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I. INTRODUCTION

Adaptive arrays based on the LMS (least mean square) algorithm [1]
are very effective for protecting communication systems from
interference. These antennas can automatically track desired signals
while also nulling interference [2]. Methods have been developed for
using adaptive arrays with ordinary AM (amplitude modulated) sfgnals
(3], binary FSK (frequency shift keyed) signals [4, 5, 6], binary PSK
(phase shift keyed) spread spectrum signals [4, 7], and quadraphase PSK
spread spectrum signals [8]. These techniques have all been
demonstrated experimentally.

In this report we study the performance of an adaptive array with
another type of spread spectrum signal, a frequency hopped signal [9].
Frequency hopping is a widely used method of spectrum spreading. Its
purpose is also to make a communication system less vulnerable to
interference. For some applications, it may be desirable to combine
adaptive arrays with frequency hopped signals to obtain the interference
pratection of both.

However, very little information is available on the performance of
adaptive arrays with frequency hopped signals. As we shall show in this
report, frequency hopping has several adverse effects on an LMS array.
First, 1t causes the array to modulate both the amplitude and the phase
of the received signal. Second, it makes the output SINR
(signal-to-interference-plus-noise ratio) vary with time and hence

increases the bit error probability for the demodulated signal. If an

LMS array is to be used with frequency hopped signals, these effects
1




must be taken into account in the design of both the array and the
signal modulation.

In this report we consider an ordinary LMS adaptive array with
continuous feedback loops. We do not consider various modifications of
the LMS array (such as weight storage and recall algorithms) that might
be used to improve its performance with frequency hopped signals. Our
purpose here is to determine when the basic LMS array has problems and
to characterize the array behavior with frequency hopped signals.

We use a simple model to study this problem. We consider an array
with three elements, and we assume the frequency hopped signal has only
a few frequencies. Such a model is adequate to {1lustrate the effects
of frequency hopping on the array, and it allows us to explore the
interaction between the hopping characteristics and the array
transients.

Section II of the report defines the problem and formulates a
method for calculating array behavior with frequency hopped signals.
Section III describes numerical results based on the technique in

Section II. Section IV contains the conclusions.
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IT. FORMULATION

Consider an LMS adaptive array [1] with three elements, as shown in
Figure 1. Let the elements be isotropic, noninteracting and a half

wavelength apart at the center fregquency of the signals. The analytic
signal §s(t) from the jth element is mixed with a local oscillator (LO)

and then passed through a narrowband filter (NBF). The purpose of the
LO and NBF is to dehop the desired signal, as will be discussed below.
The filter output ;3(t) is the input to the jth channel of an LMS
processor [1]. This processor multiplies each signal iﬁ(t) by a complex
weight wy and then sums the result to form the array output s(t). The
weights wj in an LMS processor are obtained by correlation feedback
Toops that minimize the average power in the error signal e(t) [3].

e(t) is the difference between the reference signal r(t) and the array
output s(t). The reference signal determines which signals are to be
retained in the array output and which are to be nulled. Received
signals correlated with r(t) will be retained and signals uncorrelated
with r(t) will be nulled. In practical communication systems, r(t) is
usually derived from the array output by nonlinear signal processing

operations [4-8]. In this report, we do not address the problem of ﬁ
reference signal generation. We simply assume r(t) to be a signal
correlated with the desired signal.

Let Y(t) be a vector containing the element signals, H

Y(t) = [F(8), F,yle), o1, (1)
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Figure 1. A Three-Element Adaptive Array.




and let X(t) be a vector containing the signals at the LMS processor

input
X(t) = [X (t), %, (t), Xalt)]' (2)
1 LA S K S
where T denotes the transpose. We assume below that the array receives

a desired signal and an interference signal, and that there is also

thermal noise in the element outputs. Thus, Y(t) and X(t) may be

written J
Y(t) = Yq(t) + Yi(t) + Yp(t) , (3) %

and ;
X(t) = Xg(t) + X4(t) + Xp(t) , (8)

where Y4(t), Yj(t) and Y,(t) are vectors containing the desired,
interference and thermal noise signals from the elements, and X4(t),
Xj(t) and Xp(t) are the corresponding vectors at the processor input.

