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General Chairman's Message

The 1983 International Symposium on Multiple-Valued Logic
is the thirteenth meeting in a series of annual symposia
devoted exclusively to multiple-valued logic. Ten of the
past meetings were held in North America, the other two in
Europe. The ISMVL-83 in Kyoto, Japan, is the first
symposium to be held in Asia. It is dedicated to the
investigation of multiple-valued logic to narrow the gap
between theory and practice. .-

The ISMVL-83 is sponsored jointly by the Multiple-Valued 0Logic Technical Committee of the IEEE Computer Society andISMVL-Japan. I would like to express my sincere

appreciation to both of these bodies.

Planning and organizing for the ISMVL-83 began three years
ago. It took many meetings and discussions for solving
various problems to reach this stage of welcoming you here
in Kyoto. We are indebted to all those whose hard work,
dedication, and enthusiasm have made this symposium
possible.

I am especially thankful to Professor Y. Tezuka, Chairman
of the Steering Committee, Professor T. Kitahashi, Symposium
Chairman, and Professor J.T. Butler, Symposium Co-Chairman,
for their sincere cooperation, tireless work, and good
guidance. Special thanks are also due to Professor M. Goto,
Honorary Member of the General Organizing Committee, for his
continuing encouragement and invaluable suggestions. It
should be emphasized that Professor Goto's pioneering work
on multiple-valued logic has led us to hold the ISMVL-83 in
Kyoto, Japan.

The Program Committee, under the chairmanship of Professor
T. Higuchi with co-chairmen Professor K. Wayne Current and
Dr. S.L. Hurst, has put together the outstanding ISMVL-83
program. I am grateful to all members of the Program
Committee for their extraordinary effort in organizing the
program. .

This symposium could not have been held without the
support of the many Japanese companies that have donated
money to the ISMVL-83. We would like to express our hearty
appreciation to them.

Finally, I would like to thank the members of the
Organizing Committee of ISMVL-Japan, listed on page vii of
this Proceedings, for their generous support.

Hisashi Mine
Kyoto University .'-.-
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Symposium Chairman's Message

The 1983 International Symposium on Multiple-Valued Logic
in Kyoto, Japan, is the first to be held in Asia. -Because
there are many researchers in Japan and neighboring
countries, this symposium offers a unique opportunity for a
large number of multiple-valued logic researchers to meet.
An Asian conference will encourage the technological
development of mainland China, where there are 3000 -:
mathematicians engaged in the study of fuzzy logic. In
addition to many speakers from Japan, we have several
newcomers from Thailand, China, and Nigeria. .-

An Asian conference is appropriate for another reason.
Sophisticated logics, such as multiple-valued and fuzzy
logic, inherit certain characteristics of Oriental
philosophy. It is especially appropriate that the first
Asian conference be held in Japan, since Professor M. Goto's
pioneering work on multiple-valued logic was done here.

This conference is sponsored by the Organization for
ISMVL-Japan, the IEEE Computer Society, and the Society's
Technical Committee on Multiple-Valued Logic. Operating
funds in Japan were provided by many Japanese industries.
We are grateful for the generous support of the United
States Air Force Office of Scientific Research, which
provided funds for the travel of eight U.S. scientists and
operating costs in the United States.'

We want to recognize the great support of J.T. Butler,
Symposium Co-Chairman, and T. Sasao, General Secretary of
ISMVL-83, for introducing the Symposium to Japan. Without
their efforts, this Symposium could not have been held here.

An essential ingredient of any conference is the technical
program. We are truly grateful for the continual help and
outstanding work of S.L. Hurst, Program Co-Chairman for
Europe. Many papers were submitted by North American
researchers, and we are grateful for the efforts of W.C.
Current, Program Co-Chairman for North America, for
processing these papers. Professor Higuchi, General Program
Chairman, deserves a special thank you for handling the many
papers from Asian authors, as well as for coordinating the
entire program.

Professor Higuchi would like to express his sincere
appreciation to the referees, whose intensive perusal and
critical comments provided the basis on which decisions of
paper.acceptance or rejection wcre based. We also thank the
authors, whose research results are the basis for this
conference.

Tadahiro Kitahashi
ISMVL-83 S
Toyohashi University of Technology

IS BNKA
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Osaka University, Suita, Japan .
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Toyohashi University of Technology, Toyohashi, Japan

% Symposium
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Department of Electrical Engineering and Computer Science
Northwestern University. Evanston, Illinois, U.S.A.
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Department of Electronic Engineering
Tohoku University, Sendai, Japan

American
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Department of Electrical Engineering
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European
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COMPLETENESS FOR UNIFORMLY DELAYED CIRCUITS

e

I. G. Rosenberg* and T. Hikita**

* C.R.M.A., Universit6 de Montreal, Montr~al, P.Q. H3C 3J7, Canada
** Dept. of Math., Tokyo Metropolitan University, Setagaya, Tokyo 158, Japan .%...

Abstract uniformly delayed circuits the breakthrough came in

The paper reports on the progress towards an Hikita and Nozaki's 1977 paper [7] which reduced
effective completeness criterion for uniformly the problem to three more manageable types. The

delayed multiple-valued combinatorial circuits. In first case (type A) is directly solved by Rosen-

view of previous work by Hikita&Nozaki and Hikita berg's 1965 primality criterion while the third

it suffices to study periodic closed spectra. The case (type C) was solved by Hikita in 1979 [6].

main tool is the use of polyrelations (- sequ nces / Meanwhile Hikita also completely classified the

" of relations on k :- [0 ... , k-1)) and certain ternary case [4] and gave a relational theory for

constructions on-polyrelations developed by Hikita. uniformly delayed circuits (5). This is based on

We were able to restrict the search to unary poly- infinite sequences p = (p0, p1 , .. ) of relations
relations (almost solved) and three types of binary on the alphabet k := [0, 1 ... , k-1) of the same
polyrelations: arity. For such-a sequence, called a polyrelation,
1) period 2m p bounded order, m rn- an n-ary operation f with nonnegative integer delay

0 2 M1 6 carries (p.)n into p for all i a 0. This con-
b"and pi = 2:=(a, a) I a c k) otherwise,2 +

S- 12 cept replaces the preservation of a single relation

2) every nonempty component is of the form which is the basic concept in the non-delayed case.
-"(a, s~a)) a k} where s is a permutation of k; This address reports on the results towards
the permutations are interrelated,
3) components are either (i) all equivalences on k solving the remaining case of periodic spectra

2 (type B) and the corresponding periodic polyrela-
or (ii) all central or - k . In both cases they tions. The precomplete classes obtained are rather

. have strong properties in terms of intersecting exceptional as witnessed by the fact that they are
cliques. determined by at most binary polyrelations. We

have succeeded in limiting them to unary periodic
polyrelations (almost solved) and binary polyrela-

1. Introduction tions p = (00, pi' ... ) of period p of the follow-

This paper reports on the progress towards an ing three types: .

effective completeness criterion for uniformly 1) p = 2m (m > 0), p0 is a bounded partial order 5,
delayed circuits (this and other rather technical "d
concepts are fully explained in section 2). In the 1  and p - := {(a, a) I a c k} for

2mhistorical retrospective the topic was introduced 0 < 2
m , 

i 2
m
-l

. 
Each of these polyrelations

rather early by Kudrjavcev in 1960 who defined the 0'< i 2 2
various basic concepts and gave an effective com- gives a precomplete class [11, 18].
pleteness criterion for the uniformly delayed bi- 2) Every nonempty component is of the form

nary circuits based on precomplete classes (10, 111. (a, s(a)) I a c k} where s is a permutation of k. 0
(For the ordinary non-delayed circuits and logic The permutations involved are intimately linked and

such a criterion was given by Post [25] for k = 2, the case is essentially of a group-theoretical

Jablonskii [8) for k = 3, the first author for nature to be explored in the future.
k > 3 [26-28] and the idea of a precomplete class 3) All components P0 . ... Ip-i are either equiva-

by Kuznecov [15, 16].) Some of Kudrjavcev's re- lences 0 1 or all are central or - k
2 

(a symmetric
sults were rediscovered by Loomis [171. Other com- 2 k2 ..,.
pleteness aspects for delayed circuits were studied relation o is central if 2 c k and cxk c o
by Birjukova and Kudrjavcev (2]. for some c C k). In both cases we have strong prop-

After this early Russian start the focus moved erties in terms of intersecting cliques which are
to Japan where Nozaki and his school took up and too complex to be explained here.

expanded the study of multiple-valued delayed cir- The full paper seems to be too long to be in-
cuits, to the extent that during the past 12 years cluded in the proceedings and so we opted for a com- \.
all papers in this domain (with the lone exception promise: we list only definitions and propositions. ".
of [18])were published by the Japanese school. For The preprint of the full paper will be available at

2
0195-623X/83/0000/0002$01.00 1983 IEEE
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the Symposium and may be obtained by writing to Xo(t) = f(x (t-6 ),...,Xn(t-6n)) (1)
either of the authors. 1- -'-

where xt W I U 0 . n) are maps from [0,)
The projec' or this work was conceived during

A. Nozaki's . Hikita's short visits to Mont- into k and (1) means that the present output depends
real in 197) .nd the bulk of the work carried out on the i-th input 6. time units ago (i = 1, . n).
during T. Hikita's one month stay in Montreal in I .
durgs T9. ikth ne onth stnaincl Motrl i Such gates are called delayed input devices (or d-
August 1980. The partial financial support pro-
vided by NSERC Canada operating grant A-9128 and modules). For simplicity we assume that all 6. be-

FCAC Quebec Subvention d'6quipe Eq-0539 is grate- long to the set R = {0, 1, ... I of nonnegative in-
fully acknowledged. tegers. In this paper we go even further and assume

Although the uniformity and the completeness that 61 .... 6n . Such a gate is called a uni-.

concepts are open to discussion as to their prac- formly delayed k-device (or module). It is fully - -
ticality and relation to reality the authors feel described by the pair (f, 6) E : N called a
that this study is justified as the first step in
this direction, and perhaps even more by the rich- k-valued operation (or function) with delay.

ness of the mathematical theory involved. More-
over, the first author thinks that the choice of 2.2 Switching circuits are obtained from a collec-

tion, ofe gates byho attachin output ofe certain gate
this topic for an invited talk is only appropriate tion of gates by attaching outputs of certain gates

to express his admiration for the very exciting to inputs of other gates. Again for simplicity we

work done by A. Nozaki and his school in this and consider only the combinatorial or feedback free

other areas of multiple-valued logics and their switching circuits. The simplest case is the fol-

contributions towards the development of many- lowing. We have a gate F described by
(n) (n)valued circuits in the host country of the 13th (f, 6) E U
n  

n and n gates G. determined

Symposium. m)
by (gi" 6) E 1 , (i = 1. n). If we attach

2. Preliminaries the single output of G. to the i-th input of F

(i =, ..., n) the resulting tree-like circuit has
2.1 Switching circuits are built from basic hard- m m + ... + m external inputs and realizes the 0
ware components which we shall henceforth call 1 n (m) . . .
gates. For simplicity each gate (Fig. 1) is a operation h := f a (gl' "9''gn.I defined by
device with a single output and n inputs (n posi-h .
tive integer). The gate receives and emits signals 11 . lm "nl'" nm

in the same finite alphabet which will be identi- 1 n .
fied with k := {0, ..., k-l. If the signal on the = f(g(xll.  Xlm) n(nl.
i-th input is x. (I = 1, ... , n), then the response 1-'

ofth gte I for all x. . 6 k (i = . n, j 1, m.n)
of the gate is a unique signal completely deter- ijn .  

The delays are (6+6 I , ...'6+611 ... + ...I+ and '-" .'"
mined by the n-tuple (x xn ) c _ Denoting Tedasr (+ ' . .6+6. .6+6 nd

this signal by fx1. . .x we can describe the func- it follows that the circuit will have a uniform
fn delay if and only if 6 = ... =6. Our wish being

tioning of a gate by an n-ary operation f on k (i.e. wn
n (n) .- to stay within uniform delays, we only accept the

a map k -* k). For later use stands for the -composition (f 8 (gl......gn,6+6) with

set of all n-ary operations on k and we put (n) 1 gi" 6 . m+ - -
F (f', 6) E and G,.: (p.l

= u O'~'.Thus to each gate carries an opera- 16)En-l n (i =1 ... , n). Denote the resulting circuit by
tion f describing its behavior. F 0 (Gi, . Gn)

Suppose we have a circuit in the shape of a
rooted tree with gates at the vertices distinct from

X the leaves and external inputs (nor necessarily .

f~x1.x) ~ ~ (h, 2)

n (gi, 2)

Figure 1. (f, 1)

In reality the physical time dependent signal
x.(t) on the i-th irput (I _ i n) and the output (, 3)

signal x0 (t) are continuous functions of time. The

real situation may be rather complex and so we ap-
proximate it by assuming that there are time invar- Figure 2.
iant delays 61 .... "..n such that

% .%" % ...



pairwise distinct) at the leaves. Let the sum of is the simplest possible case, and (2) it makes a
the delays be constant on each branch from a leaf nice mathematical theory.
to the root. Working from the leaves to the root
we can express the delayed function represented by 2.4 We conclude this with two minor points. Sup-
the tree through repeated decomposition (e.g. in pose we have constructed (f, 6) and it happens
the situation of Fig. 2 the function is that f is constant (time independent). Of course, .

(f 0 (g O (h, i), j), 4) ). Thus the 0-composition there is no observable delay and we can assume 9
suffices for the description of functions associ- that we have all (f, 6') with 6' - N. This is
ated to combinatorial circuits yielding uniform rather academical because usually sources of con-
delays. stant signal are so easy to get and cheap that

they can be taken for granted. However it is notIt should be stressed that @-composition can acone rinurod.'".
accounted for in our model.

be performed iff the inside functions have an
identical delay. This restriction differentiates Finally, we stress that we are interested in - -

our structure from universal algebras and proposi- sets of gates with the potential to represent any •
tional calculus of most logics in which an unre- f ( (with some delay and assuming an unlimited
stricted composition is allowed. However the
structure may be described as a suitable partial supply of each type of gates) but ignore completely
algebra. As this fact seems to have little impact the optimality: if f can be represented, what is

the cheapest way of representing it. This limita-
on completeness, we should not dwell on it. tion has a good reason because the problem is

2.3 In what follows we need the projection (triv- notoriously hard, depends on the present technoloqy

in and labor costs and thus, to be meaningful should
ial operation) e. This is an n-ary operation on be closely tailored to a very specific situation

n which could become obsolete within a very short
k such that eix ...xn = x. for all Xl ..., xn , k. time.

Let J := U (en 1 1 i n) denote the set of all 2.5 We conclude this section with a completeness
n .i

projections, For a subset V of kdefine -V- as criterion. First we say that P c is primal if

the least subset of k containing F 0 (Gi...G n) every f c 2 is a composition of operations from I'

whenever V Vu 1V-, and G.,'Vm.u(.j"o) (i =1.n). (we reserve this term for operations without

We have added J*O to allow arbitrary changes of delays). Put e := eI (i.e. ex = r for all ir k).

variables (i.e. for F , <V>> the set <<>> contains For V c W and 6, n 0 put

also each F' obtained from F by permuting or iden-
tifying (fusing) the variables). Clearly V <V>>V(n) V (n) V : I (, 6) V1,
is a closure operator on U. The subsets V of -

satisfying V = <V>- are called closed uniform (6) m0 Vm6"
classes. A closed uniform class containing Jx0 is
a uniform clone. We say that V c k is complete if We have ([111 Thi. 4 for k 2, [71 and 1181 quoted

also in 131 Thm. 7.6 p.121 for k > 2):
to every f there is 6 IV such that

(f, 6) , <<V>>. This was introduced for k = 2 by Proposition 2.6. A closed subset V of
Kudrjavcev [10, 111 (as completeness in the second complete if and only if e c V, and V is primal
sense) and captures the possibility of constructing for some 6 -. 0.(6)
each operation with some - possibly very large -

delay. The object of this paper is to give a uni-
versal completeness criterion. Before embarking Corollary 2.7. Let V be a closed uniform

into the technical details a comment on the rela- class. If V is incomplete, then F := (J-O) u V is

tion between our model and reality. As pointed out a uniform incomplete clone.

in 2.1 the input delayed gate is already a consid- -" "r.
erable simplification. For fast circuits the Needless to say that Proposition 2.6 hardly
delays should not be ignored (to do so is tanta- solves the completeness problem and thus we search
mount to neglect such well-known phenomena like for a better criterion. This will be based on se-

races or hazards) and therefore input delayed quences of relations introduced and elaborated in
devices constitute the first step in the right di- the next section.

rection. The restriction to uniformly delayed

devices is all pervasive through the literature 2.8 A short notational remark. The symbol
stands for strict inclusion, while ccmeans inclu-(with the exceptions [2, 12, 18, 22]) but it is not
sion or equality. Whenever possible an n-tuple isaltogether clear whether it is motivated by mere it ed

convenience or rather a hard fact about today's written xI...Xn instead of the more conventional

commercially available gates. In practice often (xI, . x) The same applies to arguments of maps,
several functions gave to be represented simulta-
neously which could be used as an argument for uni- functions and operations, e.g. we write fx or
form delays. The completeness concept is open to l. n isao )ofI n ORE
the obvious criticism: What is the purpose of times we do not distinguish notationally an element
constructing an F with an enormous delay? We a and the singleton [a) writing e.g. A\a and axA

defend our model on the following ground: (1) It for A\(a) and (axA.

4
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3. Polyrelations there is p > 0 such that pi+p pi for all i 0.

h For a periodic p the least p > 0 with this property
3.1 A subset of k is called an h-ary relation on is the period of p and denoted p
k. An infinite sequence p = (p0,pl, ... ) of h-ary p.

relations is called an h-ary polyrelation. The set Corollary 3.5. Let p be a periodic polyrela-
of h-ary polyrelations is denoted kh and tion with period p. Then p is proper if and only

if at least one p. is nontrivial.
,hl h" For an h-ary relation a and n posi-

h-l In]
* tive integer let a denote the set of hxn matrices 3.6 For a given polyrelation p put

whose columns are all in a. For f c qo
(n ) 

and [P' 
:
- fT E k I Poldp c PoldT}.

It would be useful to have a construction @ (more
X 1 0In) let f(X] stand for the row vector precisely a map W g : such that p(p) c [p) ...
(fX.... fX ) where X denotes the i-th row of for all p c Wn e give such a map. Let m > 0,

X and let fao :- {fiX] X [nl,. We say that f n > 0, p a h > 0, A = (aij) an mxn matrix over .
preserves o if fl[0 c o and put Polo := {f c (1. p) and b = (bI , ... b ) c Nm• Given an
r preserves 01. In universal algebra terms f pre- 1. m

serves cmeans 0 subaiebra of k; fh. a n-ary polyrelation P - (P0 ,Pl ... ) define an h-ary
that (t.) [ preserves an h-ary polyrelation polyrelation T = (p)Abh( by letting T£ (t 1 0) con-

0 0 if ftpi c pi 6 for all i 0 We sist of all Ul...uh c kh for which there are u,+ ,,

i-l ... .... u k such that ua ...•u ai : r.E for all6I . = { [i] _ i+6' i O l. . }. .,U _ail i~n I£bl" '
for each •, and m. We illustrate it on a few examples.

P<,ld :6= o 6. Examples 3.7. (1) Let m = 1, n - h - p and

Example 3.2. Let ! be an order (a reflexive, s permutation of {l,...,n). Choosing A =

transitive and antisymmetric binary relation). Then (s(l)...s(n)] and b = (0) we get

lk:- Poll is the set of <-monotonic operations (i.e. , . fu1..un Us(l)"Us(n) f P "

t (n) such that fx 1 ...x y n whenever (2) Let 1 = n = h =2, p 3, al1 = 1, a22 = 2,

X 1' I....' Xn S Yn
) " 

Similarly f cq(n) is a12 1 a21 3 and b= 0, b2 = 1. Then, for a bi-

-antimonotonic if fx ..  - f'' whenever nary polyrelation P we get T = (p0 OP, plO 2 , .
"' n 

<  
" Let A be the set of --anti- where o denotes the standard relational product.

symmetric operations and let := (, > The definition is justified by:

Then Pol 2i ii - M and Po1 2i+l p A for all i - 0. Lemma 3.8. Let p and T be as in 3.6. Then

We have [5: T C [p) i.e. Poldp c PoldT.

Lemma 3.3. Let p = (p0,pl,...) be a polyre- 3.9 A uniform incomplete clone is precomplete if

lotion. Then Pol0p = iO P°lPi' and Poldp is a every uniform clone properly containing it is al-
0 ilo ready complete (i.e. a maximal element of the

uniform clone. poset of incomplete uniform clones ordered by c).

A clone M c q is maximal if M c M' c q for no clone .
3.4 For an equivalence c on (1,... h put A'.

Eht s k j 281. They are of the form Polo where the relation
(i.e. A consists of all h-tuples over k constant

S--0 runs through 6 families. For further use we
on each block of C). The relations A are termed quote a few of them: (1) proper unary relations

diagonal. The diagonal relations and * are called (i.e. subsets of k distinct from- and k), (2) bi-
t nary relations {as(a) I a c k} where s is a permu-

trivial. It is well-known [i, 26-29] that Polo = tation with k/p cycles of prime length p, (3) bound-
iff a is trivial. We say that a polyrelation P is
proper if Poldp is incomplete. We characterize im- ed partial orders (transitive, reflexive and sym-

r polyrelations, metric binary relations with a least and greatest
element), (4) equivalences, and (5) binary entral

Proposition 3.4. A polrlation p = p0,, relations (i.e. a reflexive, symmetric, 0 k and

is improper if and only if such that cxk c a for some cc M.

(i) all oi are trivial, or A set -- of proper polyrelations is termed
(ii) there are p > 0, m > 0 and trivial relations generic if each incomplete uniform clone G extends -

1such that to PoldE for some e H. Our task is to find a
0 .... CLP-1 such that small generic set optimally such that each Pold is

p c Pi+p c ... cPi+mp Pi+(m+l)p .. ai precomplete. Such a system would provide the best
for all ip 0- p-1. general completeness criterion in the sense that - -

for a given F we have only to test whether

We say that p I (p0l ,...) is periodic, if F c Pold& for all E c H. The essential step is
Hikita and Nozaki's generic system 0 [7).

-...".. -' .. ' ,"-'- .. ". ._," .-- ,- .. °. '-....." ,. ",",-. - .,-. -, .-. " ". ., .. ... , .. ,
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For a relation 0 put 0* (a, a, ... ). We ger z such that 0 S z < p and z x + y mod p.
say that a* is of type A if Polo is maximal. Prop-
er periodic polyrelations of arity S k are said to Lemma 4.4. Let p satisfy the assumptions of
be of type n. For the last type we need the follow- Lemma 4.3 and let E c kh be such that i) each
ing special binary relations. An equivalence on
P c k distinct from {aa I a E P} is called a proper 8 c E has exactly 2 blocks and (ii) nE is the least

partial equivalence on k. A oLnary polyrelation equivalence. Then AE i for all i .

( '2' ) is of type C if 4.5 Our goal is to find the smallest possible B-

1) P0 = cxk for some c E k, or generic system. The strategy is the following:

2) p0 is a proper partial equivalence, or given a B-generic E we find E' c H such that each
0p -\- is dominated by some p1 E H '. This re- ,-.'

3) po = {as(a) I a E P} where P c k and either duction will be done in several steps. In the
first step we reduce the arities. For the ease of

i) s is a permutation of P of prime order,presentation p is minimal if all proper
ii) s is a permutation of k, sIP 0 idp, and 1

TE [p] haveh lh . Let E be the set of minimal
s(a) E P iff s(a) = a. [ T  P 2

We have: polyrelations. It is almost immediate that His
generic. First we show that - consists of unary

Theorem 3.10. [6, 71 The set - is generic, and binary polyrelations. In ihe remainder of the

The uniform clones of type A and C' are precomplete. section the polyrelation p = (o0 ,p 1 ,...) denotes a

fixed minimal polyrelation of arity h and period p.
Recall that

4. Minimal Polyrelations a :( { ..a 
h  

aia for li<jh},
h l1" h k ja.a folijh,

4.1 It remains to study the set k of polyrelations ah := kh,.
of type B. Let P denote the set of all polyrela- and hakh Ih h k
tions of type A or C'. A subset r of k is B-generic h l...h a "
if each B E k is dominated by some c c r u p. In We use throughout the notation pi = .Uv where
view of Theorem 3.10 it suffices to study B-gener- I i
icity. Let HI consist of all 0 E k such that 1i = Pinoh and vi = Pi nh (i = 0.p-l). We

[6 1l = n (where [8] is the set of all polyrela- start out with the following technical lemmas. For

tions T such that PoldO c PoldT, as defined before), an h-ary relation 0 and 1 i < < i I h set
Given p = (P0,01 ... ) et hp and P (or h and pr . = {(a,... ,a,)

p) stand for its arity and period. Let h > 2. An b"C:"
h-ary relation a is totally reflexive if al=bil,..,a,=b i for some (bl , .. . b h) E } .

cackh (wherei h ={a . a h a, = a for Lemma 4.6. If e C kh\ h' then every vi nh
h l..a is trivial. .

some 1 1 i < j 5 h}). A polyrelationA oi
(A0l i..)s totally reflexive if at least one X.I An h-ary relation a is reflexive if a n Ih is .. 14''.

is totally reflexive. The next theorem is basic, diagonal or primitive. h

Theorem 4.1. If p E then [p] contains no Lemma 4.7. If h > 2 then every p. is empty
totally reflexive polyrelation. or reflexive. -

A nontrivial relation o is primitive if it is Lemma 4.8 If W. # *, then pr h-
the union of diagonal relations, and a polyrelation for = 1,. . 1 e. _
A is primitive if all X. are trivial or primitive,
i-e. . AwhreE i 0),Lemma 4.9. No minimal polyrelation has arityi.e. A. 

= A. :- U A where Ei c k. (i = 0), and "
" ° ' ' -

I E. E. E I - a h greater than 4.

is the set of equivalences on {. h). We consider the quaternary minimal polyrela-

tions. Put x : A UA U4 
•

Lemma 4.2. If p E Hl, then (p] contains no 12,34 13,24 14,23
primitive periodic polyrelation. Lemma 4.10. If h -4, then each nonprimitive

We need the following lemmas. Let C denote the and nontrivial pi contains X.

set of constant operations on k. Proposition 4.11. There is no minimal qua-

Lemma 4.3. Let p ' El satisfy (i) h > 2, ternary polyrelation.

* (ii) [ol contains no proper binary polyrelation and We consider ternary polyrelations.
(iii) C C Pol 0p. Then there is 0 < i < p such that

Lemma 4.12. Let A C be ternary and such
fcr every 8 E kh with exactly two blocks, that [A] contains no proper binary polyrelation.

S(*) if Ae C 0 then Ac. P. Then
0- A. n4~(3 A 2  A A3 3 1 13' 23

For integers x and y let x y denote the inte- for all i 30.

'6

........-.. ,...
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Lemmra 4.13. If h =3 each nontrivial p. has ive. Put
2V I W 3 . 2

*We need the following result from 127] (ex- 2
(n 2P 1 { 2'-

plicitly in 29) Fo anoe tinfc let
fdeoethe Cn+l)-ary relation v :V11 U V2

to -a a nfa ...an a. ,....an 4E k).
W'n 1IEp PI P n 1 2

* ~~Lemma 4.14. Let o be a ternary relation and 1 ( ., ~~
let a u W 3 where c a 3 ' Suppose that :W 2 E R Pi 2)

* ~every relation from [a] that is (i) at most binary, w :
(i)totally reflexive, or (iii) ternary of the 1 2'

form 12or X uA1 A 13with~ Acoa is trivial. ' P (EVl ; 12vE:2)
Then [a] contains nf' where m~x1 ,X 2'x3) x x-x 2 +x 3  v ~ v C 1 , ~ 2( 1)

for all x 1 1x, E k and <kc; +> is an abelian ele- iC

mentary p-group (p prime). F =Plp n =I d *.

Proposition 4.15. There is no minimal ter-Fo xyE2ltx4ydete he lmnt f
naypoyeato.P congruent x + y modulo p. Further for T c and
nary polyrelation. d E Pput d 4T - d Pt I tET) and observe that

Summing up: for r = (d, p) (greatest common divisor) the fol-9
lowing conditions are equivalent: Wi d T T,

Thorm .6. Th ot f unary and binary (ii) d 4- T =T, (iii) r 4T =T. We need the fol-
* Teoem4.1. hese lowing:

* polyrelations is B-generic.

Lemma 6.2. We have d 4 V Vand d W W

5. Unary Polyrelations for each d c D. If 11 * (W~ 1 ) then p' E [p)
W, E[p]) is proper. i6

5.1 In this section we study the set U of proper
unary polyrelations. Let p E U. Let p* denote the Abnr oyeainp=( p,.)i

*minimum of p for unary, periodic and p~oper areflexive Creflexive) if each p. is areflexive
T [ PJ . Wztnout loss of generality, we may assume (rfeiead0k2).LtAadR eneth st

treleiv and = p ).Le andR denote the set b . o
tha p =Pan deoeti vau by. Fra of areflexive (reflexive) polyrelations from

polyrelation X set c, : Ix0I+...Ixp_1 1. Clearly We have:

for X unary c, takes on only finitely many values Lma6.3. Test :WUAURi
and therefore we can define ThLetimUiUAlaRi

cp =minfc1  X E [p), X unary proper}. Bgnrc

Again without loss of generality, we may assume 6.4 For p C A with period p put
c*= c and write c for this common value. We have: I := (I E P ., 1, . =\
p p pI 0 i p p\P

Lemma 5.2. The sets pl are pair- and j := IJ I.

wise dson.For a map 0 from a subset D of kc into k put
P0  W IX~x x C D). Let S denote th set of all

Lemma 5.3. There is a divisor r of p and permutations of k. Finally let A' be the set of
T Cr such that p *if and only if i - t (mod r) all p c A such that pi C S' := {s' I s c 5) for all
for some t E T. Moreover p. ~ ,if and only if i 6 I . We have:
i O Ce (od r). P

Lema 54. f r dr'andd >1, henLemma 6.5. The set H U' U A' U R is
Lemm 5.4 If = r' ad d 1, henB-generic.6

(d, p) > 1 .
6.6 We say that a polyrelation p EA' is strict if

Corollary 5.5. Every prime divisor of r di- each nontrivial X E [p) nl A' has p, p0,-
vides p.

and PoldX - Poldp Ci.e. we cannot improve on the
period or number of empty components and Poldp is

6. Binary Areflexive Polyrelations not properly contained in another PoldA). Let A"
be the set of strict polyrelations. We have:

6.1 In this section we consider binary polyrela- Lem 6.7. The set Ui' U A" U R Is
tions. A binary relation a is reflexive Careflex- B-eerc
iye) if a '2 Co (a n2 I 0). Let p be a binary Bgnrc

polyrelation from w ith period p. Setting For a divisor q of kc let S be the set of
4 w q

9 ( 1,2)1 in Lemmna 4.6 we obtain that each p i 5 E S with klg cycles each of length g. Finally

is trivial, i.e. p. is either reflexive or areflex- for 0 j p and q prime divisor of k let 6
I Jp

. . . . . . ... . .
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consist of p c A" with pp = p. j = j and p 
I
E S 0 is a bounded order (i.e. there are oi, e. k,p 1 q ..

for all i I. Now we have: called the least and greatest elements of p., such
P

Lemma 6.8. that oxk C P. and kxe i c pi). We have:
A" c u. {e

.  
0 j p, Lemma 7.4. i) Every p E An is dominated by

q,j 3P q prime divisor of k). a polyrelation from P U Rs.
ii) Every transitive p C An\P is dominated by a

6.9 We consider a fixed p E 8q n A. Without loss polyrelation from RS.
]p

of generality we assume 0 E : Ip. e P such that
*P Let P' consist of all A uhta

Let Pi = so for i E I and let G be the permu- (i) no polyrelation from [A] n Rs is proper,

tation group on k generated by {si I i E . r (ii) each proper [] p has P 
= 
p and ' "-

ther put S' := id u 9{Sd I d prime divisor of k}. wh0r 
+  

"'" t-11 
>  IA0 1 + .". + 0Ap-i1

Now: where p = pX.

Lemma 6.10. We have We have:i) G c S', and iI
Lemma 7.5. The set 9:= U' U A" U P' U Rs

1i fn for i. i I, is B-generic.
ii) if s = sn ..S n f a 

.
n

Z, and Now we determine P'. In 7.6 - 7.9 p is a S
Ci, ..., n E ,andfixed polyrelation from P' with period p,C I :UnC 1 n C:= IP01+-.+l P~

P£ 9+il

1 n and 0 C I. We have:
for i = 0,...,p-l, then
a) all ($, l2 } 

if s = id, and Lemma 7.6. We have p Pi = for all)0 d < p. (0,1 2i 
_/d.

b) v E 68
d  

(d prime divisor of k) otherwise.
iP Lemma 7.7. We have p = 2r, I = (0, r), and

Lemma 6.11. Let 0 < d < p and let C1 and C - . "

be the vertex sets of cycles of p. and p. If r .
i i4-d' mfrm m >0IC nC2 > 1, then there are: i) a divisor r of Lemma 7.8. We have p = for some m > 0

p, (ii) 0 < m < q, and (iii) T c r such that Summing up:

a) mn I (mod ) where n = p/r,
b) I = It $ ir t 6 T, 0 

< 
i < n), Theorem 7.9. The set P' consists of p with

c)tr m
i 

forperiod 2
m 

(C > 0) and such that p0 is a bounded
C) P t ir 

= 
P t for all t E T and 0 5 i < m. order, p its converse and pi = otherwise

-1 i 2
At present we have only some very partial re- m

sults in this direction and therefore for the time (i = 1. 2 -1, i ' 2-).
being we abandon areflexive polyrelations and turn

to the reflexive ones. 8. Reflexive Symmetric Polyrelations

7. Orders 8.1 In this section we study Rs.

Let a be a binary reflexive and symmetric re-
7.1 In this section we consider binary reflexive 2.
polyrelations (all components reflexive). A binary lation. A subset C of k is a clique of o if C C.
relation a is said to be symmetric, antisymmetric The center C of a is the set {a < I axk C

and transitive if a = a1, a -1 2 and y2 . 0, If # C k the relation a is said to be central.and transitiGiven0 binary relationsand andOa0define

respectively. An antisymmetric and transitive re- Given binary relations 2 and a define

lation is an order. A polyrelation p has such a 01*02 := {xy I xuyv a 01 and uy,vx 02
property if all p. do. Let Rs and An denote the

1 for some u,v E 0).
sets of proper periodic symmetric and antisymmetric It is easy to see that al*02 is always symmetric
binary polyrelations, respectively. a1* v t n r

We sart ith he fllowng.and aoU 2 S 01*0 2 provided both al and a2 are re-

We start with the following. flexive.

Lemma 7.2. The set U' U A" U An U Rs A binary polyrelation X is central if each

is B-generic. X C{2, k) or is central.

7.3 In the remainder of this section we study An. A polyrelation p E Rs with period p is rich,
LetPbe the set of als t = 2 or if every proper A E [P] n Rs sa-isfies (i) pA Z p,

S

• . " ,, .'" .-. '-..
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(ii) IXOI+...+X,_,I i !p01+...+IPp_lg , and [4] T. Hikita, Completeness criterion for func-
Pold = op. e tions with delay defined over a domain of

(iii) PdA=Poldp. Let Rr be the set of rich treeeetPo.JpnAe. 4(98
polyrelations. We have: three elements, Proc. Japan Acad., 54 (1978),

335-339. •" " -

Lemme 8.2. The set E U' U A" U PI U Rr [5] T. Hikita, Completeness properties of

is B-generic. h 10 k-valued functions with delays: Inclusions
among closed spectra, Math. Nachr., 103

In the remainder of the paper we establish (1981), 5-19.
some properties of Rr. Let P be a fixed polyrela- [61 T. Hikita, On completeness for k-valued
tion from Rr with period p, and such that functions with delay, Coll. Math. Soc. Jinos

2 Bolyai 28, Finite Algebra and Multiple-
I c PO c k2. Valued Logic (B. Cs&k~ny and I. Rosenberg

For IcpstpFrhrleds.), pp. 345-371, North-Holland, 1981.
For I set P1 := i i" Further let [7] T. Hikita and A. Nozaki, A completeness
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An m-ary operation u on k is idempotent if 8 (1979), 656.
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A STUDY OF REDUCED DEPENDENCE IN
MULTI-VALUED SEQUENTIAL MACHINES

T. C. Yang and A. S. Wojcik

Department of Information and Department of Computer Science
Computer Engineering Illinois Institute of Technology
Feng Chia University Chicago, Illinois 60540
Taichung, Taiwan U. S. A.

ABSTRACT Stearns [12] for synchronous sequential
*machines to asynchronous sequential ma-

The problem of determining the exist- chines. This paper is concerned with ex-
ence of state assignments for multi-valued tending the existing concepts of partition
sequential machines with the property of systems and substitution properties to 5

reduced dependence is considered. The study the properties and requirements of
properties of and requirements for reduced reduced dependence among state variable
dependence among state variables in the in multi-valued synchronous and asynchro-
binary system are extended to that for nous sequential machines. Section II dis-
multi-valued synchronous and asynchronous cusses the physical properties which multi-
machines. A number of examples to illus- valued devices must exhibit. Assumptions
trate these concepts are also presented. concerning delays, transitions, and actual

device reactions are presented, and an
operational model is described. Section
III presents the properties of partitions

1. INTRODUCTION and their application to state assignments.
The necessary and sufficient conditions

Even though there have been many studies for redeced independence between states
on non-binary logic design, [1] -5], are established. Since the 3-valued system
and multi-valued circuit implementations, is the easiest to describe, this system is
[6] - [8], there are still a number of primarily used in examples and in the 4
design problems, the solutions to which proofs of certain theorems. However, all -

_. •would enhance the potential usefulness of the concepts to be presented are directly
multi-valueu systems. One such problem applicable (with either no modfication

- which has received considerable attention just straightforward extensiorl, 1o arLi-
in the binary sequential case is that of trary multi-valued systems.

"[ - determining the existence of state assign-
ments with the property of reduced depend- 2. NOTATION AND BASIC OPERATIONAL CONCEPTS

ence, that is, the next state equations of
the state variables are independent of some Let us denote the R logic values in a R-
of the state variables. Hartmanis 19] valued system as 0,1,2,...,r-1. Defaning
first developed the basic tool for the the Postian operations of addition (+) and

analysis of reduced dependence, namely the multiplication (.) on the set R as
partition having the substitution property
on the set of states of a sequential ma- Y 

+ 
X = X + Y = MAX (X,Y)

chine. Stearns and Hartmanis [1o] , Hart- Y . X = X . Y = XY = MIN (X,Y)
manis and Stearns [11, 123 then established S
the concepts of partition and pair algebras Yields a distributive lattice with zero

and applied them to the problem of designing element and universal element r-1.

sequential circuits with reduced dependence. Let us define unary operators as follows:

Weiner and Smith [13] describe an algorithmic 'i if X = 0
"solution" based upon applying the partition 0
algebra to the state assignment problem for i if X = 1
synchronous sequential machines. The
algorithm can assign the input, state and i .
output variables of a given machine so as ir-1lr-2 2 i1 i0 = if X = 2

to minimize the total logic, that is, X " ...
reduced dependencies of both the state and
output logic on state and input variables
are optimized. Tan, Menon, and Friedman
[14] extended the theories of reduced r-2 if X = r-2

dependence developed by Hartmanis and JI if X = r-1 _
r- 1

12
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where i. e o,1,2,...,r-1j for 0 Lj Lr-1. 2. f reacts to X = 1, but not X = 2.The sequence of values for f(X)
Three different orderings can be imposed is 2,1,0.

on the r values associated with a R-valued
system. If transferring from value i to 3. f does not react to X = I or 2.

value j requires that all intermediate The sequence of values for f(X) "
values between i and j be attained, the is 2,1,0. O
ordering is said to be linear. If the
transition from r-1 to 0 can be made di- The above assumptions have placed as few
rectly, the ordering is said to be restrictions as possible on the physical .*:

rotational or cyclic. If it is possible devices, so that circuits designed to work
to transfer directly from any value i to under these assumptions will work under a
any value j, the ordering is said to be wide range of assumptions.
complete.

Since any design using linearly ordered 3 REDUCED DEPENDENCE IN MULTI-VALUED SEQUENTIAL MACHINES
variables will work for other orderings,
it will be assumed, in this paper, that
all variables can take on only linearly
ordered values. Hartmanis and Stearns [12] first developed

the partition and pair algebras and applied
The assumption of linear ordering places these concepts to sequential circuit design.
constraints on transitions which may occur In this section, we shall first present
within a circuit. There is the question the essential definitions and notation
of whether or not the circuit will react based on their work. It should be pointed
to the intermediate values which mustourdrnthduigtetasto, out that the concepts to be described are".
ocmur during the during the transition. directly applicable to an arbitrary R-
Two major assumptions are made in this valued machine.
paper concerning this situation:

A. Line Reaction Assumptiort: Definition 3.1 A sequential machine is a -
quintuple

If the value on a given line in the M = (SI,O,N,Z)
circuit is changed from i to j, it will
take on all intermediate values between i where S is the set of states, I is
and i in linear fashion from i to j. No the set of inputs,
assumptions are made about how fast such 0 is the set of ouputs,
a transition will occur. For example,
let us consider a circuit with two 3-valued N : S x 1 4 S is called the next -
variables X, and X Suppose that the state function, and O

values are changing from X1 X2 = 00 to Z : S x I - 0 is called the

X X = 22. The possible paths of tran- output function.
A general model of a sequential switching

sition are 00-10-20-21-22, 00-10-11-21-22, circuit is given in Figure 2. In this"''"":::::):
00-10-11-12-22, 00-01-11-12-22, 00-01-02- model, the (primary) input variables are
12-22, and 00-01-11-21-22. denoted by ii, ... ,i t . The present-state 4

B. Gate Reaction Assumption: variables or secondary input variables are
denoted by yl,...,yp ; the (primary) output

When an input to a logical device variables are noted by z,...,z and the
changes from i to j, it will assume every 1  and-the

value in order from i to j. Each such next-state variables or secondary output
value may exist as the input for some arbi- variables are denoted by Y I,....,. Y "-...
trary finite length of time and, furthermore,
the circuit may or may not react to each Definition 3.2 A Partition, Tr, on a set S
of these inputs. If the reaction calls for of states, S, is a collection of subsets
an output change, that change will proceed Bi, B2 ,... ,Bn such that n Bn = S and
in linear order, with each value being B.f B. = 0 if i j where 0 is the empty
assumed for some finite length of time. As i j
an example, let us consider the function set. B 1 ,B 2 ,. .. ,Bn are called blocks of
given in Figure 1. This is a single-input, the partition.
single-output four-valued function. the partition.

Suppose first that X=0, so that f(X)=2. If the states s and s are in the same -
Now, if X changes to 3, the following are i
three possible sequences of values for block ofT , this will be denoted byf(X): si  S s T()T::::.::

"(X): 1. f reacts to all input values, so -(I-).
f(X) takes on values in the se- Definition . The ordered pair of
quence 2,1,2,3,2,1,0. 

"fi o'-"r-a"
-9
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* partitions (flI' TV2 ) defined on S is a where B B. = 0 for I fi j t

- partition pair for M, denoted by P(TTI' BIU B2  UB t = [O,r- ""

[ .2), if and only if for each block B of 012 r1

-V i and each input Ii, there exists a block and

B of T 2 such that N (Bi,Im) 5 B.. B1 = OaJ 0,1,2,..., a1

, Definition 3. A partition IT defined on
S is said to have the substitution propert B + 1  r- = a+1
denoted by SP (), if and only if PT *, ) t Lt-1' 4-...
If a partition has the substitution property, a -.-

then it is called a SP Partition. tl-
where 0:!;aiS r-1 for 1Si r-1

Definition .5 For two partitions 71 and 1

defined on the same set, T I is smaller Definition 3.10 Let IT= (B ,B 2 ..... Bn)
be an n-block partition dcfined on the setthan or equal to , 2, denoted by I :T2' of states S. An R-valued y-variable

if and only if every block of T1 is con- covers the n-block partition, denoted by

tained in a block of T2" T y if y is assigned the values

Definition 3.6 The product of two par- 1,,2,...,ai  for states in B

titions iT1 and 1T2' denoted by 1 . 2' a. + 1, a. 1

defined on the same set is a partition such 1 a

that in B.
a) TT, T2  TTT 12

b) i 7[2 72
c) if for any other partition eTn  "c i forl andte pri Ut i'T --

and then ai + 1, a. + 2, ... , r-1 forT i- fr T s7 n-1 in-

h ei 7U1 " f 2" states in Bin

The product of n partitions TT 7.. where 0 a. r- for .<i <n--
Tfn is denoted by Tf n 1. --.

i,1=1 J -
- In order to incorporate the features of and Bi. is a block in (B1 ,B2 ,... ,Bn) for

R-valued logic, the following definitions j
and notation are presented to allow vari- 1< i.< n.
ables and functional values to be associ- -
ated with a set of values. In the above definition, note that the
2 niveSt snntintervals for the B. form a sequential

" 3.2 Unicovered State Assignments lX..-w.

Dnrpartition on R. Since each element in the .•Definition 3.7 An n-block partition is a
• " set of states S appears in one and only

partition in which there are exactly n one bblcs*one block of the partition, the partition-.-
blocks. is said to be unicovered by a y-variable.
Definition 3.8 Given a ! b in a poset A, If every y-variable in a state assignment
the interval a,bJ is defined to be the covers a partition, then the assignment is
set of all xGA such that a ,x b. called a unicovered state assignment. Let
Since R = 10,1,2,...r-I is a poset under us use an example to illustrate the pro-
the relationship of "less than or equal ceeding definitions.
to", ' , [2_, given a. _ a. in R, the Example 3.1 In the ternary case, R = [0,1,
interval Eai~aj J is defined to be the 2 J . Let us consider the case of a 2-
interl Iblock partition first. Assume that (B
set of all at R such that ai6 atj aj that

-- , B2 ) = (123, 456), then-Cy = (123,456) has"'[ is, the ordered sequence ai~ai+ .. a. ?.. [
is,9 th j-, the four possible distinct coverings as

given in Table I. If we have a 3-block
j partition (B],B21B 3 (12,34,56), then
Definition .9 Let R = (0,1,2,...,r-1} T = (12,34,56) will have the six possible

be a set of non-negative integers. Define y
sequntil patiton o Itdistinct coverings as shown in Table II.• ". a sequential partition of R as A"''t

Definition 3.11 Let R be a sequential

R = (Bi; B2; . . . ; Bt) partition on such that = (Bi;B 2 ;...;Bt).

14
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. Define a sequential partition function F states S of a machine M, Yk' the next state

. F(Bsuch that equation of Yk' is dependent on a proper,-,/ "F(Bi) = B. for I _i, j -4 t. Of-Y"'

subset S. of S, if and only if P(flyetS 1  ky i 9r y
In other words, a sequential partition is 1 "I'k
really an ordered sequence of intervals, (See Appendix B for a proof).
and a sequential partition function can 

. .. B.o

l- map intervals to intervals.

. As an example, if R = (O,1,2 I and = (0; ....T-..,.dp'
1,2) = (B 1 ;B2 ), then we may define F(B) Note that in Theorem 3.2, kis dependent

*'. ~~~~only on yk if and only if P(y k ykJ.,',
- F(o) = B2 = 1,2; and F(B 2 ) = F(1,2) = B1  ok if anYnyik

0. that is, SP(t ).
A valid unicovered state assignment in k)
variables yly 2 ,...,y n on a set of states By applying Theorems 3.1 and 3.2, we can

S generates a set of partitions Y, ,2 now consider a ternary example to demon-Ty1 '2 strate the property of reduced dependence.
such that "C .i

. ... su t 'Iil *yi = If Example 3.2 The state table for this

it is the case that T 0, then example is given in Table III. fT = (
i'C se123,456) and 7 2 = (14,25,36) are two SP

there must be two states s. and s. such p o t ee
1 partitions of the states. If ternary

that variables yl and y 2 are now assigned to

si i s( ) for all 1 k <n, cover r1- and [f2 ,respectively,

and hence si and a. have the same coding we getT = (123,456) andr y = (14,25,

yly 2 ,... ,yn, that is, they are indis- 36). Since . y 2  a 2 valid uni-

tinguishable, and, by definition, the state yl yO
assignment is not considered to be valid, covered state assignment can be based on

T and -r , as shown in Table IV. For
In the next two sections, we shall discuss yl Y 2
state assignments with reduced dependence t'ls.'2a sin.

". • and their relation to partition systems. YIP the values 0, 1 and 2 are assigned for

Our discussion will cover both the syn- states 1 and 4, 2 and 5, 3 and 6, respec-
chronous and the asynchronous cases. tively. Since P(Ty, 1 ), we predict,

y y

3.3 Reduced Dependence in Multi- by Theorem 3.1, that Y is independent of
Valued Synchronous Machines 2)

, In binary systems, the complexity of the -2 imilarly, since P(- -), we

" circuit as well as its structural properties predict, by Theorem 3.2, that Y2 is de-
are strongly dependent upon the state codes 2

. chosen. The same situation is also true pendent only on y 2 (and the inputs). The

in R-valued systems. In this section, the corresponding transition table is given
property of reduced dependence in multi- in Table IV. Base on the transition table,

- valued synchronous sequential machines, in we derive the next state functions of y1
the sense of some of the state variables,

- will be discussed. We assume that clocked and Y 2 :
*D-type flip-flops are used as memory =210 * F"" 1

elements in the following analysis. y 1  0 1
101 102 102

The following theorems are based on similar Y2= Y 2  1 10 + Y 2  I1 + y 2  12
results for binary systems [15Jh B 1 

- B 1

*'! Theorem 3.1 Given a valid unicovered state where 1 - 1 fory 1 =O, B
I 

= B 2
assignment in variables yy 2 .... n ont 1,2 for y1 = 1,2; and as defined previously,

'"2set of states S = f Sl,2,S39 'st 3 of a = (0;1,2) = (B ;B ), F(B F(O) = B=
1 2 1  2

machine M, Yk' the next state equation of 1,2, and F(B 2 ) = F(1,2) = B = 0.

Yk9 is independent of yj if and only if Obviously, Y and Y fulfill our predictions.

