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DIFFUSION APPROXIMATION IN ARROW'S MODEL OF EXHAUSTABLE RESOURCES*

by

Darrell Duffie and Michael Taksar

1. Introduction

What we shall call Arrow's Model" for resource exploration and

use under uncertainty was first formulated by Arrow [19771 and analyzed

by Arrow and Chang 119781. This model proved to be very successful and

stimulated a lot of research. -.The most interesting further analyses of

Arrow's model and some numerical results have since been produced by

Hagan, Caflisch, and Keller 119801 (henceforth "H-C-K"), and indepen-

dently by Derzko and Sethi 11981] . The purpose of this paper is to

bring to a "common denominator"7the results of previous studies and to

introduce a new diffusion model approach to the same problem. The

problem is posed roughly as follows. ..........

A central planner charged with the exploration and use of some

natural resource (for example, oil) has knowledge of the current stock-

pile of the resource (R > 0), the remaining unexplored land (A > 0),

and the probability distribution of undiscovered resources over the

remaining land. For simplicity it is assumed that the random quantities

of the resource to be extracted from any two disjoint sections of land

of equal area are independently and identically distributed. Then any

exploration policy is merely a specification for a decreasing process

*This research was supported tr the Office of Naval Research Grant ONR-
Nooo14-79-C-o685 at the Institute for Mathematical Studies in the Social
Sciences, Stanford University.
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A JAt); t 0 0), where A(t) is the amount of unexplored land remain-

ing at time t when policy A is followed. We define NA(t) to be

the (random) cumulative amount of resource extractd by time - when the

policy A is followed.

The economy has utility at the rate u(c) for consuming the

resource at the rate c > 0, where u(-) is differentiable, increasing,

and strictly concave. With time discounting at the rate P > 0, the

total utility for a particular path of consumption {c ,t > O} is
t

then:

fe-Ptu(ct)dt
0

Exploration requires inputs of "goods in general" at a constant ratio of

P > 0 per unit of land explored. Arrow and Chang argue that we can

also scale u(*) to be approximatley linear in terms of goods in gen-

eral. Under the standard von Neumann-Morgenstern axioms for expected

utility maximization we can now formulate the problem as

(1.1) V(A9R )max EAc fe-PtIu(c )dt + PdA(t)]
0 A,c 0 0 t

subj-et to:

t
(1.2) R(t) = f[-c ds + dNA(s), > 0 V t > 0 , R(0) = R0 ; A(O) = A0

0

where EA'c denotes expectation under the exploration policy A and
x,y

the consumption policy c, with initial resource stocks x and initial
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unexplored land y. Note that the second (Stieltjes) integral of (1.1)

is negative and decreasing, since A is decreasing.

In each of the above cited papers resources are located at

discrete points (in "lumps") according to a Poisson distribution.

See Feller [19681 page 159 for a good interpretation of Poisson

distributions of points in Euclidean space. Thus, for example, the

exploration policy At) B A0 - t would generate new discoveries at

Poisson arrival times.

Both Arrow and Chang 119T81 and Derzko and Sethi [19811 assume

that each discovery yields a fixed amount of the resource, while H-C-K

allow the size of the discovery to be random according to some general

probability distribution with positive support.

One of the purposes of this paper is to reformulate NA as a

controlled diffusion process and obtain the insights which this allows.

To do this requires a careful specification of what "instantaneous

control" means for Arrow's model. This also serves to place a more

rigorous foundation under the previously cited studies. For the remain-

der of this section, however, we will proceed at a heuristic level to

give the basic flavor of stochastic dynamic programming applied to

Arrow's model. All of the above mentioned papers proceed roughly along

the following lines.

