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AN AXIO14ATIZATION OF THE NON-TRASISFERABLE UTILITY VALUE*

by

Robert J. Aumann

1. Introduction

The NTU (Non-Transferable Utility) Value is a solution concept for

multiperson cooperative games in which utility is not 'transferable4 -

(games without side payments ). Introduced by Shapley in 119691, it

generalizes his 11953] value for TU (Transferable Utility) games.V'

Many economic contexts are more naturally modelled by NTU than by TU

games; and indeed, the NTU value has been applied with some success to a

variety of economic and economic-political models )(, Two well-known

applications are Nash's solutions [1950, 19531 for the bargaining

problem and for two-person cooperative games, both of which are

instances of the NTU value.

The original definition of the NTU value works roughly as

follows: Given an NTU game V and a vector A of "comparison weights"

for the players, one derives a TU game vA, and calculates its value

4(vX); if this value is feasible in the original NTU game V, then it is

defined to be a value of V. A precise definition is given in Section h.

Technically, the definition is reminiscent of that of the

competitive equilibrium, with A playing the role of prices, and

#(v ) the role of the demand. Historically, it grew out of successive

attacks by several investigators, notably J. Harsanyi [1959, 19631, on

the value problem for NTU games. The bare definition may perhaps seem a

little strange and unmotivated; but when one delves deeper (Shapley

*This work was supported by National Science Foundation Grant SES82-
01373 and Contract ONR-N00O14-79-C-0685 at the Institute for
Mathematical Studies in the SocialSciences, Stanford University.
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[1969J, Aumann 11975)), one finds that it is quite natural. Never-

theless, it has been the object of controversy (Roth [1980', Shaf'r

[19801, Harsanyi 119801, and Aumann 119831).

In this paper,-we offernan axiomatization of the NTU value. Like

any axiomatization, it should enable us to understand the concept

better, and hence to focus discussion. One can now view the NTU value

as defined by the axioms, with the treatment in Shapley 119691 servir.6

as a formula or method of calculation. Thus the NTU value joins the

ranks of the TU value and Nash's solution to the bargaining problem,

each of which is defined by axioms, but usually calculated by a

formull .t, a formula whose intuitive significance is not, on the face

of it, entirely clear.

This work is an outgrowth of ideas that have been "in the air" for

many years. The problem of axiomatizing the NTU value is a natural one;

already in his original paper Shapley discusses "properties of our ...

solution that ... could be used in the derivation of our definition"

J1969, p. 260]. Our treatment owes much to that discussion, and to

subsequent oral discussions with Shapley..V

Worthy of particular note is that the axioms refer to values as

payoff vectors only - the comparison weights associated with a value

make no explicit appearance in the axioms. This is important because

the question of the intuitive significance of the comparison weights has

often been raised in critical discussion. By contrast, the viewpoint of

Shapley [19691 is that his solution consists of both the payoff vector

and the comparison weights (p. 259, 1.20 ff.; p. 261, 1.1), with the

MMMMM
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latter playing at least as important a role as the former.5-- Also

worthy of note is the smoothness condition (3.1), which is indispensable

for our approach (see Section 9).

The domain of the axioms -- the family of games to which they

apply - is described in Section 3; the axioms themselves are presented

and discussed in Section 5. Section 6 is devoted to an alternative

treatment, in which one of the axioms (Independence of Irrelevant

Alternatives) is dropped. Proofs are presented in Sections 7 and 8.

Section 10 discusses possible variations on the theme; it also contains

a discussion of the implications of the axioms for our understanding of

the intuitive content of the value solution.

2. Some Notation and Terminolog

Denote the real numbers by R. If N is a finite set, denote by

INI the cardinality of N, and by RN the set of all functions from

N to R. We will think of members x of RN as INI-dimensional

vectors whose coordinates are indexed by members of N; thus when

i E N, we will often write xi for x(i). If x E RN and SC N,

write xS  for the restriction of x to S, i.e., the member of RS

whose i-th coordinate is xi. Write 1S  for the indicator of S, i.e.,

the member of RN whose i-th coordinate is 1 or 0 according as i

is or is not in S. Call x positive if xi > 0 for all i in N.

