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1. INTRODUCTION

Computer simulation is often used to study real-world systems

that are too complex to be modeled and analyzed entirely by mathe-

matical methods. Unfortunately, simulation models used to study

large, complex systems tend to be extremely large and complex them-

selves, and corresponding computer codes (programs) to execute these

models are generally very long running. As a consequence, users of

large-scale simulations are often overwhelmed by the vast number of

factors (i.e., input variables) contained in the model and are con-

fused about how to make an effective analysis of the system model

without having to perform an excessive number of costly and time-

consuming simulation runs. Methods of shortcutting these cost and

time elements are essential if any fruitful simulation experimentation

is to take place. In such situations, the use of factor screening

methods can substantially reduce the total number of computer runs re-

quired to study the system model.

Factor screening methods (see, for example, [ 1 ], 7 1, and [ 9])

are statistical methods that attempt to identify, economically and ef-

ficiently, a set of "most important" factors. Once the more important

factors have been identified, subsequent simulation experimentation can

be focused on these critical factors, thereby eliminating experimentation

with relatively negligible factors which can needlessly consume resources.

Although factor screening methods are applicable to experimentation in

general, computer simulation offers an especially fertile area of appli-

cation for these techniques for at least two reasons: (a) the large
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number of factors generally built into complex simulation models, and

(b) the scarcity of computer runs that often handicaps planned simu-

lation experimentation.

Under an Office of Naval Research contract, Desmatics, Inc. has

conducted extensive research in this area. As part of its research

effort, Desmatics has selected two primary screening strategies for

intensive study. These two strategies are Random Balance (RB) and Two-

Stage Group Screening (GS). In earlier technical reports the respec-

tive performance characteristics of these two strategies were evalu-

ated. The present report is the first of two technical reports to com-

pare directly the performance of the RB and GS strategies.

2. MODEL ASSUMPTIONS

Suppose that K factors, each at two levels (±1), are to be

screened for their effect on the simulation response (i.e., output

variable). For detecting the factors having major effects it is gen-

erally reasonable to assume the first-order model

K

Y- 0 + E x + i (2.1)

th
where yi is the value of the response in the i-; simulation run, x j

is te leel ±1) f th thth
is the level (±l) of the jt-h factor in the i-h simulation run, j is

the (linear) effect of the j-h factor, and the c are i.i.d. N(Oc72 )

random disturbances, 02 > 0 unknown. Ordinarily we would use model

(2.1) over a relatively small region of the factor space.
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In this report we make the following additional simplifying assump-

tions:

(1) k > I (k unknown) of the K factors are active (i.e., have
a nonzero effect) and the remaining (K-k) factors are in-
active, and

(ii) all active factors have the same absolute effect, A > 0,
that is,

r th
A, if the j- factor is active

if the jth factor is inactive.

We let O() for i - 0,l,...,k denote the case in which (of the

k active effects) i active effects are equal to -A and the remaining

(k-i) active effects are equal to +A. The (K-k) inactive effects are,

by definition, equal to zero. We note that the a(O) case, or a(k) case,

corresponds to the situation in which all k active effects are in the

same direction. In practice, of course, the direction will be known for

some suspected effects and unknown for others. Lastly, we define the

signal-to-noise ratio as the ratio of A to the error standard deviation

a, A/c.

3. THE RB AND GS STRATEGIES

In this section we review briefly the RB and GS strategies. These

strategies are discussed more fully in ( 2 ] and [ 6 1. In addition, we

define three basic measures of performance which we will use in Section

4 to compare screening performance.
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3.1. Random Balance

In a two-level (±1) RB design for studying K factors, each column

of the design matrix consists of N/2 +1's and N/2 -l's where N (an even

number) denotes the total number of runs to be made. In each design

column the +1's and -l's are allocated randomly, making all possible

combinations of N/2 +l's and N/2 -l's (there are CN in all) equally
N/2

likely, with each column receiving an independent randomization. To

analyze RB designs we apply a standard F-test separately to each factor,

ignoring all other factors. Furthermore, we conduct each F-test at the

same level of significance, say L . Our RB strategy, therefore, is

completely specified by N and a . Accordingly, we denote such a screeningr

strategy by RB(N, ar).

3.2. Two-Stage Group Screening

In this strategy we partition the K factors randomly into G groups

of size g; if K is not a multiple of g, we assume that the group sizes

are taken as "evenly" as possible. Then, by assigning the same level

(+1 or -1) to all component factors within each group, we test the group

factors as if they were single factors. All factors in groups found to

have a significant effect are subsequently studied in a second-stage

experiment.