Now let us define the signals and determine these vectors. First,
we assume the desired signal is frequency hopped with a periodic hopping
pattern. We suppose the hopping sequence repeats after p hops. We
model the desired signal as a CW signal with constant frequency wh on
each hop interval Th.y < t < Tp, where h is an integer denoting the hop
interval (1 < h < p) and T, is the time at the end of interval h. The
duratfon of hop interval h, Ty - Th_1, 1s called the dwell time. We
assume the dwell time {s the same for each h. We refer to the

separation between two uwy that are adjacent in frequency as the




frequency spacing, and we assume the uy are equally spaced across the
band. (Two wy that occur sequentially in a given hopping pattern are
not necessarily adjacent.) We define the hopping frequency fy to be the
number of hops per second (the reciprocal of the dwell time),

fy = (T7 - Tg)'l, and the pattern frequency fp to be the number of
complete hopping periods (or "patterns") per second, i.e.,

fp = (Tp - To)-1 = fy/p. We define the center frequency we of the
desired signal to be the arithmetic mean of the hopping frequencies wp.
(The antenna elements in Figure 1 are assumed to be a half wavelength
apart at frequency wc.) We denote the difference between a specific

signal frequency wn and the center frequency wc by Auwp,

Auhzuh-ut. (5)
Finally, we define the relative bandwidth B, of the desired signal to be

its total bandwidth divided by its center frequency,

By = Max{uwp} - min{up} (6)
mc

To dehop the desired signal, we assume the LO in Figure 1 is hopped

synchronously with the received desired signal*. The LO signal {s

*We do not address the issue of timing synchronization here. Also,
if the desired signal arrives from a direction other than broadside, its
hopping will have a different timing on each element, because of the
propagation time delay between elements. Thus, strictly speaking, the
LO hopping cannot be synchronized exactly with the desired signal
hopping on every element. However, we assume the interelement
propagation time to be very small compared to the dwell time. In this
case, differences in desired signal timing on different elements may be
neglected.




ej(wL+Auh)t ]

i(t) = b Ty SE<T (7)

h-1

where w_1{s the center frequency of the LO. We assume that o < w. and
that the NBF has a center frequency wc - o . The bandwidth of the NBF,
which we denote by Bf, is assumed smaller than the separation between
adjacent hopping frequencies. A1l the NBFs in Figure 1 are assumed
identical.

With this model, the vector Y4(t) is

JT(we+Awn) t+yq]
e

Jlwe+aun) (t-Tg)+yq]
e

Ya(t) = A4 Th-1 <t < T , (8)

JT(wetAup) (£-2Td) +yq]
e

where Ag4 is the desired signal amplitude, yq is the desired signal
carrier phase angle, and T4 is the propagation time delay between two

adjacent elements,

Tg = singq . (9)

we

8q is the desired signal arrival angle with respect to broadside. (9 is
defined in Figure 1.) y4 is assumed to be a random variable uniformly
distributed on (0, 2n).

After dehopping, the desired signal vector X4(t) is

j[(wc-w\_)t*“’d]
Xg(t) = Aq e Ud(h); Tho1 <t <Th ,




where

<Joq(h)  -j244(h)
Ug(h) = [1, e , e v, (11)
and ¢4(h) is the desired signal interelement phase shift during interval
h,

¢d(h) = (we + Aupy) T4 . (12)

Next, consider the interference. Suppose the interference is a CW
signal at frequency wj incident on the array from angle 64. The

interference signal vector Yj(t) is

Jlwjt+yg]
e
Jluj(t-Ty)+y4)
Yi(t) = A e R (13)
Jlwg(t-2T¢)+v4]
e
where Ay is the amplitude, ¥; is the carrier phase angle and Ty is the

propagation time delay between two adjacent elements,

Ty =n_sin 8§ . (14)
(Ab

The carrier phase angle y{ is assumed uniformly distributed on (0, 2x)
and statistically independent of 4.
After mixing and filtering, the interference signal vector Xj(t) is