Pp (Ii C
y i  

' ) , (See Appendix A for Since there are nine cells of Y that

allow multiple values 1 and 2, a total of
a proof)
Ter Gvnaaiucord tt 2

9 
ways are possible for the implementation.' Theorem 3.2 Given a valid unicovered state.-'-'"

, assignment in variables y 1 ,Y2 ,"''yn on the of the next state functions. The transition

%'
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table for one such implementation is shown the same row as the final entry,
in Tables V. Based on this table, we de- and the entry in that row is stable.
rive the next state functions of Y1 and Y

1 2 Definition 3.12 The ordered n-chotomy
as follows a T~, 2 ..... Anh (hereaft-er called an -

210 001 chotomy) is a collection of n sets of states
Y, o AA 2 ,...,A, called the first set, second . Q

101 102 012 set,..., and n-th set, respectively such
2 y 10+ Y2  " 1 + Y2  °12 that A.f1 A. = 0 for 1:<i J:< n. In the

I J
In the following section, we will extend above definition, when n = 2, we have the
the sufficient and necessary conditions of standard dichotomy and when n = 3 we have
reduced dependence discussed in Theorems the trichotomy.
3.1 and 3.2 to asynchronous sequential Definition J3 A state assignment in
circuits. which all the state variables are allowed

3.4 Reduced Dependence of Multi- to change simultaneously without critical
Valued Asynchronous Machines races is called a single transition time

The necessary and sufficient conditions (STT) assignment. Furthermore, if only a

for a synchronous state assignment with single coding is associated with each
reduced dependence is necessary but not state, it is called a unicode singleredued epenenc is ecesarybutnottransition time assignment. In the multi- * -

sufficient for an asynchronous state as- -t meh

signment with reduced dependence because valued case, if a state assignment is an

of the complications resulting from possi- STT assignment and is also a unicovered

ble critical races. The reason is that in state assignment, it is called a unicovered

the synchronous case, all codes in the single transition time (Un STT) assignment.

state variables which are not assigned to Definition 3.14 A ternary y-variable
a state can be left unspecified. However, covers the dichotomy if that van-
in the asynchronous case, it may be neces- 2)
sary to specify such codings to ensure able is assigned the value(s) 0; 0,1;2; or
proper operation. In the following dis- 1,2 for states in the first set A I and 1,2;
cussion, we assume that delay lines (or 2; 0,1; or 0, respectively for states in
D-type flip-flops) are used as memory the second set A.
elements in the asynchronous case. 2 '
As in the binary case, a convenient means Dnt m-vle snhoos Definition 3.15 The trichotomy (AA2 A3) .
of representing a multi-valued asynchronous2
sequential machine is a flow table. Let is said to cover the dichotomy (A, , A2),-
us consider Table VI as an example.
Suppose the initial total state is (X,O), if either
and the input I changes from 0 to 2. One .
would expect the final stable state to be 1.1 A partition of A I into A,, and A,2
Z, but this is not the case. For if the such that
machine reacts to the 1 input which must t . .

occur between 0 and 2, it can change to a. A ICAI, A CA and A2C A or
stable state Y and when the 2 input is seen, ; 2 39
the machine will remain in state Y which is b. AC A A12CA and A C A
an incorrect final stable state. This type or 11 3 .A a A
of problem will occur whenever a transition 2. or , o A inoA an
is made from a stable state in an input 2 21 22
column to another input column which differs such that
from the first in exactly on, variable but
is not adjacent to it, that is, for single- a. A C AI, A2CA and A2 C A or
input multiple-value input changes. In 1  212' 223'

order to insure correct operation, one of b. AI CA 3, A2 1cA 2 , and A2 2 CA,the following conditions must exist: 1 -

1. Single-input multiple-value changes Theorem 3.4 If the trichotomy (AIA 2 ,A 3)
are not allowed at those places where covers a dichotomy, and a ternary y-
transitions may result in incorrect variable is assigned values such that it

takes on the value 0 for states in A1 (A3 ),

2. The input variable may change, but, 1 for states in A and 2 for states in A 3

in the flow table, one of the follow- 2 3 -
ing two conditions holds for each (A1 ), then that y-variable covers the
entry in the row which is under a dichotomy, 31
column between the initial stable " ah.-m'.["

entry and the final entry. In order to derive the necessary and suf-
2.a. The entry is stable. ficient conditions for reduced dependence

2.b. The entry i a transition to in multi-valued asynchronous sequential
circuits, the following definition is very

16
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7 . .7 u

important. Figure 2. General Model of a Sequential

Definition 3.17 A dichotomy (ssSs) Switching Circuit.

associated with the transitions s# s. and
3

s m + s n is said to be relevant to a partition 7..-m• n

]Tif and only if sa i sn (7).,

Tho following theorem is based on a similar
result for the binary case [ 15].

Theorem 3.5 Given a unicovered single resent-stat. s
transition time state assignment in vari- -*
ables y •y2 ... ,yp for a flow table M, let

be a subset of the state variables. Then Y •
for any state variable y., , < << p, the

next state equation is of the form Y. = f.
j J1

(d,Ik) , where I k is the input vector, if Table I. Assignment table for "C- = (123,456)

and only if
a. ty i l tyj 123 456

b. Every dichotomy which is relevant to
the partitionT is covered by 0 1,2

y. 30,1 2
some y. f d. (See Appendix C for a - .

2 0,1
proof of this theorem)

1.2 0
4. CONCLUSION Jj

The problem of determining the existence
of state assignments for multi-valued se- Table !I. Assignment table for - y = (12,34,56)

quential machines with the property of
reduced dependence has been considered. 12 -.-.
The properties of, and requirements for, 12 34 56
reduced dependence among state variables
in the binary system were extended to 0 1 2

that for multi-valued synchronous and 0 2 1

asynchronous machines whi h use unicovered I I 1 0 2 1
state assignments. l1

8
J also considers i 2 0

the cases of nonunicovered state assignments. 2 0 o I 1
Other problems need to be considered. In I
determining the reduced dependence among 2 1 01

state variable, it was assumed that delay . - -

lines or D-type flip-flops were used as
memory elements. Analysis using other ]
types of multi-valued memory elements such
as multi-valued JK flip-flops L17.J needs 1, ,. it tt,. , . . . , 1.2

* to be considered. Further work is also
needed in the areas of extending the analy-
sis of reduced dependence of a set of state Input
variables on another set of state variables s2'

on the inputs, and the reduced dependence
of outputs on state variables or inputs. 1 1 2 1 6 i 3

2 1 4 2
One of the most important aspects emphasized I
in this paper is that existing results con- i
cerning binary sequential machines can be 4 I I "-.

extended to multi-valued ones. This close I
analogy between binary and non-binary 6 I 2 I
systems should continue to be utilized by I
researchers. 9
Figure 1. A sample 4-Valued Function.

X f(X)

0 2
1 1

2 30
30
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*Table IV. FOII I~~t~ Table .r Example 1.2 not exist, then i (i .... =

* r- 011. 2 ~ implies that y is a redundant state vani-
Petol IAoo _____able sic hejassignment in variables l

" " Io I 1 1 " I 02 2'"'Yji'"',J1' Yj+l'"' Yn is a valid
2 1. state assignment. Based anT , let us0

1 0 I .2 0 1) 0 )
2 I? 0 consider N(sp ,m) = v and N(sq ,i) =

121 1 2 0 Since N(s ,I) j N(s ,I WC ) v vpm q m Yk Pk q k
1.22 12 0 0 If the next state function is represented

in the sum of products forms, then y. will

Tabe V A .. i- Tbl--r --- l- .2contain terms of the form I m v Pk.f(y1i
-ei y. An Irntto .e1 vf .oeI 3.2 ywer ~

at 3 y. and k v r
Sv ... t' I, A-% .. t 1 represents the common state assignment for

__________ and sq in variables y, for all i~j,
I I I 0 0 o 0 I 2 0 2 p

*2 0 1 0 0 1 0 I y and yl represent the assignments in

3 0 2I 0 I I I1 0 I variable y. for states s and s , res-

4 1 0 pectively. Since v v . the preceeding
0 o2 o I

1I 2o 0 two product terms cannot be combined to
0 0 2 eliminate y and yq Therefore ~ isa

I 2 I 2~ 0 0 I function of yji contradicting the original

*I 6 I 2 2 2 I 10 110 0* L.9_____ ____ _________ assumption that it was independent of y.

Sufficiency: Suppose P tijTiIyk).

Then for any two states s and s such that
*Table VI. A Ternary Flow Table p q

Input 
p= q (Cy ) for all i~j, N(s , I ) = N(s q 91m

0 1 2 (*C ) for all I * Based on -C , let us
State m k . -

I II consider N(s ,I )=V and N(s qi I = vqx X I z p m pk qk

Y Y Y y Since N(s I1) N(s I1)( for all
z Y Z 'in' = v for all I *If the next state

q m

function is represented in the sum of
products form, then Y k will contain terms

Appendix A: Proof for Theorem 3.1 of the form Im . v p * f (y) . y nd
Necessit : Suppose Y k is independnt ofm kj i

y.adit is false that P(i 9 1C ) v * fi~ ~ hr ~ 1 ,yad~j n (i~j 'ry yk qk

have the same meaning as defined previously.
Let N(8i9I) = i= v vi .. vi .... Since v =v , these product terms can be

vi ) where sit, S. I ' is an input, and conbined asIm * vp * f(yi). (yp + y~)

v is the value assigned to y in the state Leqsnweaie(~*y) i h enr

assignment of six* Since it is false that case. Since s and s are two distinct

teemust exist qw ttsq pPQ~~j yi"yk)states, yp q y and y y.W

* ~ ~ sandsa and an input I such that s =2 0
p qmalso know that yP, y~ y

aq (ryi) for all i .j and N(sp ,Im) 'N~s m 22 0 2

( ). If these two states s ands9 do y 20 2 If (yp *Yj) (Y2 . Y002

Yk p qor (Y p + y q) (Yj0 + Y 22) or (yp + y

- a - . ..3

a' %



p '.. . .

200 022 p+q= 022 200 I(C ) Therefore, Y cannot be deter-
=(y. + Yj or (y y!) (y. + y. ) k

mined only from the input and y e d. Let

then we have I . V f(y (yP + Y ) S be a dichotomy which is relevant
m Pk j (sasb c eadihtm wihi rlvn

222 to - • If condition (b) is not satisfied,
. v .f -y • y2 I v .

m Pk m Pk there is no yie d which remains fixed at

f(yi and therefore Y can be determined different values during the two distinct
ktransitions, sa s and ac + sd .  It is

from the inputs and the variables Yi, ihj. therefore possible that the variables in

q 00202 020 200j 6 may assume the same value Y6 during both C_
if y j yj, yJ, then there of the transitions sa  5 and s sd . •

eit irdsae as uhta a b c d-exists a third fstate, say 
s r a s u ch th a t  

Let S6 be one of the internal states with
r q (y i  al iNSrI the value y. for the variables in d. In

= N(s Qm)(t ) for all Im . If y. re- order for the circuit to realize the givenq m Y flow table, N(S 6 , Ik) = Sb(iy) and N(S, .

presents the assignment in variable y. for I -

the state Sr, then next state function Yk k) Sd(y.

contains a combined product term I • v
m k (C ) Hence, y. 1k).

qk yy "..

f(y 1 ) (y + y + which is I . v Sufficiency: Consider the transition from
m Pk states s a to state sb under input Ik . Let

222 a bf(yi) y which can be further reduced states sa and sb have values y andy,

to I . vpk f(yi). Therefore Y can be respectively, for the variables in the set "m k . Since condition (a) is satisfied, states

determined from the inputs and the vari- in the same block of,,Tyicrc y i with state
ables yi, i~j. If such a state sr does yi

5all have their next states in the same
not exist, then we can always specify a sa
don't care to satisfy all the conditions block ofC , that is, all their next states
of sr . And again, Yk can be determined y.

from the inputs and the variables yi ihj. are assigned the same value for yj. Fur-
thermore, since condition (b) is satisfied,

The proof for the ternary case has been during the transition from sh sted,
presented in detail, and a similar approach a ' h e
is applicable to an arbitrary R-valued case y-variables in 6 will not assume any value
for R24. Q.E.D. y( which might be assumed during another
Appendix B: Proof for Theorem 3.2 transition, say from state s to sta

The proof of this theorem is essentially under input Ik where state d is assigned

identical to the proof in Theorem 3.1. a yj value different from state s.
*There are, however, two points that need b..•'.There are, hower, tf poTints that need Therefore, all the states whose y variablesto b m in 6 are assigned a value that might be as-

sumed by during the transition from s toand P(f ii -c 9Yk ), then, based on a
sb have their next states in the same block

Theorem 3.1, Yk is independent of y. and yl. of t as state s b - Hence all the vectors
Second, if S .L Sm = S and S. Sm = 0, then y .

is n that may be assumed the y-variables in
the expressions p( 1 1 Y G -iT , 'K y) and thtmyeasmdte a b

i i Y 'k during the transition from y to y will
P( Yire Sm T y ) are identical. Q.E.D. yield a unique value of y. This is true

for all transitions under any input vector
Appendix C: Proof for Theorem 3.5 Ik . Hence y = fj(d ,Ik). Q.E.D.-9

Necessity: The necessity of condition (a)
follows from the fact that if it is not
satisfied, then there exist at least two
states s a = Sb(tyi ) for all yi d and an

input vector Ik such that N(sa,Ik) N(Sb,

19
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CV1ZA PREPROCESSING PROCEDURE METHOD IN TERNARY CLAUSE SELECTION

* 0 Shigeru IMANISHI and Noriaki MURANAKA
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ABSTRACT the ternary clause selection. The extention

We present an extension of the preprocessing is called a terne'y preprocessing procedure

procedure method used in the binary clause method (TPPM).

selection to the ternary clause selection. A ternary logic function is expressed in

This extension is called a ternary preprocessing a product-of-sum form using coincidence functions

procedure method. When we make use of the [1] . Literals contained in each logic sum term

ternary preprocessing procedure in the ternary form a clause. A set consists of clauses. When

clause selection, we can reduce a tree siz. we make use of the TPPM in this set, we can

reduce a tree size, which consists of nodes,That is useful in a tertiary prime imp] icant -

generation. We discuss the experimental results branchs, remainiag clauses, success nodes,

comparig the ternary clause selection and and failure nodes. This reduction leads to . "

the ternary clause selection using the ternary reducing operation procedures in a process

j preprocessing procedure. Of ternary prime implicant generation. We discuss

the experimental results comparing the ternary

I. INTRODUCTION clause selection and the ternary clause selectionI.- INTRODUCTION

using the TPPM.
. Slagie et al.[2] discuss a new algolithm

for genrating the prime implicants using semantic
or geer, 1. A TERNARY PREPROCESSING PROCEDURE METHOD

tree. In Slagle's method, a given logic function

is expressed by a product-of-sum form. Literals II.1 A PRODUCT-OF-SUM FORM

in each logic sum term form a clause and a A ternary variable takes on the truth value

set of clauses corresponds to a given logic 0, 1 or 2. A product -of-sum form for a ternary - -

- funct ion. Slagle's method is extended to a n-variable logic function F(xl,x2,...,xj....,xn)

clause select ion by Kambayashi et al . [3] , which (F, in short) using coincidence functions of

is very useful in the prime implicant generation Table 1 is as follows:[l)

of binary logic function. A preprocessing procedure

. which is used in the clause selection is efficient F (F (0,0 . 0 ) V 10 (xl) V I0 (x2)

because reductions of clauses in the set and ... V Io (xn)3 - -
literals included in clauses lead to reducing (F (1,0,...,0 ) V I (xl) V 10 (x2)

I a tree size in the clause selection. The clause ... V Io (xn)

selection is extended to a ternary prime implicant (F (2,0,....0 ) V 12 (xl) V Io (x2)

generation. This extension is called a ternary .,.V Io (xn)) 3

clause sele('tion[4,.5]
"- • {F (2.,.....2 ) V 12 (4l) V 12 Wx) • "

Therefore in this paper, we present an

extension of the preprocessing procedure to ... V 12 (xn) 3 (1) _9
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where V and * are logic sum and logic product, f F (k1,k2. kn) =0

respectively. F=l, Io(xj), Ii(xj), and 12(xj) IkI (xl) ,Ik2 (Q) ....Ikn (xn)

are called literals. If F (kl,k2,....kn) =1 ,1
(kl 1k! (xl) ( IVIk2 (x2) )

Table 1 The coincidence functions Ik (xi) (6VIkn (A)) l.' W

If F (kl,k2...kn) =2

xi lo (xi) II (xi) 12 (xi) we dn't make a clause.

002 202 220 (3)
Xj -xj -xj

0 0 2 2 The clauses are elements of a set. Consider •

1 2 0 2 the following identities in the set.
1. 2 0, 2.

2 2 2 0__ UIP(x) V A (Iq (xj) V A (Ir (x) V A A (4)

(Ip (x) VA) (lq (xj) V A) (lVIr (x ) V B)
=- 1.Ip (xj) lq (xj) V A•

11.2 A TERNARY PREPROCESSING PROCEDURE = Ip (x) q (x) V A
-Ip (xj) Iq (xj) V A

A given ternary logic function is expressed - (p (xi) V A ) (Iq (xj) VA) *B ( 5)

by a product-of-sum form of Eq.(1) using literals. (IP (xj) V A ) ( (lVIq (xj) ) V B

Literals contained in each logic sum term form ( (QVIr (xi) V B )

a clause. If there exists a clause having literal -I *Ip (xi) V A - (IP (xi) VA) .B (6)
1, the clause is rewritten in other form, which c (iVIp (xi) ) V B ) ( (lVIq (xj)) V B )

is expressed by assistant-coincidence functions ( (1VIr (xi) V B ) 8B ( ) -7.)..-

(lVIk(xj)) called literals of Table 2 as shown Where

the following. A -Ik (xl) V Ik (x2) V .... V Ik (xs) ....

B = (iVIk (xl)) V (IVIk x2) ) V ....

Q V Ip (xu) V Iq (xv) V Ir (xw) V ... ) V (iVIk (xs) ) V ....

(IVIp (xu) ) V (lVIq (xv) ) Ip (xi) Iq (xi) Ir (xi) = '-:

V (1Vlr (xw)) V.... ) p,q,r,k =0,1,2 p 9q *r *p

p,q,r =0,1,2 (2) j,s =1,2 ,.... i s

We will make use of Eq.(4)-Eq.(7) in an S

algolithm of the TPPM.
Table 2 The assistant-coincidence functions

(iVIk (xi)
III. AN ALGOLITHM OF THE TERNARY PREPROCESSING

(VIo (xj)) (1VIl (Xj)) (1VI2 (xj)) PROCEDURE

xj 122 212 221 Ii1.1 AN ALGOLITHM •

xi -xi Mxi
In order to reduce a tree size in ternary

0 1 2 2 clause selection, an algolithm used in TPPM

1 2 1 2 is presented. In the algolithm, a ternary logic

function is given by a truth table. Let us
2 2 2 1

explain the algolithm beginninp at Procedure 1.

Procedure 1 We examine in the truth table

whether a TPPM is available or not.

Therefore, literals which constitute clause's Procedure 1-(0) When we trace on a group

elements are as follows. of three function values corresponding
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to Io(xj), Il(xj) and 12(xj) for a l's clauses are deleted due to Eq.6.

logic variable xj in the truth table, Procedure 2-(3b) If there are two O's

if a sum of the number of function and one 1, the O's clauses are left

value 0 and 1 in the group is three, as they are and (lVIr(xj)) in the l's

we choose one out of the following clause is deleted due to Eq.5.

combinations. Procedure 3 Procedure 1 and Procedure 2

are repeated in all of the groups in

*function values the truth table.
0 0 0 ------- three O's Procedure 4 When Procedure 1-Procedure 3 have

0 1 finished, we obtain a semantic tree's
0 1 0 ------ two I's and one I root (a node), which consists of the

1 0 0-- all of the remaining clauses. Here,

1 ? .. a..dlthe algolithm has fini-ned.

1 0 arid two o ofe Procedure 5 Next, the ternary clause selection

0 1 -.... is applied to the node.

1 1 1------- three I's
111.2 AN EXAMPLE OF THE TERNARY PREPROCESSING

PROCEDURE •".
In the above figure, 0 or I is function 

.-

value of the group given by the truth table. Let us consider a two variable function

Procedure 1-(2) If the sum in the group (x,y) given in Table 3. We obtain a node which S
in Procedure 1-fl) isn't three, we is used as a semantic tree's root as follows.

can neglect the group because the group
h. one or more of the function value i-[

Table 3 A two variable function f (x,y)

2 and we can't use a preprocessing. ""

And, we must trace on a next group. y 000 111 222 .. .

Procedure 2 For the combination of three

" function values in the group obtained
x 0 12 0 1 2 0 12

by Procedure 1-(l), we perform the

following procedures. f 000 011 022

Procedure 2-(1) If all of the function .0_ 1_____

values in the group are 0, we can delete

any two clauses out of the three clauses
The following set of clauses in the ternary

and the literal Ik(xj) for the variable
clause selection is directly obtained from Table 3. - -

" xj in the remaining clause due to Eq.4.

" Procedure 2-(2) If all of the function

values in the group are 1, we can delete Io (x) VIo (y

any two clauses out of the three clauses (II (x )VIo (y

and the literal (lVIk(xj)) for the (12 (x) VIo (y) 3 . . . .

variable xj in the remaining clause IO (X) VII (y) .
. due to Eq.7. I(VIl (x ) ) V (IV 11 (y ) ]

Procedure 2-(3) If the function values I (IVI2 (x ) V (IV 11 (y ) ]

in the group are 0 or 1, we have the Io (x) V12 (y))

following procedures.

" Procedure 2-(3a) If there are one 0 and
Let us use the TPPM to this node. Then,

two I's, the O's clause is left as
it i ,nwhen Procedure 2-Cl) is performed for the variable. ~it is and, (IVIq(xj)) and (iVIr~xj)) in the -

x, we obtain the following clause [lo(y)].
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(1[J (x ) V10 (y )){(1o (y ) )
(Ii (x ) VIa (y) ] o - (y) (I (x ) )

((12(Nx) Vla (y ) I (VIl (y)]

Again, when Procedure 2-(3b) i s performed Io (x

for the variable x, we obtain the following

clauses [lu(x)VIl(y)] and [(lVIl(y))] J (lo (y))

I(1o (x ) V11 (y Io (
(CVIl. (x))V (IV 11 (y) ] - a )

( (V12 (x) V CIV II (y)

-(Ia(x )VI (y)) (lV Il (y)) {(VIl (Y)

Furthermore, when the Procedore 2-(l) is lVII (y

performed For the variable y, we obtain the

following clause [To(x)].

J(Io (x ) VIo (y ) Fis. 1-A ternary clause selection with
(Ia (x ) V11 (y ) ) -(Ia (x the ternary preprocessing procedure method
(Ia (x ) V12 (y ))

From these tab e s, i t i ,shown that the

Therefore, the node as the semantic tree's TPPMs are effic ient for the funct ions of Fl,

root is as follows. F2, F4, FO, 31, (12, G3, G05, .i,6 and G8 because

the number of the branchs, the remaining clauses,

(Io (y) the failure nodes, and the non-prime impl icants

(I x))in the functions are reduced. In addition,

CiVIl (y ) )we conjecture that the each SUM function ha s

the l onges t c ompu ta t ion time of all of the

Then, we apply the ternary clause selection two or three variable functions.

method [4, 5] of Procedure 5 to this node as

showen in Fig.1. V. CONCLUSION

* Fom ig~, he ollwin ipliant isWe have- Presented the ternary preprocessing

obtained. This is the prime implicant. procedure methond used in the ternary clause

x022 y022 y212 _ 022 y012 se lec t ion. Th e t ernary preprocessing procedure

can be useFul in t he ternary prime implicant

IV. DISCUSSIONS genera t io.

'We have discussed t he TPPM used in t he

ternary clause selection fur the twi or three AKOLD~T

variable funicti ons given inr the truth t ablIe The authors with to thank Prof. Hiroaki Terada

of Table 4. Th' algolithm has been programmed of Osaka University for his helpful comments.

or. a FACOM-16OF system using FORTRAN. The exper- Additional thanks go to the referees for their,.

-.. iments o f the two -or three variable functions invaluable suggestions and comments which con-

arshown in Tabl- 1, or Tahl e 6. tn hut ed significantly to the i sprovem,-nt of .

this paper.

24



Table 4 Truth tables of the ternary two or
three variable functions

F1 F2 F3 F4 F5 F6 F7 F8 F9

x y Sum Carry And Or 0,1 1,2 2,0

0 0 0 0 0 0 0 1 2
0 1 1 0 0 1 1 2 0
0 2 2 0 0 2 0 1 2

0 1 0 0 1 1 2 0
1 1 2 0 1 1 0 1 2
1 2 0 1 1 2 1 2 0
2 0 2 0 0 2 0 1 2
2 1 0 1 1 2 1 2 0
22 1 1 2 2 0 1 2

GI x 000000000111111111222222222

G2 y 0001112220001 11222000111222 

G3 z 012012012012012012012012012

G4 Sum 012120201120201012201012120

G5 Carry 000001011001011110011111112

G6 And 00000000o0000 11011000011012 

G7 Or 012 112222112112222222222222

GB 0 ,1 01010100010100001100 0010100

G9 1 2 112121211121211112211112121

GIO 2, 0 002020200020200002200002020 -

Table 5 Experiments' I

functions F1 F2 F3 F4 F5 F6 F7 F8 F9

branchs (A) 9 9 18 11 10 10 15 12 B
2 2 18 7 4 10 13 12 8

remaining 12 12 22 28 19 6 33 11 9
clauses (B) 1 1 22 11 6 6 29 11 9

failure nodes 1 1 0 1 2 0 1 0 0
(C) 0 0 0 0 0 0 0 0 0

implicants (D) 4 4 6 2 3 6 3 6 3
1 1 6 2 1 6 3 6 3

non-prime 3 3 0 0 2 2 1 4 1
implicants (E) 0 0 0 0 0 2 1 4 1

prime implicants 1 1 6 2 1 4 2 2 2
(F) 1 1 6 2 1 4 2 2 2 5

total computation 44 43 B0 61 51 49 73 53 37
time (ms) (G) 19 19 80 40 26 52 68 55 38

upper ternary clause selection
lower ternary clause selection using ternary preprocessing

procedure
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Table 8 Experiments' 2

Gi G2TG3 G4 G5 G? G7 G81 9 010

(A) 32 32 32 93 80 35 36 531 80 44
2 2 2 93 33 6 36 35 80 44

(B ) 90 90 90 198 199 163 27 242 139 139
1 1 1 190 73 15 27 111 139 139

(C) 3 3 3 0 1 9 a 9 00
0 0 0 0 0 0 0 1 0 0

(0)~ ~~~ ~~ 15105 2 4 04 74
( 15 15 15 27 34 10 24 7 45 9

(E) 14 14 14 0 2? 9 15 0 36 0
0 10 0 1 0 1 0 0 15 0 36 0

() 1 1 1 27 7 1 9 7 9 9

(G ) 33 37 313 862 817 485 251 700 663 412
3 35 37 866 237 69 254 343 636 425

upper ternary clause selection
low~er ternary clause selection using ternary preprocessing

procedure

REFERENCES

[i] Porat,D).I.:"Three-valued digital systems",Proc. [4] lmanishi,s. and Muranaka,N.:"Applications of

IFE.,Vol.116,No.6,pp.947-954 (June 1969). clause selection method to ternary logical

[2] Slagle,J.R. ,Chang,C.L. and Lee,R.C. :'A new functions',Research Institute of Mathematical

algolithm for generating prime implicants" ,IEEE Seience,Kyoto University,Kookyuroku[Multiple-

Trans.Comptit. ,C-l9,pp.304-310 (Feb. 1970). valued logic and its applicationsj ,No.455,

[3] Kambayashi,Y.,O)kada,K. and Yajima,S.:"Prime pp.94-107 (March 1982).

implicant generation of logic functions using [5] lmanish:,S. and Muranaka,N.:"Applications of..-

clause selection me~hod",Trans.IECE Japan,J62- clause selection method to ternary prime impli-

D,2,pp.89-96 (Feb. 1979). cant generation",Trans.IECE Japan,J65-D,7,pp.89

-96 (July 1982).

26



000

I'" A STRUCTURED DESIGN OF MULTIPLE-VALUED LSI/VLSI WITH BUILT-IN TESTING CAPABILITY

0 Samuel C. Lee and Krayim Santrakul

0 School of Electrical Engineering and Computer Science
University of Oklahoma
Norman, Oklahoma 73019

ABSTRACT also pointed out that due to their size and
complexity, a complete exhaustive deterministic

In this paper a structured design of subsystems verification of an LSI, even for the binary logic,
. of an MV LSI/VLSI chip with built-in testing capabi- is almost impossible [51.

lity is presented. This structured design which
uses multiplexers and DFF's is obtained through the The design for testability techniques are
use of a tree-structured ASM chart. Since these divided into two categories [6]. The first category
circuits are highly structured and the procedure for is that of the ad hoc technique for solving the

* Obtaining the circuit values of the design from the testing problem. These techniques solve a problem
ASM chart is rather straightforward and systematic, only for a given design and are not generally
this design process may be adapted for automation. _ applicable to all designs. This is contrasted with

the second category of structured approaches. These
A Multiple-Valued Built-In Block Observation techniques are generally applicable and usually T

(MVBILBO) is proposed. This circuit replaces the involve a set of design rules by which designs are .
DFF's of a subsystem and provides the subsystem with implemented. The objective of a structured approach
the necessary hardware for having three operation is to reduce the sequential complexity of a net-
modes: (1) basic system operation mode which pro- work to aid test generation and test verification.
vides the normal function of the DFF's, (2) Level
Sensitive Scan Design (LSSD) operation mode which A considerable number of papers on the design
allows us to augment testing by controlling inputs for testability for LSI/VLSI have been published
and internal states and easily examining internal in the literature [7,8,9]. Among them the Level -
state behavior, and (3) Signature Analysis (SA) Sensitive Scan Design (LSSD) approach [7], Signatur _
operation mode which can provide pseudorandominputs Analysis (SA) [81 and the Built-In Logic Block
to a subsystem to obtain a signature analysis test Observation (BILBO) 191 have received most attention.
of the subsystem. By using these three operation The LSSD technique [71 enhances both controlability
modes of MVBILBO, two test generation/verification and observability, allowing us to augment testing by
procedures are presented. One is for checking controlling inputs and internal states and easily
subsystems and the other for checking the complete examining internal state behavior. The SA technique
circuit. [81 is heavily reliant on planning done in the

design stage and the key is to design a network -
Both the design and testing methods are which can stimulate itself. The BILBO approach

completely general and applicable to any MV LSI/VLSI [9] has ability to separate the network into
chip design and testing. combinational and sequential parts, and has the

attribute of SA that is employing linear feedback
shift registers.

1. Introduction
Recently, a growing interest in the design of

Recently, binary integrated circuit technology the multiple-valued digital system leads us to
has moved from LSI to VLSI. This increase in gate believe that sooner or later this technology will
count has brought a decrease in gate cost along also move to LSI/VLSI. The objective of this
with improvements in p~rformance. All these paper is to find a MV LSI/VLSI design technique
attributes of VLSI are welcome by the industry, which has the following features:
However, the problem never adequately solved by
LSI is still with us and getting much worse: the (1) A simple and systematic design procedure,
problem of determining in a cost effective way, adaptable for automation. S
whether a component, module or board has been
manufactured correctly [1-4]. It is known [5] that (2) A module-based circuit structure so that the
there are two major facets of the testing problem: parallel (simultaneous) testing of all modules
test generation and test verification. Test genera- at each level may be applied.
tion is the process of enumerating stimuli for a
circuit which will demonstrate its correct operation (3) A Built-in logic block for circuit testing
Test verification is the process of proving that a included in cach subsystem.
set of tests are effective toward this end. It was 5
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(4) Both the exhaustive (deterministic) and random In this paper the same circuit symbols used in
(sample) testings offered by the built-in the binary gate are adopted for the MV circuit and
testing logic hardware so that the format may the MV flip-flops to be used in the MVBILBO are
be used for checking relatively small logic D-flip-flops [12] . Fig. 5(a) shows an MVBILBO
blocks and the latter for checking largerlogic circuit. Zi are the outputs from the combinational
blocks. multiplexer circuit, Qi are the state variables,

(5) A hierarchical testing procedure that can not C1 and C2 are control lines, S IN and SOLT are

only detect the faults in the circuit, if any, data scan in and data scan out, respectively. This
. but also locate them within modules. circuit has three modes of operation controlled by

"-". A sulmary of the paper by section is as the two control lines C1 and C2.
follows. Section 2 presents a structured MV
LSI/VLSI subsystem design using ASM chart. The (1) Basic System operation mode (CiC 2 =pp). When

built-in testing logic circuit is described in CiC 2 pp, the MVBILBO of Fig. 5(a) will be•
section 3. The test generation/verification red ce t the irc i o w Fig 5( b)

of MV LSI/VLSI is Presented in Section 4. reduced to the circuit shown in Fig 5(b).
Under this operation the Zi values are

" 2. Structured Design of MV LSI/VLSI loaded into D, and the outputs are available

In this section a structured design of MV LSI/ on Qi for system operation. This would be

VLSI using ASM chart [10,11,12,131 is presented. Since normal register function.
one of our objectives is to find a simple and sys-
tematic scheme for designing highly structured MV (2) LSSD operation mode (CiC 2=O0). When CIC 2

= 00,
LSI/VLSI, no function minimization in this discussion B r t o
will be considered. This method starts with the MVBILBO register takes on the form of a

describing the design using a tree-structured ASM linear shift register as shown in Fig. 5(c).

chart as shown in Fig. 1, which is to be realized Data scan-in input to the left, through some

by a highly structured multiplexers/DFF's circuit NOT gates, and basically lining up the

of Fig. 2. From these two diagrams we see that registers into a single scan path, until the

the input values of the multiplexers of the data scan-out is reached. -

circuit in Fig. 2 can be found directly from the
ASM chart of Fig. 1 and thus this design process (3) Signature analysis operation mode (C1C2 =pO).

can be automated by a computer. This process is
best illustrated by an example. Without loss of When CIC 2 =PO in this mode, MVBILBO register takes
generality, consider the ASM chart of Fig. 3 where on the attributes of a linear feedback shift regis-
the 3-valued logic is used. The realization of ter of a maximal length with multiple linear inputs.
this chart is shown in Fig. 4. The input values If inputs to the MVBILBO registers, Zi can be -

to the multiplexers of Fig. 4 are obtained from
the state variables, and transition paths from one controlled to fixed values. Under this mode of
state to another indicated on the ASM chart. For operation, the MVBILBO will output a sequence of
example, the values of I and 2 at the inputs of patterns which are very close to random patterns.
the first multiplexers of the two blocks are They will be used in the signature analysis of . -
obtained from the state variable values q, = 1 and MV LSI/VLSI circuit which is discussed in the

next section.
- . q2 = 2 of the final state @®of the transition path -"

from state (D to state (© as indicated in dark A subsystem may be divided into two parts:
line. The rest of input values to the multiplexers multiplexer (combinational) circuit and DFF (memory)
are found in a similar manner. Both multiplexers circuit (see Fig. 6(a)). In order for subsystem to
and DFF's of this design can be realized by 12L [141 be testable, the OFF circuit part is replaced by

MVBILBO as shown in Fig. 6(b). This provides the .-
3. Design of Multiple-Valued Built-In Logic Block subsystem with built-in testing capability.

Observation (MVBILBO) circuit
4. Test Generation/Verification of MV LSI/VLSI

• Before presenting MVBILBO, several MV logic

gates and flip-flops which will be used in the In this section, two efficient test generatio'
construction of MVBILBO, are first introduced verification procedures are presented. One is the

LSSD which is to be applied to relatively small
AND operation: x + y = max(x,y) circuits whose inputs and outputs are accessible to

the test engineer and the other is the signature
OR operation: x • y = min(x,y) analysis which is mainly for testing large subsystems: and LSI/VLSI circuits.'

NOT oper tion x = p -x where p m-l 
-c

The testing of an MV LSI/VLSI involves the
NOR operation: x + y = p - max(x,y) following two major parts:

NAND operation: x -y p - min(x,y) A. Test of subsystems

E!CLUSIVE-OR This test is conducted at the end of the
operation: x y ,x-yl fabrication of the subsystems and before they are
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interconnected together. Either a LSSD or a Step 6: Set C C?,OO and shift in a new set of
signature analysis test will be used depending on internal state variables (q.,n).At thesanmrecord
the size of the subsystem being tested. "" "

the shift-out data set (Qk) from the scan-out (SouT-
a. The LSSD test

and compare it as a signature with a set of pre-
This is an exhaustive and deterministic test stored expected next state values. If they are

of the subsystem. The test procedure is as identical, it means that the subsystem has passed -
follows: this portion of the test and is ready to receive the

next test; otherwise a fault of this portion of the
Step 1: Apply a set of input values Ii to the circuit has been detected.

inputs of the subsystem (we assume that both its Step 7: Apply a new set of I and go to
inputs and outputs are accessible to the test Step 3 4,pan th ne s iengineer) steps 3, 4, and then 5.

2: Set C 00. Scan in an initial Step 8: Repeat step 6 and 7 until the sub-

Step CC 2= system is checked for a sufficient large number of
internal state (ql.... n) through the data scan-in different sets of Ii and qk"

input terminal (SIN). Note that to shorten testing time, parallel
testings of these subsystems are recommended~~whenever possible. -

Step 3: Set CIC2=pp. Record the outputs and w

compare them with prestored expected output values.

B. Test of the MV LSI/VLSI CircuitStep 4: Keep the input values I. fixed and set B.TsofteMLS/SIirut- .-
e After all the subsystems are tested and proven

C C 2=00. Scan in another internal state (ql .... n) to be faultless, they will then be interconnected
through the SIN and at the same time record the together. All the MVBILBO's of the subsystems

N )will be connected serially, that is, a scan-out
outputs (Q ... Qn from the S compare this set terminal will be connected to the scan-in teriiinal . .

of values with prestored expected next-state values, of one of its adjacent subsystems and the first

(last) scan-in (scan-out) terminal is connected

Step 5: Repeat steps 2-4 until all the states to the scan-in (scan-out) pin of the chip.

are exhausted. Since the number of tests needed for a complete
exhaustive test of the MV LSI/VLSI chip using the

Stei) 6: Repeat steps 1-5 for all possible LSSD method is astronomical, a random signature
values of inputs, analysis test is used instead. The way to conduct

such a test is similar to the one described above,
b. The signature analysis test except there will be no internal inputs (Jj) and all

the input values for the Ii will be the random
In this case where the size of the subsystem numbers generated by the MVBILBO (see Fig. 8).

is too large for an LSSD test; a signature analysis Let N. be the number of tests applied to the

test i, then recommended. Fig. 8 represents a
subsystem where Ii are the system inputs which are subsystem i for each set of fixed values of I.6
acrossible from chip pins Jj are internal inputs The recommended number of tests applied to the -
fronm )ther subsystems. This test method consists entire circuit for a set of fixed valued of I
of the following steps: is NXN2...xNs or larger, where s denotes the

Step 1: Set C C =O0. Scan in the initial number of subsystems of the MV LSI/VLSI circuit.
internal state (ql..,q ) through the data
scan-in input terminal.n

Step 2: Apply a set of values to the chip 0
pins I.

5. Conclusion
Step 3. By setting CIC 2=PO, where p=m-l,

the MVBILBO will generate d set of pseudorandom A completely general synthesis procedure for
numbers which are fed to the Jj inputs inter- realizing any multiple-valued sequential logic

-nally as shown in Fig. 7. " ..'.- -.
s nusing a structured MV circuit with multiplexers/DFF's

and built-in testing logic hardware has been
Step 4: Set CiC 2=pp, namely making MVBILBO presented. Two efficient test generation/verifica- -

operate in its basic system operation mode, to tion procedures, the LSSD and the signature analysis,
produce the next state values (Q at- recommended. The LSSD is reconmended for

checking relatively small circuitry (subsystem) and
Step 5: Repeat steps 3 and 4 N times to signature analysis for checking LSI/VLSI circuit.

ensure that the subsystem is thorough checked under Both the synthesis and testing procedures are
the fixed system inputs Ii and random input Jj. suitable for machine automation.
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Multiplexer 1The same Combina-

Combinational tional Circuit as 0
Circuit [in Fig. 6(a).

MVBTLBO

(a) (b)

Fig. 6 (a) A subsystem
(b) A subsystem with its DFF circuit

replaced by an MYBILBO

1 Multiplexer o

Combinational Z. Q

i J. Circuit

(C 'vosC

cIc2=PO

Fig. 7 Test generation/veri f ication for a subsystem .

S.u

Mul tiplexer

Combinational z.
Circuit

Fig. 8 Test aeneration/verification for a -

complete MV 1SI/VLSI circuit.

34



Session lB
Philosophy I

SA

I'35

. . . . . .. . . . .0



AXIOMAI( CHIARACTERIZATION AND COMPARATI VE ANALYSIS

cl OF

I PREFFRYNCE ON DLSI RABJLITY AND) POSSIBILITY

0 by Osauno KATAI and Sousuke IWAI

0 Dept. of Precision Mechanics, Facty of Fngineering
Kyoto University. Sakyo-ku. Kyoto 606. JAPAN

ABST RAC'T tile prOp)oslt 111l sa% p.istrue wit h that o0 a not her case: %%hIere
the proposition, saN (I. is true. This line of approachl for thle

A complete axiomiatic systemn which characterizes thle preferenice comparative anlysis ofI desirabitity Wlas first adopted 11, JeftreN
relations (thle relation Of comparative desirability or comparative and Resclir
possibility in different cases) under Maxinlin (Minimiax). Maxi- Maii 0jeeeLgmax),. Bayesian. Probabilistic. Plausibilistic anid Fuzzy theoretic
evaluations is introduced. A set of theses on preference relations Comlparison Of' desirability by Maxiim method is based

* ~~is p roesen ted, anid their validity is tested under the different onl tile evalu ation of each ease as thle mv l nt l alu 0iC(I stateCs
systems. Based on these results, the contnonali ties and peculi- witin~ tile case. Suppose. for Instanlce. that we ]live tol take
aritics of thle preference relations arecelucidated and at systematic into account thtree fundamnental propolsitions. say p. (I anld r.
way of identifying tile underlying evaluation mlethod of arbit- for specifying states. arid we hlave eight states fromt \A, pAI tr
rarily given preference data is constructed. thle state Ii WhlichI p. of and r are truel to W. = PA (IA r