If AE6 and y SE . define Ay in RS  by (Ay)im- iyi, and

denote the "scalar product" liesAiy by Xy. Write x I z if

xi > zt for all i in N. Denote the origin of RN (the vector all
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of whose coordinates are 0) by 0.

Let A,B C RN and X,xr RN . Write A + B = (a + b: aEA

and b EB , AA -{1a: a EA}, A + x = A + x}, and

(1/2)A - {(1/2)x: x E A). Denote the closure of A by A, its

complement by -A, and its frontier A n (ZA) by 3A. If A is

convex, call it smooth if it has a unique supporting hyperplane at each

point of its frontier. Call A comprehensive if x E A and x > y

imply y e A.

3. NTU Games

Let N be a finite set, which will henceforth be fixed; set

n - INI. The members of N are called players, its non-empty subsets

coalitions; points in RN are called payoff vectors. An NTU game on

N (or simply game) is a function V that assigns to each coalition

S a convex comprehensive non-empty proper subset V(S) of RS, such

that

(3.1) V(N) is smooth;

(3.2) if x,yE V(N) and x z y, then x = y; and

(3.3) for each coalition S there is a payoff vector x such that

V(S) x (01 s } C V(N) + x •

Of these three conditions, only (3.1) is a substantive restriction

from the intuitive viewpoint; the others are technical in nature.

Condition (3.2) says that SV(N) has no "level" segments, i.e.,
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segments parallel to a coordinate hyperplane; it is a familiar

regularity condition in game theory. Condition (3.3) says that if one

thinks of V(S) as embedded in RN by assigning O to players

outside S, then V(S) is included in some translate of V(N); it can

be thought of as an extremely weak kind of monotonicity.

A TU game (on N) is a function v that assigns to each

coalition S a real number v(S). The N!U game V corresponding to a

TU game v is given by

i
V(S) {x r: R xi < v(S)))

If T is a coalition, define a TU game uT  by

1if S D T(3.J) UT(S) =I fSD
T 0 otherwise

The NTU game UT corresponding to uT  is called the unanimity game

on T.

Operations on games are defined like the corresponding operations

on sets, for each coalition separately. Thus (V + W)(S) V(S) + W(S),

(AV)(S) = AV(s), V(s) = V(T, and so on.

4. Shapley Values of NTU Games

Recall that the value of a TU game v is the vector #(v) in RN

given by

(i) *(v) v(SU)) v(SR)
nR £
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where B ran&gs over all n1 orders on N, and SR denotes the set ofi

players preceding i in the order R. The value is usually defined by

a set of axioms, which are then shown (Shapley (19531) to lead to (4.1).

N
Let V be a game. For each positive X in RN write

(4.2) vA (S) sup {X.x: x E v(s) .

We say that the TU game vA is defined if the right side of (4.2) is

finite for all S. A Shapley value of V is a point y in V(N) such

N
that for some positive A in R , the TU game vA is defined, and

Ay = #(VA ). The set of all Shapley values of V is denoted A(V). The

set of games V for which A(V) * 4 -- i.e., that possess at least one

Shapley value -- is denoted rN or simply r. The correspondence from

r to RN that associates the set A(V) to each game V is called the

Shapley Correspondence.

5. The Axioms

A value correspondence is a correspondence that associates with

each game V in r a set O(V) of payoff vectors, satisfying the

following axioms for all games U, V, W in r:

0. Non-Emptiness: 0(V) * 0.

1. Efficiency: #(V) C ;V(N).

2. Conditional Additivity: If U = V + W, then

#(U) 0 (O(V) + O(W)) n IU(U).

3. Unanimity: If UT is the unanimity game on a coalition

T, then (T) - •1,jTI)

tt
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4. Closure Invariance: *(7) = 6(V).