Jl(wq-w -Aup) t+yg]
Xi(t) = A (me A s Ty <ty (15)




R TS TP "

where
Aj : lwj - we - Auyl < Bf
A'(h) = =z , (16)
i 0 : otherwise
and
=361 ~§244 T
Us =1, e , @ ], : (17)

with ¢; the interelement phase shift,

o = U wsin 8y . (18)
e

Note that the frequency hopping has converted the CW interference signal

at the antenna element into a pulsed signal at the processor input.
Finally, we assume the element signals i&(t) contain white,

gaussian noise. After mixing and filtering, the ;3‘t) then contain

narrowband gaussian noise signals. The noise vector Xj(t) {is

X (£) = IR (1), fylt), Ay’ (19)

where the ﬁs(t) are zero mean, gaussian random processes, each with

variance oz. We assume the ij(t) are statistically independent of each

other and of V4 and v4.
Once the signal vector X(t) is defined, the array weights may be
found as follows. The weights satisfy the system of equations [1],

t%s_)_ + ko(t)W(t) = kS(t) ,

(20)




where W(t) is the weight vector

W(t) = [wp(t), wa(t), w3(t)]T , (21)
k is the LMS loop gain, #(t) is the covariance matrix,

o(t) = ELx*(t)XT(t)] , (22)
and S(t) is the reference correlation vector,

S(t) = E[X*(t)r(t)] . (23)

In these equatfons, E(-) denotes expectation and * complex conjugate.
Since Xg(t), Xg(t) and Xp(t) are uncorrelated with each other, #(t)

reduces to

o(t) = ELX*(t)XT(t)] + ECX*(t)XT(t)] + E[X*(t)xT(t)]
d d i non

A2U*(RYUT(h) + A'2(n)U*UT + o2I; Thoy € ¢ < th
g d(h)Ud(h) i (h)u1 ! I} Thayg €t < ty (24)

To find the reference correlation vector S(t), we must define the
reference signal r(t). As discussed above, r(t) must be a signal
correlated with X4(t) and uncorrelated with X{(t) and Xp(t). We shall
assume the reference signal has the same form as the desired signal on

channel 1 of the processor, but with amplitude A.,

Th-l <t<T, . (25)

JC(ug-u 1t + wgl
’ h

r(t) = A e

Then, from (23), S(t) is

10




*
S(t) = ArAdUd(h) . (26)

Also, we note that &#(t) and S(t) depend only on h, because they are
constant during each hop interval. Hence we denote their values during
fnterval h by &(h) and S(h).

Thus, for one period of the hopping pattern, W(t) satisfies the

sequence of equations,

egézl + ko(1IN(t) = kS(1) 5 To<t<Tg

kS(2) 3 TP <t<T

!g%&l + ko(2)W(t)

dw(t) + ke(pIw(t)
at

kS(p) 3 Tp.p <t <Tp . (27)

Suppose W(Tp.1) 1s the value of W(t) at the end of interval h-1. Then,
since W(t) is continuous at each hop, W(Tp.1) 1s also the initial value
of W(t) for interval h. Hence, the solution to this sequence of

equations {s*

-kd(1)(t-Tp)

W(t) = e [W(To) - #-1(1)S(1)] + #-1(1)S(1); Tp<t<Ty
-ko(2)(t-Ty)

W(t) = e [W(Ty) - #-1(2)S(2)] + e-1(2)5(2); Ti<t<Ty

*Matrix exponentials, such as e-k.(l)(t-To), are defined in [10].

11




~k8(p)(t-Tp.1)

W(t) = e [W(Tp_1)-0-1(p)S(p) J+e-1(p)S(p); Tp.1<t<Ty

(28)

where W(Tg), W(T1), . . . , W(Tp.1) are the initial weight vectors for
each interval. If these initial vectors were known, we could calculate
W(t) at any other time from these equations.

