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I " This report examines the performance of an LMS adaptive array with a frequency
hopped, spread spectrum desired signal and a CW interference signal. It is shown
that frequency hopping has several effects on an adaptive array. It causes the array
to modulate both the amplitude and the phase of the received signal. Also, it causes
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I. INTRODUCTION

Adaptive arrays based on the LS (least mean square) algorithm [1]

are very effective for protecting communication systems from

interference. These antennas can automatically track desired signals

while also nulling interference (2]. Methods have been developed for

using adaptive arrays with ordinary AM (amplitude modulated) signals

[3, binary FSK (frequency shift keyed) signals [4, 5, 61, binary PSK

(phase shift keyed) spread spectrum signals [4, 71, and quadraphase PSK

spread spectrum signals (8]. These techniques have all been

demonstrated experimentally.

In this report we study the performance of an adaptive array with

another type of spread spectrum signal, a frequency hopped signal [91.

Frequency hopping is a widely used method of spectrum spreading. Its

purpose is also to make a communication system less vulnerable to

interference. For some applications, it my be desirable to combine

adaptive arrays with frequency hopped signals to obtain the interference

protection of both.

However, very little information is available on the performance of

adaptive arrays with frequency hopped signals. As we shall show in this

report, frequency hopping has several adverse effects on an UMS array.

First, it causes the array to modulate both the amplitude and the phase

of the received signal. Second, it makes the output SINR

(signal-to-interference-plus-noise ratio) vary with time and hence

increases the bit error probability for the demodulated signal. If an

LS array is to be used with frequency hopped signals, these effects

1



must be taken Into account in the design of both the array and the

signal modulation.

In this report we consider an ordinary LS adaptive array with

continuous feedback loops. We do not consider various modifications of

the IMS array (such as weight storage and recall algorithms) that might

be used to improve its performance with frequency hopped signals. Our

purpose here is to determine when the basic LS array has problems and

to characterize the array behavior with frequency hopped signals.

We use a simple model to study this problem. We consider an array

with three elements, and we assume the frequency hopped signal has only

a few frequencies. Such a model is adequate to illustrate the effects

of frequency hopping on the array, and it allows us to explore the

interaction between the hopping characteristics and the array

transients.

Section 11 of the report defines the problem and formulates a

method for calculating array behavior with frequency hopped signals.

Section III describes numerical results based on the technique in

Section II. Section IV contains the conclusions.
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I

II. FORMULATION

Consider an LMS adaptive array [1) with three elements, as shown in

Figure 1. Let the elements be isotropic, noninteracting and a half

wavelength apart at the center frequency of the signals. The analytic

signal y(t) from the Jth element is mixed with a local oscillator (LO)

and then passed through a narrowband filter (NBF). The purpose of the

LO and NBF is to dehop the desired signal, as will be discussed below.

The filter output j(t) is the input to the Jth channel of an LMS

processor [1]. This processor multiplies each signal x1(t) by a complex

weight wj and then sums the result to form the array output is(t). The

weights w j in an LMS processor are obtained by correlation feedback

loops that minimize the average power in the error signal Z(t) [3].

(t) is the difference between the reference signal R(t) and the array

output s(t). The reference signal determines which signals are to be

retained in the array output and which are to be nulled. Received

signals correlated with (t) will be retained and signals uncorrelated

with F(t) will be nulled. In practical conmmunication systems, F(t) is

usually derived from the array output by nonlinear signal processing

operations [4-81. In this report, we do not address the problem of

reference signal generation. We simply assume R(t) to be a signal

correlated with the desired signal.