(neli ther of' thlem beinig true)I. We Will call each Il1 thIese staCs

a -pIossible world". Let V(w,t( i , 2,... No be tile evalilatlill

ofi thle possible world wl Thlen V~pi. thle e'ealilatioll of tile-

case of p's beitig true, is given as Mmf{VI PA (lA r I.\ip: r

1 NRDCINV(IpAqA-rI. \'(PtsA t(} . -

Ift' Vpl _> Viol). i.e.. Ilie case If" p's being true is*mr

* ~~~We will chlaracterize various evaluatio t ml etho ids for de- prfrle'111rCdsabeIr iiisaeltt11il as11
sirability olr possibility Of Calses tUnder Ollcertaiillt(I'i being true. thenl sse )iave a preference relatio -11R- set%%ecil

We will proceed by inStrodutc ingl certaill axinlia tic sy stemIls p~pitlspaIdi 5ri ela
* wIich are characteristic (of thIese meIthlods. More precisely, 1) R
* we will cla ritfy tile general laws Of CII lll parkl 5111 C~ be dcl f -fere nt

cases (i.e., tile laws (If comllpa ratkie dlesi ra bility lor pllsibilit\ Also. strict ptrict-lcne relation "I"'1in illil CCTIC reimI
w ichd are stin ma ri/cd by aiom il~a tic sy stemIls kno 1111I is '/IrC1C aedtild'I

fBa livl evaItia ti oIls(f desi ra iii (tS. Prohabijjs tu alld I'/au- i PRI. (RP. .-

*e~aiulat 1111 refers tio tile extremle case (tile mollst lOptillilsti Ijc ) easel,11CI RI
(if flurvoi eiali evaluation and ilso1 is regardetd a, alm illi)ll tK I. hn\RI

* lot possibility', - latlslbilit\ \k~is first Introlduced b\ Reseller
4

i (or a.llil.iaf prllthlstllll \' ind15 It, sicrer ( man, hIt

an n itrilsides a sslte Iaicl and rigolrous evIlu,mt (,11II t rot Itiid propI 5! 11 Is 5 aild Inl (lie lsIIlltillial -1..ills I (( I5
* I1ss (credibility! Ill cases Ireplresenlted as propoitiostllsi. 1b\ II SJ l~t 11h 1A L111l- 11blIIlI\ Milli \.ile J.IssiIlC1111s

- ss~~~Wich reaisonling uimler III~)IflIc ese b e, IlssIle ~\ 5IIllk IIIlC II.1 i

h ~~ ~ R IfH Itan tha Iit it Ii rult~I lik'tISI'i It 1HO (Nt l 'I. li\lllClIlC5

2 P R I I I I N ( I 10 ,I( S \ X j() jN~ j SN ,111. 1 11 Ild 1 1 0 (1111 Ik lll f 1 I l *l I I' Aolll s '10 11 J ' I )II 1, Itill Il l* ~~~~~~~~~~~~ \IS I (i (11151g i ll 1111 li tllls I 11h Nl I1( Illd [" .1111W I I1I 111 ,11 s11Iul 10111111lil~l A' ll '1C

lt( cll1lpAre til lleSIra(III1 O pll siilt ise 5(C I,\ 0llIClIuII of pijllima 1)-
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In the sequel, we will focus our attention on the following 20 and 21. For instance, thesis 5 is easily verified by noting

general laws I theses) regarding R, some of which were introduced that
by von Wright, ('hisholm & Sosa et al

2 in their logico-philo-

sophical analysis of preference. We will clarify which of them~ vr) min-tVwt) ' vr is true in w }
are valid under various evaluations of desirability or possibility = nin.{V p. V(

as mentioned in the introduction. From these analyses we can Counter example for thesis 6 is given as
construct an axiomatic system for the preference relations

under each evaluation method, by which means the characteriza- Vlw) = 2 for any wi where both q and r are true.

tion and comparison of preference relations may be elucidated. Vlw, = I for the other possible world w,'s.

L ist of Theses It is clear in this case that V(p( 
= V(q( = V(p A rf = I while

V(q A r) = 2, which contradicts thesis 6.
. p R q v q R P (connectedness Next, we search for the minimal set of theses from which

2. p R q A q R r - p R r (transitivit.11 all the valid theses are derivable. Of course, we presume the
3.Rp .oitire disjunctirc ,nonotonitv) following rules of inference together with the axiomatic system "

3 ( p v q of PC (propositional calculus).

4. p R ( p v q ) (negative disjunctive monotonity)
rule I (rule of substitution)

p R q- 1 v r ) R ( q v r -(disjunctive continuit) If HA. then we have -A'. where A' is obtained from A by
5' 5 holds provided that replacing some occurrences of a propositional variable with

-* r = p or * r- q. and -- * P A ) a well-fornmed formula iproposition) in PC.

or equivalently. rule 2 (rule of tautologous indifference)

p R -pAq vpR (pvq ) and lf--*A-B. then we have -AIB.

( -p /q R p -( pv q) R p
It is clear that thesis 5' and 5- follow from 5: 8 from 4.

10 12 from from PC. 13 from 2 and 5: 14 from I. 2. 4 and 5.
SrA p ) and i-* -( rAq 15 from I and 5:18 from 2 and 5: 20 from 2 and 4: and 21 -

or equivalently from rule 2. For instance. thesis 13 is verified as

(p A r ) R ( q A - r (p Vr ) R qvr) 1- q ) qvq ) R -qvq (1q R( qvq (. and

6. p R q (p A r ) R (q Ar ( (conjunctive continuity) p Rps(pvp R pvp - (0 pvp Rp. andh ence

6'. 0 holds provided that H-q R( -q A( -p Rp'"*-2) q R( -q vq ) A(-q vq)Rp( qRp
•

p -(I Moreover, it is not difficult to show that theses I. 2. 4 and
or equivalently 5 and rules I and 2 together with the axiomatic system of

1p v r )R q vr)- PA r RIqA r) PC constitute a complete axiomatic system for the preference

7. p R (p v qI p R P Aq ((right subtractabilitv) logic under Maximin evaluation of desirability. Namely, it -* -

is possible to derive every valid thesis (laws regarding preference
8. p P v q ) R p ( - P A q I R p (left suhtractahilitl relations) froin this system.

. ( - p ( R ( - q I q R p (contraposability)
10. p I ( p v p)idenpotency))I Axiomatic System of Maximin Preference Logicl •

II p V q I) q v P ) (disjunctire commutativity-) Axioms: I. f- p R q vq R p (connectedness)
2. p- p R q Aq R r - p R r (transitivityr)

12. ( - p (I p (douhle negation)
4. 1- p R ( p v q )(negative disjunctise

13. -p R p A q R q q R p (order linearity) monotonity)

14. pRq-( PAr ) RqAr)V( pA -r)RqAr 5A -- p R q -p v r R q v r (disjunctive
(weak conjunctive continuity) continuity )

15. q R ppv Pvq) Rq (weak positire disjunctire Rules: rule I (rule of substitution)
mono tonit 1, rule 2 (rule of tautologous indifference.

l6. ( q A r t R p q R p v r R p (left extensibility) (together with the axiontatic system of PC). 
"

I7. q R p v r R p - ( q v r ) R p (left mergeaility) Mta.\intax Preference ILogic
IX. pR q A pR r - R ( qvr (right niergeabilit)P 

"

1). p R q ( p A- q ) R I -P A q ) (continuity on We proceed to Maximax preference logic wrhich is based

symmetric (iJti'rem'e Oit the eval ationt ofl desirability of' a case hy tie ntainiun
* symmietric diffe~rence) value of states withi the case. Naiely"210 f q v r R p I R p v r R p Ueftseparabilit') V(A(= max 'w,." -

21 . 1 p v - p ( I qV - q ((indifference oftautologous iSC w C W A.,.

It is not difficult to show that valid theses under Maximin where
evaluation are 1. 2. 4. 5. 5'5", 8, 10. II, 12. 13, 14, 15. I, W(A) {w, A is true it %J
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Let V'1w 3) denote Vtw,) for all wi's. Then it is obvious I Axiomatic System of Probabilistic Preference Logic I
that V'Ain Maxitnin evaluation) is equal to -V(A(in Maximlax Axioms: I . h- p R q vq R p (connectedness)

* evaluation) for an arbitrary proposition A. Hence A R' B in 2. -p R q ^q R r- p R r (transitivity)
Maximin preference based on V is equivalent to B R A in Max-
imax preference based on V. Thus we obtain a complete axiomatic I(pvqRppoivedjucieroooyI
system of Niaximiax preference logic (together with the axiomatic 5*>F P A -r )R (q A -r)

system of PC) as follows: -(p v r IR 4q v r ( (disjunctive continuityV)6
6'. -Pv1r R q Vrt)- 1A- rIR (q N- frI

* I[Axiomatic System of Maxiinax Preference Logic j (conjunctive continuity)

Axioms: I . l- p R q v (I R p (connectedness) Rls ueI(ueo usiuin
2. pR q~ r Rr (rasitviy)rule 2 (rule of' taUtologous, indifference)

2. 1- (p R q A R rp (ositivendisjntivety
3. vq p(psitvedijuctvetransitivity) Plausibilistic Prefrence Logic

S. h-p R q - p v r ) R ( q v r )((disjunctive "Plausibility" evaluates the possibilities ot cases (pro-

*Rules: rule 1 (rule of substitution) cniut) positions) being true through the notion of ''modal category''.
that is, anl increasing sequence M, , . ,. M..M . of sets

rule 2 (rule of tautologous indifference) of' propositions (in p(,) whjich Satisfy thle f'ollowinlg Conditions 4

H Baesian Preftrence Logic ii)i'AE te A C 1 (o 0 iftiA

'[le preference logic under Bayesian esalation of desirabi- iii l M, a Set Of' mutually coistenlt propositilns.
lity was first examined by Saito' who succeeded (lie researches iv) for any i. if A C M, anld h A -B. t ien B C ki,

*of' Jeffrey and Rescilerl 2. Saito's conjectural axiomiatic system

is composed of axioms I, 2. 5'. 7 and 8 and rules I and 2v)orayAteeexssiucthtAC%,

*together with PC'. Based onl Jeffrey's characterization theoreni
7  %i) for any i. if A. A' C M,. then A A A' C M,

on Ba,,esian evaluation. we canl verify that Saito's systeml is Thie proplositions ill NI,) (i.e.. PC tautologies) (use thie (ugliest

* ~~complete provided that thle nlumber Of fundamental propositions pluiltyanthsinM M aehescdhgetad

*is finite (i.e.. when we have only a finite number of possible so on. Hence the preference logic in this case is given as

*worlds) and with no possible world having a zero probability. ARBifii ,>mn jBCM
* ~~Hence we baseARBifm {iiAE, ill IBC .'

By introduinig all incereasi ng Sequ len ce of Sts of possibIl'

I Axiomatic System of Bayesian Preference Logic! world given as

Axioms: I . - p Rq vq( R p (connectedness) W,~ n WA i 0. 1.2 . n.

2. ~pR q Aq R r-p R r(transitivity) ~M
we call sho0w that

l> -pR'p A q -p R fpv q
(disjunctive continuity) A C Mi iff W( A) 2 W, for any proposition (tf P( iA and

F) ~p L1)R~(pVt)Rpfor any i.
7. F-p R ( p v q f- p R P p q Moreover. we canl verify that tile converse also holds. NaiciNl .

(right subtractability) if we hlave anl increasing sequence W, W, W,.. (tt of
8. F-I (p vq ) R p )P A (l ) R p possible worlds, thle seqUence M,. MI M.. gise abOse.

I(left subtractability ) ie.

Rules: rule I (rule of' substitution) ~£ W )DW
* ~rule 2) (rule Of' tautologous indifferenlce)(M 1

Next, we prolceed to tile preference logic on possibility satisfies con~ditionl i I vil. Attributing salue VI wk I I to tile-

evaluation whlichl clarifies tile more possible (probable or possible world wk 'S in W, W, (where W is set as oi %% e

* plausible)I case between two alternatives, can shlow tllat

A R B iff V( A V B)
Pro huhilistin Prcerence Logic

Firt. e eamie te pefeenc loic nde prbablisic for arbitrary proposi tins A allId B. where is ss ISLIILe t0 be
* Fistwe xallin th prferncelogc llldr pobailitic evaluated by Maximax iiethod. i.e..

valuation of' polssibility'. i.e..
V(A) = max V~wI).

Si IlenLe we arrive at the relation tha~t

where V(w1 I) is (lie prolbability oIf' wolrld w,'s being true. Ac- ARBif)BI' Al

cording to (ilie results Of* lShl urn. we c'a ,flsow t hat (ile
following systeli Itoiget her w ith PC)' constitutes a comllplete where R ' is af Maximax pre ferenlce relation.- It t1 lows, fromil

axionmatic' systemI for thie finita ry case' (i.e., tile' case where (ile a xioma tic system oIf' Maxima x preference logic- that Ole
we have ionly a finite nu miber ilf'' ossi ble wolrlds ). f'oll(owing systLeml const itutieLs a L'omllplete a oliatk (Ic 5 "((i-
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for Plausibility pref erence Lof* course, we must presume the 3. t- p V q IR p (positive disjunctive
axiomatic systemn of PC). mlonotona ty)
[ IAxiomatic System of Plausibilistic Preference Logic]I 5. p Ru - 1pv r R R( q y r ( (disjunctive

continuity)
Axioms: 1. 1- p R q v (I R p (connectedness) 1). ~- p R q q R p Icoiltraposability)

2. 1- p R q A ( R r - p R r (transitivity) 10. l- p I ( p VP p(idempotencyt
3. P- Pvq )R p(positive disjunctive 1 1. t- ) PV(I I V

mfonotonlity) (d ijunctivye comm uita tivit y
6. 1-p R q P Ar R( q Ar) (conjunctive 12. -I-p I R p(double negation)

continuity) Rule: rule I (rule Of' Substitution)

-Rules: rule I (rule of substitution)
rule 2 (rule of' tautologous indifference) 3. COMPARAti1VF ANAL) SES OF THUF PR1FRFNCF I t)Gt(S0

hF uzYt Preference Logic- By examining the validity of' cachi thesis in tfte list by the

We hve lariiedvarous refrenc reatins bsedoil above mentioned axiomatic systems or by constructing counter
We hve larfiedvarousprefrene rlatins ase on examples of (lie thesis. as shown in thle discussion of' Maximin

Maximin. Maximax. Bayesian. Probahilistic and PlaUsibilistic pireferenice logic, we canl obtain the validity results" sumimarizedevaluation of possible world. FUZZY theoretic evaluation of in, Table 1,where thle doubL2 circle 0 represents tile s alid theses
pooiinon the ohrhand, oe not refer th le possible adopted as axioms and thle opeti circle 0 represents the valid

worlds, but applies directly to thle evaluation (desirability or theses (theorems) in cacti of' file preference logics.
possbiliy) f prpostion thetseves9  

'~First of all. it shtould be noted that theses I and 2 ire
* In tile f'ollowinlg, we will confine ourselves to the evaluation the common axioms and shtow that each preference relation

of propositions without implications (for, in Fuzzy logic. A - B isatalodr
is nlot eqluivalenlt to -A V B. and involves another aspect of As mentioned in the introduction. Bayesiat ild MaXinlin

-preference logics which is beyond the scope of thie pres ent evaluation can be regarded as an evaluation of desirabilitx in
paper). In thlis case, the evaluation laws for logical conmnectives thle strict sense (i.e.. they canmiot lie regarded as evaluations

*are given as Of~ possibility). Also. Prababilitq and Plausibility are notions

* VIA A B) = mlin {V(A), V1 B) }.concernied onily with possibility. Maximax and Fuzzy theoretic
VIA V B) = mnax {V(A). V)} atid evaluations. however, are concerned with both sides. Hlence.

V)-A=l VA).thesis 8 (left subtractability I characterizes the desirability pre-
ferences in the strict sense, whereas thesis 5' (disjunctive con-

It canl be readily seen that all the tile, _s in thme list except tinuity) characterizes them in the broad sense. Also, theses
4. X amid 21 are valid, and that rule 2 is inapplicable here. Also 3 (positive disjunctive monotonityl, lo (left extensiilt i
by referring to tile axiomiatic system of P('. it canl be verified and 17 (left mergeability I characterize te possiilistic lire-
that te following system (together with PC.) constitute a coml- ferences in thle biroad setise. Onl tile other hand, there is no
Plete axiomatic systeim of Fuzzy theoretic preferenice. thesis characterizing (lie latter in the strict sense (almthouigh

6'. conjuonc)tive cont inutiity, and 1 9, coilt inouit y onl sy minuet nc
I Axiomatiic Systemn of Fuzzy Preference Logic I differenice, chlaracterize Probabilistic. Plausibilistic and Fuizm

Axiomls: I . l- p R lI v ( R p (contnectedness) theoretic preferences).

2. R (IR A (I R P P R r (transitivity) Froni the Table, the peculiarities and coirtionalities hla-

Thee. 'uls 2 34s S' 5- 6 6' 7 8 c 0 11 213 14 15 16 17 18192_01 -Il I

Bayes @© @I I @@1 0 000 o@i@
Maxirnun © ©@ @00o 01 0001000 0 00©©@
Maxirnax ©@ @ 0@@0 0 00 0010 0000o 0 0©©

Fuzzy ©©© @ @0 000 0 @©@@©@0000000 0 @
Probability © @ 000000000 0 0©@ @
Plausibility ©@©@ @0(0 000010100, 0 101@@

Table 1 . Valid ity of the theses and rules I aund t in trenice
mider cacti preference liigic,
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ract erist ic of' eacti prefecrence can be no0ted, As for tile former. Maxim in (Ipessimlistic eva iLu tion Melthod. Maximax loptimistic

for instance, theses 4 ( negativye disjunctile 00110tonty) and evalua tion)1, Bayesian I eval ha lion by expected uitility) anid So

7 f right so hIractabilt t characterize Maxim in pretference fromt on. Ut cre we do not preso Iic t hat thle preftecre ne is based

the others: 1 4 (wsea k conju nctive con tinulit y anid i (weak onl desirability or oin possiility, aIlo ughi in practical sit uat ions

positive disjunctive monotonity I do Bayesian pref'ervnce f'rom this is usually known beforehand.I
the others: anld Rule 2 (rule of' Tautologous indifference) and Incompatible interpretatioils canl be detected by discovcring

21 (indifference of' tautologous cases) are characteristic of' Counter examples of* the prefecrence logics axioms. First. we
IFuzzy preference. hiave to clarify whet tier or 11ot tile dlat a inmclu de Counlter exaimples

As for thte coinmona lilies a niong thti preferences, for of thesis I or 2. whtichI are lie coimion ax iois to all pre ference
instance, theses 5 ldis.juneltiVe Continuity I. 18 right nergeability 1 logics. If' there is olle. we can saX that the data are not based
and 20 (left separability)I are coinmon ly v.i i i Maxi inin. oni an v iOf tile evaloat ion Met hods dhiscussed lie re. If there is . -

MaXimlaX and FUZZY preferences. Also. thesis 9 (contraposa- none, we then search for thle counter examples of' theses 3 112
b ilit y is comniton to hothI Fuzzy aiid Proba bili ty preh'erences. whii ch are time rema i ng theses adopted as preference logic

Supose thtwe are ginita set of prefeec rltioils axioms, ill odr to is af futhr incompatibility (although

(data)l Such as { A RA 2  A1 PA4  A, I A, . .}where As are in practical situations iliescs I10 12 sciictines denote trivial

propositioins (of' PC) specit'ying cases. aild we wishl to search for instances).
coinpatil intIemcrpreta tions of' the rela tions. i.e.. we wart to OInc systeinatic way oif condiic i g t hiis searchi is shiowm
motentOf tilie basic iiethIod of' evaluat ion uniderly ing thle data as in Fig. I .where "I rep resen ts that I le re is at
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of him mar it given wt It pre ferece relaitions.
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least one (no) counter example of the formula in the box. REFERENCES
" X'" represents that there is no possible interpretations, and
I Maximin j. for instance, means that it is possible to interpret I) Jeffrey, R. C.: The Logic of Decision. McGraw-Hill (1965).
the data as being based on Maximin evaluation method. Also, 2) Rescher. N.: Semantic foundations for the logic of pre-
it should be noted that if thesis I hold, i.e., if there is no counter ference, in N. Rescher ted.): The Logic of Decision and .....

example of 1, then we have Action. pp. 37 -70, Univ. of Pittsburgh Press (1966).

(pRq)ssqRp. 3) Schlaifer, R.: Analysis of Decision under Uncertainty..
McGraw-Hill (1969).

Hence, for instance, the negation of thesis 2 can be written 4) Rescher, N.: Hypothetical Reasoning. pp. 45-56, North- .. -.

as Holland (1964).
5) Hilbert. D. and Ackermann, W.: Grundzuge der Thleore- .--

tischen Logik. Springer-Verlag (1949). ....-

6) Saito. S.: Semantical considerations on the logic of pre-
Although not indicated in the Figure, the validity of rule 2 ference. Philosophi of' Science, Vol. 7. pp. 117- 131
should also be checked, except in the case oi IFuzzyl. 194n Paese).11974) (in Japanese)•..

4. CONCLUSION 7) Jeffrey, R. C.: Axiomatizing the logic of decision, in

C. A. Hooker et al. (eds.): Foundation and Application

We have clarified a complete axiomatic system describing of Decision Theory. Vol, 1. pp. 227-231, Reidel (1978).

the preference relation based on each evaluation method of 8) Fishburn, P. C.: Utility Theory for Decision Making.

desirability or possibility, and by which we can make analyses pp. 194-195, J. Wiley (1969).
of comparative desirability or comparative possibility. 9) Goguen, J. A.: The logic of inexact concepts, Synthese.of cmpaatie deirailiy orcomaraive ossbilty.Vol. 19, pp. 325-373 (1968-9).

These qualitative analyses, though apprehending only
certain aspects of th. evaluation methods, enable us to obtain 10) Giles, R.: ,tukasiewicz logic and fuzzy set theory. Inter-

various information useful for the interpretation of data con- national Journal of Man-Machine Studies, Vol. 8. pp. 313-

cerning these evaluation methods as discussed in section 3. 327 (1976).
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0QUOTIENT ALGEBRAS FOR LOGICS OF IMPRECISION*

Michael Katz

School of Education, Haifa University, Haifa, Israel

1. THREE LOGICAL SYSTEMS cation (-) and negation (7). If and e a-e
formulae of L we stipulate that for every x E X

In the 1981 ISMVL (Oklahoma City) I proposed
two logical systems to deal with the problem of im- (0 A 0)(x) = max(p(x),e(x))
precision and measurement error in science, calling
them "the logic of inexactness" and "the logic of (i v 0)(x) = min(y(x),0(x))
approximation" (see [6]). In the 1982 ISrVL (Paris)
I showed how to apply the logic of approximation to (N - ) (x) = max(0,o(x)-(x))
quantum theory, and how to reduce it, in certain
cases, to a third, perhaps simpler, logical system (W)(x) = 1 - q(x).
(see [7]). In the 1983 ISMVL (Kyoto) I would like
to consider the algebras of these three logical These semantic rules reverse the traditional
systems. ones of the Lukasiewicz logic. The reversal arises

from the replacement of truth-values by degrees ofLet me start by introducing the systems in a
manner somewhat different from that in the previous error. Thus in our systems, no error (0) replaces

absolute truth and maximal error (1) replaces abso- S
works mentioned above, a manner which, among other lute falsity; conjunctions maximize the error
things, will enable me to avoid the notion of while disjunctions minimize it; the error in an

* truth-values. implication statement is measured by the degree to
Our basic ingredients are a formal proposi- which the error in the consequent exceeds that in

tional language, L, and a set, X, of valuations of the antecedent; and a negation statement is an
formulae of L. As is quite common (see, e.g., implication statement in which the error in the con-
Dalla Chiara [1]), we think of the valuations as sequent is maximal. Some of these ideas are due to
corresponding to "possible worlds" or to "states" Scott ([11], [12]) and are similar to those of Giles .
of a mechanical system. But our valuations differ in [41 and subsequent papers (as well as in his
from ordinary ones in that they range in [0,1] Comment on [12]).
rather than in {0,). The reason for this is that The rules given above are shared by the three
we perceive the statements of L as being imprecise logical systems discussed in this paper. The sys-

(perhaps due to measurement errors), and a given tea syte rm echs e in thow tey h e the

valuation estimates the degree of imprecision (or tems differ from each other in how they handle the

error) of every statement in a given world (or n ....

state). By a deduction expression we mean an expres-
sion of the form , I- 0 (read: "0 is deducible

Thus, every valuation is a [0,11-valued func- from z") where p and 0 are formulae of L.
tion on the set of formulae of L. Looking at the (We shall write 4'- when every formula of L is
situation from the "complementary" point of view, deducible from i, and 1-0 when 0 is deducible
every formula of L is a [0,1)-valued function on from every formula of L). This notion is easilye

the set X of valuations. It is this second view
extendable to the case where we have (finite) sets

that we shall adopt in this paper. In fact, in of formulae of L on the left side, or on both
order to simplify our arguments, we shall assume sides, of the symbol - (see Scott [11], Katz [6),
that every [0,1]-valued function on X is a formu- [71), but this extension will not be needed for ourla of L.[7)buthsetninwlnobeneefoou.. ,

purposes here.
The language L contains the usual connec- In the logic of inexactness (LI) we say that

tives of conjunction (A), disjunction (v), impli- P 0 if the inexactness (i.e., error) in 4 al-

ways exceeds that in 8, that is, if for all x E X
This paper was written at the Istituto di
Cihernetica, Arco Felice, Italy. I am very p(x) > (x). -
grateful to Settimo Termini who invited me to
the Istituto and whose assistance and advice In the logic of approximation (LA) to be able
while I worked there were invaluable. I also to deduce 9 from 4 is to be able to reduce the
acknowledge with gratitude the financial support error in 0 as much as we wish (thus, to approxi-
I received from the Consiglio Nazionale delle mate exactness as closely as we wish) by making the
Ricerche during my stay in Italy. error in p small enough. So we say that - 0
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if for every c we can find a 6 s.t. for all algebras obtained is Boolean and the other "nearly"
x E X Heyting. Then, in Section 4, we shall ask how these

new operations behave in the case of LA. Conclud-
41(x) < 6 0 (x) < C . ing remarks will be made in Section S.

(Here, and in the sequel, E and 6 denote 2. THE ALGEBRA OF LI
positive real numbers, while - denotes implica- S
tion outside L). In the case of LI (w) becomes

In the third logical system, which we shall
denote by LL as deductions in it resemble those ' * 0 iff VxEX('(x =0(x)).
in the conventional tukasiewicz Logic (see, e.g., Writing W E L for 'p is a formula of the
Smiley's Comment on (12]), we say that 'P I- 0 if language L" and denotingby [p] the equivalence class
e is error-free wherever $ is error-free, i.e., of p modulo s, we can now define the following oper- "
if for every x E X ations over the collection, LI/a, of these classes: 0

'(x) = 0 - 0(x) = ( [l]A[6] = ['AO] = {LW L:VxE X.p(x) = max((x) ,e(x))}

If one of the conditions above is satisfied
for the formulae ', and 0 we say that the deduc- ['lv[01 = ['vO] = {JE L:VxE X. (x) = min(P(x),0(x))}

tion ' e is valid in the appropriate logic. It ['].0] = [i-.0] = {E L:VxE X.,p(x) =max(O,0(x)-(x))}
is easy to see that every deduction valid in LI is
also valid in LA, and every deduction valid in LA !1'P] = {(PEL:VxEX.w(x) = 1 - qP(x)
is also valid in LL. Simply note that an equiva-
lent definition of q, I 0 in LI is provided by This is the well-known method of obtaining
stipulating that for every Ei and every x algebras of fuzzy sets (see, e.g., De Luca and

Termini f2]), and thus most parts of the following
-P(x) < c 0(x) < £ ,theorem are also well known.

- and an equivalent definition of it in LA (see my Theorem 1. The algebra LI/s, with the operations
proof in [7]) can be provided by requiring that for Teorem a geba dirib th te operations

ever seuene {:1 n <~) f eemets f ~ defined above, is a distributive lattice and for0Xevery sequence {x I < n <- of elements of X every 'P,O,X EL it satisfies

lim M(x) = 0 lim 0(Xn) = 0 . (1) *1['] = []" '

Symbolically we express these facts by writing (2) ([]'P v [0]) :11] A -i[0]

LI - LA c LL. (3) 1([]A [0]) ='['] vl[O]

To see that these are strict inclusions let (4) (['P1 -f[]) A [0] = [0]

X =[I,"-). Then, if 'P(x) = 1 for every x E X, (S) ([fl]- ['P1) A f0] = [0]
we have 'P 1- in each of the three systems; if
(x) = 1/2 for every x E X, we have 'P I- in LA

and LL but not in LI; and if '(x) = 1/x for (6) ([f]-[01) , ([*]j[X]) [fl ([01 A [f])

every x E X, we have 'P 1- only in LL. On the ()"([l - v (0 [0]...
other hand, the three systems agree on 1-0; in (7) [ P
each of them this is valid if and only if 0 is 8 [ ] ([ ]. [']) = [ .P.
constantly zero over X.

For each of the three logics described in this The first three laws of this theorem (the
section it is not hard to see that the relation "law of double negation" and the "De Morgan laws"),
defined by together with the fact that LI/ is a distributive

lattice, mean that we have here a De Morgan algebra

( ) 'P 0 iff 'P 1-0 & 0 ' (see again De Luca and Termini [2]). The remaining _
five laws (the laws for implication, (4), (5), and

is an equivalence relation over the set of formulae (6), and the laws relating implication to negation,
of L. Thus, we can try to define appropriate oper- (7) and (8)) are all but one of those used in

ations on the collection of equivalence classes Rasiowa and Sikorski [101, pp. 123-124, to define
modulo a in order to obtain a quotient algebra the notion of a pseudo-Boolean algebra (more often
(in which a reduces to = and 1- to a partial called a Heyting algebra). The one missing law is
order which we shall denote by <) and then to in-
vestigate the properties of this algebra. (9) ['l A ([41 -.(01) = [] A 0] A -

As we shall see in the following section, this In 1.1 we can only prove.. "
is easy to do in the case of LI. However, in the
cases of LA and LL there are problems with the de- ' A 0 ^ ('P .40)

finitions of - and 1. In Section 3, we shall
give two alternative definitions for these opera- And LI/m deviates from a Ileyting algebra
tions in the case of LL and show that one of the also in that (i) it satisfies the law of double

.9 •-
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*Inegation and (ii) it does not satisfy the law of (14) [MP v -IMW t
non-contradiction (see the following section).

To cnclde tis ecton w deine wo is-These are the familiar "law of non-contradic-
- -To oncudethi setio wedefne wo is- tion" and 'law of excluded middle", and thus we havetinguished elements, t and f, of LI/a by here a Boolean algebra (which justifies the defini-

t = (P E L : ~ E-q = L :Yx E X.(lP(x) = 01 tion of -'by i and v). Hence, as is well known, all
the identities (l)-(12) of the preceding section

* - = ~PEL~$3-.} {WL:VxX.((x) 11hold in LL/N.

The second way of defining negation in LL/n
and then we have is by setting, for every PE L (with the t and ..-

f of this section),
Theorem 2: For every formula '4P of L

(10 f[D)~t[WI= t if WF(i e., ifYx E X.W(x) 0)
(10 f f~] <t f if Wk (i.e., if 3xEX.?(x)=0)

(11) [(P] = [~p] - f
And two, almost identical, implications can be de-

(12) t - [(P = [(p] . fined in connection to this negation, as follows,

We note that the second of these laws is the ft i f W-8(i e., if (a):
one used in the theories of Boolean algebras and
pseudo-Boolean algebras to define negation from im- [V[0 x VE X.W(x) 0 0''(x) = 0) A
plication. 1[01 if 1 .Fo (i.e., if (b):

3. THE CASE OF LL 3x EX.W,(x) =O 0 8(x) #o0)

in the case of LL (a) becomes [ f] {t if W 6- (i e. , if (a))

a e i ff x E X( W = 0 i ff W~x =) [WqA0 I if W/-e0 (ie. , if (b)) .

* ~~Then we can define the following operations on LL/. hoe : Wt h e n L~stsis
for every WOE L, (4) , (5) , (7) -(13) . Wi th the

[4WIA [e0] = [W1A 0] new I1 and ,LL/O satisfies, for every Wp,0,X EL,
(5) _(13).

- {WL:VEX(Wx) 0 1f ma(W~),0()) o)}The conclusion from this theorem is that we

[WIl V [0] = N Vol have two algebras here, both very close to a-
Ifeyting algebra. The one property missing for

-i ~E L :Yx E X (W(x) =0 i ff min (1P(x) 0 (x)) 0) LL/E with ' and Tto qualify as a Heyting algebra
is (6). The one missing for LL/z with -1 and - is

But we cannot define '[WI and [WI- 1[0 by means2
* .of the classes ['WI and [W)- el since such de- (4). The negation used in both of them has the

finitions will depend on the choice of the particu- Heyting algebra properties of satisfying the law of
lar E ; l nd E [1 .non-contradiction but not the laws of double nega-
lar E [I an 0 E[0].tion and excluded middle.

We shall now suggest two ways of defining the
operations -. and -i and LL/=-. The first one is the 4. THE CASE OF LA
following.

In the logic of approximation, LA, (w) becomes -.-

'[WI = WL : Vx EX(((x) = 0 1ff P(x) 0)}

[WI [0]= 'WIV [] =W$ 0 iff for every sequence {x.: I <n <-I

lim V)(X n 0 lim O(x n 0
- {PE L1: Vx E X((p(x) =0 1ff (kP(xP or O(x)=0l1 n ~ n- "

To these we add the following definitions of In the sequel we denote sequences as shove by
t and f Xn and write I'm cP(X) for Ilim qp(x,

t = JE L: 1-,p} = {(PE L Vx EX.sPx) =01 The first two operations on LA/a are again

f = (PEL ( -J= f pEL VxE XT~x 01easy to define. We set for every qW,OE L

= I~L:~I} {WL:VEX~q(x) 0}[qW A [0] = [IWAOJ

and then we have

Theorem 3: The algebra LL/w, with the operations 1LX (icpX)0-lmm (W ), x)01
de-fined above, is a distributive lattice and for [WI1 V 10] = [Wvol
every ,E L it satisfies

={CcOEL:VX (lin v(X )=0.-e*lim minsX)OX)=)
(13) [WIl A = in(Wlxf,0nxn)=on
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Once again the operations 1 and - cannot be 5. CONCLUDING REMARKS
defined simply by taking the classes [-*] and A

"t[-e]. So let us look at the two proposals of the The results obtained in this paper, while
preceding section and see to what extent they can technically not very difficult to prove, are sig-
be applied to the present case. nificant from a philosophical point of view. They

We start with the first negation operator of help us understand the meaning of truth, falsity,

the preceding section. When we deal with LA/, negation and implication in our logic of approxima- .-

the dedin n ectioes Wetion and draw comparisons with other logics. -the definition becomes "-*-'

In this paper, as noted in its second para-
1[P] = {IE L: VX (lim c(X )=0 iff lim '(X) 0)j . graph, we tried to avoid the controversy concerning

multiple truth-values, speaking instead about de-
To this we attach the following definitions grees of imprecision. We did define truth and fal-

of - and f (while the definition of t remains sity (t and f) terms for each of our algebras,
as in the cases of LI/E and LL/E): but in the cases of LL/a and LA/z these defini-

tions provide another, more subtle, way around the

[]-*[0] = {€EL: VXn (lim w(X,) = 0 controversy. In the case of LL/a a formula of L
is in f if it has no zero points and in the case

iff (lim '(Xn) 0 or lim O(X )=O))} of LA/u if it never approaches zero. In both
cases (and in the case of LI/n) a formula of L

f = {J(EL : w- = is in t only if it is constantly 0 ("fully true").

Thus, although there is a multitude of de-
= JwEL : VXn.lim w(X,) A O} . grees of imprecision in LL and LA, we are in

Now, the problem with these definitions is line with those (like Miller [8]) who claim that
Nthat the elements [i and [the [0] do not al- any two statements which are not fully true are

ways exist. For instance, if X= [1,-) and equally false. Moreover, a statement which is no-
(x) = /x for every xEX then -[] is unde- where fully true is everywhere fully false, regard-

fined, and hence so is x [0 for many O's. less of whether the error involved is 0.1 or 1.0.
And two formulae coincide, deductively, if they

The following theorem, whose proof is quite have zeros in the same places (or in the case of •
easy, shows what can be recovered from Theorem 3 LA, approach zero along the same sequences), regard-
in the case of LA. less of what happens in other points (or along other

sequences).
Theorem 5: The algebra LA/a, with the operations
defined above, is a distributive lattice. Any ele- In view of these results it seems only natural

ment [] of LA/s for which '['] exists is that or first negation and implication operations,

Boolean in the sense that (13) and (14) hold for it. in the .ises of LL/u and LA/u, turn out to be "

The laws (1)-(12) hold in the algebra whenever all Boolean. We would like to add here that it should _

the elements involved are defined, also come as no surprise that our second definition
of negation and implication, in these two cases,

When we move to the second set of negation lead to structures very close to a Heyting algebra.
and implication operations of the preceding section We find already in Gbdel [5] and Dummett [31 that
we have, in the case of LA, the following defini- operations like, e.g., our T are studied in connec-
tions (with t and f of this section): tion to systems close to intuitionistic logic.

t if I (i.e., if VX .lim '(X ) 0 0) Finally we note that if we take LA/z (or le
= " LL/u) with the two sets of negation and implication

f if , (i.e., if X .lim '(X ) = 0) operations, we obtain an algebra resembling in some

aspects the quasi-pseudo-Boolean algebras used in
t if 'PI- (i.e. , if (a)*: Rasiowa 19] to characterize "constructive logic with

strong negation" and in other aspects the "pluralis-
VX .lim 4,(X ) =O lim O(X ) =0) tic logic" proposed in Dalla Chiara Il] as a formal

['P] [0] = " " framework for quantum theory. This ties well with
1 [01 if qPI- (i.e., if (b)*: our perception of the logic of approximation as a 0

potential logic for science.3X .lim P(X 0 & 1i O(X )O .
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Introduction cations, e.g., to science) - and we want to stress
The present paper-reviews some aspects of immediately that these two groups of questions are S

recent developments of any-Valued Logics. It then strongly related to each other. Among the formal

does not aim at any completeness, rather the anal- questions, we recall:

ysis presented here endeavours to provide only a i) purely syntactical questions as, for instance,
the existence of a Deduction Theorem;

possible Ariadne's thread to help the reader to find
some paths that seemed to the authors worth follow- ii) the search for an axiomatization complete with

ing in the many-voiued Labyrinth of the various respect to a given semantics (and related ques-

types of problems of the subject.,Also the bibliog- tions).

raphy, then, aims at no completeness. The classical The major syntactical properties of tukasie-
book by N. Rescher (1966) will be taken as a back- wicz propositional systems - as, for instance, the

ground reference together with the bibliography it Deduction Theorem - have been carefully investigat-
contains, which is complete up to 1965 and has been ed (see, e.g., Rosser and Turquette (1952), Rose
updated to 1974 by Wolf (1977). and Rosser (1958), Guccione, Tortora and Vaccaro

It is well known that many different systems (1981), Guccione and Tortora (1982) and the bibli- 0
of many-valued logics have been presented and dis- ography by Porte (1982)).
cussed. Many of the remarks in the paper will refer Complete axiomatizations have been given for " "" ."-

to a general many-valued system; very often, howev- many of these systems: among the papers on this top -'.-
er, we shall focus our attention on the tukasiewicz ic we recall Wajsberg (1935), Rosser and Turquette
logics (often indicated by t). Presently, in fact, (1952), McNaughton (1951), Rose and Rosser (1958),
these are, among the existing many valued formal Meredith (1958), Chang (1958), Rose (1953, 1968,

systems, the sounder and more sophisticated ones 1978). (For a survey of results about other many
from a logical point of view. valued systems, see, for instance, Rescher (1969),

In the following we shall briefly summarize Ackermann (1971), Haack (1974)).

and comment on some "classical" logical results ofmany alue logcs (ectio l).Then we hallLet us observe that for propositional systems ...
manyusually no serious semantical problems of conceptu-

briefly discuss the problem of vagueness in rela- aly no serious problems of the a-
tion to many valued logics and the different atti- al type arise. The serious problems, when they a-
tudes one can have towards it (Section 2). Some rise, are technical ones. For propositional systems,

in fact, it is enough to provide a quite elementary
views of ours on the problems presented by the an- formal semantics: namely only a set of eigntd
alysis of complex systems and on the role played in torin te
it by the notions of vagueness and approximation logical connectives. This is, of course, the natu- -'i-
will be briefly presented in Section 3. In the fi- lal cne tives. hi is of cute atu-
nal Section some general epistemological remarks ral extension of what is done in the Classical...
will be presented. Propositional Calculus when the set {0,l} of truth •

values and the well known truth tables are provided.
tukasiewicz calculi play a central role, not only

I. Log.caE Remwtaz/a. since the semantical definition of their primitive
We shall deal with two types of problems - connectives is intuitively very natural and a huge

"formal" ones (concerning the logical systems them- number of positive results have been obtained for
selves) and "informal" ones (relating also to appli- all the L propositional systems, but also because
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interesting problems arise when studying their ex- provide, for this logic, a formal semantics corre-
tensions to the first order predicate calculus. The sponding to a useful informal interpretation (and
main question is, of course, that of knowing wheth- then, ultimately, a domain of reality which is sat-
er there are sets of axioms (and of inference rules) isfactorily mapped by the given logical system).
such that a completeness theorem holds. The problem And this brings us to the second group of questions.
has been faced by many authors and the two limiting Let a many valued formal system be given. A
results have been obtained by Rutledge (1959) and cr t o many valued aoac would erinl A.Scarpellini (1963). The former has shown that critic of the many valued approach would certainly
Sukapewlii' s196ste rmer d hs soni t at e point out that the construction of such a system is

* '~kasewic's ystm retrited o mnadc prdictes nothing more than an initial move since, even if
is axiomatizable, whilst Scarpellini has shown that
the full * is not axiomatizable in the specific the system is "sound and sufficiently powerful" it

sense that the set of the wffs ofS that take always is necessary to endow it with an "adequate" seman-
sin every model) the truth value I is not recursively tical apparatus. Suppose now that also this second

enumerable. Intermediate results of wca comptete- step has been made, laying down a formal semantics

noss have been obtained by various authors, We re- (for instance, some algebraic semantics). This is
member here the papers by Belluce and Chang (1963), not enough either: if the construction of a syntac-
member here3), tepaers by19e64 uce) a Chang (196 3, tic machinery is criticized for being not very sig-Hay (1963), Belluce (1964), Chang (1964). The most nfcnfrtesm al n a rtcz h

interesting result can be expressed (see, e.g., cpl f ta mai ne mal setics the
Belluce (1964) ) as follows: couple < syntactic machinery, formal semantics >.

The latter could be nothing more than a sophisti-

Let is cau t r E 0, 1 1 a wiea t'cu'si5v 'ia cated game, relevant only within a restricted soci-
nimbei (wti) i< and oney i the'e exit two tccul- ety of puzzle breakers interested in this particu-
Su& *tct~&,n5 , and > such that ,n) > 0 and lar game. It is necessary to provide an informal
*{nl < ,(n) J't ait n, and 1= inf,({,(n) ,n) ). interpretation of the formal semantics in order to
Thin, caftinq V(t) the set L,' w45 o' L whose ttuth attach some geneAa interest to the proposed logi-
voauvC bic.en atitys to 'I, I , one ha that V ) cal system. The satisfaction of this requirement is S

is 't 6 nt eccuiosvey onunnetabte ielcticty just one of the major reasons of the usefulness and
acco d n to whethet E is ot is not a wtt. success of Tarski's and Kripke's semantics.

Well, it is just in relation to these ques-
Before moving to informal problems, we want tions that a weakness of many valued logics appears

to touch briefly on a question which in the litera- since the answers given to them are not considered
ture of many valued logics is very often discussed satisfactory by many people. This is related both .
but, unfortunately, often stated in a misleading to the jistification of the conceptual foundations
way. The problem has to do with the validity of the of these logics and to the justification of their
principles of contradiction and excluded middle in use in scientific theories. On these points see the
many valued logics. Let us stress that the previous challenging remarks made by D.Scott in the papers
principles are purely 3yntacticaf. To state that in quoted in the bibliography. The title of the second
a formal system Y the excluded middle holds is of these papers, "Does Many-Valued Logic Have Any

equivalent to say that -y aV c% 
. To state that Use?", is truly the central question. We turn to it

in a formal system Y" the contradiction principle in the following section'.
* holds is equivalent to say that -V %(a A,-ot)

The principle of excluded middle must not be confus- 2. Vagucness and uzzine.-
ed with the so called bva.ence pincipe, which on The notion of vagu ne.s will be looked at,
the contrary, is a 6erant-Lca statement on the to-
tality of the wffs of a system. The bivalence prin- here, as a semantical notion, following the pointciple states that any wff is either true or false of view that has been expressed by Russell (1923),
Now it is clear that - by definition - the bivalence perhaps for the first time with clarity: words as

principle does not hold in any many valued logical vague" hdve to do with the te eton btwen a e

system, but this does not imply that the principle
of excluded middle cannot hold in any many valued itom teptsentoat4en ... thete can be no such thing . .""

logic. For instance in the system BL proposed by (S vaguoes o' p.iecsion; things ate what they
logic.nFor instwae intheasten BL proposedby ate". Roughly speaking, then, we can call vague all
Sanford (1975) we have that even if P'oPonit ons those predicates which have a field of application S
teom adincttad which ave vaopo~s eno C and 1 f "10 " (better: an extension) intrinsecally doubtful. A
ag2.hlrem, ~ c~caC OPO.thenX i not odis- vague statement, then, will be, for instance, one

* ~~(page 24). The real problem, then, is not to dis- ta otisocrecso au rdcts e
cuss, ab , whether the principle of exclud- that contains occurrences of vague predicates. Let

us immediately observe that what has been called
ed middle (or of contradiction) fails in a certain "intrinsic doubtfulness" must not be confused ei-
many valued logic but whether it is possible to ther with the effective undecidability (in the
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sense of the Theory of Recursive Functions) or with due to R. Giles (1975). The line developed by Giles
notions of probabilistic type or with questions of is, however, different. In order to develop a lan-
empirical (practical) undecidability. guage suitable to the formalization of physical

Vagueness is in the crossroad of such notions theories, he proposes a non classical logic (de-
as imprecision of a measure, imprecision of a model, fined by means of a dialogue interpretation) which
verisimilitude, partial truth, imprecision in the reduces - under some further reasonable assumptions - 0
description of complex systems, fuzziness and so on. to the infinite valued t (Giles, 1974). Giles then
This is not the place to try to draw a map of the in his (1975) constructs a theory of fuzzy sets
correlations among these various concepts and no- starting from and in terms of this new logic. The
tions. However, we want to stress that the problems relationship between them is well expressed by his
that have been previously mentioned are part of the own words: "indeed it is not too much to claim that
epistemological debate on the role that precision t iz rtelated to fuzzy set theory exactly as ctas.u-
and imprecision (or vagueness) can play (or, better, cat logic a e~acted to oitdcnasy set theoky".
do play) in science, particularly in relation to Giles, finally, in this same paper quotes a neglect-
the notions of explication and complexity of a model. ed series of papers (in German) by Klaua "who de-
All these problems have, perhaps, their focus in velop, a many valued 6et theoy basaed on tukas ewcz
the so called Carnap-PoppeA controveuy in which logic in a manner 6imi aA to (but much mote soph L-
Carnap's position is characterized by a total rejec- ticated than) that adopted" in his own paper.
tion of vague expressions in scientific language These last remarks have brought us to two 6

(see, e.g., Carnap (1950), Ch.l) whereas Popper is, knots of tangled and difficult problems. The first
at least, more tolerant (see, e.g., Popper (1976)). is the sublabyrinth of "set theories" adequate to

One could then ask whether it is better to corresponding many valued logics. The second is the
work on a program of systematic elimination (Elim- sublabyrinth of the so called fuzzy logics'. For
inating Program) of every vague expression from the what regards the former it is outside the aim of
scientific discourse or to outline a research pro- the present paper and we refer the reader to the
gram able to cope with the presence of vague expres- references already quoted and also to Klaua (1966b)
sions by controlling the presence and the use of and to Gottwald (1976). The second sublabyrinth
vagueness (Controlling Program). A very interesting would also deserve a paper in its own. We shall
approach following the path of the Eliminating Pro- limit ourselves here to the following brief remarks.
gram is, for instance, the one proposed by Fine The original motivation behind tukasiewicz many
(1975). In the following, however, we shall concen- valued logics was of a general philosophical type
trate on works that follow the path of the Control- and only later (see,e.g., the papers by Scott and
ling Program. Katz quoted in the bibliography) the idea arose of

We first note that if one does not follow the using them as theoretical tools for dealing with

point of view of the Eliminating Program, a prelim- imprecision, error and approximation. Fuzzy logics,
inary problem is the one of finding an adequate instead, from the start has been characterized as
logical way of treating vagueness. The presence of the best candidates for the modelling of inexact,
vague predicates, in fact, is not always compatible approximate reasoning. Their ttionatc, in fact, as
with a straightforward use of the connectives of well as the one of fuzzy sets was just to provide
classical logic (see, e.g., Black (1937) ). Many tools - set theoretical in the latter case, logical

authors agree, as we do, that many valued logic in the former - for dealing immediately with situ-
seems an adequate tool - in particular a logic tak- ations whose description was strongly characterized
ing the interval [0,1) of th& real line as the by fuzziness and approximation. A forerunner of the
set of truth values'. In particular -notwithstanding idea of using notions and tools from fuzzy set the-
the limitative theorems mentioned in the previous ry for logically dealing with inexact concepts is 0

section - +ukasiewicz predicate calculus is widely J.A. Goguen (1969). A very interesting review is
considered as the most adequate candidate to the due to B.R. Gaines (1976).
role of Caecueu oJ Vague Pkedicat,,s. The name Fuzzy Logics, however, has to be

specifically associated with the proposal by L.A.Among those who have criticized the use of L "aMogn those whoehae r tici7, theea ofhia L Zadeh (1975a, 1975b) and R. Bellmann and L.A.Zadeh
are Morgan and Pellettier (1977), whereas Machina (1977). There are many innovative points in this
(1976)program which is really very challenging and new.

Machina's paper is very interesting in the direc- F:r instance, the truth values are fuzzy sets rep-tion previously suggested: among other reasons, resenting notions like t'wc, v 'wc, fo'L --

since he proposes a set-theoretic semantics fort.c.T t afcss t ue, etc. The truth values then are not nu-"-""
This semantics is developed in the setting of fuzzy merical but linguistic; moreover they may be gen-
set theory (Zadeh, 1965). Another interesting paper ted by a grammar and interpreted by a semantical
which relatestukasiewicz's logic to fuzzy sets is erate c nectvemmay hae a emanig

rule. The connectives may have a variable meaning.
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and the inference rules are approximate. However if of the given system which are better and better
the program is taken in its full generality it is ftom the point o view o6 hanJdt~nq and expetca4vi
very difficult both to evaluate by means of classi- powA.. We do not share, then, the position of those
cal standards the results obtained and to under- supporters of fuzzy models and fuzzy logics who
stand clearly which generalizations are really a- state that the usefulness of these logics and mod-
chieved with respect to classical theories. For els springs out from the fact that the ,tea , t d
some criticism of fuzzy reasoning see the paper by iz pevaded with appoximation and imptecAion.
Schefe (1981) and for constructive suggestions for Vagueness and fuzziness are semantical notions
further developments see Skala (1982). Other papers that come out from a discrepancy between "a repre-
presented also under the heading of "fuzzy logics" sentation and what it represents", to quote again

can be seen, more specifically, as extensions of Russell. Fuzziness and vagueness are then measures
tukasiewicz logics. Among them we can put Pavelka of how much a model maps,or does not map, a certain
(1979), Albert (1977) and Gottwald (1980). real system or a certain piece of reality (better,

We have finally to mention two wide groups of the information we have on that system or on (that
people which could be grouped under the names of part of) reality). In principle, the best model
"British School" and "Barcelona School". For a sam- remains a c'i.p, non fuzzy one, but the crispness
ple of the work done by the first group see, for has to be the final goal, to be achieved as a re-
instance, Baldwin (1979), Baldwin and Pilsworth sult of a real and complete correspondence between
(1978), Bandler and Kohout (1980), Kohout and the model and the system and not by ad hoc and pos- •

Bandler (1982), Willmott (1981). The main aim of sibly arbitrary oversimplification of the system.
these works has been a careful study of many differ- Two main cases that we want to provide as examples
ent logical connectives bearing in mind not only of our thesis are the following:
their theoretical interest but also possible appli- A) Let us suppose that in studying a complex system
cations (which go from the design of industrial we are mainly interested in its sophisticated be-
plants to medical diagnosis). The Barcelona School haviour. Our aim is then to obtain a model of the

centered around Enric Trillas has undertaken a com- system as manageable as possible but still able to
plementary work, namely the characterization of mirror this behaviour. Models mapping with extreme
classes of connectives satisfying certain require- precision all the real system could be - at the
ments and which are functionally expressable 5 . See present level of knowledge - too difficult to han-
Trillas (1982), Trillas, Alsina and Valverde 1l982), die from a mathematical point of view. But even if
Trillas, Domingo and Valverde (1981), Trillas and this would be possible, the price to be paid (meas-
Valverde (1981) and Esteva (1981). ured by some parameter) would be too high relative

We want finally to mention that extensive to the specific purposes.
work has been done in applying many of these new B) Let us now consider the case in which the real
ideas born out in many valued and fuzzy logics to system under study is highly complex so that it is

switching theory. The Proceedings of the previous not possible - at the present level of knowledge -

ISVL's are the best general reference. Let us spe- to provide a crisp and complete model on the basis
cifically mention Mukaidono's study and character- of the information actually available. In some cases
ization of "canonical forms" of fuzzy switching it could even be dangerous from the point of view J1
functions (see, e.g., his 1980 and the references of the expZicution to provide a supersimplified
therein). model of the system (even if crisp). Such a model,

in fact, could fail to represent the real system
3. Comptex Systems and Appioxtaition. even under the subsequent addition of further hy-

The above relatively long excursus of the re- potheses (think, for instance, of systems in which

lationship between many valued logics and vagueness non linearity plays an essential role uvesw linear

and/or fuzziness had not only logical and epistemo- models - however sophisticated - of the same sys-

logical aims. The main aim was to wind off our tem).
Arade' hradthoghth lbrithofmnyva-In both cases A and B, vague or fuzzy models'"-

Ariadne's thread through the labyrinth of many val- could represent, then, dectiptive modatlitie of
ued logics in order to reach the tocwu of Complex t cs r ye me q eou e e
Systems. For simplicity we shall refer here to the considered systems more adequate to our require

atija Lia complex systems. We then assume ( leav- ments not only at a picaccat level but also at the
level of exptcation. Let us stress, however, that S

ing out sophisticated epistemological investigations) this is valid only under the additional condition
that the distinction natural/artificial makes sense fuzziness) intro-
and interpret it in a naive and intuitive manner. dcdi the oels vgn ess, fzi e) in

In our opinion, the admission of fuzziness due a t-emode is masthat wh heat meta-tevet. This means that we should have *,-.-!

and vagueness in the modelling of a system, at a
fo'a tev ei, has to be justified only on the basis precise formal explicata of vagueness and fuzziness

of the possibility of obtaining, in this way, models which one can manage according to the usual and
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standard procedures considered scientifically ac- for what regards many valued logics we want to men-
ceptable. For what regards our topic, this means to tion - among the few papers we know - Woodruff
have many valued logical structures adequate for (1974) and Duff (1979).
this purpose. We have already mentioned that the We think that further analyses of these pro-
weak completeness results of first order L could be blems would be very useful both for the understand-
usefully interpreted in this direction. Other rele- ing of non classical logical structures and for
vant and interesting recent results are the ones having a good guide to their applications.
obtained by Pavelka (1979), which also reinforce
the central rolepl'.yed by tukasiewicz systems. FOOTNOTES

The leading idea at the root of the present I. The title of the present paper - as well as of
paper is, then, that a controUed quantity o6 inex- the analogous review of Dialectical Logics (Guccione
actne6s can be useful and suitable not only for a and Tamburrini, 1982) -is inspired by the well
technical study and analysis of some classes of known essay "The Labyrinth of Quantum Logics" by
systems but also for their dezc.ipton/exptZication Bas van Fraassen (1974). Let us incidentally note
land so undeztanding) at various levels of complex- a main difference that immediately comes out be-
ity. Fundamentally, this is nothing more than a tween Quantum Logics on one side and Many Valued
different way of approaching the notion o6 apptox- Logics (and Dialectical Logics) on the other side.
nuatxon which plays a central role in scientific Quantum Logics - notwithstanding their possible
methodology. Even if this path is different from drawbacks - have their referent and are rooted in 0
the classical one, it is not meant to be an alter- Quantum Theory, which in its turn - notwithstanding
native but to complement and to play its role in its (minor) drawbacks - is rooted in the large class
those cases - like the ones outlined - in which it of empirical facts of the microscopical world it
seems more suitable 6, helps to understand. The situation is completely

The usefulness of facing directly the notion different for many valued logics (and worse for

of approximationhas been acknowledged in pure math- dialectical logics). We are deeply convinced that
ematics. M. Rabin (1976), e.g., has proposed an further developments and applications will show
interesting notion of "proof" with a certain margin their central importance in all those problems

of error, to be used in situations in which an ex- strongly characterized by approximation and incom-
act proof would be unattainable. plete description. However at present it is very

Let us finally mention the challenging topic difficult to pin out theories (and related domainsLet s fnall metionthechalengng tpic of empirical phenomena) which show a relationship
of considering many valued logic straightforwardly of mal pa oena)owic h showaalrelatonship
as logic of approximation. We limit ourselves to with many valued logics comparable to the one ex-

stressing the interesting work that M. Katz is do- isting between Quantum Theory and Quantum Logics.
(For a counter example, however, see the papers by
Skala (1978), Ovchinnikov (1982) and Nurmi (1982).

and b, 1982). In his 1981 b the author develops a
semantical analysis of two first order real valued 2. A relevant point not mentioned in the present
logics. The first (the logic of inexactness) is survey is the problem of identity in many valued
mainly Scott's version of tukasiewicz logic, the logics. See, for instance, Thiele (1958), Gottwald

second (the logic of approximation) is just an at- (1983) and - in the context of fuzzy sets - Pultr
tempt to represent mathematically the notion of (1982).
approaching the truth as near as one wishes. From 3. Let us recall, for instance, a modal (proposi-
a mathematical point of view the main results uf tional) system with infinitely many truth values,
this logic can be found in his (1982). Finally, in by Sanford (1975). See also Guccione and Termini
the paper by Guccione and Tortora (1982) the idea (1979)for brief c en o thi e and Te(1979) for brief comments on this system and the
of interpreting many valued logic as logic of ap- o
proximation is related to the new notion of tevets outline of an alternative proposal.
o6 pwovaitity. 4. For an interesting analysis of the various ways

of using the term "fuzzy logic" see the comprehen-

Conctuding RemaA k. sive survey by Gottwald (1981).

As we stated in advance, this note aims at 5. In the setting of the work done in Barcelona it
no completeness, either about the logical and phil- has to be mentioned also the recent doctoral dis-

osophical problems of many valued logics or about sertation by Ton Sales (1982) which looks at many
the wellfoundedness of their several applications, valued logics (in their most general sense) as a

Let us then briefly conclude stressing a tool for the logical analysis of imprecision.
central problem of logical nature: the possibility 6 osi e f c o toftrnlain lgia sseminoanthron. 6. Among the possible fields of application let us . .
of translating a logical system into another one. mention Social Sciences. Without entering problems.

Unfortunately, there is little work in this field:
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of evaluation of the results obtained in this area Esteva, F. (1981) - On the Form of Negations in Po-
by means of many valued logical structures or of sets. Proc. of the lth ISMVL, Oklahoma City, 228-
fuzzy models let us refer to the papers by Skala, 231.
Ovchinnikov and Nurmi quoted in footnote 1 Fine, K. (1975) - Vagueness, Truth and Logic. Syn- -
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THE NEW METHOD CF IMPLEMENTATION FOR TERNARY LOGIC !Yi" EM

0 LI Meng GU Wei-Nan

Department of Telecommunication, . -.

Shanghai Institute of Railway Technology, Shanghai, China.

paver may be used, so that the lattice

Abstract operation system will be greatly simplified.

In various ternary logic systems, II. Lefinition of symmetric
symmetric ternary logic system which
satisfies lattica operation is most ternary loFic system satisfying
appropriate. A new method of lattice operation
implementation for ternary logic using
COS/MOS circuits is put forward, only S
one circuit simple structure can Symmetric ternary logic system which
constructs a ternary logic complete satisfies lattice operation possesses more
system, advantages than other ternary logic system.

The paper also discusses the Hence, this system is used in the paper.
possibility of applying this circuit Lopic value are T, Oi. Logic value
for the implementation of J-OR and J-AED satisfies the relation: l<0 <I.
operation. Thus, the implementation
for ternery logic system can be greatly The definitions of binary operations
simplified, are:

sum operation x + y = max(x,y);

xyP7E,,1l S
product operation x.y = minr',y);

• - ~x9yE11,0,1} + ""

There are more one variable operation,
Introduction these operation possessed their own

circuits. But only some operations must be
A conventional ternary logic considered, the others could not be

system which satisfies lattice operation considered in analysis.
constructs a complete system with at
least general J-gates and NAND gates. J- operation will be replaced by
Any ternary function may be expressed J-AND oat . te d nns re
as follows in a lattice operation form: J-AND s te. All these definitions are" ~~described as follow: "'-=

F f(a , a) )=1 m i Complement operation:

f(al,a 2  an ) t ,1T I l ; if x = 1
2i n ; if x = 0
m~TO~$1 if x =

Right circular operation:
It is obvious that lattice operation i if x = 0

needs a large number of J-gates and NAND if xl f ""'"
gates, thus making logic design circuits xi X I

*- very complex and expensive. In addition to if x 1
the complexity of the gates structure and Left circular operation:
the low noise allowance, it is difficult if~ x r0 .for the ternary logic system to compete X= 0

* with binary logic system. x=0 ; if x=1
1nt if x I .'

A new circuit is put forward in the J-operation may be discribed r-s a truth -'paper, This circuit of two outputs will table below:
construct a complete system its own. Many
new simplifying methods developed in the -
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J~)Jj(x) J~x) JIx) JI0Cx) J01Cx) ij1(x) () .0Cx J1C J01(x=1~x

_____(3) J-f(x) + J0(x =J10 (x)=JT(x

* 1 i I 1 1 1 ~.2. Each J-operation can be transfered
with other:

*0 T (1) Jl(YC)JCX()

* 1 1 1 1 (2) J Wx = J 1(x-7) = Jo (x J)

= JT(x.7)*J-AND operation or J-0E operation
corresponds to a ternary logic miniterm. where xE lxl"x?....,xn,+.
First, make product operation or sumn
operation; then do J- operation. These simplifying methods are very

Definitions of J-AND operation and easy to proven. We can prove it by
J-OR -,re as follow: iterative method and by truth table. The

generalised rules of n-variable can also
be proven by inductive method.

J(Sx. if Tfil According to J-operation's mergerableIT. if i m property, ternary logic functionJ Txi G; f ffexpression can be simplified easily. And
1; if } xiEm according to J-operation transferable

= Property, J-gate and NAND-gate willi if -i-v construct complete system. The structure
~ x~~mof J-gate and NAND-gate is very simple,

is cntinal um smbo. T[is ontiual but the structure of J-gate will become
product symbol. cmlx

J-PND operation's simplifying rules
MOT POP l,0l,1l,T0o are described as below:

XiEtxlx 2 ... ,X 1.n J 1 Cx 1 (y= 1 (x

The general expression of symmetric 1' J1 (XI)J 1 (x 2 )..j 1(xn)=JC.T[Xi) -.

ternary logic function satisfying lattice 2. J (x).J1 (y)=J1Cx+y)operation is 2' J 1 ).yx) J(n=T~i

f~a1 ,a2 ,...,a) (l~~i)V (xl9Jx 2 ).*J- x)=Jf E[xi)--

+ (R (a4. J0 (x)-J0 (y)=J 2 (x. y)

whr (aa. .. a )= are calle 4 0 C)J(x )..jo(X)=j 0 T X %12" n 3. JO 1(xCJ 0 2y=J 0 xy n01Tx

calle 0pic. f -i(icat i cale 6. J11 (x).J11 (y)=J11 (x-iy) L
don't~~ car ter of0ilcat

exrese ond its). cop0tns haX bee 6' (X n ).J=j 01JT(xii

tern re nto am be.. amplmened byld :
usingict J whergae fan Dgate ThreOare, 8 J10 ()J 0 y= 1 x)

J-AND ~~~ ~ ~ ( gaean AD r omlt. .J (x)J 2()J0 1 (xOy.7)=JOX

don't Saetr 0impligRues10 J0C(x)*J 0 (y)=J 1 x.3E.)

Anyoperaiogi prope ti arwaifllow are s folwig

1.rar Jfupetion weihme rales by. J1Cx)+J1f(y)=J 1 (x-y)

(1)n J1 (x) gat anJADgt.Thrfr, 8 1(x)=J11(xY)=J0()1 1 x1 + 1 ( 2 +..+JY )J(x

2. J O(x)+JIOCY)=JO(x-7y)

................................. riables .1.------ ----------------

may.~ be megd

11...................+j (x )=j -E..



2' J~xl)JT~x)+*..+J~xn)Jy~fxi)and the number of INAND input is least.

3' J(x )+j0 ()"+ 0 x)J 1 Zii III. Examples

4. J01Cx)+J 01 (y)=J01 (x+Y) We shall make use of examples
01 Ol 01~ I to demonstrate the merits by using former

1 12 0 method, and try to analyse these.
=j Ol X~xi)Example 1. Implement decorder circuits

5. J10 (x)+JT0 (Y)-JT0 (x-y) Let x,y,z are three Flip-Flop's

~'JTO(xl)+JTO(x2 )+"..+JfO(xn)=ste:
=J- (x The implementation for decoder circuit

10 1 isgvnaifloig
6. Jf11 (x)+JT1 (y)..J 1 (x+x+y+-Y) i ie sfloig

6' Jy1 (xl)+Jy1 (x2)+.." +JTl(xn)= x y z output

7. J (x)+JTYy)=J1 (x+yS1 1 T oJ 1tx_7.jO1 (z-T))
8. J01(x)+J10 (y)=J01 (x+O:Y) IC
9. JO(x) +J 0 1 C(Y)=J 1 0 (x~) T T 1 J1 ( -z)

10. J0O(Y)+J10 (X)=J10 (x-y.-Y) T o T 1---~~-)

These simplifying rules are very easy 1 0 0 1 iJ 0 1Cyy7)*J 1 (Z.i
to be proven. We can prove it by iterative
method and truth table. 1 0 11 7z 0(7)

The general simplifying form is TilI J(7*7i)
discussed below. Every ternary logic1
function is always expressed as sum of I1 0 i(*~o~*)
1-implicant and 0-implicant, and any
miniterm among those is product form of i 1 1 7yz
J-operation.1

0 1T Ij J1  i (.7)
f hJm(xi); i~tl,2,...,n1 0

M4(1,0,,0,0,l'r. 0 1 0 1 0*o~*x)Jlzi

0 1 1 J 15.z*J (x.-X)]
If i is not appeared in the above 1 0

expression, then J10l(xi)=l could be 0 0 f J1 zJ 1 xx. 0 (y.y

According to J-operation~s properties 0 0 0 1 J 1I x j 1 (y.-y).J01 (Z-7)J ).~~*

and sinplfy~ng rules, we nay obtain a
general ,.pre ,sion as below: 0 0 1 x (-

f Ljl(jP TT x * T~ 0 1 1 jify. -J0 C(Xx
J1Cx)= 1 JCq) 0 1 0

' o1~ xrJ)=lr 0 1 1 J1(y- z J0 1Cx-1)j

pgqvrE r l,2,...,n 1T J (Xi5.-)

From this expression, we could see: 1 T 0 lXij~(')
a minimum term corresponds to a
multi-output J-AND-OR gate, and it is not 1I 1C~z
a NAND gate operated by J-operation. In 1 0 1 j 7-0(.)
following circuit discussion, one may see
that this complicated expression 1 0 0 .0Z-)
corresponds to a cheaper and simpler lxjly_,~
circuit. Because the characteristics of 1 0 1 lxzJ0(j)
J-AND gate is better than NAND gate, we
could replace NAND gate with J-AND gate 1 1 f 1 xy7
and J-OR gate as much as possible. Thus,
we could use least numbers of NAND gate 1 1 0 Jpx-y.J0 (Z.~)
to implement any ternary logic function 0
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1 1(x'yz) working in optimal state. And the value
of nonsymmetric resistances varies with

the number of inputs. This makes the
Implementing this decoder circuit design and manufacture very difficult.

only needs thirty J-AND gate. If J-gate The J-NOR-gate circuit principle is shown
and NAND gate are used, it needs three in Fig.3.
Jogates, three Jlgates, three Jlgates Its characteristics are much finer

and twenty seven NAND gates and twenty than NOR gate. Only one resistance is used
seven complementary gates. The number of , and no strict requirment is set for the
components is more larger. resistance value. J-NAND-gate shown in

Fig.4 is the same as discussed above.

Example 2. Simplify a three variables It is obvious that the characteris-
decision function, tics of J-AND gate or J-OR gate are

similar with J-gate, and increasing inputs

F = J (X ).J (X 2 )+J(x)J(x 3 ) will exert little influence to the circuit
111J o2 characteristics.

+Jo(Xl).Jo(x )+-Jo(X)J(x )  .. copa. to .biay.ae icut.1 2 J2 x3 +0 1 0( 2  If conventional ternary gate circuit

+0(x1 . 0(x3)+ 0(x2 ' 0 x is compared to binary gate circuit,
obviously, ternary is complex in structure

According to conventional method, it , cost high and poor steadibility. But the
can not be simplified. But, the method J-AND gate and J-OR gate put forward in
discussed in the paper can be used to this paper with simple structure and high
simplify further, noise allowance, can compete with binary

circuit.
F1 = J1 (X1 X2 )+J1 (x 1x)+J1 (X2 X3) The two outputs circuit can construct

+O'l(x x +) ( a complete system of its own. One of its
01 output is J-AND operation, the other is

+Jol(x -x3xx 3 )J-  - ) NAND operation. It is known as J-AND S
complete gate. That is to say, and ternary

J1 (J1 (x1X2 )+JI(x1 x3 )+J1 (x2X3 ) x3) logic function can be implemented by using

+0" Jl[J01 (xi~x2 2) J-AND complete gate.
The procedures of simplification for

01o 1 1 ~3)Jolx2x 2 -3)3any ternary logic function are described
as below:-.,-".

It can also be simplified as as-----

following: 1. To make use of the properties of
the J-operation, we can merge the product

F2  J(XlX2 )+Jl(Xlx3 )+Jl(X 2x 3 ) term of the given ternary logic function, -..-
so that the least number of miniterms and -'-'. .

+O-J 01 x - ix ;' )
'

+
\ ? 2 3  

01(X i~iinput variables will produce.

Karnaugh method can also obtain

J1 (x1 x2 +Xlx 3 +X2 X3 )+O.Jo1 (xi ixo5 2  a simplified expression.

+Xxxxx +xx. ) 2. The rules of simplification for
11X3 2 2 J-AND and J-OR operation are used to

further simplify the expression obtained

We can see: F and F2 are simpler above. Each miniterm uould be expressed . ..-
than F. It is mpinli that the J-AND as a standard form.
circuit and J-0R circuit possessed finecircist i anv ben cused. 3. Simplification technique must becharacteristics have been further used to -eplace AND operation

with J-AND operation. Thus, expression
IV. Discussion of circuits with a AND operation and a OR operation

can be obtained. This expression

implementation possessed the least number of gates, input
variable and wires.

The implementation plan of CMOS Afr n"'lxutni
circuits is discussed in the paper. The As for a not complex function with
conventional NAND gate circuit is shown in less variables, we can obtain a result

Fig. 1. If R I and R are symmetric, the easily through observation.

circuits are not working in optimal state

and its noise allowance is much lower than V. Conclusion
- birary CMOS circuits. To raise the noise

. allowance, nonsymmetric resistance should Using the method discussed above,
be applied. Thus, the circuit will be not only the basic ternary circuit with
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simpler structure, fine characteristics+5+v
and low cost, can be obtained, but also
the result with the least number of gates N] -1N

* and input can be produced. Because
conventional method off simplification can
be used, further simplification would be
made. Hence, the circuits and algebra R R
system are advanced.11

x x.y xx
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MICROPOWER CMOS IMPLEMENTATION OF THREE-VALUED LOGIC FUNCTIONS

0 0
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Oita-shi 870-11 Japan

ABSTRACT C "

A method for implementing ternary logic func- Ternary

tions with CMOS integrated circuits is proposed. 1 ia
This method has the significant advantage of very decoder

low static power consumption at any of three logic Binary
levels comparable to that of binary CMOS circuits, ternary - f
and also it needs no modification in the fabricat- "- encoder
ing process of the present CMOS technology. Ternary

x 0n  binary - -

1. INTRODUCTION decoder

Recently, the use of CMOS technology in the
realization of ternary ( three-valued ) logic func- Fig.1 Scheme of ternary circuits O
tions has been reported by several authors [1-61.
CMOS circuits in binary ( two-valued ) systems have
the important advantage of very low static power Then, the following relation is obtained:
dissipation at each logic level. But no general 1 2

method has been given to implement ternary systems x xi 
+ xi

having the same advantage, where + represents arithmetic sum.
This paper proposes a method for implementing Let f' ( j = 1,2 ) be a binary function of

ternary logic functions with CMOS Integrated cir- 1 2 1 2
cuits which have the advantage of very low static 2n binary variables XlXl,...,Xnx n  such that
power consumption at any of three logic levels.
This method needs no modification in the fabricat- = 1, when f J

ing process of the present CMOS technology. 0, otherwise.

2. PRELIMINARIES Therefore the ternary function f is represented as
1 2

an arithmetic sum of two binary functions f and f .
The basic scheme of ternary circuits is shown such that O

in Fig.l. The decoder converts each ternary input f - f 2
into two binary outputs and their binary comple-
ments. The encoder combines the binary outputs of 3. THE DECODER
the decoders and produces a ternary output. The

, ternary logic levels are equal to 0, 1, and 2. They The decoder generates four literals 2
correspond to the voltages -VDD, zero potential, ,x , g , literals x.

=

and V The binary logic levels are 0 and I - and x ( for simplicity, subscripts are omitted).
DD. 'DO The truth table is shown in Table 1. The decoder

and V ). circuit designed for CMOS 4007s is shown in Fig.2.

We define some functions [4,71. This circuit is a modification of a pair of CMOS

Let f = f(x .... x) be a ternary function of level shifter circuits and it is constructed
so as to have the required input voltage range

. n ternary variables. (from -V to V ) and attain very low power dissi-
DD DO

Let xi be a literal ( binary function of a pation at each logic level. The resistor R and

single ternary variable ) defined a PMOS P9 can be removed when the decoder is fabri-

1, when xI i J cated on a single chip, because they are used so
xi - that internal protection circuitry of a CMOS 4007

0, otherwise may not make the input impedance low between -VDD
where i = 1,.. .,n, J = 1,2. and zero potential (8]. The dc transfer character-

-3 is the binary complement of Xi. istics for the circuit are shown in Fig. 3. The num-i bers of transistors connected in parallel at
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PyP4,Ny and N4 give some effects on the transfer 4. THE ENODDER

characteristics, especially increasing the number
[. of transistors at P4 and N4 decreases the width of A given ternary function f(xi,..,Xn) is cor-

hysterisis. The supply currents through the decoder posed of the literals xl,X 1 ,. ..,X ,x in the en-
circuit are shown in Fig.4. Current i is caused by code The encoder circuit is shown in Fig.5. A'

the above-mentioned internal protection circuitry. a
Fig.4 shows that the supply currents are unmeasu- B' A A  B

* rable for the inputs 0, 1 and 2. Therefore, the sist of PMOS's, and NA consists of NMOS's. States
static power consumption is very low at the three of PA' PB' and NA are denoted by binary variables
logic levels. A' B'-A

PA' PB' and nA respectively, where value 1 corre-

Table I Decoder truth table sponds to closed and 0, to open.

The output y is determined by the combination •
Input Outputs of the state variables PA' PB' and nA such as

1 1 2 -2 2, when ppgnA i1x x x x x)AB
10y 1i, when TAPBnA -1

2 1 0 1 when pAPBnA .

00 10 0 1 The networks PA' PB' and NA implement binary func-

tions as follows:
PA 
= 

2, P8 l , A,?
' .'" .A-.

(V)
v .5

P3  P4 X2

p N7 1  S. 0 .. v" .

Fi.2Exermnta Neoe6irut_

-I//X2

P 1  p". p.

-VN X2

P2 I;S (V)

CMOS : NC14007 , all PHOS substrates are .'-..
connected to VDD (b)

*P 3 ,P 4 ,NyN4. two transistors are connected Fig.3 Dc transfer characteristics for the decoder""'

in parallel
0
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_. -f . . r U . r  - -. . . - - .-- - "- ' . ... . .

.DtVDD

0PA: f2

-(a) 0 S (v)

AD- x
11•

• :. --f.:
SAA:

2 0

-S (b) S (V)
I-VDD

Sp ue Fig5 Encoder circuit., .O.

(a)(Curren otalpp.1222-1233 (Dec. 1977).
d3r Koanantakool, H.T.:" implementation of ternarynete tidentity cells using C.M.O.S. integrated cir- ' - -

.Fig.4 Supply current plots for the decoder cuits ", Electron. Lett., 14, 15,pp.462-464 •
-(a) Current iD+ - total current through [4 July, S9. Prpslo enrieaiegt