5. Scale Covariance: If X in RN is positive, then #(XV) = A#(V).

6. Independence of Irrelevant Alternatives: If V(N) c W(N)

and V(S) = W(S) for S * N , then O(V) D 4(w) n3 V(N)

For a fixed value correspondence 4, call x a value of V if

x 0(V). Efficiency says that all values are Pareto optimal. Suppose

next that y and z are values of V and W respectively. We cannot

in general expect y + z to be a value of V + W, because it need not

be Pareto optimal there. Conditional additivity says that if y + z

does happen to be Pareto optimal in V + W, then it is a value of

V + W; i.e., that additivity obtains whenever it does not contradict

efficiency. Unanimity says that the unanimity game on T has a unique

value, which provides that the coalition T split the available amount

equally. Closure invariance is a conceptually harmless technical

assumption; we simply do not distinguish between a convex set and its

closure. If the payoffs are in utilities, then scale invariance says

that representing the same real outcome by different utility functions

does not affect the value in real terms. Independence of irrelevant

alternatives (IIA) says that a value y of a game W remains a value

when one removes outcomes other than y ("irrelevant alternatives")

from the set W(N) of all feasible outcomes, without changing W(S)

for coalitions S other than the all player coal.tion. (For a thorough

discussion of this acisumptior, see the next section.)

These axioms are an amalgam of those that characterize the value

for TU games (Shapley 119531) and those that characterize Nash's

.. ..



solution to the Bargaining Problem (Nash [1950]). Axioms 1, 2 and 3 are

fairly straighforward analogues of the TU value axioms, with the

unanimity axiom combining the symmetry and dumr axioms. As we have

noted, Axiom 4 is purely technical; and Axioms 5 and 6 are essentially

the same as the corresponding axioms in Nash's treatment.

Theorem A: There is a unique value correspondence, and it is the

Shaple correspondence.

6. An Axiomatic Treatment Without IIA

IIA is perhaps the best-known of the axioms in the preceding

section. This is partly due to its key role in Nash's work, and partly

to its having stirred some controversy. In this section, after

discussing the axiom, we offer an axiomatic treatment that avoids using

it.

Whether or not IIA is reasonable depends on how we view the

value. If we view it as an expected or average outcome, then IIA is not

very convincing. By removing parts of the feasible set, we decrease the

range of possible outcomes, and so the average may change even if it

remains feasible.6 But in NTU games, viewing the value as an average

is fraught with difficulty even without IIA, because the convexity of

V(N) implies that in general, an average will not be Pareto optimal.

An alternative is to view the value as a group decision or

arbitrated outcome; i.e., a reasonable compromisel in view of all the

possible alternative open to the players. In that case IIA does sound

quite convincing and even compelling. An anecdote -- it happens to be a

. .



true one -- ma.y serve to illustrate its force. Several years ago I

served on a committee that was to invite a speaker for a fairly

prestigious symposium. Three candidates were proposed; their names

would be familiar to many of our readers, but we will call them Alfred

Adams, Barry Brown, and Charles Clark. A long discussion ensued, and it

was finally decided to invite Adams. At that point I remembered that

Brown had told me about a family trip that he was Planning for the

period in question, and realized that lie would be unable to come. I

mentioned this and suggested that we reopen the discussion. The other

members looked at me as if I had taken leave of my senses. "What

difference does it make that Brown can't come," one said, "since in any

case we decided on Adams?" I was amazed. All the members were eminent

theorists and mathematical economists, thoroughly familiar with the

nuances of the Nash model. Not long before, the very member who had

spoken up had roundly criticized IIA in the discussion period following

a talk. I thought that perhaps he had overlooked the connection, and

said that T was glad that in the interim, he had changed his mind about

IIA. Everybody laughed appreciatively, as if I had made e good joke,

and we all went of f to lunch. The subject was never reopened, and Adams

was invited.

Note that we are discussing a true game, not an individual

decision problem. The members had different interests, coalitions could

be formed, etc. Occasionally issues even came to a vote; and when they

did not, the vote was definitely "there," in the background. If ever

there was a situation in which IIA could be criticized, this was it.
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Yet I think that the members were right to laugh off rV

suggestion. No matter how convincing such criticism myi seem in the

abstract, the concrete suggestion to reconsider the choice of Adams

because Brown could not come sounded -- and was -- absurd.