Let Y(t) be a vector containing the element signals,

Y(t) = [Yl(t), y2 (t), y3(t)]T , (1)

3
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and let X(t) be a vector containing the signals at the LMS processor

input

xt) = 2(t ) 3(t)] (2)

where T denotes the transpose. We assume below that the array receives

a desired signal and an interference signal, and that there is also

thermal noise in the element outputs. Thus, Y(t) and X(t) may be

wri tten

Y(t) : Yd(t) + Yi(t) + Yn(t) , (3)

and

X(t) Xd(t) + Xi(t) + Xn(t) , (4)

where Yd(t), Yj(t) and Yn(t) are vectors containing the desired,

interference and thermal noise signals from the elements, and Xd(t),

Xj(t) and Xn(t) are the corresponding vectors at the processor input.

Now let us define the signals and determine these vectors. First,

we assume the desired signal is frequency hopped with a periodic hopping

pattern. We suppose the hopping sequence repeats after p hops. We

model the desired signal as a CW signal with constant frequency wh on

each hop interval Th.1 4 t < Th, where h is an integer denoting the hop

interval (1 e h p) and Th is the time at the end of interval h. The

duration of hop interval h, Th - Th-1, is called the dwell time. We

assume the dwell time is the same for each h. We refer to the

separation between two wh that are adjacent in frequency as the

7S
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frequency spacing, and we assume the wh are equally spaced across the

band. (Two wh that occur sequentially in a given hopping pattern are

not necessarily adjacent.) We define the hopping frequency fH to be the

number of hops per second (the reciprocal of the dwell time),

fH = (T1 - TO)-1, and the pattern frequency fp to be the number of

complete hopping periods (or "patterns") per second, i.e.,

fp = (Tp - To)-1 = fH/p. We define the center frequency wc of the

desired signal to be the arithmetic mean of the hopping frequencies Wh-

(The antenna elements in Figure 1 are assumed to be a half wavelength

apart at frequency wc.) We denote the difference between a specific

signal frequency wh and the center frequency wc by Awh ,

Ah = wh- c•(5)

Finally, we define the relative bandwidth Br of the desired signal to be

its total bandwidth divided by its center frequency,

Br = max(wh) - min(&} (6)

To dehop the desired signal, we assume the LO in Figure 1 is hopped

synchronously with the received desired signal*. The LO signal is

*We do not address the issue of timing synchronization here. Also,
if the desired signal arrives from a direction other than broadside, its
hopping will have a different timing on each element, because of the
propagation time delay between elements. Thus, strictly speaking, the
LO hopping cannot be synchronized exactly with the desired signal
hopping on every element. However, we assume the interelement
propagation time to be very small compared to the dwell time. In this
case, differences in desired signal timing on different elements may be
neglected.

6



e(t) = e(wl +Awh l t  T h-1 4 t < Th  (7)

where wL is the center frequency of the LO. We assume that wL < Wc and

that the NBF has a center frequency wc - wL. The bandwidth of the NBF,

which we denote by Bf, is assumed smaller than the separation between

adjacent hopping frequencies. All the NBFs in Figure 1 are assumed

identical.

With this model, the vector Yd(t) is

JE (wc+Awh) t+*d1
e

J[(Wc+Awh) ( t-Td)+*d]
Yd(t) = Ad e ; Th I < t < Th  , (8)

e

where Ad is the desired signal amplitude, *d is the desired signal

carrier phase angle, and Td is the propagation time delay between two

adjacent elements,

Td = sin Od * (9)

Od is the desired signal arrival angle with respect to broadside. (0 is

defined in Figure 1.) *d is assumed to be a random variable uniformly

distributed on (0, 2n).

After dehopping, the desired signal vector Xd(t) is

J[ ( c-wL )t+*d]

Xd(t) = Ad e Ud(h); Th-1 4 t < Th (10)

7
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where

Ud(h) =[1,e 2*d(h) , (11)

and *d(h) is the desired signal interelement phase shift during interval

h,

d(h) = (Wc + Awh) Td . (12)

Next, consider the interference. Suppose the interference is a CW

signal at frequency wj incident on the array from angle ei. The

interference signal vector Yi(t) is

e
j [,,, ( t-T t )+*I]

Yt(t) = Ai e , (13)
J[ti( t-2Ti )+**i]

e

where Ai is the amplitude, *j is the carrier phase angle and Ti is the

propagation time delay between two adjacent elements,

T =w sin 8i. (14)
WC

The carrier phase angle *i Is assumed uniformly distributed on (0, 2w)

and statistically independent of *d.

