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Chapter One

Introduction

In applications such as banking systems, airline reservation systems, office
automation systems, and database systems, the manipulation and preservation of long-lived,
on-line, distributed data is of primary importance. The Argus programming language and
system [Liskov 82], currently under development at M.\.T., is designed to support such
distributed applications. A major issue in such applications is preserving the consistency of
on-line data in the presence of concurrency and in the event of hardware failures. One
aspect of this issue is the problem of hov! on-line data can be made resilient to hardware
failures, which means that the probability is very high that the crash of a node or storage
device does not cause the loss of vital data. This thesis is concerned with supporting data
resiliency in Argus.

To maintain data consistency in the presence of concurrency it is necessary to make
the activities that use and manipulate the data atomic. Atomic activities are referred to as
actions or transactions [Davies 73, Davies 78, Eswaran 76]. An atomic action is indivisible
and recoverable. Indivisibility means that the execution of one action never appears to

overlap the execution of any other action. Recoverability means that the overall effect of an

action is all-or-nothing, that is, either all changes made to the data by the action happen (the
action commits), or none of these changes happen (the action aborts).
To support data resiliency, Argus causes data to be written to stable storage devices

T TN R

when an action commits. These devices are special memory devices that have a high
probability of surviving failure [Lampson 79). If an action aborts, on the other hand, then
changes the action made to the data are discarded.

This thesis investigates the mechanism that supports Argus’s notion of data resiliency.
There are two aspects to providing resiliency: implementing stable storage devices and
organizing the use of stable storage. We are concerned with the latter: how stable storage
can be organized in an efficient way that allows a distributed computer system to recover
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from failures.

In this chapter, we begin by explaining the notion of stable storage, and then we
discuss issues that arise in the use of stable storage. We discuss two possible
organizations, logging and shadowing, and briefly sketch our approach. Then we discuss

related work and provide an outline of the remainder of the thesis.
1.1 Stable Storage

Stable storage is similar to other kinds of memory storage except that it has the
property that it is much less likely to fail. We can imagine that stable storage looks like a
conventional magnetic disk in that it provides the usual read and write operations; the write
operation, however, is atomic, which means that the data is either written completely to the
disk or not written at all, even if there is a failure while the update is happening. This
atomicity property ensures that the data will never be left in an inconsistent state in which
the old value is gone and the new value is wrong. We call this kind of stable storage atomic
stable storage. A

Since this ideal storage device whose properties we have described does not exist, it
must be implemented using conventional storage devices with less desirable properties.
Lampson and Sturgis [Lampson 79] describe a method for implementing atomic stable
storage using magnetic disks. The basic idea is to use two disk pages to represent each
page of data that must be updated atomically, and to update one and then the other. These
two disk pages reside on different physical storage devices that have completely
independent failure modes, that is, the failure of one storage device should not influence the
other storage device. The associated storage management overhead for stable storage is
comparatively more expensive than for conventional storage because of the extra memory
and 1/0 involved in maintaining a second copy of the data and the time needed to update
the second copy. This extra expense has an impact on how stable storage is used and the
manner in which it is organized.

In this thesis we are not concerned with the issues and the manner in which stable
storage is implemented. Instead, we assume that atomic stable storage exists, has the right

properties, and is available to use; this stable storage forms the basis for the reliable object
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storage organization presented in the thesis.
1.2 Organizing Stable Storage

The main issue in organizing stable storage is deciding what data structures to use.
Influencing the decision are three requirements: writing data objects to stable storage,
recovering data objects from stable storage, and efficiency. The efficiency requirement
attempts to strike a balance between the writing and the recovering requirements. This
section discusses two main methods for organizing stable storage and then briefly outlines

our approach.
1.2.1 Logging versus Shadowing

There are two possible approaches to organizing stable storage: the pure log scheme
and the shadowing scheme.

Like an accounting journal that is a chronological record of accounting transactions,
alog is a kind of stack data structure that grows at one end as information is written onto it.
it is used to record the object values that were changed by an action as well as the
outcomes of the action [Bjork 75, Gray 78, Lampson 79]. The outcome information is
needed to recognize when a crash occurs before all values of data objects modified by a
committing action are written to the log. On recovery, all modifications for such an action
will be discarded (and the action aborts).

If stable storage is organized as a log, then writing is fast because information is
written only to the end of the log. On the other hand, recovery from a crash tends to be slow
because the entire log must be consulted to restore the state.

The traditional notion of shadowing involves writing new versions of the objects
changed by an action to stable storage without writing over the previous object versions
(called the shadowed object versions, following [Gray 78)); two versions of each object can
exist in stable storage. When the new object versions have been completely written, these
newly written objects supplant the previous object versions in one atomic step. Thereatfter,
all references to the objects will access the new object versions.

Storage is organized as a pointer to a table, called the map, which associates object
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identifiers (uniquely identifying each object) with the actual objects in stable storage. As an
action gets ready to commit, the object versions are written to stable storage. When an
action actually commits, these new versions are installed by making a new map that contains

the pointers, writing the map to stable storage, and then switching from the old map to the .

new map in one atomic step. (This switch is accomplished by updating the pointer to the .

map.) The action is now committed and its changes have been reflected in the map as well

as in stable storage. Any references to objects now pass through the new map. When an
action aborts, the new object versions are discarded and the map is untouched. Figure s
-1 shows what such a scheme might look like. |

After a crash, the map is consulted in order to restore the objects because the objects x
to be recovered are easily accessible in the map. ‘

If the data an action manipulates is distributed, then a map alone is not enough for ;
shadowing to work properly. A log is also 'required. The log contains entries for each action
that was in the process of committing but that had not yet either committed or aborted.
Objects modified by an action are written to stable storage and pointers to these objects are
placed in alog entry. When an action truly commits, these changes are installed in the map;
if the action aborts the map remains untouched and the changes are discarded.
Committing, then, occurs in two phases. First, the objects are written to stable storage and
the pointers to the modified objects are written to an entry in the log. Second, the map is
updated with these pointers. This is similar to the two-phase commit protocol, which we
discuss in the next chapter.

After a crash, the map and the log are both consulted to restore the objects. The map

represents those objects that were modified by a committed action. The log represents
those actions that had not yet either committed or aborted and whose changes had been
written to the log but had not been installed in the map.

The advantage of shadowing is that recovery is fast. The disadvantage of shadowing

involves changing the entries in the map and rewriting the map at every action commit,

which could be expensive, especially if the map is large and there are a large number of
objects.




SN . /

- G

Figure 1-1: Shadowed objects
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1.2.2 The Approach

Let us summarize the advantages and disadvantages of these two schemes:
1. Log => fast writing, but slow recovery
2. Shadowing => slow writing, but fast recovery

In comparing the two approaches we assume that crashes do not happen very often
and that we would like normal processing to be fast at the possible expense of a slow
recovery after a crash.

For reasons to be discussed in later chapters, we have chosen an organization of
stable storage that falls between these two extremes, which we call the hybrid log. As the
name suggests, it is a hybrid of the pure i0g and the shadowing schemes that combines the
advantageous characteristics of either scheme. Hence, writing is almost as fast as the pure
log, and recovery is faster than the pure log scheme but not quite comparable with the
shadowing scheme. The map in the shadowing scheme is now written incrementally to the
hybrid log and is distributed over the entire log; this means that the extra cost associated
with updating the map at every action commit in the shadowing scheme is just part of the
cost of writing entries to the log.

Given this hybrid organization, we have also developed three kinas of algorithms: (1)
writing objects to the hybrid log, (2) recovering objects from the hybrid log, (3) and
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reorganizing the hybrid log to make recovery from crashes more efficient.

in summary, this thesis's contribution is two-fold:

1. the hybrid log organization for stable storage, and

2. the various algorithms for writing, recovering, and housekeeping the hybrid log.

1.3 Related Work

There are several systems that are related to the work described in the thesis. Two of

these systems, the System R Recovery Manager and Swallow, are discussed below.
1.3.1 System R Recovery Manager

Developed at the IBM Research Laboratory in San Jose, System R [Astrahan 76] is an
experimental relational database management system designed to support transaction
processing. it uses shadow-paging and a log protocol to implement recovery for committed
and uncommitted actions. We will briefly discuss the recovery mechanism of System R
[Gray 81).

In System R, all information is stored on files, some of which are shadowed files. A

buff xr manager maps these files into a virtual memory buffer pool that is volatile and does

not survive node failures. For the purposes of this section, we are interested in shadowed
files. Shadowed files consist of two versions, a current version and a shadow, or backup,
version. Any operations affect only the current version and never touch the shadow version,
except when the current version becomes the new shadow version due to a file SAVE
command or when the shadow version is used to restore the current version due to a file
RESTORE (which undoes recent updates). Note that the current version of a shadowed file
is volatile and goes away after a node crash, but the shadow version survives. Following a
node crash, shadowed files are reset to their shadow versions.

A problem that System R designers encountered was that it was not clear how to
generalize the shadowed files (current version/shadow version) technique to transactions
running concurrently on a shared file. They desired to commit or to undo changes per
transaction, which was not possible using shadowed files alone. Suppose several
transactions were running concurrently and made changes to a shadowed file. When it was
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time to commit or abort the updates, file save or restore would commit or abort the updates
of every transaction that altered the file, even those that had not yet committed and might
abort later. Because of this problem, the designers chose to combine the shadow
mechanism with an incremental log of all actions that a transaction performed.

To ensure that committed transactions can be redone and that uncommitted
transactions can be undone, System R does the following:

1. The transaction log is forced to disk before the current database state replaces
the shadow database; this is called the write ahead log protocol [Gray 78).

2. A transaction commits at the moment its commit record appears on disk. The
commit log record is written to the buffer and then all the transaction's log
records are forced to disk.

System R designers realized fairly late in their implementation that the transaction log
made the shadow mechanism redundant for large shared files. Shadowing was expensive
and more complex, and appeared to ‘be bad for direct processing and sequential
processing. They felt that much of the 1/0 that went on was inherent in the shadow
mechanism and probably could not be eliminated altogether [Gray 81].

In short, System R designers first looked at the shadowing mechanism. Realizing that
the shadowing mechanism itself was inadequate and would not aliow them to commit and
undo changes on a per transaction basis, they combined it with the log mechanism to deal
with this problem: the log was used not only to record changes made to data items per
transaction, but also to undo changes on recovery. Thereafter, they recognized that the log
made shadowing unnecessary and that the log was all they really needed.

We think that the fundamental problem in System R was the mismatch in the sizes of
two things: the unit of recovery--the page--was different from the unit of synchronization--a
record on a page. If the sizes had matched, a simpler scheme would have been possible.
Even so, their conclusions about the inefficiency of shadowing remain valid.

1.3.2 Swallow

The work most closely related to the hybrid log organization of stable storage and the
recovery system is Swallow [Reed 81], developed at M.I.T. It is an “integrated system of
servers that provides reliable, secure, and efficient storage for clients throughout a
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network” [Arens 81) where a server is a node (a computer or a network) that provides
resources and a client is a node that shares and uses the resources. Swallow is intended for
a distributed computer system. Among other things that it provides is extremely retiabie
storage for client data through the Swallow repository, so that the likelihood of losing client
objects is very small.

The Swallow repository supports Version Storage (VS) as the main form of atomic
stable storage. VS contains the versions of objects and commit records (indicating the state
of the transaction). VS looks very much like a log and is always increasing in size, so only a
portion of it remains on-line. The repository manages VS in such a way that the current
versions of objects and commit records always remain on-line [Svobodova 80).

Like a shadowing scheme, the repository maintains a separate table called the Object
Header Table, which is kept in secondary storage; there is just one copy of the table and
modifications are made in place. Each object has an object header in the table that, among
other things, points to the most current version of the corresponding object in VS; in this
way, the repository need not sequentially scan through VS just to find the versions of
objects. Arens points out that the table is a hint; these object headers are not necessary for
the repository to function correctly, because it can always resort to searching through VS,
but that they are necessary for the repository to function efficiently.

1.4 Qutline of thesis

Chapter 2 presents background information conceming the Argus programming
language and model of computation, the notion of atomic actions, the recovery system,
recoverable objects, and the two-phase commit protocol. This chapter sets the stage for the
technical exposition of Chapters 3, 4, and 5.

Chapter 3 presents the writing and recovery algorithms in the context of the simple
log. In particular, we discuss the structure of the log, the format of log entries, and
determining accessibility of objects. We then illustrate the recovery algorithm through four
scenarios.

Chapter 4 builds on the work presented in Chapter 3. In particular, we argue that the
hybrid log organization of stable storage is better in general than either the pure log or the
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shadowing schemes considered alone. We then explain the writing and recovery algorithms
for the hybrid log. Finally, we point out the complications introduced by the notion of early
piepare.

Chapter 5 considers the problem of reorganizing the hybrid log to make recovery from
crashes more efficient. Two methods are discussed and compared: log compaction and
stable state snapshot.

Finally, in Chapter 6 we summarize the foregoing, draw conclusions, and suggest i

directions for further research.