To determine the W(Tp), we proceed as follows. Because the hopping
pattern is periodic, ¢(t) and S(t) are both periodic functions of time.
Thus, W(t) satisfies a differential equation with periodic coefficients
and a perfodic driving term. The solution to such an equation will also
be a periodic function of time after any initial transients have died
out.* In this paper we concentrate on the periodic steady-state
behavior of W(t). We do not consider initial transients. Once W(t)
has settled into its periodic steady-state, the initial weight vectors :
W(To), W(T1), . . . , W(Tp-1) may be found by invoking the periodicity
of W(t) to note that W(T,) must be the same as W(Tg). Thus, using (28)

to compute W(t) at the end of each interval, we have the following l
relations among the initial vectors W(Ty),
-ke{1)(T1-Tp) }
W = e o - ¢-1(1)S(1)] + #-1(1)s(1)

*This statement can be proven in the same manner as in Eqs. (24) -
(29) of [11]. A general! proof of this property of differential
equatfons may be found in D'Angelo [12].

12




; ko(2)(T2-Ty1)
LW W2 =e -1 Ny - e-1(2)s(2)] + ¢-1(2)s(2)

: K& (p-1)(Tp.1-Tp-2)
= Np-1 = e PP (Tp.-2)-0-1(p-1)5(p-1) 1+0-L(p-1)S(p-1)

-ke(p)(Tp=-Tp-1)
Wp = e PP -y - o-1(p)s(p)] + e~1(p)SIp), (29)

g <R e

where, to simplify notation, we have used Wj = W(t{). Note that in the
last equation we have replaced Wp by Wo. If the initial vectors Wy in
(29) are regarded as unknowns, (29) has as many equatfons as unknowns.

Rearranging (29) gives the following system of equations for the Wi.

- STICHIE S A0 ) O
I 0 e & & ¢ o o ¢ o 'e p D ﬂ uo
ke (1)(T1-Tg) .
e I . Jd1 W
-ko(Z)(Tz-Tl)‘ i d1.
-8 . . .
| : I Xk3(p-INTpog-Tpep) o o] -
t o 0 - P g 1 Hp-l
i
13




k3 (p){Tp-Tp-1)
(1-e p=lp-1 Jo-1(p)S(p)

—ko(1)(T1=To)
[1-e 170 -1 s(n)

-ko(p-1)(Ty_1-Tp.2)
[1-e p-17Tp-2 ]¢'1(p-1)5(p-1)-J (30)

-

This system may be solved numerically* for the initial vectors
Wi = W(T4), and W(t) may then be found for other times from (28).

Once the wefghts have been found, the array performance may be
calculated. First, the time varying weights cause the array to modulate

the desired signal. The desired signal at the array output is

> T
Sqlt) = W (t) (31)

or, from (10),

Il wg-uy Yt+yq)

54(t) = AdHT(t)Ud(h)e T eteT, . (32)

h-1

To characterize the desired signal modulation, we define the envelope

modulation aq(t) and the phase modulation ng(t) by

To solve (30), one must evaluate matrix exponentials such as

ko(1)(Ty-T
e (11T 0). These may be computed by means of Sylvester's Theorem
[13], according to the procedure discussed in [11], Eqs. (47) - (55).

14




ag(t) = Ag INT(t)g(h)| 5 Theg < t < Ty (33)
and
nd(t) = < WT(L)4(h); Thp <t < Th (34)

The output signal powers also vary with time. The output desired signal

power is
~ 2
Pg =1 E[IS4()12] =1 A IWT(t)g(R)I2 5 Thoy < t < ty , (35)
k4 z d
the output interference power is

- 1a'2 T 2 .

and the output thermal noise power is
Pn = o2 {W(t)12 ., (37)
2
The output SINR is

. Pa = g (thugm? T <t <T (38)
SINR  Too '
i*Pn 2 . T 2
(8N + & () IWT (e

where £4q is the input SNR per element,

Eq = Ad2 . (39)
-z

(4]

E;(h) is the input INR in each processor channel during fnterval h,




Ef : lwj - we - Aupl < Bf
' 1 W o U >
zi(h) = , (40)

0 : otherwise
and & is

7z

g

In Section III we refer to £ as the "input INR". The reader will
understand that &; is actually the INR on each processor channel only
for those hopping intervals when the interference appears in the filter
output.