~~~VDp terminals (into the decoder) []MtS."Pooa ftrayngtv ae."-o,
circuits ", Trans. IECE Japan, J61-D, 12,

(b) Current i0 - : total current through pp.940-947 (Dec. 1978).-Voo terminals ( out of the decoder): pp.-40-94 (Dc""7)
-V) er inals : Onut ofuren deco[5] Huertas, J.L. and Carmona, J.M'" Low-power

(c) Current ix : input current ternary C-HOS circuits ", Proc. 1979 Int. Symp.

Multiple-Valued Logic, pp.170-174 (May 1979).
By substitution, we obtain [6] McCluskey, E.J.:" A discussion of multiple- - Sy svalued logic circuits ", Proc. 1982 Int. Symp.

2, when f = 1 ; f - 2 Multiple-Valued Logic, pp.200-205 (May 1982).
1whenf f f 1[7] Muta, S.:" Synthesis of ternary two-stageV minimal negative gate networks ", Trans. IECE

0, when f = 1 ; f = 0. Japan, J62-D, 9, pp.592-598 (Sept. 1979).
Thus, we have [8] " Motorola CMOS integrated circuits ", p.5-3,

y " fi I .... Xn). Motorola Inc. (1978).

If the number of elements of the networks is
very large, we may put a binary CMOS stage between
the decoders and the encoder [2,5,6].

5. CONCLUSION

A new method for implementing ternary logic
functions with CMS integrated circuits has been
presented. It exhibits the significant advantage of
very low static power consumption comparable to
that of binary CMOS circuits.

We intend to extend this method to 4-valued
circuits.
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O.W POWER 2-OF-3-VALUED CMOS SELF-CHECKING CIRCUITS

ce-.

Hu, Mou*+' Smith, K. C.' Mouftah, H. T"

Abstract In this paper two new schemes to implement 2-
of-3-valued circuits based on a low power CMOS

Two new schemes for the implementation of technology (5) are proposed. An "open-short-
s self-checking binary logic systems are proposed conducting" fault model for these CMOS circuits is

which utilize low power 2-of-3-valued CMOS logic developed. All of the single faults in these cir-
circuits. While 2-of-3-valued circuits are in- cuits are studied and classified into four types:
herently ternary, only two of their three logic mid-seeking, quasi-mid-seeking, mid-rejecting, and S
values are used in normal operation. The third masked. The conclusions made for earlier 2-of-3-
(middle) logic value is used for self-checking valued circuits demonstrated in (1) and (4) still
and testing. To evaluate these circuits an apply for these new 2-of-3-valued implementations.
0open-short-conducting' fault model for CMOS Finally, a comparison between schemes is made on
circuits is developed. All the single faults in the basis of the size of each fault set.
these circuits are studied and classified into
four types, named mid-seeking, quasi-mid-seeking, II. The 2-of-3-Valued Circuits
mid-rejecting, and masked. The conclusions -

reached for 2-of-3-valued circuits in previous The first scheme for implementing 2-of-3-valu-
papers apply to these new circuits as well. ed circuits was proposed in (1). These circuits
Finally a comparison between implementation are ternary logic circuits working in binary mode
schemes is made on the basis of the size of the utilizing the two extreme logic values. The middle
fault set each produces. logic value is available for self-checking and

testing.

I. Introduction 
t

In this section some important concepts and
One important application of multiple-valued conclusions for 2-of-3-valued circuits will be

logic is the creation of self-checking binary reviewed. They are extracted from the original

logic systems using ternary circuits (1), (2), derivations in (1) and (4).
* 0I. In (1), a particular kind of ternary circuit

with special properties was proposed. For this For compatibility with binary logic, 2-of-3-

circuit, called a 2-of-3-valued circuit, two of valued logic operators are defined in what follows.

the three logic values provided are used as normal In each definition, variables x, ykQ, where Q is
binary working values, while the surplus third the set of logic values, Q={O,J, 1 

. let N=O,It
logic value (the middle value) is used for self- and E={i} be disjoint subsets of Q.
checking and testing. In (1), 2-of-3-valued
combinational systems were studied. Reference (4) Definition I
extended the study to 2-of-3-valued synchronous
sequential systems. There it was proved that the The Negation operator is defined as: ..
use of 2-of-3-valued circuits can improve system
reliability and simplify fault detection pro- x~l-x, •
cedures.

where "-" is arithmetic subtraction. The truth
* Stable of the Negation operator is given in Table 1.

Shanghai, China The circuit implementing the Negation operator will

+be called an Inverter. .. .
+ University of Toronto, Toronto, Ontario, bcaldnnvre

Canada
x x•

Queen's University, Kingston, Ontario,
Canada 0 1

1 0 - 7

Table 1
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Definition 2

The NAND operator is defined as: VXEQ
m  

G(X, -)E.

x-y=l-min(x,y),

where "min(x,y)" implies the choice of the smaller In other words, for a gate having a mid-

of x and y. The truth table of the NAN) is given rejecting fault, the output will never be [

in Table 2.

x y XY Dtfinition 6

0 0 1 A fault is a masked fault, if : .
0 1
0 1 VfQm C(,4)=Gx,). 0

i 0 1
In other words, for a gate having a masked

1 fault, the output remains correct.
1 0 1
1 Now some definitions related to the self-
I 1 0 checking concept will be provided. For these defi-

nitions, assume G is a logic circuit with m inputs

Table 2 and n outputs. F is the set of faults considered.

Note from Tables 1 and 2 that when the input Definition 7
lies in N={0,1} the truth tables revert to those
of conventional binary algebra. A logic circuit G is self-testing for F, if

In 2-of-3-valued circuits, all single faults VkF 2XcN
m 

G(X,4) Nn.
can be classified as one of four types: mid-
seeking, quasi-mid-seeking, mid-rejecting, and That is, for all considered faults, there
masked. Definitions follow: exists at least one normal input vector, such that

the output vector of the circuit is abnormal.
Assume that the number of inputs of a circuit

C is m. With an input vector X, and a fault f, Definition 8
the output of the circuit G is denoted as G(X, ).
Correspondingly the output of fault-free circuit A logic circuit G is fault secure for F, if
G is denoted as G(X,6). mn

V-cF VXcNm{G(x,-)=G(x, )}V{G(X,-d Nn.
Definition 3

That is, for all faults considered, and for
A fault is a mid-seeking fault if all normal input vectors, the output vectc- of the

circuit is either correct or abnormal.

{RXcNmG(X, )E}A{VXEQ
m
[G(X,)=G(X,6)VG(X,)E]. Definition 9

In other words, for a mid-seeking fault, two condi- A logic circuit is totally self-checking for
tions should be met simultaneously: first that F, if
there exists at least one normal input vector, such
that the output of the faulty gate is ; and i) it is self-testing for F, and
second, that for all possible input vectors, the 2) it is fault secure for F.

output of the faulty gate is either correct or .
As provided in (1), for mid-seeking and quasi-

Definition 4 mid-seeking faults, the 2-of-3-valued combinational 0

system satisfies the following theorem:
A fault f is a quasi-mid-seeking fault, if

Theorem 1

{gx N.G(X,-)E}A{ xcQm[G(X,-)#C(X,6)AC(x,4) E]}.
For any mid-seeking and quasi-mid-seeking

Note here, that for a quasi-mid-seeking fault, fault, any irredundant combinational logic network
there are also two conditions. The first condition which consists of 2-of-3-valued Inverters and NAND
is the same as that for a mid-seeking fault. The gates is totally self-checking.
second condition is the negation of the second
condition for a mid-seeking fault. As proved in (4), for mid-seeking faults in a

2-of-3-valued synchronous sequential system the
Definition 5 following theorem applies:

A fault # is a mid-rejecting fault, if
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Theorem 2

If both output Z and internal state Y (or Z
* and next-state W) are observable, then for any mid-p

seeking fault, a 2-of-3-valued synchronous sequen-
tial machine is totally self-checking. -

In (1), it was also proved that a 2-of-3- • 0
* valued combinational system is fault secure for all

masked faults, and easily testable for all mid-
rejecting faults.

Similarly, a 2-of-3-valued synchronous sequen-

tial system is fault secure for all masked faults.However in a 2-of-3-valued synchronous sequential

system both quasi-mid-seeking and mid-rejecting
faults should be treated as hardcore and must be
tested off-line.

IlII. Low Power CMOS 2-of-3-Valued Circuits _-V

In this section, 2 schemes for the implemen-
tation of low power CMOS 2-of-3-valued circuits •
will be proposed. They are modified versions of a Fig. 2
low power CMOS ternary family introduced earlier
(5). Fig. 2 shows a 2-of-3-valued NAND gate. The

Scheme 1 working principle is similar to that of the Inver-
ter. The circuit in Fig. 2 can be augmented with

Figure 1 is a 2-of-3-valued inverter utilizing additional inputs.

a centre-tapped power supply. The input and output Scheme 2
can take on values -V, 0, and +V. These correspond
to logic values 0, , and i respectively. Fig. 3 is a second 2-of-3-valued Inverter,

For proper operation it is necessary to utilizing only two power supply connections. Notethat the connection of R. and R^ differs from that "
arrange that the power supplies (-V and +V) and the 2n t o.s R resul 2 pow er s r omuthat

thresholds of the MOSFETs (V ) meet the following in Fog. 1. As a result the power supply require-

criteria: T ment is reduced from a need for matched supplies to "
a requirement for only a single one. However, in •

V<V T<2V. this circuit R, and R2 have to be matched.

With input X=-V PThe required relationship between V and V is

Withinpt ~-V~P conducts, N cuts off, and theT
output becomes x=+V. When x=O, both P and N cut VVT< V.
off at which time the output takes on value 0 as T
supplied through R_ and R 2 . When X=+V, P cutts ..1 to The operation of this circuit is similar to that of
off, N conducts, and the output becomes X=-V. In the circuit of Fig. 1. The corresponding NAND gate
this circuit, 2 resistors, R and R , are used in
parallel to improve the fault deteciion capability, is show in Fig. 4

7 '
NNR

X- 
vl

Fig. 1 Fig. 3
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+V D

X"I.

NJ

-' Ifb°- Cause Effect. '

D open SD open

S open SD open

G open SD open

Fig. 4 or SD conducting

DCshort SD conducting

GS short SD open
Each of these gates has been built and tested SD short SD short

using 4007, 4069, and 4011 IC's with power supply

V=1V and RI=R 2=50K.

IV. Fault Analysis Fig. 5

Before we proceed to fault analysis it is With the fault model described, the fault

necessary to establish a fault model: first of all characteristics of the new 2-of-3-valued circuits

the conventional single fault assumption is adopted, can be evaluated. The results of analysis (and

that is, that at any instant there exists at most experimental verification) are shown in Tables 3, 4,

one fault. 5, and 6, for Inverter 1, Inverter 2, NAND 1, and

NAND 2, respectively.

It is considered that a fault may be either a.. ..
resistor fault or a transistor fault. A resistor n these tables, the notation "S" is used to

fault results in either a resistor short condition denote a resistor short or a transistor SD short,
or a resistor open condition. A transistor fault "0" is used to denote a resistor open or a transi- "-"

results in one of the following three conditions: stor SD open, and "C" is used to denote a transi-
source-drain (SD) shorted, SD open, or SD always stor which is always conducting. ... '...

conducting. Further such a fault is assumed to. .

derive from explicit device interconnection fail-."...
ures. As shown by Fig. 5, if any one of the con- P mid-seeking mid-rejecting .asked ... -
nections S, D, and G is open or if any two of them[ o No Rt i s R s Ns P c Nc C L 10 2

are shorted, the equivalent effect will be one of

the three fault conditions: SD short, SD open, or0 1 10 1 1 1
SD always conducting*

. 
The two conditions of SD - 10

short and SD always conducting are distinguished 1 0 0 1 1 0 1 0 0 0 .. .. .- l

in view of the fact that for SD always conducting.-.-
the equivalent SD resistance is not zero. Table 3

. id-seeking mid-jecting

* It ha s to be no ted tha t the re cou ld be a fou rth P" N, R i s R 2S 1, N , "- 11 1 , R0 - ' , .
condition, that is, SD always cut off. However .. . ... . .. . .... .----
in this case the current is so small that it can i

be considered as zero. Thus SD always cut off is 0I': 1 0 o 0 1.. L""''"'

considered equivalent to SD open. 1 0l 0 1 0 1 0 1 0 0 0 . .

Table 4

6-
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Y I N!' P,, NJ N1 N IS NI NI N2 N2 VI PZ PI P2 RI R 2

0' ,-------- To provide a meaningful compario oI th t-

o 1 tive measures appropriate tu 2-of-3-d. le -if . I

011 ; are required.

12 I 4 I I 4 4 I I I I I I I I I ISuch has been the attempt by Lu il if)), In
III)which some measures fur self-checking ,ircuIits it,

defined. However theyv are nout oili ted I ur 
2

-,)1 - I

Table 5 valued circuits. Thus a different appr-i it ba-
on the size of the four faulIt sets has be, n adopt-

- -l'5lO0. ,I.'01~ed. For each fault set, aI self-checking I;Lactr I
II SI'I'S NN NS F'I' I IC2~ ~t2 I '1I" I'.22 is assigned. For mid-seeking fau11Ls, tlu' scl It

- checking fact orC,, takes valuLe I sinkc then r, i 0
o IlI II I I I I I II I (1I I is totally self-checking. likewise, for mid-

(0) III II J 10 1 rejectint, faults, the self-checkintg laute, .I
401 1

4 4 4 4 4 4 4 1 I I 1 20 1 hbe 0 since tile, circuit is lot sell-,he, kic " [
() ()Ij I I quasi-mid-seeking faul ts, tile, Se f- il' kill'!I t,

! 4 4I I I 12 5 C takes on a valu te small Ier than I. Vt I l I~u
0. 0 0 0 05 0 0 (1, 00 10 0 q

Table 6

AjFor masked fal tos, the val I lo t th it, k
Furthermore, following Definitions 3, 4, 5, checking factor C va r ies Irum a neia t I%- viit

and 6, all single faults have been classified into (see below) to a musitive value les, th idl
one of the four types. ing on tile sitliation. It ill, s0001101 I- A !in c "

envtiiinment in which periudi( It-n-tt o. I
As mentioned in Section IT, for mid-seeking impossible and tile mission time, 1'. t !,,, I

faults, both 2-of-3-valued combinational systems masked faults are preferred tI, mid-l- t I I i i I i,
and 2-of-I-valued synchronous sequential systems and quasi-mid-seeking faults, SM111 tll% 11 1 '1

are totally self-checking. Accordingly our goal is cause an error at the output. ThI.,.k
to arrange to make the set of mid-seeking fautts as other hand, if periodic Iftlfin 1 I I I''

*large as possible. and the mission time is qulite long
4 

th,1 mid-,

For uasimid-eekng fults ony th 2-o-3- ing and quasi-mid-seeking failt, Ire- ;I I, 10,1
Forquai-md-sekig ful s, nlythe2-o-3- because masked faults are- more iti 'iiIt t, t,

valued combinational system is totally self-checking, even in an off-line manner and be. 11, tll, i- OS

In a 2-of-I-valued synchronous sequential system, lation of masked faults will uli mitel. I.
quasi-mid-seeking fauilts must be treated as hard- errors. In this Situation, C r, q rII i;, t

1 
il'

core. On the other hand, in both the combinational it taikes on a negative value."m
system and synchronous sequential system mid-
rejecting faults must be tested off-line. Thus Now let us compare the twu s~hleroe;'1.

*quasi-mid-seeking faults are preferable to mid- in Section 111.
* rejecting faults.

For tile case in whici. tiii p,,I0uI '1i.
-- Since masked faults do not produce errors test is impossible and tilt' MiSSiul t Ir.le 1" I.

immediately at the system output, they are undetect- short, the following values are assiclei: i
ible by conventional means. They can however be C =0.6, C = 0.3, and C =0. Note thait ti-e it,, ,I
detected using other techniques utilizing power vmue a somwa ariirr
supply current measurement. Since the accumulation V osm a rtay

of masked faults will ultimately produce errors, The seIf -c hec k ing f a ItuLr l1V 11 t I-l II krI I t
they must be analysed carefully. cuit is. N N N+ N

In the inverter shown in Fig. 1, there are two N q N N
masked faults, R0and R 2'If only one of them the total number, N Sis t il mid-, -1 k in Il-i, t

has occurred, Ithsytmcnius oopre number,' N qmis the qklaii-i-ok11' ltI1m0t

correctly. However if both R, and R occur, and N is the mid-reject ing tault iliimbci ir:1 %
20 mrM

input x=J is applied, then oi pt x becomes floating masked fault nulmber. '

(indeterminate) instead of 1. When the circuit is For Inverter 1, N=10 Nl , N N
under test, this constitutes an error. Furthermore

this will cause the circuit to lose its self-testing Thlus, C=lx4-+ () + 0 +4'0. 6x- 0
ability. In other words, if a third fault occurs, 10 1II1
even a mid-seeking fault, the system is not self- For Inverter 2, N-10l, N: 2, N -0, N S. , .IT I,'

testing. S
2

Thus,( l=x-- +4 II + + 0)1
For the NAND gate shown in Fig. 2, the situa- 0' I

*tion is similar. However the inverter shown in Fig. Fur NAND) I , N -16, N-hb, N -'4, N -. t, e
J, and the NAND gate shoown in Fig. 4, have no masked S q~'r l

faults.6
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For NAND 2, N=16, NS=4, N =4, N =8, and Nm=O. 5) H.T. Mouftah and K.C. Smith, "Injected Voltage
q r Low Power CMOS for Three-Valued Logic", submitted

Thus, CX- 4 + 3xL+O+O 0,325 for publication.
16

6) D.J. Lu, "Quantitative Measures and Figure ofObviously on this basis, scheme 1 is better Merit for Self-Checking Circuits", CRC Technical

t h a n s c h e m e 2 w h e n o f f -l i n e t e s t i s i m p o s s i b l e a n d e r t o . 8 1 -8 , e S t a n f i r si t y A u g 1 9 8 1 .

mission time is quite short. Report No. 81-8, Stanford University Aug. 1981.

However, if periodic off-line test is
possible and the mission time is quite long, the
following values can be assigned: CS=l, C q=0.3,

C =0, and C =-0.3 in which case: For Inverter 1,
r m

C=Ix4+0+0+ (-0.3)x-2= 0.34

For Inverter 2,

2
C=Ix2+O+O +0 = 0.2.

For the NAND I,

6 4 2C=lx +o. 3x--0.3x- 41

For the NAND 2,

4 4C=lx +O .3x4++O= 0.325.

Thus even for this situation, scueme I is
still better than scheme 2. However it should be S
noted that scheme 2 requires only a single power
supply. As well scheme 2 has no masked faults.
Thus in these respects scheme 2 may be preferred to
scheme i.

II. Conclusions

In this paper, the important concepts of
2-of-3-valued circuits are reviewed and two new
schemes for implementing 2-of-3-valued circuits
are proposed. An "open-short-conducting" fault
model is developed. Fault analysis is persued
using this model. Finally a quantitative measure
based on the size of each fault set is proposed.
Two new schemes are compared using this method.
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I'SYNTHESIS OF MULTIVALUED LOGIC CIRCUITS

USING HYPERPLANES

Tatsuki Watanabe and Masayuki Matsumoto

0Department of Electrical Engineering, Toyo University~~~Kawagoe-Shi, Japan-"- "

Abstruct of time one out of R integer values from the set
This paper presents a method for synthesizing Q = (0, 1, ..., R-1}.

multivalued logic functions composed of hyper- 2) Logical Operations:
planes which can be represented by multivalued logical sum x V y = max(x, y)
multithreshold functions. In this method, multi- logical product x A y = min(x,
valued logic functions can be synthesized using the 3) R-valued (R-l)-threshold function g9_1 (e)
operators algebraic + , - and • as well as logical is defined as:
max and min and no operators to yield binary values R
only is used. The theorem for such operations is gR-I

(e) 
= rj, (tj < e < tj+l,

presented. Simplified representations of functions j = 0, 1, ..., R-1) (I)
can easily be obtained utilizing the expressions Where e = real-valued variable called exitation
of hyperplanes. During the synthesizing process the represented as (2) below,
various techniques of usual algebra and geometry r<
are used when required. As for the circuit imple- r. E Q, r <
mentation, the "one operation amplifier per one
function* method is presented. tj 

= 
(rj 1 + rj)/2, (j = 1, .. , R-1);

tO  ro; tR

I. Introduction n-l rR-l"

The various methods for designing multi- e =JO0 wii + wn (2)
valued logic functions in which the linear summa- where
tion function of multithreshold elements is uti- xi = i-th input variable .*
lized have been studied by many authors [I]-[101,
[12],[13]. Most of them make extensive use of the wiwn = integer valued constant (either nega-

operators such as literal, inhibit or inverter tive or positive).
which yield binary values only to establish closed Definition 1: As e expressed by (2) represents
intervals in the multivalued logic space. M. Davio a hyperplane in the n+l dimensional Euclidian
and J.P. Deschamps [8] employed the truncated dif- space provided that the variables xi are of usual
ferences to realize "slopes" for values assumed by real numbers, we define, in this paper, gR (e) .. --- "
a function. Some authors [7],[12],[13] utilized hy- expressed by (1) as a hyperplane (HP) in nil)-di- S
perplanes for separation of a function, but hyper- mensional space Qn+l where gR l(e) takes values on

the n+lst coordinate axis. R
planes are differently used in this paper. The
method presented in this paper is to synthesize The functional model of a threshold element
multivalued logic functions in which hyperplanes is shown in Fig. 1. In this paper, we employ the

are not used for separation, but used as the ele- two functions of threshold elements, algebraic
ments of which the expressions of the functions are summation and threshold detection. The exitation e
composed. Algebraic + , - and • as well as max and in Fig. 1 is represented by (2). Whete the alge-
min are used as the operators. This method has a braic operators appear together with the logical
capability to yield simplified expressions of func- operators the order of the operations for them is
tions since the expressions of hyperplanes can be to be specified by parentheses as required. Fur-
used for identifying slopes of values assumed by a thermore, the function k = 1 (e) is simply -

function as well as for realizing the expression of represented by the algebraic expression in paren--
the function. The techniques of usual algebra and theses withn-lsubscrpt t like
geometry can be utilized when necessary. As for the Pk = J wixi + wn)t (3)
circuit implementation, the "one operation ampli- Since such HP's expressed as (3) are of course •
fier per one function method" is also presented. variables in the space Q, they can be used as ele-

II. Definitions and Notations ments for the MV operations mentioned above. Thefollowing theorem holds.

In this paper, a switching algebra which has Theorem 1: Let x, y and z be multivalued var-
the following characteristics is employed. iables. The following equations hold.

1) Variables: A"(."-(l-
Variables x, y, ... can assume at any instant {x + (y A z) t  (x + Y)t A (x + z)t  (1A)

72
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{x + (y V z)It
= (x + Y) V (y + z) (IB) P =(3x0 + 2x -x 2 + w3) t  (5)

tt t 03t

Cx - (y A z)}t = (x - Y) \ (x - z) (iO) As the HP assumes value 0 at the vertex (1,1,1),
t t t we can get -4 for w3.

{x - (ySuppose two HP's P0 and P1 in Qfl+l having dif- -.

t t ferent slopes. Naturally, they intersect each other
1(y A z) - x}t = (y - x)t A (z - x) (1E) by a n-dimensional boundary simplex. P shw

= Example 2: The planar regions P; and Pi shown
z) x)=(y x V (z - x) (lF) in Fig. 3 whose extensions are the planes PO and P1

(y - t ( t  respectively connect by a line segment. In this

Proof: Though only the proof for (IA) is shown case, we can say that P; and P1 are on the logical
product PO \ P.below, the others can also be proven in the same pr 0 A Imanner. V

If y z, thenIV. Covers of Functions by HP's

x + (y A W)t = (x + y) (4A n-variable R-valued switching function
t t f(x0 , "', xn_.) can be represented by a R-valued

On the other hand, truth table. As an example, a truth table in coor-

(x +y) < (x+Z) dinate representation for a two-variable four-val-
t ued function is given in Fig. 5.

x = Definition 2: When a function f has an..(x + Y)t A (x + z)t =(x + Y)t expression composed of m HP's PO, PI, "' ' Pm-i as
lx + (y A z)}t. tits elements, we call the set (Po, Pl , Pm-l}

= (x+ (yA Wta cover of the function f.
For y > z, the proof can also be made in the same The following theorem holds.
manner as above. Furthermore, we can confirm those Theorem 2: At least one cover always exists
equations in Theorem 1 by the method of truth for a multivalued function f specified by any truth
tables as in the case of Boolean algebra. table.

Proof: It is well known that the switching
III. Representations of HP's and algebra which includes the operators literal, max

Their Intersections and min is functionally complete. Since we can

The n-dimensional R-valued product space of n realize an equivalent function to the operator lit-
eral by a logical product of HP's with steep slopes

input variables xo, xl, ..., xnl with values from and the algebra in this paper employs the operators
Q is denoted as Qn. For easy expressions, orthogo- max and m-, the subject has been proven.
nal axes are assumed for the coordinate systems Here, we i uce the flon enition:throghou thi papr. Lt V (x0 Xl,... n~l)Here, we introduce the following definition: '-"."I
throughout this paper. Let V = (xO, xl, * Xn-l) Definition 3: Let the space Qn be divided in-
be any point, "vertex", in Qn and f(V) a function
which assumes values on the n+lst axts y. to a number of n-dimensional simplices Si without

(3) represents a HP in the space Qn+ whose coordi- any gap and overlapping among them and also, let
all the vertices to which the values taken by a

and y. Generally, given function f(x0 , xl, ..., xn_I) are assigned be
n+l values assigned to each of n+l vertices in Qincluded as the vertices of some of such Si .
i.e., each of the vertices of a n-dimensional i u at v c o m f c-
"simplex" (in terminology of mathematics [15]), it In this case, the set of Si in Qn constitute a

is immediate to determine a hyperplane (HP) Pk "complex". In this paper, the set {Pi} which con-
Qn+l in sists of all the HP's determined by the values

Qn.Some simplices in Qn n = 1, 2, 3, are shown asindtthveicsosuhSisald
in Fig. 2. assigned to thevertices of such Si 

s 
called a

Let the HP determined by the assigned values cover complex (CCOM) of the function f.
As far as our experiences are concerned, it

to a simplex Sk be denoted as Pk and the corre- s to be u thatreca conte ned, ion
sponding planar region included in Pk PJ" As exam- seems to be true that we can synthesize a function

sponding using only the HP's within a CCOM [Pi
} 

of the func-
ples, So and l in Q

2 
and the corresponding planar tion f. Such a function f may have a logical sum of

regions P6 and Pi in Q
2
+1 are shown in Fig. 3.

In this paper, if a simplex is rectangular equi- products (or a logical product of sums) form in

lateral concerning a certain vertex, we call it a which the expressions of the HP's are used as the

rectangular equilateral simplex (RELS). elements.

The coefficients wi, i = 0, 1, ..., n, in the Example 3: In Fig. 6, the RELS's, i.e., the
rectangular equilateral triangles with the respec-expression (3) can be determined solving the simul- rive names of the HPsPi to be determined by the --.

taneous linear equations whose unknowns are wo, wl, va mes of thei's Pjetce dre d "the
values assigned to their vertices are shown and• wn. When the simplex by which a HP is to be

determined is a RELS, the procedure to determine these RELS's form a CCOM for the function f.
the expression (3) can be simplified as each of the
coefficients wi, i = 0, .-., n-l, can be immediate- V. Design Procedure
ly obtained as the slope of the HP along the corre- In this section, a procedure for synthesizing
sponding lateral edge of the RELS. functions whicn satisfy the given truth tables

Example 1: A 3-dimentional RELS VnV1 V2V3 with using HP's as the elements is presented. Only inte-
the values to be taken by a HP in Q

3
+l is shown in ger slopes are used for HP's. The procedure follows

Fig. 4. From these values, wi, i = 0, 1, 2, in (3) the steps given below.
which represent the slopes of the HP along the re- I) Given an incompletely specified troth table,
spective axes xi are immediately obtained as 3, 2 assign suitable values to the DON'T CARE vertices
and -1 respectively. Thus, P is represented as: of the RELS's each having at least one vertex of 0
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S .

assigned value 0 taking the following procedure for 4) Checking the entries in the column c, find
each of the DON'T CARE vertices. Pick up one of the HP's or the product terms which include the

- such DON'T CARE vertices as above. Suppose a line maximum number of the vertices having the same val-
" determined by one of the pairs of the assigned val- ues as f. If there exist more than one such HP's or

ues along one of the axes on which the DON'T CARE products, the following steps are to be taken for
vertex is located If the vertices of the said pair each of them. At this stage, the simplicity of ex-
of values are adjacent to the DON'T CARE vertex and pressions is also to be taken into consideration.
the line takes an integer value at the DON'T CARE thus, we select one of such HP's or products and
vertex, such value is adopted for a candidate for hereafter, we call them preliminary covers (PCOV's)
the value to be assigned to the DON'T CARE vertex, of f.
If there is no such line, the value 0 which is the Example 7: According to the above procedure,
same as one of the assigned values to the said the product P1 A P6 in Table I is selected as the
RELS, may be assigned to the DON'T CARE vertex. Let PCOV.
a vertex in Qn be denoted as xo, xl, ..., Xnl). 5) Produce a new row named as f0 in the truth

Example 4: In the truth table given in Fig.5, table such that its values for the respective ver-
three lines determined by the pair of the values tices are the same as those of f exept that the
assigned to the vertices (l,l),(2,l); (3,0),(3,2); values of the PCOV are assigned to the DON'T CARE
(1,1),(1,2) indicated in bold lines in Fig. 7 are vertices of f. Produce all the RELS's for fo such
found to have the integer slopes which may provide that at least one vertex of each of them has the
the DON'T CARE vertices (0,1), (3,1) and (1,0) different value from that of the PCOV.
around the vertices (2,0) or (0,2) with the values Example 8: Refering to the PCOV obtained in
to be assigned. Notice that there are two such val- Example 7, the row for fo having the different val-
ues for the vertex (3,1) as indicated in Fig. 7. ues from those of the PCOV at the vertices (0,0)
Each of these values are used in the following and (3,3) is added to Table I. The truth tables for
steps. fo are reproduced in coodinate representation in

2) Produce all the RELS's in Qn such that each Fig. 8(a) and (b) and those vertices with the dif-
of them has at least one vertex with the assigned ferent values from those of the PCOV are encircled.
value 0 (or the minimal value in the truth table). With respect to such vertices, all the rectangular
The HP's determined by those RELS's are the candi- equilateral triangles with the names of the corre-
dates for the elements to compose the product terms sponding HP's in them are shown in Fig. 8. 9
in the representation of f, because each product 6) Determine the expressions for the HP's ob-
term of f need take the value 0 at those vertices tained in step 5 and add their rows to Table I.
to which the value 0 is assigned. Fill the entries of c, 1 and g for the new rows. At

Example 5: In Fig.7(a) and (b), the rectangu- this stage, at least one CCOM of the function f
lar equilateral triangls in which the names of the composed of the new HP's and those included in the
planes to be determined are indicated are the PCOV has already been established. As stated in
RELS's which has at least one vertex with the section IV, we can usually ("always" from our expe- --
assigned value 0. riences) produce at least one expression for the

3) Determine each expression of the HP's ached- function f composed of the HP's included in the
uled in step 2. The simplification is automatically CCOM. For convenience, we define the following two
made at this stage because the same expression is types for the vertices where fo has the different
given for the same HP even if the RELS's are dif- values from the PCOV.
ferent and consider that this procedure corresponds Type 1: The vertices where f0 has larger val-
to the transfer cover selection algorithm [11] or ues than those of the PCOV.
that of the direct cover method [14]. Produce the Type 2: The vertices where fo has less values
truth table including the rows of those HP's as than those of the PCOV. S
well as the function f. If HP's which take value 0 Refering to the entries for c, 1 and g, select
for only a part of the vertices with the assigned one of the HP's having the same values as fo for
value 0 to f are included in the HP's produced in the type 1 vertices and less values for the other
step 2, using those HP's produce all the logical vertices that have the assigned values and one of
products which takes value 0 for all the vertices the HP's having the same values as fo for the type
with the assigned value 0 to f. To the truth table, 2 vertices and larger values for the other vertices
add the rows for such product terms and the columns that have the assigned values. In this case the
c, 1 and g which are to indicate the numbers of the simplicity of the expressions is to be taken into
vertices having the same values as f, less values account. If there is no such HP's, produce, using
than f and greater values than f respectively, the new rows, the logical products or sums which

Example 6: The truth table which includes the have the sam- characteristics as the HP's mentioned
rows of the planes obtained in Example 5 and the above. For this, any rows in Table I can be used as
nine product terms produced by taking all the com- well.
binations of the HP's with the assigned value 0 at Make the logical sum of the PCOV and the
the vertex (2,0) and those with the assigned value selected HP's or the products produc-d for the type
0 at the vertex (0,2) are shown in Table I. Such 1 vertices and further, produce the logical product
product terms can easily be produced as follows: of such sum with the selected HP's or the products

ov1 v ) A (P5 V 6  3 = produced for the type 2 vertices so that we can get
the expression for f0 .

