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THE MINMAX THBOREM FOR U.S.C.-L.S.C. PAYOFF FUNCTIONS*

by

Jean-Franiois Mertens"

.. Introduction

.. Our aim is to get a general minimax theorem whose assumptions

and conclusions are phrased only in terms of the data of the problem,

i.e. the pair of pure strategy sets S and T and the payoff function

on S x T. For the assumptions, this means that we want to avoid any

assumption of the type 'there exists a topology (or a measurable

structure) on S and (or) T such that... For the conclusions, we

are led to require that players have c-optimal strategies with finite

support, both because Chose are the easiest to describe in intrinsic

terms, and because in any game where the value would not exist in

strategies with finite support, all known general minmax theorems

implicitly select as Ovalue either the sup inf or the inf sup by in

effect restricting either player I or player II arbitrarily to strategies

with finite support - so that the resulting valuew is ccmpletely

arbitrary and misleading. 4

Those points are discussed in more detail in Section 3, after

having proved a first theorem in Section 2.

*This research was supported in part by the National Science Foundation Grant
SES 8201373 and in part by the Office of Naval Research Contract OR-N000

1 4-

79-C-0685 at the Institute for Mathematical Studies in the Social Sciences,
Stanford University.

"CORE, 34 Voie du Roman Pays, B-1348 Louvain La Neuve, Belgium
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2. A First Theorem

Minmax Theorem: A two person zero sum game with compact strategy

spaces has a value and each player has c-optimal strategies with finite

support if each player's payoff is, for any fixed strategy of his

opponent, an uppersemicontinuous (u.s.c.) function of his strategy, and

is bounded either from above or frcm below.

[In this Section 2, "compact" means compact and Hausdorff.]

Proof: Let f denote the first player's payoff function, S his

strategy space, and T his opponent's strategy space. For any pair of

mixed strategies a and T, we will denote by f(G,r) the expectation

of f under the corresponding product measure, whenever this expectation

is unambiguously defined (via Fubini's theorem).

A function f on a ecmpact space K is u.s.c. if and only if

f: K -+ R U {-} and V a E R, (x I f(x) >a) is closed, or equivalently,

if and only if f is the pointwise limit of a decreasing net of continuous

real valued functions on K. f is lowersemicontinous (l.s.c.) if

and only if -f is u.s.c.. Remark that if f is l.s.c., then f is

bounded from below, so each player guarantees himself a finite payoff

with any pure strategy.

The proof starts by proving particular cases of the statement;

the first of them is standard and is just recalled for the reader's

convenience.

-- ' . . .
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(A) Case where S or T -say T- is finite (Von Neumann).

Proof: Let T = {t1 ,...,t n I and let C denote the closed convex

set {x e Rn, .. probability on S (with # Supp(a) < n (Caratheodory)):

Vi, ff(s,ti)d(s)- x i). Let v = max min xi; then We > 0,

nh = so that for a separating hyperplane (x , n)

we have sup <X,y> < 0, X, > 0, and also by normalizing IXi = 1:
YGC-(V+c-)1

player II has a strategy X such that V x E C, <.,x> < v + c. When

c - 0, we get by compactness a strategy X: <X,x> < v, V x E C.

(B) Corollary: Let T be an arbitrary set, f(s,t) u.s.c.

on S for each t E T. Then max inf f(a,t) = inf max f(a,r), where
a T T a

a ranges over all regular Borel probabilities on S and T over all

probabilities with finite support on T.

Proof: For any finite subset T of T, let 1,T denote the

set of a's satisfying inf f(a,t) I inf max f(a,T) - c. By (A),

the lT form a decreasing net of non-empty compact sets, so have a

non-empty intersection. Any a0  in the intersection yields

in! f(a ,-) = in! max f(a,r).

(C) Case where one of the strategy spaces -say T- is metrisable.

(i) Claim: f is Borel measurable.

Let *il2,031- be a dense sequence of continuous functions on T.