In the first and second stage experiments we use the multifactorial

designs of Plackett and Burman (8 ]. These designs are specially con-

structed two-level orthogonal desings for studying up to (4m-1) factors
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in 4m runs. The number of runs required by the smallest Plackett-

Burman (PB) design to study s factors is given mathematically by

B(s) = s+4 - s(mod 4).

PB designs can be analyzed by the usual analysis of variance pro-

cedures for factorial experiments. Note, however, that when the number

of factors is one less than a multiple of four, no degrees of freedom

are left to estimate experimental error (a). It is advisable, therefore,

for the study of s factors (or group-factors) to employ the PB design in

B(s+l) runs. This would result in a minimum of one and a maximum of

four error degrees of freedom.

If we let a1 and a2 denote the levels of the significance tests

performed at the end of the first and second stages, respectively, our

GS strategy is completely specified by g, cc, a2. We denote such a

strategy by GS(g, a1, cx2 )"

3.3. Performance Measures

With regard to model (2.1) and the additional simplifying assump-

tions we have made, we can define three basic measures of screening ef-

fectiveness. These are:

Power. We denote by A the number of active factors that

are detected correctly, and we define EA f IOOE(A)/k as

a percentage measure of the power (or sensitivity) to

detect the active factors.
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Type I Error. We denote by U the number of inactive

factors that are declared active, and we define EU -

IOOE(U)/(K-k) as a percentage measure of Type I error.

Relative Testing Cost. We denote by R the total

number of runs required by an RB or GS strategy. We

define E = lOOE(R)/B(K+1) as a percentage measure of

expected relative testing cost, where B(K+I) denotes the

number of runs required by a PB design for (K+I) factors.

In references [ 2 1, [ 3 J, and [ 6 1, formulas are given with which

to calculate EA* EU, and ER for any GS(g, 0' a2) or RB(N, a r ) strategy.

We apply these results, as needed, in the following section in making our

comparative performance study.

4. RESULTS OF COMPARISON STUDY

In our investigation we examined the following eight combinations

of (K, k, Alo):

K = 60 and 240,

k - (1/15)K and (4/15)K,

and A/c = 2 and 4.

Further, for each of these eight cases we considered the following eight

combinations of Type I Error and expectd number (f runs:

EU = 10% and 20%

a12, 26, 38, 52 runs for K=60

a 46, 100, 144, 198 runs for K-240.
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We chose these particular run numbers to correspond as closely as

possible to expected relative testing costs (ER) of 20%, 40%, 60% and

80%. We could not specify run numbers that gave exact correspondence

between ER and these levels. The reason for this is that in an RB(N, a )

strategy the total number of runs required, R, is constant and is pre-

cisely N, which must of course be kept even. Consequently, E(R) had to

be restricted to even numbered runs only. A quick calculation will show

that for K=60 factors, we consider ER = 18.75%, 40.63%, 59.38%, and

81.25%; for K=240 factors, we consider ER = 18.85%, 40.98%, 59.02%,

and 81.15%.

In all, then, we considered 64 treatment combinations of K, k, A/c,

E, and ER . For each treatment combination, we determined that RB(N, a

E R' r

and GS(g, a, a2 ) strategies that maximize power EAs and thus are "optimal"

in this sense. For GS strategies we did this separately for the B(0)

and 1([k/2]) cases. The (0) case represents the "best" case situation

for group screening since no cancellation of active effects can occur

within groups. The 6([k/2]) case, on the other hand, represents the

"worst" case situation for group screening since in this case the chance

of group-factor cancellation of active effects is greatest (among all

M(i) cases). In contrast, the sensitivity of an RB(N, r) strategy is

the same for all B(i) cases, i - 0,1,...,k.

The optimal RB(N, r ) strategy for a given (K, k, A/0) condition can

be quite readily determined. Mauro and Smith [ 6 ] have shown that the

Type I error of an RB(N, a ) strategy is very closely approximated byr

r . Furthermore, the power of an RB(N, ar ) strategy increases as either

N or ar increases. It follows that for a given (K, k, A/c, EU  E R
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condition the optimal RB(N, a r) strategy is simply the RB(E(R), EU)

strategy.