P0A P5) V (P0 A P6) V......V (Q0 AQ 3) w Example 9: Continuing Example 8, we begin
(Pwith the vertex (0,0) where f0 has a larger value

The columns c, 1 and g are also added, than the PCOV. Refering to the values in the en-
tries for c, 1 and g, we can take Q5 or produce the •
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product P7 A P8 for the vertex (0,0) and Q6 or circuits we can use the "one operation amplifier
P9 V P10 for the vertex (3,3). Because of simplic- per one function" method as presented below.
ity, we select here the HP's instead of the prod- Applying Theorem 1, a function composed of
ucts. In order to provide the vertex (0,0) with the HP's can be converted into a form of subtraction of
value 1, we make the logical sum of the PCOV and Q5 one of two expressions having no algebraic - from .
which has the value 1 at (0,0). For the vertex the other so that we can realize the function using
(3,3) where fo has a less value than the PCOV, we only one operation amplifier. As an example, the " '
produce the product of the sum obtained above with expression of (8) can be converted as:
Q6 according to the procedure. We obtain the fol- f f (S -4) v {(s) A(12-3s) -
lowing expression: t t t

f= {(P1A P6) V Q5 I A Q6 = (P A P6 A Q6
) V Q5= I[(S - 4 + 4 + 3S) V ((S + 4 + 3S) A

{(x0 + 2x1 -2)t A(2x0 + x1 -2) t A (12 - 3S + 4 + 3S))] - (4 + 3S) t

(13 - 2x0 - 2x1)t} V (1 - x0 - xl) (6) = ([(4S) V ((4S + 4) A 161] - (4 + 3S)) (9)

7) Since it is not proven yet that we can al- For simplicity of demonstration, assuming S as one
ways produce an expression for f from such a CCOM variable which can take one of values 0 - 7, we can
as stated above, we have to say that we can use the get the circuit in Fig. 12 for eq.(9) employing the
method suggested in the proof of Theorem 2 or principles of the usual addition or subtraction
repeat the steps 5 and 6 using the expression ob- circuits with operation amplifiers. In Fig. 12, the
taned in step 6 above as the new PCOV to conclude feed-back circuit with r12 and r1 3 is to compen-
the process. state the deviations caused by the circuits for A

8) Simplify the obtained expression applying and V operations realized by the transistors named
Theorem 1 if any. as To and T1 and those T3 and T4 respectively. This

9) If there remain the other PCOV's obtained in circuit can produce such exact outputs as to need
step 4, take the same steps (5) -(8) for them so no level-regeneration circuit if the inputs are
that we can get the other expressions for f. correct. Notice that the outmost parentheses with

Example 10: Applying (1A) in Theorem 1 to the sub. t of (9) is deleted in Fig. 12. 6
expression of f0 obtained in Example 9,

S + 
2x 2) + x 2) VIII. Conclusion

1 6= (x 0  (2x The developed method to implement multivalued

= [{(x 0 + 2x ) A (2x0 + X)} - 2]t  switching functions allows comparatively simple
synthesizing procedure including simplification of

= {x0 + xI - 2 + (xA0  x)} expressions as stated in 3) of section V. Though
only the sum of products form has been considered,

Thus, we get the following expression: those of product of sums form can be treated in the

similar manner. It is considered that the circuitsfo ={x + 
xI - 2 + (x0 l)}t A obtained through the procedure described in this

S+ 2(6 - x0  V (i - x0  X .  (7) paper may have fine transient characteristics for
02 x - 0  1 t fast operations since the functions are composed of

"slopes".
VI. Functions with Several Variables
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P-VALUED INPUT, Q-VALUED OUTPUT THRESHOLD LOGIC
AND

ITS APPLICATION TO THE SYNTHESIS OF P-VALUED LOGICAL NETWORKS -

by Takahiro HAGA* and Teruo FUKUMURA**

Education Center for Information Processing, Nagoya University
•* Faculty of Engineering, Nagoya University

Furo-cho, Chikusa-ku, Nagoya-shi, JAPAN 464

Abstract 2. Some Properties of the p-Valued

Threshold Logic"

*In this paper, we describe an application of

the p-valuej input, q-valued output threshold In the p-valued threshold logic, one p-valued
elements (2fqlp, 

3
5p), namely (p,q)-logical function may be a threshold function or not,

elements, to the synthesis of the p-valued logical depending on the p input values a <,<...<p, which 0

networks. The idea of the (p,q)-logic stems from
the considerations that on the threshold logic the correspond physically to the voltages, etc. By
extension of the input value to the many-valued this property, whenever the physical values
one is quite easy, while a similar extension representing the logical values are changed, p-

concerning outputs is very difficult. It is shown valued threshold network realizing a given p-

that under some restricted situation, the optimum valued function must be, in general, redesigned.

value q* of q can be determined to construct the One method to solve such a problem is to use
minimum cost p-valued network using the (pq)- only the universal threshold elements which are •threshold elements, threshold elements for any {ai). Among the

universal threshold elements, especially, the
elements named p-adic elements are important.

1. Introduction

2.1 Selection of the Logical Value
The threshold elements will be useful for the

realization of the many-valued logic, because the In the p-valued logical function f=f(x|,'-',
inputs of the threshold elements can be very easily Xn) , each variable is assumed to take one of the
extended to the analog-valued case and hence to the values belonging to the set of {el, },ap} and
many-valued case. But the extension of the outputs also its output values are assumed to be a value
of the threshold elements to the many-valued case in the same {,.,p, where al .... <a . An n-
is difficult because the number of necessary argument p-valued function takes its vaues on pn

threshold monotonically increases. verticies (x1,-,xn and these verticies are
In this paper, we propose use of the p-valued properly numbered by p.

input, q-valued output threshold elements (called [Definition i Let a set of p logical values be S
(p,q)-threshold elements) to construct the p-valued denoted by Lp. Lp satisfying (1) is called
logical networks, where 2tqtp, 3tp and the q
output-values for each element are variously symmetrical logical value and represented byp
selected among the p values. Some p-valued logical =01 +cp: 2 +_ 1 .. 0 (1)
elements are, of course, necessary at least as an
output element of the p-valued logical network. When ai+i-

0
i is equal to each other for any i in

Min-, max-element, or an analog-adder will be the SP, the set of such logical values is represented
candidate for such a p-valued logical element.

An optimum value q* can be determined to by Dp.

realize the minimum cost p-valued exclusive OR by [Definition 2] A p-valued function f(x,..,xn) - -

using the (p,q)-adic-min-max network, although the is called a p-valued threshold function with n
situation is rather restricted respect to a set of p logical values, Lp={a

As a result of consideration of the (p,q)- a p}, when there exists a weight vector AX=(a 1 ,"" "
logical completeness, the condition of completeness, 

-

which is almost equivalent to the q-valued logical an;tl,.,,tp_1) satisfying (2).

completeness, is found. This result is applicable f() '-- w(p)>t
to solve what elements must be prepared to realize p p- )
arbitrarily given p-valued functions by using as
few kind of elements, such as polypheck , etc., as f(P)p - t p>w( -2
possible. (2)
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where w(p)=aixl(p)+o'+an'xn(P), xi(P)EL p, tl<'." that is, functions obtained from the representative

<t_ function by the negation of variable and/or
When tfunction, are also called p-adic functions.
When two sets of p logical values iand For example, the functions in Table-i are both

L'={a) have a relation a!=c.ai+d (i=l,-..,p; c>O p-adit functions.

and d are constants), a threshold element for Table-1 Examples of p-adic functions.
is also so for L and vice versa, therefore L and

p p
L' play the same role in the threshold logic. 3 1
[Definition 3] Define the NOT by (3). I

ai = p-i (3)| 43.2.

When p=2, (3) means the usual NOT of 2-valued 2 "

logic. NOT of (3) corresponds to a threshold •

element for any Lp, and (3) is equivalent to R=-x I
for S which is easily realized. a .4

pZ JOnly Sp is considered in the following. In2. 3'"

general, whether a given function is a threshold

function or not depends on S . For example, the [Property 1] A p-adic function is a universal

4-valued function in Fig.1 (a) is not a threshold function.

function for D but is a threshold function for S (Proof) It is sufficient to show that each
p representative of p-adic functions is universal.

in Fig.1 (b). And this is known easily by using a weight vector

of an>-''>>al>O (Q.E.D.).

The Property I gurantees that a network with

. only the p-adic elements has the universality.

3. (p,q)-adic Functions
x2,

x2 As mentioned in I., a p-valued threshold

'element needs (p-1) thresholds, and the physical
realization of p-valued threshold element becomes

radically difficult with the increase of p.
. x L x

I 1 Therefore, we consider (p,q)-adic functions with q

output values among p values (2sqtp). The (p,q)- 5
(a) (b) adic function is also regarded as an output

degenerated p-adic function in 2.2. The smaller q

Sa4, a a2  is, the easier the physical realization of (p,q)-

output 0 adic element ((q-1) thresholds suffice) is.

'K "3 a, When p-valued networks are constructed with
these (p,q)-adic elements, of course, some p-valued

Fig.1 Linear separability depending elements are necessary at least as an output d

the selection of the logical value, element of the network. For such p-valued
elements, analog-adder, min-, max-element, etc.,

2.2 p-adic Functions are considered to be preferable, because they are
easily realized and have the universal properties.

The properties described in 2.1 give a problem
when a given function is realized by the threshold

elements. That is, by the change of the logical 4. A Synthesis Method of the p-Valued Networks

values the redesigns of networks might be necessary. using (pg)-adic Elements

One method solving this problem is to restrict the

elements to the special elements which are threshold One method of the synthesis of p-valued
elements for any Sp. networks utilizing the (p,q)-logic is proposed,

[Definition 4] A function which is a threshold which is called a (p,q)-adic-min-max network scheme

* function for any Sp is called a universal threshold as illustrated in Fig.2.function. A , ane k wh on Given a p-valued function f(xl,'..,xn) to be
function, And, a network with only the universal realized, the main problem is how to select the

*elements is called a universal network. (~)ai lmnsL,.L .. I I .'- (p,q)-adic elements L 1., L1 2 O,'-L , L2 in-

Among the universal elements, the next p-adic 
' Lm Lm2

" element is especially important. Fig.2. One of selecting strategies is offered in

* [Definition 5] Associate a p-adic number p=(i at oetc.,
nn always yield the sufficient (p,q)-adic elements to

"', ..-,-1) p with a vertex (ai,',n). The realize the arbitrarily given f(x ..1 ,xn).-

function f(x,-.,xn) is called a (representative) Furthermore, by the strategies of (2) (), etc.,
1.'n more efficient networks could be sometimes

p-adic function when f(pl);f(p2 ) for any pair P1>P2' obtained. In general, to construct the networks of

The families of the representative p-adic function,
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5. Examples of Optimiz ing the VKalue g

Consider the p-valued exclusive OR function

(4) to be realized by the scheme of Fig.2, which

is important as the p-valued adder.

where

100)=i (when x~sc) (5)

~ For that function, the optimum qq* will be
determined in the following, under the next

assumptions.
LAI (Assumption]

(1) The realizing cost of each (p,q)-adic element
ALP_ is equally a(q).

(2) The realizing cost of each mmn-element (of 2

LAI inputs) is equally b, where b>O.

(3) The realizing cost of max-element (of m inputs)

is c*(m-1), where c>O and b-c in usual.

is (p,q)-adic element. Now, two cases of a(,.) are investigated,

1 (q)=a-q (a>1) 'l (6-2)

Fig.2 (p,q)-adicmintnax network scheme. 
q)a (al(62

[Definition 6] Under the above assumptions, let

C(q) be the total cost for constructing a network

realizing a given function f(x,".. xn) . And, the

(1) q=2 (2) (i=3 value q which minimize C~q) (2-,q'p) is denotated by0

d ) I q*, that is, C(q*)= m i C(q(.

..... .... .For the function of (4), mpn /(q-1).

Therefore,

T~ It

(a(q)=a-qk(

($A$

oili

Fig.3The slectin d ~(a(q)=a q (-

ai. eleelectinFg2

(a(q(-a q (-2

smaller m in Fig.2, it is impo tant to reorder the
variable number so that the characteristic vector

Of f(xi,",xn) satisfies the relation b1 1 '-bn) Table-2 Some concrete examples of .

(b. L x (o)-f(p) i=1,...,n)1~ Where P (onined

(The case of a=.

ii-
1 ~~~~iz pAfDfnton5V~=.
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[Definition 91 Let a q-valued function f* xj,'- ,

xn) be obtained from a given (p,q)-function t(x1 ,

4(*)=G am =0a ".,xn) by restricting the input values te I

(The case of values. That is,

* t&= ATI 3 a=2, b=c=4.) f*(xI,''',Xn).-f(x16Jl,.'',XneJn) (1)

, -3 3 where J}, Iijl .... i p (for each

j=l, ',n), and the symbol - means that the q

logical values in each input x EJ. are regarded as
- As an example, some concrete values of q* are l,*",q respectively and the output values of f,

calculated in Table-2. In another special case of say V-ii . . q p, are regarded as ,.,*g

a(q)=a-q* and b=c, q*=1+,1+(b/a) and b/a vs. q1 is respectively4. And let
illustrated in Fig.4. if(xl,...,Xn)I* f*(xl,. ,Xn) il

q* XneJn; for any Jl,°.Jn
}
. (12)

[Definition 10] A (p,q)-function is said to be

(jl,j 2 )-degenerate when (13) holds (1jl<j2;p),
Sf(xil= .... =xit=Jl; xit+l,'...,x n )

S=f(xil= ..... X xit=J'2; xIt+1,...Xin) (13)

-o * ... (for any {Xi .. ,xit 1{X ,...,xn} , lt1n).
2 1I t o V2.

b/a And, a set F of (p,q)-functions is called (j "

Fig.4 b/a vs. q* in a special case, degenerate when (p,q)-functions in F are all (j1,

j2 )-degenerate for the same 1-j <j 2p. when there
6. (p,g)-Logical Completeness exists a (p,q)-function in F which is not

degenerate (that is, F is not (jl,j2)-degenerate)

In this chapter, (p,q)-logical completeness for any 1>J1<J2'p, F is called nondegenerate.
is discussed in general, where 2iq~p, 3p and the
q output values are variously selected among the p [Theorem i] Assume a p-valued max-element is
values. As mentioned previously, some p-valued available as an output element of a network.
logical elements are necessary to realize p-valued Under this assumption, the necessary and sufficient "

logical networks, condition for the closed set F of (p,q)-functions
Now, in this section, the discussion is to be (p,q)-logically complete, is to hold the

restricted only to the logical point of view, so following conditions (1) and (2): •

the physical values corresponding to the logical (1) JFI* = {Ifj*jfE F} is q-valued logically
values need not be considered. Let a set L of p
logical input values be complete.

L = {1,2,',pl.(9) (2) F is nondegenerate.

Also, let a set J of q logical output values be (Proof) Given in the Appendix.

=ii2'', q  (10) The Theorem I shows that (p,q)-logical
completeness is almost equivalent to q-valued

where 1 iI<i 2 -- iq'p (21q-p). logical completenes:
3).

[Definition 71 Let [F] represent the set of all (Example) Examples of the polypheck-like (3,2)-

(p,q)-functions which are realized by only using logical completeness.

the (p,q)-functions in F, where F is a set of
(p,q)-functions. When [F] is equal to the set of
all (p,q)-functions, F is said to be (p,q)-logically 2 K?
complete. F~=4I Ii' 1 2
[Definition 81 A set F of (p,q)-functions is said '[ ' 'I r 21 ,

to be closed when the following property is hold: 3 2.3 L 2

If a (p,q)-function f(xl,-'',xn ) of the output- 3

value set J={i ,'..,i is included in F, then any -" •

(p,q)-function f'(xl,.',xn ) obtained by replacing 1 I i i •"""

output il ''iq to i,' , respectively, is 11 3 3 .3 3 .

. also included in F, where 1i{ ip 23 2i

In this Definition 0, it shouldbe noticed
that the equalities among ij,... i' are allowed
.ad ths isamotiaedy an 11,If the output values of f are '....., p,
and this is motivated by a characteristics in
physical realization of the threshold elements, cq',q, then f* of (11) is not unique. in such a

i.e., f and f' can be realized by the same weight case, f- is defined as a set of all pos1ib.e f*

vector. o

... , ....

.*. *: .. ** *.K.j~ . *~~ ~.* ~* .- . .,-



121lq ~l " rbe the MlyVle
F sIJ (2)Threshold Logic anid its Solution," Trans. IECEF, 3§K 3 Japan, .i5'-D, 8i, pp.515-522 (19i2).

3 1 1 3(3) Rosenberg:"La structure des fonctions de
plusieurs variables sur on ensemable fini,"4 3 3Comptes Randus Acad. Sc. Paris, vol.260,

(1~ 1, I,-2, 1 3-3. See the proof of p.
3817 

(5 avril 1965), Groupe 1.

sufficiency in Appendix.)

* ~Each F I is generated from f I by extending so that Apni:Pofo hoe
* *F. satisfies the closedness of the Definition 8, (1) Necessity:

and F 1 could be said to be polypheck-like (i1,2,3), Necessity of th condition (1);
i.e., each F.I is (3,2)-loqically complete assuming If F is (p,g)-logically complete, a (p,q)-function
that 3-valued max-element is available, It should f(xl "xn) should exist for an" given g-valued
be noticed that f, and f 2are both (3,L)-adic I
functions., function g(x i,**,X.), such that f::,x)is

Now, it is known chat there exists F which in [El and
*satisfies only the condition (1) or (2) and F is gq*x)I. ...n-f (xlfjl1 *x~n

not (p,q)-loqically complete.
(Example) where J i 3 ,,i (j~l,-*,n) . F is closed,
(1) F satisfies the condition (1) and is not (3,2)- threor th ewr elznqi a ergre
logically complete. as realizing g, that is, F *=if-f F, must be

( ] -(~ _ q-valued logically complete.

J~? I~ 1j 1 -3 3 Necessity of the condition (2):~2 ItVi suffic pr~ es to note that the (31132) -degeneracy is
a , 2 3 T 3

* (2) sufficiency:
(2) F satisfies the condition (2) and is not (3,2)-
logically complete. First, from the condition (1) and the

c losedness of F, the following (p,q)-functions ifl,
331 if f3 and the (p,q(-functions whose output values

F 2 _ae variously replaced keeping the order in ifl, f2,
13 12 . I d, are all included in [F)

a .f 1 (x C=J) (for some J)

x x 1 *.xm- f 2(xi 1 l,***, m)~
7. conclusions (for some j 1 , -- Jm for each m:)

Asnthusizi~i metiiod of the p-valued logical 1# xlm 3 xMi, 5 J
networks (that is, (p,) -adic *min -max scheme) was (for some J1  Jm; for each n)
described by using the (p,g)-threshold elements wee2i -audNT n
(2 q p, 3 p). And, the optimumn value q- was weeKi -audNT n
determinedi fur the p-valued exclusive OR to be q (x 1 =-- xm=q)
realized by the minimum cost network. Loosely x14 'ex 3.S 1  (terie
speaking, the greater the relative cost of the 1 ohrie
(p,q(-adic element to that of min-, max-element(1 x* *xml
becomes, the smaller the optimum value g* becomes. xl+..+
This is an intutively acceptable result. q (otherwise)

Next, the (p,q()-logical completeness was (x,",x e ;l,...,qs).
discussed in general and the polypheck-like (3,2)- Furthermore, from the closedness of F, t):e (p 1)-adic functions were discovered. A problem remains, identity functions 1~lI, p) are- all i::cl-1dd
however, i.e., how to efficiently construct the p-
valued logical network; by using a small set of in F. (It is eas3ily known that Il~ 1  

are al11
(p,g( -logical elements with smin- , max- and/or constructed fror. F , even if F does riot in clude 12,
analog-adder element, etc., is left for further .. ,I

studes.Next, from the above ()p,q)-functio.r: an:d the
con litic,, (2) , th:e (I',ql(-ful:ctioll f' and t):c (p j) -

Referncesfull t io::s whoseC : it put vs llec 3 are 'r ious I yReferencesrvil aced keCl'ang the oriler ill f.1 , are 111 int) ude'i

()Tanaka etal1: Fun cimna Co:mpl eteness and
*.Polyphecks in 3-Valued Logic," Trans. IECE f i4 (X 6 L) =x' x I . .

Jajpan, Ji3-C, 2, pp. I11-1 18 (1970). X ,x- p, -I '

for 'Inch : I, p)
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'By the condition (2) ,there exists it) F a non-
(jl,j 2)-degenerate f(xl,--",xi) tor any jl,32 .

Let

j ,j2(xEL)fx,* XtEL

X1  ' ~=Ikt+11 ...xn= kn),

where t,k t+i, ..,kn correspond to values such

that

f(xil . X ~l Xi +,kl, xi=kn)

f(x1 l . =X tj2; xi tlk t+i, *Xn k)

then n~ ) x=j I)Xrl (X 2) As F is closed,

teoutput values of n * ,i2(x=j 1 ) and T) . 1.i (x=32 )

can be arbitrarily selected keeping the order.
Assume, without loss of generality, that

r~jl~2 x~i)<l l~j (~j),then n' is obtained

by 0 f1 such that n' . x-j )-.' (xj 21 jl,32 ~1 'il] 2 (~2

for any jl<j2 . From n~ and ni, xi is given as

follows for each i=l, -,p,

xi1=f 2 (ril,i(x) .. 1i1,x)

Where the output values of each fl,r' are
determined to be included in J l'.**'m (m=P-1)

o~f 0 2respectively.

Using those functions and p-valued max-element,
any (p,q)-function f( A)=f(x, ,l*Xn ), with output-

value set (ii,. q ,), is synthesized as follows

fO = ma'dh. 1(PL) ,hqX (A-1)

hi (X f3)g (gA 0' ,* X~) (A-2)

(where 1A m . )i)

(A. f (X k1,---,x k, (A-3)0

Where, (1) the output values of each x kj in (A-3)
J

are determined to be included in J . of Q 2(for

each j1l,-*,n), (2) the output values of each
(4in (A-2) are determined to be included in

Jof (3) f3 (for each j=l,...,m), (3) the output

values of each hi (.*) in (A-1) are determined to0

take I and i. (for each j1l,...,q').

It should be noticed that if il=l, hi X~)=I

is sufficient (Q.E.D.).
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GENERATION OF TERNARY MAJORITY FUNCTIONS OF FOUR OR LESS VARIABLES

Hisashi MINE Yoshinori YAKV4OTO Shiro FUJITA

Faculty of Engineering Higashlyamato High Okayama University of .- -
Kyoto University, School, Higashiyamato- Science, Okayama-shi,
Kyoto-shi, 606 Japan shi, Tokyo 189 Japan* 700 Japan

ABSTRACT dimensional vector (xlx 2 , .. ,x n) is denoted by X.

This paper proposes a method of generating Definition 1:
ternary majority functions which have been defined For A=(al,a2 ,..,an) and B-(bl~b2 ,.ovbn), if

in the previous paper. The method is derived from a. > b, (i=l,2,..,n), we denote A > B. In addition .
the fact that the functional form of a ternary > b. for same j, we denote A> B.
majority function is closely related to two binary t >
threshold functions having common weights. All
the representative ternary majority functions of Definition 2:

Given a ternary logical function f(X), if f(A):'" fou orlessvarabls ar taulaed. inaly,> f(B) for any vectors A and B satisfying A > B, f " !

this paper shows that the total number of ternary f
majority functions of four variables is 40819. is said to be positive.

Definition 3:1. INTRODUCTION : eiiin3
Let W be a vector (ww,..w). For every

- Since Hanson, many contributions have been ternary input vector X=(x ,x2 ,..,xn ), a number . . -

made to ternary threshold logic. Especially, a function N8 (X) is defined as follows:
S.class of ternary threshold runctions of three or
.- less variables has been studied in detail, and all

the functions have been shown in a tablel]-182].
Ternary majority functions based on a ternary N C 0X)- > 0 -- w- 9=1,2 (0

majority principle have been defined as an exten- i i i- i
sion of binary majority functions to ternary
logic[3]-[7J. It is noted that ternary majority

. functions differ from ternary threshold functions. Definition 4:
Nevertheless, the functional form of a ternary A ternary logical function f(X) is said to be
majority function is closely related to two binary a majority function with the structure ((w,w 2 ,..,'
threshold functionsf[4].

* Based on this property, this paper generates Wn ;TIT 2)) if and only if there exists a set of
all the representative ternary majority functions integer constants wl,w 2,..,wn and T1 ,T2 (T1 < T2 )
of four or less variables by a heuristic method.

"-'" Based on symmetry of the generated functions, also which satisfy the following conditions:
the total number of ternary majority functions of
four or less variables is derived. 1) f(X)-2 40 N2 (X) >T 2 ,

" " 2
I DEFINITIONS AND PRELIMINARY DISCUSSIONS 2) f(X)=l I Ne(X) >T and N2 (X) < T2 -1, (2) •

" Let Vn be the set of all the ternary n-dimen- -1 " .'- -
sional vectors whose components assume 0,1 or 2. A 3) f(X)-0 4b r NO(X) T-,-
ternary logical function f(xlx 2 , oXn) of n varia- e-1

bles is considered as a logical function mapping Vn

into VI . Given xl,X 2 e V , a ternary logical sum V, The integer constants wlW 2 , .. , wn and TI,T2 are

a ternary logical product • , and complement - are called weights and thresholds respectively.
defined as follows:

- .A Boolean function g(Y) of n binary variables
x 1 Vx 2 -max(x,x 2 ), x1 .x 2 -min(xl,x 2 ), x-2-x. is said to be a binary threshold function with the

structure (wrw2 ... w I T] if and only if there
The notation - may be omitted. Any ternary n- e a c"w"fg o n• exist a vector W(WlW 2,"w n ) of integer components "" - " .

and an integer T which satisfy .*Presently, Okayama University of Science.

84 .- "
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'0

g(Y)-1 4 WY > T, g(Y)=-0 WY < T-l, (3) binary logical functions associated with P(X) and
Q(X) respectively. The function f(X) is a ternary

where Y is a binary n-dmensional input vector, and majority function with the structure (( W ; T,T 2 ))

WY is an inner product of W and Y. The integer if and only if p(X(2)) and q(X(2)) are binary
constants w1Iw 2,..,w n and T are called weights threshold functions with the structures I W ; T1 ]

and a threshold respectively, and [ W T2 1, respectively, where W=(wlW 2 ,..,w) S
Let wlw 2 ,..,w n be weights of a ternary ma- and T, < T 2

jority function, or a binary threshold function.
IfW 0 holds, the weights are Let f(X) be a ternary majority function repre-

1 > w2 > wn > sented by Eq. (4). Let p(X(2)) and q(X(2)) be the .*' .*

said to be canonical. associated logical functions described in Prop. 1.

Definition 6: From the latter part of Prop. 1, it is clear that,

Given a ternary majority function f(X) of n if each of the functions p(X(2)) and q(X(2)) is a
variables, let h(X) be a function* derived from representative of a class based on NP-equivalence .

f(X) by any combination of the following two oper- relation[9] with respect to binary threshold func-
tions, then the ternary majority function f(X) isationa (including no operation): :::: :'
an NP-representative.

1. Complementation of the variables, Consequently, in order to generate all of the
2. Permutation of the variables. NP-representatives of ternary majority functions,

first, find NP-representatives p(X(2)) and q(X(2))

Then, f(X) is said to be NP-equivalent to h(X), of binary threshold functions, which can be real-
and we denote fNP h. ized by a common weight vector. It is noted thatNP p(Y) < q(Y) should hold for every vector YE0,1ln

Obviously, the binary relation - is an
equivalence relation. Ternary majority functions due to Prop. 1. Next, by using a unity and ternary _%%
are divided into equivalence classes by the NP- logical expressions P(X) and Q(X) which associate
equivalence relation. Any ternary majority func- p(X(2)) and q(X(2)) respectively, construct a logi-

tion whose weights are canonical is said to be an cal expression by Eq. (4). A ternary logical func-
NP-representative of the class where the majority tion represented by the said logical expression
function belongs. gives an NP-representative among ternary majority

Let x. be a ternary variable, and xi be the functions.

complement of x. It is said that xi is a positive II. BINARY THRESHOLD FUNCTIONS

literal and x. is a negative literal. If a product REALIZABLE BY CO#04ON WEIGHTS

term of some variables contains either a positive In order to obtain ternary majority functions,
literal or a negative literal for every variable, first, we need to find binary threshold functions
the product term is said to be simpler8]. In which have common weights as shown by Prop. 1.
particular, if the product term contains only posi- Muroga, Toda and Takasu, Yajima and Ibaraki, Elgot,
tive literals, the product term is said to be a etc.,[10] discussed on this class of binary thresh-
positive simple-product-term. old functions. It is noted that easier method than

linear programming for identifying a pair of binary
It is known that a positive ternary majority threshold functions with common weights are not

function f(X) can be represented by the following known[10]. The exhausion of all possible simul-
logical expression: taneaously realizable binary threshold functions

has been made by Mezei[10] for the case of four
f(X) = P(X).l V Q(X, (4) variables**. In this section, we generate simul-

taneaously realizable binary threshold functions of -

where P(X) and Q(X) are logical sums of positive four or less variables by a heuristic method.
simple-product-terms of some variables belonging to ":-.)b-.'1-w.{ X1 ,X2 ... Xn . Let W-(W,W 2 .... wn) be an n-dimensional weight -:::.::

Let P(X) be a ternary logical sum of positive vector and Y be an n-dimensional binary input vec-

simple-product-terms. Let p(X(2)) denote a binary tor. An inner product WY is said to be a weighted S
logical function represented by considering ternary sum of Y by W.
logical sum, teraary logical product and ternary Given a weight vector W, let A0,A I , .... denote
variables in the expression of P(X) as binary logi- weighted sums of all linary vectors belonging to
cal sum, binary logical product and binary varia- n
bles respectively. The function p(X(2)) is called {0,1 by N. Let-.A be a sequence of the weighted
an associated function with the same logical ex- sums A0 ,A 1,... , which are arranged in decreasing

pression as the one of P(X), or simply an associ- numerical order of those values.
ated function with P(X). For example, p(X(2))-x1 V-fito6x x3 when P(X)-x 1 V xx . X.)eiiin6 .'--'
2x3  1  2 3  Let S(Ai ) represent a set of subscripts corre-

Property 1[4): sponding to the nonzero components of the vector Y

Let a ternary logical function f(X) be repre- which defines the weighted sum A,. For example,

sented as Eq. (4). Let p(X(2)) and q(X(2)) be S(Ai)={l,4,n-l} when Ai-Wl+W 4+Wn-l. Let -A and ".* .

*This function is also a majority function[3]. **As to Mezei's work, procedures are unpublished[10]. •
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-A' be sequences of weighted sums by weight w +w 4+w + 1
vectors W and W1 respectively, if S(AL)-S(Ai') for w+w+w 2

i=0,1,2,..,2 n-1, then the two sequences are said to 1 -
w. +w +w 3

be similar to each other in the logical sense. 1 1 2 " .

Definition 7: w1+ 3 4 4  1W 2 5

Let us consider a sequence of weighted sums by w +w-8 +w__ _V_+%F 6
canonical weight vector W. If any pair of 2 

3
1 4 ,, 3

weighted sums in the sequence does not coincide, 21 3 w 1
2then the sequence is said to be a strong sequence. w 11 w1  9 .

This weight vector is called a universal weight w4 2 .'
vector. 3-- "

It is noted that the weights of the universal w 3 14

weight vector W satisfy w w >w 3 > .... >w >0. w 15
w1 > 2  3 nw1

* Let a strong sequence - A of the weighted 0 16
sums by a universal weight vector W satisfy the
following: Fig. 1 Hasse diagram for a partial order.

A >A >A > .... >A2n_1(-0) (5)
be other vectors satisfying Ineq. (6). However,where A. is a weighted sum of an input vector Yi. all the vectors satisfying Ineq. (6) gives the

Let us find an integer T satisfying A > T > A similar sequences.
i > T + 1  All the strong sequences of weighted sums oh-

Let g(Y) be Boolean function with outputs g(Y j).l rained from Fig. 1 and the resulting universal
when Aj > T and g(Yj)=0 otherwise, Obviously, weight vectors are as follows:

g(Y) is a binary threshold function with the struc- Strong sequences of weighted sums Universal
ture [ W ; T ]. The function g(Y) is said to be a weight vector
function generated from the sequence of Ineq. (5). 1+2+3+4> 1+2+3 >1+2+4 >1+3+4 > 'W-(8,4,3,2)

n+lFrom a strong sequence, at most 2 binary 1+2 > 1+3 > 1+4 > 2+3+4 > 1 > 2+3 >
threshold functions( including constants 0 and 1 ) 2+4 > 3+4 > 2 > 3 > 4 > 0
can be generated. It is noted that, if two strong 2 1 2

-As 1+2+3+4 > 1+2+3 > 1+2+4 > 1+3+4 > W-(8,5,4,2)
sequences are similar to each other in the logical 1+2 • 1+3 • 2+3+4 > 1+4 • 2+3 • 1>
sense, the binary threshold functions generated 2+4 > 3+4 > 2 > 3 • 4 • 0
from one strong sequence are the same as the one
generated from the other. Accordingly, in order to 1A: +2+3+4 >1+2+3 >1+2+4 >1+3+4> ,, (0,4,3,2)
generate binary threshold functions from strong 1+2 > 1+3 > 2+4 > 1 >2+3+4 >2+3 >
sequences of weighted sums, it is not necessary to 2+4 >3+4 >2>3>40 ...---
obtain universal weight vectors which yield similar 4 4
sequences. In the sequel, the case of four-dimen- ...1+3+4>2+34>1+32+>1+ >

sional weight vectors is discussed. 2+4>>23+4> 3 > .+4.2+4 > 1 >2 >•3+4 > 3 > 4 > 0 .""" ."-

All of the weighted sums by a four-dimensional -5A +++ ++ ++ ++ -7653
weight vector W-(wl,W 2 ,..,w n ) are 2+3+4.>1+2>1+3>2+3>1+4 > >-(--6'5'")

2+4>3+4>1>2>3>4>0
0, w1 , w2, w 3 , w4 , W1 +W2  .. ... . .  1 +W 2+w3+w4 " 1+2+3+4 > 1+2+3 > 1+2+4 > 1+3+4 > 6-(8,6,4,3)*

1+2 > 2+3+4 > 1+3 > 1+4 > 2+3 >
Let w1 > w2 > w3 • w4 >0 hold. Then the above 2+4>1>3+4>2>3>4 >0

weighted sums can be arranged in a partial order 7 7
shown in Fig. 1. Let us number the weighted sums 1+3+41+3 1 2+4 >1 •
in Fig. 1 from 1 to 16 under the condition that the +3+4> > 3+4> >

numbering does not contradict the above partial 2+3>2+4 >2>3+4 >3 > 4 > 0

order. For example, the numbering in Fig. 1 is o,8SA: 1+2+3+4 >1+2+3 >1+2+4 >1+3+4 > 8W-(8,6,5,4)
considered. Let us denote this relation by using 2+3+4 > 1+2 > 1+3 > 1+4 > 2+3 >
the inequality sign as Ineq. (6).(Weighted sums are 2+4 > 3+4 > 1 >2 >3 >4 >0
represented by only subscripts and plus sign here- 9 1+293+41+2+31+2+4>1+2> 9W(10,7,4,2)
after)A:1234>123>124>12> W107,)
a1+3+4 > 1+3 > 2+3+4 > 1+4 > 2+3 >
1+2+3+4 >1+2+3 >1+2+4 >1+3+4 >1+2 >1+3 >1+4 > (6) 1 >2+4 >2 >3+4 >3 >4 >0

2+3+4 > 1 > 2+3 >2+4 > 3+4 > 2 > 3 > 4 > 0 A.A: 1+2+3+4 >1+2+3 >1+2+4 >1+3+4 • -(l0,7,6,2)
1+2 > 1+3 > 2+3+4 > 2+3 > 1+4 >
1>2+4>3+4 >2>3>4>0

In this case, VW-(S,4,3,2) is a solution of Ineq.
(6) given by Sheng's methodrill. It is noted that cm Hezei's work, a weight vector (10,8,5,4) is

produced. However, Since this vector yields the1W(8a,4,3,2) satisfies Ineq. (6) without the equal- same sequence as ,^_6A, it is essentially identical

ity sign. That is, 
1
W is a universal weight vector. to 6W. Other universal weight vectors coincide

Ineq. (6) represents a strong sequence. There may with the vectors obtained by Meaei.

%* 6
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1+2+3+4 >1+2+3>1+2+4>1+2> 11W-(10,8,4,3) -b: 1+2+3+4-1+2+3 >1+2+4-1+2 >1+3+4-1+3 >1+4 >

1+3+4 > 2+3+4 > 1+3 > 1+4 > 2+3 > 2+3+4-2+3>2+4-2>3+4-3>4>0
2+4 > 1 > 2 > 3+4 > 3 > 4 > 0

1212The sequences -a and-.-b are similar in the logi-
-12A: 1+2+3+4 >1+2+3 >1+2+4 >1+3+4> 12W(10,8,6,3) 13 1441+2 2+3+4 1+3 2+3 1+40> cal sense to -, A and -. A respectively. Thus

2+4>1>3+4>2>3>4>0 -a and -b are omitted. The case of two or less
13• 413 variable f .:tions also yield some sequences simi- ,

- A: 1+2+3+4 > 1+2+3 > 1+2+4 > 1+2> W(8,6,4,1) 13 14
1+3+4 > 1+3 > 2+3+4 > 2+3 > 1+4> lar in the logical sense to either -% A or - A.

Thus the sequences corresponding to two or less
14  1+2++4 +23+43 1+24 • 1+2> 14variable functions are omitted.

A: 1+2+3+4 > 1+2+3 > 1+2+4 > 1+2 > W=(8,4,2,1) Consequently, in order to generate all of the
1+3+4 > 1+3 > 1+4 > 1 > 2+3+4 > required NP-representatives of four or less varia-
2+3 > 2+4 > 2 > 3+4 > 3 > 4 > 0 bles, it is necessary and sufficient to deal the -'

four variable case. .

Let ,2F,.. ,4F be sets of the binary
: threshold functions generated from the above strong IV. SYNTHESIS OF TERNARY MAJORITY FUNCTIONS

1 2 14
* sequences -- A, -2A, ... , - A respectively. This section describes a method of synthe-
* Then the following theorem holds: sizing all of the NP-representatives of ternary ma-

Theorem 1: jority functions by using the strong sequences ob-
Let .{ be a sequence constructed from an ar- tained in the previous section. The method is im-

bitrary four-dimensional canonical weight vector S. plemented as follows:

Let G be a set of the functions generated from - w. Let - A be one of the strong sequences. Let
* Then there exists at least one set iF (iE{1,2,..,, all of the binary threshold functions generated

141) which satisfies the following condition: from this sequence be

G F, (7) 1 2 3f ...... mf (8)

where the notation c means a usual inclusion rela-
tion between sets. Furthermore, let thresholds of the generated binary

Proof* Obviously from the way of obtaining strong threshold functions be T(l), T(2), T(3),.. ,T(m)
respectively.

sequences AA, -2A, ... ,14 , there exists at Let us consider a pair ( f, f) of two func-
least one sequence which is similar in the logical i j

1 2.14tions f and f which satisfy
sense to - among -'.A, A, ... , -A. Let one T(i) < T(j)(
such sequence be - MA. The sequence -w has no (9)
equality sign, or has at least one equality sign.
The former case means that -w is a strong sequence. Since f and if are positive, these can be repre-

- Since-u is similar in the logical sense to -..MA, sented as irredundant logical expressions having no
" the theorem holds. In the latter case, we can not negative variables. Let E and JE be ternary logi-
*.:: determine a threshold value at the place where the cal expressions which associate if and Jf respec-

* sign is that of equality. However, by determining tieyfabnryucio iflorsp dng.-*
threshold values at the places where inequality a r tc.rs d

signs are to be found, we can generate the same bi- ternary function E-2. Also if f0, E*r0).
nary threshold functions from-was those generated Construct a logical expression
from -"mA. This completes the proof. -

It is impossible to generate threshold func- E-. \ E (1: Constant value). (10)
tions from the sequences of weighted sums by all of 1 2 m
the four-dimensional weight vectors in order to From the functions f, f, .. mf, consider pairs

find comon weight vectors, since infinitely many which satisfy Ineq. (9) and construct ternary logi-

vectors exist. However, according to Theorem 1, we cal expressions in the above way.

can generate all the desired functions by using Apply the above way to each of the strong se-
1 14 qu 1 14

only strong sequences -A, ... , - A. Next, let quences -A ..... - A, and construct ternary log-

us consider a case of three variables. In this loical expressions. For example, let us choose a

case, w4 can be set to 0 for a weight vector (wlW sequence -'.A and a universal weight vector 1W=(8,

, w3 ,w4 ) where w1 >w2 >w3 >w4 . Only the following 4,3,2). From this sequence, 17 different binary
threshold functions are generated(including con-

two strong sequences of weighted sums are consid- stant values 1 and 0). Among them, consider a pair
ered as the ones which satisfy the above conditions of the generated functions if-xIx2 Vxlx3 Vxlx4 and

-a: 1+2+3+4=1+2+3 >1+2+4=1+2 >1+3+4-1+3 >2+3+4 > Thresholds of these functions arefxV13

2+3 > 1+4=1 > 2+4-2 > 3+4-3 > 4 > 0 10 and 12 respectively, and Ineq. (9) is satisfied.
By the associate ternary logical expressions:

*This theorem Is considered to be essentially Iden- EX X and E-xx construct...

tical to Theorem 8.1.2.2 of 1101. However, since (x"x).l x- x-
the way of discussions differ from those of 1101, ,-. -xlx3 V x.x4 ) 1 2 Vx 1 3x4 .

we give a proof. 1X3 VXlX4  1 2 Vxlx3x 4
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A ternary logical function represented by the above Table 1 The number of n variable
logical expresion is a ternary majority function ternary majority functions
with the structure ((8,4,3,2 ; 10, 12)). Since the
binary threshold functions generated in the imple- n h nmero fntin
mentation procedure are NP-representatives, each of n Thn__ rof_ uc_ os___.._.-.
the constructed ternary logical expressions repre- 1 9
sents an NP-representative of ternary majority +
functions. Then, all of the NP-representatives of 2 59
ternary majority functions of four or less varia- 31"- -
bles are systematically synthesized. 3 993

Ternary logical expressions which associate 4 40819
NP-representatives of binary threshold functions of
four or less variables are shown in Table 2. They Tl en oi x so d
are numbered from I to 27(including constants 0 and Table 2 Ternary logical express)ons(de-

2). Hereafter, the numbers refer to these logical noted by only subscripts) corre-

expressions. The structures of NP-representatives sponding to binary threshold NP-
of ternary majority functions are shown in Table 3 representatives
(Constant values 0, 1 and 2 are included). A pair '.
(a,b) in the table represents a logical expression No. Logical expressions No Logical expressions
A.IVB by logical expressions of No.a and B of No.

' b. Note that if the same functions as those ob-
tained by the preceding sequences are synthesized 2 1V2V3V4 15 12V13V14V234
from the current sequences, they are deleted from 3 123 V 124 16 12 V 13 V 14 S
the table. Hence, the table has no duplication of 1V 347124
functions. Generation of ternary majority functions 5 123V124V134V234 18 123

has been implemented by an electronic computer. 6 12V13V23V14V34V24 19 lV2V3
7 123 V124V134 20 12V13V23

Number of ternary majority functions 8 1 V 23 V 24 V34 21 12 V 13

Finding the total number of ternary majority 9 12V134V234 22 1V23
functions is an important problem considering the 10 12V13V23V14V24 23 12

capability of ternary majority functions. This 11 12V134 24 1V2 .

problem is, however, difficult to be solved in the 12 1V23V24 25 1

case of general n variables. In this paper, an 13 12V13V234 26 Constant 0
accurate number of n(14) variable ternary majority 27 Constant 2
functions is obtained below by considering symme-
tries of NP-representatives.

In the case of exactly four variables, there
are 18 representatives symmetric in all variables, The authors wish to appreciate the referees
61 representatives symmetric in three variables,
127 representatives symmetric in two variables, 46 for their invaluable comments. The authors are

representatives symmetric in each of two pairs of also grateful to Associate Prof. T. Ibaraki of .:-.
variables and 29 asymmetric representatives. In a Kyoto University for his helpful advice.

similar way check the symmetries and asymmetries of REFERENCES , -..

exactly three, or two variable functions. Based on
the number obtained, calculate the number of all the
different functions which are derived from NP-repre- [ r Aibara, T. and Akagi, M., "Generation of
sentatives by permutation and negation of variables, variablesh(i Jpne tans. ISCu Japan,
The result is shown in Table 1, where n variable vol.a53-C, n 9p. 5198S. 1970).
functions include ones having dummy variables.
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4th ISMVL, pp. 347-359 (May 1974).
The method of synthesizing all the ternary ma- 3 Yamamoto, Y and Fujita, S., "Three-valued ma-
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properties on the weights of binary threshold func- jority functions", (in Japanese) Trans IE
tions. NP-representatives of ternary majority Japan, vol. J63-D, no. 6, pp. 493-500 (Jun.
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been found, 40819 in the case of four variables. Proc. llth ISMVL, pp. 157-162 (May 1981).
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five or more variables. Ternary regular functions Jority functions with the mame logical expres-
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that ternary majority functions are included by the Japs Trans. 1Jan. 64D no...
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Table 3 NP-representatives of ternary majority functions of four or less variables

Functions Structures Functions Structures
w_1 w 2 w3  w4  ; T1  T2  wI  w 2  w3  w4  ; T1  T2

27 27 8 4 3 2 ; 0 0 4 16 8 4 3 2 ; 4 10
27 2 8 4 3 2 ; 0 1 4 21 8 4 3 2 4 11
27 19 8 4 3 2 i 0 3 4 11 8 4 3 2 ; 4 12
27 4 8 4 3 2 ; 0 4 4 7 8 4 3 2 ; 4 13
27 8 8 4 3 2 ; 0 5 4 3 8 4 3 2 ; 4 14
27 12 8 4 3 2 ; 0 6 4 18 8 4 3 2 ; 4 15
27 22 8 4 3 2 ; 0 7 4 1 8 4 3 2 ; 4 16
27 17 8 4 3 2 ; 0 8 4 26 8 4 3 2 ; 4 18
27 15 8 4 3 2 0 9 8 8 4 3 2 5 5
27 16 8 4 3 2 ; 0 10 8 12 8 4 3 2 5 6
27 21 8 4 3 2 : 0 11 8 22 8 4 3 2 5 7
27 11 8 4 3 2 0 12 8 17 8 4 3 2 ; 5 8
27 7 8 4 3 2 ; 0 13 8 15 8 4 3 2 ; 5 9
27 3 8 4 3 2 g 0 14 8 16 8 4 3 2 ; 5 10

* 27 18 8 4 3 2 ; 0 15 8 21 8 4 3 2 ; 5 11
27 1 8 4 3 2 ; 0 16 8 11 8 4 3 2 ; 5 12
27 26 8 4 3 2 ; 0 18 8 7 8 4 3 2 ; 5 13
2 2 8 4 3 2 ; 1 1 8 3 8 4 3 2 ; 5 14

2 4 8 4 3 2 ; 1 4 8 1 8 4 3 2 ; 5 16
2 8 8 4 3 2 ; 1 5 8 26 8 4 3 2 ; 5 18
2 12 8 4 3 2 ; 1 6 12 12 8 4 3 2 ; 6 6
2 22 8 4 3 2 ; 1 7 12 22 8 4 3 2 ; 6 7
2 17 8 4 3 2 ; 1 8 12 17 8 4 3 2 ; 6 8

- 2 15 8 4 3 2 ; 1 9 12 15 8 4 3 2 ; 6 9
2 16 8 4 3 2 ; 1 10 12 16 8 4 3 2 6 10
2 21 8 4 3 2 ; 1 11 12 21 8 4 3 2 ; 6 11
2 11 8 4 3 2 g 1 12 12 11 8 4 3 2 ; 6 12
2 7 8 4 3 2 ; 1 13 12 7 8 4 3 2 ; 6 13
2 3 8 4 3 2 1 14 12 3 8 4 3 2 - 6 14
2 18 8 4 3 2 ; 1 15 12 18 8 4 3 2 ; 6 15
2 1 8 4 3 2 ; 1 16 12 1 8 4 3 2 ; 6 16
2 26 8 4 3 2 ; 1 18 12 26 8 4 3 2 ; 6 18

19 19 8 4 3 2 g 3 3 22 22 8 4 3 2 ; 7 7
19 14 8 4 3 2 ; 3 4 22 17 8 4 3 2 7 8
19 8 8 4 3 2 i 3 5 22 15 8 4 3 2 i 7 9
19 12 8 4 3 2 ; 3 6 22 16 8 4 3 2 ; 7 10
19 22 8 4 3 2 3 7 22 21 8 4 3 2 i 7 11
19 17 8 4 3 2 p 3 8 22 11 8 4 3 2 p 7 12
19 15 8 4 3 2 1 3 9 22 7 8 4 3 2 p 7 13
19 16 8 4 3 2 p 3 10 22 3 8 4 3 2 ; 7 14
19 21 8 4 3 2 p 3 11 22 18 8 4 3 2 ; 7 15
19 11 8 4 3 2 1 3 12 22 1 8 4 3 2 7 7 16
19 7 8 4 3 2 p 3 13 22 26 8 4 3 2 7 7 18
19 3 8 4 3 2 ; 3 14 17 17 8 4 3 2 1 8 8
19 18 8 4 3 2 p 3 15 17 15 8 4 3 2 8 9
19 1 8 4 3 2 p 3 16 17 16 8 4 3 2 p 8 10

*19 26 8 4 3 2 p 3 18 17 21 8 4 3 2 p 8 11
4 4 8 4 3 2 p 4 4 17 11 8 4 3 2 p 8 12
4 8 0 4 3 2 p 4 5 17 7 8 4 3 2 8 13
4 12 8 4 3 2 1 4 6 17 3 8 4 3 2 p 8 14
4 22 8 4 3 2 p 4 7 17 18 8 4 3 2 p 8 15
4 17 8 4 3 2 p 4 8 17 1 8 4 3 2 p 8 16
4 15 8 a 3 2 A 9 17 26 8 4 3 2 1 8 18
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Table 3 (Continued)

Functions Structures Functions Structures

wi w2 "3 "4 T 1 T2 1  2  w3  4  1 2

is 15 8 4 3 2 9 9 14 11 8 5 4 2 9 9 13

15 16 8 4 3 2 ; 9 10 14 7 8 5 4 2 ; 9 14

15 21 8 4 3 2 ; 9 11 14 3 8 5 4 2 ; 9 15

15 11 8 4 3 2 ; 9 12 14 18 8 5 4 2 ; 9 16

15 7 8 4 3 2 ; 9 13 14 1 8 5 4 2 ; 9 18

15 3 8 4 3 2 ; 9 14 14 26 8 5 4 2 ; 9 20
15 18 8 4 3 2 ; 9 15 15 13 8 5 4 2 ; 10 11
15 1 8 4 3 2 ; 9 16 13 13 8 5 4 2 ; 11 11

15 26 8 4 3 2 ; 9 18 13 21 8 5 4 2 ; 11 12

16 16 8 4 3 2 ; 10 10 13 11 8 5 4 2 : 11 13
16 21 6 4 3 2 ; 10 11 13 7 8 5 4 2 11 14

16 11 8 4 3 2 10 12 13 3 8 5 4 2 1 11 615 . _.

