mode size, the small signal gain of such a wig-

gler can be expressed in terms of the acceptance as:

(5-7)

For a gain-expanded wiggler, maximum gain is attained if the

net optical phase sl..p qL is set equal to the net betatron phase

advance L:

(5-8)

Where N Gx is the number of periods in the gain-expanded wiggler

and the optimum optical mode area has been assumed. Assuming that

the betatron phase advance per period )\,Fl is selected using Eqn.

(5-4) to provide an energy acceptance just equal to Ca . the gain

of the gain-expanded wiggler can also be expressed in terms of the

energy spread:

I'I-D

:.× _ , u 5"-: ,, (5-9)

T, S,
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For equal electron energies, v energy acceptances a,, and
0

normalized wiggler magnetic fields a2 2, the ratio of the gain

attainable in the gain-expanded wiggler to the gain of the con-

ventional wiggler is therefore simply:

cvA , (5-10)

From equation (5-10) we see that the gain-expanded wiggler will

generally provide superior gain when the energy spreac uc is large

and conditions permit the maximization of the number of periods

of the gain-expanded wiggler. As an example, if NGx = 40 and

Y = 5%, equation (5-10) yields

Gmax
Gx =7.5

Gmax

In this example, the gain-expanded wiggler would provide a gain

almost an order of magnitude higher than available using a con-

ventional wiggler.

As discussed further in the next section, somewhat higher

gain advantages may be possible if the gain-expanded system is

operated in the high-extraction regime in which smaller values

of ,\ can be used than those allowed by Eqn. (5-4).
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VI. HIGH EXTRACTION OPERATION

While the preceeding sections of this report have dealt

with the characteristics of gain-expanded SRFEL operation at

radiated energies per pass which are small compared to yo

the properties of these systems at high radiated energy per pass

are also potentially interesting. In the high extraction regime,

high power is achieved by pusling the laser the order of once

every damping time. This intermittent mode of operation should

permit extraction of a significant fractio! of the electron's

energy in each pulse with good optical gai and an energy distri

bution function with significantly improved statistics as compare,!

to the gaussian distribution function characteristics of the low--

extraction regime. For a given storage ring energy aperture,

operation at high extraction may permit a factor of two higher

power output and efficiency than operation at low extraction.

The characteristics of the laser interaction in the high-

extraction regime are illustrated in Table V and Figures 14-16.

Table V indicates the dependence of radiated energy per pass on

optical power density for a thin-lens gain-expanded wiggler operating

at resonance ,!L = A L = 4 - assumina a zero-emittance electron

beam. At these values of I L and L, the wiggler operates in

the m=l mode in which the gain and electron statistics are in-

dependent of initial energy. The effects of finite initial emit-

tance are illustrated in Figures 14-16.
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As is apparent in Table V, the power density for gain

saturation in gain-expanded wigglers can be very high. Tn

this example, gain saturation occurs at an extraction of 8%

of the initial electron energy, at which point the optical gain

is reduced by 50%. This behavior has been discussed in the
17

previously published description of the gain-expanded wiggler.

The high power saturation characteristics of the gain ex-

panded wiggler conveys the same advantage in the high extraction

regime as its large energy acceptance conveyed in the low-extraction

regime. In both cases, the opti..cal gain of a gain-expanded system

is substantially higher than ohlainable from a convera.ional wiggler

with the same acceptance or power output. Note, however, that since

operation at high power in the low-extraction regime requires a high

betatron phase advance per period (Eqn. 5-1), while operation at high

extraction is possible even at small values of the betatron phase

advance per period, the wiggler parameters in the high extraction

regime can be chosen to yield a higher gain (which, from Eqn. 5-9,

varies as " NJF'. ) than at low extraction.

The laser-induced energy spread and energy distribution

functions are also important elements of operation in the high-

extraction regime. For small initial emittances, the fluctuations

in energy loss are remarkably small for operation on an even-n

resonance m * 27, even for operation near saturation.
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Figures 14-16 indicate that the computed energy loss distribution

function at 8% mean energy loss for the wiggler in Table V have

widths of less than 1-% at 1"10 - 8 cm-radians initial emittance

-76
less than 20% at 1 - 10 cm-radians, and less than H% at 1- 10

cm-radians.

The deterioration in energy spread with increasing initial

emittance is a consequence of the random optical phase oscillations

during the interaction, due to the electrons' initial betatron motion.