Denote by Si the closed set (s I V t E T, f(s~t) > *i(t)}, and

let Pi(s,t) a 41(t) for s E Si, = - otherwise. Obviously *i is

Borel measurable, and therefore also f a sup Vi"

Pri



(ii) Denote by I (resp. T) the space of regular Borel

probabilities on S (resp. T), and by 7. (resp. 4f) the probabilities

with finite support.

f being Borel measurable and bounded either from above or from

below, f(o,T) is well defined on x T ,

By (B), there exist E R and a0 E such that

f(cot) > v = s f(0,) V t E T

and there exist v E R and T0 cT such that

f(s,T <v suf i f(c,T i s ES

On the one hand, one has always v = sup inf < inf sup = v, on the

other hand one gets f(aO,T0 ) = Jf(ao0 ,t)dT0 (t) > > v > ff(S,To)dao(s)

= f(o, o), and thus the desired equality v = v.

(D) General Case

(i) Construction of a countable set of best replies.

Let v = iDf sup f(G,T), and let Tn denote those T ETf withif If
# supp (t) < n. Denote also by F the set of continuous functions

on T for which there exists s E S such that f(s,t) > (t) Vt E T:

then < inf sup f dr.

r: F . let 0 {'Ei II' dT > - }

! .. ... ... ... .t" ]

n k



-5-

The 0 ,k n form, for each fixed k and n, an open covering of

the ccmpact space Tn . Let k,n denote a finite subset of F such

that U 0 =Tn
C-#k, n  n

Then 0 = U 'k n  is a countable subset of F, such that
k,n

i nf sup f dT.

TEif G

(ii) Reduction to Case (C).

If enumerates 0, let d(t1,t2 ) = I i(t 1 ) - oi(t 2 )I/Oi.
~ i

d defines a metrisable quotient space T of T, such that, if

denotes the quotient mapping, any * E t can be written as g a

for same g E C(T) - where, for sume s 6 S, (g a 0)(t) < f(s,t)

Vt E T. Let I denote the set of all g E C(T) having this property.

Define f on S x T by f(s,t) = sup (g(t) g EC(T),

(g e )(.) < f(s,.)}. Then, from (i), v = inf supfodt < inf

sup f(g *)(t)d(t)< inf supf i(s,t)d;(t). Obviously f is l.sv*c.
gET T-Tf S

on T for each s E S, and is the largest such function satisfying

f(s,(t) < f(s,t).

Let h(s,t) = inf {f(s,t) I t E *-i(t)}: if we show that h(s,t)

is l.s.c. on T for each s E S, it will follow that f = h, and

therefore that f is also u.s.c. on S for each t E T _ as an infimum

of u.s.c. functions.

Since T is metrisable, denote by ti a sequence converging

to t;,. Choose t i r T such that *(t) = t i and f(s,)< h(s,t) + 1/i,

and let t. be a lmit point of ti we have (t.) a and

I
i.



h(s,t_) I f(s,t.) -_ lim inf f(s,ti) < lim inf h(s,ti ) - hence the result.

(iii) Conclusion.

on S x T satisfies all assumptions of (C), and from (ii) we

have f(s,(t)) < f(s,t) and v < inf sup f(s,t)d;(t).
-- Tf sES

From (C), we know therefore that

< sup inf fi(s,t)dc(s) < sup inf f(a,t)
- f ET. t-T

which completes the proof, the reverse inequality being obvious.

3. Comments on the Present Result

(i) The compactness assumption on both sides is really needed, as

the following example due to H. Kuhn shows (private comunication through

R.J. Aumann, example originates from Kuhn's "Lecture Notes in Game Theory"

[-1949], unpublished).

Player I picks a number x in [0,11, and player II chooses a

continuous function * from [0,1] to itself with 14(t)dt = 1/2.

The payoff is *(x). Then player I can guarantee 1/2 by choosing x

uniformly distributed and player II by taking *(t) = 1/2 ft. But for

any strategy of I with finite support, player II can choose an appropriate

* that vanishes on the support - so player I cannot guarantee more than

zero using strategies with finite support.

Remark here that if player II's strategy space is endowed with

the uniform topology, we have a compact metric strategy space for player

I, and a complete separable metric for II, and the payoff is uniformly

bounded and a uniformly continuous function of player II's strategy -

'7-- - '- .
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in particular it is jointly continuous on S X T: even with much

stronger assumptions everywhere else, just the failure of the compactness

assumption on one side makes the theorem break down.

(ii) Two directions of extension seem conceivable:

- The first would rely on some idea that our whole line of proof,

of reducing oneself to some case where Fubini's theorem could be applied,

is artificial, and that Fubini's theorem is irrelevant for this problem.

