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THE SHAPLEY VALUE IN THE NON DIFFERENTIABLE CASE#®
by

Je F. Mertens %%

Introduction

*"‘:)In their book gt;lues of Non Atomic Games‘%/;umann and Shapley
[1974] define the Shapley value for non atomic games, and prove
existence and uniqueness of it for a number of important spaces of games
like pNA and bv'NA. They also show that this value obeys the so-

called diagonal formula, expressing the value of each infinitesimal

player as his marginal contribution to the coalition of all players

—_—

preceding him in a random ordering of the playersf%/say if the worth

v(S) of coalirvion S 1is expressed as a function of finitely many non

atomic probabilities ul.....un by

v(8) = £(u(8),..esu (8)) . rect, £{0)=o0

then the diagonal formula takes the form
1ase
[6(v)](8) = Ju,(8)f =— (£,T,...,t)dT
i X,
0 i
or in general, more symbolically

1
[6(v)](ds) = [[v(eI + ds) - v(eI)]lde .
0

o —
.

#This research was done in part while visiting the Institute for Advanced Study

at the Hebrew University of Jerusalem and in part was supported by the
Natimnal Science Foundation Grant SES 8201373 and in part by Contract
ONR=-N0OOO14=T79-C~0685 at the Institute for Mathematical Studies in the
Social Sciences.
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This interpretation in terms of a random order depends on the facy
that, for a large number of players, player ds will in a random order
occur at some time t uniformly distributed on [0,1], and that the set
of players preceding him will be an almost perfect sample of size 1T of
the whole population - so that its worth will be essentially v{tI) =
f(tul(I),...,tun(I)).
Those results have a large number of important applications - they
do however depend on the differentiability of f along vhe diagonal.
The diagonal formula was later extended, in "Values and
Derivatives”, Mertens [1980], to a much wider class of games, including
spaces like bv'NA in which the function f cannot be called
differentiable. .
The extended formula would apply say to majority games (v(S) =
I(u(S) » @) 0 < a< 1); or even to majority games in several different
houses (v(s) = I(ul(S) > a

> LI 2N 1 >
R uz(S) o, s un(s) an) 0<a < 1)

1 2
provided all quota’'s a, are different. {(1(+) denotes the indicavor
function.)

But the case where the quotas would be the same - say all 1/2 -

would be excluded, at least when n > 2.

Similarly, in economic applications, economies with strong
complementarities, like '"n-handed glove markets" (v(S) =
min ui(S)) would remain excluded - again at least when n > 2.
1-1’..§é:eover, no value operator at all was known to exist on any space .

of games that would include all n-handed glove markets - except

(Y. Tauman [1981]) when n is fixed and in addition all measures

i




are mtually singular, i.e., the different types of gloves have disjoint
sets of ownmers.

S. Hart's "measure-based values" [1980] are an illuminating
approach to this problem. They highlight the fact - which could already
be seen in Aumann and Shapley's analysis [19T4] of the three-handed
glove market - that in some sense different finite approximations to the
game may yield quite different values, according to one or another part
of the player set - say the owners of one or another type of glove -
approximates better the limiting game. For the approximations consid-
ered, the distribution of a random sample around the diagonal is essen-
tially normal, with a covariance matrix that is quite sensitive to the
relative degree of approximation in different parts of the player set.

Surprisingly, as we will show, in the limitv the symmetry axiom -
i.e., to ask that the solution depends only on the data of the game - is
strong enough to force the distribution away from the normal distribu-
tion, ard to impose, in some sense, a unique answer.

Here we extend the diagonal formula of Mertens [1980] to include,
in addivion, all situations of this type.

We get in this way a value - of norm 1 - on a closed space that
will include DIFF - and DIAG -, the closed algebra generated by bv'NA,
and also all games generated by a finite number of algebraic and lattice
operations from a finite number of measures, and all markets functions
of finitely many measures. The space will also include the finite games

and the "regular" games with countably many players.




i
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.

Intuitively, the diagonal formula is extended by taking the
derivative not on the diagonal, but at some small perturbation of it -
say tI + €x instead of tlI - and by averaging the result for some
probability distribution over perturbations. We prove further a weak
form of uniqueness, in the sense that there is only one such probability
distribution over perturbations that would yield a value.

In parallel, another extension is made tvo previous approaches,
mainly in order to make the value invariant under all automorphisms of
the lattice of coalitions, instead of only all automorphisms of the
player set. In particular, this allows us to deal with finitely

additive measures just as well as countably additive ones.

R

{

” The basic definitions are given in Section 1; Section 2 defines :
the probability distribution over perturbations and shows its unigque-
ness. Ar explicit formula for the value of games of the type discussed
above (n-handed glove markets, majority in several different houses) is
derived in Section 3. -

{
SECTION 1
We follow basically the terminology of Aumann and Shapley
[1974]). (I,C) denotes the player set, C being a o-field of subsets
of the set 1. A game is a real valued function v on (, with
v(4) = 0. 1Its variation norm Ivi is the supremum of the variation

BV

of v over all increasing chains (C1 cc,C ... C Cn) in C.

2

(BV,0¢1_ ) denotes the Banach algebra of all games of bounded

BV

variation.
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FA is the subspace of BV consisting of additive set functions.

We are going to define a value - more precisely, a projection ¢
of norm 1 of some closed subspace Q of BV (FA - Q) onto FA, such
that [®(v)](I) = v(I) and such that ¢ is symmetric in the sense
that for any automorphism 6 of the Boolean algebra C, if 8 is
defined on BV by let(v)](S) = v(8(s)), then 8%(Q) = Q and
¢ 06" =" oo,

In fact, ¢ will be constructed as the composition of different
positive linear symmetric mappings of norm 1: ¢ = °h o¢_od_ od_ .

3 2 1

{(1.1) ¢. maps any game into the corresponding consvant sum game,
1 g

[¢1(v)](S) = (1/2)[v(s) - v(s®) + v(I)]: obviously ¢. is a symmevric

1
projection of norm 1 onto the space Ql of all constant sum games W
(w(s) + w(s®) = w(I)), such that [Ol(v)](I) = v(I).

(1.2) @2 is the extension operator:

B(I,C) denotes the space of bounded measurable functions on
(1,0), BI(I,C) is the space of "ideal sets", i.e., {f|f € B(I,C),
0 < f <1},

For functions Vv on BI(I,C) (with v(0) = 0), one defines as
previously the variation norm “v"IBV by considering all possible

increasing chains in BI(I,C), and one defines ¥ (x) =

sup Z(V(fi+1) - V(fi))+, and similarly for Vv : obviously
<f < <
0 fJ fj#l x 1 ) )
- - - - -+ -
] = = - .
v v =Y (1) + v (D), v=v v

Similar definivions are possible for the space Fe of functions
v (v(0) = 0) defined only on the e-neighborhood of the diagonal

v = (re BI(I,C): sup(f) - inf(f) < €}, and lead to IV and

'IBV,e
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V:. Ge by restricting all chains to remain in this neighborhood. By

= inf "vnIBV,e'
€>0

Following Mertvens [1981], we define F as the set of triplets

definition uvnIBV.o

(v,v,e), where 7 is a finite measurable partition of I, v is a
finite setv of non atomic elements of FA and € > 0. F 1is ordered by

a €a' iff w_ < w , (w is a refinement of = ) and
a a a a

v, C Vv, and € 2¢.,. (F,<) 1is filvering increasing.

C, 1s the set of increasing sequences O < fl < f2 < ... < fn <1

of measurable functions, and En the set of increasing seguences

So S Sl g 32 e g Sn in (.

For any a € F and f € Cn’ we define Pa £ as the setv of all
b ]

probabilities with finite support on E, such that EIE(I(S,)) -f <€
i S -

uniformly on I, and such that S € “a’ T € “a’ SNT=¢ imply

is independent of (T N 5.)"

(1) (sns) D%,

n
i=1
(i1) v (83N Si) = Va(fi + 1(3))
and  (iii) £, - (S) =0=>35NSs, =¢ .
Intuitively P € Pa if P 1is the distribution of a random set

f

(or sequence of sets) that is very similar to the ideal set f - "very"
being measured by a € F.

Obviously a < a' implies P ODP_, o, &and it folliows Trom
a,f = a',f

Mertens [1981] that always Pa ¢ t 4,

For any game v, and any f € BI(I,C), let v(f) =

lim sup [v(S)dP(s), v(f) = lim  inf [v(3)dP(S). (The inclusion
oEF PEP_ . oEF PEP .




- g . ———

relations a € a' => Pu ¢ oP imply thav the limits exist, the
I i

a',f
corresponding sup's or inf's being monotonic in a.) Now v is in the
domain D_ of 0; iff ¥ x €V, ¥(x) = v(x), and then Og(v) €F_ is
defined by [°;(V)](x) = ¥(x) = !(X)-

Obviously D_ is a closed (in the maximum pseudo-metric) vector

subspace of the space of all games, and symmetric, and 0; is a sym-

metric linear operator from De to Fe [for the symmetry properties,
it is sufficient to check that the set of non atomic elements of FA is
invariant under any automorphism of the Boolean algebra C(, and to
define 6(x) for x in B(I,C) in the obvious way if x is a step
function, and by & uniform limit in general, so as to be able to define
8° on E].

Further 0; transforms nonnegative games into nonnegative

elements of Fe’ and monotonic games into monotonic elements of Fe,
and is of norm 1 both in the maximum norm and in the variation norm -

this follows from the fact that ¥ n, ¥ f € Cn’ Pa £ 4.

k]

Finally one has obviously [Q;(v)l(l) = v(I), and € < €y =>
€ €

1 a2
D, DD, and if vE D_ then %, (v).«>2 (v) on Ve

1 2 2 1
Observe that for games with finitely many players, 02 coincides

with Owen's multilinear extension, and that for games in EXT (cfr.
"Values and Derivatives"), 02 coincides with the extension as defined
in "Values and Derivatives".

Observe also that 0; obviously maps constant sum games v & D,

into constant sum games w €F_ (i.e.: w(x) + w(l - x) =

w(l) ¥ x € B;(I,c)), and that if v € D_, then ¢,(v) € D, and

ALY o 3
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€ €
= [/
02¢1(v) ¢l¢2(v), where maps F_ into F_ Dby the formula

1
fe, (w1 (x) = (1/2)[v() - w(1 - x) + w(1)].

(1.3) ¢3 is essentially the derivative operator defined in
"Values and Derivatives":

First, if w € F_, define w on {f€B(I,C) : sup f -~ inf f < €}
by wW(f) = wlmax(0,min(1,f))].

Obviously w *+ w 1is symmetric, positive, linear, etc., and if
w is constant sum, w(x) + W(1 - x) = w(1).

Let now {e (w)](x) = iig Z[(G(t + 1x) - wlt - 1x))/2t]dv
whenever w & g Fe and the limit exists for all y € B(I,().

Some remarks are in order.

First, if one deals only with games in BV, there would be no
problem of existence of the integrals - otherwise, we make the explicit
assumption that, for any ¥, wit + Tx) 1is a.e. defined and integrable
for all sufficiently small T.

We will also assume that, for all x € B(I,C), lim }[w(r(u + )Y +

™0 0
w{t(u + x)7)ldu = 0.

This is for instance savisfied, by the dominated convergence

theorem, as soon as w 1is bounded and 1%3 witx) = 0 ¥ x € BI(I,C).

Obviously the mapping 03 is positive, linear, symmetric.

Let us show that
103(W)1(a + bx) = aw(1l) + b[(¢3(w))(x)] Ya DER . ‘

In particular we will rLave [03(w)](1) = w(l), so that 03(w) is

linear on every p. - 2cnt ., ing the constants.




It is obvious that [03(v)](bx) = blo3(w)l(x) ¥ b,V x. So we

only have to show that [03(w)](l + x) = w(1l) + [03(W)](x)- Thus

} wit + 1+ 1)) =Wt -1 - 1Y)
dt
0 27

. (w)(1 +x) =1

I B ORI (CIE ) DS & I R (U M

130 0 et 130 0 2t

1
+ 1lim %— Jla(t + T+ 1x) - wlt + 1)) - w(e + 1) = w(t - 1 - 1x)
0 <7 0

+ wit - 1) + Witz - 1)]de.

The first integral equals

1 1+ l-71 1 1+T T
5% [ [w(s)as - [ w(s)ds] = §?[ { w(s)as - [w(s)das] .
T -T l-7 -1

Since w(x) + w(1 - x) = W(1), this equals

T T 1
(1) - 3z (2 [ #(s)as] = w(1) - L fu(s)ds = w(1) - [w(tuw)du |,
T T
-7 0 0
and this last integral converges to zero by assumption. So the first
integral converges to w(l).
The second integral converges by definition to [03(w)](x), so
there remains to show that the last integral converges to zero. This is

equal to, writing F+(t) for W(t + 1)) - w(t), F_(¢) for

w(t - tx) - w(t):
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i 1 rl 1
r LI(F+(n + 1) - F+(t))dt + J(F_(x) - F_(v - 1) Jde ]
s 0] 0
; d
- 1 1+71 T 1 0 ,
1 = 53 [ J F (s)ds - fF+(s)ds + F (s)ds - fF_(s)ds; .
1 0 1-1 -1
t Now the relavion w(x) + w(l - x) = w(1) implies
F+(t) = -F (1 - t), so thatv the last intvegral equals
0 T T 0 .
= %? [- F (s)ds - fF+(s)ds - fF+(s)ds -/ F (s)as |
-1 0 0 -1
1 0 T )
= %— [/ F (s)ds + fF+(S)dSJ
-1 0
= (f)[F+(s) + F_(-s)]ds -]
i
l s
= -f[F+(ru) + F_(—Tu)]du
0
1
= - f[G(T(u + x)) - w(tu) + w(-t{u + x)) - w(-tu)ldu
0
1 . ‘ L
: = - [{lw(t(u + x)7) + witlu + x)7) - w(tu)jdu (for T € [1 + UxH]™")
0

and this last integral tends to zero by assumption.

Let us finally show that 03 is of norm 1. Let 1y € x', and

consider any increasing chain

< < € ... < < x' .
X * X X Xn X
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Denote by V(v)[x,x'] the supremum of the variation of v over all
such finite chains. Let #x' - xt = &8, then V(v)[x,x'] < v(v)Ix, x + 8],
and there is no loss in restricting the chains to satisfy XS Xo X =X ¥ §.