In general, the deterioration in energy spread is small so long

as the initial emit;-ance remains small compared to the emittance

induced by the interaction. As an example. the laser-induced

emittance for Figs. 14-16 is 8.5 • 10 cm-radians; the figures

indicate only a small effect cn energy spread for initial emittances

reduced from this number by a factor of 10.

In the low-extraction regime, the electrons make repeated

pulses through the wiggler at emittances equal to or greater than

the incremental laser induced emittance growth. In this case,

the random phase oscillations caused by the initial betatron

motion dominate and the laser-induced energy spread is large

compared to the radiated energy. But in the high extraction regime,

the time interval between shots can be chosen to permit the syn-

chrotron radiation to d,<mp the laser-induced emittance. If suf-

ficient time is allowed between shots, the emittance will return

to a small value between shots yielding a small spread in the

radiated energy.
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The actual radiated power and efficiency attainable in

the high extraction regime will be determined by the single

pass saturation characteristics and the damping required to

control the laser-induced emittance and energy spread. As

is apparent from Figures 14-16, the net betatron damping between

such must be large enough to reduce the emittance by an order

of magnitude or so between shuts,while sufficient energy damping

must be provided to keep the accumulated energy spread within

manageable limits. We note also that in a situation in which

the.spredI in radiated energy per shot is small, the choice of

synchrot:on frequency can affect the energy distribution since

the synchrotron phase advance between shots will determine the

way in which the energy fluctuations accumulate in successive

shots to determine the equilibrium distribution.

The possibilities for power output and efficiency in the I
high extraction regime can be illustrated by considering the per-

formance attainable with the wiggler of Table V operated under
-6

the conditions of Figure 16, eg, with an emittance % 1" 10 cm-

radian. To limit the single shot and accumulated laser-induced

energy spread we will assume betatron and synchrotron damping
-a T -aT

factors e x 1//1i-0 and e E 1/ 2 . This betatron

damping rate dumps the emittance by a factor of 10 between laser

shots. Given an appropriate synchrotron phase advance, this

choice of synchrotron damping limits the accumulated energy

spread to 2 times the single pass energy spread. From Sands,

the damping rates can be expressed as:
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(6-1)

Solution of equation (6-1) for D and T yield:

D = -1.3
(6-2)

PsT/E = 1.0
S 0

With this choice of damping coefficients, the energy radiated

as synchrotron radi-ion between passes is just equal to the

electron energy. We then have, for the radiated power Per elecOw

, > < > oC

In (6-3)

In the example under consideration, in which T P synch is

equal to Co l the efficiency is just <6> For the wiggler and

condititons of Figure 16, in which the mean extracted energy

<6> = 0.08,the efficiency would be 8%. Larger efficiencies would

require either an increase in the single pass extraction or a

decrease in the time interval between shots.

The statistics for operation in the high extraction regime,

and their implications for the storage ring energy aperture require-

ments, also follow from the choice of damping rates. If the laser
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is fired at intervals of 2r M + in synchrotron phase,

where M = 1,2,3,..., an electrons' energy deviation A.1

on the ith shot can be expressed as:

- 2 _T

(6-4)

where 6i  laser induced change in energy on the

ith shot

The abse-cc of any terms involving ;il' 6 i

in Eqn. 6-4) is due to the quadrature relationship of energy

fluctuations added to the electrons at synchrotron phases

differing by 900. Expressing A in (6-4) terms of 5

6i we obtain

- , -i (6-5)

-. -C .-.

The mean and standard deviation of A. follow immediately from

Eqn. (6-5) and the single pass statistics for 6i Specifically

6

< l - < - -6--> " - - s);

i_

-=, HZ-



-aET
In the example under consideration, in which e = 1//- ,

the standa-rd deviation of the energy distribution of the circu-

lating electrons in the ring would be larger only by a factor

of /2 than the standard deviation of the electrons change in

energy in a single pass through the wiggler as indicated in

Figure 16.

The storage ring energy aperture requirements are defi-ned

by the probability density in the wings of the electrons' dxstri-

bution. In the low extraction regime, the energy distribution was

gaussian, requiring an energy aperture 1. 4-6 times the standard

deviation to secure an adequate lifetime. But in the high ex-

traction regime, the existence of substantial damping between laser

shots, and the existence of absolute upper and lower limits to the

energy radiated in each shot sets absolute upper limits to the

electrons' deviation from the nominal energy. Assuming again a

synchrotron phase advance between shots equal to 27 M + ! , the

maximum possible energy deviation is:

(6-7)

CC
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where 6max largest possible single pass

energy change

6min = smallest possible single pass

energy change.