The optimal GS(g, O1' 2) strategy is much more difficult to de-

termine. Mauro [2 ] and Mauro and Burns [4 ], however, have developed

a computer-aided search routine that can be used to determine the op-

timal GS(g, aI, a2 ) strategy under the same model assumptions we have

made in this paper. Moreover, the algorithm treats both the 3(O) and

a([k/2I) cases. Accordingly, this search routine was applied to de-

termine the optimal GS(g, al, a2 ) strategy in each of the 64 experimental

conditions.

The corresponding powers of the optimal RB(N, ar) and GS(g, ai' a 2)

strategies are presented for easy comparison in Tables I and 2. Table

I summarizes the results for K=60 factors and Table 2 does so for K=240

factors. The values of g, aIICX 2 that define the optimal GS(g, a1i a 2 )

strategies are not given in these tables but are listed in the appendix.

For notational purposes and convenience of presentation, we define GS.i

for i - 0,1,...,k to be the optimal GS(g, a l' a 2) strategy in the (i)

case. Aithough we only consider i=O and i=[k/2], it is clear because

of symmetry considerations that the GS.i strategy is equivalent to and

has the same power as the GS.(k-i) strategy.

5. DISCUSSION

As noted previously, E(O) and SC[k/2]) are the "best" and "worst"

case situations, respectively, for group screening. Consequently, the

power corresponding to the GS.O strategy is always greater than that
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corresponding to the GS.[k/21 strategy. As seen from Tables 1 and 2,

this difference in power becomes greater as expected relative testing

cost increases.

Further inspection of Tables 1 and 2 reveals that A/a, over the

range we considered, had little effect on the powers of the optimal RB

strategies and virtually no effect on the powers of the optimal GS stra-

tegies. Effectively, therefore, we can ignore Tables Ic, Id, 2c, and 2d

and restrict attention to Tables la, Ib, 2a, and 2b (or vice-versa).

We suspect, though, that had we considered a signal-to-noise ratio some-

what smaller than two (say A/o = 1), there would have been some loss in

power compared with A/c = 2 and 4. However, signal-to-noise ratios less

than two are probably not of practical interest in screening situations.

From a comparison of Tables la with 2a and lb with 2b, it is readily

seen that the powers of the optimal RB strategies depend on K and k

basically only through p = k/K, the proportion of active factors to the

total number of factors. This simple relationship apparently does not

hold for GS strategies.

In this study p ranges from 6.7% (=1/15) to 26.7% (=4/15). We see

from the tables that the optimal RB and GS strategies have greater power

when p = 6.7%. This observation is in accordance with the notion that

factor screening is more effective for a given K in the presence of fewer

active factors (i.e., for smaller p). It can also be seen from the tables

that the drop in power as p increases from 6.7% to 26.7% is more extreme

for the optimal RB strategies than for the optimal GS strategies.

Continuing, it is clear that both Type I error and relative testing

cost have a strong influence on the powers of the optimal RB strategies.
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For the optimal GS strategies, relative testing cost similarly has a

major effect on power. Type I error, however, has little effect on the

powers corresponding to optimal GS strategies. This result was some-

what unexpected and we investigated this phenomenon further for a few

selected conditions. Surprisingly for these cases we found relatively

little loss in power for the optimal GS strategies with Type I error

rates as low as 1%. On the other hand, small Type I error rates generally

have a debilitating effect on the use of RB strategies.

For the remainder of this section we shall attempt to discuss the

relative merits of each screening strategy. This discussion should pro-

vide some guidance and insight into the use and selection of these two

techniques for factor screening.

A primary question of interest is for what combinations of Type I

error and expected relative testing cost should one consider the use of

an RB strategy rather than a GS strategy. Over the range of Type I error

considered, the optimal RB strategy is "better" (i.e., has greater power)

for low expected relative testing cost, and the optimal GS strategy is

better for high expected relative testing cost. In the B(O) case, the

crossover for EU = 10% is about ER = 45% and for EU = 20% the crossover

is about ER = 60%. The crossover, however, varies widely with K and k.

In general, the crossover decreases (increases) as either K or k de-

creases (increases). In the ([k/2]) case the crossover shifts upward

about 15%.

Preliminary extrapolation studies have indicated that the ER cross-

over, where the optimal GS strategy becomes better than the optimal RB

strategy, is smaller (larger) for smaller (larger) levels of Type I

-12-



error. This would therefore suggest that the optimal GS strategy has

an advantage over the optimal RB strategy at low Type I error rates

but begins to lose this advantage as one considers screening at higher

Type I error rates. Of course, in a particular screening application,

it is up to the analyst to make the appropriate compromises between

Type I error, relative testing cost, and power.