Given the (i.i.d.) probability assumptions, the usual line of

attack of Markovian stochastic dynamic programming can be taken. Under

an optimal policy, at any time t, V(At,Rt) from (1.1) (reinitialized at

time t) can be equated with the expected accumulation of utility over
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any interval of time At, plus the expected discounted value of V at

time t + At. There are some formal mathematical difficulties (which

are not resolved in any of the previous studies) in taking the limit of

this sum divided by At as At + 0. These difficulties are resolved by

the technique introduced in Section 2, but for the present we will

proceed loosely. First assume that A is purely discontinuous with

l"very small" jumps. Let 4At  denote the jump of A at time t (and

bear in mind in the following caluclations that AAt 4 0). We then have

from (1.1) the approximation for "small" At

(1.3) V(AtR t )  max {u(c t)At + PA t + e-P(t+At) EIV(At + AVtR + ARt)]
ct,t

Max {u(ct)At + PAA + (1 - PAt)v(AtR t ) - V At

c t AAt  
t

+V A At - AV(AR)4At} 

where

VA (A, R) E (AR) 9V aV(A,R)
AR A andVA(AR'-)A-) -A(ARx)

AV(A,R) - lim E[v (A , R A) - V(A,R)
400 - AA

AAtO-A

that is, AV is the "expected rate" of improvement in V induced by

additions to stockpiles R resulting from exploration at a unit rate

(holding A constant). For example, under the Poisson distributional

assumption, AV(A,R) = O[V(A, R + 1) - V(A,R)I, where B is the para-

meter of the Poisson distribution.

' I iB'



Simplifying, we have the Bellman equation:

tax {u(ct)At - VRctAt + [- AV + P + VA] At
t cMAR

From the first order conditions for optimality in (1.4) we have

(1.5) c = c(vR) u'-l(vR)

where u'-I  is the functional inverse of u', well defined since u is

strictly concave. Furthermore,

(1.6) AA* = 0 if AV - P - VA 0 ,

and otherwise:

(1.7) AA* = sup {AA < 0: AV(A + AA,R + AR) - P - VA(A + AA,R + AR) 4 0

or At + AA= O}

The recipe (1.6)-(1.7) for AA* obviously needs some interpretation.

The exploration policy A is apparently "bang-bang." If the marginal

expected return to exploring, AV - P - VA, is negative, zero exploration

is optimal (1.6). Otherwise, land should be explored instantaneously

"until" either the random amount of resources extracted, AR in (1.7),

is sufficient to push the marginal return on exploration below zero, or

until the remaining land is exhausted. Note that MA is thus a random
t

"probing variable." Instantaneous control for this problem is not

merely a case of "infinite exploration rate," but also involves sequen-

tial decisions and realizations of random discoveries all at a single

point of time! (See Section 2.)

!.
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Assuming all of the above can be made rigorous, the state space

(AR) E R} can be divided into two regions, no exploration and

instantaneous exploration, as illustrated in Figure 1.1.

Figure 1.1 Control Regions in the State Space

R D (no exploration)
~- R (A)

D. (instantaneous exploration)

A

In region Do  (no exploration) we can eliminate the last term of

the Bellman equation (l.4) since 4A = 0 and divide through by At,

obtaining the following differential equation for V after substituting

from (1.5):

(1.8) PV(A,R) = ujC(VR ) - VRC(V) , (A,R) E Do

Equation (1.8) is actually a first order differential equation for V

as a function of R, of the form:

(1.9) V(A,R) = W(R + RE(A))

where RE(A) is a constant representing the "resource equivalent" of

the remainng unexplored land A. For the case u(c) in (c), W(.) has

the solution

(1.10) W(x) -1 Iin(px) - l ,

which implies, using (1.5),
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(1.11) C* (A,R) = PIR + RE(A) •

Similar solutions are available for the case of power utilities and, in

general,

(1.12) C* (A,R) = VR

which is the classical Hotelling 119311 result in the deterministic case

(A = RE(A) = 0).

Turning to the instantaneous exploration region D., we can divide

the Bellman equation (1.4) through by AA, eliminating terms in At

since "instantaneous" of course means At/bA = 0. This leaves the

inequality, using (1.6)-(1.7),

(1.13) AV - P - VA k 0 (A,R) E D.