Let us nevertheless examine the consequences of omitting this

axiom. It turns out that IIA is not nearly as central here as in the

Nash theory; something is lost, but less than inght have been

expected. The result is as follows:

Theorem B: The Shapley correspondence is the maximal

correspondence from r to RN satisfying Axioms 0 through 5.

More explicitly:

(6.1) A satisfies Axioms 0 through 5.

(6.2) If 0 satisfies Axioms 0 through 5, then O(V) C A(V) for all

games V in r.

What is lost, of course, is the categoricity of the axioms. There

are many correspondences 0 satisfying Axioms 0 through 5. With Axiom

6, there is only one; the system is fully determined. On a practical

level, though, there isn't much difference. Many of the applications

involve necessary conditions only; they assert that every value has a

particular form (e.g., competitive equilibrium). This kind of result

remains unchanged when Axiom 8 is omitted. The other kind of result --

every outcome of a particular form is a value -- is weakened; but if we

interpret a "value" of V to mean a member of (V) for some 0

• • ,. - •



(rather than for a particular, fixed C satisfying the axioms, then

this kind of result also remains true. Another kind of application in

which dropping IIA changes nothing is when there is only one Shapley

value (IA(V)I = 1); for example, this is the case for 2-person games,

and in Aumann and Kurz [1977].

7. Proof that the Shapley Value Satisfies the Axioms

In the remainder of the paper, we abbreviate V(N) by 8V. We

call a member X of RN normalized if maxily = 1.

Let V be a game, and let yE BV. Since V(N) is smooth (3.1),

there is a unique supporting hyperplane to V(N) at y. That means

that there is a unique normalized X in RN such that X'x is

maximized over V(N) at x = y. By comprehensiveness and (3.2), this

A is positive; denote it 6(V,y).

Lemma 7.1: A(V) C 3V.

Proof: Follows from the efficiency of the TU value.

Lemma 7.2 : Let y E A(V), and let A = 6(V,y). Then the TU game

v is defined, and Ay = f(v,).

Proof: By the definition of the Shapley value (Section 4), there

is a positive u in RN, which we may assume normalized, such that v

is defined and vay *(v ). By the efficiency of the TU value,

iIpe ~I y =( v 1 (N) sup{IJ-x: x E V(N))
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Hence v'x is maximized over V(N) at x = y, i.e., V = 6(V,y) = A,

and the proof is complete.

Proposition 7.3: The correspondence A from r to RN

satisfies Axioms 0 through 6.

Proof: Axiom 0 follows from the definition of r. Axio-n 2 is

Lemma 7.1. To verify Axiom 2, let yE A(V), zE A(W), y + z E UU, we

wish to show y + z E A(V). Let A = 6(U, y + z) = 6(V + W, y + z).

Then )'x is maximized over 7(N) + R(N) at x y + z, and hence over

V(N) at x = y; hence A = 6(V,y). Since y E A(V) it follows from

Lemma 7.2 that the TU game vA is defined, and Xy = 4(vX ). Similirly

the TU game wA (the notations wA and uX are analogous to v.) is

defined, and Xz = *(wA). Hence the TU game uA is defined, and

u A = VA + WA Hence by the additivity axiom for the TU vale,

(7.4) A(y + z) = Xy + Xz = #(vX ) + #(wA) *(vA + w) (yx)

But y + z E V(N) + R(N) C U(N); together with (7.h), this shows that

y + z is a Shapley value of U, as was to be shown. The remaining

axioms are straightforward, and so the proof of the proposition is

complete.

8. Proofs of the Theorems

Throughout this section, * is an arbitrary but fixed correspon-

dence from r to RN  satisfying Axioms 0 through 5.

I I
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Lemma 8.1: If V is the game corresponding to a TU game v, then

*(V) = {v)).

Proof: Note first that r contains all games corresponding to TU

games, so that we can apply our axioms to all these games at will.