16 7 8 4 3 2 10 13 13 18 8 5 4 2 11 16

16 3 8 4 3 2 ; 10 14 13 1 8 5 4 2 ; 11 18

16 18 8 4 3 2 10 15 13 26 8 5 4 2 ; 11 20

16 1 8 4 3 2 ; 10 16

16 26 8 4 3 2 ; 10 18 27 25 10 4 3 2 0 10

21 21 8 4 3 2 11 11 2 25 10 4 3 2 ; 1 10 0
21 11 8 4 3 2 ; 11 12 19 25 10 4 3 2 ; 3 10

21 7 8 4 3 2 11 13 4 25 10 4 3 2 ; 4 10

21 3 8 4 3 2 ; 11 14 8 25 10 4 3 2 ; 5 10

21 18 8 4 3 2 11 15 12 25 10 4 3 2 6 10

21 1 8 4 3 2 11 16 22 25 10 4 3 2 7 10

21 26 8 4 3 2 ; 11 18 17 25 10 4 3 2 ; 8 10

I 11 8 4 3 2 ; 12 12 25 25 10 4 3 2 ; 10 10

11 7 8 4 3 2 ; 12 13 25 16 10 4 3 2 ; 10 11

11 3 8 4 3 2 12 14 25 21 10 4 3 2 , 10 13

11 18 8 4 3 2 ; 12 15 25 11 10 4 3 2 ; 10 14

11 1 8 4 3 2 ; 12 16 25 7 10 4 3 2 ; 10 15

11 26 8 4 3 2 ; 12 18 25 3 10 4 3 2 ; 10 16

7 7 8 4 3 2 13 13 25 18 10 4 3 2 ; 10 17

7 3 8 4 3 2 13 14 25 1 10 4 3 2 ; 10 18

7 18 8 4 3 2 13 15 25 26 10 4 3 2 10 20

7 1 8 4 3 2 ; 13 16

7 26 8 4 3 2 : 13 18 27 24 8 7 4 2 ; 0 7

3 3 8 4 3 2 14 14 27 10 8 7 4 2 ; 0 9

3 18 8 4 3 2 ; 14 15 27 20 8 7 4 2 ; 0 11

3 1 8 4 3 2 ; 14 16 27 9 8 7 4 2 ; 0 13

3 26 8 4 3 2 ; 14 18 27 23 8 7 4 2 0 15

18 18 8 4 3 2 ; 15 15 2 24 8 7 4 2 ; 1 7

18 1 8 4 3 2 ; 15 16 2 10 8 7 4 2 ; 1 9 ,

18 26 8 4 3 2 ; 15 18 2 20 8 7 4 2 ; 1 11

1 1 8 4 3 2 ; 16 16 2 9 8 7 4 2 ; 1 13

1 26 8 4 3 2 ; 16 18 2 23 8 7 4 2 1 15

26 26 8 4 3 2 ; 18 18 19 24 8 7 4 2 3 7

19 10 8 7 4 2 ; 3 9

27 14 8 5 4 2 ; 0 9 19 20 8 7 4 2 3 11

27 13 8 5 4 2 ; 0 11 19 9 8 7 4 2 3 13

2 14 8 5 4 2 1 9 19 23 8 7 4 2 3 15 0
2 13 8 5 4 2 ; 1 11 4 24 8 7 4 2 5 7

19 14 8 5 4 2 ; 3 9 4 10 8 7 4 2 5 9

19 13 8 5 4 2 3 11 4 20 8 7 4 2 ; 5 11

4 14 8 5 4 2 ; 5 9 4 9 8 7 4 2 5 13

4 13 8 5 4 2 5 11 4 23 8 7 4 2 ; 5 15

8 14 8 5 4 2 ; 6 9 24 24 8 7 4 2 ; 7 7

8 13 8 5 4 2 , 6 11 24 12 8 7 4 2 7 8

12 14 8 5 4 2 7 9 24 10 8 7 4 2 ; 7 9

12 13 8 5 4 2 7 11 24 14 8 7 4 2 ; 7 10

22 14 8 5 4 2 8 9 24 20 8 7 4 2 i 7 11

22 13 8 5 4 2 ; 8 11 24 13 8 7 4 2 p 7 12

14 14 8 5 4 2 9 9 24 9 8 7 4 2 ; 7 13

14 15 8 5 4 2 p 9 10 24 11 8 7 4 2 p 7 14

14 13 8 5 4 2 : 9 11 24 23 8 7 4 2 ; 7 15

p14 21 1 8 5 4 2 9 12 24 3 8 7 4 2 j 7 16
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Table 3 (Continued)

Functions Structures Functions Structures

w_1 w 2 3 4 T_1_T_2 w1 w2 w3 w4 ; T1  T2

24 18 8 7 4 2 ; 7 18 8 6 7 6 5 3 7 .

24 1 8 7 4 2 7 20 8 10 7 6 5 3 7 9

24 26 8 7 4 2 7 22 8 20 7 6 5 3 s 7 11
12 10 8 7 4 2 ; 8 9 8 9 7 6 5 3 ; 7 13
12 20 8 7 4 2 ; 8 11 8 5 7 6 5 3 7 14
12 9 8 7 4 2 ; 8 13 6 6 7 6 5 3 ; 8 8
12 23 8 7 4 2 ; 8 15 6 10 7 6 5 3 ; 8 9
10 10 8 7 4 2 ; 9 9 6 14 7 6 5 3 ; 8 10 0
10 14 8 7 4 2 ; 9 10 6 20 7 6 5 3 8 8 11
10 20 8 7 4 2 ; 9 11 6 13 7 6 5 3 ; 8 12
10 13 8 7 4 2 ; 9 12 6 9 7 6 5 3 ; 8 13
10 9 8 7 4 2 ; 9 13 6 5 7 6 5 3 ; 8 14
10 1 8 7 4 2 9 14 6 7 7 6 5 3 ; 8 15
10 1 8 7 4 2 ; 9 15 6 3 7 6 5 3 3 8 16
10 3 8 7 4 2 ; 9 16 6 18 7 6 5 3 ; 8 17 -

10 18 8 7 4 2 3 9 18 6 1 7 6 5 3 ; 8 199
10 1 8 7 4 2 ; 9 20 6 26 7 6 5 3 ; 8 22
10 26 8 7 4 2 ; 9 22 10 5 7 6 5 3 ; 9 14
14 20 8 7 4 2 ; 10 11 10 7 7 6 5 3 ; 9 15
14 9 8 7 4 2 ; 10 13 14 5 7 6 5 3 ; 10 14
14 23 8 7 4 2 ; 10 15 20 5 7 6 5 3 11 14
20 20 8 7 4 2 3 11 11 20 5 7 6 5 3 ; 11 15
20 13 8 7 4 2 ; 11 12 13 5 7 6 5 3 3 12 14
20 9 8 7 4 2 ; 11 13 9 5 7 6 5 3 3 13 14
20 11 8 7 4 2 11 14 9 7 7 6 5 3 13 15 .

20 23 8 7 4 2 3 11 15 5 5 7 6 5 3 ; 14 14
20 3 8 7 4 2 11 16 5 7 7 6 5 3 14 5

2 18 8 7 4 2 3 11 18 5 3 7 6 5 3 3 14 16
20 1 8 7 4 2 ; 11 20 5 18 7 6 5 3 ; 14 17
20 26 8 7 4 2 , 11 22 5 1 7 6 5 3 , 14 19
13 9 8 7 4 2 ; 12 23 5 26 7 6 5 3 14 22
13 23 8 7 4 2 ; 12 15
9 9 8 7 4 2 ; 13 13 10 15 8 6 4 3 ; 9 11

9 11 8 7 4 2 13 14 15 9 8 6 4 3 11 13
9 23 8 7 4 2 ; 13 15 

" 3 1 1

9 3 8 7 4 2 ; 13 16 24 22 10 6 3 2 ; 6 9
9 18 8 7 4 2 ; 13 18 24 17 10 6 3 2 6 10
9 1 8 7 4 2 13 20 24 15 10 6 3 2 6 11

9 26 8 7 4 2 13 22 24 16 10 6 3 2 3 6 12

11 23 8 7 4 2 ; 14 15 24 21 10 6 3 2 6 13
23 23 8 7 4 2 ; 15 15 22 23 10 6 3 2 9 9 16
23 3 8 7 4 2 ; 15 16 17 23 10 6 3 2 10 16
23 18 8 7 4 2 15 18 15 23 10 6 3 2 11 16
23 1 8 7 4 2 ; 15 20 16 23 10 6 3 2 ; 12 16
23 26 8 7 4 2 ; 15 22 21 23 10 6 3 2 ; 13 16

27 6 7 6 5 3 3 0 8 6 15 8 6 5 4 3 9 12 0
27 5 7 6 5 3 3 0 14 15 5 8 6 5 4 ; 12 15

2 5 7 6 5 3 ; 1 14 22 20 10 7 6 2 ; 10 13
19 6 7 6 5 3 , 4 8 20 21 10 7 6 2 , 13 16

*19 5 7 6 5 3 10 4 14 1 1

4 7 6 5 3 6 8 24 25 8 4 2 1 , 4 8
4 5 7 6 5 3 ; 6 14 25 23 8 4 2 1 ; 8 12
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ON THE NUIUR OF LOCATIONS INUIRED

13=TH COUTT-ADEESSABLE N1W3! Dm.UinTATION

OF NULTIL.T-VhLUND FUNCTIOS 0

Jon T. Butler
Department of Electrical Engineering

and Computer Science
Northwestern Universityr Evanston, IL 60201 &

/ iBSTRACT tions are implemented with binary-valued content-
addressable memories (CAM). An advantage of the "" "''

A multiple-valued function can be realized by CAM implementation is that it is direct, requiring
a binary content addressable memory (CAM), a the truth table of the target function. A decoder

decoder which converts multiple-valued inputs to converts the multiple-valued inputs to binary-

binary addresses, and a decoder which converts the valued address lines for the- CAs, and an encoder
binary CAM outputs to a multiple-valued output. Of converts the binary CAM outputs to a multiple-
particular interest is the number of CAM locations valued output. An interesting problem is the
required in a specific implementation. In this choice of the encoder function, as it determines
paper, an upper bound on the storage requirements the number of CAN.ocations required to implement a
is derived for m-valued n-input functions. This is given function.

compared with the storage requirements for specific
functions, such as the HIM and MAX functions. Let L (m, n) be the minimum number of CAN
Also, the average number of locations is computed locations required to implement a given m-valued
for an-valued n-input functions and is shown to be n-input (1-output) function. Papachristoull] has --

somewhat more than one-half of the upper bound. shown that

.n-i-:.--
(Cmn~1 /2 - m/2)log2m

is an upper bound on L i (m,n). In this paper, an
I. INTRODUCTIOU. upper bound better by I factor of i is shown.

Further, it is shown that the bound is firm when m
The difficulty of developing a technology is a power of 2; there exist functions with minimum

capable of more than two levels of logic has storage requirements which equal the upper bound.
prevented the production of commercially available
circuits employing multiple-valued logic exclu- Also considered in this paper is the storage
sively. Until a fast, high-radix technology requirement for specific functions, the MAX, HIM,
emerges, we will see hybrid circuits, combining mod m addition, and mod m multiplication functions.
binary with some higher radix logic. An example is Finally, the average number of CAM locations re-

the ITEL 432 and 808711], in which a 4-valued ROM quired for m-valued n-input functions is calculated
control memory is embedded in a binary-valued IC. and compared with the maximum number of CAM loca-
While state-of-the-art VLSI technology can produce tions.
a 4-valued uniformly structured ROM, -valued ran-

dos logic is still not at hand. Thus, the hybrid .- "h-.'.-.LI
circuit. 11. CAN IMPLMETATION OF NULTIPLK-TAw-ED LOGIC

Another application of the hybrid circuit is.7
in systems where the cost of the interconnect is Consider an m-valued n-input function. Such
large. In aircraft control systems, such as a function can be realized as shown in Fig. 1
SIFT[2], processors, sensors, and actuators are below. The n a-valued inputs are applied to
distributed throughout the aircraft and inter- a decoder which produces binary address lines that
connected by busses whose weight can be a sub- are applied to all Cks. Each CAM produces a 1 or 0
stantial fraction of the aircraft weight. Multi- depending on whether or not it contains the address

pie-valued signalling offers promise, not only for applied. The collective CAM outputs form a binary
data lines but for control lines as well. For codeword which is applied to the encoder whose out- ..

example, Vranesic and Zaky[3] have proposed the use put is the single m-valued output.
of multiple-valued data and control signals -in a
local network. For a given a-valued n-input function, it is

of interest to produce the CAM implementation of *',..

Papachristou[4] has proposed a hybrid circuit lowest cost. The cost is determined by the con-
in which multiple-valued combinational logic funo- plexity of the decoder, the CAs, and the encoder.

,
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multiple-valued implementation of an arbitrary multiple-valued
output function.

Let reorrenoy v be the number of occurrences

of logic value k in the output column of a multi-
"ecdebinary pie-valued function. For example, for the function
outputs of Table I, w 5, w 2, and w 2. The sum of

the recurrenc
l
es musl be the toial number of en-

Ctries in the truth table, and so,

12 H2o p"--1

X2 Decoder .

"- binary address where m is the number of logic values and n is the
|n lines number of inputs.

Associate with each m-valued output j a unique

multiple-valued binary codeword which has v 11s. v is called the
inputs weight of J. For example, In Implem~ntation #1, v

2 1, v1 = 0, and v 2 = 1, while for ImplementatioR S
#2, v0= 0, v1 =1, and v2 = 1"

Figure 1. CAM Implementation of an m-valued The total CAN storage L(m,n) of a given

n-input Function. m-valued n-input function is

m-1

In the analysis to follow, it is assumed that, for L(m,n) = v
a fixed m and n, the complexity of the decoder andw "
encoder is fixed (or negligibly small) and that the i0C
complexity of the CAM is measured by the total num-
ber of locations required. The important design For example, for Implementations #1 and #2, we have
parameter then is the encoding function, since it L(m,n) as 7 and 4, respectively.
determines the latter. To see this, consider two
CAM implementations of the 3-valued function shown
below in Table I. In Implementation #1, the enco- III. VORST CASE NUISER OF STORAGE LOCATIONS.

For any multiple-valued logic function, the
number of storage locations needed in the CAMs is

Implementation #1 Implementation #2 given by (1). Writing (1) to show two recurrency
01-0, 00-1, & 10-2 00-0, 01-1, & 10-2 values wj and wk explicity, gives

X1 x2 q CAM1 CAM 2  CAM 1 CAM 2  k

0 0 0 0 1 0 0 L(m,n) = wjvj +WkVk+ wvi .
0 1 0 0 1 0 0 1 - "

0 2 0 0 1 0 0 iij,k
1 0 0 0 1 0 0
11 1 0 0 0 1 Assume v > vk.  If w, > w, then a new distri-
1 2 1 0 1 0 bution recurrency vuse obtained by interchan-
2 0 0 0 1 0 0 ging the binary codewords associated with logic
2 1 2 1 0 1 0 values j and k produces a total storage less than
2 2 1 0 0 0 1 the original. 0

Table I. Two CAM Implementations of a Three-Valued Therefore, given any distribution of recur-
Function. rencies to codewords, a rearrangement which asso-

ciates the largest recurrency with 00.. .0, the
codeword of weight 0; the next C(p,1) largest with .. :-
the C(p, 1) codewords of weight 1; the next C(p,2)

der realizes the function (01-0, 00-1, and 10-2), largest with the C(p,2) codewords of weight 2; etc.
while the encoder of Implementation #2 realizes has the smallest storage requirement, where p =-
(00-0, 01-1, and 10-2). The output of the two CAMs [log m is the number of bits in the codeword ([dl
is shown in Table I for each implementation. Re- is te integer equal to or just larger than d) and
call that an output of I indicates the presence of C(p,i) is the number of combinations of p things
a storage location. Thus, Implementation #1 re- taken i at a time. Such a distribution is called
quires 7 locations, while Implementation #2 re- wootone derai. For example, the distribution
quires 4, and so the latter is preferred. Consider aocit eamith Forle ample th distribution
now the problem of finding the minimal cost CAM associated with Implementation #2 d=5 00-0, w -2

01-1, and w2 x2 10-2) is monotone de t-easing, whije
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that of Implementation #1 (w =2 01-0, w =5 00-1, For large m, Papachristou's nupper bound on

and w2 =2 10-2) is not. Impl~mentation #1, there- Lmin(m,n) is approximately (m /2)log 2m. This
fore, has the least number of storage locations of bound is improved A! .follows. From Lemma 1, an
any CAM implementation of the function of Table I. upper bound on the number of CAM storage locations
Let Lmi (m, n) be the minimum number of location- required to implement an m-valued n-input function
requireVin the CAM implementation of a given m-va- is the number of locations required by functions
lued n-input function as requireu by the monotone with a uniform recurrency gistributin. In such a
decreasing recurrency distribution. For example, distribution, there are m /m = a input tuples
for the function of Table I, L (3,2) = 4. which map to each output logic value, p-bit

min codewords represent each output logic value, where

Now consider all m-valued n-input functions. p log ml. There are C(p,i) p-bit codewords with

For each, there is a minimum CAM implementation. i 's, and each input tuple whose output value cor-

Of this set of implementations, we are interested responds to such a codeword requires i storage lo-
in the worst case; i.e. the largest of the cations. Thus, the total number of storage loca-
L min(m,n)'s. Papachristou[4) has shown that tions associated with input tuples whose output

valye is encoded by a codeword with i 1' is

Lin(m,n) (m nI/2 - m2 /2 - m/2)log2m. m n-iC(p,i). Summing over all i yields,

An improved (smaller) upper bound is derived here
by showing a set of functions whose minimum storage 

n-I -"

requirements exceeds all others. Lmin(m,n) < m
n

C(p,i) . (2)

For the analysis to follow, it is convenient i=O

to consider only recurrencies which are monotone
decreasing, where w > w1 > ... > w Thus, The righthand side of (2) is strictly larger than

00.. .0 will encode P, 10..'.0 will enco1e
1
1, 01.. .0 the lefthand side when p is not a power of 2, since

will encode 2, etc.. Note that the minimum CAM there are fewer output logic values than p-bit
implementation of a function with the same set of codewords. The righthand side can be evaluated as

* recurrencies arranged in a different order will follows. From the binomial theorem [5,p.17],
have the same cost; although the decoder function
will be different, the number of CAM locations will p .
be the same. Further, we will assume that the num- (x I) p  EC(p'i) (3)
ber of bits in the codewords p = rlog2ml. A ui- " . .
form recurreney distribution is a monotone de- i=O
creasing recurrency distribution in which the re-
currencies are identical; i.e. w0  w1  Differentiating the righthand side of (3) with
W w- 1. We htve the following result. respect to x and setting x = 1, yields the sum on

the righthand side of (2). Thus, 5

" LeL ea 1: An m-valued n-input function realizes
the largest minimum CAM storage requirement L (m, n) mn-1 (d/dx)(x + 1)P M n-1 p2 P-1

L~ (m,n) of all in-valued n-input functions mm x=1
i int has a uniform recurrency distribution.

Substituting for p yields,
Proof: (if) On the contrary, assume there is a

function G with the largest minimum CAM sto-
rage requirement which does not have i uni- n-l log2ps(2rio@..u/2.

* form recurrency distribution. The monotone L.)
decreasing distribution of G can be converted
into a uniform distribution by a sequence of When m is a power of 2, p log 2m, and
steps of the form: For each pair of recur-
rencies (w4 , wi ) such that w > w +, w >
w, ,, and w w decree w by 1 nd L(mn) I (,n,2)lo,,, (5)•i. icrease w by 1>. wThe minimum -4torage re-

quirement ever decreases at each step, and
so a uniform recurrency distribution exists is a firm upper bound; it expresses exactly the
with a largest Lmin~m,n). maximum number of locations required in the minimal

implementation of the highest cost m-valued n-input
(only if) One can proceed from a uniform functions.

recurrency distribution to any monotone de-
creasing distribution by a sequence of steps
which are the converse of the steps in the if .0
part above. At each step, the memory size
remains the same or increases. On the first IT. STOIUGE IMU1 T POn SfIFIC NTIPLE-
step, the memory size always increases. ,IL 0 FUCTIOS.
Thus, the uniform recurrency distribution
uniquely attains the maximum memory size. In this section, we derive the storage

requirements for certain multiple-valued functions
Q.E.D. and compare this with the worst case number.

..-.-. '........ ... ... -...-.-.".' ...-."..
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values of L (G) and L in(G2) for 3 m 8 and 2
(a) lAX-01 Funations. n & 5.

Let the IX (KIN) function

(b) Modulo Addition.G 1 = MAX(xlo '2 ..... Xn) (G 2 = HIN(xI'x 2 ..... Xnd)) " "

be an m-valued n-input function in which the output Let

. value is the maximum (minimum) of the input values.
Because the monotone decreasing recurrency distri- 3 2."' n
butions for these functions is the same, it is suf-

* fiien toconide lut te MX fncton. Let be an rn-valued n-input function in which the output
Tn(i) be the number of n-tuples of values 0 to m-1 value is the sum of the input values modulo m. All
in which I Is the largest value. Thus, T (i) is
the number of input tuples which map to i under the output values occur in equal number, and this func-

i tion produces the uniform recurrency distribution.
MAX functio% There are U+1) n-tuples of values Thus, the CAM storage requirement for the MODSUM is'0 to i and I- tuples of values 0 to i-1. Thus, the
number of n-tuples with at least one I but no lar- the maximum over m-valued n-input functions. The
ger of i s wstorage requirement can be calculated in a

straightforward manner for specific m and n. For
exalple, for n. 3, 4y 6, 7,ard 8, the cost is

S1 2 3 - 4" , 5"5 - , 7 - , 97 n- 1, and
12'8 , respectively. Table IV shows the costs .for these six values of m and for 2 n K 5. 0

* The monotone decreasing distribution of recur-
rencies for the MAX (MIN) functions is (c) Modulo Multiplication.

n (mn n ,_nn Let
-(r-) (-2). ... > 1n o

G M 4 ODPROD(xI x2 ,••,x n )

To realize the MAX function with the least amount n
of CAM storage, we associate the output value of be a l - f n i olargest~ (mreny 1 - ml

n ,  
bih0...T e an ,,-valued n-input function in which the output .i....

largest recurrency, ) with 00... .0. The value is the product of the input values modulo m.
output values with the next p C(_p,1) largest re- For this function, 0 has the highest recurrency,
currencies, (m-A)n- (m-2)n, (m-2)"-(m-3) while the relative recurrencies of other values
and (M-C(p, 1))

n  
(a-C(p, 1)-I)

n  
are encoded by- -an...0 , 01..0, .. ( ,1nd are..1, ecode byu, depend on how many factors in their prime fac-

10.. a0, 0i. 0, and 00. 1, etc.. Thus, torization are shared with m. To see this, con-
we have,

P C(p,t)-I i-1 i-1 - -"- '

Lmin(G1) Li( 2) = (--(C(p,k)-j) - (m--.(C(p,k)-(J+1))n (6)

i:- -Jo k=o k=O

sider multiplication modulo 4. For n = 2, we have -After rearrangement, (6) becomes the multiplication table of Table II.

a "
Lmin(G) Lmin(G2) = (r - C(p,J)) n 

, (7)i:o j-- :o0 i:'i l

min 1 mi 2 3

where a is the largest integer such that 0 "

0 0 0 0 0
a 1 0 1 2 3

m > C(p'j) 3 0 2
a2O 3 0 3 2 1

When the number of inputs n is large, the first Table II. G(Xlx 2) Verses x1 and x2.
term of (7) dominates, and we can write, 4...1 2'

Lain"- L (G2  (m-1)n Let w (n) be the number of occurrences of output
I- min 2value I In the MDDPROD of n input variables. For

example, w0 (2) = 8, w (2) z 2, W (2) a 2, and w (2)

where f(n) - g(n) means lia f(n)/g(n) 1, as n-0o . = 4. We can caloullte these iecurrencies re~ur-
Table IV, at the end of this section, shows the sively from
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G 4 xi 2' x n MODPROD(G 4 (x,x 2 ,. ,x n-1)'x n). recurrencies of the rn-valued n-input MODPROD func-
tion for 3 K m 8. Also shown are expressions for
the total number of storage locations required. It

Consider w (n). G (x1,x, *x) is 0 for all is interesting to compare the relative storage re-
four values of G (x x2,., ) when xn= 0, for quirements for the various values of mn. When m is
one value (0) op 4 0 Yx1 x .. ,x n-1 ) when x =1, a prim%~, the number of locations required is-
for two values (0 and 2o G (x Ix ... I * Xni when OC(rn-i) ). Thus, for increasing m, when m is0

wnx 3. 2hu, wnoro e cans writ of 1' 4 xl 2 .. Xn-1) prime, the cost increases. However, when composite
wl n x =3 hs a rt m's are included, quite a different situation

exists. For example, the cost of an n-input

w (n) = 4w (n-1) + w (n-1) + 2w (n-1) + w (n-1) 6-valued MODPROD function is less than that of an
0 0 1 23 n-input 5-valued functionl

The other wits can be derived in a similar manner. An examination of the MODPROD function truth
table for a prime mn shows that the logic values 1, S

2, ... , rn-i occur in equal numbers. Such a distri-
wi(n) =w, (n-1) + w 3 (n-1), bution is more expensive to implement than the non-

uniform distribution of the MODPROD function for
w w2 (n) =w 1 (n-1) +i 2w 2 (n-1) + w3C(n-1), composite m.

an 1 Cn 3 n-) Table IV, on the next page, shows that the
w3(n) number of storage locations required by the ?4ODPROD

function equals or exceeds the number required for
This set of recursion relations can be solved [5, the MIN and MAX functions when m, the number of

*pp. 60-73] to produce closed-form expressions, logic values, is prime. However, when m is com-
posite, the opposite is true. This difference is

w (n) 4nnn--2 n, especially notable when n is very large. In fact,
0 the number of CAM storage locations required for

wi n) w~) n-1, the MODPROD function becomes a vanishingly small
1() 3 fraction of the locations required by the MIN or

and w (n) n2 n-.MAX function as n approaches oo, when m is comn-
2 posite. When mn is prime, the cost of the MODPROD

function is a constant (somewhat larger than 1)
Table III shows the closed-form expressions for the times the cost of the MIM or MAX function.

Number of Expressions for Expressions for-
Output Logic Recurrencies of rn-valued CAM Storage
Values mn n-input MODPROD Functions Requirements

4. 3w(n)=, 3n_2n w (n),,w (n)=2n 2n

6 6nM n-n12 n n-i -

4 ~w 0(n)=4 _n2~ n-2  w n )= w 3(n)=n2 n w2n=2n'

5 w 0 (n)=5n _4 w 1 (n)=w 2 (n)=w 3 (n):w4 (n)=4 5n4

6 ~~w (n)=6 _ 3+ n= n=

8 w0 (n)8n4(n
2/)4ni -2 n-i 1 n 3 (n)=3n-

7w (n)=7n6w()=w(n: ,n= w2 n)w (n)= (n(n)/+9~
2 n-i 3 4 5 -

98*

n-1
.....................................................................................

8 w 0(n)= n_ n 2 2)4n1 -(5............ (n)

n-1.. . . .. . . . . ... . . . . . .n. . . .2 n-1.
. 3 (nz 5 (n= 7 n= n*4n=4( 25/+)

2 n-1 .. . ~
..................................... . n)/2)4



No. of No. of MAX(MIN) hODSUM MODPROD Uniform
Values Inputs Function Function Function Recurrency

m n Lmin(G1 )=L mn(G2 ) L mn(G3) L min(G) Distribution

3 2 14 6 14 6
3 8 18 8 18
4 16 54 16 54

5 32 162 32n 16200 2 (2/3)3 
n

2n (2/3)3
n

. ...

4 2 10 16 4 16

3 28 64 12 64
4 82 256 32 256
5 244 n 1,024 80 1,024 n
0 3 n 4n (n/2)2 4

5 2 17 25 20 25

3 65 125 80 125
4 257 625 320 625
5 1,025n 3,125 1,280 3,125 n"-"0 c4 n5 n(5;41)4l 5

n
. -

6 2 29 42 16 142 5
3 133 152 64 252

14 6141 1,512 256 1,512
5 3,157 9,072 1,024n  9072 n

3 ' 5 n (7/6)6 n4 (7,)60

7 2 145 63 54 63
3 213 14141 32444 1 141-
4 1,377 3,087 1,944 3,087 0
5 8,019 21,609n 11,664 21,609 -
G 6 ( 9 / 7 ) 7n (3/2)6 (9/7)7

8 2 66 96 64 96
3 408 768 336 768
4 2,658 6,144 1,728 6,14.4
5 17,832 49,152 9;70

4  
49,152-

00 (3/238' (n /8)34
n  (3/2) 8 n

Table IV. Number of CAM Storage Locations Required in the
CAM Implementation of Specific Multiple-Valued Functions.

V. THE AVERAGE COST OF IPLDUIYING A MULTIPLE- where u > u2 > ... > u represent the distinct ""

VALUED F-INCTIN. parts ol the partition and a i is the number of
occurrences of part ui. To achieve the minimum
cost realization, we represent 0 by 00.. .0, the

(a) Direct Calculation of the Average Cost. next p logic values by 10.. .0, 01 ...0, ..., and
00...1, etc.. Note that P provides all the

The few examples of the previous section show information necessary to compute the total CAM

" that, when the number of inputs becomes large, storage requirements. Further, the total CAM
there is a wide range of costs over the set of storage requirements will be the same for any func-
m-valued n-input functions. Thus, it is of tion in which the recurrency set is the same as 5
interest to compute the average cost over this set, specified in (8) except for a rearrangement among

as this is gives a better indication of the costs input tuples and/or output logic values. The pro-
. one can expect in implementing a given function cedure then for calculating the average cost is to

than can be obtained from examples. We proceed as enumerate all possible partitions P, compute the
* follows. The recurrency distribution of output storage requirements for each, multiply by the num-
,. logic values of some function f corresponds to an ber of functions associated with P, and sum. Di- ,

nm-part partition (5, pp. 41-46] P, viding this by the total number of functions yields

n the average cost.
P: w0 + w1 + ... + win 1 =m (8)

n' The number of functions N(P) associated with a
on inn Assume w0 2 w . ... > w3 1 . As there may given partition P is .

" be consecutive w9's In (8) which are identical, n
rewrite P as follows: mlI ml %

",-u a ~ 2 + . + ~ u n N(P) W W 1 ... w 3 1l (a l l a2  ... a (9)
P: al1u 1 + a 2 u2 + .. + as~ u m 0 1 •
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and the average number of CAM storage locations, (b) The Niber of Beciwleny Distributiona.
AC(m,n), needed by an m-valued n-input function is

Each recurrency distribution is associated
with a unique partition of the form given in (8).

AC•m~n) (/n) " N(P (10) Thus, we can use established techniques for the
,AC(m,n) (1/a ___N(P)'C(P) , (10) enumeration of partitions [5, pp. 41-45]. As an

P example of the procedure, consider the monotone
decreasing recurrency distributions for 3-valued
2-input functions shown below in Table VI. For

where enumerates all a-part partitions on an, each of the seven distributions,
and C(Pf is the cost of partition P. C(P) is the
weighted sum,

Number of Composition
m-1 w0  wI  w2  CAM Locations of Distribution

C(P) = wx i  (11) Required in Unit Distributions 0

3 3 3 6 3A
4 3 2 5 2A+B+C

where , 0, x x 4 4 1 5 A+3B
w 0  1  2  . c(p,) 1 5 2 2 4 2A + 3C

C(p,1)+l - XC(p,1)+2 -... = Xc(,2)+C(p, )  2 5 3 1 4 A + 2B + 2C

etc.. (10) was implemented by a computer program 6 2 1 3 A + B + 4C
in which the function of P was performed by a 7 1 1 2 A + 6C .
standard partition enumeration package. The re-
sults are shown in Table V. Table VI. Monotone Decreasing Recurrency

Distributions For 3-valued 2-input Functions.

No. of No. of Average Number of the cost of the CAM implementation is shown. Each

Values Inputs CAN Locations distribution in Table VI is a unique combination of
a n AC(m,n) the following "unit" distributions. .6

2 2 1.250 Unit

3 2.906 Distribution w0  w1  w2

3 2 4.211

3 15.420

4 2 11.566 B 1 1 O
3 C" 3 •C 1

5 2 19.539
3 s The decomposition of each recurrency distri-

bution into unit distributions is shown in the
6 2 33.970 righthand column of Table VI.

3 0
To find all monotone decreasing recurrency

7 2 52.652 distributions, we enumerate the ways to combine the
3 6 unit distributions and select only those which

correspond to 3-valued 2-input functions. Such a
process can be performed algebraically. Associate

Table V. The Average Number of Storage Locations with each unit distribution a generating function
Required By Multiple-Valued Functions in a CAM on formal variable x, where the exponent represents
Implementation. the contribution to the number of logic variables S

and the coefficient represents the number of ways 7
so many of the unit distributions can be chosen.

The *Is indicate average values which were not That is, for A the corresponding generating
" computed because of time limitations. Word size function is

also became a limiting factor because of the
*'-.exponentials. (x3 + x6 + x9 + = x3 - x31 (12)

The form of (10) does not allow insight into
. how fast the average cost increases and how this The coefficient of x 3 , 1, oorresponds to the

compares with the upper bound computed previously.'.. ~one way a single unit distribution A contributes to '-',•
Alternatively, we attack this problem from a
different point of view. Instead of the cost asso- w0, wi, and w , while the exponent corresponds to

ciated with m-valued n-input functions, we will the amount o? the contribution. x corresponds to

consider the costs associated with the recurrency the one way two unit distributions A contribute 6

distributions. to w0, w1, and w2, etc.. Similarly, the generating
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functions corresponding to the unit distributions B Number of Generating Asymptotic Approx.
and C are Logic Values Functions For the No.

2 2  1 of Monotone01 + x
2 
+ x, + .. 0 =( x)

"  
(13) Reeurrency Distr.

and (0 + x + x2 + 0..))(1 (1))3 x 3 (1-x 3 )-I(1-xz)-(1-x)
1  03 (3 2)n/ 1 2

4 (x /x3 )(1-x )'1G z aq (43)n/144 
"

respectively. A constant 1 appears in (13) and (5 4 -.5 ...-4.
(148) because of the possibility that the corres- 5 ( /x )(1-x G(5)n/2,880.
ponding unit distribution does not appear in the (16/15 )(1.6)-1G5 ( 6 )n/86180
composite distribution. Taking the product of the 6 5= G6  (6)n/86,400

generating functions (12), (13), and (14) yields 7 6 )(x 7 ) = 06.

(x3+x6+x9. .. )(1.gxz ox+. ..)(1,x+x2+...)
Ox3(.x)-(1x )-l(x)-1 ,(15) Table VII. Generating Functions and Asymptotic

Approximations For the Number of Monotone
Decreasing Recurrency Distributions Among

the generating function for monotone decreasing a-Valued n-Input Functions.
recurrency distributions of 3-valued 2-input func-
tions. (15), it turns out, is the generating
function for the number of partitions on 1, 2, 1and (a) The Averegs Cost Over the Nonotone Deoreaing 7 O
3 having at least one 3. The coefficient of x in Reourrenoy Distributions.
(15) is the number of ways the unit distributions
can be combined to form a Composite recurrenoy The average number of CAM storage locations
distribution with i output levels. For example, over the monotone decreasing recurrency distri-
expanding (15) yields butions can be calculated using a modified version. . -

of the generating functions described above by in-
x3(1_x3)-1(l-x 2)-l-x)- I = x

3 + x4 +2x5 + 3x6  cluding another formal variable y. That is, every
(16) occurrence Y x in the enumeration will be aceom-

S4x7 +5x 7x9 . .. panied by y , where j is the number of CAN looa-
tions required. Note that units A, B, and C con-"

The coefficient of x , 7, is the number of monotone tribute 2, 1, and 0, respectively, to the overall
decreasing E.currenoy distributions of functions cost of the distribution of which they are a part.

* ~ecurencyTherefore, instead of (12), usewith 9 (=3) output logic values, i.e. the 7T
3-valued 2-input functions listed in Table VI. 32 6--9-32 32-"
Similarly, the number of monotone decreasing (x3y 2 + x 6y4 + xy + •..) y (1 - x 3y )"  ,(17)
recurrency distributions of 3-lued 3-nput
functions is the coefficient of x (27 = 3 ) in and instead of (13), use
(16).

iAn expression for the value of the coefficient (1 + x2 y + x 4y2 + x2y(1 - x2 y)" 1 . (18)
of x in (16) can be obtained by standard combina-
toric methods [6, pp. 83-99]. Alternatively, a

simpler closed-form expression can be derived which Because unit C contributes nothing to the overall

is accurate for large i by the methods shown in cost, (14) will be used without modification. The
Bender[7. We prefer the second approach. generating function which accounts for the cost is

then the product of (17), (18), and (148) or
i

Let b be the ooefficient of x in (16). 3
Applying heorem 4 of (7] to (16) yields x3 y2 (1-x3 y2 )-1(1 - x2 y)- 1(1 - x)- 1. (19)

bi - i 2 /12 • Expanding (19) and collecting terms containing x1  0

shows the distribution of costs over the recurgency
Since we are only interested in those values of i distributions. For example, with respect to x , we
corresponding to the number of input tuples have from (19) the term
aisociated with a 3-valued n-input functions, i :
31, and the number of monotone decreasing (y 2 + y3 2y + 2y5 + y69
reourrency distributions is asymptotically equal to

This shows that there is one monotonj decreasing . 9 .
12. reourreno distribution with oot 2 (y ), one with

oOSN 3 (y ), two with cost 4 (y ), two with cost 5

In a similar manner, the asymptotic approximations (2y ), and one with cost 6 (y ). The result from

for other values of m can be obtained. Table VII (20) agrees with Table VI, as it should.
shows the generating functions and asymptotic fw fe te1 ih sc o a
approximations for the number of monotone decreas- It we differentiate (19) with respect to y and

ing recurrenoy distributions for 3 1 a I 7. set y to 1, term of the form (20) become weighted
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sums which, when divided by the number of monotone vol. 66, pp. 1240-1255, October 1978.
decreasing recurrency distributions, yield the

average cost per distribution. In computing the (3] Z. G. Vranesic and S. G. Zaky, "Hultivalued

ith coefficient, again we prefer to use the logic in local digital intercommunication

asymptotic methods of Bender[7]. Table VIII shows systems," Zr=. COMiCON -W FAn all 2, pp.
the average cost as calculated by this method as 127-134, September 1982.

well as the highest cost associated with the uni- -

form recurrency distribution as calculated pre- [4] C. Papachristou, "Content-addressable memory
viously. requirements for multivalued logic," Zre=. 2f

Average Number of CAM Highest Cost Ratio of
Number of Storage Locations Over (Uniform Average Cost ..

Output Logic the Monotone Decreasing Recurrency to Highest

Values m Recurrency Distributions Distributions) Cost For

For Large n Large n

3 .5556 3n 2 "3 n- .8333

4 .5 4 17 .*4 n n-1 .5417

5 •583 2 -5n 5 "5 n
-
1 .5832

6 .6 806 "6 n 7*6 n-
1  

.5833

7 9"7 .5966

Table VIII. Average Number of CAM Storage Locations Over the Monotone
Decreasing Recurrency Distributions For Large n.

vI. co5LUDNO I3UK. the Enter. .w4 . ga ul.t,,l,-VAJd"
Logil, pp. 62-72, May 1981.

The righthand column of Table VIII shows the
ratio of the average cost of CAM implemented [5) C. L. Liu, Introduction I& L inAjgrjA Ha_

i-valued n-input functions over the recurrency dis- theories, McGraw-Hill, New York, 1968.

tributions to the highest cost, when n is large.

For m > 4, the ratio is between 0.5 and 0.6. Al- (6] A. Tucker, AgJ.±l Qgnjnataij=, Wiley, New

though this may not be representative if one uses York, 1980.
the average over all functions rather than over the

recurrency distributions, the results of Section V I7] E. A. Bender, "Asymptotic methods in enumera-

indicate that the two averages are comparable, at tion," jW& Review, pp. 485-515, October

least for small values of a and n. If indeed the 1974.

ratios of Table VIII are representative, the upper
bound storage requirements are reasonably close to

the storage requirements of a random function.

However, there is the question of whether a
circuit designer tends to synthesize random func-
tions or whether the functions chosen tend to be
either more or less costly than the average. Spe-

cific functions considered in Section IV occupy
both ends of the spectrum. The MODSUM is among the

most expensive m-valued n-input functions, while
the ODPROD is among the least expensive.

[1] H. Stark, "Two bits per cell RON," Digul 2L

Ienesa: COMECON 1W Zpring, pp. 209-212,
February 1981.

[2] J. H. Wensley, L. Lamport, J. Goldberg, M. W.

Green, K. N. Levitt, P. M. Mlliar-Smith, R.

E. Shostak, and C. B. Weinstock, "SIFT:
Design and analysis of a fault tolerant
computer for aircraft control," . . 1,
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A FAST COMPLEMENTATION ALGORITHM FOR SUM-OF-PRODUCTS
EXPRESSIONS OF MULTIPLE-VALUED INPUT BINARY FUNCTIONS

Tsutomu Sasao

Mathematical Sciences Department
IBM Thomas J. Watson Research Center

Yorktown Heights, New York 10598

and 0-
Department of Electronics Engineering

Osaka University
Osaka 565, Japan 0

ABSTRACT: A recursive algorithm to obtain a complement The proposed algorithm has been incorporated into MINI

of a sum-of-products expression for a binary function of p- and other systems and has been effectively used to design

valued input variables is presented. It produces at most p /2 logical circuits.

products for n-variables functions, eas an elementary
algorithm produces Oft 5 • nf -t)/ 2 ) pro---tcts where II. Definitions and an Elementary Method for

Comnplementation r ,

t = 2P-1. It is 10 - 30 times faster then the elen ntary one no-e- -'-

when p=2 and n=8./ Definition 2.114]: A mapping X Pi " B is called a multiple-

valued input binary function, Were P. 10,1. pi-11, and
I. Introduction: / B = (0, I.

As an elementary method to obtain a complement of a Definition 2.2: Let X i be a variable on Pi. X Si is a literal of

sum-of-products expression for f. the following is well known. X i when Si 9 Pi*

X represent a function
I. By using De Morgan's law. obtain a product-of-sums

expression forf. xi 0 if Xi, Si
if X i e Si

2. By using the distributive law, obtain a sum-of-products Dt
expressin for f.Definition 2.3: A product of literals X1 si A2. X"t. is called. ... '

expression for f.1 2
a product. A sum of products is called a sum-of-products

3. By using the absorption law, simplify the sum-of-products expression.

expression. n
Theorem 2.112]: An arbitrary binary function X P - B can

However, this method becomes quite inefficient when the be represented by a sum-of-products expression

number of input variables is large, because it will produce all f(X l X 2 ..... X) - V Xs X.. XS'. -."I "2 0" " In

the prime implicants of f. For example, the elementary method (s1,S2 . s")

will generate O(3"/n) products for a class of n-variable where Si c Pi'

switching functions (two-valued input binary functions) [11,

whereas the presented algorithm will generate at most 2
n -

I Definition 2.4: Let E be a product. E is called a prime

products. The new algorithm is about 10 - 30 times faster irnplicant if E < f and E is maximal (i.e. there is no E1 such -

than the elementary one for switching functions of 8-variables, that E, E,<_f).

Lemma 2.1: Let f, g and h be binary functions.

Binary functions are useful in designing programmable

logic arrays with decoders [21 and other circuits 131, [41. Sim- f.g = f V j (De Morgan's law)

plification of the expressions for the binary functions will .

reduce the complexities of circuits. A fast complementation (f V g)oh - f.h V g.h (Distributive law) %. N

algorithm has been desired because practical minimization f V f'g - f (Absorption law)

algorithms such as MINI 151 and ESPRESSO 16] require the

c complement of the given function. As an elementary method to obtain a complement of
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sum-of-products expression, the following is well known, products expression:

Algorithm 2.1: X0 0 X ,I vl0.2.11 X" X10311I 2VX Ae3 vA A 3 '

vX 0.1
0 2 1.X 0.2.

3 1 vX10.21. .X0.3
1 v,, . 0  .21

I. By using De Morgan's law, convert a complement of a V,, ,O 21,l 1O1

2 a3 • 3
given expression into a product-of-sums form.

Note that JF1 contains 8 products.
2. By using the distributive law, expand the expression into a (End of Example)

sum-of-products form. Delete null products (If Straightforward application of Algorithm 2.1 is quite ineffi-
ABA A B - 0 then X A.X a0) and redundant literals (If cient. It might be made more efficient by the simplifying the

A 2 B then X A.X H, X ). intermediate results by using absorption law or by changing the

order of expansion. However, in any case, Algorithm 2.1 will
3. By using the absorption law, drop subsuming products generate many products. This is because that Algorithm 2.1

(p V pq p). will generate all the prime implicants of f. which is stated by

the following theorem.
Example 2. 1:

Theorem 2.1: Let O be a sum-of-products expression of a
Consider a binary function binary function f. and O be an expression obtained by using

Algorithm 2. 1. Then, F contains all the prime implicants of f.

f: 10,11 x 10,1.21 x 10,1,2.31 - 10,11

(Proof). Similar to the switching function [71
and an expression (O.E.D)

9 2l v.3 1 l0 .21 ill. A Fast Complementation Algorithm
12x,,1.21 1,.21 1,

V X"2  
.X,

By extending Shannon's expansion theorem to binary

Let's obtain a complement of O by Algorithm 2.1. First. by functions and applying the complementation theorem of Hong-

De Morgan's law, convert it into a product-of-sums form. Ostapko [9], we have the following:

Lemma 3.1: Let a binary function be represented by

1V 3 1 . x 2 VxV f - X° .f V X .fl V... V X'-,.f_, "

2V X~ 3 )

Then a complement of f is given by
Second. by the distributive law, we have the following:

i - Xo v x I V... V xP-!.ip_
5-(X,.X2 X 031 X 0.21 VX10.21 X10,31

I V X1
0

0
2 31 ) where f, - f(X - i).

1 X02V 0 10,2.1

VXX"VX2X 3 ' V3).(X 2 V - ".--3-.

By using Lemma 3.1 recursively, we can obtain a comple-Inteaoeexpression. X I .X0 n ' tc r mt
ment of an expression. It is possible to make an algorithm to

ted because they are null products. By using the distributive n

law again, we have the sum-of-products expression: generate at most 1n pj/(maxjpj) products. However. experi-

ments showed that a program simply based on Lemma 3.1 was

not so fast for large practical problems. One reason for it is
9-X 'X"A

3  
VX'"A2VA '3  . X-- 2 3 that most variables appear in a small number of products (i.e..

0 . l lX10.2.31
VX 2 .X 3 Vx 1.X 2 '3  

lot of "don't cares" in the array). Therefore, for the practi-
vat!,,- 3 ' vX a12 ' 2" 3 ' cal problems, the following algorithm has been developed.
,VX1O.21. X1o.3 IVXvo.Xt0.2jIVX21. lO.21\Vyl~l

2 3 3  X 2 .3 3
Alsorithm 3.1: Let O be a given expression. Use the follow-

Third, by the absorption law, we can delete products ing rules recursively.
X O.X0.31 and X0  0  0c 0ea0 X02 'r- and
ot2,' n 2X etc., because and Rule 1. If Oisa constant:

|.^2.X1*0,31 X4.3 Hence, we have the sum-o-

If o 1, then - 0

109
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1ff 0.thel -denoted by t(fr). By Theorem 3. 1, it is clear that

Rule 2. If O depends on only one-variable: i.e. if t -f < I

Jr - X'. V X'b V..V X'thenF X where where Vis obtained by Algorithm 3.1.6

S = ~ ~Theorem 3.2: Let gn be a sum-of-products expression for

Rule 3. If 9 consists of one product i.e.. iff 5  P-.. j.
9 X S. X 2 X S the

.... Let I~be an expression obtained by Algorithm 3. 1, then

~Vs.2  n ,~t5 0
I"X5. V.. V XS.*2. Ps~.-2 i

Rule 4. If Ar has a common factor, i.e. if 9 can be written as (Proof). Proof will be done by the induction on n and re-

F - ~IXZ X~.V.striction of f.
1 2

OP Rule 1. When n =0: t(9'0) <lIand the theorem holds for
by renaming variables, where 16 does not contain n - 0.
variables X1,X2 . .IX,. then

Rule 2. When n -1: t(11,) < I and the theorem hold for

Rule 3. When Or consists of one product: 'XS'. XS2. X S,

Rule 5. If Or can be decomposed with a variable Xi, i.e. if Ar Then, t(10 ) - I < n!S2"- , and the theorem holds 0
can be written as (n > 2).

From here, suppose that the theorem holds for

FX.VVXn -AC 1  n-, n -2..0, and for the restriction of fIn

then Rule 4. When FWn has a common factor. i.e. Or can be written
as follows by renaming the variables: 1

X0i90VXiIV... VXr t wI' +r X(I) 2

where I*k (k =0..p-0I do not contain the varia-
ble X,. Since V does not contain the variables X1. X2. X,.

Rule 6. Otherwise. 9 can be written as it has at most (n-1) variables. By the hypothesis of

F - X S. XS2.. .X 'V9 induction t(II) < -1 ni p. Hence1 2 1 2
5< f + 1 I i .<! - -1piand the theorem

by renaming the variables. Then Fis given by hd 2 ~ri -2 i...-.

1=XI VX'120V 1 2 1 -i @ Rule 5. When #rn can be decomposed with respect to X,, i.e.

where 10 is obtained from (XSI.X'2.....X 1' A 9 by Arn can be written as

deleting null products. oFS=X Xio v X1-V \... V XPI.p.. '

Definition 3.1: A sum-of-products expression is disjoint if all by renaming the variables:
L. ~ products are mutualiy disjoint. i.e.. P-

'or a VasV ..Va i.0

0(i)orsIBy the hypothesis of induction top) < n
n n 2i-

2 p1KTheorem 3.1: Algorithm 3.1 generates disjoint sum-of- Hnet(or) < III Xi 2 I p2 2 an h
products expression for f.The number of products in Or is theorem holds.
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Rule 6. Otherwise, Or can be written as 2. The ordering of variables: Expand a product in the ascend-

9 X.S S, ing order of ISi I /pi. If a tie occurs, expand first using the
2 ~variable with the smallest ai - (sum of number of I's of

Kby renaming the variables. Because each part in bit representation of 18)/p,.
If0

Exampvle 3. 1: Consider the function shown in Example 2. 1:

1 2' 2 .. 2 X .W. 9 X II 111101 11 1.21.I
1 - X _.X.X1 X1 2  .X3  vx 1. X

First use Rule 6. X1-1XIis a product with least number of

literals. 5r is written as follows:

,isotiefrm( 1.2....Xs A by deleting null or 1. where
is1 obaie fro (X2 Le v- _~ ' X2V . ere x'

2

products, and has acomnfco 1XZ... k.Lt V .2X,11VX: 101X1.1

Sk ak. where I < ak < p,- 1. In V., Xk takes at Most ak I21__
distinct values; in other words. 0, represents a restriction of I.: Because - o2ad -S- - expand it in the order

of X3 and X,.

It)l.Ia 1 -lIIx Il,._a 2 -lI x... xJO _.(p-a)- II
n XI-11vX. 51 102.1- 0.X-I0

X X Pk ~B 3= 2X "3 VXX)I= x 0 3 .6 1vx 2.x3.w2
k, where V, X 1 1  V -= ,XVX., X and

92 X 2 X,.% X(1 0)X

By the hypothesis of induction., 1 X. 3

*Il) ('1ak)(P..a.)X(k 111P'). Next let's obtai In Vand 02 recursively. 181 can be writ-
2ten as 01 - X,.(X2.X) X1.(Xl 2 1.X3) ,cayed

Let b,= a,/p and we have composed with respect to X. By Rule 5, we have

11W) ~-IIPk*f'hk ~lb, x x 0,2 t V X,1 X111.' 1)VX 1 (X'VXI,121 Xl( tt ''1)
2ki')< - k- lb 2.I-, 2o2X 3

Hence 9 consists of one product and by Rule 3.