If v = 03(w), and we take T > 0 sufficiently small such that

all wW(tv + rxi) exist, then

1
Ilvixyy) - vOx)l = 1tm o) [l + o) - #e v o)

1

+ w(t - Txi) - w(t - Txi+1)]dt

< nmé-?

w(t + rxi)l + 1wt - Txy)
i

O

[zlﬁ(t * Txi+1)

-t - x,. )] ]at

i+l

or, letting |W| = w: v,
1 1
< Um o [[|F](t + t(x + 8)) - |[¥](x + ) + |9[(t ~ ™) - |[¥](t - t(x + 8))]de
0

1 1+1$ 1 '
= lim 5_[ [ ¥l + rddr + [ |W[(t - tx)dt - [ |W[(t + 1x)de
T 1-t8 0

0
- [ ¥t + 1x)at]
-1

But, for all x, we have 0 < |#|(x) < |¥|(1) = w:(l) + w;(l) =

lw'IBV,c' Thus

PN e -
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1 1+16 16
Zlv(xi+1) - v(xi)[ < lim 5= [ [ el oy 4t - [ (0)az]
i 1-18 ~1é
= 8hWlipy,e o

and therefore, € being arbicrary,
' < | . P R
V(°3(W))lx,x ] < ux X" V1 15v,0

In particular 103(w)uIBv = v(¢3(w))[o,11 < Wby g NELL (PPRvR which
shows that ¢3 is of norm 1.

Since v = 03(w) satisfies v(a + bx) = av(l) + bv(x), we nave

%? (v(it + tx) - v(t - X)) = vix)

so that (1/21)[F(t + 1X) - ¥(¢t - )] = v(x) for Htxl < v €21 - Krxl.
If now IvllIBV < » then by v(a + x) = av(1l) + v(x) we get
viv)la - 6, a + 8] = v(v)[0,28], which equals by homogeneivy

26v(v)[0,1] = 28Ivi. Therefore, for all t we have

l‘é“:‘ {V(t + 1x) - v(v - Tx)]i < Uyhive .

Also, fvl < » implies that ¥(t + tx) is integrable (in t) - as
a function of bounded variation - so that, by Lebesgue's bounded

convergence theorem

[v(t + 1)) - ¥(t - tx)jde » v(x) .

O~
mra
-
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Thus, to show that v € Dom(03) and that 03(v) = v there only
remains to show that v is bounded and ﬁrg vitx) = 0¥y x€ BI(I,C).
This follows again immediately from the boundedness of the norm of v
and from the homogeneitvy.

Thus if v = ¢3(w), vl < » implies v € Dom(03) and 03(v) = v.
Therefore we get then V(v)[x,x'] = V(OB(V))[X,X'] < Iy' - xlelvl

and this relation is anyway true if |Ivi = + ®», To summarize, we have

shown that

Proposition 1:

¢3 is positive, linear, symmetric.

[o,(w) (1) = w(1).

“ .
03(V)HIBV < nv"IBV,O

v € Range (03) implies

« v 1is linear on every plane containing the constants,
« V(V)Dxox'] < ax' - xt e avl ¥ x, x' € B(IC),

. further, if 1Ivl < ® then v € Dom 03, and 03(v) = v,

For every € > 0, one gets a different domain for ¢1 o 02 o 03.
However, the composition having norm 1, and the domains being increasing
when € + 0, the composition can be extended to the closure of the union
of those domains. Let us call ¢ this operator.

(In Section 4, we will show how to define directly an operator

with closed domain extending ¥ ~ the present approach seems however

easier for getting the main idea through - being more closely related to

the literature.)
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{(1.4) Let us now prove part of our claims.

Let Q = {v|v € Dom ¥, ¥(v) € FA}: obviously Q is a closed
symmetric space, and ¢ is a value on Q.

It is obvious that Q contains DIFF, DIAG, and all games
satisfying v(s) = v(s®) v s e .

Let us show that Q also contains bv'FA (and all "regular"
games with countably many players).

bv'FA is the closed space generated by all games of the form
v(s) = f(u(S)), where u & FAi and f is monotonic, continuous at zero
and at 1, with f£(0) = 0, f(1) = 1. It is sufficient to show that
vE€Q when v is a generator. After applying Ql to v, one may

assume further that f{x) + £{1 - x) = 1.

Let wus apply ¢.. Let u = z u, where ¢ i u, 20, 1 # j =>
2 . i i
i20
My * uJ, wy is two-valued for i » 1 and My is non atomic (i.e.,

y ui(I) is maximal given the other conditions). Assume without ioss
i»1
of generality that ui(I) is monovonic in i > 1, and letv a, = ui(I),
=1

V. = a.- * u, whenever . # = ila.# .
i i My a; * 0, n, = sup{ifa;# 0}

Denote by "n any partivion of I such that

vi, J€ {1,ee0,n 1 na} (i # J)FAE n : ui(A) *0, uJ(A) =0 .

_ -n
Let @ = (ﬂn,uo,Q ). Then for any P € Pun’g one has P-a.s.

uo(S) = uo(g), for 121 ui(S) € {O,ui(I)} has expectation ui(g) up

to 271

and ul(s) ves un(s) are independent.
Let also Y_ = u (g) + J a,X,, vhere the X,'s are independent
g ) HEE i
random variables with value in {0,1}, and with expectation vi(g).
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It follows that, wvhen n goes to infinivy, the distribution of

ws) (= J u;(S)) converges weakly to the distribution of Yg-
i%0
Further, when n, <, then u(S) 1is concentrated on the (finite) set

of atoms of Yg. It follows that E(v(8)) converges to ¥(g) = Ef(Yg)

except maybe when ng = + and the distribution of Yg has some atoms

at discontinuities of f.

Recall that, for g arbitrary, one sets ¥(g) = V(max(0,min(1,g))).

Obviously v(t + g) is integrable - being monotonic. We now show that,
even when n, = +®, v(t + g) is the extension of v at t + g, except
for at most two values of t. Indeed, the distribution of Yg is
obviously non atomic except when 1lim vi(g) A (1 - vi(g)) = 0. Since we
i +on
work only on some ¢-neighborhood of the diagonal, we can assume
sup(g) - inf(g) < 1, so that the only possible exceptions occur when
lim v, [(v + g)*] = 0 and when 1im vi(t +g) A1l =1, Ivis
b o i
sufficient to consider the first case, which is true for all t satis-
fying 0 € t € -1im sup vi(g) =t . But if 0 € v < - lim sup vi(g) =
ive ° i+e

ty, then B = {w]g{w) < - (1/2)(v + t )} 1is some measurable set, and,
since vi(B> = 0 => vi(g) > - (1/2)(e + to). one has vi(B) = ] except
at most finitely many times - otherwise one would have
t = -lim sup v, (g) € (1/2)(t + ¢t ), thus t ? v_ contrary to our
o) {om i o o
assumption. Remark that on B one has (g + t)* = O,

Thua, as soon as our partition LI refines B, we will have that,
with probability one, BNS = ¢ i.e., SC B°; and thar v (B) > 0 at
most finitely many times - say ui(s") =0Vio2n. Therefore u(s)

Q
will have the distribution of uol(g NESM I 8, X, wvhere
i=]
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depends only on g and =1,

[E(x,) - v, [(g + u)*]| < 2™, since ng

this implies u(S) 1is a distribution on a fixed, finite set of atoms,
that converges weakly to the distribution of Y + and thus the
(g+t)

probability of every atom converges: we still have that ¥(g + t) is

the extension of v at (g + t)*.

Thus the only possible troublesome value of v is ©v = -lim sup vi{g)
(and dually 1 - v = lim inf vi(g)).

In particular, for any x, v(t + Tx) 1is a.e. defined and inve-
grable for all sufficiently small Tt. The second condition for
v € Dom 03 was satisfied as soon as v is bounded and ¥(tx) con-
verges to zero for all x € BI(I,C); v being monotonic it is sufficient
to show that 1%2 v(t) = 0; this follows from ¥(t) < (Cav f){(T)
because Cav f 1is continuous and vanishes at zero, f having this
property.

Thus to show that v € Q there only remains to show that
(1/21)}[3(t + 1)) - v(t - 1x)]dt converges to some element of FA. To

0
facilitate this, we begin by the lemma.

Lemma: If

- v(v + tx) is, for every x, a.e. defined and integrable for

all sufficiently small 1

- }(V[T(t + )% + v[1(z + x)7]dt converges to zero with
T ?> 0) for all ¥
- %;E[V(t + 1Y) - v(t - tx)]dt converges for all x €& BI(I,C)
then v € [on bj - f.e., the lact expression converges for all x € B(1,C).




Proof: Our assumption immediately implies the convergence when
X € 0, and it is sufficient to prove the convergence for any ¢ satis-
fying ¥ € 1. Write thus ¢ =1+ x, with x € 0; the computation we
did when proving that 03(v) is linear on every plane containing the
constants proved also that ¢3(w)(w) exists - and this finishes the

proof. Q.E.D.

By virtue of this lemma, it is sufficient vo show that ¢(t,x) =

1
(1/27)[[¥(t + 1x) - ¥(v - 1Xx)]dt converges to some element of FA for

0
all x € BI(I,C), where ¥(g) = Ef(Y-), with =0 v (g A 1), and
na g
Y =av(g)+ ) aX,, where the random variables X; are independent,
g ) jog 11

with values in {0,1} and with expectation vi(g).
Let now f (x) = [ (f(y+) - £(y)) where f(y+) = lim f(y + €).
<X €*0
Let also fR(x) = f(x) - fL(x): then both £

and f are increasing,

L R

£, is left continuous and fp 1is right continuous, so that

L

1 1
£(x) = [I(x » Q)dfp(q) + [I(x > a)ar (a) .
0 0

Since ¢(T,x) depends linearly on f, and since 0 < ¢{7v,x) < ¢(7,1) €1
using the monotonicity of v and the relation 0 € y < 1, we can apply

Fubini's theorem to get
1 1
o(t.x) = c{%'R(r.x)dfﬁ(q) + ({‘q.x.("")dfr,(q’

vhen ¢q R and °q L denote the funcuion ¢ corresponding to the case
b .

vhere f(x) = I(x » q) and f(x) = I(x > q) respectively.
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But ¢q,R(T’X) and ¢q’L(T,x) being uniformly bounded, the
bounded convergence theorem implies that it is sufficient to prove that
¢q‘R(t,x) and Oq’L(T,x) converge to some element of FA.

Thus, we have reduced the problem to the case where f(x) = I(q << x)},
where <+ stands for either € or < .,

Remark that for i » 1, vi(é) =0V (vi(g) A 1), and that
vi(t + 1) =T + tvi(x). Let for short p; = vi(x) {thus
0 € p; < 1), and let 2 (1 =1,....n;) Dbe independent random

variables, uniformly distributed over [0,1]. Then

n

1 a
I +
o(tx) = 57 EfI[aovo((t -wx)) o+ _E a,I(z ¢t -1p) < q
0 i=1
n
a
< aovo((t +Tx) V1) + iglail(zi <t o+ Tpi)]dt

where <: stands for < or <€ when <+¢ is € or < respectively.
Let also ¢(T,x) be the same expression, with vol(n - tx)*] replaced
by T - T, and vol(t + 1) A 1! replaced by v + Tp - Then
obviously ¢ » ¢, and the integrands can differ only wnen

t €T or ¢t 2?1 - T, so that

n

a
J a Iz, <t + Tpi)]dt

T
r,x) - o(r.x) < %? Eél[q <ea(t+1p)+ L

+ 8 similar integral between 1 - T and T .

Obviously, the right hand member goes to zero with t. Thus if we set

;
!
i
{
'
;
!
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nj -

1
¥(p) = E]I[ab(t -p,) *+ 1 8,1(Z, <t -p)<:qco a (v +p )
0

i»l

+ _2 8,1z, >t + pi)]dt
i»l

we have to prove that ¥ is differentiable at zero, i.e., that

1im (1/t1)¥(tp) exists and is linear in p - i.e., a continuous linear
0

functional on 2.. We will even show that the limit is of the form

Xyipi, with vy, » 0, Zvi = 1.

i
We will show that this is the case for all sequences Py having
only finitely many non zero terms.

The result will follow from this, because, for an arbitrary

sequence p; (0 < p; ¢ 1), one has then by monotonicity

k
v(tp) > 2 ;P thus

lim inf =
réo t i=0

L ]
lim inf % v(tp) > ZYipi , and
0 0

|

1im inf 2 9(t(1 - p)) > 1 - Iv;p;
0 0

and since (1/t){y(tp) + ¥(*(1 - p))] converges to 1 (this is the
computation we did when proving that any w in the range of 03 is

linear on every plane containing the constants), it follows that
[ _J

1im (1/7)¥(tp) = Jv p,.

rég 0 ks

Thus we have to show that ¥(p) 1is differentiable at zero as a

function of the variables Py *o* Pys the other pi's being fixed at

zero.

F
s

—— .
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Further if then Y = (3¢/3pi)p=o, we have to show that
z Yi = 1 {because obviously Yi > 0 by monotonicity of ).
i»0
Writing the expectation in the formula of w(p) as the expectation

of the conditional expectation given Z., ... Zk yields

1
1 v Y
v(p) = 3 ) ﬂﬂi(p) - H (-p)ldv ,
kO
y€{0,1}
where
ko Los X \
# (p) = illl(lg +(2y; - (e - p, -3 A l)Flé(q +ap, - izlaiyiJ
with
F:(x) = P(aot + .z aiI(Zi <tv) <:x) .
i>k
Let
k 1 1y 1K K
R (p) = 131[5 + (2, - (t ~ p; - 3)]Fc(a + ap, - ig_vaiyg :
and

1

1 = -

W) =5 T JIE(p) - B (-p)lar .
ye{o,1}" o

One shows, just as before for § - ¢, that ¥ - ¢ 1is differentiable at

zero with zero differential (the difference of the integrands is anyway

small, and different from zero only on & small part of the domain).

Thus to show the differentiability at zero, it is sufficient to
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show the differentiability at zero of the expression
k n; Kk
(mp, ]It Fo( x ¢ ap )du
i (5o}
i=1 0

since P(p) 1is a linear combination of expressions of this type.

k n;
Since (I P; Yy s obviously differentiable, this amounts in turn
i=1
to the differentiability at zero of ft Fe (x t a_p, )dt.

0]
If this differentiability is proved, then using k = 1,

; 1
v, = lim =— ¥(p,) = lim ==~ f2p [F (q) - F (q - a )]de
LS T ?pl o 1t
1 1
l hi
= [IFl(@) - Flilq - a))]a
0

1

1
= EfIja t + | a,1{z; <tv) <t qg<ratv+a + |alIlz < ) Jde
0 i>1 i»1

or, since 2, is, like 1, uniformly distributed on [0,1] and

independent of the other Zi's’ we get

- pf .
v, = PlazZ, + 12 a,I(2, < 2)) <: q<o a2 + ) ay 1(z, < Zy) ).
1 21t

Let, for k » 1, Jk(m) denote the random interval (of length ay)

{x]aoZk + 3 8, 1(2; <2) <: x<oaz + Y alI(Z <2 )}

i>l i»l

{obviously the Jk(w) are disjoint if we restrict ourselves to the set
of w's (with probability one) where i # j => Zi(w) * ZJ(w),

[ 0 < Zi(w) < 1).
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Let also J (w) = {0,1] U J, (w). 1In those notations
° k1 K
Y; = (aw ) = P[qe J.(w)) forall i>1 .
i p=0 i

s

0, we get, using W(t) = a t© + 2 a (2. €1t),

Similarly, using k
. 1
i»1

1 - 1
Y = lim — ¥(p ) = lim
° po*o P ° po*O 2p°

(o]
lFt(q +ap.)