Let V correspond to the TU game v. For any real number

a 0a, let V correspond to the TU game av. Then V corresponds to the

TU game that is identically 0 (i.e., vanishes on all coalitions), and

hence by Axioms 1, 2, and 3,

ONV0 ) + IN/n} = #(V O ) + 0(U N ) C b(V0 + U) (U) i/n)
NNN N N

By Axiom 0, it follows that

(8.2) *(v ° ) = {o)

Hence by Axioms 1 and 2, *(V) + *(V-1 ) C O(V + V-1 ) = (V0 ) = {0). By

Axiom 0, it follows that each of *(V) and O(V- 1 ) consists of a

single point, and

(8.3) (v-1 ) = (v)

If a is a positive scalar, then Axiom 5 with X = (a,....a) yields

(8.4) O(Va) = aOv) .

Combining this with (8.2) and (8.3), we deduce (8.4) for all scalars

a, no matter what their sign is. From Axiom 3 and *(Gu T ) = alT/ITI we

then deduce that
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(8.5) *(u,) -- ((uCT))

for all coalitions T and all real numbers a.

Nov each TU game v may be expressed in the form v = 4 UT,

where the are real. Hence for the corresponding game V we have

V = . By (8.5), and Axioms 1 and 2, it follows that

(*()) 1 I*(O'ruT)1 = 1 )U c Q =*V
T T R

But we have already seen that #(V) consists of a single point. Hence

(,(v)1 = #(V), and the proof of the lemma is complete.

Lemma 8.6: (V) C A(V) for each V in r.

Proof: Let yE #(V). By Axiom I, y E 3V. Setting A = 6 (V,y),

we deduce from (3.2) that X is positive. By Axiom 5 (scale

covariance) applied both to * and to A, we may assume without loss of

generality that X (,...,l). If V0 corresponds to the TU game that

is identically 0, then by (3.3), V + V0  is a game;- / moreover,

0 0y E a(V + V0), and V + V corresponds to the TU game v, (see

(4.2)). Hence by Lemma 8.1, Axioms 2 and 4, and again Lemma 8.1, we

have

AY y E O(v) n 3(V + v0) a (W(v) + 0) n 3(v + v° )

= (O(v) + O(v°)) n q(v + v° ) - *(V + v {,(v) .

Hence ly - *(vQ, which means that y E A(V). This completes the proof

of Lemma 8.6.
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Theorem B follows from Proposition 7.3 and Lemma 8.6.

Lemma 8.3: If 0 is a value correspondence,- / then A(V) C O(V)

for all V in r.

Proof: Let y E A(V). Then y E V(N), and there is a comparison

v ctor A such that the TU game vA (see (4.2)) is defined, and

Xy *(vA)

Let VX be the game corresponding to vA. Define a game W by

V (N) when S 2 N

w~s) =

AV(S) when S * N

Then Ay is a Shapley value of W, so 11E r, so #(W) is defined.

Let V0  correspond to the TU game that vanishes on all

0 0coalitions. Then VA = W + V and 3(W + VO ) = 3W, and so by Lemma 8.1

and Axioms 4, 2, 1 and 0. we have

(vx)} = (vx) = *(w + v° ) O (w + V° ) D ($(w) + #(v°)) n a(W + v° )

=- ((w) + {0)) aw O (w) 0 0

Hence

#(W) = (v)= (Ay}

By definition, W(N) = VA(N) D XV(N), and W(S) = AV(S) for S * N.

Moreover y E V(N) yields Ay E AV(N). Hence by Axioms 6, 5 and 4,

y E #(A(V)) AO(V). Hence y E 9(V), as was to be proved.

i _
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.heorem A follows from Proposition 7.3 and Lemmas 8.6 and 8.7.

9. Smoothness

The smoothness condition (3.1) i of the essence; without it, the

Shapley correspondence fails to satisfy the conditional additivity

axiom, and both our theorems become irreparably false.

To see how smoothness works, let y be a Shapley value of V.

The associated "comparison vector" X always defines a supporting

hyperplane to V(N) at y; because of smoothness, it is the only

supporting hyperplane. If now z is a Shapley value of W, then

y + z is efficient in V + W if and only if the supporting hyperpianes

at y and z are parallel; therefore, y and z must be associated

with the same comparison vector, and then additivity follows from the

additivity of the TU value.