-aET
Assuming the same energy damping e E= / V- as in the rest of

the example, and the energy distribution shown in Figure 16 for

-6an emittance of 1.10 cm-radians, we obtain:

6 = 0.11

max
6mn= 0.01
min 0(6-8)

~A < 0.14

Since the laser can not drive electrons to energy deviations

larger than this value, it would suffice to set the storage ring

aperture just incrementally above this value. Note that the

aperture implied by Eqn. (6-8) is less than twice the laser

efficiency < Plaser > /Psynch = 8% computed for this example.

By comparison the attainment of long beam lifetimes in the low

extraction regime would require an energy aperture approximation

four times the Je- -ed efficiency (see Eqn. (5-17)).
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Evidently the attainment of the aperture required for

high efficiency operation would still be a limiting factor in

high extraction operation. Although 14% acceptance required

in this example is smaller than the 32% acceptance required for

the same efficiency in the low-extraction regime, it would still

exceed by a factor of two the aperture of the most ambitious

storage ring design developed to date. Probably the best per-

formance which could be anticipated with present technology would

be an ± 8% aperture,as in the LEDA design, from which a 4.5%

efficiency might be attainable in the high extracton regime.

The requirement to restrict the repetition rate of the

laser may also prove troublesome. The time scale ior the device

is set by the damping time of the ring, which is unlikely to fall

below 1-10 milliseconds. For an oscillator with sufficiently

high single pass gain, it might be adequate to Q-switch the cavity

or to deflect the electron beam to terminate the pulse at satur-

ation and to prevent oscillation during damping. In such a system, the

rapid growth of the optical field in successive passes would maintain th,

emittance growth in each pass large enough to dominate the emit-

tance generated in the preceeding pass. If only low gain is avail-

able, a multiple-pass resonator would presumably be required in

which the cavity length could be set to separate the electron bunch

and optical pulse for 10-100 orbits following each interaction.

An independent evaluation of these measures will evidently be

required to evaluate the practical prospects for operation in the

high-extraction regime.
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VII. SUMMARY

The development of the thin-lens model for gain-expanded

wigglers has permitted the resolution of a number of fundamental

questions concerning the optimization of parameters and ultimate

limits to the gain, power and efficiency of gain-expanded storage

ring free electron lasers.

In the low-extraction region, we find that laser power output

will be ultimately limited by emittance growth. Efficiencies in

excess of 10% can be achieved in principle by operating the wigg i

at a large betatron phase advance per unit length. The use of g,;n

expansion in a high power system can improve the gain by nearly

an order of magnitude as compared to a system using conventional

constant-period wigglers. Similar efficiencies can be obtained in

the high extraction region, with the added benefit of reduced energy

aperture requirements. In all cases, the attainment of high ef-

ficiency and power output require a large storage ring energy

acceptance. The practical limit to the power output presently

attainable in storage ring free electron lasers will likely be

set by this parameter.

The relations observed in our numerical simulations between

laser induced energy spread, emittance, and radiated energy are

generally consistent with the approximate analytic expressions

devised by Kroll and Rosenbluth.
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TABLE I

SRFEL PARAMETERS

E0 y 0omC2  nominal electron energy

a betatron function

A w 2 + R(x;-R'x /2s)2t = emittance

area of xB x' phase ellipse (-cm-rad)

Wiggler L length

(each section) x0  cell period

KLo 0betatron phase advance

qL optical phase advance

X oscillation amplitude for nominal orbit

Xf transverse derivative of X 21 l-BI
2 0

dispersion function Z -. 77

(match section) bm betatron phase advance in matching section

Alm optical phase advance in matching section

Ring ND  number of turns to damp

D damping partition parameter

U°  fractional synchrotron energy loss/turn (=N- 1)
syn

Urfrf RF voltage and frequency

a momentum compaction

Lr length of ring

Ar betatron phase advance over ring

Laser field C field amplitude

to initial optical phase

wavelength

e phase width (radians RF phase) for Gaussian pulse
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TABLE III

MANLEY-ROWE RELATION AND as CORRECTION

2= 3 2(XL 10 i, qL = 11r, L=20m, Ao=40 cm, 1-X' =.9, S=10 watt/cm ,A lum)