Chapter Two

Background

This chapter lays the groundwork for understanding the remaining chapters. We first
explain the basic concepts underlying Argus, which supports the writing of distributed
programs and serves as the context in which this thesis research was done. Argus provides
consistency and reliability through atomic data and the mechanisms of actions and a two-
phase commit protocol. Next, we discuss a two-phase commit protocol, which ensures that
the effects of a successful atomic action are made permanent and guarantees that everyone
involved in the action either commits or_aborts; data objects modified by the action are
written to stable storage during two-phase commit. We then consider the recovery system,
which is the interface between the Argus system and stable storage. The job of the recovery
system is to write these data objects to stable storage as needed, to restore the data objects
after a crash, and to reorganize stable storage in order to make recovery from a crash more
efficient. Finally, we introduce recoverable objects, which are certain data objects that are
written to stable storage.

2.1 The Programming Language Argus

Argus [Liskov 82)] gives programmers the ability to write distributed programs that run
on a network of computers. Each node in the network is an independent computer
consisting of one or more processors and some local memory; each node may differ in the
number and types of processors, the amount of memory, or in attached peripheral devices;
and each node can communicate with the others only by sending messages over the
network.

In Argus, a distributed program consists of modules called guardians. A guardian
encapsulates and controls access to resources, such as databases or devices, and guards
its local data. A guardian's external interface is in the form of a set of operations, called
handlers, that can be called by other guardians to provide access to the called guardian’s
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objects. In addition to the data objects, there are processes in a guardian that perform
background tasks and execute the handler calls.

Guardians are the logical nodes of the distributed system, and each resides at a single
physical node, although a node may support several guardians. Guardians survive crashes
of their nodes of residence with high probability. When a guardian's node crashes, all
processes within the guardian disappear, but a subset of the guardian's state survives. A
guardian has both stable state and volatile state: the stable state survives crashes of a
guardian’s node and the volatile state disappears. The stable state consists of objects
called stable objects; these objects are accessible’ from the guardian's stable variables,
which are variables whose declarations in a guardian definition are prefixed by the keyword
stable. Only stable objects survive crashes. To ensure that these objects really do survive,
they must be recorded with care on stable storage devices, which we mentioned in the last
chapter. When the guardian’s node recovers from a crash, the Argus system re-creates the
guardian with the stable objects as they were when last written to stable storage. A process
is then started in the guardian to initialize the volatile objects. Once the volatile objects have
been restored, the guardian can resume background tasks and can respond to new handier
calls.

Atomic actions are the primary method of performing distributed computations in
Argus. Actions are atomic: the effect is all-or-nothing, that is, they either complete
successfully (commit) and change the current state permanently, or fait completely (abort)
and restore the state that existed before the action was executed. In Argus, an action called
a top-level action starts at one guardian and can spread to other guardians, spawmning
subactions by means of handler calls. When an action completes, it either commits at all
guardians (and the changes made by the action to each guardian's stable state are reflected
in stable storage appropriately) or aborts at all guardians.

‘lnArgus.vaﬂnbhordertoobiecu.andobiocumaym«tomm The objects accessible from a
variable are those that the variable refer to, and those referred to by objects accessible from the variable.
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2.2 Two-phase Commit Protocol

As actions execute, modifications of objects are made to volatile copies. When a
top-level action has completed its work and wishes to commit, we need some way of making
sure that the modifications made by the various subactions on behalf of the top-ievel action
either are all written to stable storage, in which case the top-leve! action really commits, or
are discarded, in which case the top-level action aborts. The standard two-phase commit
protocol fulfills this need (Gray 78]. The protocol works even if crashes occur while it
executes. In the explanation that follows, we assume that no nodes crash forever and
eventually any two nodes can communicate [Moss 81]. Following standard terminology, let
us call the guardian where the top-level action executes the coordinator, and the guardians

where the data was modified by the top-level action or its subactions the participants.
2.2.1 The Coordinator

Preparin~ phase

In the preparing phase, the coordinator sends a prepare message to all participants
saying "prepare for action A to commit,” where A is the action identifier of the preparing
action, and then waits for the participants to respond that either they are prepared or they
have aborted.

After sending out prepare messages to all the participants (including itself if it was
also a participant), the coordinator waits for replies. If it hears from each participaht that
each has prepared it starts the committing phase. If any participant replies aborted, then the
coordinator tells the participants to abort via abort messages. The coordinator may also
abort unilaterally if it does not receive responses from some participants; the Argus system
determines when such an abort should occur. For example, if a participant has crashed it
clearly cannot respond, and in this case the coordinator will unilaterally abort the action.

Committing phase

It all participants respond prepared, the coordinator creates a committing record and
writes it to stable storage. At this point the action is committed. The coordinator then sends
commit messages to all the participants (including itself), informing them of its verdict, and

St
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waits for them to respond. When all have responded committed the coordinator creates a

done record and writes it to stable storage. Two-phase commit is now complete.
2.2.2 The Participant

Prepare phase

When a participant receives a prepare message from the the coordinator for some
preparing action it prepares in the following way. First, the data records for all objects
modified by the preparing action are written to stable storage. Second, if the data records
were written successfully to stable storage, then a prepared record is written to stable
storage. The participant then replies prepared to the coordinator, and enters the completion
phase. If the action is unknown at the participant (because it never ran there, was aborted

locally, or was wiped out by a crash), then the participant replies aborted to the coordinator.

Completion phase

Once a participant has written the prepared record, it must await the verdict from the
coordinator. When the participant receives the commit message, it writes a committed
record to stable storage, and then replies committed to the coordinator. If the participant
receives the abort message instead, it writes an aborted record to stable storage. If a
participant has not heard from its coordinator it can query the coordinator to find out the
outcome of the action. (The action id contains enough information such that each
participant knows who its coordinator is.)

2.2.3 Effects of crashes on Two-phase commit

If a participant crashed before the prepared record was written to stable storage for
some preparing action, then alf record of that action is lost, and the action will be aborted.
When the prepared record appears in stable siorage the action is really prepared. This entry
marks the point of no return for the participant; after this point, the participant must wait for
the coordinator to inform it of the outcome. !f a participant crashed after the prepared

record was written to stable storage, then the recovery system restores the guardian's state
as it had beer. before the crash, when the action had prepared and was waiting to hear from
the coordinator.
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If a coordinator crashed before the committing record was written to stable storage

for some committing action, then it will remember nothing about the action after recovery,
and the action will be aborted. If the coordinator receives a query about the action from a
participant, it will tell the participant to abort the action. When the committing record ’
appears in stable storage the action has really committed; this entry marks the point of no .

return for the coordinator, after which it must commit. Suppose, however, a coordinator

G

crashed after the committing record was written to stable storage, but before the done
record was written. Then upon recovery the action is stil committing and the recovery
system restores the guardian's state as it had been before the crash.

if a coordinator crashed after the done record was written to stable storage for some

committing action, then this action has completed and nothing special need be done.

2.3 The Recovery System

B
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prepare(aid MOS) .
The commit{aid) or The
abort(aid) :: The |
Argus recovery — Recovery ST, Argus ‘
sy [ RS
: committing(aid,gids) — System
done(aid) —

Figure 2-1: The Recovery System

Do e

The job of the recovery system is to write information to stable storage as needed by
two-phase commit, to restore a guardian's stable state after a crash, and to reorganize
stable storage in order to make recovery more efficient. The recovery system provides
operations that the Argus system calls at appropriate times in order to carry out these tasks.
See Figure 2-1. The Argus system itself is distributed, every guardian containing a portion of
it; the recovery system also exists at each guardian and is called by the portion of the Argus
system at that guardian.
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Not all objects at a guardian need to be written when an action commits. In particular,
objects not accessible from the stable variables need not be written. If some previously
existing stable object was not modified then its correct copy already exists on stable storage
and need not be copied. A modified stable object, however, must be copied to stable
storage, as must a newly created stable object. To minimize writing to stable storage, the

Argus system keeps track of just the modified objects and newly created objects. The
Modified Objects Set (MOS) contains this information,; it consists of two smaller sets, the set
of objects modified by an action and the set of objects newly created by the same action.

Let us discuss the functions of the recovery system in terms of the calls made on it by
the Argus system.

1. prepare(aid, MOS). The Argus system at the participant's guardian calls this
operation when it receives a prepare message for the action aid from the
coordinator. The first argument is the action identifier, and the second
argument, MOS, is the Modified Objects Set, which we have explained above.
Not all objects in the MOS are written to stable storage; only those that are
accessible from the stable variables are written to stable storage because they
are the ones that make up the guardian’s stable state. Each accessible object in
the MOS is written to stable storage on behalf of this action, the prepare record
is written, and then prepare returns. The Argus system at this participant's
guardian then replies prepared to the coordinator.

2. commit(aid). When the Argus system at the participant's guardian receives a
commit message from the coordinator, it calls this commit(aid) operation, which
writes the commit record to stable storage and then replies committed.

3. abort(aid). The Argus system at the participant's guardian calls this operation
when it receives an abort(aid) message from the coordinator. The recovery
system writes the abort record to stable storage and returns; the Argus system
then replies aborted.

4, committing(aid, gids). When the coordinator has heard that all participants ¢
have prepared, the Argus system at the coordinator's guardian calls the
committing(aid, gids) operation; the first argument is the aid of the committing
action and the second argument is a list of identifiers of each guardian that was
involved in the action. The recovery system writes the committing record to
stable storage and returns; the coordinator enters the second phase of two-
phase commit.

5. done(aid). When all participants have responded committed to the coordinator,
the Argus system at the coordinator’s guardian calls this operation to indicate
that two-phase commit is over and the action has terminated. The recovery
system writes the done record to stable storage and returns.
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6. recovery. Following a crash, the Argus system calls the recovery operation of a
guardian’s recovery system to restore the stable state of that guardian. After the
recovery system has restored the guardian’s stable state, it returns information
to the Argus system at the guardian. The returned information is sufficient to
resume any running actions at that guardian. We will explain what this
information is (OT, CT, and PT) in the next chapter.

7. housekeeping. Whenever the Argus system has determined that enough old
information has accumulated on stable storage at a guardian, it calls the
housekeeping operation to reorganize the stable storage to make recovery
more efficient.

In this thesis, we assume that these operations are called sequentially by the Argus
system.

2.4 Recoverable Objects

A guardian’'s stable objects are grouped into special objects called recoverable
objects. These are the units that are written to stable storage. They come in two flavors:

built-in atomic objects and mutex objects.
2.4.1 Atomic Objects

Argus provides an assortment of built-in atomic objects. These objects are similar to
ordinary objects except that they are implemented in a way that provides atomicity for
actions that use them. Providing atomicity means synchronizing the using actions and
providing recovery for the using actions. These are provided by read/write locks and
volatile versions in volatile memory.

The Argus implementation of built-in atomic objects is based on a fairly simple locking
mode!l. There are two kinds of locks: read locks and write locks. To use an object, an object
must invoke an object operation; the operation acquires a lock in the appropriate mode and
the action holds the lock until it completes. When a write lock is obtained, a version of the
object is made (in volatile memory), and the action operates on this version. If the action
ultimately commits, this version will be retained and the old version discarded. If the action
aborts, this version will be discarded, and the old version retained.

At two-phase commit, the committing action will still hold write locks on atomic objects

that were modified and the atomic object has two versions: the base version and the current
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version. [f the object were previously accessible, then only the current version will be
copied to stable storage (the base version already appears on stable storage). For newly
created atomic objects, the creating action holds a read lock on the object and there may be

only a single version, the base version, which is copied to stable storage.
2.4.2 Mutex Objects

The mutex object is like a container for other objects and has a lock associated with it.
Actions that wish to modify the mutex object must first gain possession by executing a seize
operation (an Argus language construct); the seize operation provides mutual exclusion for
the action in possession.

Mutex objects have only one version, namely, the current version, and it is this version
that gets written to stable storage. Mutex objects also have a different semantics from
atomic objects at the prepare phase. Once an action has prepared at a participant’s
guardian, alt mutex objects take on their new states even ii the action aborts later; after a
crash, these new states must be restored even if an abort record for the action has been

recorded. See the paper by Weihl and Liskov [Weihl 82] for more details on mutex.
2.4.3 Incremental Copying Algorithm

The method we use for copying recoverable objects to stable storage has the
following properties [Weihl 82]: it is incremental and order-independent. The algorithm
works in an incremental fashion: each built-in atomic object and mutex object is written to
stable storage in a separate, atomic step. In copying each such object, the system copies all
portions of the object except contained atomic and mutex objects. These are copied
separately if they were modified or are new. The algorithm is also order-independent: the
atomic and mutex objects are written to stable storage in an arbitrary order.

For each recoverable object that was modified the recovery system copies the object
in the following fashion:

1. The recovery system gains possession of the object. This is really of interest
only for mutex objects. In this case, the recovery system seizes the mutex lock
to synchronize the copying with the user code.