After mixing and filtering, the interference signal vector Xi(t) is

Xi(t) - A'(h)e Ui; Th.1 4 t < Th  , (15)

8



where

Aher A i : - - < Bf
A'(h) = - , (16)
1 otherwise

and

-J i -j2*i TUi = , e e 1 ] (17)

with 0t the interelement phase shift,

i . M N sin e. (18)

Note that the frequency hopping has converted the CW interference signal

at the antenna element into a pulsed signal at the processor input.

Finally, we assume the element signals i(t) contain white,

gaussian noise. After mixing and filtering, the i(t) then contain

n-rrowband gaussian noise signals. The noise vector Xn(t) is

Xn(t) = [nI(t), n2(t), n3 (t))T (19)

where the Wj(t) are zero mean, gaussian random processes, each with

variance 02. We assume the Yj(t) are statistically independent of each

other and of *d and *i-

Once the signal vector X(t) is defined, the array weights may be

found as follows. The weights satisfy the system of equations [1],

dW(t) + ks(t)W(t) - kS(t) , (20)

9
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where W(t) is the weight vector

W(t) - [w1 (t), w2(t), w3(t)]T (21)

k is the LMS loop gain, *(t) is the covariance matrix,

O(t) = E[X*(t)XT(t)] , (22)

and S(t) is the reference correlation vector,

S(t) = E[X*(t)F(t)] . (23)

In these equations, E(.) denotes expectation and * complex conjugate.

Since Xd(t), Xi(t) and Xn(t) are uncorrelated with each other, #(t)

reduces to

*(t) = E[X*(t)XT(t)] + E(X*(t)XT(t)] + E[X*(t)XT(t)]
d d i i n n

= A2U*(h)UT(h) + A'2(h)U*JT + 0,21; Th..1 4 t < t$h (24)

d d d i i

To find the reference correlation vector S(t), we must define the

reference signal F(t). As discussed above, F(t) must be a signal

correlated with Xd(t) and uncorrelated with Xj(t) and Xn(t). We shall

assume the reference signal has the same form as the desired signal on

channel 1 of the processor, but with amplitude Ar,

= Ar eJ[( -wLt + *dl; Th. 1 4 t < Th . (25)

Then, from (23), S(t) is

10 I
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S(t) - ArAdUd(h) . (26)

Also, we note that f(t) and S(t) depend only on h, because they are

constant during each hop interval. Hence we denote their values during

interval h by O(h) and S(h).

Thus, for one period of the hopping pattern, W(t) satisfies the

sequence of equations,

dW(t) + ko(i)W(t) - kS(i) ; TO 4 t < T1
-if-
dW(t) + k#(2)W(t) = kS(2) ; Ti 4 t < T2

dW(t) + ke(p)W(t) - kS(p) ; Tp. 1  t < Tp . (27)

at-
Suppose W(Th. 1) is the value of W(t) at the end of interval h-1. Then,

since W(t) is continuous at each hop, W(Th.1) is also the initial value

of W(t) for interval h. Hence, the solution to this sequence of

equations is*

W(t) = e ( W(TO) - 0-1(1)S(I)] + 4-1(1)S(); T04t<T

W(t) - • [WT 1) - #-1(2)S(2)] + *-1(2)S(2); TIct<T 2

-k*(i)(t-TO )•tdatrix exponentials, such as e , are defined in ti0].

ii
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(28)

where W(To), W(T1), . . • , W(Tp.1) are the initial weight vectors for

each interval. If these initial vectors were known, we could calculate

W(t) at any other time from these equations.

To determine the W(Th), we proceed as follows. Because the hopping

pattern is periodic, o(t) and S(t) are both periodic functions of time.