In that case, one ought to be able to remove from the assumptions the

last trace of Fubini's theorem - i.e. that the payoff function be

uniformly bounded either from below or from above, and one might try

to extend this to same "intrinsic" setting, i.e. essentially drop the

assumption that the strategy spaces are Hausdorff, and just ask, using

Alexander's subbase theorem, that the family of sets

St  = {s E S I f(s,t) > a) (t E T, a E R) has the finite

intersection property, and similarly for Player II.

- The other direction would on the contrary look at Fubini's

theorem as being basic, and consider that the "good" minmax theorem is

the corollary sub (B) in the proof (from which all other minuax statements

are easily obtained as corollaries - cfr. Section 4). So one would try

to show that, for any payoff function satisfying the assumptions of the

theorem, Fubini's theorem applies for any product of regular Borel

measures. Then the theorem would become an immediate corollary of the

statement sub (B). Furthermore, this would be a much more flexible tool,

in conjunction with the methods mentioned in Section 24, using the

stability properties of the set of functions that are measurable for

7
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any product of tight probabilities (pointvise limits, algebraic operations,

ccmpositio.i, etc.).

The best result we know in this direction requires however,

f(s,t) to be continuous in each variable separately (and implies then,

whenever S and T are Hausdorff spaces, that f is measurable for

any tight probability on S x T - cfr. Bourbaki(11959 §2, ex. 26).

It is by the way the basic idea of a fundamental lemma underlying this

theorem (that points in the closure of some set in C(K) are already

in the closure of some countable subset of it) that we have used in

part (D)(i) of the proof.

(iii) Motivations for this type of theorem are multiple.

(a) There is first the aesthetic motivation of obtaining the

minmax theorem for mixed strategies under such assumptions that, by

just adding the quasi-concavty-quasi-corivexity assumption, one obtains

Sion's assumptions for the existence of pure strategy solutions (adding

a boundedness assumption to Sion's does not weaken his theorem).

(b) There is also the "effectiveness" point of view, that only

discrete random variables can be effectively generated in finite time.

(Any such discrete r.v. can be generated with a fair coin, by

generating by successive tosses the successive bits of some random

number x (0 < x < 1), stopping as soon as it is clear that, for some

n, I Pi .- x < I pi and deciding then in favor of the n-th outcome:
i~n i~n

clearly a decision will be reached a.s. in finite time, and the n-th

outcome will have probability pn" This procedure can even be used

with a biased coin, with unknown bias, by counting a pair of

r'.. -.



successive tosses as one unit, giving a bit of "I" if first heads, then

tails, a bit of "0" if first tails, then heads, and being inconclusive

otherwise, in which case one should look to the next pair.)

It follows then that, for an operational concept of value, the

players should be able to construct e-optimal strategies where, in

each information set, they are restricted to discrete mixtures.

In particular, for general minmax theorems, for normal form

games, which may represent games with a single information set, one

is led to the requirement of c-optimal discrete mixtures. Under

our assumptions, the players have c-optimal finite mixtures, and the

guaranteed payoff varies continuously with the probability vector

used, so in any realistic model the player can play c-optimally,

even in bounded time.

(c) More important is the "safety" consideration, that, even

neglecting the above, the player should always consider that his opponent

might have an infinity of information sets at his disposal, or same

analog device such as a continuous roulette wheel, and thus would be

able to generate continuous random variables. In such a case, the

evaluation of the expected payoff (even if players agree on some compact

topologies on S and T, and to use only integration theory for regular

Borel measures on compact spaces) would depend on the order of integration

- except if one knows in addition that Fubini's theorem holds for the

payoff function. For instance, players may think that the corollary

sub (B) in the proof is the good minmax theorem; given a payoff function

that would satisfy those assumptions for both players, player I might

' _L,
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find an optimal strategy that "guarantees" him +1, and similarly,

player II applying the same corollary for him might find an optimal

strategy that "guarantees" to him that the payoff will not exceed -1.

Obviously, realizing this, both players can only conclude that the only

thing they really can guarantee, is what they can guarantee wimn mixtures

with finite support. Since "-l" is always < to "+1" this argument

is perfectly general. (By our theorem, one could, in this example,

have a strict inequality only for unbounded payoff functions; but still,

the theorem is needed for that, and anyway the argument remains, since

it depends only on the weak inequality -1 < +1.)