2. The recovery system copies all non-recoverable objects contained in the
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recoverable object but not any contained recoverable objects; these wi!l be
copied separately if they were modified. The sharing of objects is preserved
only for shared recoverable objects or for a group of unrecoverable objects
entirely contained within a recoverable object.

3. Once the recoverable object, including its contained non-recoverable objects,
has been copied, the recovery system releases possession and continues. |

To copy a recoverable object, the system invokes a routine that linearizes (or flattens)

the data in the modified object and in any contained non-recoverable objects. Any
references to other recoverable objects are translated from their volatile addresses to their
corresponding stable storage references. Figure 2-2 illustrates this technique. in copying i 4
the object referred to by variable z, we copy x but not y (since y is atomic but x is not);
instead, we place a stable storage reference for y in the ccpy of z, and copy y separately if .

necessary (if it was modified or was new).

z: atomic record[x: int,y: atomic arraylint]] ;
Figure 2-2: An Atomic Record |

In short, the system gains possession of each recoverable object that had been
modified by the action, copies it, releases possession, and continues.
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Chapter Three

Simple Log -- Writing and Recovery Algorithms

This chapter focuses on the algorithms for writing recoverable objects to the log when
a top-level action commits and for recovering these objects from the log and restoring them
to volatile memory upon recovery from a crash. We ignore the issue of housekeeping until
Chapter 5.

We begin by discussing an abstraction, called the stable log, that serves as the
interface to stable storage and whose operations the recovery system calls whenever
objects are to be written to stable storage._ Then we discuss a simple way of using the stable
log. We call this method the simple log to distinguish it from a more involved variation
presented in the next chapter. The simple log is made up of data entries and outcome
entries, and we present the format of each kind. Next, we cover the algorithm for writing
recoverable objects to the simple log in the context of two-phase commit and discuss not
only how objects are written but what objects are written. Finally, we present the full-fledged
algorithm itself as well as several recovery scenarios to illustrate the recovery algorithm in
action.

As mentioned in the last chapter, we assume that recovery system operations are
executed sequentially.

3.1 Log abstraction interface to stable storage

in Chapter 1, we imagined that stable storage devices might resemble conventional
magnetic disks. These disks provided the usual read and write operations, but the write
operation had the property that it was atomic: the object updates were either written
completely or not at all. We also mentioned that several techniques were available to
implement stable storage but that we were not concerned with these techniques.

Even this pseudo-disk interface is inappropriate for our purposes. Instead, we

postulate the existence of a stable storage system that provides objects that look like stable




logs and behave like stable logs. These stable log objects provide the right interface to the

recovery system and are presumably implemented in an efficient way that again does not
concern us. Each guardian has its own stable log. The stable log looks like an array
indexed by abstract objects called log_address. (From now on we will use ine term "log” to
mean stable log.)

The stable log abstraction provides the following operations [Raible 83):

1. write(log.entry). This operation writes conveniently sized biocks, called entries,
to the stable log object. The actual writing of the data to the stable storage
device may not have happened when this operation returns.

2. force_write(log.entry). This operation forces an entry to the log object. Both the
current entry and any older entries that were not yet written to the stable storage
device will be written by this operation before it returns.

3. readflog, log_address). Given the log object, this operation reads the entry at
the log address and returns it.

4. read_backward(log, log_address). Given the log object, this operation reads the
log backwards starting at the specified log address, one entry at a time, and
returns each entry.

5. get_top(log). Given the log object, this operation returns the log address of the
last entry that was forced to the log.

6. create(). This operation creates a new log object and returns it.

7. destroy(log). This operation destroys an existing log object.
3.2 Structure of the simple log

As explained in the previous chapter, a /og is a data structure like a stack that grows in
one direction as information is appended to it. There are two kinds of log entries that
contain this information: data entries and outcome entries. Data entries contain the
information about recoverable objects that needs to be recorded on stable storage; outcome
entries indicate the outcomes of actions, that is, whether an action has prepared,
committed, or aborted.

The log as described here is actually used for two distinct purposes: (1) recording
data, and (2) recording action states of the participant and of the coordinator.

As shown in Figure 3-1, a data entry consists of four fields: (1) the unique identifier
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(vid) of the recoverable object, (2) the object type--mutex or atomic, (3) the object value, and
(4) the action identifier (aid) of the top-level action that is preparing. The object “value" is

not the actual object itseif residing in volatile memory but a copy of the object’s version.

Data entry
object uid
object type
object value
action id
Outcome entries for participants
prepared committed aborted
base committed prepared data
object uid object uid
object value object value
action id
Outcome entries for coordinators
committing done
wardian s
action id

Figure 3-1: Data entries and Outcome entries

The object’s unique identifier is some identifier that will never be reused and is unique
with respect to the object's guardian. Since this identifier will not serve any other purpose
except to distinguish recoverable objects from one ancther, the unique object generator can
be a stable counter associated with each guardian, that is, an integer that is incremented
whenever a recoverable object needs a uid. There is no danger of a uid being reused after a
crash because the recovery system knows after recovery of each guardian the last uid that

' was generated and assigned to a recoverable object at that guardian; the stable counter can




28

be reset and new uids generated from that point. (We assume that uids are big enough that
it is highly unlikely that we would run out.)

The action identifier is generated by the Argus system in some fashion, which does
not concern us. We assume that it is given.

Notice in Figure 3-1 that outcome entries come in two varieties, one set for
participants and the other set for coordinators. At certain distinct points during two-phase

commit & participant is in one of three states:

1. prepared if it received a prepare message from the coordinator and successfully
wrote data entries to its associated guardian’s log.

2. committed if it received a commit message from the coordinator.

3. aborted if it received the abort message.
A participant is said to be in one of these three states only after the prepared, committed, or
aborted outcome entry is written to the log~ by the participant.

In addition, there are two special participant outcome entries, base_committed and
prepared_data, that handle certain cases that arise when object versions are written to the
log. The base_committed entry contains the object uid, object type, and object value; the
prepared_data entry has almost exactly the same format as a data entry (missing the object
type). We will explain the purpose of these entries in later sections. For now, we note that
these entries are like combined data and outcome entries. When one of these special entries
is written, it is akin to writing not only the data entry, but also a prepared outcome entry (in
the case of prepared_data) or a prepared outcome entry followed by a committed outcome
entry (in the case of base_committed).

Coordinators can be in one of two states during two-phase commit: (1) committing if
all participants in the action have prepared themselves, and (2) done when all participants
responded committed. A coordinator is said to be in the committing state after the
committing outcome entry appears in the log and is in the done state after the done
outcome entry is written successtully to the log.

Notice that the coordinator is really just like a participant except that it performs some
extra tasks, namely, appending these coordinator outcome entries to the log. Moreover,

depending on the role a guardian plays during two-phase commit, the guardian can be
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either a coordinator or a participant; thus, a guardian’s log could contain outcome entries
for a coordinator when the guardian acts as coordinator and for a participant when the
guardian behaves like a participant.

We will elaborate further on these different outcome entries in the next several

sections when we discuss the writing of objects to the log.
3.3 Writing objects to the log

Recoverable objects are written to the log only when top-level actions commit and to
ensure that effects of top-level actions are made permanent, the system goes through the

standard two-phase commit protocol described in the previous chapter.
3.3.1 The Coordinator

After sending out prepare messages to all the participants (including itself since it is
also a participant), the coordinator waits for replies. |f any participant replies aborted, or if
the coordinator aborts unilaterally, then the coordinator tells the participants to abort via
abort messages. If it hears from each participant that each has prepared it starts the
committing phase.

It all participants respond prepared, the recovery system creates a committing
outcome entry and forces it to the coordinator's log. (Whenever we say that a log entry is
forced to the log, we mean that the force_write operation on the log object is invoked with
the log entry.) At this point the action is committed. The coordinator then sends commit
messages to all the participants (including itself), informing them of its verdict, and waits for
them to respond. When all have responded committed the coordinator creates a done
coordinator outcome entry and forces it to the coordinator's log. Two-phase commit is now

complete.
3.3.2 The Participant

When a participant receives a prepare message from the the coordinator it prepares in
the following way. In general, for each object in the MOS the recovery system constructs

data entries and writes them to the log. If the data entries were written successfully to the
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log, then the recovery system forces a prepared outcome entry to the log. The participant
then replies prepared to the coordinator. If the action is unknown at the participant
{because it never ran there, was aborted locally, or was wiped out by a crash), then it replies
aborted to the coordinator.

When the participant receives the commit message, the recovery system creates a
committed outcome entry and forces it to the participant's log, and then the participant
replies committed to the coordinator. If the participant is told to abort, then the recovery
system creates an aborted outcome entry, and forces it to the participant’s stable log.

The writing of data entries is discussed in detail in the next section.

3.3.3 Writing data entries
3.3.3.1 Copying Data

Figure 3-2 shows how recoverable objects are formatted in volatile memory.

object type
object uid Object type: atomic or mutex
data

Figure 3-2: Format of recoverable objects in volatiie memory

There are three kinds of objects in the Argus world as far as the recovery system is
concerned: atomic objects, mutex objects, and regular objects. These are distinguished by
their "type" field in the object. Regular objects lack the object uid field.

The uid field in objects makes sense for atomic and mutex objects because these
objects are assigned unigue identifiers. The data field is the actual object itself, which may
include volatile references to other objects. If the object is atomic then this data field will
consist of at most two versions during two-phase commit; it the object is mutex then this
data field will be just the current version.

How are these objects residing in volatile memory written to the log? To copy a
recoverable object, the recovery system invokes the incremental copying algorithm
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discussed in Chapter 2 on the data portion of the recoverable abject, in particular, on the
appropriate version {(current or base version if the object is atomic, or the current version if
the object is mutex). As the copy proceeds, the algorithm follows volatile memory
references, replacing references to recoverable objects with their uids and simply copying
any regular objects. The data is now flattened. The recovery system then creates a data
entry containing the object uid, the action id of the action that is preparing, the object type,
and the flattened data. And it is this data entry that is written to the log.

Figure 3-3 shows a possible situation involving atomic, mutex, and regular objects.

o1
atomic
/ ] N\
02 regular o3
mutex data atomic
reqular O4 regular
data atomic data
data

Figure 3-3: Objects in volatile memory

Suppose object 01. which was modified by action T,, is to be copied to the log. The
incremental copying algorithm follows pointers in the data portion of the object. The
reference to object 02 (a mutex object) is replaced with the uid O, itself. The algorithm
copies the regular object and in so doing discovers that it contains a reference to yet
another recoverable object, namely O,, an atomic object; it replaces the reference with O,
itself. And finally, the algorithm replaces the reference to object 03, an atomic object, with
the uid O,.

In fiattened form, O1 looks like Figure 3-4.
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02
data
o4
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Figure 3-4: Flattened Object

3.3.3.2 What to Write

Having discussed the manner in which data is copied to the log as data entries, let us
consider the question of what actually gets written. As we mentioned before, we are
interested only in those recoverable objects that are accessible from the stable variables
because these make up the stable state of the guardian and only the stable state survives
crashes. Recall that, for each action, the Argus system keeps track of both modified objects
and newly created objects in the MOS and does not distinguish between objects accessible
from the stable variables and objects accessible from the volatile variables. It is the job of
the recovery system, then, to separate the objects in the MOS that are accessible from the
stable variables from those objects that are inaccessibie and to write the accessible objects
to the log.

Notice that this concern with accessible objects is really an optimization because we
could simply write out all the recoverable objects at a guardian without regard for
accessibility or inaccessibility; if some inaccessible object were written out to stable storage
it would not matter since it was unreachable anyway, but it would clutter the log with

irrelevant information.

The Problem of Newly Accessible Objects
Recoverable objects are either previously accessible from the stable variables or

newly accessible.
Let us consider previously accessible recoverable objects. If the previously
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accessible object is a built-in atomic object, then in the prepare phase of two-phase commit
the action still holds the necessary write lock on the object (it was granted a write lock in
order to modify the object), which prevents any other action from concurrently modifying the
object. The recovery system can then copy the object’s current version. For mutex objects,
since only one version exists, that version is copied after the recovery system seizes the
mutex lock. In either case, the recovery system copies the version, creates a data entry
containing the object uid, the object type (mutex or atomic), the copied version, and the
action id, and writes the data entry to the log.

Let us consider newly accessible recoverable objects. If an action made some object
accessible that was not accessible before, the object is said to be newly accessible and no
version of it appears in stable storage at all. The only way to make these recoverable objects
accessible is to modify some already accessible object. How do previously inaccessible
objects come about? They come about when an object is newly created or was previously
reachable only from a volatile variable.

Newly accessible objects cause a problem that is illustrated by the following scenario
as depicted in Figure 3-5. Let us examine a guardian's stable state as two different actions
modify it. In the figure, 01. 02, and O3 are atomic objects; and X and Y are stable variables:
X points to object O1 and Y points to object 02. Here, we have simplified the format of
objects somewhat, in order to emphasize the presence of different versions. For atomic
objects, a single box means the base version and that an action holds either no lock or a
read lock; a double box means both current and base version and that an action holds a
write lock. For mutex objects, a single box means the current version. "Int" means any
regular object that is neither atomic nor mutex.,

We look at how the initial situation shown in step 1 is transformed into the situation
shown in step 8.