Thus, W(t) satisfies a differential equation with periodic coefficients

and a periodic driving term. The solution to such an equation will also

be a periodic function of time after any initial transients have died

out.* In this paper we concentrate on the periodic steady-state

behavior of W(t). We do not consider initial transients. Once W(t)

has settled into its periodic steady-state, the initial weight vectors

W(To), W(T1), . . . , W(Tp.1 ) may be found by invoking the periodicity

of W(t) to note that W(Tp) must be the same as W(To). Thus, using (28)

to compute W(t) at the end of each interval, we have the following

relations among the initial vectors W(Th),

-kof1)(Ti-TO)Nw0
W= e - .-1(1)S(1)) + *'1(1)S(1)

*This statement can be proven in the same manner as in Eqs. (24) -

(29) of (11]. A general proof of this property of differential
equations may be found in D'Angelo [12].

12



W2 = e 40(2)(T241)[W1 - -1 (2)S(2)] + s-1(2)S(2)

-k (p-1)(Tl-Tp-2) .... 1Wp. 1 =e -kopI(pIT-)[W(Tp_2)-O-'(P-1)S(p-1)]+4-'(p-I)S(p-1)

-ko(p)(Tp-Tp_1 )

WO = e [W - -l(p)S(p) + O-l(p)S(p), (29)

where, to simplify notation, we have used W4 = W(tj). Note that in the

last equation we have replaced Wp by WO. If the initial vectors Wt in

(29) are regarded as unknowns, (29) has as many equations as unknowns.

Rearranging (29) gives the following system of equations for the Wt.

.-k(p)(Tp-Tp.lT - O

-ko(1)(TI-T O )
e I. . W1

-kD(2)(T2-T1) ..

0 -e .

S" -ki(p-1)(Tp-I-Tp-I) " "
0 0 -e

13
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[I-- ]-lwS(p)

-k1 )(T1 -To)
[X-e - (1)S(1)

* 4i

[I-e 1r1 (p- l)S(p-1) (30)

This system may be solved numerically* for the initial vectors

Wi = W(Ti), and W(t) may then be found for other times from (28).

Once the weights have been found, the array performance may be

calculated. First, the time varying weights cause the array to modulate

the desired signal. The desired signal at the array output is

'd(t) - wT (t)Xd(t) , (31)

or, from (10),

sd(t) - AdWT(t)Ud(h)e[ (wc ' L)t+*dl; Th- t<Th (32)

To characterize the desired signal modulation, we define the envelope

modulation ad(t) and the phase modulation nd(t) by

To solve (30), one must evaluate matrix exponentials such as

e k)(T1TO). These may be computed by means of Sylvester's Theorem
[13), according to the procedure discussed in [11), Eqs. (47) - (55).

14
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ad(t) "Ad IWT(t)Ud(h)l ;Th-1 4 t < Th  (33)

and

nd(t) * < WT(t)Ud(h); Th-I 4 t < Th  (34)

The output signal powers also vary with time. The output desired signal

power is

Pd = 1 E[lsd(t)12] = 1 A IT(t)Ud(h)12 ; Th. 1 4 t < th , (35)

the output interference power is

P1 =i A;2(h) IWT(t)Ui, 2 ; Th-1 (36)

and the output thermal noise power is

Pn = 02 jW(t)12 • (37)

The output SINR is

S11R= Pd ;TdIW T(t)Ud(h)l 2 T t < Th (38)iWi tPn2 , 2
IWtI 2+ E (h)IWT(t)Uil

where Ed is the input SNR per element,

2
Ed Ad2 , (39)

0

FYh) is the input INR in each processor channel durinq interval h,

I

1...5. :



:i ti W- -W < Bf

'(h) = (40)

0 : otherwise

and Ft is

* a Af (41)

In Section III we refer to Et as the "input INR. The reader will

understand that Ei is actually the INR on each processor channel only

for those hopping intervals when the interference appears in the filter

output.

In Section III we use these equations to calculate the array

performance with frequency hopped signals.