And things can be much worse, because nothing compels the player

to agree on some integration theory - or even on some topology fr zhe

strategy spaces. You could even happen to be playing against .abins

and Savage [19651, using finitely additive randomizations. In such cases,

only finite mixtures remain safe, unambiguous, and devoid of ar:it'sries.

(i.e. only such a solution depends only on the data of the problem, i.e.

the pure strategy sets -as sets- and the payoff function -as a real

valued function on the product of the pure strategy sets).

(d) The proof shows that the result is much easier to get for

compact metric spaces. Is it really worthwhile to make a substantially

bigger effort in order to get rid of the metrisability assumption?

A first answer would be that this simplifies the statement of

the theorem (one can drop "metric"), and that any effort in a proof

is worthwhile if it leads to a simpler (and more powerful) theorem.

, "L



A much more important reason is, however, that in any game where

a continuous variable can be observed before some action is taken, the

strategy spaces are non-metrisable. Certainly one does not want to

exclude such models from game theory. Besides the obvious cases

(observation of a price, or a quantity, or a continuous random variable),

this would also exclude any differential game (time being a continuous

variable) and any game with a continuum of players (just to define its

characteristic function, one needs the value of a zero sum game between

two opposing coalitions, where the strategy space of each coalition,

as an uncountable product, cannot be metrisable). Those problems

are amply documented in the literature; for instance, R.J. Aumann [19641

suggests the use of behavioral strategies to get around this type of

problem; in other contexts (differential games, games with a continuum

of players, etc.) various other restrictions are imposed on the strategy sets.

Besides the inconvenience of requiring additional structure

(a topology, or a measurable structure), as was discussed in the previous

point, such procedures have the unpleasant feature of restricting the

strategy space -for instance, an arbitrary pure strategy is nct necessarily

a behavioral strategy, since it may lack the measurability requirement.

For a minmax theorem, it is of course a net gain if one can show that

some player's (e)-optimal strategies have in fact some additional

regularity property; however, it is disturbing when it is only shown

the the strategy is safe against some subclass of the opponent's strategies.

Indeed, the opponent should ideally not even be assumdd to follow a

strategy, -he is just playing- and one would like the minmax theorem
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to have essentially the same force as in the perfect information case,

i.e. that any "play" consistent with your c-optimal strategy yields

a payoff > v - E.

4. Other Minmax Theorems

A) Measure Theory (non-Hausdorff compact spaces)

For any compact space S, denote by C the convex cone of bounded

l.s.c. functions on S, and let E = C\C. Denote by P the set of

monotonic real valued sublinear (i.e. positively homogeneous of degree

1 and subadditive (p(x + y) < p(x) + p(y))) functions on C. P is

ordered in the usual way (p1 < p2  iff pI(f) -_ p2(f) V f E C).

Definition: M(S) is the set of minimal elements of P.

Lemma 1: Vp E P,B EM(S): _p.

Proof: Vp E P, Vf E C let a < 0 be such that f > a.

Then V q E P s.t. q < p: p(f) > q(f) > q(ct) > -q(-a) > -p(-a), so that the

set of possible values q(f) is a bounded interval. Zorn's lemma

then yields a minimal such q.

Lemma 2: Any p E M(S) is a positive linear functional on E,

satisfying

ljf) = inf {fi(g) I g E C, g > f V f E E

Proof: Let V: E - R be defined by the above formula. Clearly

is real valued (if f > a, then ji(f) > (a) > u(n) > -c). Further,

is obviously monotonic and sublinear, coinciding with i on C.

.
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The Hahn-Banach theorem says that any such P is the supremum

of a family of linear functionals. Any linear functional C _ j is

positive , because < 0 on the negative functions. If there was a

second such Z, say , one would have (f) * 'f) for some f E C.

Then either or , restricted to C, would be some element of P

< u, and * ', thus j would not be minimal. Therefore this is

unique, and thus coincides with p: u is a positive linear functional

on E.

Lemma 3: M(S) is the set of positive linear functionals u on

E such that

V f E C , P(-f) = inf {p(g) g E C, g >_-f}

Proof: One direction is given by Lemma 2. In the other

direction, we have clearly V E p, thus (Lemma 1) 3 v E M(S):

v(h) < i,(h) Vh E C. Thus v(-f) > p(-f) = inf {i(g) g E C, g > -f}

> inf {v(g) g E C, g > -f} = v(-f) (by Lemma 2), from which the

equality of p and v.