1. No action holds a lock (read or write) on any recoverable object in the initial
situation. Action T1 had modified objects O, and 02 and had committed.

2. Action T2 obtains a write lock on O, creating a new version. The action creates
a new atomic object O3 with a read \ock. This new version is modified to point to
object O,.

3. Action T, obtains a write lock on O, creating a new version. This version of 0,
is modified by the action to point to 3 which is also pointed to by O,.
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Figure 3-5: Newly Accessible Objects Example
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4. Action T, obtains a write lock on 0O, and modifies it.
5. Action T2 prepares.

6. Action T3 prepares.

7. Action T, aborts.

8. Action T, commits.

9. The Argus system crashes.

The point of this example is this: Even though T2 aborted, object O3 must be
recovered after a crash because it is needed for T3. To ensure survival of a newly accessible
object if it is a mutex object is no problem. The recovery system simply creates a data entry
containing the object uid, the object type mutex, the copied mutex version, and the action id.
This solution is sufficient because the mutex object will be restored from this version even if
the action that is preparing aborts later. For atomic objects, however, this version wouid be
discarded if the preparing action later aborted. To avoid this, we write out the base version
of the object using a special outcome entry, base_committed, containing the object uid, and
the copied object version. '

Actually, the discussion above is slightly simplified. Suppose action A makes an
object newly accessible, and that object had been modified by some other action, B, and B
has already prepared. When B prepared, the object was not copied to the log since it was
not accessible. Therefore, in preparing A, we must write out the object's current version as
well as its base version. The current version is needed in case B commits; the base version
is needed in case B aborts. Therefore, in the case where the newly accessible object is an
atomic object, and this object is write-locked by an action that has prepared, the recovery
system creates, in addition to the base_committed outcome entry, another special outcome
entry, the prepared_data entry, containing the object uid, the copied current version, and
the action id of the modifying action. The recovery system writes this entry to the log.

To enable the recovery system to recognize prepared actions, it maintains for each
guardian an internal table called the Prepared Actions Table (PAT) that contains action ids

of actions that are prepared. This table finds its use in the situation described above: when

the recovery system encounters a newly accessible object that is write-locked by some other
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action, we ask whether the modifying action had prepared by looking up its action id in the
PAT; if the answer is yes, then we copy both the base and current versions; if the answer is
no, then the recovery system just copies the base version. When an action commits or
aborts, its action id is removed from the PAT.

Notice that the objects stored in base_committed and prepared_data outcome entries
are always atomic, so the object type is not really needed in these entries. This is why the
object type is not included in those entries.

Notice that newly created objects must always be newly accessible. They need not be
included in the MOS because they would be discovered through the mechanism described
in the next section. Therefore, we modify the MOS to contain just the cbjects that were

modified by an action.

The Accessibility Set

Thus far, we have assumed that the recovery system somehow knew which
recoverable objects were previously accessible and which recoverable objects were newly
accessible, and we described how these objects were dealt with when written to the log.
The recovery system maintains, for each guardian, an accessibility set (AS) that enables the
recovery system to know which recoverable objects at a guardian are previously accessible
and which are newly accessible.

We define the accessibility set as a set that contains the uids of those objects that are
known to be accessible from a guardian’s stable variables. Why an accessibility set? What
is wrong with the recovery system walking the graph of recoverable objects from the stable
variables in order to determine which objects are accessible? If it reaches some object from
a stable variable, then surely the object must be accessible. The problem is that traversing
the graph can be potentially expensive, especially since the recovery system is obliged to
follow pointers. The accessibility set (AS) is an attractive alternative because it is a simple
matter (and relatively cheap) to iook up an identifier and ask whether the object to which it
refers is accessible: (1) if the uid is in the set, then the object is accessible from the stable
variables and should be copied to the log; (2) if the object uid is not in the set, then either the
object is not accessible, or the object is newly accessible and should be copied to the log.

Accessibility is based on a guardian's stable variables, so it is necessary for the
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recovery system to know about these variables. For the purposes of this thesis, we can
imagine that the guardian’s stable variables are collected in a single, recoverable object with
a predefined uid. This object contains the association between each stable variable and the
uid of the recoverable object directly accessible from it. We assume that this object is
created with its uid when the guardian itself is first created. The recovery system knows the
uid, so that on recovery after a crash it can initialize the stable variables to their recoverable

objects.

Processing the MOS Using the Accessibility Set

Figure 3-6 shows a situation involving a newly accessible object. We illustrate how a
prepare message is processed using the accessibility set.

Stable variable X points to atomic object 01. which in turn points to atomic object 02.
The accessibility set consists of uids O, and 02; O3 is not in this set because it is not
accessible from X. Suppose action T1 was granted a write lock on object 02. thus creating a
new version (figure a), and the action modified 02 to point to object 03. another atomic
object (figure b). O3 is now newly accessible since it was not previously accessible. The
action holds a read lock on this object. Action T1 prepares at this guardian. In the call of the
recovery system prepare operation are two arguments, the action id T1 and the MOS
containing 02. What does the recovery system do?

1. An empty newly accessible object set (NAOS) is created. This set will contain
the objects that the recovery system determines are newly accessible.

2. The recovery system checks the accessibility set (AS) for the object uid O2 and
finds that it is present, and therefore the object is indeed accessible. The
current version should be copied to the log.

3. As the current version is copied, the recovery system finds a reference to
another recoverable object, O,. It checks the AS for the object uid, does not
find it, and inserts the object into the NAOS. This set is processed after the
recovery system has processed every object in the MOS.

4. The recovery system creates a data entry that contains the object uid 02, the
object type atomic, the copied version, and the action id T, and writes the entry
to the log.

5. The recovery system has finished processing the MOS {consisting of object 02).
and now considers the NAOS consisting of object O,,. Since the object is in this
set the recovery system knows the object is newly accessible and must be
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treated differently. Since the object is an atomic object that the action has a
read lock on (and thus there is only a single version), the recovery system
creates an outcome entry, base_committed, consisting of cbtject uid O,, and the
copied object version. The recovery system writes the entry to the log, deletes
object O3 trom the NAOS, and inserts uid O, into the AS.

6. The NAOS is empty, so the recovery system is done. It has determined which of
the objects in the MOS were accessible and has written the corresponding data
entries to the log. It forces a prepared outcome entry to the log.

7. The AS now consists of object uids O1 . 02, 03.

X X
01 [ A\ |"__§] 03 o1
\ int
int int :
t
02T Nint 02 "
a. T1 gets write lock on 02 l
J 03

int

b. T1 modifies 02 to point to O3
Figure 3-6: Newly Accessible Objects

Notice that there are two phases. First, the recovery system processes every object in
the MOS (which was one of the two arguments in the cal! of the prepare operation), copying
current object versions and writing data entries to the log as it goes along. As these object
versions are copied, recoverable objects not previously accessible (that is, their uids are not
already in the AS) may be revealed as newly accessible; these objects are placed in another
set, the NAOS, consisting of just newly accessible objects.

Second, when the recovery system has processed the MOS, it then proceeds to
process the NAOS, if it is not empty. After each object is processed it is deleted from the

NAOS and added to the AS. Other recoverable objects may become newly accessible and
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are added to the NAQOS, so that they, too, will be processed by the recovery system. This
procedure continues until the NAOS is empty, which means that the recovery system is done
writing the data entries on behalf of some preparing action, and can write the prepared
outcome entry to the log.

As actions execute at some guardian and modify objects, they may make recoverable
objects that were once accessible from the stable variables inaccessible. Their uids
continue to remain in the accessibility set and so the set grows larger over time. The
accessibility set, then, can be thought of as a kind of superset of the recoverable objects
that actually constitute a guardian’s stable state in the sense that it may contain inaccessible
objects in addition to the accessible objects of the stable state. If the set grows too large,
then the set should be trimmed. The recovery system would start up a process in parallel
with normal processing at the guardian and traverse the recoverable objects accessible
from the stable variables. During the traversal it would fill an empty AS with the object uids of
accessible recoverable objects. When the process has completed its task it intersects the
new set with the old set to yield a new set, which is the new accessibility set. The reason the
two sets are intersected instead of the new one supplanting the old is that during the
traversal newly accessible objects may be included in the new AS; they should be eliminated
from the new AS because newly accessible objects are treated differently and the

intersection accomplishes this.
3.3.3.3 The Writing Algorithm

Let us summarize the algorithm for writing recoverable objects to the log as data
entries. We assume that a participant has received the prepare message from the action’s
coordinator.

1. Create an empty NAOS.

2. Check the AS. It AS is empty, then the recovery system fetches those objects
directly accessible from the stable variables and inserts them into the NAOS.
(This situation arises only when a guardian has just been created.)

3. V object € MOS do
a. Check the AS.
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b. If object uid € AS, and therefore the object is accessible, then the
recovery system copies the object’s current version. The recovery system
creates a data entry that contains the object vid, the object type (atomic
or mutex), the copied object version, and the action id. The entry is
written to the log. As the object version is copied, the recovery system |
flattens the data and checks the AS for every recoverable object it comes
across. If uid € AS then the object is newly accessible and is inserted in
the NAOS.

c. If the object vid § AS then ignore it.

4. ¥ object € NAOS do

a. If this action has a write lock on the object then both the base version and
the current version are copied. For the base version the recovery system
creates a base_committed entry containing the object uid, and the copied
base version and writes the entry to the log. For the current version, the
recovery system creates a data entry containing the object uid, object
type, copied current version, and action id and writes the entry to the log.

If this action has a read lock on the object then the recovery system
creates a base_committed entry containing the object uid, and copied
current version and writes it to the log.

If this action has no lock, but some other action A holds a write lock, then
the recovery system checks the PAT for A. If A € PAT then that action has
prepared, and both base and current versions must be copied. The base
version is copied as before; a prepared_data outcome entry is created
and contains the object uid, copied current version, and action id A of the
modifying action. If A € PAT or if there is no other action A holding a
write lock on the object, then the recovery system copies the base version
as above; the base_committed entry is written to the log.

b. Insert the object uid in the AS and delete the object from the NAOS.

c. As the object version is copied, new recoverable objects may become
accessible. They are added to the NAOS and will eventually be
processed.

5. The participant forces the prepared outcome entry to the log and then responds
prepared to the coordinator.

3.4 Recovering objects from the log

After a crash, the recovery system reads the log backwards starting with the last

outcome entry, constructs tables to help keep track of action states and objects it has seen,

and reconstructs each recoverable object in volatile memory. When it has finished, the
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stable state of the guardian has been restored.

reader an intuitive idea of what the algorithm does. Having sketched the algorithm, we
present four log scenarios, each chosen to illustrate certain situations that can arise and the
manner in which the algorithm deals with them. The first scenario concerns only built-in
atomic objects and their versions. The second scenario concerns the complications to the
algorithm introduced by mutex objects. The third scenario shows how newly accessible
recoverable objects are handled. The fourth scenario shows a guardian that acts both as a
coordinator and as a participant. We then explain how uids are turned into volatile memory

references. Finally, we present the full-fledged algorithm for recovering objects from the

We first sketch the algorithm to emphasize the important aspects and to give the

log.

3.4.1 Sketch of the General Aigorithm

1. Create three tables: (1) an object table (OT) that maps object uids to both object
states (prepared or restored) and object locations in volatile memory, (2) a
coordinator action table (CT) that maps action ids to coordinator action states
(committing and done, where committing also has a list of guardian ids of
guardians involved in the action), and (3) a participant action table (PT) that
maps action ids to participant action states (prepared, committed, and aborted).

2. Read the log backwards, starting with the last outcome entry in the log. For
every log entry, process it in the following way.

a. Fill the three tables with appropriate information (action ids and action
states like prepared, committed, and aborted).

b. If necessary, copy the appropriate object version to volatile memory.

3. Make a final pass over volatile memory, replacing object uid references with
volatile memory references. Once this pass is completed, all recoverable
objects have been reconstructed, and the guardian’s stable state has been
restored.

4. Create a new, empty AS, and traverse the stable state, filling the AS with the
uids of those objects that are actually accessible.

5. Return these three tables to the Argus system in order to resume the tasks of the
participants and coordinators.




3.4.2 Log Scenarios

Scenario 1--atomic objects

Suppose the situation depicted in Figure 3-7 exists at a participant's stable log after a
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Figure 3-7: Log of atomic objects after a crash

In this figure (and all figures of this sort) the beginning of the log is on the left and the end of
the log is on the right; the log grows to the right. The symbols in the log depicted have the
following meaning. T, and T2 are actions. Action T, has committed; action T2 has
prepared. O, and 02 represent unique object identifiers; and V1 and V2 are the object
values, that is, the versions of objects.