Without smoothness, the reasoning breaks down. It is possible

for V(N) and W(N) to have parallel supporting hyperplanes at y

and z, by dint of which y + z is efficient in V + W; but these need

not be the hyperplanes defined by the comparison vectors that make y

and z Shapley values. For example, let N = {1,2}, let V correspond

to the TU game given by v(12) = v(1) v(2) - 0, and define W by

w(l) w(2) - (--,Ol , w(12) { (x E R x x 2 6 and x + 2x 2 81

(see Figure 1); setting U - V + W, we see that U corresponds to the

TU gam u given by u(12) a 6, u(1) a u(2) a 0. Then A(V) - ((0,0)),

A(W) M .((,2)), and A(U) 1 ((3,3)); (0,0) + (4,2) is efficient in U,

M - a-, ,'
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but it is not a value. What is happening is that V(N) and W(N) both

have hyperplanes at the respective Shapley values that are orthogonal

to (i,1); but the value (4,2) of W is associated with the

comparison vector (1,2), not with (1,1).

Smoothness may be interpreted as local linearity, or, if one

wishes, local TU; but note that it is needed for the all-player

coalition only. In the guise of differentiability, it has played a

significant role in several of the applications; so it is interesting

that it makes an appearance on the foundational side as well.

Figure 1

V(N), W(N), and U(N) are, respectively, horizontally,

vertically,and diagonally hatched

(4
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10. Discussion

a. Vanishing Comparison Weights and the Non-Levelness Condition

Shapley's treatment (Shapley [1969]) permits some of the compa-

rison weights X to vanish. Ours does not. Vanishing comparison

weights are undesirable for several reasons. In the direct, non-

axiomatic approach, their intuitive significance is murky; and in the

axiomatic approach, they greatly complicate matters. In the applica-

tions,10 / vanishing Xi have played no significant role; in most

specific cases it can be shown that the Xi must be positive, though

the definition allows them to vanish.

Our definition of "Shapley value" explicitly takes A positive;

and the non-levelness condition (3.2) assures that whatever emerges from

the axioms will be associated with a positive X. A verbal statement of

(3.2) is that weak and strong Pareto optimality are equivalent.

One can avoid the non-levelness condition by strengthening the

efficiency axiom to read as follows:

I*. Strong Efficiency: if yE #(V), then (xE 8V(N): x < y} = {y}.

This is more than strong Pareto optimality; it says that y is in the

relative (to SV(N)) interior of the strongly Pareto optimal set, or

equivalently that 8(V,y) is positive.1 1  If we replace Axiom 1 by

Axiom 10, then one can simply drop (3.2), and our theorems remain true.

b. The Domain

The domain r of the axioms is the set of all games that possess

at least one Shapley value. This might be considered an esthetic

-~ .I
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drawback, since in this way the Shapley value enters into its own

axiomatic characterization (albeit only via the domain). If ones wishes

to avoid this, one can replace r by any family r* with the following

properties:

(10.1) A*C r.

(10.2) All games corresponding to TU games are in r*.

(10.3) If V E r and X is a positive vector in RN, then XVE .

(10.4) The game obtained from any V in r* by replacing V(N) by any

one of its supporting half-spaces is also in r*.

(10.5) V C N if and only if VE N.

We adopted r as a domain because it is the largest such family,

and is thus the most useful from the point of view of applications.

It should be noted that the restriction to F is not gratuitous;

there are indeed games not possessing any Shapley value. For example, let

N = (1,2), and define V by

V(l) - V(2) = (-e,01 , V(12) - ((E,n)E R N: n < 0 and g 2 < -1)

If x - (Ro) were a value, then the tangent to 3V(N) at x would

have a slope equal in magnitude (but opposite in sign) to the slope of

the line connecting x with the origin; and this can never be, since the

respective slopes are -A/29 and n/C. The example is of course highly

pathological, since each player can guarantee 0 to himself, but can
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never achieve this in V(N); but it does show that one cannot simply

take the domain to be the set of all games.

c. Conditional Addivity

The Conditional Additivity Axiom can be replaced by the following

pair of axioms:

2*a. Conditional Sure-Thing: If U aI/V +I/2W, then

*(u) :) #(v) n #(w) n au(i).