16
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I

I1. RESULTS1
Using the equations above, we have computed the signal modulation

and the SINR for a variety of cases. We present these results as

follows. First, in Part A, we show typical curves of the desired signal

envelope and phase modulation and the output SINR as functions of time.

To characterize these time-varying quantities in a simple way, we also

define an envelope variation, a phase variation and a bit error

probability. Then, in Parts B - F, we describe how each signal

parameter affects the envelope and phase variations and the bit error

probability. Part B discusses hopping frequency, Part C frequency jump

size, Part D interference frequency, Part E arrival angles and Part F

signal powers.

A. Typical Curves

First we consider envelope modulation. Figure 2 is a typical

curve, computed for Od = 15, j = 30, d = 6dB, Ei = 20dB, Br = 0.1

and p = 2. The figure shows the output desired signal envelope versus

time. The envelope is plotted in dB, relative to the envelope that

would exist with no frequency hopping and no interference. The time

axis is normalized so a complete hopping period begins at t = 0 and ends

at t = 1. The desired signal is on frequency w1 = 0.95wc for

0 < t < 1/2 and on frequency w2 = 1.05wc for 1/2 < t < 1. The

interference is on frequency w1 (i.e., wi - 0.95wc). As may be seen,

there is significant envelope modulation on the output desired signal.

17
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Moreover, step discontinuities occur in the envelope when the frequency

jumps.

The reason for this behavior is as follows. A Jump in desired

signal frequency, at a given arrival angle, is electrically equivalent

to a jump in desired signal arrival angle with no change in frequency,

because either situation causes a jump in the interelement phase shift.

In Figure 2, the desired signal arrives from 8 = 15* with frequency

0.95wc for 0 < t < 1/2 and 1.05c for 1/2 < t < 1. This situation is

electrically the same as if the desired signal were always on a

frequency 1.05uc and arrived from e = 13.540 for 0 < t < 1/2 and from

O = 150 for 1/2 < t < 1. Figure 3 shows the pattern of the array

computed at frequency 1.05 c for several times during the hopping

period. The interference is at 6 = 30° on frequency .95wc, which is

equivalent to interference arriving from 6 = 26.9 ° at frequency 1.05wc.

As may be seen in Figure 3, at the end of interval 1 (at t = 1/2), the

array has formed a null on the interference at 6 = 26.90. In the second

hop interval, the interference disappears (it is filtered out) and the

desired signal angle jumps from 13.54° to 15. Because this Jump is

toward the existing null, an instantaneous drop in the desired signal

amplitude occurs at the beginning of interval 2. During interval 2, the

desired signal amplitude increases as the array adapts. Then at the end

of interval 2, the desired signal angle Jumps back from 15° to 13.54 °

(away from the null), so the desired signal amplitude Jumps up

instantaneously. After this Jump, the desired signal amplitude drops as

the weights form the null at 26.90 again, since the interference has
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reappeared at 26.90 during interval 1.

In order to characterize such a time varying waveform in a simple

way for use below, we define an envelope variation as follows. Let amex

be the largest and amin be the smallest (absolute) value of the output

desired signal envelope during the hopping period. Then let

m = amax - amin . (42)

amax

m is the fractional modulation, since it is the total excursion of the

envelope normalized to its peak. We refer to m as the envelope

variation.

Next we consider phase modulation. Figu.e 4 shows a typical curve

of output desired signal phase versus time, for the case ed = 15,

6i = 45, d = 6dB, Ei = 20 dB, Br = 0.5, p = 2 and wi = wl. As may be

seen, there is substantial phase modulation on the output desired

signal. Figure 4 is typical of what usually happens: the desired

signal phase jumps up or down at the beginning of each hop interval and

then decays back to zero.