O

O
- F -
F.la -~ ap)lde

1

X 1 1

= lim ~— [Pl[q -~ a p <+ W(t) <: g + ap Jdv .
po¢o 2po o o%o o%o

Thus, if ao = 0, then Y, = 0, and the differentiarility condition to

check is obvious, so there only remains to show that Z Yi =
i21
P(q € U Ji(w)) = 1. When there are only finitely muny non zero ai's,

i
then q € U Ji(m) = {x{0 <: x <+ 1} for any w, whille ir there are
i
countably many non zero ai's, a recent result of Berbee [1938i, proves

that P(q e u Ji(w)) = 1 |even that P(q €U 5i(w)) = 1il.
i i
There remains therefore to consider the case ao > 0. Since

1 -] Yy = P(q € Jo(w)), the property EYi = 1 amount to
i»l

1

_ . 1 .U .

P(q € Jo(w)) = a lim TN [Plq - a_p, < w(t) <: q + aopoldt .
p°+o o*0o 0

1
On the other hand, the differentiability at zero of ftnF: (x + aopo)dn,
0

when Fﬁ(x) = P(aot + 7 aiI(Zi € t) <: x) can be rewritten, by letting
i>k
‘= i ' = = ' = "= g
aj =a ., for 121, al =a ,0 Y a! (ao >0 =>0>0), a} ai/o,

i»0
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F (y) = Ft(cy) (= P(av + ] alI(z, < t) <: ¥)), as the differenti-
1 i»l

ability at zero of ftnF (i + a"p )dt or, letting z = x/o, and
5 tvo© oo

writing a; for ag - s0 Fy becomes Fg ~ as the differenviability of
3
a_[t"FO(2)dv = @ (z) as a function of z.
05 't n
To show galso that Zvi = 1, we have to show further that, when

n = 0, the derivative is P(z € Jo(w)). We have

w

1z <o W(L) <: 2 + 8§lax .

O]

(Qn(z + 5) - ¢n(z>] = % 89—

O

Lev T = inf {v? Qlr a z <o W()}: if 2z <« W(t) <: z + 6, we have
T <31 <7 +&/a,thus ™ <t? <1« (1 +8/a)® - 1), therefore,
¥ A o] Z Z N o]

1
15 X = (a /8)T [Ilz <o W(t) <z + §]dr,

0 ¥
8% 14 %o $ \n §
X e Jun{z <o W(n) <oz + 8)dr € X+ 5= [(1# =) - 1][(TZ v ) -1 ]
0 o (o]
= x4 (1+—)_1
o]

1
Now X = ngIJo(w)(z + 8u)du.

o . - . .
If z € g)Ji(w), then li: RJJi(m)(x) 1, except maybe if =z is

1 X
1

a boundary point of some Ji(w) - but this event has probabilivy zero,

even conditionally on all 7, (j # i) (using a > 0).

J 2+¢
Ir z€&J (w), then (1/6) S I, (w)(x)dx =
® 248 (A o
1- 3§ (1/8) I, (w)(x)dx. and it is sufficient to show that the
i=1 2 i

conditional expectation (given z € Jo(w) and given Tz) of the sum

converges to zero. Now, if 2z € Jo(m), X > z, then Iy (m)(x) <
i
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€ Z. < < € Z. €
I(Tu(x-a.i) 24 rI'x) I(Tzv(x-ai) 24 Tzv(x—ai) *

((x - 2z) ai)/ao), and then

P{x € J(wlt,, z € Jo(w)) <

Thus

1 Al Y
P(x € VI, (w)z € Jo(w),Tz) T
1 Q Z 1

Also, for ao >0, 1 - TZ > 0 with probability one if 2z < 1, and
since Zai < ® it follows that tne right hand member goes to zero when

X ¥+ z < 1. Thus the left hand member being bounded, we get, i 2z < 1,

and obviously also if z > 1, iim Plx € L)Ji(w)lz zJ Ji(w)) = Ly and
X*2Z i i
ther=fore by symmetry .im P{x € LlJi(w):z Vi U Ji(w)] = 0 and taus
X*z i i
ILU,(w)(x) is continuous in probability. In particular .z v (x) s a
g 1 i%l
continuous function of x, and also Tnt, [ yiX) converges in
2 JD\U))

probability o T?IJ (w)(z)I'O < x € ) so tuat by the bounaea

& o .
ccnvergence theorem (;/6):¢'{z + &, - ¢ (2), converges to

O n

I(z + 6 € {o,ll)E[T’;
Since the equation &'(z) = P(z € Jo(w)) is needed only for

0 <z < 1, we have proved our statement. (Remark that the different.-
ability condition of }tnF:(x + aopo)dt at zero was only one-sided

0
since ap, > 0.)

Remark 1: A closer look at the above argument shows that in fact

1
we proved more: if ¢(x) = (1/2)[[¥(v + x) - ¥(t = x)]dt, then
0
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¢(x) 1is Frechet-differentiable at zero. Indeed, the proof of the lemma
shows that it is sufficient to consider x € BI(I,C) - provided

?(v[t(u + x)+] + v[t(u + x)7])du converges to zero uniformly over the
Snit ball, which is obvious whenever v is norm continuous at zero.
Similarly the bounded convergence theorem still permits the reduction
to the case where f(x) = I{q <* x). Also the approximation of

¢ by ¥ and later of ¥ by T are obviously uniform in ¢ € (0,1]%.
Since, as we just mentioned, the convergence of {l/1)!¢{tp) +

¥(1(1 - p)}! to 1 is uniform in p for v norm continuous at zero, it
will be sufficient to consider vectors p such that p; = Ovi>k:
indeed, the same conclusion will then hold when p; = 1Y 1i> k, so that
if k 1is chosen such that Z Yi < €, then To such that,

i>k
vyor: 1!« T ¥V p in one of these two classes,

{1/1)y(p) - Zyipil < €, the result will follow (from the monotonicity

of ¥) for arbitrary p € [O,l]°° by sandwiching it between the t¥ra

approximations P> ﬁi‘ where p, = ﬁi = py for i <€ k and for
i > k, p; = 0, ﬁi = 1. As shown in the proof, the differentiability of

¥ over p's having only k non zero coordinates amounts to the

differentiability of a product of functions of 1 variable, which is vtrue

as soon as each factor in the product is differentiable, what we proved.
1so we did not need in fact the symmetry of ¢. We thus obtain

finally:

Proposition 2: Let

1
H(x) = [v(t + x)dt.
0
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Then H 1is Frechet differentiable at zero, with as derivative the value

of wv:

Y.(x)vi(')df(x)

1

O
O 8

where in the integration a discontinuity to the right (left) of x is
to be interpreted as the corresponding mass immediatvely to the right

(left) of x.

The Yi(x) are Jefined in the following way. Assume the game

J

v is of the form v(s) = f{u(s)), where u = Zaivi, a; >0, v, >0,
0
q v. (1) = 1, Zai = 1, v  rnon atomic and 1 > 1 => v  two valued,
‘ 3 i +
5 i#, => v # v,, Define random variables Zl independent and
4

unitormly distributed over {0,1], then expand each point z; 1o some

open interval ol lengtn ay, then shrink the remaining part of 0,1,
(of length 1) to length a, (proportionately). Denote by J; the random

v interval thus obtained corresponding to Zj. Then vy, (x) = P(x € Ji)
i - 1/
g for i » 1, and Yo(x) P(UJ, has density 0 at x)

. 4

i

x+6
[i.e. Yo(x) P(llm sup —3- f ILJ = 0)]

§30

i
When there are infinitely many players, we also showed that the
E Yi(x), (i =0,l,...) are continuous on [0,l], with yo(o) = 70(1) =
if ao > 0 - in particular, if ao > 0, the series ZYi is uniformly
convergent (to 1) on [0,1], and anyway ZYi(x) = 1 ¥ x: 0<x< 1.

i
In particular, when there are infinitely many players, the value




-

of f(x) at a jump and the exact definition of the [...df(x) play no
role.

It is possible to draw still some sharper conclusions from the

1

foregoing: let w" € FAi converge (in norm) to u° € FA,. Let v,

(i >1) enumerate all atoms of all " and let vg be the non atomic

o
. n.n . .
part of un, with un = abvo + Zagvi. One sees immediately that agvg
0,0 (an)m

is norm convergent to aovo, and that is &. - convergent to

i’i=0 1
0)“

ili=0" Assume now u° has infinitely many players. Since this

(a
implies that when realizing the random ordering with the same set of

random variables Z:, we will have a.s. J? +> Jg, and since Yi(q) =

i’
_ . . . n o
P(q € 31) = P(q € Ji), it will follow that ¥ i > 1, Yi(qn) + Yi(qo)
n n
. < - < -) €
whenever a, *a, (0 < q, < 1). But Yi(q) Prob (q a; Wn(Zi ) € q)

> 0. Thus the £. -

n, n n n n
< <
ai/ao, so that ) Yi(q) (l/ao) ) a; if a L

i’k i’k
n

convergence of a; vo a? implies that, if a

n
)
o
o 0,

lim sup sup J Y?(q) = 0, i.e., the convergence of the series | Y?(q)
k+ n q i’k i»l

is uniform in n and q. Since Y?(qn) + Y?(qo)’ it follows that

¥ Y?(qn) + 7 Y%(q.), and the relation J y, = 1 yields therefore
e (Lo it LTy
i»1 i»1 i»0

o o _ o _
Yg(q) > Yo(q). Ir a_ =0, then Y = 0 and therefore

an
. n 5> +© . n o, n_
limnlnf Yo(qn) Yo(qo), so that the relations v, >0, ioni 1Vn
N N o] . . e n o)
and ll§+inf Y? > Y; ¥i imply again Yo(qn) > Yo(qo).
n. . n _.n n n, , .
Let g : (0,1) » FA: g (q) = Yo(q)vo + ) v;(a)v,. Since ve

i=1
have shown that vg is norm convergent to vg (or Yg = 0) and that

the Y?(q) are equicontinuous and converging to Y?(q), it follows

that ¥ k the g: form a sequence of continuous maps uniformly

convergent on every compact set. If gn = g:, the relation
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lim sup sup ) Y?(q) = 0 yields then that also g” is a sequence of
k+ n q 1i%k

continuous maps uniformly convergent on compact sets to g°.

¢

Therefore, if converges to f° atu every point of continuity

1 1
of 2, [g"(q)df™(q) will converge to /&°(2)dt®(q): we have shown
0 0

that:
Proposition 3: At every point where u has infinitely many
players, value (f(u)) - as a mapping from bv'([0,1}) x FAi to FA -

is jJointly continuous in f and u, when FA 1is endowed with the norm
topology and bv'([0,1]) 1is endowed with the strongest locally convex
topology tor which a sequence is convergent iff it has uniformly bounded
variation and converges pointwise to the limit at every point of

continuity of this (i.e., an Arens-iopoiogy, or bounded weax*-topology).

Remark 2 (Regular games): Let v be a monotonic simpie game with

countably many players. Coalitions being points of {O.l}m, v is a
{0,1}~-valued monotonic function on {o,l}m. Assume first v 1o be
measurable for any product measure on {O,l}m {in order for the
extension to be defined - this assumption has to be made explicitly:
indeed, using the continuum hypothesis, it is possible to construct

such v's such that the lower integral would be zero for the product of
any sequences p; Wwith lim sup p; < 1 and the upper integral would be
1 whenever 1lim inf p; > 0: there is little hope to be able to define a
meaningful value for such things). We will also denote by v its
extension to [0,1]° defined by letting v(pl,pz.p3,...) be the

expectation of v under the corresponding product measure. We assume
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v to be continuous in the product topology in a uniform neighborhood of

the diagonal -~ to exclude such obviously non regular games as: v(S) = 1

iff lim inf [proportion of players belonging to S among the first n
>

players? > 1/2. Such a game is called regular (or non-singular, or

proper) (cfr. Shapiro and Shapley [1971], at least for weighted majoriuy

games) if X"i = 1, vhere ¥ = P(i pivots).

L
Remark now that = = ]P(i pivots arriving at t)dt =
1 0

I[V(t,t“;c-a",l,t,\o.-t) - V(t,t,t-oo.‘.o‘t,t,aoo)]dt =

f(avlapi)(t.n.t,...)dt (this last formula because v 1is obviously
0
multilinear in any finite number of pis). The same multilinearity yields

therefore that, for any sequence (61) with finitely many non zero terms,

1 1
lim f vit . 1+ :6) - v(v . l)dt [ 1im
™0 0 0 1+0

v(t.l*:G)-v(t-l)dt

1
(f)zsi(gg_i)(n.n,...)dn - ?1'1 .

Therefore for any nonnegative sequence Gi (0 < Gi <1) if 6?
denotes the same sequence with all but the first n tverms set TO zero

we get

1 n
lim inf | 1&; .1+ 1$) - v(v . 1) dt > lim lim vitv . 1 + 12 Y = vi(t . 1) dt
1+0 0 n+® 1+0

= 1im J&7w, = J6. 7. .
new 1 i { i

By an argument we already made before this implies, when applied
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also to the sequence 1 - 61, that, if E'i = 1, then

Lim } vit « 1+ 18) = vit.l)

v = )6 %,
150 0 T ii

i.e., v €EQ with y(v) = ("i) .

Thus, if v 1is regular (i.e. Zﬂi = 1), then v € Q. Conversely, if
vEQ, then ¥(v) 1is the limit of a sequence of continuous functions on
[-1,1]7, so is continuous at at least one point of this space, which
implies ¥(v) € 21 (this argument is essentially similar to an argument
we already made in '"Values and Derivatvives”): y(v) is some summable

sequence wi. Since by our above argument one has wi = and since

r

efficiency yields zwi = 1 we get ZHi = 1: a monovonic, simple game

with countably many players is in Q if and only if regul.ar.

SECTICN 2
In Section 1 we have shown how to reduce the problem of defining a
value to the problem of defining a positive, symmetric linear operator
(of norm 1) ¥ to FA from a (closed, symmetric) space V of
functions v: B(I,C) * R that satisfy v(a + byx) = av(1l) + bv(x)
¥a, bER ¥ x € B(I,().

We have also seen that, for such functions v, one has

V(v){x,x'] € Ix" = xt « Wvk |, ¥ x, x' € B(I,0) .

Therefore, if we let D:(x) = [v(; + Ax) + vix - Ax)]/2, we get

P
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V(D:)[x.x'l < Ix' « xh e Mvi

and Dg+bx(° s dy) = cv(1) + d DLbA/d!(;) (in particular D:(l) = v(1)).

Let Dx(x) stand for 1lim Dx(x) (if this limit does not
Arge -
necessarily exist, use any Banach limit; remark that D;(x) is

necessarily an even function of 1i). We get then

V(Dx)!x.x'? < Ay - xh e vl

-~

and Da+ {c + dx) = cv(1) + de(x)-

X
™us. ¥ X, Dx(') is linear on every plane containing the
consvants, and satisfies Dx(l) = v(1) and “DX" < Wvih,
In addition, the mapping x * Dx is constant on every plane
containing the constants, and the mapping v + DX is linear, positive
and of norm 1.