Lemma 4: M(S) is the set of regular Borel measures on S,

i.e. the set of positive, bounded, countably additive measures on the

Borel sets of S satisfying p(A) = sup {v(F)j F C A, F closed}

= inf {p(O) I 0 D A, 0 open} for any p-measurable set A.

Proof: Follows from a standard Daniell-type extension procedure.

We sketch just a typical sequence of steps:

V . . *..
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Denote by LSC the set of l.s.c. functions with values in R U {+o},

and USC = - LSC.

Let (f) = sup {(g) -g E C, g < fi V f E LSC

Let U*(f) = inf {il(g)l g E LSC, g > f) for any R-valued f.

Lemnma 2 implies U*= on E, and 1* = J on LSC.

* Dini's theorem implies that, if fa E LSC is filtering increasing,

then

P*(iim f ) U ll *(f)

* It follows that p*(f + g) = pa*(f) + i*(g) on LSC.

The sublinearity of p* follows (avoiding (+-) + (--) right-hand

members, and using the convention (0) * (-) = 0).

I Finally one gets: if h is any increasing sequence, withn

lim *(h n ) > -- , then U*(lim h n) = lir p*(h n). (It is sufficient to

consider U*(h ) finite; choose f n LSC, f >

I *(fn) < j *(h n ) + E * 2.- n  Let Pn = sup f.. n is an increasingn n i<n

sequence in LSC such that n > h n' = max (n' f ) implies

*( *n) + *(hn.I) . *(on ) + *(min (fn,'Pn-l)) = *(*n + min (fmn,*n-l

= *(f n+ *n.. ) PO*(f n) + "'*(*n-l ), thus Pz(* n) - iPi(h n)

S[u*(fn) - U*(h n) + [u*(* n-l - p*(h nl)] and therefore

i*(*n) - u*(h_) < *(fi) - P*(h ) 1 2- 1 < , so that
i<n i<nlira v*(h n )  Iii(lm-hn ) <"'(lira n )  lim P*T n ) < lim O*(h n ) + E).

It follows that P*, restricted to indicator functions, is an outer measure.



-15-

* Let L = {f I 1'(f) > -- , 1j*(-f) > --, '(f) + U*(-f) < 0}.

By the sublinearity of i#, L is a vector space and uN is a linear

functional on L. Further E C L since vi coincides with ji on E,

and in addition f E LSC, Ij(f) < implies f E L.

- Since for any open sets 0 and U, 10 E L, and IoQ ! E L, we have

also IO\UE L, so we get *(0) = u*(0 n U) + V*(0\ U). Thus, for

any set A, since jz'(A) = inf {4*(O)l A C 01, we get

1*(A) > ij*(A ,- U) + ij*(A\ U), so that any open set U is j*-measurable

and thus all Borel sets are -*-measurable.

. The formula ii(A) - inf {uO) j A C 0, 0 open} for any 0*-measurable

set A implies U(A) = sup {u(F) IF CA, F closed), and thus the

.*-measurable sets are just the completion of the Borel sets, and

is a regular Borel measure.

• Finally, ffdi = ii(f) first for the convex cone spanned by the

constants and the indicators of open sets, by linearity, next for all

f E LSC, by monotone convergence, and therefore for all f E L

and in particular all f E E. It also follows that L = Ll(U).

* The regular Borel measure v is unique, because its value on the

open sets is determined.

• Conversely, clearly the integral for any regular Borel measure is a

functional in M(S).

The essential results of this section are summarized in the following:

- ., . ,.-.wi
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Proposit> . Denote by M(S) the set of positive, regular

Borel measures on S. Then:

p E p a U E M(S): p < p on C (Lemma ).

* M(S) is a convex cone (and a complete lattice) (immediate from Lemma 4).

* If the sum of 2 positive linear functionals on E is in M(S), each

one is also (immediate from Lemma 3).

- Define the "weak*-topology" on M(S) as the coarsest topology for

which ffdli is lowersemicontinuous T f E C, and thus for all l.s.c. f.

Then addition and scalar multiplication are continuous, points are

closed and all sets (ii I W(1) X) and {p I p(1) <. X} (A > 0) are

closed and ccmpact.

Proof: The continuity of addition and scalar multiplication is

immediate. {P1 is closed because, if p- is in the closure of W,

one has U(f) < i(f) V f E C, thus i = i by the minimality of p.