This phase modulation is due to the frequency hopping on the

desired signal and not to the presence of interference. Figure 5 shows

the output desired signal phase versus time for the same situation as in

Figure 4 but without interference. Note that almost the same phase

modulation occurs in both cases. The phase modulation occurs because

the desired signal interelement phase shift Jumps when the frequency

hops (unless the signal is incident from broadside). Hence, immediately

after each hop, the array weights no longer have the correct phasing
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to maximize desired signal response. As the weights respond after each

hop, the phase shift of the array seen by the desired signal changes

with time.

To characterize phase modulation, we define nhax and nmin to be the

maximum and minimum phase angles of the output desired signal over the

hopping period (-w < Inin 4 nmax < 2w) and s to be

nmax - nmin . (43)
2w

We refer to a as the phase variation.

Finally, we consider the output SINR from the array. Figure 6

shows a typical curve of SINR versus time over one hopping period. This

curve is computed for the same parameters as in Figure 2. Note that the

SINR drops approximately 16 dB at the beginning of the hopping period.

Although the SINR recovers quickly from this drop, such a drop can

nevertheless greatly increase the bit error probability for the received

signal, since the number of bit detection errors is larger by orders of

magnitude during this short interval than it is when the SINR is

higher.

To characterize such a time-varying SINR curve, we define an

average bit error probability. We arbitrarily assume that the desired

signal, in addition to being frequency hopped, has binary DPSK
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(different phase shift keyed) modulation*[141. The bit error

probability for a DPSK signal in white noise is [15]

-Eb/No

Pe = I e , (44)

where Eb is the signal energy per bit and No is the one-sided thermal

noise spectral density. For our purposes, we may replace Eb/No by

signal-to-noise ratio,

Eb = PdTb = Pd =SNR (45)
W- -WO- (No/Tb)

where Pd is the desired signal power and Tb is the bit duration. I.e.,

since Tb is the effective noise bandwidth, No/Tb is the noise power.

Hence Pe may be written

Pe= 1 e-SNR . (46)

In addition, for this analysis we shall assume that interference power

has the same effect on detector performance as thermal noise power, so

*Adding biphase modulation to the desired signal does not change
the array weight behavior as long as the bandwidth of the phase
modulation is small enough to pass through the dehopping filters. With
small bandwidth, the covariance matrix t(t) is the same as for a CW
signal because the phase modulation terms cancel out. (Also, aside from
the dehopping filters, it has been shown [16) that desired signal
bandwidth has almost no effect on array performance anyway, even if the
bandwidth is large.) Moreover, as long as the reference signal carries
the same DPSK modulation as the desired signal, which we assume, the
reference correlation vector Sit) is also unchanged. Since both O(t)
and Sit) are the same, the weight behavior will be the same with this
signal as with a CW signal. (Some examples of how digital phase
modulation can be transferred to the reference signal may be found in
[4 - 81.)
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Pe - 1 e-SI R (47)

Finally, we assume that the SlIR transients and the desired signal phase

modulation produced by the array are slow compared to the bit length Tb.

In this case the SINR and the signal phase may be considered constant

over a time interval of 2Tb. (Two adjacent bits are used to detect a

DPSK signal.) We define the effective bit error probability Vle as the

average of Pe over one hopping period,

Re f 1 eSINR(t) dt (48)
T -T pTo 2-

We use (48) below for comparing different SIUR curves*.

Now let us consider the effect of the various signal parameters on

the signal modulation and the bit error probability.

B. The Effect of Hopping Frequency

The envelope and phase variations m and 8 are large at low hopping

frequency and drop as the frequency increases. Bit error probability,

on the other hand, it; low at low frequency and increases with frequency.

Both m and re may have local peaks at intermediate frequencies.

Figure 7 shows typical curves of m versus (pattern) frequency.