In Section III we use these equatfons to calculate the array

performance with frequency hopped signals.




IIl. RESULTS

Using the equations above, we have computed the signal modulation
and the SINR for a variety of cases. We present these results as
follows. First, in Part A, we show typical curves of the desired signal
envelope and phase modulation and the output SINR as functions of time.
To characterize these time-varying quantities in a simple way, we also
define an envelope variation, a phase variation and a bit error
probability. Then, in Parts B - F, we describe how each signal
parameter affects the envelope and phase variations and the bit error
probability. Part B discusses hopping frequency, Part C frequency jump
size, Part D interference frequency, Part E arrival angles and Part F

signal powers.

A. Typical Curves

First we consider envelope modutation. Figure 2 is a typical
curve, computed for 64 = 15°, 64 = 30°, &4 = 6dB, £y = 20dB, B, = 0.1
and p = 2. The figure shows the output desired signal envelope versus
time. The envelope is plotted in dB, relative to the envelope that
would exist with no frequency hopping and no interference. The time
axis is normalized so a complete hopping perfod begins at t = 0 and ends
at t = 1. The desired signal is on frequency w; = 0.95uw. for
0 <t <1/2 and on frequency wp = 1.05w. for 1/2 < t < 1. The
interference is on frequency wy (i.e., wy = 0.950c). As may be seen,

there {is significant envelope modulation on the output desired signal.

17
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Figure 2. Desired Signal Amplitude vs. Time
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Moreover, step discontinuities occur in the envelope when the frequency
Jumps.

The reason for this behavior is as follows. A jump in desired
signal frequency, at a given arrival angIe,.is electrically equivalent
to a jump in desired signal arrival angle with no change in frequency,
because either situation causes a jump in the interelement phase shift.
In Figure 2, the desired signal arrives from 8 = 15° with frequency
0.95wc for 0 < t < 1/2 and 1.05w; for 1/2 < t < 1. This situation is
electrically the same as if the desired signal were always on a
frequency 1.05w: and arrived from 6 = 13.54° for 0 < t < 1/2 and from
6 = 15° for 1/2 < t < 1. Figure 3 shows the pattern of the array
computed at frequency 1.05w. for several times during the hopping
period. The interference is at 6 = 30° on frequency .95w;, which is
equivalent to interference arriving from 6 = 26.9° at frequency 1.05u.
As may be seen in Figure 3, at the end of interval 1 (at t = 1/2), the
array has formed a null on the interference at 6 = 26.9°. In the second
hop interval, the interference disappears (it is filtered out) and the
desired signal angle jumps from 13.54° to 15°. Because this jump is
toward the existing null, an instantaneous drop in the desired signal
amplitude occurs at the beginning of interval 2. During interval 2, the
desired signal amplitude increases as the array adapts. Then at the end
of interval 2, the desired signal angle jumps back from 15° to 13.54°
(away from the null), so the desired signal amplitude jumps up
instantaneously. After this jump, the desired signal amplitude drops as

the weights form the null at 26.9° again, since the interference has
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reappeared at 26.9° during interval 1.

In order to characterize such a time varying waveform in a simple
way for use below, we define an envelope variation as follows. Let agax
be the largest and apin be the smallest (absolute) value of the output

desired signal envelope during the hopping period. Then let

m = dmax - amin . (42)
amax

m is the fractional modulation, since it is the total excursion of the
envelope normalized to its peak. We refer to m as the envelope
variation.

Next we consider phase modulation. Figu e 4 shows a typical curve
of output desired signal phase versus time, for the case 84 = 15°,
8y = 45°, €4 = 6dB, £5 = 20 dB, B, = 0.5, p = 2 and wj = w]. As may be
seen, there is substantial phase modulation on the output desired
signal. Figure 4 is typical of what usually happens: the desired
signal phase jumps up or down at the beginning of each hop interval and
then decays back to zero.