-~

Dx(x) is the (two-sided) derivative of v at yx in the

direction of ;: vim (v(y + ) - v(x - r;))/zr.
+0

We think of the typical situation where DX would already be in
FA for "almost every" x: for an average of the Dx then to be a
value., one only has to make sure to get the symmetry. the average
shoild be computed with a (finitely additive) probabilivy distribution
of B(I,C) that is invariant under all automorphisms of (I,C) (or
of ().

The averaging should be well defined whenever v 1is a function of

a vector measure, so for any vector measure M = (U, «.. un) and for

1
any Bor=l set B in R", u~l(B) = {x|u(x) € B} should be measurable:
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this class of sets in B(I,() 1is the algebra of cylinder sets. Thus we
look for a "cylinder probability" on B(I,C), i.e., a finitely addivive
measure P on the cylinder sets, such that, for any vector measure

l isa (countably additive)

u= (ul cee un) the induced measure p © u~
probability on the Borel seus of RP.
Recall that any cylinder probability on B(I,(C) is uniquely

characterized by its Fourier transform, a function on the dual defined

by
F(u) = E exp i<u,x> .

In the next theorem we use the classical concept of invariance
{(i.e., under all automorphisms of (I,()); accordingly (1,¢) 1is here
required to be a standard Borel space (i.e., isomorphic to {0,1] with
the Borel sets) and the duality used is that of B(I,() with the

space NA non avomic, countably additive measures on (I,(C).

Theorem 1: The extreme points of the set of invariant cylinder
probabilities on B(I,() have Fourier transforms Fo C,(u) =
iy

exp(imu(1l) - otul) where mE R, 0 » 0. More precisely, tne formuia

E exp i<u,> = | Fm (u)dP(m,0) establishes a one to one
RxR i
correspondence Befween invariant cylinder measures?/ and (countably

additive) measures P over R x R+. This corresnondence is a positive,

linear, convolution preserving isometry.

Proof: Consider first cylinder probabilities. Let vy denote a

sequence of mutually singular non atomic probabilities. There exists a
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partition of (I,(C) 1into a sequence of Borel sets Bi' such that uy
is carried by B; - which has therefore the power of the continuum.
Thus, for any permutation 7" of the integers, there exists an automor-

phism en of (I,C) such that Gn maps the sequence (ui):=1 to the

a0
sequence (u"(i))i=1.

The sequence ¥, maps B(I,C) to Rw, and the cylinder measure

induces therefore a consistent system of probabilities on the Borel sets

n

of the T (R), and thus a (countably addivive) probability Q on the
i=1 *

Borel sets of Rw. The invariance of the cylinder measure under eﬂ

implies then the invariance of this probabilivy under any permutation
m: the coordinates of ga are exchangeable under Q.

Taus, by de Finetti's theorem, if we denote by A the asymptotic
o-field on Rm, the random variables My are i.i.d. conditionally
to A, say with distribuvion F. The mapping from g“ to the set
M(g) of probabilities on R thatv maps any sequence to its distribution
(if this exists - which has Q~probability one by the Glivenko-Cantelli
and de Finetti theorems) is A-measurable, so Q induces a probability
P on M(R), such that Q is the distribution of a sequence F'l(xi)

where F 1is selected according to P and the X; are selected,

independently of F and of each other, uniformly on (0,1). It follows
in particular that any subsequence of the ui's would induce the same
probability P on M(R).
]
Let now ui
uncountable Borel set B in (I,() which is negligible for all

be another such sequence; then there exists an

ui's and u; 's: one can construct on B a third such sequence ui.
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When the ui's and the ui's are arranged in sequence, they fulfilil

the requirements set out at the start of vhe proof, so the probabiiity

P on M(R) induced by the two subsequences My and 4, is che

-~

same. The same would apply to the two sequences u; and W, SO ic
follows that P 1is independent of the particular sequence ui chosen,
but depends only on the cylinder measure.

n
Since T (l/niz‘ui is such that the sequence (un’un+1"")
-4

satisfies our requirements, and has the same asymptotic o-field
as the original seguence, it follows tnat, for P-almost every F,

Wy .+ u are independently F-distributed and ioo= (1/n) ¥ ou, s

i<n °

1
F is such that, for all n,

also F distributed. Thus P-almost every F
the average of n indepesndent F-distributed random variablies is F-
Jdistributed, i.e., F is strictly stabie of index 1. For .c.iv.rinut.
random variables, tais is equivalent to say F is a Cauchy distri-
bution.

If we parameterize the Cauchy distributvion by their locatvion and
scale parameters m and o, P becomes a probabi.ivy distvribuct.on on

R x R+ such that, for any sequence My of iatually singular non atomnic

measures, the sequence ui(x) is distvributed as the average undier

: . N + ®©
pP{dm,do) of the distribution of (Iuiﬂ X, - ﬂui Yi)i=l’ where
the Xi and Y; are all independently distributed as m + oU, where

U 1is a standard Cauchy random variable.

+ - c . : :
Thus Iuil Xi - luil Yi is distributed like m = ui(l) +

o e luil . Ui’ where Ui is a standard Cauchy random variable.

In particular, Elexp (i<u.x>)|m,0] = exp [-olul + im<p,1>]
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¥ u € NA, and E exp (i<w,x>) = [ expl-olul + im<u,1>]|dP(m,0).
BB,

It is clear from the above proof - or from the last formula and
the uniqueness theorems for Fourier and Laplace transforms - that for
any cylinder measure there can exist only one P such that the above
formula holds.

Let us now show that for any such P there exists a (unique)
cylinder measure with that Fourier transform.

Unijueness follows immediately from the fact that distribu:ions i
over finite dimensional spaces are uniquely characterized by tueir
Pourier transform, and from the fact that cylinder sets are all finite
dimensional sets. 7o show existence, recall that Bochner's theorem
characterizes the characteristic functions on R" as the positive
definite functions V¥ that are continuous at zero with ¥(0) = 1. This
immediately extends itself to Fourier traansforms of cylinder probabi-
lities (when continuity at zero is interpreted as continuity at zero of
the restrictions to all finite dimensional subspaces of the dual).

Indeed every inequalivy for positive definiteness involves only
finitely many points in the dual, so the condition is still necessary,
and i it holds, we get by Bochner's theorem a consistent system of
probability distributions on all finite dimensional quotient spaces of
B(1,C), i.e., a cylinder probability.

Now our formula obviously has value 1 at zerc, and is continuous
there by the dominated convergence theorem. Thus we only have to show

that it is positive definite. For this it is sufficient to show that

for every (m,0) the function exp(-olu? + im<u,1>) is positive

definite, the inequalities being linear.
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Tc show this, it is sufficient to show that this function is the
pointwise limit of a set of positive definite functions wa, since the
in=2qualities each involve only a finite number of points in the dual and
are weak inequalivies.

... B%) or (1,05, it

far every Borel partition a = (Bl .

X, (w) ... Xq(w) be independent Cauchy random variabies witn

parameters = and o, and letv f{w) € B(I,() have vaiue «.,iw) on

a . . : i . . R
B f(w) is a random variable with values in (a finite dimensional
subspace of) B(I,(), thus by Bochner's theorem its characteristvic
function wu will be positive definite. We have wu(u) =

n
£ exp (i<u,x>) = B exp (i<u.f(w)>) = & exp 1 ) u(BH)X (w).

ER. (¥ ~

n =1

Now ) w(B¥)X.(w) is Cauchy with paramevers m)u(B%) and
J= ‘

i

« v o

D

oS ju(B®)!,

o

o

the

ey, m ¢ <p,1> and ouuua, where ﬁuua is the norm o
restriction of u to the /o0-field generated by the) partitv.on a.

Thus wa(u) = exp[-o"uﬂa + im<u,1>] is positive definite, and
obviously ”u“a > %yl when a ranges over the increasing nev of all
partitions.

This proves that ¥ 1is positive definite, and thereby esticlishes
the one to one character of this correspondence, when restr.cted o
probabilities on both sides. (Obviously the cylinder probability has to
be invariant, since its Fourier transform is so.)

It is now clear that, for any bounded measure P, there exists a

corresponding invariant cylinder measure: let P = aP, - BP

1 . where

Pl and P, are two probabilities, a > 0, B > 0, and use ai, - BQ, as

invariant cylinder measure, where Q; 1s the cylinder probabiliuy
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corresponding to Pi' Furthermore this cylinder measure is unique - if
there were two of them, their difference would be a cylinder measure
with zero Fourier transform, so the positive and negative parts of this
difference would be two different positive cylinder measures with the
same Fourier transform, and in particular with the same total mass
(value of the Fourier transform at zero), so that by normalizing one
would obtain two different cylinder probabilities with the same Fourier
transform, in contradiction with what we have seen above,

We have just used the fact that the positive part At oora
(bounded) cylinder measure A is still a cylinder measure. Indeed,
if A denotes the algebra of cylinder sets, At is defined by
AY(A) = sup AM(A NB) ¥ A € A. One sees immediately that AV ois

BEA

finitely additive, positive and bounded on 4, with Ao, To show
that A" is still a cylinder measure, let Ay = {6=*(B)|B Borel set in

R"} for ¢ ranging over all finite subsets {¢. ... ¢n} of XNA.

1
Then A* = sup A;, with Ag(A) = sup A(A NB). It is thus sufficient

® BE%w
to show that, ¥ Oo, ¥é: &> °o‘ X; is countably additive on A¢ -
o]
(the supremum of a bounded, increasing net of countably additive

measures is still) or that, Y ¢, A; is countably additive on AO: this

is the Hahn decomposition theorem for countably additive measures.
Obviously, if further XA was invariant, At will also be:

therefore, we can, in the same way as above for P, construct for any

invariant cylinder measure X a corresponding measure P on

R x R*. Again, this P is unique, otherwise one could construct, as

-~ -

above, two different probabilities P1 and P2 with the same value of
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the integral me o(u)dP(m,a), contradicting our previous result for
.
probabilities.

Thus the bijectivity of the correspondence is established. Tts
positivity was already established before, when dealiing with
probabilities, and its linearity is now immediately obvious from tae
bijectivity - an integral Is a linear function of the underiy.ig
measures. Being positive and linear, it is an isometry because iv :maps
both ways probabilivies to probabilities.

The assertion about =xtreme points is now immediatve, s0 there only
remains to establish the preservatvion of convolution.

Since a linear mapping from " to RR maps the convolution of
TWO measures to the coavoiution of their images., it is clear that tne
convolution 07 two c¢ylinder measures is a well definea cylinder measare,
with the Fourisr transTorm o7 tne convoiutrion teing the product of the

Fourier transforms of the ind.vidusl measures. In particu.ar, i ©n2
WO measures were inviriant, tne conve.ition wil. stiii be. oamilar.y

on2 chnecks immediately that un- integral in tne right hand side under

the convolution of two measures P.  and P> is the product of the

-

corresponding integrals. "nis Tinishes the proor. QeTaile

Denote by Q the closed, symmetric space generated by FA and
all functions v satisfying v{a + bx) = av(l) + bv(x), vl < = that

are of the form v(x) = f(u(x)), whaere u is a vector measure in NA.

Theorem °: Let v € Q, and let P Dbe any invariant cylinder

measure of total mass 1 on B(1,() which is nondegenerate, i.e., the
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subspace of constant functions has probability zero, or: Prob (o= 0) =
Then Dx(x) exists, for every ¥, for P-almost every x (i.e., the
difference sup Dx(x) ~ inf Dx(x) converges to zero in L (dP(x))
or X »r o X \ - 1
when Ao + =) afd is, as well as any DX(X)’ P-integrable in
X, and ¢ (x) = D (x)dP(x) = lim fDA(x)dP(x) is independent of the
v X Now © X
particular invariant P chosen.
Further ¢v € FA, so that the mapping v » ¢v is positive,
linear, symmetric, of norm 1, and satisfying ¢v(l) = v(1): ¢: v =+ ¢v

is a value on Q.

Proof: Since the mapping v *+ D; is positive, linear, of norm 1

and satisfies D;(l) = v(1), the last sentence of the statement will
follow from the others provided we prove the additivivy of ¢v.

It also follows that it is sufficient to prove the statement on
the generators of the space, since a uniform limit of P-integrable
functions is P-integrable, with the integral being continuous along the
sequence,

Finally, since D; acts as the identity on FA, and since
constant functions are P-integrable, it is sufficient to consider the

genarators of the form v = f(u), with wu = (u, ... un) a vector

1

measur= in NA.
Also, since, by Theorem 1, P can be written as aPl - BP2, where
the P; are invariant cylinder probabilities and a - B = 1, it is

sufficient to consider the case where P 1is a cylinder probability.
There is no loss in assuming that u has full dimensional range -

otherwise one of the components of u 1is a linear combination of the

0.




<40-

others, so v can be written only as a function of the other
components.

Denote by Bu the image under u of the unitu ball of B(I,C),
i.e., Bu = 2(Range of wu) - u(l). Bu being compact, convex, symmetric
around zero, and full dimensional, it is a neighborhood of zero {(by the
absorption theorem say). The relatvion v(a + byx) = av(1l) + bv(x)
implies now f(a -e + bx) = af(e) + bf(x), vy x €R®, a, b € R, where
e = (1) eRr".

Finally, the relation V(v)[x,x'] € #x' - x! o ivl implies that,
if x = u(;), and y - x € GBu, then J X with Iy - ;: <8 and y = u(x)
so that

-~

le(y) - £(x)] = |v(%) - v(;)l < vix) - v(; -8 1)+ vix) - vix - 6. 1)

< V(v)[; -8 . 1,x+8 .1 +Vviv)[x -6 . 1,x] < 38uve |

Bu being a neighborhood of zero, Fe>0: lxh < e=>x€ Bu’ and thus

we have shown that Wy - xl < €8 => [f(y) - f(x);< 38Ivl for all &,

y and x: thus |f(y) - f{x)| < (34vM)/e © My ~ x¥: f is Lipschitz.
Conversely if f is Lipschitz it follows immediately that

fvi < ®  so our assumptions reduce simply to Vv = f(u), where u is a

vector in NA with full n-dimensional range and where f 1is Lipschitz

satisfying f(a * e + bx) = af(e) + bf(x) where e = u(1), ¥ x€ R",

¥ a, b € R.

We have D;(;) = [f(x + Ay) + f(x - Ay)]/2, where x = u(;),

-1 .
y = u(x) or n; (x) = Ity + ) = fly - x)}/(21).

Remark that, f being Lipschitz, the limit (for T + 0) will, for
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each x, exist A-almost everywhere in y, A being Lebesgue measure.
This follows from Lebesgue's a.e. differentiability theorem. Indeed,
if x 1is zero, there is nothing to prove, otherwise x can be taken as

the first basis vector in R®: for any z. ... z_, f(z,ze,...,zn) is a

2 n

Lipschitz function of 2z, so the first partial derivative exists for
almost 2z, by Lebesgue's theorem. Since f is Lipschitz on R™, the
set of points where the first partial derivative does not exist is a
Borel set, and therefore this set of points has Lebesgue measure zero by

Fubini's theorem.