Let us develop some notation to make it easier to talk about data entries and outcome

entries in alog. Let data entries be represented as quadruples:
{object uid, object type, object version, action identifier>

so a data entry might look like <O,,atomic,V,,7,>, where O, is the object uid, atomic
indicates that the object version is atomic, V‘ is the object version, and T1 is the action id.

Let us represent outcome entries as doubles of
<outcome, action identifier>

and so the first two outcome entries would look like (prepared.T1> and <committed.T,>. The
only exception is committing, which also includes a list of guardian ids. Furthermore, we

represent the special outcome entries in the following way:
<bc, object uid, object version>

where "bc” is short for base_committed;
<pd, object uid, object version,action id>

where "pd" is short for prepared_data.
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The system builds two tables: (1) a participant action table (PT) for remembering the

action identifiers of actions that either prepared, committed, or aborted.
PT: action id — participant action state

where participant action state = {prepared, committed, aborted}; (2) an object table (OT)
maps uids of objects the system has seen to the object state-- either prepared if the action
that modified the object had prepared but not committed or restored--and volatile memory

addresses. These are addresses of the objects that were restored to volatile memory.
OT: object uid — object state + vm address

where object state = {prepared, restored} and vm address is a volatile memory address.
The objects recorded in the object table will be precisely those that were written by actions
that either prepared or committed and whose action identifiers appear in the PT.

In reconstructing the stable state of the guardian, the recovery system begins reading
the log backwards, one entry at a time, starting with the last outcome entry appended to the
log before the crash (it invokes the get_top operation on logs to get the log address of the
last outcome entry). The following is a step-by-step explanation of how the objects in this
log are recovered; each step refers to a particular log entry, so step 1 explains the very last
log entry, step 2 the second to the last log entry, and so on to the beginning of the log.

1. For outcome entry <prepared, T_>, the recovery system enters the action id T
into the PT, and sets the assocnazted action state to prepared. The state for the
action id T, is prepared, which means that the action had successtully prepared
during two- phase commit but had not yet been told to either commit or abort.

2. For data entry <O ,atomic, V ,T..> the recovery system checks the PT for the
action id and the assomated act2 ion state. The state is prepared. The recovery
system checks the OT for the object uid, 01, finds that it is not present, enters
the uid into the OT, and sets the object state to prepared. The recovery system
copies V into volatile memory and sets the vm address to the object address in
volatile memory, it represents the current version of the object. What this object
state prepared says is that the latest committed version of this object must be
copied to volatile memory as well. Since the action held a write-lock at the time
of the crash, the action is granted a write-lock on the object.

3. For outcome entry <committed,T1>. the recovery system enters the action
identifier, T,, into the PT, setting the associated action state to committed.

4. For outcome entry <prepared, T > that the recovery system next considers, it
consults the PT once again to check the action state associated with the action
identifier; since the state is already committed, the recovery system ignores the
entry.
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. For data entry <O,,.atomic, V ,T.> the recovery system consults the PT, noticing
that the action |d2r is in the I!’T and that the action state is committed. The
object uid does not appear in the OT, and so the recovery system enters the uid
O, into the OT, copies V, into volatiie memory as the current version for an
atomic object, sets the object state to restored, and sets the vm address to the
object address in volatile memory.

6. For outcome entry <bc,O V2> the recovery system knows that V,, of object O, i
a base version (it is a base _committed entry); it checks the 012 finds that fhe
current version of the object has already been copied to volatile memory, and
ignores the entry.

7. For outcome entry <bc,0,,V.>, the first log entry, the recovery system knows
this is base_committed entry and that V1 is a base version. The object uid, O
already exists in the OT with state prepared. The recovery system copies V mto
volatile memory as the base version for an atomic object and resets the ob;ect
state in the OT to restored.

8. Finally, the recovery system makes a pass over the objects in volatile memory to
translate any object uid references to volatile memory references. We will
elaborate on this later. The stable counter is reset to 02.

9. The recovery system creates an empty AS, traverses the stable state in volatile
memory from the stable variables, and fills the new AS with the uids of
accessible objects. In this case, the new AS contains uvids O, and O,, assuming
that O, and O, are accessible.

10. The PT and OT tables are returned to the Argus system in order to resume the

participant.
At algorithm's end, the PT and the OT contain the following information.
PT or
T1 committed 01 restored vm address
T2 prepared 02 restored vm address

Scenario 2--mutex objects

Suppose the situation depicted in Figure 3-8 exists at a participant’s log after a crash.
O, and O, are mutex objects. Action T, committed, and action T, prepared successfully,
but aborted later.

Unlike built-in atomic objects, a mutex object has only one version, namely, the
current version. On recovery the current version of a mutex object is the last data entry
written in the log by an action that prepared successfully (the prepared outcome entry for
that action is in the log), regardless of whether said action later aborted or committed.

-~y
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Figure 3-8: Log of mutex objects following a crash

According to the semantics for mutex, what matters is that the action prepared. We explain

how recovery is done for the recoverable objects in the log depicted in the figure.

The recovery system reads the log backwards starting with the last outcome entry:

1. For outcome entry <aborted,T, >, the recovery system enters the action id into
the PT and sets the action state to aborted.

g 2. For outcome entry <prepared,T,>, the recovery system checks the PT and
notices that action T, has aborteé the entry is ignored.

3. For data entry <O, ,mutex, v, T o the recovery system sees that action T2 has
aborted. Because V, is a mutex object version, it is the current version of mutex
for the object, even t hough the action that modified it aborted. The object uid is

; not already present in the OT. The recovery system copies V, into volatile

' memory and remembers the address of the object. it enters the uid O, into the

OT, sets the object state to restored, and sets the vm address to the object

address.

4, For outcome entry <committed T1> thé recovery system enters the action id T
into the PT and sets the associated action state to committed.

: 5. For outcome entry <{prepared, T1> the recovery system checks the PT. The
i action state associated with the action id T is already committed, so this entry
H is ignored.

?

|

6. For data entry <O mutex,V,, T, >, the recovery system checks the PT and knows

that action T, has commltted ]t looks up O2 in the QT it is not present in the OT

- so the recovery system copies the object version V2 into volatile memory and

¢ remembers the object address. The object uid is entered into the OT with object
¢ state restored and the vm address of the object.

7. For the (0, mutex,V,,T,> data entry, the recovery system checks the PT and

sees that action T1 has committed. The object uid is already in the OT, and

although object O is a mutex object it is not copied because a later version has
been copied.

§ 8. The recovery system makes a final pass over volatile memory, replacing any uid
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references with their appropriate volatile memory references. The stable
counter is reset to O,,.

9. The recovery system creates an empty AS, traverses the stable state in volatile
memory from the stable variables, and fills the new AS with the uids of
accessible objects. In this case, the new AS contains uids O, and O , assuming
thatO and O were accessible.

10. The PT and OT tables are returned to the Argus system in order to resume the

participant.
At algorithm's end, the PT and OT contain the following information.
PT o7
T1 committed 01 restored vm address
T2 aborted 02 restored vm address

Scenario 3--newly accessible recoverable objects
The situation depicted in Figure 3-9 exists at a guardian's log, after a crash. This

situation would arise as a result of the scenario described in Figure 3-5 occurring before the

crash.
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Figure 3-9: Log following a crash

The recovery system reads the log backwards starting with the last outcome entry.

1. For outcome entry <committed T3) the recovery system enters the action id T
into the PT and sets the associated action state to committed.

2. For outcome entry <aborted,T,> the recovery system enters the action id T into
the PT and sets the associated action state to aborted.

3. For outcome entry {prepared,T > the recovery system checks the PT and sees
that the action has already commmed and ignores the entry.

4, For data entry <02 at, V T > the recovery system checks the PT for T, and finds
that the action is commmed Since 0 is not in the OT, it copies V into volatile

i
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memory as the current version and remembers the volatile memory address.
The object uid O2 is entered into the OT, the object state is set to restored, and
the vm address is set to this object address.

5. For outcome entry <prepared,T2> the recovery system ignores this entry
because the action state associated with the action id is aborted.

6. For data entry (O3 atomic V3 T2> the recovery system checks the PT and
notices that T_ has aborted. "Since the object is atomic, the recovery system
ignores the enfry

7. For outcome entry <bc,0O ,V3>, the recovery system knows that this is a base
version. It checks the Oaf , and since it is not present, the recovery system
copies V:3 to volatile memory as the base version for an atomic object and
remembers the address of the copied object in volatile memory. The recovery
system enters the object uid O, into the OT, sets the object state to restored,
and sets the vm address to the %1ect address.

8. For data entry <O, atomic,V,,T.>, the recovery system checks the PT and sees
that the action id has action stafe aborted, which means that the action aborted.
Since the object is atomic, the entry is ignored.

9. For outcome entry <committed,T >, the recovery system enters the action id T,
into PT with associated action state committed.

10. For outcome entry <prepared,T >, the recovery system consults the PT and sees
that the action id has action state committed. The entry is ignored.

11, For outcome entry <bc, 0 >, the recovery system knows that V, is a base
version. It checks the OT ancf finds O with object state restored, so%he entry is
ignored because the latest version has already been copied.

12. For outcome entry <bc,0 V >, the recovery system knows that V1 is a base
version. It consults the dT does not find O there, and copies V, to volatile
memory as a base version, remembering the address in volatile memory. It
enters O, into the OT, sets the object state to restored, and sets the vm address
to the object address.

13. The recovery system makes a final pass over volatile memory, replacing any
remaining uid references with their appropriate volatile memory references.
The stable counter is reset to O,.

14. The recovery system creates an empty AS, traverses the stable state in volatile
memory from the stable variables, and fills the new AS with the uids of
accessible objects. In this case, the new AS contains vids O,, 02. and 03. since
the objects are accessible.

15. The PT and OT are returned to the Argus system in order to resume the
participant.
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At algorithm's end, the PT and OT contain the following information.

PT 14
T1 committed 01 restored vin address
T2 aborted 02 restored vm address
13 committed 03 restored vm address

Notice that the stable state of the guardian in volatile memory following recovery will
look exactly like the situation that existed before the crash in Step 8 of Figure 3-5, which is

what we wanted.

Scenario 4

Suppose the situation depicted in Figure 3-10 exists at a guardian's log, after a crash.
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Figure 3-10: Coordinator’s log following a crash

In this scenario we show the entries that are written to the log for the coordinator of an
, action during two-phase commit.
[ To recover the objects from the guardian’s log in Figure 3-10, we need to extend the

t algorithm to include coordinators. Let us add a third table, which stores information about

coordinator states. Thus,
CT: action id — coordinator action state

where coordinator action state = {committing, done}. committing contains a list of the
guardian identifiers that were involved in the action.

Notice that in the guardian’s fog a particular ordering of outcome entries holds true if
the top-level action committed successfully: prepared, committing, committed, and done.

Why? When each participant has prepared, it forces the prepared outcome entry to its log.

The coordinator, upon hearing that everyone has prepared, forces the committing entry to
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indicate that the coordinator is now in the second phase of two-phase commit. The

coordinator instructs the participants to commit, and each does so by forcing the committed ,

entry in the log. When all participants have informed the coordinator that they have ‘

committed, the coordinator forces done to the log; the top-level action has compieted.
The system reads the log backwards starting with the last outcome entry.

1. For outcome entry <done,T_> the recovery system knows that action T, has
completed two-phase commit. It enters the action id into the CT and sefs the :
coordinator action state to done. :

2. For outcome entry <committed T2> the recovery system enters the action id, T _
into the PT and sets the participant action state to committed. ;

3. For outcome entry <committing <P, ,P ,P3>,T2>. the recovery system checks the

CT. The associated action state is done, which means the action already

completed, so this entry need not be considered any further. If, however, the

x action was not done then the system would enter the action id into the CT, set

the action state to committing and include the list of guardian identifiers of
: guardians that were participating in two-phase commit.

- 4. For outcome entry <prepared,T2>, the recovery system checks the PT and

L notices that the associated action state is committed. The recovery system
ignores the entry (if the action has already committed, then it must have
prepared).

5. For data entry <02,atomic,V2,T2>, the system looks up the action id T2 in the PT
and finds that the action had committed. it then checks the OT for object uid
02 finds that it is not there, copies V into volatile memory as the current
version, and remembers the volatile memory address. The object uid is entered
into the OT, the object state is set to restored, and the vm address is set to the
object address.

6. For outcome entry <committed,T,>, the recovery system inserts T1 into the PT
and sets the action state to committed.

7. For outcome entry <{prepared, T >, the recovery system checks the PT and
! notices that the associated actaon state is committed. This entry is ignored.

8. For outcome entry <bc,0,,V o the recovery system knows that V,_ is a base
version. 1t checks the 6T finds the object uid present with %ject state i
restored, and ignores the entry.

9. For data entry <O1 ,atomic, V1 T,>, the recovery system consults the PT for T

and notices that the action is commmed Since O, is not in the OT, the recovery ¥
' system copies the object version V, into voiatile memory as the current version
for an atomic object and remembers the object address. )t then enters it into the
OT, sets the object state to restored, and sets the vm address {0 the object
address.
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10. For outcome entry <bc,0,,V,>, the recovery system knows that the object
version is a base version. It checks the OT for the object uid. The object state is
restored, so the recovery system knows that the object version had already been
copied, and ignores the entry.