This phase modulation is due to the frequency hopping on the
desired signal and not to the presence of interference. Figure 5 shows
the output desired signal phase versus time for the same situation as in
Figure 4 but without interference. Note that almost the same phase
modulation occurs in both cases. The phase modulation occurs because
the desired signal interelement phase shift jumps when the frequency
hops (unless the signal is incident from broadside). Hence, immedfately

after each hop, the array weights no longer have the correct phasing
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to maximize desired signal response. As the weights respond after each
hop, the phase shift of the array seen by the desired signal changes
with time.

To characterize phase modulation, we define npax and nyin to be the
maximum and minimum phase angles of the output desired signal over the
hopping period (-7 < nyip < nnax < 27) and B to be

g = 'max - "min . (43)

g
We refer to 8 as the phase variation.

Finally, we consider the output SINR from the array. Figure 6
shows a typical curve of SINR versus time over one hopping period. This
curve is computed for the same parameters as in Figure 2. Note that the
SINR drops approximately 16 dB at the beginning of the hopping period.
Although the SINR recovers quickly from this drop, such a drop can
nevertheless greatly increase the bit error probability for the received
signal, since the number of bit detection errors is larger by orders of
magnitude during this short interval than it is when the SINR is
higher.

To characterize such a time-varying SINR curve, we define an
average bit error probability. We arbitrarily assume that the desired

signal, in addition to being frequency hopped, has binary DPSK
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(different phase shift keyed) modulation*[14]. The bit error
probability for a DPSK signal in white noise is [15]
'Eb/No
Pa=1ce , (44)
z

where Ep is the signal energy per bit and Ny is the one-sided thermal

noise spectral density. For our purposes, we may replace Ep/Ny by
signal-to-noise ratio,
Eb - PdTb - Pd - oy (45)
No Wo TWo/TpT '
where Pq is the desired signal power and T is the bit duration. I.e.,
since Tp~1 is the effective nofse bandwidth, No/Tp is the noise power.
Hence Po may be written

Pe = 1 e-SNR
Z

. (46)

In addition, for this analysis we shall assume that interference power

has the same effect on detector performance as thermal noise power, so

*Adding biphase modulation to the desired signal does not change

the array weight behavior as long as the bandwidth of the phase

‘ modulation is small enough to pass through the dehopping filters. With
small bandwidth, the covariance matrix &(t) is the same as for a CW
signal because the phase modulation terms cancel out. (Also, aside from
the dehopping filters, ft has been shown [16] that desired signal
bandwidth has almost no effect on array performance anyway, even {f the
bandwidth is large.) Moreover, as long as the reference signal carries
the same DPSK modulation as the desired signal, which we assume, the
reference correlation vector S(t) is also unchanged. Since both &(t)
and S(t) are the same, the wefght behavior will be the same with this
signal as with a CW signal. (Some examples of how digital phase
?odulagi?n can be transferred to the reference signal may be found in
4 - 8].
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Pe =1 e-SINR
¥4

Finally, we assume that the SINR transients and the desired signal phase

. (47)

modulation produced by the array are slow compared to the bit length Tp.
In this case the SINR and the signal phase may be considered constant
over a time interval of 2Tp. (Two adjacent bits are used to detect a
DPSK signal.) We define the effective bit error probability Pp as the

average of P, over one hopping period,

Tp
Po= 1 [ 71 e~SINR(t) ¢ (48)
T To ¢

We use (48) below for comparing different SINR curves*.
Now let us consider the effect of the various signal parameters on

the signal modulation and the bit error probability.

B. The Effect of Hopping Frequency

The envelope and phase variations m and 8 are large at low hopping
frequency and drop as the frequency increases. Bit error probability,
on the other hand, i low at low frequency and increases with frequency.
Both m and P, may have local peaks at intermediate frequencies.

Figure 7 shows typical curves of m versus (pattern) frequency.

*We recognize that (48) glosses over many subtleifes that will
affect detector performance in an actual system. Our intent here is
simply to reduce each SINR curve to a single number to compare different
SINR curves. In the absence of a specific system definition, (48) will
do as well as anything.