Derzko and Sethi 11981] give a common sense argument that (1.13) must in

fact hold with equality in D, while H-C-K give a more formal argument

based on the transition probability governing movement in D .

Thus the equation

(1.14) AV(A,R) - P - VA(A,R) = 0 (A,R) C Do

along with the (1.8) and the obvious boundary conditions constitute the

information available to determine a solution for V(A,R). The key

elements of the solution are the two functions: RB(A), the boundary

curve separating Do  from D.; and RE(A), the "resource equivalents"

function.



The papers by H-C-K and Derzko and Sethi [19811 both contain

numerical approximations for VB(.). Their results are similar although

obtained by quite different routes. H-C-K also produced numerical

approximations for R (.) and extended the price dynamics analysis of
E

Arrow and Chang [19781.

Sundaresan [19831 includes a survey of research in optimal extrac-

tion of nonrenewable resources under uncertainty.

2. The Control Clock

Before proceeding to a diffusion formulation of Arrow's model, it

is important to place the basic model on a rigorous foundation by for-

malizing the notion of instantantaneous control suggested in Section 1.

It is inherent in Arrow's model that, during exploration, deci-

sions of whether or not to continue exploring may be made successively

at a single point of time. This is a much stronger interpretation of

"instantaneous control" than has usually been considered (e.g. Harrison

and Taksar [1982]). Here one may explore a certain area of land, re-

evaluate the situation based on new discovery information, and perhaps

continue exploring, all at the same point of time. It is implicit that

there are two "clocks" running, one describing the passage of "real"

time, the other tracking the running down of unexplored land. During

instantaneous exploration the first clock is not running, while the

second records the using up of unexplored land and generates information

about the increw "te of the tiscoveries proceeds, NA. For a well de-

fined control prob' , however, the control policy should be formally
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adapted to some information structure1! F- IF, > O} where, roughly

speaking, FT describes the information known at "time T" on some

"control clock." A convenient way to set up the control clock is to let

"control time" be the sum of real time and cumulative land explored.

Accordingly, we relate t(T), (real time at T on the control clock),

and L(T) A0 - A(T) (land explored) by:

T

(2.1) L(T) = jAcis 00
0

T

(2.2) t(T) -- f( - X )ds > 0
0

so that

(2.3) r = L(r) + t(T) > 0

where AT E [0,11 is the "exploration intensity" (a control p:ocess).

When A = 1, real time is standing still (2.2) while exploration takes

place at full intensity (instantaneously in real time). When A, = 0

no exploration is occurring. Finally X E [0,11 implies that real

time and exploration are running simultaneously.

With this control clock, A(T), A(T), t(T), R(T), and c(t(T)) can

all be formally modeled as stochastic processes adapted to some exogen-

ous information structure. If the notion that exploration can actually

occur instantaneously is rejected, the exploration control A can be

restricted to a compact subinterval of 10,11.

It is a difficult task indeed to formalize the analysis in Section

1 (and in the earlier papers) without a device similar to this time
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change. For example, it was assumed throughout the derivation of the

Bellman equation that A t  is "very small," whereas the actual policy

involves considerable jumps in certain regions of the state space.

3. A Diffusion Formulation of Arrow's Model

In this section we reformulate Arrow's model using a diffusion

idealization of the discoveries process NA. Although this does not

improve on the Poisson distributional assumption by yielding an analyti-

cal solution (as one might have hoped), it does promote a somewhat

clearer understanding of certain points. It also establishes the

robustness of certain of Arrow and Chang's [19781 original results under

quite different probabilistic assumptions.

As a preliminary, let B -(B T 0 ; ,F,P) denote a Standard

Brownian Motion on the probability space (a,F,P).

We begin by suggesting that the exploration activity requires

stochastic inputs I = (IT; T -0) of the resource itself, where IT

is the amount of the resource required to explore the first L units

of land area. The stochastic process 0 = (0OT > 0) similarly des-

cribes gross discoveries (output) of the resource.