The probability induced by P on R" has characteristic function

wu(t) = E exp i<t,x> = E exp i<t,u(x)> = E exp i(<t,u>(x)) = [ expl-ot<t u>t
- - RxR
+ im(<t,uw(1))]dP(m,0) for some probability P. ~ -t
Now ‘<t ,u>t = sup <t,u{x)> = sup <t,x> - Nu(t) where Nu is

Iy <1 xGBu

the norm on the dual generated by the ball Bu'

And <t,w(l) = <v,e>. Thus

/ exp[-oNu(t) + im<t,e>]dP(m,0) .
RXR+

~ -

wu(t)

Now obviously, for any given m and o (>0), exp[—oNu(t) +

im<t,e>] 1is lebesgue integrable in t, so the corresponding probability

distribution has, by the Fourier inversion theorem, a density with
respect to Lebesgue measure. Since the conditional distribution on
R? given m and o is absolutely continuous, the unconditional

distribution is also certainly so.

Thus we may conclude that, for any invariant P, and for any
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X, the limit Dx(x) will exist for P-glmost every .
Thus, for any P, and any x, [f{y + tx) - r(y - t™)]/{2t) is
uniformly bounded (f being Lipschitz) and converges P- a.e. to its

] limiv: by the dominaced convergence theorem, the limit is P-integrable

-

and the limit of the integrals is the inuvegral of the limit function
3 WX(Y)-

Now f(a * e + by) = af{e) + bf(y) yields wx(a +» e + Dy) =

lim{f(x + Ma e+ b s y)) + f{x = Aa*se+b-+y))/2=

A»o

lim [f(x + Aby) + £(x - Aby)]/2 = wx(y) if b # 0 (and = f£(x)
A oo

if b=0).

Let 2 denove a random variable having characteristic function
exp [-Nu(n)]. Then m * e + 62 where {(m,0) 1is selected, indepen-
dently of Z, according to P(m,c), has the correct characteristic
function [ exp {-oNu(t) + im<t,e>]dP{m,0). Thus ]wx(y)dP(y) =

RxR
. ot -
Elwx(m s e +02)] = 8y (2) since P(o = 0) = 0: <vwhe integral of the
X
limit - which is the limitv of the integrals -~ does not dependi on the
choice of P, i.e. on the choice of a particular invariant cyl.inder
probability.

There only remains to establish the additvivity, i.e., that

wa(Z) is a linear functvion of x.

Let fe(x) = f(x) exp(-elxl2) (e > 0) (here 1+f is the

Euclidean norm).

We want to show that fe are uniformly Lipschitz (i.e., with a

Lipschitz constant independent of ¢€).




e
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Since f 1is Lipschitz, each of them is obviously locally
Lipschitz, so by the above mentioned theorem of Lebesgue, it will be
sufficient to show that the directional derivatives of the fe are
uniformly bounded whenever they exist.

By choosing appropriate axes, we can assume our directional

derivative is in the direction of the X1 axis.

We have

ar
‘e af 2 2
Fral (S;I) expl-elxn<) - 2exlf exp|-elxl} .

I¢ K is the Lipschitz constant of f, then laf/axl[ <K and

'f! < K %x! - bounding also lxll by WIx', we get
af , 5
%5}53 < ¥ exp[_euxn2] + 2k(etx1®) expl-(etx17)] < 2K
since e % + 2ze7% <2

Thus the fe have uniformly the Lipschitz constant 2K. Further
the formu'a shows that, whenever the directional derivative of ¢
exists, the corresponding directional derivatives of the fe will also
exist and converge to that of f when € + 0.

ug wx(y) = lim lim [fe(y + Tx) - fe(y - wx)}/(21), all

€+0 10

functions involved being <€ 2KIx%® in absolute value., Thus, by the

dominated convergence theorem,

gv (2) = lim lim %;

20 190 2 f[fe(z + TX) - fe(z - rx)]gu(z)dz




by

where gu is the density of Z (which we have already shown to exist).

But since fe is a bounded function, it is integrable, so

f[fe(z +1x) - £ (z - Tx)]gu(z)dz ffe(z)gu(z - Tx)dz - ffe(z)gu(z + tx)dz

ffe(z)lgu(z - Tx) - gu(z + 1x)]dz .

Now g, has characteristic function exp[-Nu(t)]. and
ot exp[—Nu(t)l is integrable for Lebesgue measure. Therefore, by the
Riemann-Lebesgue theorem, gu is continuously differentiable with its
gradient going to zero atv infinity. In particular the [gu(z - %) -
gu(z + 1x)]/21 are uniformly bounded and converge pointwise to
<-(Vgu)(z),x)>, where (Vgu)(z) is the gradient of g, 8t &

Since fs(Z) is integrable, it foilows (dominated convergence)
that lim (1/2T)ff€(z)[gu(z - 1x) - gu(z + Tx)]dz = ffe(z) <-(Vgu)(z).x>dz

T*0
and thus

tin o™ 2(2)<=(%g ) (2) x>0z

€+0

wa(z)

2
-<x,lim fe-sﬂzﬂ £(z){vg )(z)dz>
€+0 M

which is linear in x (the limit being some form of Cauchy principal
value of ff(z)(Vgu)(z)dz).

This finishes the proof. Q.E.D.

Remarks:
1) One can use the same formula (exp [-ful]) to define the

Fourier transform on the whole of FA, thereby defining a cylinder

D Vol




probability on B(I.() when cylinder sets are defined as inverse images

of Borel sets by any vecvor {u, ... un) in FA. This cylinder

1
probability would obviously be invariant under all automorphisms of the
lacttice C.

Theorem 2 remains then valid when w in the definition of Q 1is
allowed to be any vector in FA - provided one interprets "invariant
P" as "? naving the Yourier transform prescibed by Theorem 1."

It might be that this formula could be justvified by some type of
uniqueness argument on the space of non atomic elements of FA - using
maybe a weaxer concept of automorphism. But certainly for the atvomic
part n2 such argument could be hoped for.

However, as our analysis of regular games with countably many
players at the end of Section 1 may indicate, it could be that in
general the "atomic part of the game” is already essentially linearized
by the firsu derivative operation, so that the end result would anyway

be canonical. This czervainly deserves further study.

2) Define for any vector measure u, Nu(t) as sup <v,x> = I<g,u>l
xGBu

f{<t,x>fdv(x). where v is the distribution, under a cormon dominating
measure u_, of the Radon Nikodym derivatives f = (f‘l cee fn) of

U= (u1 cee un) Wela.Toe uo. For any norm n, one could replace f
by f' = £/n(f), and du ) by dul = n(f)duo to normalize v on the
n-unitc sphere, say, for a canonical choice, v could be carried by the
boundary of Bu'

Jur proof then shows that, in this case, exp(-Nu(t)] is positive

definive. Conversely however, if the support function Nu(t) = sup <%,x>
*€B
u
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of some compact, convex, symmetric set Bu is such that exp[-Nu(n)I
is positive definite, then, since Nu is positvively homogeneous of
degree one, exp[-Nu(t)] is the characteristic function of a strictly
stable distribution of index one, and has therefore as classical Levy
representation exp[-f{<t,x>|dv(x)], where Vv is the normalizaction of
the Levy measure of the process on some spher= - say on the ovoundary of
Bu: there exists a positive measure v on the boundary of Bu suach
that Nu(t) = [|<t,x>|dv(x). If now we define u by du; = x,av,

inn

where x: 1is the

3 coordinate mapping, we get immediately

Nu(t) = I<o,u>l: Bu is indeed the ball corresponding to the vector ;
measur:2 M.

This interpretation in terms of the Levy measure allows us
therefore to viow the random perturbation around the diagonal as the sum
of a very large number of independent contvributions - those of tne

play=rs preceding the given player in 4 random order - the airection of

each being according to the distribution of Radon Nikodym derivatives of

the given measure. This type of interpretation will be pursued much
further in a subsequent paper.

3) A large number of definitions of "spaces on which there is a
value" are possible in view of what trecedes - depending among others on
the exact order in which the various limiting operations and averaging
operations are to be done, on how much "a.e." is put into the defini- ﬁ

tions, etc.

We prefer to leave this matter to the taste of the reader, as long

as no theorems are available that would show clearly which option is to be
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preferred. For a foretaste, the reader may want to look at Section 4.

SECTION 3

In many applications of the above results, whether to majority
games with several houses or to n-handed glove markets for instance,
the function v of Section 2 will be of the form f‘(ul eee un), where
# is a vector measure and f 1is piecewise linear. Elementary trans-
formavions reduce this to the case where u 1is a full dimensional
vector of probability measures. Say f, (i =1 +.0 k) are the
different linear functions appearing as pieces of £ (i # j => fi # fJ).
Then the set {x|fi(x) = fj(x)} boing of lower dimension, has zero
probability under the invariant measure of the last section (since this
is absolutely continuous with respect to Lebesgue measure), so that we

can neglect ties among the fi's. Then, for any order 4( on the

indexss 1 ... k, the set {x| ¥ i,5, i< § = fi(x) < £ (x)}=C(g) is

an open convex cone - thus connected - where, by continuitvy, £ 1is
onstant equal to f th £.'s = f. .
constantly equal one of the i s say 1({)
Thus, by the results of Section 2, the value of this game takes
the form ZP[C({)IF.( )(u).
< i
So, to compute the value of such games, we have to compute the

probability that f, (u{x)) < £y (u(x)) < ooe < £, (u{x)) - or, letting
1 2 Kk
OJ stand for the measure f, (u), the probability that Ol < 02 < eea < &
J

when ¢ is some vector measure. Remark also that the property

f(v *»1 +a° x)=1tf(1l) + af(x) implies that, for all i needed to

k’
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represent f (i.e., f = f,

i on some open set), one has not only £,

linear and not merely affine, so the ¢ are indeed measures, bat also
Y

dJ

fi(l) = f{1), so they also have the same votval mass.

Thus, letting vi = °i+l - Oi, we have a vector measure with tvotal
mass zero, and we have to compute the probability that vix) ra..s in
the positive orthant.

If the vi's are not linearly independent, those inequa.ities
determine a convex polyhedral cone in the space generated by V. This

cone can be written as a finite union of convex simplicial cones

(negleccing boandaries that have probability zero), and for each convex

simpllicial cone one can take 1ts extireme rays as ne=w coordinauie axes,

thus reverting to the case where the v, 's are linearly indepeadent.
This is the probability we are go.ng to compute in This section:
v = (vl e vn) is a full dimensional vector measure with total mass
zero, and we want P{v(yx) € Rf).
Obviously, this probabiiity does not depend on the parvicul.ar
~variant measure chosen, so we wi.l us» m =0, 0 = 1.
Let us first recall that for any norm . on R", any point
x € R" can be written in polar coordinates r = N{(x) and s = x/r, and

r?=14r do(s), by definition of the

that Lebesgue measure dx1 N dxn =
surface measure do on the unit N-sphere. One gets the following
"change of variables” formula: if T 1is any other such surface measure

{(i.e., originating from some other norm), then for any sitive
g po

measurable function f  on the unit N-sphere,

[e(s)ao(s) = [ (gray) dr(:;
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From now on we denote shortly by N the support function Nv of Bv'
We observed in Section 2 that the characteristic function

exp!{-N(t)] 1is integrable, so the Fourier inversion formula holds. Thus

lae.
[}

P(v (x) €R})

=t / dx, ... dxnf[exp(-N(y))][exp(-i<y,x>))dyl ees dy

(>m)? r* &
n

or, going to polar coordinates

P = (zw)'nf+(dxl . dxn)f expl-r(1 + i<s,x>)]rn-ldr do(s)
R
SE g el
(2m)™ x>0 * T ics,o)”

The inner integral being a density, it is positvive, so we get from the

monotone convergence theorem

- 1) )
P = {n - ! lim [ oax, ...oadx do(s) .

(2m)" Mo 0% <M 1 Y1 4 ics,x>]P

Now 1/([1 + i<s,x>]n) is bounded (its absolute value being € 1)
and thus integrable on the product of any cube in x and the unit N-sphere.

Using thus Fubini's theorem, we get
g g

dx, ese dx
(n - D! lim [do(s) [ L nn .
(2m) Mo 0<x, <M [1 + i<s,x>]

P =

n
Let ¢ (c,s)=i(n - 1)t (s ) [ (dx

<
1 0 xi<M

(Re(z) = 1): i depends only on the first n coordinates of the sequence

L oo dxn)/([c + i<s,x>]™),
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Sje An elementary integration over Xn yields
1
6n
' = T i }
¢ (c,s) = ) (1) " ¢ _lc + i8 s M,s!
} n § €(0,1} n-1 nn
: n
E and this formula stiil holds for n = i if one sets ¢O(c) = -4n c.
i One gets now immediately by inductvion that
* 28,
. ©
¢n(C,S) = - ) (-1)Y g&n(c+ iMZS;s;) R
80,11} SV
and thus
3 - ¢ § . \ ’3)
. P = ——1——5 1im [{ ) n(_L)z S &all + iM)8.s,)] %—' .
(2mi)" M= §€(0,1} v Sl
3
Since do(s) is symmetric around zero, we can replace eacn
a1 + M) 5,)
-t Jov
.n IIs
1 <
+ ty the average of its valuie at s and at (-s), i.e., by its r-=al PArt.
£ev thus
' 1 TN .8 - do(s
P = =~ lim [ ] =1 F_(Mlss,)) TS
(2m)" Msw ~ 8€{0,1 5 nomde jsg
where
FK(X) = - % n(l + x2), ~ Arctan{x), % n(1 + x2), Aretan(x)
according as to k=0, 1, 2 or 3 mod 4 .
Here Arctan{x) uenoter the inverse 7 tne tan-ent function, witn

wWe
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values in (- w/f2,n/2).

Using now the change of variables formula, we can rewrite this as

. §, s
P=—2 _1lim /I 3 (-1)z J Fn(yb('i—s-)- chsj)] arls)

T (om)™ Mee | 8e(0, )" Tis,

where T denotes the surface measure corresponding to an arbitrary norm

P §. Henceforth we will use fxl = E{xi!. For this norm, the unit sphere
has 27 faces, each with T-area equal to 1/(n - 1)!.
Letving A = {s's » 0, Js, = 1} we get, folding all faces back on
A Y
n
- Ts M at(s)
p=(2n)" 1im [ 7 ¢ (-1)&%5(Me )F (gr=-r— 16.¢.5,)] 5L,
Mo 8 §E{0,1}" g o NleTeST T s,
e€{-1,.}

T™e nexw part oF the compatation is for n  even.

Lev ¢g(M,s) = <;/2)GE{Z }n(nei>zn(1 + [(/(¥(e . s))fs.e.s,1%) .
_l’l o J-u'uu

2laim 1:

05(M,s)
-—-} is locally integrable on {s € L ¥8.s, > 0}
- J

b %
v

sup i
J

t

{i.e., any point - and thus also any compact subset - of this set has a

neighborhood osn which the function is integrable).