Phase of coirection (relative to Eq. (2-7)) -<AA>/X <0d>

+ ir/2 .977

0 1.006

- lr/2 .978

- i .948

no correction .978

i_ 4

I-m



TABLE IV

COMPARISON OF EVEN-r and ODD-r WIGGLERS

(L=20m, 1-X' 2.9, Xol=.2w,a =10
4 ,S=1O8 watts/cm

2)

qL = L = 8w qL = jL :7n

Extracted Energy -<A6> .29 x 10-5  .30 x 10-5

Energy spread a .20 x 10-2  .20 x 10- 2

Efficiency ratio 1.45 1.49

Mean Emittance <A> .27 x 10-6  .29 x 10-6

I

"L Z . ... . . . _ _ __, ra.



TABLE V

RADIATED ENERGY AS A FUNCTION OF OPTICAL POWER DENSITY

S(watts/cm 2) <6>

2 x 106 1.2 x 10- 8

2 x 108  1.2 x 10-6

2 x 1010 1.2 x 10- 4

2 x 1012 1.2 x 10-2

2 x 1013  7.8 x 10-2

2 x 1014 7.7 x 10- 2

Wiggler Parameters: L = 20 meters

: 100 cm
0

qL = A = 4

= 3.16 x 10 2

Yo 1733.5

=um

i0

i_= 1' m



FIGURE CAPTIONS

Figure 1: SRFEL Schematic

Figure 2: Model for FEL laser insertion. (a) Split-magnet

design. (b) Thin lens wiggler section consisting of

alternating magnets of focal lengths f.1 f2 and

thickness 6,z. The bending field within the thin

lenses has a linear transverse gradient. The

nominal orbits are sawtooth functions.

Figure 3: The averaged trajectory < x > for an arbitrary orbit.

Figure 4: The electron trajectory changes slope on entering the

laser field. There is a smaller correction to its

energy from the work done over the finite buildup

length S9.

Figure 5: Convergenpe of Monte Carlo simulation. The separate

simulations runs used different initial electron

trajectories or different seed values for the stochastic

initial optical phase. ND = 1000 passes. (qL = AL=8r,

L 20 m, X = 50 cm, X' = .1, Yo 767, D = .5, short

optical pulse S = 2 x109 watt/cm
2

Figure 6: The equibrium energy distribution with the laser remains

nearly gaussian after 40,000 passes (log scale).

(qL h = 8i, L =20 m, X.= 50 cm, X1 = .1, yo 767,

D = - .5, cw optical pulse S =2 x 107 watt/cm2).

4 1



Figure 7: Energy distribution (qL = L= 8T, L 20 m, X = 50 cm,
8

X' = .1, Yo = 767, D = 0, cw optical pulse S = 108

watt/cm 2). Within the gaussian envelope there are

depleted regions.

Figure 8: Equilibrium emittance distribution (qL =L 87,

L = 20 m, X0 = 50 cm, X, = .1, o= 767, D = -. 25,

cw optical pulse S = 2 x 107 watt/cm 2).

Figure 9: The energy spread is proportional to the extracted

energy in the unsaturated regime. The slope is

given by Eqn. (4-1).

Figure 10: The laser gain is saturated at the maximum allowed

emittance of Eqn. (4-3). The unsaturated regime is

described by Eqn. (4-2), (solid line).

Figure 11: The efficiency ratio versus damping partition for

three cw optical power densities. A local maximum

near D = 0 is a frequent feature at higher powers.

(qL = WL = 87, L = 20 cm, X = 50 cm, X' .i,yO  767,

cw optical pulses).

Figure 12: Efficiency ratio versus damping partition with short

optical pulses. The gaussian width of the cw optical

pulse was 2% of the corresponding electron longitudinal

pulse shape. (qL = L= 87, L = 20 cm, X0 50 cm).0



Figure 13: Efficiency ratio for different values of qL =A

and X'. (L = 20 m, X = 50 cm, D = 0, short optical
0

pulse S = 2 x 108 watt/cm
2 , a = 10 -4

Figure 14: Final electron energy distribution for the wiggler

of Table V at an optical power density of 2 x 
1013

watt/cm and an initial emittance equal to i×10 -

7-cm-radians. The initial 5-function is set equal

to the wiggler's intrinsic s-function.

Figure 15: Same as figure 14, but with an initial emittance

equal to 1 x 10 - 7T-cm-radians.

Figure 16: Same as figure 14, but with an initial emittance

equal to 1 × -  -cm-radians.
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