11. The recovery system makes a final pass over volatile memory, replacing any
remaining uid references with their appropriate volatile memory references. The
stable counter is reset to O,,. |

12. The recovery system creates an empty AS, traverses the stable state in volatile
memory from the stable variables, and fills the new AS with the uids of
accessible objects. In this case, the new AS contains uids O1 and 02, assuming
that O, and O, were accessible.

13. The CT, PT, and OT tables are returned to the Argus system in order to resume
the respective tasks of the participants and coordinators.

At algorithm’s end, the participant's action table (PT), the coordinator’s action table

(CT), and the object table (OT) contain the following information.

PT CcT (0}
T1 committed T2 done 01 restored vm address
T2 committed 02 restored vm address

Since the table contains no action identifier whose state is committing then no

coordinator needs to be restarted.
3.4.3 Turning uids into pointers

Given some object version in a data entry, a base_committed entry, or a
prepared_data entry, we have not exactly said how uids in the version are changed to
volatile memory addresses. We address this issue in this section.

Suppose we have an object version in a data entry that is to be restored to volatile
memory. The volatile memory format of the object is constructed for this object versicn but
the uid is replaced with the volatile memory address of a special object containing the uid,
assuming that the object's address in volatile memory is not already known. (Since uids arc l
not necessarily the same size as addresses, we require a different format.) Now when the
recovery system makes a final pass over volatile memory it follows pointers and checks to
see what they are pointing at. If a pointer points to a special object containing the uid, the
recovery system checks the OT for the uid and fetches the reference to the real object in

volatile memory. This reference replaces the reference to the special vid object.
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3.4.4 The General Recovery Algorithm

The following is the general algorithm for recovering objects from a guardian's log.
1. Create three tables:

a. An object table (OT) that maps object uids to object states--prepared or
restored--and volatile memory addresses of objects. Each entry is of the
form <uid, object state, object vim address>, where the uid is the lookup
key.

b. A coordinator action table {CT) that maps action ids to coordinator action
states: committing and done. Each entry is of the form <aid, coordinator
action state>, where the aid is the lookup key. In addition, the committing
state has a list of guardian ids of the participants involved in an action.

C. A participant action table (PT) that maps action ids to participant action
states: prepared, committed, and aborted. Each entry is of the form <aid,
participant action state>, where the aid is the lookup key.

2. Read the log backwards, starting with the last outcome entry in the log. V log
entry, process it in the foliowing way.

a. prepared outcome entry. If aid € PT then ignore the entry. If aid € PT
then insert <aid, prepared state> in the PT.

b. committed outcome entry. Insert <aid, committed state> in the PT.~
C. aborted outcome entry. Insert aid, aborted state> in the PT,

d. base_committed outcome entry. If uid € OT then check the object state:
if prepared then copy the object version to volatile memory as the base
version, and set the object state to restored. If uid € OT then copy the
object version to volatile memory as the base version if the object is
atomic, and insert <uid,restored state, object vm address> into the OT.

e. prepared_data outcome entry. Check the PT:

i. If aid € PT and has participant action state aborted then the entry is
ignored. If aid € PT and has state committed, then check the OT. If
uid € OT then consider the object state: if prepared then copy the
object version to volatile memory as the base version of an atomic
object and set the object state to restored, if restored then ignore
the entry. If uid € OT then copy the object version to volatile
memory as the base version and insert <uid, restored state, object
vm address> into the OT.

ii. If aid € PT, then the action must have prepared (the real prepared
outcome entry appears earlier in the log). and so <aid, prepared
state> is entered inlo the PT. The object version is copied to volatile
memory as the current version of an atomic object and the aid is
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granted a write lock. <uid, prepared state, object vm address> is
inserted in the OT.

f. committing outcome entry. If aid € CT then ignore the entry. If aid € CT
then insert <aid, commutting state(gids)> into the CT, where gids are the
guardian identifiers of the participants.

g. done outcome entry. Insert <aid, done state in the CT.

h. Data entry. The recovery system checks the PT for the aid of this entry.

i. If aig € PT and the associated participant action state is committed
then check the OT tor the object uid. If uid € OT then consider the ,
object state. If prepared state then copy the object version to q
volatile memory as the base version if the object is atomic (if mutex,
then ignore entry) and reset the object state to restored; if restored
state then ignore the entry because the object has already been
copied. If uid § OT then copy the object version to volatile memory
as the base version if the object is atomic or as the current version if
the object is mutex. Insert <uid, restored, object vm address> into
the OT.

i. If aid € PT and the associated participant action state is prepared
then check the OT for the object uid. If uid € OT then copy the
object version to volatile memory: if atomic object, then copy as the
current version, grant aid a write lock, and insert <uid, :
prepared,object vm address) into OT; if mutex object, then copy the {
version and insert <uid, restored,object vm address> into OT. If uid
€ OT and object state is restored, then ignore the entry because the
object has already been copied.

i. If aid € PT and the participant action state is aborted then consider
the cbject type. if the object is atomic, then the recovery system
ignores this entry. If the object is mutex, then check the OT for the
object uid. If uid € OT then ignore the entry because the mutex
object has already been copied. If uid § OT then copy the object
version to volatile memory as the current version and insert <uid,
restored,object vm address> into the OT.

3. The recovery system makes a final pass over volatile memory, replacing object
uid references with volatile memory references. The stable counter (used to |
generate uids) is reset to the largest uid stored in the OT. Now, the recoverable ‘
objects have been reconstructed in volatile memory, and the guardian's stable
state has been restored.

4. The recovery system creates an empty accessibility set and traverses the stable
state once more, this time constructing a new set with object uids so that it now
represents the actual stable state.

5. These three tables are returned to the Argus system in order to resume the tasks
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Chapter Four

Hybrid Log -- Writing and Recovery Algorithms

The previous chapter set forth the basic ideas, in the context of the simple log,
concerning the format of log entries, the algorithm for writing recoverable objects to the log,
and the algorithm for recovering these objects from the log. [n this chapter we first reiterate
the advantages and disadvantages of both the pure log scheme and the shadowed objects
scheme, as covered in Chapte- 1, and argue in favor of a hybrid log, which combines the
virtues of both schemes. Next, we present the new format for data and outcome entries for
the hybrid log and, rather than explain again the algorithm for writing recoverable objects to
the hybrid log, we note just the differences from Chapter 3's exposition. Then we present the
new algorithm that recovers objects from the hybrid log, and again, only the differences from
Chapter 3 are emphasized. Finally, we explain the notion of early prepare and the extent to

which it affects the writing and recovery algorithms for the hybrid log.
4.1 Simple log versus Hybrid log

In Chapter 1 we introduced two possible approaches for organizing stable storage,
namely, the pure log scheme and the shadowed objects scheme. We noted that these two
schemes actually represented the two ends of a spectrum of stable storage organization and
pointed out that other schemes indeed existed between these extremes. Let us summarize
the advantages and disadvantages of these two schemes:

1. Log => tast writing, but slow recovery

2. Shadowing =% sfow writing, but fast recovery
Naturally, we would like an organization that permits both fast writing and fast
recovery, but that is probably an unattainable ideal in practice. Instead, we have identified a

scheme that falls between the two ends of the spectrum and thus is a kind of hybrid of the

pure log scheme and the shadowed objects scheme. What are the advantages of this hybrid
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log scheme over the other two schemes? First, it has the virtue of the pure log in that writing
is tairly fast (append-only memory makes writing fast). Second, it has the virtue of shadowed
objects in that the table is incrementally written into a log entry for easy access to objects in
the log, which makes recovery fairly fast, though slower than the shadowed objects scheme
in its unadulterated form.

Let us examine this hybrid log in more detail.
4.2 Writing objects to the log

The hybrid log scheme retains the structure of the log and looks very much like the
simple log we dealt with in the last chapter, but with a basic difference--the format of the log
entries themselves. Where does the map from the shadowed objects scheme fit in? Rather
than being maintained as a single entity, the map is distributed over the log entries, in
particular, the prepared outcome entries; in other words, the map is implicit in all the
prepared outcome entries put together.

Figure 4-1 shows the new format of log entries for the hybrid log. There are three
differences between the new format and and old format of entries for the simple log. First
and perhaps the most crucial difference is that the prepared outcome entry now contains
information in addition to the action identifier of the preparing action. A list of <uid,iog
address> pairs where the uid is the object’s unique identifier and the log address is the
address of the data entry containing the object version. One pair is created for each
recoverable object that was written to the log as a data entry for the action. Notice that this
is a portion of the map from the shadowed objects scheme. Second, data entries no longer
need the action ids and object uids since the prepared outcome entries contain that
information. Third, each outcome entry--prepared, committed, aborted, committing, done,
base_committed, and prepared_data--has another field, the log pointer field that contains
the log address of an outcome entry. This field is used to link each outcome entry in the log
to the previous outcome entry, forming a backward chain of outcome entries: the head of
the chain is the last outcome entry and the end of the chain is the very first outcome entry.

Suppose we have the hybrid log, depicted in Figure 4-2 after an action has prepared.

During the prepare phase of two-phase commit, the recovery system writes data entries to




Data entry
object type
object value
Outcome entries for participants
prepared committed aborted
<uid,log address> action id action id
log pointer log pointer
action id
log pointer
base committed prepared data
object uid object uid
object value object value
log pointer action id
log pointer
Outcame entries tor coordinators
committing done
guardian ids action id
action id log pointer
log pointer o

Figure 4-1: New format of log entries

the participant’s log for some action and internally keeps track of the object uids and the log
addresses of the data entries. When it is finished, it creates a prepared outcome entry
consisting of the list of <uid, log address> pairs and the log address of the previous outcome
entry and forces the entry to the log. Notice that the recovery system must keep track of this
information for every preparing action. The only other difference is that each of the other
outcome entries is linked via the log pointer field to the previous outcome entry before it is

forced to the log.
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Figure 4-2: Log after the prepare phase

4.3 Recovering objects from the log

In this section we present a sketch of the general recovery algorithm. One log
scenario demonstrates the manner in which the new recovery algorithm recovers objects

from the log. We then give a detailed explanation of the differences between this recovery

algorithm and the simple log's recovery algorithm.
4.3.1 Sketch of the General Algorithm

1. Create three tables: (1) an object table (OT) that maps object uids to both object
states (prepared or restored) and object locations in volatile memory, (2) a
coordinator action table (CT) that maps action ids to coordinator action states
(committing and done, where committing also has a list of guardian ids of
guardians involved in the action), and (3) a participant action table (PT) that
maps action ids to participant action states (prepared, committed, and aborted).

2. Read the log backwards, starting with the last outcome entry in the log. For
every outcome entry on the backward chain of outcome entries, process it in the
following way:

a. If the outcome entry is aborted, committed, committing, or done then fifl
the three tables with appropriate information (action ids and action states
like prepared).

b. If the outcome entry is a prepared entry, then for each <uid, log address>
pair in the entry check the OT and determine whether or not to copy the
object version into volatile memory; if it needs to copy the object version it
follows the log address pointer to the data entry itself.
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\ c. If the outcome entry is base_committed or prepared_data then, it the
i object is not already present in the OT, update the OT and copy the object
‘ version to volatile memory for an atomic object.

3. Make a final pass over volatile memory, replacing object uid references with
volatile memory references. Once this pass is compieted, all recoverable
objects have been reconstructed, and the guardian's stable state has been .
restored. !

4. Create a new, empty AS, and traverse the stable state, filling the AS with the
; uids of those objects that are actually accessible.

5. Return these three tables to the Argus system in order to resume the tasks of the
participants and coordinators.

4.3.2 Log Scenario and Recovery

Suppose the situation depicted in Figure 4-2 exists at a guardian's log after a crash.
O, is a built-in atomic object and 02 is a mutex object. The stable state of this guardian is
restored in the following way.

The recovery system reads the log backwards starting with the last outcome entry.

1. For outcome entry <prepared,<<O L )(0 b >> T2> the recovery system
checks the PT for the action id, en%ers it snnce it is not there, and sets the
participant action state to prepared.

a. For the <O1 L, > pair the recovery system checks the OT for the uid, finds it
is not there, follows the L, pointer to the data entry, and copies the object
verswn v, ) to volatile memory as the current version for an atomic object; i

is granted a write lock and the recovery system remembers the object ‘
aédress The recovery system enters the uvid into the OT, sets the object ‘
state to prepared, and sets the vm address to the object address. .

b. For the <O,,L_> pair the recovery system checks the OT, follows the log
address L 2to%he data entry and copies the object version (V2) to volatile
memory as the current version for a mutex object, and remembers the
object address. It also enters the uid into the OT, sets the object state to
restored, and sets the vm address to the object address.

The recovery system follows the log pointer to the previous outcome entry.