Since all constants belong to C, there only remains to prove

the compactness of {u I (i) < X). For any ultrafilter on this set,

let * denote its pointwise limit in the set of positive linear functionals

on E. By Lemma , 3v EM(S) with v < * on C: v is a limit

point in M(S).

Note that the above applies whenever C is a lattice and convex

cone of bounded functions on some set S, containing the constants and

such that fi E C, fi !- fi+l < 0 implies lim fi E C, and lim fi > -1

implies Ai: f > -1. The Borel sets are then interpreted as the

a-field generated by C, and the regularity is with respect to the

I.- - -, J
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{f < 0} (f E C) as closed sets. (Dini's theorem should be used only for

sequences then.)

In particular, everything applies as soon as S is countably

compact (any sequence has a cluster point). Compactness only yields

the additional T-smoothness property: p(U0a) sup U(0.) for any

increasing net of open sets 0 •

In the particular case where S is Hausdorff, i.e.,

Vf. g E C s.t. f > -g 3h: -g < h < f, h continuous, the above

results yield Riesz' theorem.

We now obtain also, using standard techniques, a Fubini theorem

(the same theorem and proof obviously holds for arbitrary products,

finite or infinite; the minmax theorem is however, concerned only with

products of two factors. The contribution of the theorem is obviously

to get the measure on the Borel a-field of the product, instead of the

product a-field):

Proposition 2: Let K1 and K denote two compact spaces,

K = K1 xK2. Let I EM(KI), U2 E M(K2). Then

(a) There exists a unique p E M(K), denoted w1 0 p,, such

that ij(F1 x F 2 ) = P (F )U2 (F 2) V Fi closed in K.

(b) For any loi-ersemicontinuous f, there exists a sequence of

functions *i = Ei I i with i > 0, F K, and a
F XF d

1 2
constant function 0 < 0, such that

1*j and ffdu =jfiJ*du~
i II

(c) For any u-quasi-integrable f one has that

- for j I - almost every x, f(x,.) is u2 -quasi-integrable.



- ff(x,y)d'j2(y) is pl-quasi-integrable (and l.s.c. if f is)

- f[(f(x,y)dp2 (y)]dj1 (x) = ff du.

(An extended real valued function f called ii-quasi-integrable if it

is w-measurable and either ff~dp t - or ff-du * -).

Proof: Denote by . the product measure on the product of

the Borel a-fields; let V be a positive linear functional on all

bounded functions that extends f(.)di, and let (Lemma 1) = E M(K)

minorize p on C. Then we have

1 2 xo) (01 x2oW) = VI()2(92 )

for all 01 open in Ki, and

0-FIx F 2 ) > _I(F 1X F 2 )=0(F IX 2 1j I I1 2 (F2
( 1  2 1 > 5 a F2 1r xFP) = u(F~li(F)

for all F. closed in K..
I I

Using the regularity of i, it follows that, for any 4i-

measurable sets A., P 2(AI ) = )22)

Thus the product measure i can be extended to a regular Borel

measure. By the regularity of v and V 2 any Borel measure P

satisfying u(F1 X F 2 ) = VI (FIv2(F,) will satisfy

)(A1 x A2 ) > io(A 1 )U2 (A2 ) for any Borel sets Ai, and thus going

to complements, the inverse inequality: it will be an extension

of P. Since any open set 0 is the limit of the increasing net

of sets O, where the sets 0. are all finite unions of products

01 x 0 2 CO, and thus i-measurable, the regularity of u will imply

that p is uniquely determined on all open sets, and thus on all

Borel sets.

4.j"~
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This proves statement (a), and (b) is obtained by pursuing a

bit the same argument (representing the 0 as finite disjoint unions
a

of products of Borel sets, and using there the regularity of the i 's,
i

going from indicator functions of open sets to l.s.c. functions f,

one obtains a finite sequence i with [,i < f and jf*. dV as
i11

close as required to ffdu. Iterating this conclusion with the l.s.c.

function f - 5i yields (b)).

(c) is proved by first noting its truth when f = 1
0 , next,

a
using the regularity of all measures, that it remains therefore true

for indicators of open sets, and hence for all lowersemicontinuous f.

The general statement follows then because, for any quasi-integrable f,

ffdj = inf {fgduii g l.s.c. > fl = sup {fhd h u.s.c. < fl; this

was proved in Lemma 4.