2*b. Translation covariance: For all x in RN, *(V + x) = (V) + x.

In Section 6, we suggested that the value of a game may be viewed

as a group decision, compromise, or arbitrated outcome, that is reason-

able in view of the alternatives open to the players and coalitions

(rather than an outcome that is itself in some sense stable, such as a

core point). In these terms, 2*a says the following: Suppose that y

is a reasonable compromise both in the game V and in the game W.

Suppose further that one of the games V and W will be played; at

present it is not yet known which one, but it is common knowledge that

the probabilities are half-half. Then y is a reasonable compromise in

this situation as well, - -2/ unless the players can use the uncertainty to

their mutual advantage.

d. Son-Uniqueness of the Value

Given the above view of the value as a reasonable compromise, some

readers mW be disturbed by the fact that a given gaae V may have more

than one value"i-U/ Non-uniqueness, they may say, is all very well for
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stability or equilibrium concepts; but a theory of arbitration, of

reaching reasonable compromises, should "reconmmend" a single point.

On closer examination, there seems to be no particular reason to

accept such a view. Compromises may be based on many different kinds of

principles and criteria. Such criteria are usually overlapping, in the

sense that a given one applies to only a limited range of situations,

and to a given situation several criteria may apply. This results in a

multi-valued function - a correspondence.

A good analogy is to law; in fact, one can view civil law as

Society's way of reaching "reasonable compromises". Specific laws

always have limited ranges; these ranges often overlap and yield

contradictory results. An important function of a judge is to "resolve"

such contradictions in each specific case brought before him, by

selecting one of the applicable laws. It is no wonder that judgements

are often overturned on appeal, and that different jurisdictions reach

different opinions on identical cases. Law is multi-valued, not

incoherent.

In much the same way, a value correspondence is a coherent

system. Its coherence is expressed by the axioms, by the way that they

relate values of different games to each other. The axioms say, if you

can decide such-and-such in case (a), then you can decide so-and-so in

case (b). There is no reason to expect such a system to be single

valued.

The original definition of the NTU value is an instance of this

kind of system. Here a "1criterion" is a vector Aof comparison
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weights, which the players (or the arbitrator) use to compare

utilities. Given such a criterion, a "reasonable compromise" is the TU

value $(v,) ; and the criterion "applies" to the NTU game V if

*(vj) is feasible in V.

Our results say that every value system that is coherent, in the

sense that it satisfies the axioms, must be of this specific kind.

I-i
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Footnotes

1/ I.e., games with side payments, representable by a coalitional

worth ("characteristic") function.

2/ See the references of Anmann 11982).

3/ The random order expected contribution formula for the TU value,
and the maximum product formula for the Nash Bargaining Problem.

0
1h/ Specifically, the idea of adding the zero-game V (see Section

8) to a given NTU game in order to obtain the induced transfer
game is due to him.

5/ The importance that Shapley attaches to the endogeneous determi-
nation of comparison weights is evident from the title of his
paper, as well as from its introduction.

6/ For a nice example of this phenomenon, see Luce and Raiffa 11957J,
pp. 132-3, especially Figure 8. In Game A, (5,50) sounds
reasonable as an average of different possible outcomes. In Game
B, it does not, since 50 is the maximum possible utility for
Player 2.

7/ We are purposely staying away from the word "fair", in order to
avoid ethical connotations.

8/ Condition (3.3), which is used only here, is needed to ensure that

(V + V0 )(S) does not fill all of RS.

9/ Satisfies Axiom 6 as well as 0 through 5.

10/ We are referring to the existing applications to economic and/or
political models, not to isolated numerical examples.

11/ In effect, (3.2) asserts that no part of the efficient surface is
level, whereas 1* asserts this only on a neighborhood of the
value.

12/ Compare Shapley 119691, p. 261, IV.

13/ I.e., that #(V) may contain several points. Of course, Theorem
A guarantees that the correspondence 0 is unique.

- ' ... .. " " ' -r .. . " ' .. ..... " ; " ..L ,. ,3 , , ' lliz j_ r
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