Proof: Fix one such point Sos and consider first a neighborhood

s of s, where all strict inequalities among the functions

Q

{0; s,000s_; (16 er ) } that hold at s, are preserved. Let
T A e 1

n > (O be strictly smaller than the absolute value at Sy of any of

those functions that does not vanish at s and assume further thatv, on

o’
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Vs , all functions that vanish at S, remain <n in absolute valuie,
)
while all the other functions remain >n  in absolute value. Finally

write vs as the finite un.on of sets Vs (and a null set) where on

o o}
each set V tne orlering o/ all those functions is constant ‘and
o
2
strict). It is sufficient to prove integrabi.ity on VS o ASBwiLz un
o
particular without loss ¢t generallcty uvnat, on V_ , W& nave
o
o
D < s, €85, < sae &3 <N<s. . < 40e <38 0 € £ < n). By asswi-
1 2 % K+l n ( ) 4 e
. - or
tion 3§ > «: §, = 1. We nave
Mg s, + ) 8 e.s. ] b
& 9 o
l + — __kj_>_.+....b._f.-
N(s.,e S.yss9,E S
0, = Py (e )en 1’22 nn’
§ 2 .. ; M-8 s + |, 8. es,, &
(eq...en)E{-;,;} v RS ';l MR
- 1+ —_dZ ———

and we will bound individually of every logarithm in this sum. L2t

fi(s) = ~(-1)*6.s + ¢ §.€,5,, n,(s) = N(-(-1)'s, ,e.s vesen€ S )

1= 1 1 272 Voh
; r‘;>lbuu LN, N -
(i = 1,2). Now !lntkl + ME /)% 0L+ (Mfz/nz)“)J! increasss
monotonically wivn M to its limit, so that
o 2 .
. 1o+ ‘Mfl/nl} | iin;f /r,1 &aln./n,)
sup ﬂ: = in ——-— P o~ - ~'-ﬁ-¥l— (I
T N N W s

Thus we only have to show that (Il.n]f‘l/fgi)/ﬂs‘j and (ln(nl/n)))/ﬂs,
are integrable on V..
For the second term, remark that, N being a norm, and any two

norms on R" beiryg equivalent, ny and n, are bounded away ¢rom O

and from «, and |n, - n2! < N(231’0’0"'°) < Ksl. 50 |%n nl/ng; <

1

K'sl -~ thus we only have to show the integrability of sl/ﬂs: on
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{s € An: Y i, s, » s }.

i 1
The measure 7T on 4 _ has a bounded density w.r.t. ds. ... ds s
n 1 n-1
1 n-1 1
so it is sufficient 1o prove that fdsl il f (dsi/si) <@, lie,,
1 N2 0 i=2 s
[lan s |""%ds, < =, which is well known.
0 1 1
The term (lnlfl/f?l)/ﬂsj appears only if 61 = 1 sO assume
this. Let &(s) = J G;EJS;: since f, = ®+s,, £, =% -s,, we can
:>ld v - ~
repeat with fl and f, tne same argument as with ny and n, if
¢ does nov vanish at Sq¢ So assume furthermore ¢(so) =
E Gte,s? = 0. 3Gince by assumption X st? > 0, it foliows that there
gk <o >k
exist two indexes >k, say n - 1 and n (renumbering coordinates),
such that 6 =8 =1,€ =21, e =1,
n-1 n n-. n
Do now the change of coordinates (sl....,sn) *>
( . 4 S g : .
\(l/z)fl.(l/z)f2,sz,...,sn_z) using th: formulas for f, and f, and
the equacion Xs; = 1. Since under our assumptions the change of
J
coordinates has nonzero determinant, it will be sufficient vo prove ﬂ
n-2
§ R f1 IRV K
integrability of \lln!fl/fgil,/g(fl - fe) g si] on 1 » s, > 1) - f2 > 0,
}fil < 1/=.
Integrating the s:'s., this becomes

1

tn' . /f,.)
! 1 LY -
- | n-3 - - a 1
f!?f';'f”‘ [!2n.fl - 1777, df, on -5 <1, < <5 or
. . 1
equivalently on ifil <5 -
Letting X, = [fi{, we get, bounding the integrand,
L (x./x,)
n'"1 "2 n-3 1
- e - ~ < < =
x =%, 2n|x1 x2| dxl dx, on 0 < x, €=




30

31T L

et i AW
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or, by symmetry around x, = x,., '
1 2 1
gn(x, /x.)
Mt X P
% [-2n(x2 - xl)] dx; dx, <= , (k2 0)

0<x <x2<1/2 2 1

1

- or, using polar coordinates and increasing slightly the arca or

integration,
-£ 0 .
——ug taqf~§ [-tn r - &n{cos® - sind)}™ dr 46
o<r<y ©0s® - sin
0<6<n/Y
1 k 1
since [[-fnr ~ A]"dr is a polynomial in A, we have reducea the
0
problem to showing the finiteness of
0 - 51 R
f An cose 29 5in® [-2n(cost - sinS)J2 a8 , (2 »0C) . r
0<8<n/h cosf - sinb

It is sufficient to show local integrability at 2 and w/L, t-e ratvio

being bounded at w/4, it amounts at this point to the well known

. ‘o n .
integrability of |&n x|  near zero; and at © = §, the argument is
Just as easy, and reduces to the integrability of }ln X! neur cerc.

This proves the claim. Q-F.eD.

Using now Lebesgue's dominated convergence theorem, we get for any

n>0
lim ¢ .(M,s)
$.(M,s) s
lim f “ins at(s) = f 'i*—‘:—ﬁ——— dr(s)
L We CINTEI D) s 8 Ms |6 s >} Sy

and
L}
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lin ¢.(M,s) = ) (ne )1nl{6 es, | - ) (e )&n N(e . s)
Mo eel-1,1)" ;3 S (-1, 1) g 9
if 3 g: SJ = 0, the first sum is zero, so
lim ¢(M,s) = (6 = (1,1,...,1)) ) n(ne )ln[le‘s |
M+ ‘~1,1}
- ) (Me )Y&n N(e . s) .
e€{-1,1}" J

Wwe have also seen in the above proof that both (l/ﬂs‘)i(ﬂsj)lniiejsjl
o
€

and (llnsz)i(ne Y2n N(e . s) are integrable over An, (for & = (1,1y004,1),

“ J
£
E(Sisi = 1> 9 everywhere); so for § # 0,
n L !
I%(M ,8) IE( ), 11e 8y
lim — dt(s) = I(6 = (1,...,1)) s dt(s)
Me= A % s S
Y(Me )&nN(e.s)
e - at(s)
- J—————-— d1(s
A HsJ
n
$.(M,s)
+ lim lim f —in—s—— dt(s)
n*0 M= A Ns!)8 s, <n} N
n i°i
Therefore, summing over all nonzero §'s,
E(ﬂsj)lnlEEJSJ‘
p(v, >0 ¥ i) = (-1)“/2(2n)'n[_,f £ Tis dt(s)
i y |
n
Z(He )en N(e . s)
€
- — dt(s)
s
An J
¢5(M s)

- 1 °s lim lim S at(s)]

sefo,1}" n+0 M= 4 r‘{s 26 8, <n} J
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Let us now compute the last limit.

Assume without loss of generality GJ =1 1iff J € k: we want to

compute
E(Heg)ln[1 + (M Y €8, Y/N(e + s)) ]

vim 1im & . )<ic ) . dt(s)
n* 0 M+eo s?0 SJ

z si=l

i€n

X s.<n

i<k

Represent s € An as oax + (1 - a)y, with x € b,y € An~k’ a € |0,1].
Denote by ?n the uniform distribution on An: we have T = ?n/(n -n
as noted earlier.

One checks easily that, under ?n’ a, x and y are independent,

x and y Dbeing uniform and a having the beta-density

(n - 1)! S n-k-1
(k - Di(n =k = 1)7 (1 - a) .
Thus we get
dT (¥) 4T (x) n
i ; n-k
lim lim [ n = &% - 1)1 { T é Z(HeJ)

n+Q Mi» An—k K

tf1 + (Ma(Je,x )/N(ale « x) + (1 - a)(e - y1)?)

k-1 n-k-1
- - 11 - a)
(1 - a)n.knxjﬂyJ
dt_ . (y) dr (x n
= lim lim | n'k — [ ¥ne,)
ns0 Msm A Yy a ™y 5 J
n-x k

a(Je, XJ)

2
tnf1 + ——ﬁ('u('e . x) +’('1 - a)(e v y)) ) ] a(ll = a) °

da




Y

We first want to show that:

Claim 2: The limit (when n + 0) is not affected if we replace

N(a(e * x) + (1 = a)(e =« y)) by N(e »y), and da/a(l - a) by da/a.

A) First replacement

Indeed, as before we get from the equivalence of norms on R? <that

!ln N(a(e « x) + (1 = a)(e * y))

G < Ka .
Since sup |%a((1 + An_)/(1 + An_))| = |%n(n./n.)|, we get that, after
A0 1 2 172
the first replacement, the error in the sum z is bounded by

€
K *»a for some K > 0.

For the same reason, pairing the terms where, for j > k, € is +1

J

and -1, one finds that, both before and after replacement, the sum

2 is bounded in absolute value by K - yJ. and for j < k, one finds the
€

bound

) €% * X,
ity
Kx'j + K'|en]E

€.X, ~ X
i%i J

i#]
Thus, to show that we commit a negligible error in this first
replacement when n * 0, we have to show that

-m
di(x) e

Tix

A 0 0 4

k drt_(y)

+
* X m
Ay Vo ] —— <
=1 J J=1 ﬂyJ

e .

X

[

)

where, for any € € {-l.l}k. (€J+)i =€ for i#),=41 for i=}

and (e97) = ¢

{ for i # j,=<=1 for {i=].
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Let us first bound the inner integral

. m oy dr{y) . . m , dr(y)
[ win(B,(y ) )) S < m [ Min(8 Max y (v )y ) Sy
& J J J
m dy.
<m | Min(f Max y., (y,)fl,) it 1
0<y, <1 y ¢ e OFL oy Y
J
2 » Y,
= m“(m - 1) i Min[Bym.yll )i y—l
Cy._ < e N
o<y, yj<ym<l J=1 "¢
Y m~2 N
= n°(m - 1) f [2n(=2)] Min(y;l.Byf‘) dy, dy
1 1 m
O<y, Sy <1 1
1l °m
-1
3 M 2 -
= me(m -Ufdy [ [#n u}™ % Minl8.,u 1} du .
0 1
Now the inner integral is
-1 -
8 Y .
for y < B equal to B [2n 02 gy { lin uj ol aﬁ
1 g~t
-1
Yy m-2
and for y »8 wo B8] [fn u] du .
1
Therefore our upper bound equals
-1
me(m - 1)[82 [ [&n u]m’2 du + [I(0 < y < uwtc 8)[tn ulm'e dy gE
1
-1 m-2
+ BfI(B <y <u* <1)[tn ul du dy]

e G
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; g™t 8 g
= m2(m - 1)[82 J e ul™2 qu + [{2n v gy 4 8f wan u]™? qu
1 0 1

B—l
- 82 [ [4n u]m-2 du]

o o NPT

8
n2(m - 1)[J(-tn )™ 2 av + B (-0 )™
; .

8
m2 f(-ln v)m_l dv
0

by intergration by parts. The same invegration by parts gives by !

induction that this last integral equals

m-1
(m-1)!8 Z (-4n 8)" ln B)

-m

Therefore, since we are only interested in values of B < e <1, we

get

,{ Min(B,(yJ)J 1) d;(” <K Blln g™
J
m

Let Fm(B) = 8|%n 8]™: we thus have to prove that

J+
€ LI 4 k da
DL &

< L L

ar(x) 7 F_ . (Min[a,(x, + |2n
x 0 nm-1 7

N

e” . x

To evaluate the inner integral, let for short y,6 = x, +

J J
tn {(e* + x)/(e?” + x)|| then the inner integral is bounded by




-60-
o
Min [ F lmhﬂmy))gg
j 0 m- J a
F being increasing in {0,e”™]. Call this last intvegral o{y.); we

m-1
get letting p = Min(y,e")

P
o(y) = [([2n x|™™) ax - F__ (p)(%n p + m)
0

< - F
KmFm_l(p) (2n p + m) m_l(p)

< X'F (p)
m m
{using our previous bound for the integral) .

Thus it will be sufficient to show that, letving y(y) = F_(Min(y.e'm))

fowp .
< .
Akﬁ{xl xi} i
Since u > 0, v > 0 implies Y(u + v) < y(u) + y(v), it wilil be

sufficient to show separatvely thatu

drt(x)
TN LS.
X, X, 1 .ﬂ xi
1 i i>1
and that
1+
€ . X dTt
[ oo 15— ) ce
x1<xi € LI 4 i

The first integral is bounded by - letting [Ix1_ = Max(xi[. and

1} -

1" being Lebesgue measure on {x|Uxi_

R sy P
oy




kKelx! m m .,
n ”] dt{x) < (k - 1) ] [2 2] at'(x)
x, €x X T xy X, <x, €x X T x
174 i>1 i 72 i>1
kx,. m dx
= Ck <f [En ;3] dx1 .Il —x.i
0<xl xi<x2-1 1 i»2 i
1 k O k-2
= Ck f(2n ;—) (!.n =) dxl <o
0 1 1l

For the second integral, we will prove local integrabilivy. i.e.,
that, for any x € AK N {xl < xi} there is a neighborhood of x in

this set where the function is integrable.

I7 x, > 0, then xi >0 ¥ i so thav the integrand is locally

bounded. Otherwise, one has € . x = et e x= el x: 1if e ¢ x # 0,

1-
then locally Zn}(el+ o x)/(e”” » x)|| < Kx,, so ¥ < K'w(xl), and we

have just shown this bound to be integrable.

: N +
Thus there just remains to consider the case where el ¢ X =

Since X, = 0, in = 1, there exists an index § # 1 with

xJ > 1/k, and since further € * x = 0, there exists another index

_2. and €,e' = -1. Assume without loss of

J! J

generality that Jj' = k - 1, J = k, and make the change of variables

J'#1 with x,, >k

)

(x X eee X

.o xk) + (fl,r 5 K2

1 2

using the equations

1+! 1-0 = =
€ X = fl s € x = f2 ’ le 1 .
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The integrability on (W/Hxi)dr(x) is equivalent to that or

p/( 1 xi), which is equivalent to that of

i<k-1
Wltnley ool ) dr, ar kﬁ2(ff£)
TSR 1 2 ._ VX,
1 2 i=2 "1

over {Ifi] < 1/2, 0« £, = 75 € € 1} - or, integrating over the

<

xi's:
. .
]zn(f1 - f2)i w(]lnlfl/tzll) o qe
f‘ - f Ll L2 .
1 2
The invegrand is only increased if we replace I'. - f2 oy
Fy
Lfli - :fo; - 50 we assume O < T, < i, inserting absolute vi.ue of

differences.