If the input and output processes I and 0 have i.i.d.

increments over each successive section of land of fixed area, then a

natural idealization of the net discoveries process N 0 - I is the

controlled diffusion process:

( T
T s s

0



for some positive constants p and 0. See Harrison 11981] for the

arguments leading to this idealization of a production process.

From (3.1) we see that N has drift X T and "instantaneous

variance" X2a 2  which depend on the exploration control X. In
T

effect, X "speeds up" or "slows down" the (v,o) Brownian motion

discoveries process which would result if exploration were carried out

at a uniform rate.

... control problen (I.l)-(1.2)-(1.3) is unchanged, but can now be

set un in "control time," using (2.1) and (2.2), as:

'ind V: '+ P and non-anticipating controls X and

TT
c rt)) satisfying

(3.?) V(A,R) = Max E A?'fe- t Me Ic)(l - A A I P d1l

whe-e

(3.3) dt(T) (I - A )dT , t(O) = 0 , A e !0,i1

= dN - c (I - X )dr, R T 0

(3.5) dN T X T vdT + A T dB

(3.') dA A T -;d1 , A 1 T ;0 0

To ruarantee that the above integrals are well-defined (with V

permitted to take the value -0), we assume that c E [o,Z1 for some

(l.rge) constant c. The conditions on u given in Section 1 then

plae an upper bound on u(c ).
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We will proceed on the basis that a solution to (3.2) exists with

VR , ,and V -a - (A,R)- R2

existing and bounded (at least for A > 0, R > 0). Using Ito's lemma,

the infinitesimal generator L c  corresponding to the transition semi-

group for the controlled process N yields (using (3.4), (3.5) and

(3.6)):

(3.7) LAcV(A,R) = - ¥A + VR [A c(l - A)] + A2 a 2A R -2 VRR•

Then applying the strong Markov property of B and relation (3.3), we

derive the Bellman equation from (3.2):

(3.8) V = Max ill - p(l - A)lV + u(c)(l - X) - PA + LACV}

Xc

subject to: c ) 0 , A E [0,11

(See, for example, Fleming and Rishel [19751 Chapter VI for details.)

Note that with the advantages of a "control clock" and the continuity of

diffusion processes, the derivation of the Bellman equation is quick and

without approximation.

Since u(*) is strictly concave it is easy to deduce from (3.2)

that VRR < 0. We can then define

(3.9) ;(AR) V -1 [PV - U(c(VR)) - P - VA + VR(P + c(VR)))

RR
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The first order necessary conditions for optimality in (3.8) then

generate the following solutiuon for X*(A,R) and c*(A,R), the optimal

exploration and consumption controls:

M(A,R) ) 1 - X*(A,R) 1 1; c*(AR) arbitrary

(3.10) 0 < !(A,R) < 1 - X*(A,R) = X(A,R); c*(A,R) = C(VR)

A(A,R) 4 0 - X*(A,R) a 0; c'(AR) - C(VR)

Combining (3.7), (3.8), and (3.10) and simplifying, we have the final

form of the Bellman equation:

(3.11) ( - A)*)-c*V - pV + u(c*)] + X*(V - VA P) + A"2 - v =0
R R A2 VRR

Note that (3.11) is a partial differential equation for V which

must hold throughout the state space. Just as in Section 1, however, we

can simplify the Bellman equation by dividing up the state-space, this

time into the three regions:

2
Do = (A,R) G F+-: A(A,R) 4 01 (consumption only)

Di a ,R E (A,R) E (0,1)1 (simultaneous consumptionand exploration)

2De a ((AR) E IR+: A(A,R) ) 1) (instantaneous exploration)

The intermediate region Di, where exploration and consumption

occur simultaneously and continuously, is also feasible for the formula-

tion in Section 1, but can be rejected there as sub-optimal from the

pure discontinuity of NA. In the diffusion case, however, we see from
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(3.9) that Di is null only if there is a solution V(A,R) for the

Bellman equation (3.11) satisfying:

(3.12) PV = u((V )) - P - VA + VR u + C(VR) = 0

with

IA

X*(A,R) = A(A,R) = 0

and

c*(A,R) c(v R)

In the case of logarithmic utility, u(c) = ln(c), the following

specification for V satisfies (3.11) and, if P = 0, (3.12):

V(A,R) = ln(P(R + uA)) + - 1
P

We feel this to be somewhat of a quirk, however, related to the very

special properties of logarithmic utility (C(VR)VR = 1). In general

the solution is enriched by situations in which it is optimal to consume

and explore simultaneously.