B) A Basic Tool

We return now to the corollary sub (B) of our mirnuax theorem,

dropping the Hausdorff assumption on S. Remark that, for any T with

finite support, f(s,T) is u.s.c. in s; it therefore achieves its

maximun, and max f(s,T) = max f(o,T). Let v = inf max f(o,T)
s aEM(S) T a

(T ranging over probabilities with finite support). By part (A) of

the proof there exists, for any finite subset T of T, a

probability a with finite support on S such that

min f(a,t) > . Since f(.,t) is u.s.c., and a is a positive

linear functional on E, there exists by Lemma 1, a E M(S) with

(g) ' o(g) for all u.s.c. g. In particular, a(i) = a(1) = 1,

ad min f(6,t) > . Let E- ( E (S) a(l) -I and f(ait) >
te T

Vt E i'}.

,I
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I~ is obviously closed in M(S), thus, by Proposition 1, the sets
T

form a decreasing net of nonempty, closed, compact sets, and therefore

have a nonempty intersection. Any a in the intersection fills the bill.

Observe that it follows from this that we can phrase the assumptions

of that corollary in a fully intrinsic way, using Alexander's subbase

theorem:

Theorem 2: Denote by S and T two sets, f: S x T - R U {R -}.

For any a E R and t E T, let S = s E S1 f(s,t) > a}. If the~ t~ct -

family of sets S has the finite intersection property, and if
t,a

M(S) denotes the set of regular Borel probabilities on S endowed

with the coarsest topology for which the functions f(.,t) (t E T)

are u.s.c., then

max inf f(a,t) = inf max f(s,T)
cFEM(S) tET TETf SES

Remarks:

1) The finite intersection property can be rephrased as asking

that any pointwise limit of pure strategies, i.e. of functi-ons f(s,.),

be dominated by some pure strategy, i.e. by some function f(s0,.).

2) This property is substantially weaker than the usual

compactness assumption. For instance, if T is a single point, it

Just asks that f(s) attains its maximum.

3) Using the remark after Proposition 1, it is sufficient to

ask that the class of sets St,M be countably compact, i.e. that any

countable family of such sets has the finite intersection property. In

that case M(S) becomes the set of probabilities on the a-field

~|
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generated by the functions f(.,t), regular w.r.t. the countable

intersections of finite unions of sets St, (in particular, if S with

its coarsest topology is countably compact, M(S) is just the set of

regular Borel probabilities on S).

This amounts to ask that, for any countable subset T of T,

any pointwise limit of pure strategies sn be dominated on T by

some pure strategy sO.

4) Given the above measure theory, including Fubini, essentially

our whole proof of Section 2 would go through without the Hausdorff

assumption, and thus give the corresponding "intrinsic" result.

Indeed, the use of continuous functions in part "D" has nothing

essential; lowersemicontinuous ones would do as well, giving a reduction

to the case where T is compact with countable base, in which case the

proof sub (C) works Just as well. The only troublesome point lies in

the last sentence sub (ii) of case (D) where the regularity of the

topology ("every point has a basis of closed neighborhoods") seems to

be used in an essential way.

Anyways, it goes through if one assumes that one of the spaces

S and T either has a countable basis or is Hausdorff.

C) Other Techniques from the Literature

Most results of the literature (except of course Sion's) are

obtained, or are at least obtainable, by applying to some particular

case of Theorem 2 one of the two following generalization techniques:

1) The first one goes back to Wald. It states that, if for

any c > 0 it is possible to find subsets S of S and T of

T such that, by some independent argument, the game restricted to S
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and T has a value, and such that Vs E S, 3s' E S : f(s,t) <

f(s',t) + c Vt E T, and similarly Vt E T, At' E T : Vs E S

f(s,t) > f(s,t') - e, then the given game has a value.

2) The other idea is based on Karlin, and amounts essentially

to using the monotone convergence theorem, or Fatou's lemma.

For instance, after applying Theorem 2 to some game, and having

found the value v and player I's optimal strategy u, one looks for

same class C of functions O(s) such that fO(s)dv > v. Say C

contains all bounded measurable functions that are minorized by some

f(.,t) (t E T) and their convex combinations, and also the limit

of any decreasing sequence On of such functions (one could still add

all functions p which are, for any regular Borel probability 1j,

I/
in the equivalence class of some OE C)-.