92 - xltI I 2 X I 2 31

t(fr) < Hence

- 1 pk(l-bI)+bll-b,)+..+ hbz2 .. bf 1 (l-bI, lo 2 3 .X.).lX1Xo
1

V3 :.X .2 21)1

2 k-I X 2 .(~X 0 1 X 3 1 I

vx 0.Xl.lX; 0  1  VX1 0 . X 0 .X 02.12 2 3

adetheorem oducso. 21 3

In Rule exofalgsthm al1. thsibe sectindoh produtsev:X(.

and the ordering of the variables influence the efficiency of the IV. Experimental Results:

algorithm. After doing a lot of experiments on practical cir-

cuits, we use the follolwing heuristics. Algorithm 3.1 has been programmed in APIL and corn-

pared with other algorithms written in APL.

Heuristic 3.1:
1. Table 4.1 shows the comparison of Algorithm 2.1 (U,, #

I Which product to select: Choose one with the least number F). the disjoint sharp algorithm of MINI 151. and Algorithm

of literals 0ie_. the number of literals such that I S 1 p,) 3. 1 U. denotes a universal cube. (U. # Sr) can be con-

If a tie occurs, choose one with maximal I I SI. where sidered as an implementation of Algorithm 2,.1. @is similar

x'Xv.*X,". to N.but will generate disjoint sum-of-prodilets expressions.
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First, truth tables for 8-variable switching functions were PLA 121 is a mapping

randomly generated. Then, the functions were simplified f: P xM- .B; P =- 10, 11, M 1 10,1,...,61, B - 11'

by the distance-one-merge algorithm (51. t(9) denotes the
number of products in a simplified expression. Lastly, the A simplified expression Or for f has 43 products. Also, a
nomplemen of oduteina expression oi. Latl, te characteristic function for a PLA with two-hit decoders [21 .complement of the expressions were obtained. t(.W) de-

is a mapping•.": . - '

notes the number of products in the complement W. Table i m n
4.1 shows that the disjoint sharp () algorithm and Algor- f: P xM- B; P- 10,1,2,31. M -0, 1...,61, B- 10, 11

ithm 3.1 are 10 -30 times faster than algorithm 2.1 (D # A simplified expression .9 for f has 42 products. Table

F) and will generate simpler expressions. (See the entries 4.2 shows that Algorithm 3.1 generates simpler solutions

for n - 8 and p - 2.) Also, the truth tables of 8-variable (fewer products) than U.®F. This is a desirable property •

switching functions were decoded to make 4-variable binary because in MINI, (Un () F) often produces an excessive

functions of 4-valued variables. Also in this case, Disjoint number of products which prevents completing the initial

sharp and Algorithm 3.1 were faster and produced simpler phase of computing the complement for large problems.

expressions. (See the entries for n -4 and p - 4.) 3. Recently, R.K. Brayton et. al have independently developed

2. Table 4.2 shows the comparison of Disjoint sharp (Un#)F) a fast complementation algorithm [13]. It is for ordinary

and Algorithm 3.1. Control circuits for microprocessors .utiple-output switching functions only, and cannot treat

were used to compare the performance of two algorithms, multiple-valued variables. It is difficult to compare the

performance of their algorithm with Algorithm 3.1 becauseF o r e xa m p le see th e e n trie s fo r D 2 . D 2 is an 8 -in p u t 7 - o i f r n a a s r c u e . I o t c s s l o i h .of different data structures. In most cases, Algorithm 3.1
output circuit. A characteristic function for a two-level produced comparable solutions, but took longer time.

L0

Table 4. 1: Numbers of products in complement expressions and their computation time for Sharp,

Algorithm 2.1 Disjoint Sharp Algorithm 3.1

U t(f) CPU time t(f) CPU time t(F) CPU time t(k)

(sec) (sec) (see)

32 23 38.814 171 2.098 67 1.167 51

p- 2  64 39 57.631 203 3.186 82 4.493 68

n = 8 96 57 65.232 163 4.191 87 2.925 79

128 57 59.472 116 4.239 73 2.930 63

32 21 15.020 243 0.701 47 0.735 41

p-
4  64 33 22.494 207 1.436 54 0.883 56

n=4 96 45 43.494 204 2.485 56 1.647 54

128 53 29.927 131 2.583 56 1.624 56

f: p" B; P- 0.1 . p- l u- f-(1)1. 0

Or: sum-of-products expression for f; 9: sum-of-products expression for f.

I(f): Number of products in Or; t(.W): number of products in Y.

• ... . ..-.-
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Table 4.2: Numbers of products in complement expressions and their computation time for

Disjoint sharp and Algorithm 3.1.

Disjoint Sharp Algorithm 3.1

U,/J)F

Circuit n p m t(S) CPU Time 0() CPU Time t0E)

name (see) (sec)

8 2 7 43 1.904 125 1.548 67

D2
4 4 7 42 1.166 106 1.569 95

8 2 31 33 1.652 123 1.231 31

R I
4 4 31 32 L.016 63 .976 40

1 6 2 17 110 10.162 333 5.429 202

8 4 17 103 5,779 288 4.720 229

32 2 20 222 64.954 3042 23.375 651

14
16 4 20 204 33.841 1633 32.038 1148

24 2 14 62 8.783 918 7.460 255

Is
12 4 24 61 5,287 1100 19.353 667

10 2 8 89 5.372 228 6.417 188

A2 5 4 8 83 3.124 216 5.417 165

fP'XM-.R P -10.1'.p -1I M = 01 m - II

f: suns-of-products expression for; W: sum-of-products expression for 1

3 t(Or): Number of products in Or t(k): number of products in I

100
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V. Conclusions [4) M. Davio, J.P. Deschamps and A. Thayse, Discrete and

Switching Functions, Gerge Publishing Co. and McGraw-
1. The elementary method to obtain the complement of Hill. New York, 1978.

sum-of-product expression for f will generate all the prime

implicants of f, and is quite inefficient. [5i S.J. Hong, R.G Cain and D.L. Ostapko, "MINI: A heuris-
tic approach for logic minimization", IBM Res. Develop.,

2. The average number of prime implicants for binary func- Vol. 18, pp. 443-458. Sept. 1974.
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Appendix ti < p'-s.,

As to the maximum number of the prime implicants of AMp'sj) I P5)w~~)=~) + )

binary function,, the following are known.

and s(s) I] fisi
Lemma A. 118 1: Let ju(n. p) be the maximum number of prime .

implicants of binary functions P" -B where P -10,1,..pl. (proof.) Omitted.

Define t - 2P- 1 and m - n Then Theorem A*4 Average number of the prime implicants of

(n'/(m) gsn. ,)p-valued input binary functions is given by the following:

*For example for n-IS and p-4, we have k~n
* pu(p. n) > 15!' 1.3 x M0'

where k = (kk 21. k I is a partition of n.

Theorem A.2181: For fixed p, there exists a positive constant s~) i k Pk
w n)-F () (n!) ii1. 1 and a, - k1(p-i).* K such that i-tik. \i

I.(P

K.(tl/nl!)) ~p~n I~(proof.) Omitted.

*where t =2P-1. For example. for n -IS and p-4, we have G P(n) a7 X 10'

-- A totheaveagenumer f th prme mplcana o biary The algorithm in section III will generate at moat 1/2 pn prod-

function, we have the following: ucts. For example, for n-IS5 and p- 4. 1/2 P"5 = 5Sx 10" This i--.'

shows that the algorithm genecates at least 14 times less prod-

*Theorem A.3: Let f be a binary function ucts than the elementary one. Table A.1 compares G P(n) and

"1/2 pn for p-.2 and p-=4.
f: Pi- B, where Pi = 10.,.pi- I and

*B =10. 1 17'u =If-'(1) I is a weigt of f. The average Table A Comparison with

number of the prime implicanta of f with weight u is given G P (n) and 1/2 p5

* by the following:0

G (n~u) =n 6 8 10 12 14.-

(P.S a') G2 (n) 24 118 585 2902 14225

A-.3t) 2 * (~)/2 32 128 512 2048 8192
F~u s X -0 (uwts

where p -(p 1pP2 . p5 Pd - (SS2 . ). d < P. n 3 4 5 6 7

C 1 P) F~u r= ,)w W IfPi, G4 (n) 24 136 758 4095 21565

0~/2 32 128 512 2048 8192

11(.% (pI-s). I (tl,t2 ... td is a partition of t, and
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THE SIMPLIFICATION OF MULTIPLE-VALUED SYM 4ETRIC FUNCTIONS IWO

r.

Jon C. Muzio D. M. Miller G. Epstein "

University of Victoria University of Manitoba Indiana Unie.?rsity
Victoria, B.C. Winnipeg, Manitoba Bloomington, Indiana

Abstract deduced herein are valid in general Post algebras 0
* because of the normal form theorem and are not

A method is given for the synthesis of limited to Post chains. However our results below
multiple-valued symmetric function. In an are presented for the linearly ordered Post
earlier paper a canonical form was derived for algebras, without loss of generality. X is used
the expression of each decisive multiple-valued to denote {xl ..,xn I and a function f(x1,. .X
fundamental symmetric function as a product of is denoted by f(X) or, when there is no ambiguity,
certain input terms based on the simple symmetric just by f. A function f(X) is symmetric in the
functions. An algorithm is given for the deriva- variables x. and x. if f(x1 .. ,xi ... xj,.,x
tion of maximal product terma which may be used I- I n
in a representation for a decisive symmetric f(x 1 ... xj .... xi,.., Xn)• A function is symmetric
function. The algorithm is extended to non- if it is symmetric in all pairs of its variables
decisive symmetric functions and some samples (such a function is termed totally symmetric by
given, in particular it is shown that the some authors). If a function is symmetric in at
algorithm leads to an efficient realization for least one pair of variables but not all pairs it is
a ternary full adder. _ partially symmetric.

A decisive function is one which assumes only - -

1. Introduction the values 0 or r-l. A fundamental symmetric
function within this paper is a decisive symmetric

This paper is concerned with the synthesis function for which there exists an r-tuple
of switching circuits for symmetric and partially- {a . ar_ 1 I such that the function takes the

symmetric many-valued functions. It is developed value r-1 if, and only if, for each i, 1 ! i s r-l,
from initial work in [5]. In [71 a canonical form a. of its arguments assume the value i. In all
was derived for the e-nression of each decisive i -

many-valued symmetric function as a product of other cases it will obviously assume the valu .
certain input terms. In this paper our focus of r-I
concern is the subclass of decisive symmetric Clearly E a. n. Fundamental symmetric ',.!ctins
functions as sums of these conjunctions. We i0O
discuss the optimization of these results and will be denoted by fa r (X) or ..f a
present an algorithm for the identification of 0O1l''r-1 a 0l•'ar -"
optimal two-level expressions. The results are Throughout this paper we use a particular set
extended to the synthesis of arbitrary multiple- of n basic functions as building blocks. These
valued symmetric functions and the example of a are the simple symmetric functions, denoted by S
ternary full adder is used to illustrate the Ti and defined to be the sum of all possible
efficiency of the resulting realization. The products of i variables. Hence
question of the allocation of possible "don't
cares" and how this may be done in an optimal T-= x" + x + . + x
fashion has been described in [8]. The work 1 n
reported herein ties together the foundations from T = X x + x x + x x
[7,81 to give a general method for the synthesis 2 1l2 1 3 n-l n
of multiple-valued switching functions,

Our concern is with functions of n variables T n = xlx 2 .•. xn

x1,..... xn defined over the finite set

E = (0,1 .... r-lI. Within Post algebraic struc- Here x y : 1.u.b. (x,y) and xy g.l.b. (x,y).r IHence for the linear case x y =max (x~y) and "
tures these constants would be denoted by xy fomin (x,y). lxx
ei, i 0,1,....r-1 (see [41). The results y
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A number of obvious properties of the simple In some contexts one of the pair of D's can
".. symmetric functions are noted here. Clearly Ti  be dropped.

takes the value a(l i S n; 0 ! a i r-l) if,
and only if, at least i variables in X have Consider a fundamental symmetric function

values greater than a-1 and at most i-1 fa . Define an (r+l)-tuple {B0 ..., Br ) by

variables in X have values greater than a. It "-l
follows that T T k  if 1 j 5 k n. Br = 0

Consequently Ti  t = Tk, k = min (i,j) and B. = Bi+ a. for each i, 0 i r-1.
ri~ j = k max (i,j). As aresult sums and Theorem 2.1. [71 A fundamental symmetric function

products of simple symmetric functions never can be expressed in the form..
appear, since they can always be simplified.

2. The Representation of Fundamental Symmetric f o. =C C
Functions a0.. 1 B* S

Before stating the representation theorem

proved in [7] we introduce the unary operators of i=O

[6]. Here these are defined by a l . .

r-1 if x = i The expression resulting from the theorem can,

C.(x) = in three particular situations be reduced. First
0 if x - i if ai = 1 then Bi = +il+l and Ci i C iai I1

The representation theorem below is expressed reduces to C iB . At the end of the range if
as a product of terms of the form C.(T.). For i

convenience of exposition we denote C 3abh C i d COBi an i

C.j. These C. give us a useful measure of the r_ Cr-l,B r+1

numbers of variables assuming certain values; in redundant.

* ." particular C.. = r-1 if, and only if, at least

j variables in X have values greater than i-1 It is straightforward to extend Shannon's

and at most j-1 variables have values greater result for the two-valued case, namely any decisive
than i. Consequently if i > j and k > symmetric function can be expressed as a sum of

thnC =0 since T T certain fundamental symmetric functions (each ofthen C j j which is decisive), giving a representation of the

. We also can make the use of Co(C(x)) which decisive symmetric function f(X) in the form .

- -
I  

is such that f(X) = fl(X) + f2 (X) +..+ f (X) (I)
1 2 p

0 if x = i where each fi(X) (I ! i < p) is a fundamental

0 (C i )if symmetric function. The argument which yields this
result in the 2-valued case requires only slight

C will bdody-.modification to give the general result. The actual0be denoted by C.. functions required are easily extracted from a

It is also useful to have available the unary defining table for f(X). We can observe that (1)

operators D. (0 i ! r-l) introduced in [4] and together with thcorem 2.1 could be used to deduce
defined by a an initial representation for the synthesis of a

decisive syvlmetric function.

r-1
D(x = E C.(x) In [7] we introduced a diagrammatic approach
i j=l j enabling the result of theorem 2.1 to be read

directly off the diagram. We give a brief descrip-
for each i, 0 5 i < r-l. tion of the diagrams here, but refer the reader to

[7] for a more formal description.
Clearly D0(x) = r-l.

Any fundamental symmetric function may be
We will denote Di(T j) by ij and C0 (D)ij represented by a two-dimensional step function.

by .-.. Our primary use of D.. is to replace The x-axis has the value set as coordinates, vizby j 0,1,.. ,r-1 and the y-axis has the number of
sums of Ci j's by shorter expressions using the variables 0,1,..,n. For clarity the y-axis is

result that normally drawn to the left of the 0 on the x-axis.
Each point on the step function is defined by the
number of variables required to assume values less

E Ci  n--,- than or equal to the x-coordinate in order for the
i=k kj 

D
+
I
j function to assume the value r-1. This is
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illustrated in fig. 1 for the function f2032 " information that for f to take the value 3 we

This function has 7 variables and takes values require r7  0, r6 = 0, r5 = 2, r = 2, r3 = 2,

from [0,1,2,3}. It is represented by the step T = 3, T 3. The n-tuple also follows directly
function in fig. 1. The x-axis is labelled from the subscripts in f indicating that the
0,1,2,3 and the y-axis by the variables. However 2032
the values taken by the Bi defined above by n-tuple consists of two O's followed by zero l's, 0
Br = 0,Bi = ai+l+a i may be read as a reverse three 2's and two 3's.

labelling of the y-axis as shown in fig. 1 by the
column labelled 8. In this example From the initial list of n-tuples representing

08 = 2,a 5B 5, and B 7. To fundamental symmetric functions we develop n-tuples
= = 7 T of sets Zn ".. Z where each Z. is a set of

deduce its canonical representation it is only n'.-...1
necessary to define sufficient C.. segments to values which will lead to possible product terms.13 A fundamental symmetric function z - z - z1
uniquely define its step function. This is n n-I

illustrated in fig. 2 from which we can write down is covered by a product term Zn - Zn-l -' - Z
f = C C C C It is clear from fig. 2 if, and only if, Z E 7 for all p, 1 -p n
2032 06 2523 32 p p
that these four vertical segments uniquely define and z ! z for each p, 1 i p n-l. These
the desired step function. Note that none of them Pl P
is redundant. n-tuples of sets of values correspond directly to

the superimposed step function diagrams. Consider

We can also use the diagrams to directly read figure 5. The 7-tuple of sets of values for this

off representations for decisive symmetric diagram is

functions. It is only necessary to give a unique - .,...
representation of the particular step functions {0}, {0}, {0,1,2,3), {1,2,3,4,5) {S}, {S,6} (61.

*which are illustrated.
Since the full set notation used above for the

For example f(X) = f2032 (X) f2122 (X), n-tuples of sets becomes cumbersome in practice it
will be abbreviated in the examples. For fig. 5 the

which is illustrated in fig. 3 can be defined by representation will be written 0 - 0 - 0123 - 12345
- 5 - 56 - 6 (since none of our examples will use

f(X) = C06C 23C 3 2C 24  as shown in fig. 4. values exceeding 9 no confusion will arise).

For more details see (7]. Notice that these sets of values give the
3. The Algorithm for Decisive Symmetric Functions vertical segments in the diagram, Zi  giving the

values for the vertical segments between B = .
We present a method for the synthesis of and B = i-l. For example Z5 = 0123 corresponds

arbitrary symmetric decisive functions. It has nvertical segments between 8 =
some similarity to 2-level minimization of Boolean and B = 4 at values 0, 1, 2, and 3. Likewise
functions where prime implicants are first derived
and a cover found in the second stage. In the Z3= 5 indicates a single vertical segment between

first stage all maximal product terms are derived 8 = 3 and B = 2 at value S. According to our
and the second stage chooses and modifies these definition above , this term will, for example,
terms to yield a representation of the desired cover the fundamental symmetric functions
function. Speed-up techniques could easily 0 - 0 - 0 - 5 - 5 - S - 6 and 0 - 0 - 2 - 4 - 5 - 6 - 6
be applied to the algorithm, these two being illustrated in fig. 6(a) and (b). The

second part of the covering definition, that zp 1 < zpTh i teagrtmis to start with p.-.'
hme aimreoen thei othm rfor each p, 1 ! p n-l is to ensure that the covered

sometrereseunttiona u of requredndaecisv terms represent genuine fundamental symmetric functions
symmetric function as a sum of fundamental
symmetric functions and develop all the maximal and consequently must be non-decreasing.
product terms which result from combinations of -a'm."-g'-rthee fndaentl smmericfuntios.The algorithm proceeds in n stages. It starts
these fundamental symmetric functions. with the list of fundamental symmetric functions whose

For the development of the method we introduce sum is the desired decisive symmetric function. Each

a notation for describing the step functions and stage yields a new list, the final list consisting of
superimposed step functions, maximal subsets of fundamental symmetric functions.These subsets are termed maximal since it is impossible

A fundamental symmetric function will be to add any additional fundamental symmetric functions

described by an n-tuple of values to them and still represent the result by a single

zn - z - . z where z is the value product term.

assumed by ri  when the function takes the value At each stage terms are combined under certain

r-1. This n-tuple is just a representation of the conditions. Terms are checked if they are covered

step function. For example f 2  the function by a term in the new list. As terms are added to
032 the new list any terms they cover .on this new list ..-

of 7 variables over f0,1,2,3} illustrated in are deleted. Similarly the term is not added to the
fig. 1, is denoted by 0-0-2-2-2-3-3. These values new list if it is equal to or covered by a term
can be read directly from fig. 1, summarizing the already on the new list. After all possible new terms

113
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are generated all unchecked terms from the old list Finally we are in a position to define
are appended to the new list. For an r-valued m
function no more than r terms are ever combined Wp = jol Yjp
together. for each p, I s p S i-l.

List I is the starting list of fundamental Any w e Wp+ such that w max(W),

symmetric functions and list n+l is the final 1 S p S i-2, is discarded (it can only cover S
list. decreasing terms). Similarly any w c W such that

The construction of the new lists: w < min(Wp+l), 1 p S i-l is dicarded. These two

Given list i. To construct list checks are performed successively for
i + I (i !5 S n). Consider m terms from list i Wi I Wi2, .. , WI . Further if at this stage any

W (1 5 p S i-l) is empty the entire term is void
z z zl p
In l,n-l .. 1 and is discarded. Otherwise it is added to list

" Z2n Z 2,n-1 Z21
(2)-.Example 3.1. An example will clarify the procedure.
(2) This is a 6-valued example with a function of 4

II-variables. Consider the following three terms from
z.l Ilist 3. They are illustrated in fig. 7.- Rmn Zm'n-I Z ml 0 -1 -1 2 3 - 3 4

This set of m terms is "eligible for 0- 2- 2 3- 4 5

combination" if, and only if, for each 0 - 3 - 3 - 3 4 S

p (i+l S p S n) We have i =3 and

-lp = Z2p = mp z14 1 0 13 1 z 12 [1.2,3 i = [3,4)

This condition is that a set of eligible terms Z = (0) Z = {2) Z = {2,3) Z = {4,5) -

must be identical for columns n, n-l, ..., i+l. 24 23 22 Z 45
Z 34 (0)O Z33 = 3) Z 32 = [3} z 31 = {3,4,S)-i

If the set of terms is eligible for combina-
tion a new term is formed: Since Z = Z = Z these terms are eligible

.4 24 34
WnWn_1  - W1 .for combination and W4 = 0).

3
The columns n, n-1, ..., i+l will be W3 = f=l Zj3 = (1,2,3"

identical to the corresponding columns of (2); For W and W we have

i.e. for each p, i+l S p S n

W == l3 1 12
p ip. : m = 2 : 2 i-..

From the ith column we set W = Zji 23 22 = 2

The remaining Wp(l p 5 i-I) are slightly 1133 = 3 U32 = 3

more difficult to construct since it is essential so
to ensure that excluded fundamental symmetric s0
functions are not introduced. Further there are 3 1 2 =
"don't care" possibilities to be incorporated. For "--2.
example the two terms 0 - I - 12 and 0 - 2 - 2 Hence
can be combined to 0 - 12 - 12 which, in theory, = {y ye or 13 y < .13"
covers 0 - I - 12, 0 - 2 - 2, and 0 - 2 - 1. Y12 Z12 " + "

The latter, however, is an invalid step function = {1,3}
and consequently plays the role of a "don't care" 3
function. Similarly

Let jp = min (Z. ) for each p,j(2 !5 p s i; Y [1,2,3)
JP JP 1 ~5 j :5 M).= ,23

(Note that the columns being used here are Y = (1,2,3)

S'i, i-l, .. , 2, the minimal entries in the sets in so W2 = {1,2,3}.
column p will be used in the construction of W p_). For W1 we have -

Let pp min (p. ) and we augment each of the Z.
lSj!m JP P 1 (3,4)

as follows:

For each p,j(l s p s i-l; I s j ! m) Y = (1,4,5)

S .jp : y y C Zjp or p+l y  
j,p.l

)  
Y = {1,2,3,4,5 ) so W 4.

.- 'y Z r•y • 3 .114
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The resulting combined term to be entered on m rows, Zki Z i for some k, 1(lsk,tsm).
list 4 is The most efficient approach appears to be to

0 - 123 - 123 - 4 . attempt to combine subsets in increasing order of

This term is illustrated in fig. 8. Examina- size, that is pairs then triplets etc. This order

tion reveals that every step function of fig. 8 is is used since the failure of a certain subset of
included in one of the diagrams of fig. 7. Notice rows to combine indicates that all larger subsets .

that none of the three original terms is covered containing this subset will also fail and need not
by the new term, so none of them will be checked, be attempted. As terms are generated for the new
The extra values introduced into the sets Y.p list they must be examined to determine if they -.

cover or are covered by a previously generated ...
correspond to the introduction of certain vertical term. Covered terms are deleted. .

segments, the dashed lines in fig. 7, which are
don't care conditions. Example 3.2 The same 4-variable six-valued example -.

of example 3.1 but with all the lists. Covered 9
The algorithm can be written in a more conve- termshave been omitted from later lists.

nient form for hand execution. The division between
the Z. and the extra values introduced into Y. The required function is the sum of the follow-

Jp ing fundamental symmetric functions:
is indicated by a slash mark (/). The above
example appears as below: f = f120100 * f120010 + f111100 + f111010 + f110200

0 - I - /123 - /34 + fl11010 + f102010 + f102001 + f101110 + f 101101

0 - 2 - 1/23 - 1/45
0 - 3 - 12/3 - 12/345 100300 + 

f100210 + 
f100201

giving 0 -123- 123 - 4 These functions are listed (in the same order)
in list 1.

Prior to looking at the example in rather more
detail we note a few points regarding the applica- List 1 List 2
tion of this algorithm. 0 - 1 - I - 3/ 0 - 1 - I - 34/

When m terms of a particular list do not 0 - 1 - 2 - 4/ 0 - I - 2 - 34/

combine it is still possible that certain subsets 0 - 1 - 2 - 3/ 0 -1 3 - 34/

will combine. Further even if the m rows do 0 - 1 - 3 - 4/ 0 - 2 - 2 - 45/

combine some subset may also produce a useful term. 0 - 1 - 3 - 3/ 0 - 2 - 3 - 45V

If m terms do combine then any subset will combine 0 - 1 - 3 - 4/ 0 - 3 - 3 - 345

and the term generated by the subset is not 0 - 2 - 2 - 4V
necessarily covered by the term generated by the 0 - 2 - 2 - 5/
m rows. 0 - 2 - 3 - 4/

0 - 2 - 3 - 5/
This is illustrated using the above example, 0 - 3 - 3 - 3/

the three terms illustrated in fig. 7 combining to 0 - 3 - 3 - 4/
give the term in fig. 8. However we also can com- 0 - 3 - 3 - S/
bine the terms in pairs, namely List 3 List 4

0 -1 /123 /4 0 - 1 - 123 - 34/ 0 - 13 - 123 - 34 .- -

0 -2 - 1/23- 1/45 0 - 2 - 23 - 45/ 0 - 23 - 23 - 45

give 0 - 12 - 123 - 4 0 - 3 - 3 - 345 0 -123 - 123 - 4
0 - 3 - 3 - 345

0 - I - /123 - /34

0 - 3 - 12/3 - 12/345 List 5 is identical to List 4.

give 0 - 13 - 123 - 34 Consequently the conclusion of this portion ofthe procedure is the four maximal product terms

0 - 2 - /23 - /45 given above.

0 - 3 - 2/3 - 2/345 A slight adjustment to the practical application
of the algorithm is often made in order to make it a

give 0 - 23 - 23 - 45 little easier to use. It will be recalled that when -.

These three terms are illustrated in fig. 9 and combining m rows we defined
we note that only the first is covered by the term Y. {y : y C Z. or l y"""''-
generated by all three. jp-

In general all subsets must be tried. The The problem with this is that Vp+1 varies
procedure adopted is as follows: when we consider just some subsets of the rows and

Select m rows that are eligible for combina- it is necessary to recalculate all the Y.
tion, that is For example -P

0 - I -/123 - /34Z . . . - Z for each p(i + I s p s n) 0 1 /123 /34
mp 0 - 2 - 1/23 - 1/45 (3)

and, to ensure the new row will be distinct from all 0 - 3 - 12/3 - 12/345 (4)
give 0 - 123 - 123 -4

11s
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but 0 - 2 - /23 - /45 (5) the design of a ternary full adder, a circuit which
0 - 3 - 2/3 - 2/345 (6) is of practical importance and has been considered

give 0 - 23 - 23 - 45 (7) by many authors. (see [3,10]).

In practice it is easier to use the P A full adder has three three-valued variables

value for the maximum number of eligible rows when as inputs (to allow for two inputs and a carry-in
constructing the Y. and then when subsets are and produces two outputs, the sum f0 and the

p carry f . To maintain the symmetry of the unit
combined delete all values in W which are less c

p we allow the carry-in to assume the value 2 and, as
than P calculated for just the subset, a result, the carry-out can also assume the value 2

If m is the maximum number of eligible rows, in one situation.

=with P min(P. ) and we are combining some sub- The function is defined by the lists in table
P l!j!m iP I - note the value taken by the function for each

set A of terms 11,2m.. mi then term in the list is appended to the term. Detail
discussion is limited to the sum output f and

Yp ly : y 2.. or p 
- 

y p but for list 1 for this is taken from table 1. In terms

subset A of the fundamental symmetric functions the required

Tw t sum and carry functions are:Wp = w : w t j. Yip and w a rain (1,j p)1

p jljp.
1 A 1 fs =l(f, f ++ f, f +f-F7 A -s 

= 
l f 10 10 2 

+  
f0 2 1 

)  +  
0 1 + f120 0 f 12"

The effect of this is that we can still use 21 =0+ + f0  + f 2 012
(3) and (4) directly rather than (5) and (0) to f 0 1 0(f21 Ill 030 003

deduce (7) above, i.e., Table 1

0 2 1/23 - 1/45 For f For f
0 - 3 12/3 - 12/345 s c

would give 0 - 23 123 - 145 0 0 1 1 1 2 2 1

but the two l's are deleted by the 0- 2 -2 :1 0 - 2 - 2 :1
w - min (W ) condition. I 1 -2: 1 0 - 1 - 2 :1

jEA Jp+l 0 -0 2 :2 1 - I - 2 :1

4. The Algorithm for Arbitrary Symmetric Functions 0-1 : 2 1 -1 -1 :

As was mentioned in section 3 an arbitrary The six fundamental symmetric functions for
symmetric function f(Z) may always be expressed Tae iluaen fig.o10.
in the form fs are illustrated in fig. 10.

+ 2g,(Z+..+(r-2g G) g ZThe application of the algo ithm is given in
f(2 = gl 22r-_( ) + gr-l table 2. On list 1 rows are on) eligible for
where each gi(Z), I i - r-1 is a decisive combination if they agree in the first two columns,

symmetric function. With a number of modifications so the only eligible subsets are 0 - 0 - : -

the algorithm of the last section can be applied. ond lis - an coer- jus : 2, the cobie ter ben i. e fihe
Initially we should note that all the cases on list 2 and covering just 0 - 0 - I : 1. The

included in g (2) (some i, 2 i - r-l) become remaining uncovered terms from list I are appended
" to list 2. '.", ,

don't cares for all gj(), 1 - j < i. Consequently On list 2 the terms which are eligible for

any fundamental symmetric function contributing to combination are
the realization of g.(Z) becomes a don't care 10 - 0 - 12 : 1, 0 - 2 - 2 1. 0 - I - I : 2],

function for all g ( s j < i. They may be [0 - 2 - 2 : 1, 0 - o - 20 2, CC - I - I : 21, and

j [1 - I - 2 1. 1 - 2 - 2 : 2]. We consider the
included or excluded solely to optimize the three cases in detail.
representation of each g-(Z). We shall attack Table 2

this problem in a manner analogous to that used for List I List 2
don't care minterms in prime implicant techniques. 0 - 0 - I : 1. , - 0 - 12 : 1IV -

The Modified Algorithm - - 2 :1 0- - 2: 1,I 1 - 2 1 1 - 1 - 2 : 1 V,'.- "

Each term in the lists in the algorithm has an 0 -0 -2 2 0 -0 -2 :2
appended value attached to it. In the initial list 0 - I - 1 : 2 0- 1- 1: 2
of fundamental symmetric functions vp is the value 1 - 2 2 2 2 1 - 2 - 2 2
assumed by the symmetric function when the corres-
ponding fundamental symmetric function assumes the List 3 List 4

value r-l. When m terms are combined the new

term W ... WI has min (v.) as its associated 0I- _" - : 1 0 - 01 -, : 1n I l .':m 1-12- 2:1 1-12- 2:1'?-.-.

value. When checking for covered terms the 0 - 0 - 2 : 2 0 - 1 - 2 '2

associated value must also be checked. An example 2 1 2 0 1 1 2 *

will clarify the procedure. 1 2 2 2 1 2 2 2

Example 4.1 ro illustrate the algorithm we consider
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Consider For fc a similar process leads to two
0 - 0 - /12 1 (8) possible leads to two possible expressions, viz
0 - 2 - 01/2 :1 (9)0 - I - 0/1 : 2 (10) (C13 + C2 2 + C0 3 C2 1 ) 1 + C23

(8) and (9) combine to give 0 - 02 - 12 : 1 which or fc (C C + C ) 1 + C
covers both (8), (9). c 21 02 .13 23

(8) and (10) give 0 - 01 - 1 1. A realization for the full adder is illustrated
in fig. 11 based on gates to realize + and .. Such

(9) and (10) give 0 - 12 - 1 : 1 which gates have been described by many authors (see, for
reduces back to 0 - I - 1 : 1 which is a degen- example [9,10]). In addition to the illustrated
erate form of (10). Consequently (8), (9), (10) circuit, additional hardware is used to generate
together need not be tried. l, T 2 , and T 3 together with all the C.ij

From 0 - 2 - 01/2 : 1 (11) functions.
0 - 0 - /2 : 2 (12)
0 - 1 - 0/1 : 2 (13) S. Summary

we deduce The major result presented here is the algorithm
0 - 02 - 2 : 1 from (11), (12) for the synthesis of decisive symmetric functions and

(this is covered by the first term on list 3 and its extension to arbitrary symmetric functions. The
so not included). technique used is a systematic method for the deriva-

0 - 12 - I : 1 from (11), (13) tion of all possible maximal product terms together

This is a degenerate term. with the incorporation of relevant "don't cares". •

(12) and (13) do not combine. The attractiveness of our method is that it

Finally 1 - I - /2 :1 leads to much simpler expressions for the functions

1 - 2 - 1/2 : 2 (for example the ternary full adder expressions in

give 1 -12 - 2 : 1 which covers the [10] contain 27 terms in the sum of products reali-

former term. zations). This leads to simpler implementations ofthe results. *- ,- .

List 3 results by adding 
the uncovered rows

from list 2. List 4 follows by a similar procedure References

applied to list 3, list 3 with the Yjp sets being 1. Current, K.W. and Mow D.A., Implementing parallel
given in Table 3. List 4 consists of the maximal counters with four-valued threshold logic,
subsets of fundamental symmetric functions. The IEEE Trans. Comput., vol. C-28, 200-204, 1979.
first three terms are illustrated in fig. 11, the
last three appearing as (d), (e), (f) in fig. 10. 2. Current, K.W., Pipelined binary parallel counters

employing latched quaternary logic full adders,
Table 3 IEEE Trans. Comput., vol. C-29, 400-403, 1980.

List 3 3. Dao, T.T., Davio, M. and Gossart, C., Complex
0 - /02 - /12 : 1 number arithmetic with odd-valued logic, IEEE
0 - /01 - /1 1 Trans. Comput., vol. C-29, 604-610, 1980.
I - 0/12 - 0/2 :1
0 - /0 - /2 : 2 4. Epstein, G., The Lattice theory of Post algebras,
0 - /1 - 0/1 : 2 Transactions of the American Mathematical

1 - 0/2 - 01/2 : 2 Society 95, 300-317, May, 1960.

For this example we can now read off expres- S. Epstein, G., General synthesis of electronic
sions from figs. 10 and 11 for g and g2 where circuits for symmetric functions, Computersinsw Science Conference Abstracts, Columbus, Ohio,

f = lgl + g2. For g2 the three relevant terms 35, Feb., 1973.

each represent a fundamental symmetric function and 6. Epstein, G. and Horn, A., Chain-based lattices,
the required expression is just the sum of the Pacific J. Math., Vol. 55, 65-84, 1974.*three, viz:' '' '" "

th C C C C C + 7. Epstein, G., Miller, D.M. and Muzio, J.C., Some
g2 - 02 21 

+ 
03 12 11 C13 C22  preliminary views on the general synthesis of

For gl the choice of a best representation is electronic circuits for symmetric and partially

rather more difticult since as soon as one term is symmetric functions, Proc. Seventh International
chosen it becomes a "don't care" for all other Symposium on Multiple-Valued Logic, 29-34, 1977.

. terms for g1. A detailed discussion of an appro- 8. Epstein, G., Miller, D.M. and Muzio, J.C., Select-

priate selection procedure is beyond the scope of ing don't care sets for symmetric n-valued
this paper and may be found in [10]. Here we
content ourselves with giving two possible represen- Proc. Tenth International Symposium on Multiple-

tations for g Valued Logic, June, 1980. 2

Either g + C 9. McCluskey, E.J., Logic design of multivalued I L
Eitor g C13 C21 +C03 12 E01 Logic Circuits, IEEE Trans. Comput., vol. C-28,

g1 C 3 C C ( C S6S 99
or gl 13 C21 ' CO3 (II 

+ 
C22)56-9,17. ''.'."

10. Mouftah, H.T. and Jordan, l.B., A design technique

for an integrable ternary arithmetic unit, Proc.
Fifth International Symposium on Multiple-Valued - .
Logic, pp. 359-372, 1975.
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SELFDUAL CLASSES AND AUTOMORPHISM GROUPS

by J. Demetrovics, L. HannAk, L. R6nyai

Computer and Automation Institute, Hungarian Academy of
Sciences, Budapest, Hungary

Abstract x=(x,...,x )cE n
/ _n k'

In this paper the atuhors investigate n

some problems connected with selfdual closed Definition: The function fcPk, f:E k.Ek is

classes and permutation groups. A typical said to be selfdual to 7rSk if
problem in this direction is the following. n- -

Let G be a permutation group. What is the ii(f(x))=f(r(x)) for all xcE . (i.e. r is an

cardinality of closed classes contained in automorphism of the algebra <Ek,f>.)
the centralizer of G? We review some ear-

lier results and discuss the case of 4smallO Definition: Let G Sk. The centralizer

permutation groups. Some open problems are 
"

formulated, too. C(G) of G is defined as C(G)={f; fcPk' and
f is selfdual to each nFG1. If cSk has no

Introduction fixed points and if it can be written as 0
the product of disjoint cycles of the same

Let Pk be th, algebra of finitary length then C([)=C(<7i>) is a precomplete
functions over the set Ek={0,l,...,k-l} and class of Pk(Rosenberg (15]).

D a closed class in Pk (D is a nonempty set Define

of functions closed under composition, per- c(H)=v(C(H))

mutation and indentification of variables.) The following propositions collect
If we define v(D) as the number (cardi- some general statements about the function •
nality) of the closed classes contained in c.
D, we can consider the following problem:
what is the value of v(D) for a closed Proposition 1.: Let H,K S and Sk . Then
class D of a given type. Posionl:LtHKSkan Sk*Te

Many results are known in this direc- a/ C(H)= C ( )
tion for "large" subclasses of Pk" For H

example, Post's classical results [14] -

imply V(P 2 )=K o . Janov and Mucnik [7] b/ c(r HT)=c(H)

have given a construction for k>2 which c/ if K>H then C(K)<C(H) and c(K) c(H).

implies v (Pk )=2O. Demetrovics and Hannik

(5] have shown that for k>2 and a precom- Proof: a/ Obvious from the definition.

plete class D defined by a partial order, b/ Consider the mapping 7:Pk Pk,
by a relation which is either equivalence k -1

or central or h-regular (i.e. D=Pol P where -(f)=n -f7 (fePk). It is easy to verify- 0
is a relation from the listed four types) that k is an automorphism of the preitera-

we have v(D)= 2KO. The most complete de- tive Post algebra Pk and that the induced
scription has been given in the case of a

quasi-linear subclass of P (see Salomaa mapping is also an automorphism of L(Pk).
(16], Demetrovics-Bagyinsz~i [4], Szendrei By the first statement it is enough to
(171, [18], Bagyinszki [11, Lau [8]). prove that for every CcS k and fcP

The aim of this paper is to study the pk

function v for selfdual closed classes. fEC(>)<=>n(f)cC (r -I).
Denote by Sk the full symmetric group

on Ek. We can extend nTSk to En by setting This equivalence can be proved by an easy
k' kn k computation. To prove c/ we use the

(x) = (iT (x. n for all following construction of PAify-Szendrei-
Szab6 [13]: let the k-ary function f be

H

. . . . . . . . . .. . . . . . .
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defined by Using the terminology of Marczewski
a if there exists &EH such (121, Cs~kiny [2] and Marcenkov [9], the

fH (all,...,ak that C(i)=ai+1 for all elements of C(Sk) and the subclasses of

iLEk C(Sk) will be called homogenous functions -

a2 in other cases, and homogenous closed classes, respectively.The definition implies immediately The structure of C(S2 ) has been described

that fH C(&)<=> E c H, hence for by Post who also showed that c(S 2 )=7. There

K H,fHcC(H) and f C(K) hold. This proves are some intresting results about specialC. L) homogenous functions (e.g. the ternary
discriminator, dual discriminator) as well
as about the structure of arbitrary homo-Earlier resultsgeoscas. -.--.genous classes.

The values of the function c are known The structure of C(S3 ) has been
for some fixed permutation groups. Demetro- determined by Cs~k~ny (2] and Marcenkov
vics and HannAk [6] proved the following [9]. There are exactly seven nontrivial
statements: three element homogenous algebras hence

Proposition 2.: Let k,2 and let cSk be c(S3 )=8.

such that ...C where are havFor k,3 CsAkAny and Ga,,alcovd [3]
s ws have described all minimal nontrivial

disjoint cycles. If there are 1<ixj-s such homogenous algebras and also have listed
that the length ( i)>l and 2k-i distinct nontrivial homogenous alge-
length (F.) length (Fi) then c(t)=2wD .0 bras. The exact result in this direction

was proved by Marcenkov [10], who showed
that the number of nontrivial homogenousProposition 3.: If CSk contains a cycle algebras is 14 for k=4 and 4k-3 for k>4.

of length at least five then c(s)=2 .0 So c(S 4 )=15 and c(Sk)=
4 k- 2 for k>4.

An other intresting result of [10] is
Proposition 4.: Let Sk be such that c(S)=K o where S denotes the full symmetric 0=i2 where E, and £2 are disjoint group on E=[0,1,2,...,n .... }. The proof

cy s Iof this statement is also constructive.
cycles. If length (i)=2 length (F2)=3 or Marcenkov have listed all subclasses of

length (E.A=3, length ( =2 )=4 then c(F)=2tJ C(S).

The proofs use modified versions of the Knowing the above results, the

above mentioned construction of Janov and following natural questions arise:

Mucnik [7]. Problem 2.: Determine the value of c(A)
As a consequence of above three pro- k

positions we can obtain the following, where Ak is the alternating group on Ek.

From the above results and using -..Theorem i.: (Demetrovics-Hann~k [6]). A2= fid} we know c(A2)=K 0 and c(A3)= 2
K .

"•- -
K 22 0 n c( 3)=2Let k 3 and ESk. Then c(C)=2 A .d wen.A

exl n tProblem 3.: For k?4 find a subgroup G<Sexcluding the cases when either -k
a/ k=3 and t is a 3-cycle c(G)=K O . 0
b/ k=4 and F is a 4-cycle.

Blocks of groups
In these exceptional cases c( )VK, hold. 0B

In the following we are going the
Corollary 1.: Let k 4, G Sk be a cyclic prove an inequality for c.

subgroup. If c(G)V2 ~then k=j0=4 and Definition: Let H Sk' a proper subset D of
c(G)ZK,. 0 Ek is said to be a block of H if for each 0

Remark: Recently Marcenkov [11] proved that tEH either &(D)=D or (D)A D= .
If D is a block of H then letin the case a/ c( )=2KO also holds. In the HD={7USD: 3 H such that (x)=i(x)

case b/ the exact value of c(M) is unknown. D D ....- D ..
for all xcD).

Problem l.: Find the exact value c(G) for
exceptional cases. (The remark suggests Theorem 2.: Let D be a block of H. Then
that in these cases c(G)=2K ° holds, too.) c(H)> c(H
In the above statements we have discussed The proof of this theorem depend on
c for some "small" subgroups of Sk On the the following two propositions.

other hand let us consider "large" subgro-
ups of S .'
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n
Proposition 5.: Let g:Ek'E be a partial Clearly R is a closed class contained inkk C(H) and if K,X' C(H D),K'xK then V'R. - "-.
function and HS k . Suppose that for all7tkH The mapping K-R is injective showing

7g(x) =g(, (X c(H) c(HD) . .-

holds whenever x, ii(x), dom g. There exits Definition: A group H'Sk is called S
a full operation g cC(H) for which semiregular if only the identity element of

- (x)= g(x) if x , dom q. H has a fixed point.

*Proof: Let D1 l. D the orbits of H on
-Prnfor D dmg a-rutwhich D . Corollary 2.: If H<S semiregular and notE Ek. fo whc D i o x,,xDino a 2-group then c(H)=2<o K.".= 0.

and yi=g(x) (1his). We define the

function g as Proof: In this case there exists a block D(yi) if x Di for some (K its) and of H such that D=p, p 2 prime and HD 1s

- TiH an arbitrary permutation for a cyclic group of order p. By cor.l.
(x) which ;i(x )=x. c(HD)=2Ko and Theorem 2. implies c(H)=2 °p

x i  in other cases.
tCorollary 3.: Let p>2, p prime, k>2 andIt's clear that g is a full operation. we PiS k a p-subgroup. Then c(P)=2 •
remark that if xD. then 4 (x) is indepen- k
dent from the choice of n. If rE cH, Proof: If P={idl then the statement is

TT (x XI he i(x )= (xi)x then , stabilizes x and obvious. If Px{id} then it has a block D

idom g. This implies that yi~g(x for which D!=p and PD is a cyclic group
,-1_g xi) (-1 (y ) and n(yi)=F(yi) Now of order p. If HLZ(P) and H:=p then H hasy " an orbit D of length p. This orbit obvi-

let XE and cH. We distinguish two cases: ously is a block of P and thus it satisfies S

the requests. Now as in cor.2. we obtain
a, There is an i, 1Kits for which xcD.. the assertion. C3

* Then r(x )=x for some 7tH and using above
remark 9(x)=(yi) and 9 (F(x))= i(y.) hold. Acnwedeet

U The authors deeply appreciate theUsing these observations we obtain (x)= helpful remarks and suggestions of the

referees of this paper.
, xcD i for every K'is. Then
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ON FREE SPECTRA OF CLONES WITH SHARPLY TRANSITIVE

CID AUTOMORPHISM GROUPS

by J. Demetrovics and L. R6nyai .

Computer and Automation Institute, Hungarian Academy of "-.*--
Sciences, Budapest, Hungary

Abstract Sharply 1-transitive permutation S
groups are the regular ones. For A'2 thereIn this paper we determine the free are the following possibilities (Blake-spectra of clones selfdual to a sharply -Cohen-Deza [31, Nagao [8]).

transitive permutation group. The result isa g ner liz tio of the aut ors ea lie =2 The group of all linear transformationsa generalization of the authors' earlier

results concerning regular groups, alternat- xax+b on a finite near field.ormaion
ing and symmetric groups. The computation X=3 The g-oup of all transformations
is based on extension properties of partial x'(a.x+b) "(c.x+d) . Here + and / are 4
selfdual operations. the corresponding operations of a

finite field and . is either the field
or a proper near field multiplication.

Introduction k=4 The Mathieu group M with the usual
Let E denote the k element set action (k=11).

Ek dentethe leen e5 The Mathieu group M12 with the usual
{0,1,...k-I}, k?2. A clone D over Ek is a action (k=12). 12
nonempty set of operations (switching func- X=k-2 The permutation group Ak.
tions) on Ek which contains all projections Xzk-l,k The permutation group S"
and is closed under forming arbitrary su-
perpositions. From an algebraic point of n
view D consists of all polynomial functions Definition: Let B:E kEk be a (partial)
of an algebra over the base set Ek' for function and H S be a permutation group
example those of the algebra <EkD>. The k
free spectrum of D is the sequence s (D) o k. g i iff-r-(se 1 .... Ixn c E u
n-O, where s (D) is the cardinality of the t k
algebra withnn free generators in the equa- 7uH 6W(x) =(OT(x 1 ) ... (xn))S(Tr(x)) holds -
tional class generated by the algebra
<E ,D>. From the point of view of multiple w he folx) ledm c
vaued logicsD)steumbrThe following lemma concerns with the-functions in t ()ie numberD. extension properties of partial selfdual

Sf nfunctions.
The free spectrum s (D) is an impor- funcions

tant invariant of the clone D(see Berman Lemma 1. ([4], [5]). Let B:E .E be a
[I] , [2], Gratzer [6]). In [5] we have kk

. investigated the free spectra of clones partial function, selfdual to a permutation
selfdual to various types of permutation group H Sk. Then there exists an

' groups (semiregular, alternating and sym- f E k

metric groups). The aim of this paper is to k k
compute the free spectrum of clones con- n f En
sisting of all functions selfdual to a =k'
sharply transitive permutation group. ii. f is selfdual to H, W

Definitions and notation iii. if x c dom B then f(x)=S(x).
The extension is unique if and only if dom

All permutation groups are considered 3 intersects each H orbit on E n
to act on the set Ek. Let S, and Ak be
denote the symmetric and alternating groups For HsS k let
on Ek, respectively. D H={f,f is an operation on Ek and selfdual

on H ) Dkstecoeo l ucin
Definition: Let HS k be a permutation to H}. D is the clone of all functons... ".
group. H is called sharply A- transitive selfdual to H, or in other words D is the
if for any two sequences a, , , a largest clone D over E, with the ppopertyand b .. . .bI  bixb. 1-i J<A there is j

Aut (<E kD )H " '-
exacty one 1 Hfo which n(ai)=bi, ''""-
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We want to determine the spectrum s (DH~ Corollary 2 ((5]). Let kZ2 and nZi. Then
n~l where H is a sharply X-transitdveH

*permutation group on E for some A. From k-2
the point of view of mbltiple valued logic S n (D S R 1Sni kS~~i+~~)F

* the most important special cases are: Sk i=1

i. k is a prime and H=<7> where iT is a k-3 Sni ~~-)2~~-)2~k(
cycle of length k. In this case H is a S n(D A ~Sniknk)+Sr)2SrkC
regular permutation group and D H is a n kAk -1
maximal clone.