There are two very important practical considerations that should

be noted. The first of these is that the total number of screening runs

required by an RB(N, a r ) strategy is fixed prior to experimentation. In

an GS(g, alp a2 ) strategy, the total number of runs required is random.

The RB strategy, therefore, offers greater control over the number of

screening runs that will be expended.

The second and perhaps most important consideration is that for a

given expected relative testing cost, determination of the optimal

GS(g, al, a 2) strategy requires prior knowledge of k, A/c, and the num-

ber of active effects in the positive direction. On the other hand, de-

termination of the optimal RB(N, c ) strategy does not require this, orr

any other, prior knowledge. Consequently, any advantages of the optimal

GS strategies (as indicated in the tables and discussed so far) may be

offset by losses in power due to imprecise prior knowledge. We examine

this potential hazard in more detail in the following section.

6. PRACTICAL CONSIDERATIONS

A desirable feature of any factor screening procedure is the ability

to control Type I error and expected relative testing cost. As indicated

-13-



previously, this is always possible with an RB(N, r) strategy. With

a GS(g, cso1 2 ) strategy, however, this control is possible only with

prior knowledge of k, A/c, and a(i). An important question, therefore,

is to what extent does imprecision in this prior knowledge affect the

performance of a GS(g, al a 2 ) strategy. In this section we attempt

to answer this question through the use of two case studies. These

examples will serve to illustrate the practical difficulties associated

with the application of the GS strategy.

In the first case study, we assune that there are K-60 factors to

be screened for their effect on the response. In addition, suppose

that we wish to control our Type I error at 10% and expected relative

testing cost at 59.4% (equivalently, E(R) = 38 runs). Further suppose

that our prior knowledge tells us to expect that k-16 factors are active,

A/c - 2, and all active effects are in the same direction. We see from

the appendix that the optimal GS strategy for this situation is the

GS(7, 0.00325, 0.29673) strategy. Suppose for the moment, however,

that our prior knowledge is not entirely accurate. In Table 3 we give

the performance of the GS(7, 0.00325, 0.29673) strategy for all com-

binations of k, A/c, and 6(i) for k-8,12,16, A/of2,4 and 3(i)-E(O),

Bl(k/2]).

In the second case study we assume that K-240 factors are to be

screened. Once again suppose that we wish to control Type I error at

10% and expected relative testing cost at 59.0% (equivalently, E(R) -

144 runs), and suppose our prior knowledge tells us to expect that

k-16,A/a-4, and B(i)-S(0). From the appendix, the optimal GS strategy

for this situation is the GS(3, 0.05907, 0.55223) strategy.

-14-
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K k A~/0 B() E E

60 8 2 B(0) 4.4 38.9 35.6
60 8 2 6(4) 2.9 32.7 18.0
60 8 4 B(0) 10.4 59.4 71.5

60 8 4 6(4) 7.8 49.3 44.6

60 12 2 6(0) 7.1 49.0 46.6
60 12 2 B(6) 4.0 36.6 20.8
60 12 4 (0) 14.9 74.6 80.8
60 12 4 6(6) 10.1 56.7 47.1

60 16 2 B(O) 10.0 59.4 56.6
60 16 2 6(8) 5.0 40.1 23.4

60 16 4 B(O) 18.7 87.0 87.5
60 16 4 3(8) 11.9 62.2 49.6

Table 3. Performance Results for GS(7, 0.00325, 0.29673)
Strategy. All Results Are Expressed as Percen-
tages.
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In Table 4 we give the performance of this particular GS strategy

for all combinations of k, A/c, and a(i) for k-16,24,32, A/o2,4, and

.(i)-B(O),B([k/21).

relative testing cost can deviate greatly from their intended values,

although they always move in the same direction. From a practical

standpoint, these results indicate that the use of imprecise prior

knowledge can have rather undesirable consequences. Underestimating

the number of active factors results in greater type I error and greater

expected relative testing cost than desired. Overestimating the number

of active factors has the reverse effect. Certainly, this is a major

practical drawback to group screening as a technique for factor screening.

7. CONCLUSIONS AND SUMMARY

In this paper we attempt to compare the efficacy and relative

merits of a two-stage group screening (GS) strategy versus a random

balance (RB) screening strategy. We assume a screening model in which

the active (i.e., nonzero) effects are additive and have the same ab-

solute magnitude. Accordingly, this model is most appropriate when it

is expected that a relatively small number of factors (i.e., inputs)

have a major effect on the response (i.e., output) and the remaining

factors have a negligible effect. In such situations, the objectives

of a screening strategy are to detect as many of the "important" fac-

tors as possible, to declare important as few "unimportant" factors as

possible, and to perform as few computer runs as possible.