Further by symmetry it is sufricient to consider the case

* BB
fx 2
(<2l - £ % F [(a{(r /) A (1 + 6))!
1 27! m 172 m'’’ .
S ——— ar, 4r,
0€t 81, €1 1T f2 ©c
2 71
et fl =y, f2/:‘l = 1 - X: our incegral becomes

1F ({1 - )72 (1 +8)) 1
IR dx f[--ln(xy)]2 dy 5
0 X 0

X

the inner integral is (I/x)f[-ln z]g dz, which by a previous computa-
0]

tion is equal to a polynomial in [-%n x]: everything amounts to

showing that
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[-tn ) *'F_(20((1 - 07 A (14 5 1)

- —2-— dx
X

is integrable on [0,1] . The integrand is bounded except at x = 0,
1

where it is bounded by ([-in x]z Fm(2x))/x, i.e., a polynomial in

(-fn x) - this we know to be integrable.

Thus, we finished proving that the first replacement can be made.

B} Second Replacement

Ince this first replacement is done, the sum in the integrand is,

by our previous argument, bounded by

)
mi
<4
e
3
o

So, to show that the second r=placement :an b2 done, we have to show

that this function 1s Integrabie for

11(x) | _ta_ (since . = 1 =
My . fx Toa MIRRCE G o gy T

Q|
'
=]

over say a < 1/2 - thus that

For the first integral we can use our previous computation, and

the integral over a disappears, so we are left to prove that

F (|2n € X A e-m)
m € * X
—e S at(x) <
<
xl xJ 3 J
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and this we have shown previously also. So Claim 2 is proved. yeL.D,
Thus we have tO compute
.odr  (y) dr (x)n
lin lim 5 [ —22% E— 1 1 (ne¥)(ned)
N0 Mew ° Y5 § 0 X d

[l + [Ma(e® < x)/N(0 « x,& « y)[°] 2

Letting Ma = u, this becomes

, o dr _k(y) di(x) Mn
1im lim 5 f ;y f fix f I (He;)(ney)
n+0 M+o < 3 S 0 ex sy

wli + (e - /M0 - x, & e yZ] W

Now, the limit when M goes to infinivy becomes indeperndent ol

. n, so we get, using for shorv ¢ for e and n for ey:
1
’ dt _ (y) dt (x) M
.1 n- i< ,
Lin £ [ 525 K71 (re,){m,)
M4 u j 0 e,n Y v
du
enf1 + {ule « x)/N(O - x,n * y)]e] I

Denote the inner integral by ¢M(x,y). We have

;§ Mje.x|/N(O.x,n.y) o av
rj ¢M(x,y) = E%n(ﬂej)(ﬂnj) é an(l + v©) o=
] lex{/N(0O.x,n.y)
= 3 (%e,)(mn,) / tn(1 + M2w°)
en 44 0 v

= [0 ) (me )M )1{w < |e.x|/N(0.x,noy)] ]2n(1 + Mawz) %! .
Aen o J
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If instead of £n(l + M2w2) in this integral we had a constant,

2
say fn M™, the integral would still exist because the integrand
vanishes in a neighborhood of the origin, and would have a value equal
2 :
to fn M- times

Y (e )(mn denje o x| - § (Me )(®n )2n N(O . x,n . y) = O
e.n J J €,n J g

- the first term being zero because of J(lIn,) and the second because
o

n
Z(Hc‘).
. o
So we still have

dw

¢M(X’.Y) = W_

O— 8

D) (HEJ)(Hn;)I[w < le s x|/N(O ¢ x,n e y)] 1@+ M2)
€,n e

Now the integrand is uniformly bounded, and vanishes outside some closed
inverval disfoint rom zero, so that by Lebesgue's dominated convergence

theorenm

1im ¢M(x,y) = [TF l(an w2) L g [TV ]2 an wdinw
A - w -
Mo 0 e,n w=C €,n
T 2 le * x|
= jd2n” w = (Me,)(Nn, )&n
wiole%n ezn SN T )

Y (Re. ) (mn )1n21€ « x\+ Y (ne )(mn,) 2n2N(0 * XM . ¥)
en Y J e.n J J

-2 7] (Me )(Mn )enle « x[&n N(O » x,n = y)
e.n J

)&n N(O ¢ x.n ¢ y)]

-2[7(ne )enle « x|][L(Mn
3 J n

J
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(the first of the three sums is zero because of E(Hn )} and the second R
n

because )(Me, )).
e

Now we have to show that when we apply the first two integrations

o ¢, - lim ¢M, we get something going to zero, i.e., that

oM

Claim 3:

lim [ ﬁ;k [ = JU L (me )M )Tlw < e« x{/N(0 « x,n « ).
M+ J v

2.
gn(l + (Mw) ™) %i =90 .

By Lebesgue's dominated convergence tneorem, since 2&n{i + (Mw)'e)
decreases pointwise to zero, it will be sufficient to show that
dt_  (y) dr . w, .
-k - .
/ ——%y_——— ————— }, : \uej)(ﬂn:)llw < le » x{/N(0 = x,n - y);f
J d 0'e,n ¢
2
in(l + w ) Ej--"’< ®
w
- -
or, replacing w by =z , that
(y)
- 1 2
/ ——%y$-~ f P l He ) Hn YIlzle « x,° > N (O . XN . y)]
v a
&n{l + z) dz < o
z
If z is close enough to zero (smaller than min N2(o e X,y)) !
. y
then the sum 2 is identically zero (i.e., for all x and y). so we
€,N
can replace dz/z by dz/(1 + z), and get .




6T~
gt (y) dt(x) =
i [ [} T (repm1lzle « x]% 3 (0 - xun - y)]

] "yJ J  0le,n
d lnz(l +2) <o 2

Let us now try to bound the sum X . '
£,N
P Pairing the terms where nl has opposite signs we getu

= 3 (ﬂsJ)(HnJ)I(n+ < z|<e,x>|2 <n)

€N €E,N

. 2
using ni for N (O X, % nlylnneyg»n3Y3a"')‘

Pairing now the terms where ¢ has opposite signs, we get,

1
letting u = 1leJxJ. u, = 'n o+ elxllz. u = lu - eLxl]Q:
(n u+\ n u : LR n h
= n n ¢ Z)+ (=< )i Tl—<z < —
c%n C%W( EJ)( HJ){[ ‘n+ u_’ Ln+ u+)‘ ‘u+ : u+) ;
u, n n n u n n n
s e Tl sz e ) (< FlilE sz <
- + + - + Ny - +
: Thus we get by integrating
.
; X 5 : n_ou, n_ou_ u n_
T feantea) ¢ TG < =) v 2(5= o =)oy + 13 < Hey
€.n £,n + - + + - +
(= < 8]
+ I(=—= < =-)a
o 3
where
n n n +u
_ 2 - 2 + -t
A1 = I(n_ > n+)(2n (1 + E:) - 2n°(1 + H:)) < I(n_ > n*)(ln H:'+ u+]
n
(2a(1 +n) - fnu) .2 <K In_> n+)(2n Ei)(l - fnu,)
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n n
5, = I{u > u_)(zn2(1 + u—"—) - (1 + =) < I{u, >u_)

=

- +
l/n+ + l/u u+
T T - e 2K tn —)}(1 -
(2n l/n+ " l/u+)(ln(l + n+) Ln u_) 2 <K I(u+ >u_)(4n u-)( 2n u_)
and similarly
u
Ay <K I(u, < u_)(zn Il-—)(1 - tnu) .

+

Remark that 4_ is used only when 1 < u+/u <n /n+ < K,, so

2

l,
that, by modifying the constant K, one can replace the factor

(L -2nu) by (1 - 2n u+).

Obviously this formula remains valid - readjusting K - when re-

interpreting n_ (resp. u,) as Yprevious n_

(resp. u;y .

Remark also that in all three cases, one uses the smalier ol tne
racvors [&n{u_/u_)i, [#n{n_/n_}|. Thus we get simply
n |

) 'd £n2(l +2) <K J I(n > n+){Min(2n ;:,
€,n e,n +

/

d
£n —:l)](l - 2n u )
W +

As already remarked before, the equivalence of norms in Rn
implies that ln(n_/n+) < K'yl(<K'). In particular, if we assume for
instance u, > u_, we can replace Iln (u+/u_)| by
2n[Min((u+/u_),eK')] < K"((u, = u_)u). Now u >u_ is equivalent to

€,u>0,8 u -u_ =e€Eu+x - Ielu - x

. i . . =2 Mln(elu,xl) =2 Mlﬂ(l“l-xl)'

1

and u_= |u| + x,. So we can replace |#n(u, /u_)| vy

1

(Min(lul,xl))/(]ul +x;) if u_>u_, and thus also in the dual case.

Thus we get

O

A et A e P A i Y
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x A lul

2
Ile§n|d 2n“ (L + z) < CZ(y1 A TETf:-;I)(l - fn|<e,x>|) .

But Y1 could have beea any yJ, and in particular their minimum

Ay, Using now our previous formula

33
. m dt(y) m-1
{ Mln(B,(yJ J'—'l) nyJ < Kmslln BI
m
we get
/ iﬁi’i j| ¥ |d (1 + 2) < C'J(1 - #nl<e,x>])y|on y|™t
n Jd legn e
where

x, A [u!
y = xl : FET .

We have to show that this is integrable dt(x)/ﬂxj, at all points
of Ak N {x1 <Sx, v i} - if another coordinate was minimal, letv this
play the role of Xy

There is no problem if x1 > 0 because ln|<e,x>| is integrable
for Lebesgue measure, and y|&n yfm_l is bounded.

Fix now an €. If x. = 0, and |u| > O, then the factor

1
(1 - #nj<e,x>|) 1is locally bounded, and y is locally of the order

of x;, so that we have to show the integrabilitvy of xllln xllr(dr(x))/nxi
on {x1 < xi} which we have already done before.

There remains thus only the case where x1 = u = 0. In that case,
as we argued already before, there exists two different coordinates J

and j', different from 1, such that x, > 0, x,, >0, €. €,, = -1. We
J J JJ

i
{
!
!
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can assume without loss of generality that J§ = k, J' = k - 1, and can

change coordinates

K k
using the equations Z €E.x, = u, Z x, = 1.
. ivi . i
i=2 i=1
We therefore have in effect to prove that - assuming without loss
of generality that sl = 1:
/ x, A luj Xt ful k-2 dx,
(L ~ 2nju + x, 1) -r— in | du 1 —— < =
L A
jul<1 LUoxg ST PO
0<x, <x <1
171

or, integrating over xi for i > 1:

[ .

[ (1~ salu+x]) 5~1—fi+ Enr(f_t_fg*):gn 3 g
'ul<1 X + Uy x Al X
|

0<x<l
ar
Ll x Au rex + U s dx
{ g[l - &njx - uj] para— (x 5 u)lln x|° du <"

Replacing |#n x|° by !#n(x A u)|®, and dx/x by dx/{x A u), one

sees it is sufficient to consider x < u:

1
X +u

f1(0 € x < u € 1)[1 - 2n(u - x)] " (1 +-%)|2n x|% dudx < = 2

Since lnr(l + u/x) can be written as a polynomial in fn(x + u) and
fn u, and since |&n(x + u)| € |¢n(u - x)|, the whole thing amounts to

proving that

B . T}
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/ alu - x)|% |20 x|® 55:2§ < » (whatever be r>0 , 8 > 0)
0<x<€u<l
or, letting z = x/u
1 1l
f dz [ (~fn u - (1 - 2))T(-%nu - tn z)% qu < =
ol*%o

the integrand in the second integral is a polynomial in £n u, whose
coefficients are polynomials in £&n z and 2n(1 - z).

Since any power of £n u is integrable, the first integral yields
a polynomial in £fn z and 2n(l - z); since 1/1 + z 1is bounded, the

outer integral boils down to

l/ 1
(f* Ilen z|Tlan(1 - 2)|® 4z
0o Y

which is finite for the same reason.

This finishes the proof of Claim 3. Q.E.D.

It follows that

dt. (y) at (x) dt. (y) dr (x)
bim / ﬁ;j “ij oy(x.y) = [ ﬁ;: H:J (;im oy(x.¥))
Z(nej)2n|<e,x>| Z(Hnj)zn N(O . x,n . ¥)
= € n
= -2[{‘;( T, ar, (x)] [{n_k iy at__ (y)]

and therefore that
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Z(Hed)lnll + (M( ] €8, )/N(e . 8))2]
€ J<k

<n 2 HsJ

lim 1im J L
0 Me= s€A , ) 8,
i<k

dtn(s)

Z(Hnj)ln N(O . x,n . y)
n

=-a/ Ty dr . (y)
An-k J

where

I(Ne, )en|<e x>|
e

A = f Iix dtk(X)
& J

If we use also A° = -1, we get therefore

Z(Hnj)zn N(n . ¥y)

P(v, >0V i) = (-1)“/2(2n)'“[.An + A i 0 v
n

dTn(y)

; (Mn, )&n N(n * y)
nel-1,1)" n 6,20 J

+ A dt ]
26 n y n-ZG (y)
3€{o0,1} J yes §:6.20 3 J
3*(0,...,0),(1,....1) <6,y>=0 J
(remarking that Ay = 0 if k is odd). Thus:
- tn N(y)
p(v, >0V 1) = (-1)2(em)™ § A [ MY g o (y)
i se{o~1}n ZGJ ly|=1 J .6n=oyj H—EGJ
VJ:GJyJ=0 J

wvhere

. Tn-ZG is Lebesgue measure on the corresponding set,
J

. the integrals are Cauchy principal values

g
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. for 6= (1,...,1), the integral over the empty set is set to -1

) k(IIeJ)ln|<e,x>|
_ _ e€{-1,1}
c A=l A= f T dr (x) .

A ;

If each vi has norm 2, total mass zero, and all vi are

mutually singular, P(vi >0¥% i) = 2" obviously. Also R, = [-1,1}",

so that N(y) = sup  <X,y> = ZIyi] = lyh,
x€[-1,1]
Since we integrate on the unitv ball, it follows that in this case

our equation yields

2™ = (-1)™2(em) Pl )

thus
An - _(_l)n/ZWn
thus
(-1)™2(2m) P = 2 (1) 2R
= _2-nl(-1)-—(n-k)/2"-—(n-k)]
- 2_n »
An-k
Thus:
¥6./2
p(v.> 0V i) =2"1- ) nL’L_wl_ i “!%J—(L)'dtfs( )]
1 sc{o,1}" 18 Tyi=1 5 apd i
8#0 J VJ=(1-6J)yJ=0 3047

263 even
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This formula is valid for the case n even, say n = 2k. But

P(Vv, «e. Vv ? 0) = P(vl... v

>
1 Pk-1 g >0+ Py

2 1Yo Vo1 Vg

can be computed from this formula, and yields then the same formula
with n = 2k - 1: thus the formula is valid for all n > 1.