This set of curves was computed for 64 = 15°, 64 = 45°, ¢4 = 6 dB,

E.
;v.
ft
'

Ef = 40 dB, p = 2 and wj = wy. The figure shows several curves for
different hopping bandwidths B.. As may be seen, for all but the
smallest bandwidths, m has a complicated behavior at intermediate
frequencies. This behavior occurs because of the way the desired signal
envelope changes as the hopping frequency varies. In particular, the
time at which ayjp occurs is in one hopping interval for low values of
fp and in the other hopping interval for high values of fp. Typically
the smallest envelope in one interval increases with fp, while the
smallest envelope in the other interval decreases with fp. At the value
of fp where the two minima become equal, the location of ayin in time
changes from one hop interval to the other. At this change, the slope ﬂ
of apin versus fp reverses, so the slope of m changes in Figure 10. W

Figure 8 shows typical curves of phase variation B versus fp.

These curves were computed for the same parameters as in Figure 7. In
general, phase variation is highest at low hopping frequency and drops
to a constant as the hopping frequency increases. At large fp, the
array weights are too slow to track the hopping. The nonzero asymptotic
phase variation is caused by the jumps in interelement phase shift when
the frequency hops.

Finally, Figure 9 shows typical curves of bit error probabflity P,
versus fp, agafn for the same parameters as in Figure 7. As may be
seen, for higher bandwidths P, simply increases with fp. At lower
bandwidths, Pe peaks at intermediate fp and then drops at higher fp.
However, Po is always higher at large fp than at Tow fp. This
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behavior is similar to what happens when an adaptive array receives
pulsed interference and a desired signal with no hopping [11].
(Frequency hopping converts the CW {nterference into pulsed
interference. The two problems differ, however, because frequency
hopping also causes jumps in the desired signal interelement phase

shifts.)

C. The Effect of Frequency

The larger the frequency jumps encountered by the array, the larger
the variations M and 8 and the greater the SINR reduction.

In a frequency hopped system, the size of the frequency jumps
depends not only on the frequency spacing (the total bandwidth divided
by the number of frequencies), but also on the hopping pattern. For the
same spacing, different hopping patterns will produce different
frequency jumps. Moreover, bit error probability is affected not only
by the size of the frequency jumps, but also by how often the jumps
occur, since it is an integrated quantity. In general, to minimize P,
one should choose a hopping pattern that minimizes the number of large
jumps and also reduces the frequency with which large jumps occur.

The effect of frequency jump size may be seen in Figures 7, 8 and
9. These figures each show several curves for different bandwidths B,.
Sfnce there are only 2 frequencies (p = 2), the total bandwidth {s the
same as the frequency spacing and the frequency jump size. As may be
seen, as bandwidth increases, the variation m and 8 and the bit error

probability Pa all increase.
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This behavior ts easily understood. As the desired signal
frequency jumps become larger, the jump in interelement phase shift at
each hop becomes larger. A larger jump means that the array weights are
farther from their optimal values at the new frequency. Thus, & larger
weight transient is required after the jump. More envelope and phase

modulation is produced and the SINR is lower after the jump.

D. The Effect of Interference Frequency

Interference near the edge of the hopping bandwidth is more harmful
to the array than interference near the center of the band.

Figures 10 and 11 illustrate this point. These figures show P,
versus fp for 84 = 15°, 85 = 45°, €4 = 6 dB, &5 = 40 dB and p = 3.
Figure 10 is for w{ = w) and Figure 11 is for wj = wp (where
w] < w2 < w3). The performance in Figure 10, when the interference {s
at the edge of the hopping band, is much worse than that in Figure 11,
when the interference is at the center of the band. The reason for this
difference may be understood in terms of the equivalence between desired
signal frequency and arrival angle discussed earlier. Suppose
0 < 84 < 8 as in Figure 10, The array will produce a null in the
pattern at 64 on the interference frequency, either w) or wp. Since
0 < 84 < 8, the equivalent desired signal arrival angle, as seen on the
interference frequency, will be closest to 64 when the desired signal is
on frequency w3. The equivalent angle will be closer to 84 1f the
fnterference is on w; than if the interference is on wp, since w3 - wy

is greater than w3 - wy. Hence, with interference on wy, the desired
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signal falls farther into the interference null, the SINR is reduced
more and a higher P, results than with interference on wp.