-16-



-_U E-R -EA

240 16 2 (O) 10.0 59.0 100.0
240 16 2 S(8) 9.9 58.5 94.1
240 16 4 (0) 10.0 59.0 100.0
240 16 4 6(8) 9.9 58.5 94.1

240 24 2 B(O) 13.2 66.8 100.0

240 24 2 6(12) 12.9 65.6 91.4
240 24 4 B(O) 13.2 66.8 100.0
240 24 4 (12 ) 12.9 65.6 91.4

240 32 2 3(0) 16.3 74.1 100.0
240 32 2 6(16) 15.8 71.9 89.0
240 32 4 r(0) 16.3 74.1 100.0
240 32 4 (16) 15.8 71.9 89.0

Table 4. Performance Results for GS(3, 0.05907, 0.55223)

Strategy. All Results Are Expressed As Percen-
tages.
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In Sections 4 and 5 we compare the "optimal" RB strategy with

the "optimal" GS strategy for a number of experimental conditions.

We found that the optimal GS strategy is generally better than the

optimal RB strategy at low Type I error rates but begins to lose its

advantage as one considers screening at higher Type I error rates.

For example, at a controlled Type I error rate of 10%, the optimal

RB strategy is better than the optimal GS strategy when expected rela-

tive testing cost is less than (approximately) 45%, at least over the

conditions we examined.

Determination of the optimal GS strategy, however, requires prior

knowledge of the number of active factors, the signal-to-noise ratio

of the active effects, and the directions of the active effects. The

RB screening technique requires no such prior knowledge. We discuss

the effects of imprecise prior knowledge on the group screening method

in Section 6. The analysis of this section indicates that inaccurate

prior knowledge can have undesirable consequences on screening perfor-

mance in that one cannot control the resulting Type I error rate and

expected relative testing cost. This is a major drawback to the use

of the GS strategy as a technique for factor screening. More impor-

tantly, this apparent lack of "robustness" severely limits the prac-

ticality of the GS strategy. It remains to be seen, however, how the

RB and GS strategies compare in the framework where the active effects

are not necessarily assumed to be of the same absolute magnitude. We

consider this more general situation in Part II of this technical report.

-18-
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8. APPENDIX

Listed below and on the following page are the optimal GS strat-

egies as determined by computer-aided search routine for the experi-

mental conditions described in Section 4. The values of a 1 and a2

are rounded to five decimal places.

K k Ala EU E(R) GS.O GS.[k/21

60 4 2 10% 12 GS(30, 0.00747, 1.00000) GS(30, 0.01811. 1.00000)
26 GS(7, 0.01097, 0.59142) GS(7, 0.01447, 0.57278)
38 GS(5, 0.02248, 0.38328) GS(4, 0.01200, 0.51311)
52 GS(3, 0.26978, 0.27305) GS(2, 0.16950, 0.44325)

60 4 2 20% 12 GS(30, 0.00747, 1.00000) GS(30, 0.01811, 1.00000)
26 GS(7, 0.01097, 1.00000) GS(7, 0.01447, 1.00000)
38 GS(5, 0.02248, 0.76656) GS(4, 0.01200, 1.00000)
52 GS(3, 0.26978, 0.54610) GS(2, 0.16950, 0.88649)

60 16 2 10% 12 GS(30, 0.00188, 1.00000) GS(30, 0.00927, 1.00000)
26 GS(12, 0.00078, 0.45991) GS(12, 0.00432, 0.42828)
38 GS(7, 0.00325, 0.29673) GS(12, 0.01265, 0.23161)
52 GS(7, 0.00930, 0.17649) GS(12, 0.04630, 0.14983)

60 16 2 20% 12 GS(30, 0.00188, 1.00000) GS(30, 0.00927, 1.00000)
26 GS(12, 0.00078, 0.91982) GS(12, 0.00432, 0.85657)
38 GS(7, 0.00325, 0.59346) GS(12, 0.01265, 0.46323)
52 GS(7, 0.00930, 0.35298) GS(12, 0.04630, 0.29848)

60 4 4 10% 12 GS(30, 0.00375, 1.00000) GS(30, 0.00947, 1.00000)
26 GS(7, 0.00289, 0.59421) GS(7, 0.00387, 0.57601)