Thus, for all #I » 1:

n N_(7)
Plv, >0V i€1) = =Dy | ) ""£7Ef S —5— at(y)]
#IT  (ni)"" yeR =eJy~j
(#J even] tyl=1 ¢
where

N.Ay) = sup [ y.v(x).
J i<l JGJ"j J

Remark that, by the symmetry of the norm (NJ(y) = NJ(-y)), tne
restrictvion to #J even is not necessary: the integral will be zero
for #J odd.

The integrals have to be understood as Cauchy principa. va.iues, in
the following sense: define a set (C c RJ to be symmetric it?
yecs (lyJI)JGJe C; say that C consists only of non zero elcments
iff ye C = yJ #0VY j €J. Then the integral is to be understood as
the limit of the integrals over an arbitraiy sequence of closed
symmetric sets Ci consisting only of non zero elements, and such that
the measure of the complement of Ci goes to zero.

The norm 1yl used to derive the formula was the
il-norm EIyJI. but the formula of change of variables for surface

measures yields now thav it remains valid for any norm

J
Il on R such that I(yl e y I = l(lyl|,|y2|, coey kal)l.

L s S A —— o
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The same formula permits us to rewrite our expression using the

surface measure o; on the unit sphere of the norm Nj:

. _ o -#I 1 Loyl v
Pv.(x) 20vi€D) = 2" 1+ ¢¢§q — | % Y, doy(y)] .
[#J even] &

Remark: Obviously the formula we got is not very transparent -
this may be due to the fact that it has to reflect the peculiar geometry
of the positive orthant. It wouli therefore be interesting to have also
an expression for the density over directions - i.e., on projective

space.

SECTTON L: To Mess Everything Up: Some Extension Possibilities

L.1 Extension of the Cylinder Measure

Given a cylinder measure u on a locally convex space E with
dual %', one can use Kolmogorov's existence theorem for a projective
limict of measures as done in the proof of Theorem 1, and a Hamel basis
of E', to obtain an equivalent characterization of u as a countably
additive measure on the Baire o-field of the weak complevion E of E,
using also a recent result of Edgar.ﬁ/

Using this, one can then best define the corresponding integral in
the following way: let a vary in the increasing net of all finite
subsets of E'. For any a, and any x € P\E, let Va(x) =

{y EF'*y) = ¢(x) V€ a}. For any bounded function f on E, define

its extension T to F by F(x) = lim sup f(y) at all x € f\E.
a yEVa(x)
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Finally define the upper integral u(f) as the upper integral of £
for the countably additvive measure u on the Baire o-field of E.
Given W, one can use finitely additvive integration theory in the

standard way (cfr.for insvance Dunford and Schwartz, Linear Operators,

Part I). More precisely, one has:

1) u(1) = 1, u(-1) = -1, u is monotonic;

2) a> 0 implies u(af) = au(f);

3) W(f + g) <U(f ,g) + u(frg) < u(f) + ulg) whenever U(f) < +=,
u(g) < += (the first inequality is subadditivivy, the second
follows from the corresponding formula for upper integrals,
and from T vg=fvg, TAg=7°fAg),

L) w(f v (-n)) > 0() ¥ £, (£ AO) > == => §(f) = lim u(: A n).

ne>«®

Those propert.es immediateiy imply that L = {fju(f) + u(-f) < 0} is a

vector lattice containing the constants, and that p 1is a positive
linear functional on L. Hence A = {AiIA € L} is a Boolean algebra
and ¥ a finitely additive probability on A. Hence f € L and
s <t imply wu,{f > s} > u*{f > t} (reduce to s=0< f <t =1, then
' J £ du is in between - we use u,(A) = sup{u(f)|f €L, r < IA}, and
w*(A) = inf{u(f)|fF €L, £ > IA}). Therefore, if f € L, then for all
but countably many t's, w*{f > t} = p {f > v}: {f >t} and {f > ¢t}
are in A. Hence any bounded f € I, can be approximated uniformly by

A-measurable step functions, and thus

LC Ll(A,u) , with p(f) =/ f u for f€ L.

Conversely properties (1) to (4) imply also that
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vor, vin) oy [u(fn) > =, §(1{f, <f-€}) » ove>o ,

n>®

] lim sup sup ﬁl(fk - fn)+] = o] => lim u(f ) » p(f£) ,
] ¢ Rand k>n n

and hence that, ir fn is a Cauchy sequence in L converging in

d-measure vo f, then f € L is the norm limit of fpe In particular,

choosing f € Ll(A,u) and fn step functions, one obtains

L= Ll(A,u). One concludes now easily that 1§ 1is at least as good as
the finitely additive integral: ¥ f, u(f) < [* f du. Obviously,
L= Ll(A,u) contains both the cylindrically integrable functions and
the bounded continuous functions on K.

Of course, one could still get conceivably more integrable func-
tions by refining & - for instance if one could prove T-smoothness
of uw on ¥, one ~ould use its regular extension to the Borel sets of
E for defining Wu; or one could try to get a lower T, for instance by

restricting the y € Va(x) to be of essentially minimal norm.

.2  Using More Smooth Cylinder Measures

By Theorem 1, the invariant cylinder measures corresponding to
different pairs (m,0) are mutually singular. Thus the integral of a
function - and even its integrability - may depend in a highly irregular
way on the pair (m,0). To smooth this out, one could choose m and
¢ by some probability distribution P(m,0). Since the correspondence

preserves convolution, and because of the idea that in some sense the

sum of two independent random elements of B(I,() 1is a fortiori random,

one should certainly take P absolutely continuous with respect to
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Lebesgue measure, and in some sense invariant under convolution. Si

fD;(;)dQ(x) fD$+GX(x)dP(m,o)on(x)

= [0 pavang) (XV4P(m,0)d8 (X)

D} 0 08P  (m, 00 (x)

we see that for defining the value, we consider integrais of a fixed
function with respect to the distribution PA of (Am,Xo) (where
(m,0) is P-distributed), and let the scale factor A go to ®. As
that this family PA be invariant under convolution is asking that
be stable. This leads to choosing m and o independently, m wit
the symmetric stable distribution of index a, and ¢ with the one-
sided stable distribution of index a (thus a < 1). The lim sup o
the (upper-) integrals when the scale factor X goes to © is then
clearly decreasing when a + O, since B < a <the stable distributio
with index B can be viewed as a mixture of stable distributions wi
index a (choosing their scale factors according to the stable one-
sided distribution with index 8/a).
One is thus led to a formulation of the following type:
. For any bounded measurable function f on R+, let
o
p(f) = 1im lim sup [f(Ax)dP®(x)
a+0 A+ 0
where P® 1is a one-sided stable distribution with index a (its sc

factor does not matter). lLet W denote a suitable extension (cfr.

Aumann and Shapley [1974])} of the invariant cylinder measure where

nce

king
P

h

o
pe

n
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and o are chosen independently with stable distributions of index

@ (a < 1) - symmetric for m and one-sided for o.

. If f 1is a function of several variables, let px(f) denote p of
the function of a real variable x obtained by holding all variables
but x fixed in f. Similarly EX(Q) will indicate that all variables
but x are held fixed in ¢.

Clev B (x) = py(5,(0200)), ana ¢ (x) = -y(B, (-D2(x)): then v

has a value °v if 3v = 0v and is additive.

“,3 Reversing more limits and integrals?

As a general rule, one gets functionals with a larger domain by
averaging before going to limits rather than after - in our context,
this was already illustrated in "Values and Derivatives." Now the v
appearing in the above formula for Ev is not the given game, but
obtained from it by the operator ¢ of Section 1, which itself involves
both averaging and limit operations.

Let us first show how ¥ could be replaced by an operator - say
; - where the averaging occurs before the limit operations, in order to
remove as much as possible the basic restriction that we can talk only
of games that have an extension in some sense.

Remark first, that it is sufficient to compute w{(x) = w(v)(x)
for step functions x - either because V(w){x - x'] < x' = x¥ « #wt
implies (for fwl < =) that w can anyway be uniquely exvended to
B(I,C). or using the fact that the cylinder measures on B(I,C) are

also cylinder measures or the space of step functions € B(1I,C).
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We return to the basic idea w.derly’n; the proof in Mertens
[1981] of both theorem B and itvs application to the extension of games -
that was used in Section 1.

Let x denote a step function, and let ®m denote a finive
measurable partition such that x 1s constant on every element of .

Given any vector Vv of non atomic elements oi FA, lev, for any

A . . . - N N .
AcT, Ot denote an increasing family of measurable subsets of A with

v(Oﬁ) = tv(A) (#t : 0 <t < 1) (and with Og = ¢, O? = A).
For any n > 0, for any permutation ¢ of <{1,...,n}, and for any
.y i A\ AA . ,
e € {-1,1}", define X5 = Oi/A\P(i—l)/n’ and, denoting ({(o0,e) by w,
let OA’w be defined by { U xo(l)]u 3 \ where [x! denotes
T icmg O o([nt]+1)
: . . A A .
£ ¢ = , ) T
the integer part of x, and Bk O\(k—l)/n)+tq\v(k-l)/n i
_ A A ca : _ .
€k =1, Bk = Ok/n\o(k/n)-nﬁ if e o= -1 - and where .= t - .nt;/n.

A,w
)

N = tv(A), and if

Then, {or every w and t© we still have V(0
. . N S A,w -,

w 1is chosen at random, we have ror all x €A P(x€ 0_°7) - v, < 1/2n.
{The € 1is not strictly necessary, it is just introduced ©o prescrve

the symmetry with the opposite order.)

. . T,V . .
Let now, for any ®, and any collection (0 ° of such increasing

families (Oi)AEﬂ , and any n, e denote the finite probability
0<e<l
space where independently for each A€ ©n, some w= W is chosen at

A

random.

Also, for any n-measurable ideal set function x, and any
A,w
*TA 1 2 1 2
Q = . < = =
w € n’ let x ;;" Ox(A)' then X7 => g, < X v(xw)

v(x) ¥ x, and #E(x ) - xV < 1/2n.

Let alsc, for a general 7n-measurable function X,
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X, = (Max(O,Min(l,x))]w .

Define now

1
AR CY IS [(eg  (rl(x+ w0 ) - vl - w1 )ae

u,O“’v,n Q(n!)

(where v still denotes the constant sum game corresponding to the
originally given game).

For any given W, and any vector Vv, denote by Fv - the set of
9

all possible families O“’v. For any given 1w, the Fv . form a filter

k4

FN, when Vv ranges over the increasing filtering set of finite subsets
of the nonatomic elements of FA.
Similarly the partitions m can be ordered by refinement. Then

lim lim lim lim 9 (x) = ¥'(x) should be the analog of our ¥

LIV

™0 Fﬂ n+e w0 ,n

from Section 1 but with all limits done after any averaging.
More formally, define a filter F on L-tuples (r,n,on’v,n) (more
formally on (R x () F¢ ") x N)) by FeFif Je:®1:0c< |1 <
~ ™ £} ~

3 . = . )Tl,\) 3 . >
edm Yoo LI I v(=(v. ... vk)) ¥ €F, :ino : ¥ n ng

13

1
(T."-P-O"'vsn) € ¥.

Then, we define ¥ by v € Dom(y) = [lim ¢V
F ﬂ,O“’v,n
step function x] => [¥(v)]{x) = lim wT’V" v {(x) ¥ x step function.
F #,0° ,n
Obviously Dom (¢) 1is a closed (using NIyl

1) symmetric space,
and ¥ is a positive linear symmetvric operator on Dom (¥). Further
fyn = 1 - this follows from completely similar computations as those in
Section 1, and is the main point where the specific structure of the

Oﬂ‘v(x < x' = X, < x& ¥ w) is used. Similarly one gets, under mild

(x) exists for any

= e .~

——
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continuity assumptions on v 41 ¢ and I, that [y(v)](I) = v(I).

One could thus use this ¢ followed by the operatvion described in
the previous section. However it is now tempting - and possible - to
put all averagings before any limit operation.

Butv to do this, one may want to consider an aiternative to
integrating with respect to an appropriate extension of tvhe {(finitely
additive) cylinder measure - in order to sidestep the difficu.ties of
finitely additive integration theory (in what concerns the integrability
of functions, and in what concerns changing the order of integration and
the permutation of limits and integrals - although my old paperﬁj helps
a good way for those last two gquestions).

The cylinder measure Q can be obtained - as shown in the proof
of Theorem 1 - in the foliowing way: first select m and o at random
according to P, next, for any partition =, select independently on
each partition element the (constant) value of x on that partivion
element as a Cauchy (m,0) random variable. This gives an approxi-
mation Q_ to Q, that converges weakly to Q on £ when 1n is
refined. Q  is a {countatly additive) probabilivy carried by the
finite dimensional subspace f B(I,() of all w-measurable step
functions.

Now the operator D and the averaging for Q" can without
problem be pushed before the 1lim , together with all other averagings

F

and then is no integrability problem at least if v is of bounded

variation. On the other hand the limit over all refinements of ® |is

best retained after the 1lim has been done (and before the 1lim over \
F

A (pA))-
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This was just to point out that the formulation adopted in this
paper is by no means unique or optimal -~ and that in particular one
could to some extent dispense altogether with the assumption that the
game has an extension. It was adopted chiefly for expository reasons.

Cervainly a lot remains to be done - i.e., convincing theorems -

to gev a good formulation.
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Footnotes

The equality Yo(x) = p(u Ji has denity 0 at x) has to be
i
proved only when a_ > 0: we claim that a.s. on x € g Ji’ this

set has density zero at x. It is indeed sufficient to prove this
conditionally to the set oI atoms and tne fraction of a, coming
after x (or before) - which reduces (by renormalization) the

probiem to the case x = 0. Let X_ = (l/v) | (a./a ) t]I(z. <

T . i“7o i

1?1
t): X, 1s an upper bound ror the density of Lin up To time
i

t, so it is sufficient to show that Xt + 0 a.s. Bug, if Ft
denotes the o-field generated by all variables t© . Z.,, tnen,
when reversing the usual order on the time interval [0,1],
becomes a positive supermartvingale w.r.t. F., whose expectation
goes to zero as we have seen: thus Xy 8goes to zero a.s. We
would like vo stress that this equality cannot be dispensed within
a random order approach: 1indeed, if f(x) = I{x > q), and if some
player of the ocean pivots, since he is negligible, it is in fact
the infinitesimal coalition ds that immediately follows him that
pivots - so to impute this event to the credit of the ocean, one
needs that this infinitesimal coalition consists essentially only
of oceanic players - i.e., thne ocean must have density 1 to the
right of q. The same applies to the left of q if
f(x) = I({x » q).

That is, for any P in the right hand member, there exists a
unique cylinder measure with this Fourier vransform, and this
cylinder measure is invariant.

"Measurability in a Banach space” Indiana University Matnematics
Journal, Vol. 26, No. 4, pp, 663-677 [1977].

J. F. Mertens: '"Integration des measures non denombrablement
additives: une generalisation du lemme de Fatou et du theoreme de
convergence de Lebesgue", Annales de la Societe Scientifique de
Bruxelles, t. 84, 88, 231-239 [1979].
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