Note that which edge of the band is worse depends on the signal
arrival angles. In the example above, we have 0 < 84 < 84 and the worst
performance is obtained with the interference on wj. If instead we had
0 < 85 < 84, then interference on w3, the other band edge, will give the

worst performance.

E. The Effect of Arrival Angles

The envelope variation and the bit error probability increase as
the interference arrival angle approaches the desired signal arrival
angle. Interference arrival angle has almost no effect on phase
modulation except when the interference signa) is extremely close to the
desired signal.

Figures 12 and 13 show the envelope variation m as a function of

pattern frequency for 64 = 15°, g4 = 6 dB, & = 40 dB, By = 0.1, p = 2,

wj = w] and for different interference angles. Figure 12 shows

84 = 0°, 30°, 45°, 60° and 90°, and Figure 13 shows 6y = 5°, 10°, 13°,
17°, 20° and 25°. 1t may be seen that m increases as |6 - 84l
decreases. For 6§ very near 64, the varfation m is qufte large.

The phase variation 8 is small unless 9 is very near 64. Figure
14 shows a typical case, for 64 = 15°, £¢4 = 6 dB, £§ = 40 dB, B, = 0.5,
p=2and wj = wj. Note also that 8 is much larger for 6§ just above 64

than for 6§ just below 84. The reason is as discussed above: in one
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case the desired signal hops into the null left by the interference
whereas in the other it hops away from the null.

Figure 15 shows curves of the bit error probability for the same
] parameter values as in Figure 12. It is seen that P, is largest when 64

is near 8y4.

i F. The Effect of Signal Powers i

The input INR has almost no effect on the phase modulation and very

little effect on the envelope modulation. The effect of the INR on the
bit error probability is primarily to shift the value of the hopping
frequency for a given Po. Bit error probability is very sensitive to
the input SNR.

Figures 16 and 17 show the envelope variation and the bit error
probability versus fp for 64 = 15°, 84 = 45°, g4 = 6 dB, p = 2, wj = wy,
By = 0.1 and for several values of INR. Figure 17 illustrates how the
hopping frequency at which P, peaks varies with the INR. Figure 18
shows B versus fp for the same parameters as in Figures 16 and 17 except

that B, = 0.5.

- s, e L4 rw ..
P N ]

Figure 19 shows the bit error probability versus fp for 84 = 15°,
8y = 45°, £y = 40 dB, p = 2, w{ = w)], By = 0.1 and for several values of
input SNR. As may be seen, Po is extremely sensitive to the SNR, as it
would be even in a simple DPSK communication system without an adaptive

array.

—
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IV. CONCLUSIONS

A frequency hopped desired signal has several effects on an LMS
array. It causes the array to modulate both the envelope and the phase
of the output desired signal. Also, it causes the array output SINR to
vary with time below its optimal value and increases the bit error
probability for the received signal.

The signal parameters affect the desired signal modulation and the
bit error probability as follows:

1. Envelope and phase modulation are large for low hopping

frequencies and drop as the frequency increases. Bit
error probability is low at low hopping frequencies and
increases with frequency. Both the envelope variation
and the bit error probability may have local peaks at
intermediate hopping frequencies.

2. Envelope and phase modulation fncrease with the size of

the frequency jumps in the hopping pattern. Bit error
probability is increased as the frequency jump size
increases.

3. An interference frequency at the edge of the hopping
bandwidth is more harmful to the array performance
than an interference frequency at the center of the
band.

4, Envelope modulation and bit error probability increase

as the interference arrival angle approaches the
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5.

)

desired signal arrival angle. Phase modulation

is not affected by interference arrival angle

unless the interference is extremely close to the
desired signal.

Input INR has almost no effect on phase modulation and
very little effect on envelope modulation. Input INR
affects bit error probability by shifting the value of
the hopping frequency required for a given bit error
probability. Input SNR has a very large effect on bit
error probability, as it would in any DPSK system,

even without an adaptive array.
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