In Do, the "consume only" region, the same ODE (1.9) found in

Section 1 is obtained from the Bellman equation (3.11) for A* = 0.

That is, it is again optimal to consume in Do  according to the

"Hotelling rule" (1.12) until the reduction in stocks induces further

exploration.
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Finally in D., where 0" = 1, we obtain from (3.11)

(3.14) v -v - P = 0

Note that (3.14) is the direct analogue of (1.14), which was obtained by

a much more tortuous route.

In fact (3.14) and (1.14) can be shown to be formally equivalent

by applying Ito's lemma to the definition of AV in (1.3).

In the diffusion case (3.14) has an interesting interpretation as

the Kolmogorov Backward equation governing the transition density of

V inside D,. Define the stopping time

T = inf { > 0: (AT,RT) D.)

and consider the stopped process V(ATAT,RTAT). Since A - 1 in D.,

R moves in D. simply as a (,a 2 ) Brownian motion, and dA -- dr

from (2.1). For any stopping time s 4 T, by Bellmn's Principle of

Optimality we have, for (A,R) E Dw

(3.15) V(A,R) = ErV(As,Ra) - P(As - AT)JA T aA,R = R1

- E[V(A - s + ",Rs) - P(s - )IRT = R1 .

In particular, for 8 a T, (3.15) says that the current value of V at

a point in D. is the expected value of V at the exit point

(AT,RT), less the expected exploration cost to "get out," EIP(T - r)I.

Now define Y(s,r,R) by equating it vith the right-hand side of

(3.15). Then (3.14) is formally the backward equation for Y(s,1,R),

since R is a (VaO2) Brownian motion in De . Thus, since
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Y(,T,R) = V(A,R) for (A,R) E D., (3.14) is the partial differential

equation giving the transition density of V, treating land as "time."

,. Mapping from Control Time Back to Real Time

In the last section we characterized the optimal controls X*

and c* as feedback policies on the current state variables, unexplored

land (A) and stockpiles of the resource (R). Given the simple

relationship (2.1) between "real time" and "control time," it is simple

to map these policies, which apply in control time, back into real time.

Since the consumption policy c = c(t(T)) was formulated in real

time to begin with, we have the solution

(4.1) c*(t) = C(VR(AtRt))

which holds everywhere (since the consumption policy is irrelevant in

D.).

The exploration policy must be characterized separately in each of

the regions from (3.6) and (3.10). In D., it is impossible to express

the policy in real time except to say that it is optimal to explore

"instantaneously" to the boundary of D. In some of the previously

cited studies it has been overlooked that this may entail exploration of

all remaining land without ever reaching the boundary curve RB(.)

illustrated in Figure 1. In the case of diffusion discoveries, it May

even occur that instantaneous exploration will exhaust all stocks R

before the remaining land is all explored. Of course the probability of such

an occurrence will be small given reasonable choices for P and a.



In Do, by definition, the optimal exploration policy A* is

(14.2) dA*t ( t) =0
dt

Finally, in the intermediate region we have

X (At,R)

1 -A(A t )
t'

where )'is the function defined in (3.9).
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Footnotes

1/ Formally, we should preface these remarks by a statement that
(0,F,P) is a probability space describing uncertainty in Arrow's
model. Then P is a filtration, a right-continuous increasing
family of sub-tribes of F, with F = FT. See, for example
Meyer [19671, p. 65.
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