2. For outcome entry <committed,T1> the recovery system enters the action id T,
into PT and sets the participant action state to committed. It follows the log
pointer to the previous outcome entry.

3. For outcome entry <prepared, <<O L,><0 L >,T,> the recovery system looks
up the action id T in the PT and fmds that &e actnon had already committed.

?
i
1
H
l.
i
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a. For the <O,, L,> pair the recovery system looks up O‘ in the OT and finds
it present with object state prepared. Since the action also committed,
this is the latest committed version and the recovery system foliows the
log address L1 to the data entry and copies the object version V. to
volatile memory as the base version of O,. It also resets the object state to
restored.

:’ b. For the <O,, L,> the recovery system looks up O, in the OT and finds it
\ present wif°h o%ject state restored. The recovery system does nothing '
b since the object version has already been copied to volatile memory.

The recovery system follows the outcome entry log pointer to the previous
outcome entry.

4, For <bc,0,,V,,nib, the recovery system does not bother checking the PT but
consults the OT. The object uid already appears in the OT with object state
restored, so the system ignores the log entry and goes on. The address of the
log pointer field for this log entry is nil, so we are finished. ;

5. The recovery system makes a pass over volatile memory, translating object uid
references to their volatile memory references. Once this pass is completed, all
recoverable objects have been reconstructed, and the guardian’s stable state
has been restored. The stable counter is reset to 02.

6. The recovery system creates a new, empty AS, and traverses the stable state,
filling the AS with the uids of those objects that are actually accessible. In this
case, the AS consists of uids O1 and 02, assuming that the objects are
accessible.

7. The CT, PT, and OT are returned to the Argus system, so that the respective
tasks of the participants and coordinators can be resumed.

At algorithm's end, the object table (()T). the participant’s action table (PT), and the

coordinator’s action table (CT) contain the following information:

(14 PT CcT
01 restored vm address T1 committed
02 restored vm address T2 prepared

4.3.3 The General Recovery Algorithm i

In this section we point out how Chapter 3's general recovery algorithm is changed to

g,

accommodate the hybrid log scheme.
First, instead of processing every log entry (both data and outcome) as the log is read

backwards, the recovery system processes every outcome entry, each of which is linked to

the previous outcome entry, and when it has finished with one outcome entry it follows the
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log pointer in the entry to the previous outcome entry. This continues until there are no
more outcome entries, at which time recovery is complete. Thus, the main loop is as follows:

V outcome entry on backward chain do i
process it
copy appropriate object versions to volatile memory
end

Second, the prepared outcome entry, as noted before, contains more information. In
particular, it contains the object uids and log pointers to the corresponding data entries;

these objects were either modified by the preparing action or made newly accessible. The

recovery system processes each <uid,log address> pair in virtually the same way it did for
data entries except that it need not follow the log pointer to the data entry unless it has to
copy the object version.

Otherwise, the recovery algorithm for this hybrid log scheme is the same as in the

simple log scheme.
4.4 Early prepare

In Chapter 3 we made a simplifying assumption: objects modified by an action are
written to the log only during the prepare phase of two-phase commit. This assumption
made it possible to explain the recovery algorithm through simple scenarios without
burdening the reader with certain complications. Having laid the groundwork in the
previous chapter and modified it slightly for the hybrid log scheme covered in this chapter,
we now relax our assumption. The objects modified by a committing top-level action are
written to the log sometime before the prepare message is actually sent, which makes
preparing potentially faster.

The idea is to take advantage of free time in the guardian, if any. Rather than waiting
for a top-level action to prepare and then writing out the data entries to the log all at once, it
might be better to write out changes early, that is, in anticipation of the prepare of the top-

level action. In this way, if the action eventually commits just the prepared and committed

outcome entries are written; if it aborts then extra work has been done, but that is not a
problem because we assume that aborts are not as frequent as commits.
The method of writing data to the log in anticipation of a commit is called early

prepare. One result of early prepare is that data entries written on behalf of different actions
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are interleaved in the log; this introduces some changes in the recovery system operations,
the writing algorithm, and the recovery algorithm. Let us consider these changes.

First, we add one recovery system opsration, namely, write_entry(aid, MOS). This
operation allows the Argus system to "early prepare” the objects in the MOS for action aid
at a guardian. The operation also returns a set of objects that were not written to a
guardian’s log because they were inaccessible; we will explain in a moment why this new set
is returned. The prepare(aid,MOS) operation remains essentially the same and the MOS
contains objects that had not already been early prepared and that will be prepared.

Second, for each action the Argus system keeps track of which objects were early
prepared and which were not. The new operation mentioned above takes a set of objects
modified by an action (MOS), which are to be early prepared, and writes the accessible
objects to the log in the manner prescribed in Chapter 3. In addition, the operation returns a
set of objects (MOS') that were not early prepared because they were inaccessible. Since
they might later turn out to be accessible this MOS' becomes the new MOS, and the next
time the operation will be called with this MOS, which may also contain more objects to be
early prepared. Finally, when the prepare message is received, any objects modified by the
preparing action but not already early prepared will be written to the log in the usual way.

Now we explain the added complication in the recovery algorithm through an
example. See Figure 4-3. The problem here is that the recovery algorithm will not copy the
latest object version for mutex object 0‘. How did this situation arise?

1. Action T, seized the mutex lock on object O,, modified the object, and released
the mutex lock. The recovery system wrote out the data entry for the object
version to the log as part of early prepare.

2. Another action, T2. seized the mutex lock on object O1 and modified it. The
recovery system wrote out the object version to the log as a data entry.

3. Two more data entries were written on behalf of action T2.

4. The participant received the prepare message for T2 from its coordinator, and
the recovery system created a prepared outcome entry with the proper
information and forced it to the log.

5. A data entry for object O, was written to the log on behalf of action T,.

6. The participant received a prepare message for T, from its coordinator. The
recovery system created the prepared outcome entry with the proper
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Figure 4-3: Hybrid log after T1 prepares and T2 commits

information and forced it to the log for action T1.

7. The participant received a commit message for T1 from its coordinator. The
recovery system created the committed outcome entry with the proper

information and forced it to the log.

8. The Argus system crashed.

On recovery we see that the earlier version, rather than the latest version, of O, gets
copied to volatile memory, which is wrong. To solve this problem, we need to keep some
extra information in the OT for mutex objects, namely, the log address of the “latest" data
entry for that object that had been copied from the log. When we encounter another data
entry for that object, we compare its log address with the one stored in the OT. If the new
address is less than the old one, then the recovery system ignores the entry. If the new
address is greater, then the recovery system copies the object version in the data entry to

volatile memory and updates the OT with this data entry's log address. Also, the vm address

field is updated with the new address of the object version.
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Chapter Five

Hybrid Log -- Housekeeping Algorithms

We have seen that the log is a repository of all the recoverable objects that were ever
part of the guardian's stable state during the guardian's lifetime. As time goes on and
actions commit and abort, the log will grow and will eventually become quite large. A large
log has certain implications for recovery.

Under the simple log scheme, the recovery system would be forced to read every log
entry upon recovery from a crash in order to reconstruct the stable state, including data
entries whose objects had been already been copied to volatile memory. If the log is as
large as we have postulated then recovery might be unacceptably slow. The same is true,
but to a lesser extent, of the hybrid log scheme presented in the last chapter; here the
recovery system would read every outcome entry (rather than every log entry) in the log and
need not examine every data entry. Even so, if the log is large, then recovery might be
slower than we would like.

If we place a bound on how much of the log the recovery system would have to look at
in order to restore the stable state, this would speed up recovery as a consequence since
the recovery system would have a shorter log to deal with. In this chapter we discuss
techniques that can reduce the size of the log.

In particular, recovery can be speeded up if we could produce a checkpoint that
represents the stable state of a guardian. The checkpoint's size would be roughly
proportional to the number of recoverable objects making up the stable state. The recovery
system would record a checkpoint of the stable state by building a new stable state from the
recoverable objects that were written by recently committed actions. The key words here
are recently committed, because by concerning ourselves with just the recently committed
recoverable objects and constructing a new stable state from them, we effectively throw
away not only all the objects modified by aborted actions but also all previous versions of

objects modified by committed actions.
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As the checkpoint proceeds the new stable state is written to a new log as a series of
distinct data entries (one for each recoverable object), which are linked together by a
special log entry called committed_ss. This new log replaces the old log when the
checkpoint has completed. During recovery the recovery system reads the log backwards,
and if it encounters this entry, it finishes restoring the guardian’s stable state given the
information in that entry.

When does the recovery system checkpoint a guardian’s stable state? it should take
place at any time as determined by the Argus system and as frequently as needed.

The recovery system can checkpoint the stable state of a guardian in one of two ways:
it can either build a new stable state from the log entries themselves (" compacting the log”)
or copy the stable state in volatile memory ("taking a snapshot”). We discuss these

methods in the next two sections and then we compare the two methods.
5.1 Compacting the log

The basic idea behind compacting the log is to rummage through the whole log,
discarding old objects that are no ionger useful and retaining the necessary ones, thus
creating a new log that is smaller, but that still reflects accurately the guardian’s current
stable state. The recovery system starts a new process running in parallel with ordinary
recovery system operations. This process reads the oid fog just as in recovery from a crash
and writes log entries to a new log, while the recovery system continues to write to the oid
log. When the process has reached the beginning of the oid log it then copies to the new
log all outcome entries and their associated data entries written to the old log since
compaction began. At some point all writing to the old log is frozen while the last outcome
entry in the old log is written to the new log and, in one atomic step, the new log suppiants
the old log. This log compaction technique is a kind of garbage-collection because most of
the information in the old log can be discarded, leaving behind a new log that contains just

the information about recoverable objects written by recently committed actions as well as

some extra information about prepared actions.




5.1.1 The Compaction Algorithm

Suppose at some point the Argus system determines that 2 certain amount of log
activity has taken place and decides that a guardian’s log should be compacted. After some
log entry is written to the log, the recovery system sets a volatile variable to point to the end
of that log entry. We call this point the housekeeping marker. Notice that the housekeeping
marker divides the log into two parts: the part to be compacted and the part to be copied
over to the new log when compaction is completed.

Compaction happens in two stages. In the first stage, we pick out the data entries for
all recoverable objects modified by recently committed actions as well as the data entries for
prepared actions, and we write new log entries to a new log. While this copying is going on,
the recovery system is still writing entries to the old log beyond the housekeeping marker. In
the second stage, these entries are copied to the new log. At some point we freeze further
writing to the old log and the remaining entries are copied to the new log, and then the new
log supplants the old one. The recovery system resumes writing entries to the new log. We
now discuss these stages in more detail.

The first stage of compacting the log is similar to recovery after a crash, except that
where the objects would have been created in volatile memory, data entries are written to
the new log instead. The racovery system starts a new compaction process and sets the
housekeeping marker. The process creates an empty list, the outcome entries flist (OEL); as
each outcome entry is written to the old log after the housekeeping marker by the ordinary
recovery system operations its log address is recorded in this list, and so the order of
outcome entries in this list corresponds to the order in the old log. Why we need this list will
become clearer when we discuss the second stage. The process creates another list, the
committed stable state list or CSSL for short. This list will contain the <object uid, new data
entry log address> pairs, which correspond to those data entries in the new log whose
object versions were written by committed actions; they constitute the committed stable
state of the guardian. The process also creates the three tables that are ordinarily used on
recovery. The participant action table (PT) and the coordinator action table (CT) have

exactly the same meaning as before; the object table (OT) is also the same except that it

need not record the volatile memory address. The compaction process creates these three
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tables, and in addition, creates a new, empty log. It begins reading the old log backwards
from the housekeeping marker, starting with the last outcome entry. Let us consider each
outcome entry.

1. committed, aborted, and done outcome entries. Simply update the PT.

2. committing outcome entry. |f the outcome is not yet known, then create a new
committing outcome entry containing the same information, link it to the
previous outcome entry in the new log, and write it to the new log.

3. base_committed outcome entry. Check the OT. If the uid is present with state
restored then go on because the object has already been copied. Otherwise,
enter the uid in the OT with state restored, create a new data entry containing a
copy of the object version and the object uid, link it with the previous outcome
entry in the new log, write it to the new log, and insert <uid, data entry log
address> in the CSSL.

4, prepared_data outcome entry. Check the PT for the action outcome.

a. It the action has prepared or its outcome is unknown, then create a new
prepared_data outcome entry containing the the object uid, the object
version, and the action id, link it to the previous outcome entry in the new
log, and write it to the new log. Enter uid in OT with state prepared.

b. If the action has aborted, then ignore the entry.

c. If the action has committed, then check the OT. If the uid is present in the
OT with state restored, then ignore the entry. If the uid is present with
state prepaied, reset state to restored, create a new data entry containing
the object version and the object type atomic, write it to the new log, and
insert the <uid, data entry log address> into the CSSL. If the uid is not
present, enter the uid with state restored into the OT, create a new data
entry containing the object type atomic and the object version, write it to
the new log and insert <uid, log address> in the CSSL.