*We recognize that (48) glosses over many subtleties that will
affect detector performance in an actual system. Our intent here is
simply to reduce each SINR curve to a single number to compare different
SINR curves. In the absence of a specific system definition, (48) will
do as well as anything.
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This set of curves was computed for Od = 15, et * 45 , 
d s 6 dB,

i = 40 dB, p = 2 and wi = w1. The figure shows several curves for

different hopping bandwidths Br . As may be seen, for all but the

smallest bandwidths, m has a complicated behavior at intermediate

frequencies. This behavior occurs because of the way the desired signal

envelope changes as the hopping frequency varies. In particular, the

time at which amin occurs is in one hopping interval for low value% of

fp and in the other hopping interval for high values of fp. Typically

the smallest envelope in one interval increases with fp, while the

smallest envelope in the other interval decreases with fp. At the value

of fp where the two minima become equal, the location of amin in time

changes from one hop interval to the other. At this change, the slope

of amin versus fp reverses, so the slope of m changes in Figure 10.

Figure 8 shows typical curves of phase variation 0 versus fp.

These curves were computed for the same parameters as in Figure 7. In

general, phase variation is highest at low hopping frequency and drops

to a constant as the hopping frequency increases. At large fp, the

array weights are too slow to track the hopping. The nonzero asymptotic

phase variation is caused by the jumps in interelement phase shift when

the frequency hops.

Finally, Figure 9 shows typical curves of bit error probability le

versus fp, again for the same parameters as in Figure 7. As may be

seen, for higher bandwidths ]e simply increases with fp. At lower

bandwidths, *e peaks at intermediate fp and then drops at higher fp.

However, Ve is always higher at large fp than at low fp. This
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behavior is similar to what happens when an adaptive array receives

pulsed interference and a desired signal with no hopping [11].

(Frequency hopping converts the CW interference into pulsed

interference. The two problems differ, however, because frequency

hopping also causes jumps in the desired signal interelement phase

shifts.)

C. The Effect of Frequency

The larger the frequency jumps encountered by the array, the larger

the variations M and B and the greater the SINR reduction.

In a frequency hopped system, the size of the frequency jumps

depends not only on the frequency spacing (the total bandwidth divided

by the number of frequencies), but also on the hopping pattern. For the

same spacing, different hopping patterns will produce different

frequency jumps. Moreover, bit error probability is affected not only

by the size of the frequency jumps, but also by how often the jumps

occur, since it is an integrated quantity. In general, to minimize Ire,

one should choose a hopping pattern that minimizes the number of large

jumps and also reduces the frequency with which large jumps occur.

The effect of frequency jump size may be seen in Figures 7, 8 and

9. These figures each show several curves for different bandwidths Br.

Since there are only 2 frequencies (p = 2), the total bandwidth is the

same as the frequency spacing and the frequency jump size. As may be

seen, as bandwidth increases, the variation m and 0 and the bit error

probabilityVe all increase.
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This behavior is easily understood. As the desired signal

frequency jumps become larger, the jump in interelement phase shift at

each hop becomes larger. A larger jump means that the array weights are

farther from their optimal values at the new frequency. Thus, a larger

weight transient is required after the jump. More envelope and phase

modulation is produced and the SINR is lower after the Jump.

D. The Effect of Interference Frequency

Interference near the edge of the hopping bandwidth is more harmful

to the array than interference near the center of the band.

Figures 10 and 11 illustrate this point. These figures show 7e

versus fp for Od = 15, e = 45, Ed = 6 dB, E, = 40 dB and p = 3.

Figure 10 is for wi = w1 and Figure 11 is for wI = w2 (where

w1 < w2 < w3). The performance in Figure 10, when the interference is

at the edge of the hopping band, is much worse than that in Figure 11,

when the interference is at the center of the band. The reason for this

difference may be understood in terms of the equivalence between desired

signal frequency and arrival angle discussed earlier. Suppose

0 < ed < 81 as in Figure 10. The array will produce a null in the

pattern at ei on the interference frequency, either wl or w2 . Since

0 < 0d < ei, the equivalent desired signal arrival angle, as seen on the

interference frequency, will be closest to 61 when the desired signal is

on frequency w3. The equivalent angle will be closer to et if the

interference is on wl than if the interference is on w2, since w3 - wl

is greater than w3 - w2. Hence, with interference on wl, the desired
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I
signal falls farther into the interference null, the SINR is reduced

more and a higher Ie results than with interference on w2.