Then any game i(s,t) such that f < f and V t, f(.,t) E C

would have the same value and optimal strategy.

Usually f is constructed from f by taking the smallest u.s.c.

function majorizing it, but sometimes the argument has to be applied

both ways.

To illustrate, we give a typical application: S and T are

compact metric, f is a bounded measurable (i.e. measurable for any

product measure) function on S x T such that, if E = ((s,t) I f

is not continuous in s or in t at (s,t)}, then Vs, #{t I (s,t) E El < 1

and Vt, #{s I(s,t) E E) < 1. (Remark that measurability would follow

for instance if we had, denoting by E the (F ) set of points of

discontinuity of f, Vs{tj(ot) E and Vt (sI(s,t) Ej

are at most countable.)

'0
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Such a game has a value.
Indeed, let 4l(s0,t) = lim sup f(s,t0), € (slt0) = lim inf f(s t).

0s' tt 0  0

S*So t*t 0

Consider an optimal strategy a of player I in the game with payoff

f V *i (Theorem 2). Vt 0 E T, by considering an appropriate sequence

t i converging to to, one can have lim (f V l )(s,t i ) = 2 A (f V )

(s,t 0 ). Thus, by the above argument, sayin the form of Fatou's lemma,

a is still an optimal strategy of player I for [ 2 A (f V 0I)S guaranteeing

the same value vl, and player II's E-optimal strategy with finite

support TE guarantees the same v1  for (f V 0 ) .

Inverting the roles of the players, we get a value v2  for

both f A 42 and [4i v (f A 42 )], an optimal strategy T for II

and an c-optimal strategy with finite support a for I. But

v (f A 42 ) > 4)2 A (f V 4) , so, by applying Fubini's theorem to

a S T and those payoff functions, we get v2 >_ v1. Since

f v 1 > f > f A we have v, = v, = v, and a and T guarantee1 - A 2' we haevE

v in those 3 games, so in f.

Karlin's "general game of timing of class II" (Karlin, [19591,

Chap. V, Ex. 20), falls in this category.

Similarly, assume S and T are compact, and f(s,t) is

bounded and Borel-measurable on S x T. Assume ISO C S and TO C T

such that f(s,.) is l.s.c. on T for s E S0 , f(.,t) is u.s.c. on

S for tET0  and suchthat sES 3S E S0  with lim inf f(sn, t)
n-n

> f(s,t) Vt E T, and that Vt E T 3 tn E To with

lim sup f(s,t) f(s,t) Vs E S. Then this game has a value,

and both players have e-optimal strategies with finite support carried

0 0
by S and T respectively.

. J -
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Indeed, Theorem 2 yields a value v for the game on S x T

and by Fatou's lemma, player I's optimal strategy is still safe against

all t E T. Similarly one can apply Theorem 2 and next Fatou's lemmP.

to the game on S0 x T, with value v. Fubini's theorem applied to f

and the product of the optimal strategies yields then v = v, hence

the result.

C. Waternaux [19831's "auxiliary game" is of this type.

Most other classical examples (like all examples in Karlin

[19501, Restrepo's "general silent duel" or Karlin's "two machine-

gun duel") can be shown to have a value by the same Technique, applied

in a more or less similar (and often easier) way.
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Footnotes

I_/ If this is done, the resulting class C is identical to the
set of all functions 4, such that I n, 4v(-n) is in the closed
convex hull of the set of bounded measurable function > some
f(.,t), in the space of all bounded universally measurable
functions in duality with the space of regular Borel measures
on S. This shows that our technique is really equivalent to
Karlin's apparently more powerful closure methods (Karlin, [1950]).

The only point to show is that the class C of bounded functions
in C is closed, it is thus sufficient to show closedness in
L(U) o(L(),L1 (v)). By the Krein-Smulian theorem on weak*-
closed convex s~ts, it is sufficient to show that its intersectionwith anyv ball of L is T(L.0,L )-closed. Since the Mackey

topology coincides on balls of with the topology of
convergence in measure (this result of Grothendieck follows
easily from Dunford-Pettis' equiintegrability criterion for
weak ecmpactness in L ), it follows from Egorov's theorem that
it is sufficient to show that the limit of any uniformly bounded
a.e. convergent sequence (gn) in C is in C.

There is obviously no loss in assuming further that each g
is larger than some convex combination of functions f(.,t) .

Then lim sup gn is obviously in C.

7-
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