5. prepared outcome entry. Check the PT for the action outcome.

a. If the action has aborted, then for every <uid, log address> pair in the
outcome entry do the following. Read the data entry. If the object type is
atomic, then move on to the next pair; if the object type is mutex, check
the OT and ask whether this mutex is the most recent version (compare
the log address stored in the OT with the old log address of the data entry
under consideration). If so, then create a new data entry containing the
object version and the object type mutex, write it 1o the new log, insert the
<uid, new data entry log address> in the CSSL, and update the OT with the
old data entry log address. If not, then ignore the entry.

b. If the action has committed, then for every <uid, log address> pair in the
list do the following. Read the data entry. If the object type is atomic,
then check the OT. If the uid is in the OT with state restored, then go on




I IR T g

T Tl Vs i P €A A -

67

to the next pair in the list; if the uid is not in the OT, then insert the uid with
state restored into tne OT, or it the uid is present with state prepared then
reset the state to restored; in either case, create a new data entry
containing the object version and the object type, wri.e it to the new log,
and insert the <uid, new data entry log address> in the CSSL. If the object
type is mutex, then proceed in the same fashion as for aborted actions
above.

c. If the action outcome is not known, then create an empty prepare list that
will contain the <uid, new data entry log address> pairs. For every <uid,
log address> pair in the outcome entry do the following. The old prepared
outcome entry will be copied over to the new log as a new but slightly
altered prepared outcome entry. Read the data entry. |f the object type is
atomic, insert uid into the OT with state prepared, write a new data entry
to the new log containing the object version and the object type, and
insert a <uid,new data entry log address> in the prepare list, not the CSSL.
If the object type is mutex, then check the OT to see if it is the latest
version. If it is the latest version then insert <uid,data entry log address>
in the OT, write the entry to the new log, and record the <uid, new data
entry log address> in the CSSL; otherwise, ignore it and go on to the next
pair. When the old prepare list is exhausted, if the new prepare list is not
empty, then create a new prepared outcome entry containing this new
prepare list, link it with the previous outcome entry in the new log, and
write it to the new log.

When the process has reached the beginning of the log, it creates a committed_ss log
entry containing the CSSL, links it with the previous outcome entry, and writes it to the new
log. Notice that this entry is like a combined prepare and commit for some special action
whose name does not matter.

In the second stage, the compaction process considers the OEL; this list represents all
the outcome entries that had been written to the old log after the housekeeping marker, and
these outcome entries must be copied over to the new log. Starting with the first entry in the
OEL, the housekeeping process, in general, follows the log pointer to the outcome entry,
creates a new outcome entry with a copy of the same information, links it with the previous
outcome entry in the new log, and writes it to the new log. This is all that need be done for
all outcome entries except prepared.

For the prepared outcome entry the process does the following. For each <uid, log
address> pair in the prepare list the process reads the data entry. If the object is atomic then
it creates a new data entry containing the object version and object type atomic, writes it to
the new log, and places the <uid, data entry log address> in the new prepare list. if the

object is mutex, then the process compares the old log address of the data entry with the log




address stored in the OT associated with the uid: if the data entry log address is less than

the OT log address then the data entry is ignored; otherwise, a new data entry is created
containing the object version and object type mutex and written to the new log, the <uid,data
entry log address> is placed in the new prepare list, and the OT is updated with the old log
address.

When the process has finished processing the old prepare list then it creates a new
prepared outcome entry with this new prepare list (together with the action id), links it with
the previous outcome entry in the new log, and writes it to the new log. When the process
catches up with the recovery system that is writing entries to the old log and updating the
OEL, the recovery system stops writing entries to the old log while the compaction process
copies the last outcome entry in the old log to the new one. Finally, in one atomic step, the
compaction process replaces the old log with the new log, thus discarding the old log. The
recovery system resumes writing log entries to the new log. The compaction process
terminates, its job done.

The above algorithm will not copy data entries from the old log for which the prepared
outcome entry has not yet been written. These data entries are not lost forever because the
recovery system knows which actions have not yet prepared and restarts the writing of the

data entries for those actions to the new log when compaction is over.
5.1.2 The New Recovery Algorithm

The new recovery algorithm is virtually identical to the recovery algorithm presented in
the last chapter, with one exception, which has to do with the the committed_ss log entry.
The recovery system reads the log backwards and goes about restoring the guardian’s
stable state in the usual fashion. When it encounters the committed_ss log entry it treats it
as a commit and prepare of an anonymous action. It cycles through the CSSL, checking the
OT in the usual way, and it necessary copies the object version to volatile memory. When
the recovery system has reached the first outcome entry all the objects that should be in
volatile memory have been reconstructed and volatile memory now contains the stable state

of the guardian. The three tables are returned to the Argus system in order to resume
guardian activity.
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5.2 Taking a snapshot of the stable state

Rather than reading the guardian's log backwards as in recovery, the recovery system
might just copy the guardian's stable state that resides in volatile memory while actions
execute. We call this alternate technique the stable state snapshot.

Whenever the Argus system has determined that enough log activity has taken place it
tells the recovery system to begin housekeeping, that is, to reorganize the log in a way that
makes recovery efficient after a crash. In response, the recovery system starts a snapshot
process.

Like log compaction, taking a snapshot also happens in two stages. In the first stage,
the recovery system copies the actual stable state into a new log. In the second stage, it
copies log entries to the new log from the housekeeping marker forward in the old log.

We will consider just the first stage in the snapshot algorithm because the second
stage is essentially the same as for the log compaction algorithm. There is another tabie
that the recovery system maintains itself, updates as actions execute, and uses while the
snapshot takes place: a mutex table (MT). This table maps object uids for mutex objects to
the log addresses of the corresponding data entries in the old log. This table must be
maintained during all recovery system activity; uniike the OEL (Outcome Entries List), its use
is not restricted to just the duration of housekeeping. The reason we need this table is that
without it we cannot be sure whether the volatile version of a mutex object encountered
during the snapshot is the same as the latest prepared version that appears in the log. In the
case of mutex objects, the real information needed for recovery is recorded in the log, not in
volatile memory. We must copy to the new log only the latest versions of those mutex
objects that were modified by actions that prepared. When an action prepares and an
object version for some modified mutex object is written to the old log, if the object uid is not
in the MT then it is entered with the data entry log address; otherwise, the log address in the
MT is changed to be the new data entry log address.

The snapshot process creates an empty CSSL (committed stable state list), an OEL
(outcome entries list), a new log, a new AS (accessibility set), a new, empty MT, and sets the

housekeeping marker in the old log. The recovery system adds log addresses of outcome
entries to the OEL as the entries are written to the oid log. Meanwhile, the snapshot process
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begins traversing the graph of recoverable objects from each of the guardian's stable
variables and adding uids to the new AS. Suppose that it encounters a recoverable object
during its traversal. There are two cases depending on whether the object is atomic or
mutex.

First, suppose the object is atomic. The object is either read-locked or write-locked by
some action, or not locked at all. If it is read-locked or not locked then the snapshot process
can safely copy the base version of the object, create a new data entry, write it to the new
log, and place the <object uid, data entry log address> pair in the CSSL. If the object is
write-locked by an action, the process checks the PAT (Prepared Actions Table): (1) if the
action id is not in the table, then just the base version is copied, a new data entry is created
and written to the new log, and the <object uid, data entry log address> pair is placed in the
CSSL; (2) if the action id is in the PAT, then the action has prenared. The process creates a
new data entry containing the copied base version, which is written to the new log, and the
{uid,data entry log address> is inserted in the CSSL. The process also creates a new
prepared_data outcome entry that contains the object uid, copied current version, and
action id, finks it with the previous outcome entry, and appends it to the new log.

Second, suppose the object is mutex. The process looks up the object uid in the old
MT. If the object uid exists then it follows the pointer associated with the uid to the
corresponding data entry in the old log and creates a new data entry containing the copied
object version, which is appended to the new log and whose <object uid, new data entry log
address> pair is placed in the CSSL. Also, the log address of this new entry is stored in the
new MT. If the object uid does not exist, then the mutex version is not copied (but will be
copied if needed in stage two of the snapshot method). In this case we have a newly
accessible object, and the action that made it accessible is preparing. When that action
finishes preparing, the right state for this object will be written to either the old log (in which
case it will be copied to the new log in stage two) or it will be written directly to the new log.
Therefore, we need not worry about writing this object now.

The second stage of the snapshot algorithm is the same as in the second stage of the
compaction algorithm, except that we must update the new MT as needed. At the end the
new AS is intersected with the old AS to yield a new set, which is the new accessibility set.

B e T I NP PN

P TR




n

Also, the old MT is replaced by the new MT.
In this second stage, some data might be copied unnecessarily. In particular, some ‘

data entries for objects where the snapshot has already copied the correct information will

be written anyway. Extra copying can only happen for objects modified or made newly

accessible by actions that prepared while the snapshot was being written. The amount of

.extra copying is proportional to the amount of processing that occurred against the old log

while the snapshot was being made. We assume that the amount of such processing is
limited, so the extra copying is not significant. i
: The new recovery algorithm is almost the same as the one covered in the section on

log compaction. The MT must be reconstructed on recovery after a crash. During recovery, i 1

the log address of the each data entry containing the latest prepared version of a mutex |

object is entered in the MT.

5.3 Summary

In this chapter we discussed two techniques for reorganizing the log to make recovery
from crashes more efficient. Collectively, we referred to these techniques as housekeeping
and the end result was a new, smaller log. Under either technique the recovery system
divided the log into two parts by setting a housekeeping marker: the portion of the log before
the marker would be reorganized and copied to a new log, and the portion of the log
following the marker, indicating additional guardian activity, would then be copied to the i
new log. The difference lies in how it treats the portion of the log before the marker. In log }
compaction, the recovery system actually reads the log itself backwards from the marker,
just as if it were performing recovery, and constructs a new stable state from the entries in
the log. In taking a snapshot, the recovery system traverses the recoverable objects
(accessible from the guardian’s stable variables) that constituted the stable state actually
residing in volatile memory, and constructs a new stable state from those objects.

In general, we think that the snapshot technique of reorganizing the log is better, for
the following reason. The advantage of this method is that it takes an amount of time
roughly proportional to the number of accessible recoverable objects; the compaction
method would take much longer since it must process all outcome entries as well as all

e
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accessible objects. The disadvantage of the snapshot is the space required for the MT and
the time used in keeping the MT up to date in volatile memory. The time required to update
the MT should be insignificant since the MT can be organized as a hash table; therefore,

only the space consumed by the MT is significant. We expect that it will be worthwhile to
trade this space for the time saved.

Cemd
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Chapter Six

Conclusions

In this thesis we investigated the mechanism needed to provide data resiliency for
on-line, long-lived data in a distributed computer system. Recall that data resiliency meant
the ability of data to survive hardware failures such as crashes of nodes or storage devices,
with high probability. There were two aspects to the problem of providing this data
resiliency: implementing stable storage devices and organizing the use of stable storage.
Assuming that stable storage devices existed and were at our disposal, we addressed the
question of how stable storage could be organized to make recovery from crashes efficient.

Having looked at two different schemes for organizing stable storage that are
commonly found in the literature, namely, the log and shadowing schemes, we invented yet
another organization called the hybrid log that combined the advantages of both schemes.
This organization retained the characteristics of the pure log to keep writing faiﬂy fast and
incorporated the advantage of shadowed objects to speed up recovery. Our decision was
influenced to a large degree by an assumption: crashes were infrequent and therefore
normal processing should be fast at the possible expense of a slow recovery. In short, there
was a tradeoff between the speed in writing to stable storage and the speed in recovering
from a crash, and we favored writing over recovering. However, we attempted to strike a
balance between writing and recovering.

Once we chose the organization of stable storage that met our requirements, we
developed algorithms for writing objects to the hybrid log, recovering objects from the
hybrid log, and reorganizing the hybrid log. Reorganizing the log, which we call
housekeeping, involves changing the way the log looks so that recovering from a crash is
much faster than it wouid be if we just let the log continue to grow. We investigated two
housekeeping schemes--log compaction and stable state snapshot--and concluded that the
snapshot technique was strictly better than the log compaction technique.

We have implemented a prototype to increase our confidence that the algorithms
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behave as they should. More work remains to be done, however. At one extreme is the
verification of the algorithms. We need to state precisely what the correctness properties
are for the algorithms and then verify that the algorithms preserve those properties. For
atomic objects the property is that the state of each object after a crash is exactly what is
obtained from running all actions that committed at a guardian in their serial order. For
mutex objects, however, the property is not so easy to state because of the semantics of
Argus that requires recovery of all mutex versions written for a prepared action.

At the other extreme is a real implementation of the recovery system and its
algorithms. The system must then be run in support of “realistic” applications and its
performance measured. In this way we will be able to evaluate the efficiency of the
algorithms, and we will be able to validate or disprove the assumptions on which the
recovery system is based.

Finally, the recovery system is based on an abstraction of stable storage, the stable
log. This abstraction must be implemented using real storage devices in a way that provides
the needed reliability.
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