Note that which edge of the band is worse depends on the signal

arrival angles. In the example above, we have 0 < Od < 91 and the worst

performance is obtained with the interference on wl. If instead we had

0 < Gi < Od, then interference on w3, the other band edge, will give the

worst performance.

E. The Effect of Arrival Angles

The envelope variation and the bit error probability increase as

the interference arrival angle approaches the desired signal arrival

angle. Interference arrival angle has almost no effect on phase

modulation except when the interference signal is extremely close to the

desired signal.

Figures 12 and 13 show the envelope variation m as a function of

pattern frequency for 6d = 15, d = 6 dB, Ci = 40 dB, Br = 0.1, p = 2,

wi = wl and for different interference angles. Figure 12 shows

ej = 0, 30, 450, 60° and 90, and Figure 13 shows ej = 50 10, 13,

17, 20* and 250. It may be seen that m increases as lei - edl

decreases. For 8i very near ed, the variation m is quite large.

The phase variation B is small unless ei is very near ed. Figure

14 shows a typical case, for Od = 15, d = 6 dB, &i - 40 dB, Br = 0.5,

p = 2 and wi = wi. Note also that B is much larger for 81 Just above Od

than for 8j just below Od. The reason is as discussed above: in one
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case the desired signal hops into the null left by the interference

whereas in the other it hops away from the null.

Figure 15 shows curves of the bit error probability for the same

parameter values as in Figure 12. It is seen that Ve is largest when e1

is near Od.

F. The Effect of Signal Powers

The input INR has almost no effect on the phase modulation and very

little effect on the envelope modulation. The effect of the INR on the

bit error probability is primarily to shift the value of the hopping

frequency for a given 1e . Bit error probability is very sensitive to

the input SNR.

Figures 16 and 17 show the envelope variation and the bit error

probability versus fp for ed = 15° , ei = 450, d = 6 dB, p = 2, wi = wI,

Br = 0.1 and for several values of INR. Figure 17 illustrates how the

hopping frequency at which Fe peaks varies with the INR. Figure 18

shows B versus fp for the same parameters as in Figures 16 and 17 except

that Br = 0.5.

Figure 19 shows the bit error probability versus fp for Od = 15%

= 45, Ei = 40 dB, p = 2, wi = wI, Br = 0.1 and for several values of

input SNR. As may be seen, Pe is extremely sensitive to the SNR, as it

would be even in a simple DPSK communication system without an adaptive

array.
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IV. CONCLUSIONS

A frequency hopped desired signal has several effects on an LMS

array. It causes the array to modulate both the envelope and the phase

of the output desired signal. Also, it causes the array output SINR to

vary with time below its optimal value and increases the bit error

probability for the received signal.

The signal parameters affect the desired signal modulation and the

bit error probability as follows:

1. Envelope and phase modulation are large for low hopping

frequencies and drop as the frequency increases. Bit

error probability is low at low hopping frequencies and

increases with frequency. Both the envelope variation

and the bit error probability may have local peaks at

intermediate hopping frequencies.

2. Envelope and phase modulation increase with the size of

the frequency jumps in the hopping pattern. Bit error

probability is increased as the frequency jump size

increases.

3. An interference frequency at the edge of the hopping

bandwidth is more harmful to the array performance

than an interference frequency at the center of the

band.

4. Envelope modulation and bit error probability increase

as the interference arrival angle approaches the
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desired signal arrival angle. Phase modulation

is not affected by interference arrival angle

unless the interference is extremely close to the

desired signal.

5. Input INR has almost no effect on phase modulation and

very little effect on envelope modulation. Input INR

affects bit error probability by shifting the value of

the hopping frequency required for a given bit error

probability. Input SNR has a very large effect on bit

error probability, as it would in any DPSK system,

even without an adaptive array.
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