38 GS(5, 0.01153, 0.38570) GS(4, 0.01021, 0.51404)
52 GS(2, 0.16698, 0.44752) GS(2, 0.16911, 0.44358)

60 4 4 202 12 GS(30, 0.00375, 1.00000) CS(30, 0.00947, 1.00000)

26 GS(7, 0.00289, 1.00000) GS(7, 0.00387, 1.00000)
38 GS(5, 0.01153, 0.77139) GS(4, 0.01021, 1.00000)
52 GS(2, 0.16698, 0.89504) GS(2, 0.16911, 0.88716)

60 16 4 10% 12 GS(30, 0.00094, 1.00000) GS(30. 0.00470, 1.00000)
26 GS(12. 0.00019, 0.45997) GS(12, 0.00109, 0.42858)

38 GS(7, 0.00082, 0.29697) GS(12, 0.00324, 0.23166)
52 GS(7, 0.00235, 0.17660) GS(12, 0.01238, 0.14986)

60 16 4 20% 12 GS(30, 0.000949 1.00000) GS(30, 0.00470, 1.00000)
26 GS(12, 0.00019, 0.91993) GS(12, 0.00109, 0.85716)
38 GS(7, 0.00082, 0.59394) GS(12, 0.00324, 0.46332)
52 GS(7, 0.00235. 0.35319) GS(12, 0.01238, 0.29971)
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K k A/o E(R) GS.0 GS.[k/2]

240 16 2 10% 46 GS(22, 0.00001, 0.98824) GS(20, 0.00027. 0.94384)
100 GS(6. 0.00083, 0.53956) GS(6, 0.00113, 0.52542)
144 GS(3, 0.05907, 0.55223) GS(3, 0.06633, 0.53966)
198 GS(2, 0.18920, 0.41071) GS(2, 0.19125, 0.40751)

240 16 2 20Z 46 GS(22, 0.00001, 1.00000) GS(20, 0.00027, 1.00000)
100 GS(6, 0.00083, 1.00000) GS(6, 0.00113, 1.00000)
144 GS(3, 0.05907, 1.00000) GS(3, 0.06633, 1.00000)
198 GS(2, 0.18920, 0.82143) GS(2, 0.19125, 0.81502)

240 64 2 lO 46 GS(27, 0.00005, 0.82463) GS(27, 0.00052, 0.79563)
100 GS(16, 0.00000, 0.35317) GS(27, 0.00228, 0.28641)
144 GS(9, 0.00001, 0.25538) GS(27, 0.00599, 0.18749)
198 GS(9, 0.00004, 0.16109) GS(40, 0.10492, 0.12894)

240 64 2 20% 46 GS(27, 0.00005, 1.00000) GS(27, 0.00052, 1.00000)
100 GS(16, 0.00000, 0.70634) GS(27, 0.00228, 0.57282)
144 GS(9, 0.00001, 0.51075) GS(27, 0.00599, 0.37497)

198 GS(9, 0.00004, 0.32217) GS(40, 0.10492, 0.25788)

240 i6 4 10% 46 GS(22, 0.00000, 0.98796) GS(20, 0.10003, 0.94505)
100 GS(6, 0.00011, 0.53985) GS(6, 0.00014. 0.52574)
144 GS(3, 0.05907, 0.55223) GS(3, 0.06633, 0.53966)
198 GS(2, 0.18920, 0.41071) GS(2, 0,19125. 0.40751)

240 16 4 20% 46 GS(22, 0.00000, 1.00000) GS(20, 0.00003, 1.00000)
100 GS(6, 0.00011, 1.00000) GS(6, 0.00014, 1.00000)
144 GS(3, 0.05907, 1.00000) GS(3, 0.06633, 1.00000)
198 CS(2, 0.18920, 0.82143) GS(2, 0.19125, 0.81502)

240 64 4 1OZ 46 GS(27, 0.00001, 0.82351) GS(27, 0.00013, 0.79592)
100 GS(16, 0.00000, 0.35314) GS(27, 0.00057, 0.28646)
144 GS(9, 0.00000, 0.25543) GS(27, 0.00151, 0.18748)
198 GS(9, 0.00000, 0.16111) GS(40, 0.05425, 0.12894)

240 64 4 202 46 GS(27, 0.00001, 1.00000) GS(27, 0.00013, 1.000OO)
100 GS(16, 0.00000, 0.70629) GS(27, 0.00057. 0.57292)
144 GS(9, 0.00000, 0.51086) GS(27, 0.00015, 0.37496)
198 GS(9, 0.00000, 0.32222) GS(40. 0.05425, 0.25789)
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