In order to prove the theorem we need some
ii. H=Sk Then DH is the clone of all preparatory lemmas.

homgenousfuntios.Lemma 2. Let H<S k and X={x ,. ..,x I be a
The results set of orbit representatives of H on E n

Our main theorem-stfat~ed as follows. (H acts componentwise on Ek LetH

k e shaplybe denote the stabilizer of x' e.g.
*A-transitive permutation group. Then for H.=fRH R~ )X ) 1_p
*nZ11, As-k-1 I - -

S (D )T i .S(n,i). r(n,A) whrLe
n H i=1 1 .kweeki=ljyE k' ii(y)=y for all T~H. ii 1i

k

r(n,X)=S(n,A)+ E ~l(n~j) (k-A)... (k-j+i) . The Z

Here S(n,Z) mean Stirling numbers of sec-n
ond kind. Proof.: If f:Ek. E k then let fbe the

Corollary 1 ([5]). If k _2 and H<Sk is a restriction of f to the set X. Thus
nregular permutation group then for n l ~ 3 f Ek is a partial function.

s 5 (H ) =k kn We note that if f is selfdial to H
n D then B is selfdual as well and conversely,

if 8 is fa function selfdual to H for which
Proof. From our theorem dom B=X then by lemma 1 there is exactly

Sn (DH)=k S(n~l)+r(n,1)) one fFD H'domf -E with the property L f =f

Therefore
* Now let us consider the following identity S (D ) :EEn -E ,dom tS-X, . is selfdual
*(Lov~sz [7]) n H ~ k k'. .

to Hil
S(m,.)x(x-1)... (x-Z+1)=xm  We note that for every x 'X~domS, 1(x ),X

Z=1 if and only if rsH and thus, ,is selfdual
to H if and only i%' for each i, i i A and

If we substitute x~k and mmn and divide icj7'( =bx =.(xI )hls hr
*both sides by k we obtain the following:- - -

are ik, possible ways to choose the value
* n (x 1) and for different values of i we

S(n,1)+ Z S(n,k) (k-i) ... (k-Z+1)=kn-1 can choose independently.
Z=2 ,{S:En. Ek domp=X,B3 is selfdual to

But
Z

* S(n,k) (k-1) ... (k-Z+i)=O H1= Hk

* if Zk therefore and this proves the lemma.§l

k Sni+.Sn.)k-1) .(k-Z+i)=k n Definition Let x=(x1 l. x n ) E k The
S 2nl 2 SnZ(pattern of x is the partition P of the set

T1,2... nJ such that i -j(mod P) if and .

and the left side is just the exponent of onl ifxx.Apter, scle
*k in the (i). 0 2-pattern 1<9.1 n, if it has exactly Q
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nS
classes. tatives of H on Ek - By lemma 2:

The number of different Zpatterns is
enxS (D H)= k(x)

S(n, 9). If _ Ek k then x and F(x) n X "-
have the same pattern. This implies that Now let
for H Sk the elements of an H-orbit on Ek
have same pattern. So, we can speak about Xi={xX, x has an i-pattern} 1%iik. S

the pattern of an orbit. By lemma 3 lXji=S(n,i) if i X and

Lemma 3. Let k'2, n11 and H£Sk a sharply X i=S(n,i) (k-A) (k-k-l) ... (k-i+l) if

transitive neriutation group. The number X<i~k. Using these facts and the result of
of H orbits on En having a fixed Z-pattern lemma 4 we obtain the following:
P is 1 if ZX anh (k-A) (k-A-i)... (k-9+I) k
if A<kk. Hxk( x ) i1 Ti k(x)=

Proof.: Let P,... P be the classes of l k

the partition P, and .Pi iiu . If S(ni)• k() S(n,j)(k-A) ... (k-j+l)

and xy F E k have the pattern P then j=l

xx ' I y. rxy for rxs. -1i k
r3 s S(mi) S(n, )+E S (n,j) (k-A) ... (k-j + 1)

By the A-trinsitivity of H there is i=1 A+i

aT.H for which n(x ji)=Yji . i5Z therefore The proof is complete. 0]

i(x)=y, x and y belong to the same orbit.
Now let AK£k and let Yr[x E , the Referencespattern of x is P and xi=J-i if iP th [1] Berman, J., Algebraic properties of -

- i k-valued logics, Proc. 10. Int. Symp.
it is clear that Yj=(k-A) ... (k-R+1). If on Multiple-valued logic, Evanston

x E Y and ncH so that 7(x)=y then n(i)=i Illinois 1980.

[2] Berman, J., Free spectra of 3-element
for His -i . By the sharp transitivity algebras, Proc.4. Int. Conf.on Univer-
of H, 71=id, x=y,a contradiction. This sal Algebra and Lattice Theory, Puebla
implies that x and x belong to different Mexico 1982.
orbits. Byn the A-transitivity of H for
every x E E having the pattern P there is [3] Blake, I.F., Cohen, G., Deza, M. Coding

with permutations, Information and
a nLH such that 7(x) t Y. The above ob-Cno 4(9)-
servations show that Y represents all Control, 43 (1979) 1-19.

orbits of H and the lemma follows. ) [4] Demetrovics, J., Hanndk, L., R6nyai, L.
Selfdual classes and automorphism

Lemma 4. Let H Sk be a sharplyA -transi- groups, this volume.
tive permutation group and x E k have an 15] Demetrovics, J., Rcnyai, L., On free

i-pattern P. Let <k and spectra of selfdual clones, submitted
K={ H, f(x)= x1 for publication to the Bulgarian

aHd x Academy of Sciences.*and". "
k (x)=ty E E , IT(y)=y if 7EK}J [6] Gratzer, G., Composition of functions,
k x)= k Proc. Conf. on Universal Algebra,

Queens Univ. Kingston Ontario 1969.
Then k(x) =Z if Is£<X and k(x)=k other- 1-106.
wise.

(7] LovAsz, L., Combinatorial problems and
Proof.: First let 1%2<A. Then K is the exercises, Akad~miai Kiad6, Budapest,
stabilizer of Z<Aelements of Ek (the 1979.

components of x), hence K is transitive on [8] Nagao, H., Multiply transitive groups,
the remaining k-i>2 elements of Ek , thus Math. Dept., California Inst. of

k(x)=Z. Technology, Pasadena California 1967.

If £ZA then by the sharp A-transitivity _
of H, K=1, i.e. K fixes all elements of Ek.

" hence k(x)=k. C
We are ready to prove the theorem.

SProof.: Let X be a set of orbit represen-
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(QUASI)TRANSITIVE ALGEBRAS

Lorenzo Pefia 0
K. Pontificia Universidad Cat61ica del Ecudor

Apartado 2184, Quito - Ecuador

To Professor Jules Varlet ( .,,

% SUMMARY ' reak, there is always some degree of distinction,
"uasitransitive algebras are (exten- even between a thing and itself. Those ideas can be

sions of) both Kleene and Stone algebras supplied traced back to Leibniz and still more to Heracleitus.

with: two additional, binary, operations: sui Furthermore, by regarding selfequivalence as half- 
w i: wopaddtionl, biand the overmeet, ^ -which true/half-false, we can, in fuzzy logic, secure adiffers from ordinary meet in lacking idempotence, lot of alluring results, as the laws of Aristotle,

and in the join's not being distributive into it-; (pDqDN(pDNq), where D, means implication, /pDq/

and with an additional unary operation, n, which being defined as /p.qlp/, where 'It means equivalen-
carries every entity into its lower threshold. The ce), of Boethius (N(pDNp)) and of counterexamplefilter of dense elements is considered the truth (p.NqDN(pIq)). Selfequivalence or selfidentity is

-* filter, in virtue of the endorsement principle: the transition of transitions, a crosspoint.
4.- While, for any two situations, p andwhat is, tue Thexfztent a orl otherhowe Ap cor- q, its being true that p-and-q, p.q, can be seen astrue is true. The fuzzy sentential calculus the miiacruhdgeeaogthrns-fpadq' responding to those algebras is shown to be both the minimal truth-degree among the ones of p and q,

instead its being the case that not only p but also
. sound and complete. '-- q, p-q for short, is something normally less true

* §I.- INTRODUCTION than either p or q, unless of course either p or qhave beenOdevised is infinitely true -or infinitely false-. Likewise,
Transitive algebras haveits being very true that p, Xp -according to my no-

by this paper's author in order algebraically to
enlighten his system Aj of transitive logic. Tran- tation-, is, in most cases, less true than p. Zadeh

sitive logic is a fuzzy nonarchimedean infinite-val- suggested years ago to take, in the real-valued mo- - .

ued logic. The four main ideas underlying and promp. del, /p/2 as a representation of /It's very true
tingutht logic al foua i proaharthat p/. My own approach generalizes that insight,ting that logical approach are:-. -

1.- Properties come in degrees, most while at the same time avoiding the introduction of

of them in infinitely many degrees. Thus, between an additional function, like Y, for 6 (at least) a
"- any two opposite situations there is a transition little', definig instead /It's (at least) a little

margin or skirt, wherein both opposite states hold true that p/ or /Kp/ for short as /It's not the casethat it's very false (=that it's very true that it's
but only to some extent. In that transition fringe not te ce) th at i s very An it s

it both neither is not fails to be the case that th- not the case) that P/, i.e. as NXNp/. An interestk- -

considered state obtains and yet at the same time parallel emerges between fuzzy logic and modal logic. that state both obtains and doesn't obtain. (Thus, which reductions of iterated or piled up fuzzy func-

my approach constitutes the juncture of fuzzy-logic tors are allowed? Is KXp the same as XKp? Is it the

and paraconsistent logic -paraconsistent logics same as p tout court?
being the ones that countenance negation-inconsist- While the answer to those questions is to be sear-
bent but sound theories- c) ched for from a philosophical perspective, universal

2.- More specifically, with any normal algebra can illuminate the issue, by showing which

situation, p, there are associated two abutting or options are viable. Moreover, algebrization of any

threshold situations: one upper threshold, mp, which system of logic yields a great many model-theoretic~~~results and paves the way to further model-theoretic-" -•
is its being something very like true that the si- resultsa
tuation p holds. And a lower threshold, np, which researches.

". is its being overtrue that the situation p holds. Accordingly, this paper is devoted to going into
is is bingovetru tht th siuaton hods. some basic algebraic properties of quasitransitiveThus, contrary to other approaches to fuzzy sets, algebas. asitransitive " "e'-rl"

mine sees their logical structure as atomic (rather algebras. Quasi-transitive algebras are generalized
than strictly dense or Archimedean), though in a transitive algebras, differing from the latter in -

generalized sense to be articulated below. (Its non- lacking a tnsoral operation B (which is meant as
archimedean nature results from the existence of a standing for 'In all respects' or 'It's really (or
minimal truth-threshold which is infiitely smaller truly) true that'). A couple of words will be said
than any other degree of truth.) on transitive algebras proper at the end of the papc . ..taan e dentee s o truth.) rato whc There are plenty of problems concerning both tran-
explains why 3.- identity is a fuzzy relation, which sitive algebras and qsitransitive algebras -qq.tt. .'-

expais hyidentity is such a crisscross of con-
tradictions. No selfidentity is altogether true or as., hereinbelow-, which lie beyond the scope of the

paper, which only aims at finding out some main fea- _'

129
0195-623X/831000010129$01.00 01983 IEEE

.....................................

o. "......*.........."..***..J* ...... .==== ============================== ============= =================================== ==========2.===



7 7_

tures of those algebras, while relating them to we shall be using ' as follows: x<y means that
other, better known, classes of algebras -in parti- x-y but xIy=0; then: 32) there is an element e cA
cular to Kleene and Stone algebras. such that for any x,y,z cA, the following postulates
§2.- A HIERARCHY OF ALGEBRAS are satisfied: 17) 0<e 18) xIy - zIyI(xIz))

This section's purpose is to show how to reach 19) xIy . x+zI(y+z) 20) xIy 
< 
x.zI(y.z)

quasi-transitive algebras starting with skew Kleene 21) xlyIe+ (xIyIO) = e 22) x.zIx+ (x.zlz) = e
algebras, which are a class of generalized Kleene 23) O<xIy iff x=y
algebras. In what follows all binary operations An equivalential Kleene algebm is an algebra

*are assciative to the left; no binary operation <A,<1 ,N,+ ,I > such that: <A ,<1,N,+>> is a Kleene al-
links more tightly than any other. Intuitively, let gebra -wherein x.y is of course defined as N(Nx+Ny)-;
'11' remind us of 'totally' or 'altogether' ('utter- <A,<1,.,+,I>> is an equivalential lattice; and the
ly',etc.); 'L', of '(at least) to some extent' or following postulate holds: 24) xINy = NxIy
'(at least) more or less'; 'F', of 'not at all','by An equivalential pseudotransitive agerbm is an
no means', 'not in the least'; 'f' of 'somewhat' or algebra <A,<1,N,H,+,,I>> such that: 12) <A,<I,N, -
'a bit'; 'S', of 'It neither is nor fails to be the +,I>> is an equivalential Kleene algebra; 2_)
case that'; '+' of 'or'. Furthermore, let a=mO be <A,<,N,H,+,->> is a pseudotransitive algebra; 32)
the minimal truth or reality threshold, i.e. the in- e=J, e being the distinguished element such that,
finitesimally real or true, i.e. what is just a jot for any x, xIx=e, and I being the fixpoint of N; 42)
(or just a whit, or just a trifle) true or real. I defining 0 as HNI, the following four postulates
take it that its being somewhat true that p means hold for every x,y cA: 25) x-xI(y-y) = xIy
the same as its being more than infinitesimally trm 26) xIy -< x-zI(y-z) 27) xIy 

< 
HxIHy

that p. A skew Kieene algebra is a structure <A,K>, 28) xIy.Fx.y = 0 = Fx.F(xIO)

where K=,N,+,->, 1 being a nullary operation, N a Next, we define a relation of pseudocovering,-< , 0
unaryper=ti, >, n and +a nubiary operationswN a as follows: in an equivalential lattice, x-(y meansunary operation, and + and "binary operations,with that xcy and there is at most one element, u, such

the following properties, for any x,y,z EA (we defi- that x'u and uhyr An aent c said

nethat x<u and u<y. An equivalentel lattice is said

01) xy+x = x 02) NNx = x 03) xy = yx to be strongly pseudootomic iff, for any element x
04) x-yz = x 02z) N 0x5) x 0) y = y ' thereof, there are two elements, z and y, such that
06) x+yz = x (y+z) 07) x+x = x ztx, x y, and z-(y.
08) x+y-z = x-z+(y-z) 09) x-Nx < y+Ny A qua8itmnsitive algebm is an equivalential
10) x+y = N(Xzy) 9) x +Ny 12) =x pseudotransitive algebra <A,<I,N,H,+,",I>>=A meeting S

If <A,K> is a skew Kleene algebra, then: the following conditions: 12) <A,<.,+,I>> -where x.y
If <AK>> is asw a lglian whsebra, tn: eis defined as N(Nx+Ny)- is a strongly pseudoatomic

<A,<,->> is an abelian monoid, whose neutral ele- equivalential lattice; 2
o
) there is an element acA

ment is 1; <A,<I,+>> is a bounded join semilattice such that the following postulates hold (D being the
with a greatest element, which is 1. firte d ein

set of dense elements of A); first we define:
An ultm-kleenean algebr is a skew Kleene alge- /nx/ eq /x-Na/; /mx/ eq /NnNx/; /Sx/ eq /x.Nx/;

bra, <A,K> satisfying the following postulates for /fx/ eq /F(xIa).x/. Then, for any elements Xy,z.k
every x,y,z LA: 13) N(x+Nx) - y+Ny 29) a is the least element of D; 0
14) N(x+N(Ny+Nz))= N(x+y)+N(x+z) 15) N(Nx+y)+x = x 30) x.yIx+(xImy)+(y.nxIy) = 1;31) mxInx = xIa+(NxIa)

Clearly, every ultra-Kleenean algebra, 32) x-yIa xIa+(yIa), 33) nxImx+(xII) = 1;
<A,<1,N,+,>> is such that <A,<I,N,+>> is a Kleene 34) m(xYl =x-mx; 35) a< ; 36) fSx.fSy 

< 
F(x.yI(xy)

algebra. An ultra-Kleenean algebra, A=<A,K>, is said §3.- POSTULATES FOR QUASITRANSITIVE ALGEBRAS
to be stout iff it satisfies the following conditio : T S lO ofArdunANciTe A E charac-
tThere is a lot of redundancy in the above charac-Ltanther ar uv £Asuc tht: uNv;and{x 4u~x is terization of quasitransitive algebras. A more ele-""-"""
the intersection of all ultrafilters (i.e. maximal teto o quasitransitive algebra e
proper filters) of A; and {xEA:xl.v} is the intersec- gant set of postulates for a quasitrnsitive algebra .ais now put forward. A quasitransitive algebra is an
tion of all ultraideals (i.e. maximal proper ideals) algebra <AQt, where Qt = <1,NHn,+,,I> where 1i
of A; and, for any x,y such that u<x<v and u<y<v, a nullary operation, N, H and n are unary operations,the following holds: x'y < N(Nx+Ny).anuayoprtoN adnar uayoeains."

Ahe followinholds: y i an algebra Aand +,-,I are binary operations, satisfying the 24A pse1dotN nstv ger b is an algebra <A,P>, postulates below. First, let's introduce some defini-
P=<I,N,H,+,->, where H is a unary operation, such tions: /0/ eq /NI/ /Sx/ eq /x.Nx/ /x.y/ eq /N(Ny+N/.that, defining Fx as HNx, the four following condi-
tions are fulfilled: 12) <A,<I,N,+,>> is a stout eq /Iylx/ eq /~x/ )x x/ eq / xx/

ultra-Kleenean algebra; 22) <A,<I,F,+>> is a Stone /xDy/ eq /x.yIxx// eq /F(xIa).x/ /Lx/ eq /NFx/

algebra; 32) the operation N has a fixpoint, J; rex/ eq /NNx/ We also introduce two ordering

* 42) defining 0 as Fl, the following postulate holds, relations: xly means that y = y+x; x<y means that,

for every x,y LA: 16) F(xy+F(x.y)) = 0 while xy, xIy=0. Let D be {xcA: Fx=0.
in Postulates (for any x,y,z,u,v c4)

* Every pseudotransitive algebra is pseuda2tomnc in Postulate (or any x~y~zIyv LA)
* the following sense: the filter of dense elements, (01) y.x+x = x (02) xly - x.u+zI(y+z..u+z)

{xA: Fx=0) has a least element, u; and its dual ide- (03) Hx.Hy = LH(y.x) (04) zIy ;5 Hx+HzIH(x+y)
(05) vIy 

< 
v^(x.u)-zI(u-z. (xz)^y) (06) x-1 = x

al, {xLA: 1=1 has a greatest element, v; those ele- (07) x-y y.x (08) x.y.F(x-y)= 0 (09) xIycD iff x=y
ments, u and v, are of course the ones that were con- (10) J = NJ (11) xly S zIyI(xIz) (12) xly.Fx.y 0
sidered in the foregoing paragraph. We are going to (10 ) = 0 (14 .IyI*xIyI (

* see that this notion of pseudoatomicity can be gen- (13) F(xI0+x) = 0 (14) xIyIi+(xIyIx) = "
- eralized in an interesting way. (15) XxIXy - xIy (16) xDy+(yDnx) (xImy) = .

. EQUIVALENTIAL ALGEBRAS (17) F(nmxInx).x - 0 (18) x yIa - xIa+(yIa)

An equivalenti Zattice is an algebra <A,<.,+,I>> (19) mXx = Xmx (20) nx = x-nl
At(21) nxImx - xIa+(xINa) (22) a<f

such that: 12) <A,<.,+>> is a distributive lattice
with zero; 22) I is a binary operation; henceforth (23) fSx.fSy . F(x.yI(xy)) (24) NxIy = xINy
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The remaining of this Section will be devoted to Thus, in virtue of the lstCorol of Thm05, Fp+q c D 0
proving a number of properties of qq.tt.aa. as fol- only if pI0+q c D. On the other hand, F(xIO)+Fx c D,
low from the 24 postulates above. To start with, in virtue of (12), Thm07, 2dCorol of Thm04,T05 -as
let's prove some elementary results, well as other equations- of ThinOl. Therefore, in r-
Theorem 01.- In every q.t.a. (quasitransitive alge- tue of IstCorol of Thi05, pIO+q ED only if Fp+q EP.)
bra) the following hold: Theorem 09.- In any q.t.a., *cD. (Proof:T01 of Thm0l)
T01 xIx c D (Proof: (09)) Theorem 10.- In any q.t.a., xIx=j. (Proof: T01 and
T02 I.x = x (Proof: (07),(06),(01)) T05 of Thm01, ThmOB,Thm09,(14) and (09)). CoroZlary:
T03 NNx = x (Proof: T01,(24),(09)) x=y iff xly = j iff xIyI* c D iff xIy c V.
T04 N(y.x)=Nx+Ny N(y+x)=Nx.Ny N(Ny.Nx)=x+y Theorem 11.- In any q.t.a., % is an antisymmetric
(Proof: T03) T05 x+0 = x (Proof: T03,T04) relation. (Proof: Let's suppose that xly and y~x.
T06 x+x = x = x.x (Proof: T02,(01),T03,T04) Then, in virtue of the equations proved in Thm01,
T07 x.(x+y) = x (Proof: (01) ,T03,T04) x+y = y = x.y = x.) CoroZlar: In any q.t.a.,1 is the
T08 LHx = Hx (Proof: (03),T06) greatest element, while 0 is the smallest element.
T09 FFx = NFx (Proof: T08,T03) Theorem 12.- In any q.t.a., if x.y, then Fx+y c D.
TIO Hx.Hy = H(y.x) (Proof: (03),T08) (Proof: x<y iff x+y=y. Hence, if xl-y, then Fx+y = 0
T11 Fx.Fy = F(x+y) (Proof:T10,T04) Fx+(x+y). But Fx+(x+y) = Fx+x+y £ D -in virtue of
T12 If xty and Fx=0, then Fy=0 (Proof: TI,T05,(01)) 3dCorol of ThM04, T36 of Thm01, and T12 of Thm0i.)
T13 Hx+Hy =H(x+y) (Proof: T12,(04),T01,(09)) CoroZlary: Whenever xy and Fy+z c P, then Fx+z E D.
T14 Fx+Fy = F(y.x) (Proof: T13,T04) And whenever Fx+y £ D, y~z, then Fx+z £ D. (Proof:
T15 F(Fy.Fx) = N(Fy.Fx) (Proof: T14,T09,T04) Tm12 and Thm06).
T16 Ix = x (Proof: (05),T01,T12,(06),T06,(09)) Theorem 13.- In any q.t.a., Lx+(xDy) c D for any x
T17 x.y = y.x (Proof: (05),T01,T12,T16,(06),(09)) and y e A. (Proof: Thm12, df of D,Thm02,(13), and
T18 x+y = y+x (Proof: T03,T04,T17) T40 of ThmOl.)Corollamr: Fx+(FxDy) E D. (Proof: T21 S
T19 HHx = Hx (Proof: T03,T08) and T23 of Thin0l).
T20 Lx = HLx (Proof: T09) Theorem 14.- Let /xCy/ be defined as /Fx+y/. Then,
T21 Fx = FLx (Proof: T03,T19) in any q.t.a., the following hold: (CI) xC(yCx) £ D
T22 xWD iff LxcD (Proof: T21) (C2) xC(yCz)C(xCyC(xCz)) c D (C3) xCOCOCx £ D
T23 Lx = FFx (Proof: T09) (Proof: for (Cl): 3dCorol of Thm04,T18,T28,T12 and

Then follow a number of corollaries that I set T36 of ThinOl. For (C2): 3dCorol of Thin04, T18,T28
out without proof: T24 L(x+y) = Lx+Ly and T36, T12 and T26 of Thm01, and 4thCorol of Thm
T25 L(x.y) = Lx.Ly T26 x.y+z = x+z.(y+z) 04. For (C3): 3dCorol of Thm04 and T18,T05,T21 and 0
T27 x+y.z = x.z+(y.z) T28 x+y+z = x+(y+z) T23 of Thin0l). 1st Corollary: Let <A,Qt> = A be a
T29 x.y.z = x.(y.z) T30 xIy .x+zI(y+z) q.t.a., and let e be a <0,.,+,F>-congruence on A.
T31 xIy - x-zI(y-z) T32 x-y = y'x Then A/e is a Boolean algebra. (Proof: in A, for any
T33 x-y-z = y-z-x T34 x-y-z = x-(y-z) x and y (taking peq as meaning: p is congruent with
T35 x.Fx =0 T36 x < x+y T37 x.y t x q modulo e), (x+y)e(xCOCy) and (x.y)e(xC0+(yC0)C0).
T38 xlI .x.zlz T39 xI1 .< x+zIx T40 xI0 < x.zIx Of course, the unit element of A/0 is the cokernel
T41 xI0 1 x+zIz T42 x.y=0 iff: either x=0 or y=0 of .)e2d Corolary: Let Lc be a system <V,F>, where
T43 x.y=l iff: both x=1 and y=1 T44 x+y=0 iff: V is a set of symbols and F is a set of formulas
both x=0 and y=0 T45 x.y=0 iff: either x=0 or y=0 generated from those symbols in accordance with some
Theorem 02.- In any q.t.a., let p and q be two poly- rules of formation; and let V contain only, in addi-
nomials; then F(p+q) = 0 iff F(Lp+q) = 0 (Proof: tion to sentential variables, these four symbols:'0',
T11,T21). Corollary: For any x, xcD iff Lx c D F',+','., so that, if "p" and "q" c F, then '01,
(Proof: T06 of Thn01) "p+q'""p.q" and "Fp" c F. Let: A be a q.t.a. Let's
Theorem 03.- In a q.t.a., if xy and y:z, then x<z. define a valuation from Lc into A as a mapping, V,
(Proof: in virtue of equations proved in Thmi0). carrying formulas of Lc into elements of A and such .
Theorem 04.- In any q.t.a. F0=i and Fi=0. (Proof: that, for every "p" and "q" c F, V(0)=0, V(Fp) --
(13),T09). l8t Corollary: H1=1 , HO=0. 2d Corollary: F(V(p)), v(p+q) = V(p)+v(q), and V(p.q) = v(p).v(q)
FFO=0 , FF1=i. 3d CoroZZlz : F(x+Fx)=0 (Proof: T35, (no equivocality is warranted concerning our twofold
T14,T17, Thm02,ThmO4). 4th CorolZary: F(Fx+(Fy+(x.y)) use of '0',*F','+$ and 1.g both as symbols of Lc and
=0. (Proof: T14,T17 and T28 of Thin0l). as operations of A). Then a formula, "p", of Lc is
Theorem 05.- In any q.t.a., if x+y e D, Fx+u E D, said to be valid in A iff every valuation V Lc+A is
Fy+v c D, then u+v E D (Proof: let's suppose F(x+y)= such that V(p) c D. A formula of Lc is said to be
= 0 = F(Fx+u) = F(Fy+v); Then: Lx+Ly = I = Fx+Lu = valid iff it is valid in every q.t.a. S
= Fy Lv; Fx.Fy+(Lu+Lv) = Fx+Lu+Lv.(Fy+Lv+Lu); then: Then a formula of Lc is valid -in accordance with
Fx.Fy+(Lu+Lv) = 1 ; Hence: Lu+Lv = 1. Therefore, in the foregoing characterization- iff it is a theorem
virtue of Thin02, and Thm04, u+v c D. lt Corollary: of (a system of) classical logic, i.e. of truth-fun""
In any q.t.a., if x+y c D and Fy+z E D, then x+z tional two-valued logic. Proof: (If) is an immediate
E D. (Proof: 3d Corol of Thm04). 2d Corollary: In corollary of Thm14.
any q.t.a., if Fx=0=F(Fx+y), then Fy=0. (Only if): Suppose that some formula of Lc, "p", is
Theorem 06.- In any q.t.a. the following holds: if valid -in accordance with our definition above- with-
Fx+y E D, Fy+z £ D, then Fx~z £ D. (Proof: Thi05 out being a theorem of classical logic; the validity
and 3dCorol of Thm04). of "p" depends not on what values are assigned to
Theorem 07.- In any q.t.a., the following holds: the sentential variables lying in "p", but only on -
xly = yIx (Proof: (11) ,T01 and T12 of Thm0l,(09)). the regulations laid down as regards the symbols '+0,
Theorem 08.- In any q.t.a., let p and q be two poly- '.*,'F' and '0'; thus every q.t.a. A is such that
nomials. Then, Fp+q c D iff pIO+q c D. (Proof: in for every valuation V from Lc into A, v(p) £ D in
virtue of (13), Them02 and T23 of Thi0l, FFx+ (xIO)ED. virtue of some property or other of at least one of
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those four operations. So, we can form a sentential (h05) xDyDN(yDx) c D (h06) xDyD(xDN(xDNy) C P
calculus on Lc having as its axioms the ones of any (h07) xDSyDNX E D (Incidental Comment.- Let's call
classical system plus "p", and as its rules of infsp Hercleitian algebra any Stone algebra with an equi-
ence modus ponens and substitution. But -as is well- valential operation satisfying such postulates as
known, from the completeness of classical sentential (02),(04) -if the algebra contains a topological
logic- such a calculus would be deliquescent, i.e. operation like H-, (09),(11),(12),(13),(14) and
such that for every formula "q" of Lc, "q" would be xDy+ (yDx) ED, provided it also satisfies the postu-
a theorem of the envisaged calculus. But that would late xIx = N(xIx). Every q.t.a. is an Heracleitian
entail that in any q.t.a. every xcA was such that algebra. Philosophically, that means that within a
xEZ, which is downright false, since there are q.t. q.t.a. selfequivalence is astrue as untrue, which,
a. with more than one element, and in any such q.t. as I have it, is Heracleitus' principle.)
a. 0 it V. §4.- THE FILTER OF DENSE ELEMENTS D
The'ocrm 15.- In any q.t.a. xDyC(xC(xDy)) e D and The Glivenko filter of dense elements enjoys a
xC(xDy)C(xDy) F 1). The proof as regards the former privileged role in any Stone algebra. Since any q.
polynomial is straightforward in virtue of 3dCorol t.a. is an extension of a Stone algebra, we need to
of Thin04 and T18,T28 and T12 of ThmOl. As regards go into the Glivenko filtergs properties in qq.tt.aa.
the latter polynomial, the proof uses Thml4, Thm13 Moreover, as against alethic naximaZism which
(plus T23 of Thm0l), as well as Lhe 2dCorol of Thm05. withholds the label of true from whatever is not
Theorem 16.- In any q.t.a. x.y c D iff both xcD completely or absolutely true -a stand taken both
and ytD;. (Proof: either via Thml4 or via T14, T17 by classical logic upholders and by such fuzzy-set
and T44 of Thm0l). theorists as feel bound to junk the principle of ex-
Theorem 17.- In any q.t.a., xC(y.z) = xCy.(xcz); cluded middle-, my approach relies on the principle
XC(y+z) = xCy+(xcz); x+ycz = xcz.(ycz); x.ycz = of endorsement, to be: whatever is more or less true S
-Cz+(yCz). (Proof: the equalities proved in Thm0l). is true. Thus, according to my lights the filter D
"k
1
eoron 18.- In any q.t.a., xIy.(xIz)C(yIz) c D. of dense elements is the truth-filter. Whatever cor-

(Proof: Thms 16&17,(12), the equations of Thm0l, the responds to a dense element is more or less true;
Corol of Thm02, as well as (11), Thm12,Thm06,Thm07). hence, it's true (tout court). Being true is by no
Theorem 19.- In any q.t.a., both HxC(HxIx) and means the same as being downright or wholly true.
FxC(FxINx) E D. (Proof: Thmsl8&01,(13),Thms02,04,16, However, the truth filter is negation-inconsistent.
17&18.) Corollary: HxDx, FxDNx, xDLx D. (Pr:Thm0l&15) There are mutually contradictory truths.
Theorem 20.- In any q.t.a. the following hold: xDy= Theorem 24.- In any q.t.a., D z {xcA: xIO=O}. (Proof: S
=NyDNx; xDy+(yDx) cf; xDyC(xCy) ED; xD(y+z) = if xIO=0, then FX=O, in virtue of (13). On the other
xDy+(xDz); xD(y.z) = xDy.(xDz); x.yDz = xDy+(xDz); hand, in virtue of (12) F(xIO)+Fx ED (see proof of
x~yDz = xDy.(xDz); x.yDx ED; xDy.(yDx) = xly; if p ThinO8); thus, if Fx=0, F(XIO) ED, hence L(xIO) = 0,
and q are polynomials formed with + and/or . only, hence xI0=0, since, for any z, z 0 Lz -cf. Corol of
out of equivalential or implicational polynomials Thm19). Corollary: D = {xcA: 0<x}
-i.e. of polynomials of the form rIs or rDs, respec- Theorem 25.- In any q.t.a. a is the smallest dense
tively- then, both pCqC(pDq) and pCq.(qCp)C(pIq) ED. element, i.e. the least element of D. Let's split
For brevity sake, I omit the proof of this theorem, the proof: First, we prove that a is dense, as fol-
as well as the ones of other theorems below, lows: FaC(aIO) ED, in virtue of (13) , Thm02 and T23
.r"eorc. ' 21.- In any q.t.a. there is just one fixpdit of Thm0l. Now, aI0C(nxImx) ED, for every x, in vir-
for N, viz, 1. Proof: Suppose there are two such tue of (02),(05),(20) and Thm12. In virtue of (21)
fixpoints, J and, say, e. Then, e=Ne; thus, in vir- that entails that aIOC(xla+(xINa)) ED which can be
tue of Thm20: eDi+(0De) E E. Hence, eDi+(NeDN) c 2, easily proved to be equivalent to aIOC(xIO+(NxIO))
and consequently eDi E L. We likewise prove JDe e V. ED whence it follows that aI0C(IIO) ED and
Whence it follos that lIe EP, and accordingly I=e. aIOC(JII) ED which, in virtue of Thml6&l7, entails

2:eorem L2.- In any q.t.a. all the following elemer= that aI0C(iI0..JI1). Now, in virtue of ThmI8,
are dense, i.e. members of D: xDNxDNx, NxDxDx, JI0.(JI1)C(OII) ED. Applying Thm06 to the results
xlxI(yIy), xDyDN(x.Ny), xDN(xDNx) , N(xDNx), just reached, we get at FaC(0I1) ED. Since 1 is
xDyDN(xDNy), xDyDN(yDNx), xDyDN(NxDy), xDyDN(yDx), dense, that means -in virtue of Thm24- that FaCO ED,
xDyD(xDNyDNx), xDyD(xDN(xDNy)), xDN(xDSy), xDSyDNx, and thus FFa ED; therefore aED.
SxDNSy. Furthermore, if p is a polynomial wherein Now, we sketch the proof of every dense element,
there is an occurrence of x, let q be the result of x, being such that a-x, which in virtue of - being
replacing that occurrence of x in p by an occurrence an ordering relation, entails that a is a lower 0
of y; them p.NqDN(xIy) t D. This I call the princi- bound of V. In virtue of (16),(20),(06) and T32 of
nle of distinction. ThinOl, we have that lDx+(xDnl+(IIN(Nx-nl))) EP,
TViirm 25.- The system of postulates set out herein- whence it follows that NxC(xDnl) ED, so xC(aDx) ED,
above is equivalent to several systems of postulates, since NnI = a. Suppose xcED; then, in virtue of 2d
wherein, instead of defining I as III, we take J as Corol of Thm05, aDx EL, which means that aSx, in vi-
a primitive, and we replace every occurrence of J in tue of (09). 1st Corollary: P = {xEA: aDx=i) = La)
postulates (14)&(16) by an occurrence of III, and ={xA: F(aDx)=0). Accordingly, in any q.t.a.
then we add, from the postulates below: either both D is the principal filter generated by mO. 2d Corol- S
(hOl) and (h02); or else both (hOI) and (h03); or lary: O<a. (Proof: Corol of Thm24).
else both (hOl) and the principle of distinction; or Theorem 26.- In any q.t.a. with more than one ele-
else both (hO) and (h04), even deleting (10); or ment, < is a strict ordering relation, i.e. transi-
else both (hOl) and (h05), even deleting (10); or tive and asymmetric. (Proof: Since any q.t.a. has a
else both (h01)&(h06); or else both (hl)&(h07). 1, if it has at least two elements, then 1J0. More-
(hOl) N(xIx)D(xIx) c D (h02) xDNxDNx c D over, gO and J I, since J=NI. Suppose now that x<y
(h03) xDyDN(x.Ny) E D (h04) xDyDN(xDNy) E D and y<z. Then we have: x+y = y, z = z+y; thus,since
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xIz :. x+yI(z+y) (T30 of Thm0l), we conclude that then (xiy)6(yIy); now, yIy J.)lst Corollary: Let 8
xlz _ ylz; whence it follows xlz=0; therefore, x<z. be a congruence on a q.t.a., A. Then, x6Nx iff xOi.
Thus, we've proved that < is transitive. That < is (Proof: (If) is obvious. (Only if) follows from the
asymmetric is shown as follows: suppose x<y and y<x; theorem plus the fact that in any q.t.a. xINx = xlif
then xy and yx, and xly=O; so, x=y, but xIy=0, i. 2d Corollary: Let h be a morphism from a q.t.a., A,
e. i=0, which blatantly runs courter to our previous into another q.t.a., A'. Then, h(x)=h(y) iff h(xly)=
result, viz. 4$0 (in any q.t.a. with more than one i', 4' being the only fixpoint of N in A'.
element) Theorem 31.- No congruence e8i on a q.t.a., A, with
Theorem 2?.- In any q.t.a. with more than one ele- more than one element is such that x~y while x<y.
ment, its trunk, i.e. the convex set {xeA: a<x<Na} (Proof: If xey, then, in virtue of Thm30, xIy8*; now,
-which we'll abbreviate as T -satisfies neither the if x<y, then xIy=O, then 180, which entails that 6= i,
descending chain condition nor the ascending chain against the hypothesis). lat Corollary: Every congru-
condition. Proof: as shown on top of the proof of ence 8#i on a q.t.a., A, comprising more than one el-
Thm26, 0 1; thus 0ii i, since 4=NI. But JcT in vir- ement has infinitely many congruence classes. (Proof:
tue of (22). Since J=NJ, we have that Si=i, and Corol of Thm27). 2d Corollary:Let h be a morphism
S4Ia=0; thus, F(SJIa)=1, and consequently fS4 = JET; from a q.t.a. A = <A,Qt> into another q.t.a. A'. Let
but of course T is a subset of D. In virtue of (23) x,y LA and x<y. Then, if hx=hy, A' comprises just
and T12 of Thm0l, F(iIX4) ED, so iIXi=O. Since, for one element, 0' -and consequently h is an epimorplsm

any y and z, y'ziy (in virtue of (07)) ,Xxx, so X <jx; such that, for any xcA, hx=O'.
therefore XJ<J. Now, for every x and y, if x,y cT, DEFINITIONS.- A q.t.a. will be said to be scalar iff
x-y c, in virtue of (08),(16),(07). Accordingly, it's totally ordered by . A q.t.a. will be said to
Xi LI, whence it follows that XX4 < XJ and XX4 C2, be equivalentially scalar iff for any x,y,either
and so on (the result is generalized by mathematical xIy'O or else xIy=i.
induction). Thus, we get at a descending chain: 4, Theorem 32.- For any q.t.a., A, the following are
Xi,XX ,XXXJ,... The chain has a g.l.b., to wit: a=mO. equivalent: 1) A is scalar; 2) A is equivalentially
But of course a doesn't belong on the chain; thus, scalar; 3) For any twc members of A, x and y, either
the chain has no minimal element. Therefore 2 is not x=y or x<y or y<x; 4) There is no xJ0 such that FxJ0.
Noetherian and the algebra under consideration is (Proof: l)-2). Let x!-y. If 0xIygj, neither a=xIy
not Noetherian either. Furthermore, let's definitio- (since, for any u and v, uIv ED iff uIv=J) nor xIy.a,
nally introduce /Kx/ as follows: /KX/ eq /NXNx/. Tt since, for any u and v, u~v iff uDveD,and xIyDaCF(xI S
it can in the same way be shown that T doesn't satis- c D; thus, were xIy<a, F(xIy) ED, and so xIy=0.
fy the ascending chain condition, since T contains 2)-3). Let's suppose that xIy=0 but that neither x<y
this ascending chain: *<K<KK<KKK4<... The l.u.b. nor y<x. Then neither x~y nor y<x; hence x+yIy and
of that chain is Na=nl, which is not a member of . x+ylxJJ; therefore -since A is equivalentially sca-
Corollary: Any q.t.a. wherein there are at least two la,' x+yIy=0=x+ylx, whence it follows that xDy+(yDx)
elements comprises infinitely many elements, such =0. Now, in virtue of Thm20, that result is impos-
that for any two of themm x and y, x<y. sible. 3)-4). Suppose there is an x 0 such that

Theorem 28.- Every q.t.a. is strongly pseudoatomic. FxJO. Then xia, hence either x<a or a<x; the latter S
Proof: Let's definitionally introduce an operator % is impossible, since otherwise x would be dense (Thm

as follows: /x%y/ eq /xDy.F(xIy)/. It can very easi- 25). But x<a entails x=0. Thus, the hypothesis was
ly be proved that x%y ED iff x<y, and that x<y.z iff impossible. 4)Q1). If there is no xi0 such that
both x<y and x<z; and that y+z<x iff both y<x and z<x. Fx 0, then for no x and y is it the case that, while

Let's now definitionally introduce two new opera- xDy J, xDy 0. Then either xDy=4, which means that
tions as follows: /fx/ eq /L(NxIa+fSx+H(x+Nx)).nx/ xy, or else xfy=0, which entails (see Thm20, where-
/x/ eq /L(xIa+fSx+H(x+Nx)).mx+L(xINa)/ in it's said that xDy+(yDx) ED) that yDx LD, which "
Then, it can be proved that, for any x, x<x, and in turn entails y~x.)
xflx, and fix%x.(iix%(y.z).(y+z%fx)c(yiz) c D. There- Theorem 33.- Let A be a scalar q.t.a. and let A'be a
fore, fix<nx; and, if fix<y.z -if,that is, iix<y and nonscalar q.t.a. Then there is no epimorphism from A
nx<z- and y+z<fux -if, that is, y<fix and z<fx-, then onto A'. (Proof: Suppose there is an epimorphism
y=z. Accordingly, every q.t.a. is strongly pseudoa>- A-A',h. Now, in any q.t.a. x<y iff x%y=J. Suppose

mic. (Notice that we have not proved that, for every that there are two noncomparable elements of A', x'
X, nx<x, nor that x<fix. That is not the case: iANa = and y', and that there are two elements of A, x and
Na, while fila=a. And there are many other elements x y, such that hx=x' and hy=y'. Now, in virtue of Thm
such that either x=fhx or x=ilx; whenever fSx ED, then 32, either x%y=J or y%x=i. Suppose the former. Then
nx=fmx and mx=ffmx). h(x%y)=hi. But, according to Thm29, h4=4', i.e. the
95.- MORPHISMS AND CONGRUENCES fixpoint of N in A'. Thus hx%hy=', i.e. x'%y'=',
Theorem 29.- Let h be a morphism from a q.t.a., A, which means that x'<y', which runs counter to the
into another q.t.a., A'. Let 4 be the fixpoint of N hypothesis.)

in A, and 4' the fixpoint of N in A0. Then hJ=4'. Theorem 34.- Any morphism from a scalar q.t.a. A into
(Proof: Nhf=hNJ=hJ; thus, hi is a fixpoint of N in A: another q.t.a. A', is a monomorphism, unless A' Ca- ."
Since the fixpoint of N in any q.t.a. is unique -in prises just one element. (Proof: Thms 31&32.) S
virtue of Thm21-, hi=4'.) Theorem 35.- The free algebra with r generators (for
Theorem 30.- Let 8 be a congruence on a q.t.a., A. any 25r) associated with the class of qq.tt.aa. is a
Then: (xIy)OI iff xey. (Proof: (Only if): Since e is nonscalar q.t.a. (Proof: Since all postulates (01)
a congruence, let's define an epimorphism, *, of A thru (24) are either identities or conditional iden-
onto A/ such that ,(x)= Ex8. If (xy)8,, (xIy) = tities -which is the case as regards (09)-, the class

00Iy; thus, since, in virtue of Thm29, of is r of qq.tt.aa. is closed with respect to formation cf
the only fixpoint of N in A/6, 0x=0y, which means subalgebras and direct products. Therefore, according
that 3e = Cy3, and therefore x8y. (If): If xey, to Birkhoff's proof, Fr(r) (i.e. the free algebra S
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with r generators associated with F) cr, which en- real. The operations on that set of alethic numbers
tails that Fr(r) is a free q.t.a. (To be sure, Fr(F) are defined as follows: x+y = mx(y,y); Nx=l-x;
is a subdirect product of subalgebras of all qq.tt. 1(the algebraic nullary operation) = 1(the real num-
aa.) That F (r) is nonscalar is proved like this: ber); Hx=1 iff x=1, otherwise Hx=0; if x is either
by constructfon, Fr(F) = Wr(Qt)/

6
(F), where: Wr(Qt) a standard JO, y, or yG(I/"), where y is standard,

is the free word algebra with r generators on Qt, provided yJ0, then nx = y-(I/-); otherwise, nx=x; -

i.e. on the set of operations of qq.tt.aa., viz if x and y are standard, then x-y=xxy; if one among
<1,N,H,n,+,-,I>; and e(F) is a congruence on Wr(Qt) x,y is either a standard u 0, or uQ(/-), u being
constructed as follows: let A be the set of functs standard, while the other = zo(l/) , z being stan-
6 from the set of r generators of Wr(Qt) into (the dard, then x-y = (uxz)0(1/o); if either x or y is 0,
set of members of) any q.t.a., defining, for any po- then x-y=y-x=0; if x=Nnl, and y40, then x'y=y-x=x;
lynomial p(xl,...xr), /6p/ eq /p(6x,...6xr)/, then the remaining case is the one wherein one among x,y
we let /pq/ mean that 6p=6q for every 6EA. By con- is u-(I/), u being a standard while the other among
struction, every such 6 is a morphism. 0 is the in- x,y is either v, or vQ(1/®), or v-(II=), vO being
tersection of the kernels of all those morphisms; standard; then x-y = (uxv)-(1/w). Finally, xIy=j iff 0
thus, the only identities holding in Fr(I) are the x=y; otherwise, xly=0. Of course, any direct product
ones that are bound to obtain in virtue of the 24 of A (A being the algebra of alethic numbers) is a
postulates. Now, for any y,x eT (for any two ements, q.t.a. A is a scalar q.t.a. And, to be sure, the
y,x, of the trunk) of any q.t.a. A, we do know, in direct product HtcT(At), where every teT is either
virtue of (23), that x-y<x.y, and that x-y < K(x-y); A or 2, or any other q.t.a. for that matter, is a
but whether or not x.y - K(x-y) is not settled by nonscalar q.t.a. , too.
the 24 postulates. Nor do those postulates determine
whether or not, for any x,y cT, X(x.y)tx-y, whether 7.- THE SYSTEM OF TRANSITIVE LOGIC Ap
or not XKx.x; in fact, those postulates entail no Another q.t.a. is the Tarski algebra of classes
reduction of iterated or piled up opertaions K, and of formulas of the sentential calculus Ap, which is
X, or of any of them confronting - or ;, where /x~y/ defined as follows. Ap is a structure <V,F,TR>
eq /N(Nx-Ny)/. Corollary: There is no epimorphism where: V is its vocabulary; F, the set of its formu-
from any scalar q.t.a. onto Fr(F), where r is the las; T, a proper subset of Fviz the class of theo-
class of qq.tt.aa. (Proof: Thm33) rems; and R a set of one inference rule. V = {a,H,+,

,I,(,)l. F is determined by these rules: I.- atF
§6.- SOME EXAMPLES OF QQ.TT.AA. 2.- If "p"eF and "q"'F, then"p+q" ,"p-q" ,"pIq" ,"Hp"

First, I'm going to construct a scalar q.t.a. as £ F. The letters 'p','q' , etc. are used as schema-
follows. Let's take the set of standard integers, Z. tic letters. In restoring omitted parentheses, a dot
For any such integer, x, nx is:x-1, if x-O(mod3); written immediately following an occurrence of a two-"
x-2,if x-l(mod3); x, if x-2(mod3). For any two stan- place functor stands for a left parenthesis whose
dard integers, x and y such that x:y, x'y will be right mate is to be placed as far to the right as
x-3. possible. Remaining ambiguities are dispelled by as-

We now add to the standard integers two nonstan- sociating leftwards. We'll avail ourselves of the
dard natural numbers whatever, say: - and -41 -where 17 following abbreviations: /Np/ eq /pp/
Q is addition-, as well as their respective negative /I/ eq /aIa/ /Fp/ eq /Hnp/
counterparts, -- and -(-01); the union of Z with the /0/ eq /N(aIj+F(jINJ))/ /l/ eq /N0/
set of those four nonstandard integers will be cal- /p+q/ eq /N(p+q)"l/ /pCq/ eq /Fp+q/ " -

led the set of pseudointegers. For each pseudointe- /p.q/ eq /N(Np+Nq)/ /pDq/ eq /q.pIp/
ger, x, Nx is defined as -x; moreover, for any two /Sp/ eq /p.Np/ /np/ eq /p^Na/ /mp/ eq /NnNp/
pseudointegers, x and y, x+y is defined as rwx(x,y). /Xp/ eq /p-p/ /Lp/ eq /NFp/ /Yp/ eq /pIa.p/
If x==-y, then x-y=x. If x=- and y is a standard in- /fp/ eq /FYp.p/ /p%q/ eq /pDq.F(qDp)/

teger congruent with either 0 or 1, modulo 3, then READINGS: a: The infinitesimally true or real exists
x'y=y'x is y-1, if y-0(mod3), but y-2 if y-l(mod3). p+q: Neither p nor q. p-q: Not only p but also q.
If x=- and y is a standard integer congruent with pIq: It's as true that p as that q - The fact that p. .

2 modulo 3, then x-y = y'x = y. is equivalent to the fact that q. Np: It's not the
Let x be -- and xiy; then x'y=y-x=x. Finally, if case that p - It's false that p. i: The equally

x='4l, then x-y=y-x=y while, if x=-(C01), then x-y= true and false exists. 0: The totally false exists
y x=x. If x=-01, then nx=-; if x is either - or -= The completely false is true. 1: The Truth exists
or -('01), nx=x. (Cis true) =- Reality or Existence itself exists. 0

The operation H is defined as follows: if x=o41, p+q: (Either) p or q. p.q: p and q. pDq: The fact
then Hx=x; otherwise, Hx=-(o*1). The operation I is that p implies the fact that q =- It's at most as
defined like this: if x=y, then xIy=0; elsewise, true that p as that q. Sp: It's both true and false
xly= -(-01). The algebraic unary operation 1 has as that p = It neither is nor fails to be the case that
its value, for any argument, -*I. p. pCq: p only if q -- If p, (then) q. np: It's

The set of pseudointegers, Z with those operations overtrue that p. mp: It's (very) much like true
defined thereon is a scalar q.t.a. For any n.2, the that p. Xp: It's very true that p. Lp: It's more

direct product 2n is a nonscalar q.t.a. or less true that p. Yp: It's infinitesimally true
Another q.t.a. is the set of atethic nunbers, i.e. that p. fp: It's somewhat true that p. p%q: It's

the interval of hyperrreals to,iA constructed as less true that p than that q. Hp: It's completely
follows: let's take all real numbers and add any non- (-utterly=-altogether-wholly-totally) true that p.
standard positive integer, say -. Then we take as Fp: It's not at all (zby no means) the case that p.
the set of alethic numbers such x, 0.x.l, as are ei- Now, let's come to T: T is the smallest subset of
ther a standard real, or else the result of either F which comprises every substitution-instance of any
adding I/- to, or subtracting I/- from a standard one of the following five axiom-schemata and that is
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closed for the only rule belonging to R, to wit: Mo- fore, if x~y and xy, O.t.
dus ponen8, i.e.: pCq , p - q Theorem 36.- Every t.a. is simple.
AXIO4-SCHE1ATA 1st Corollary: Every t.a. is subdirectly irreducible.

In these axiom-schemata all schematic letters are Proof: cf. Theorem 1/3 of Balbes & Dwinger.
unrestricted except in A2, wherein "r" is to differ 2d Corollary.- ANy morphism from a t.a. into another
from "s" at most in that n(01n) occurrences of "q" is an embedding. Therefore, every epimorphism of a
lying in "s" are replaced in "r" by respective occur- t.a. onto another is an isomorphism. 0
rences either of "p" or of "NNp". Theorem 37.- The free algebra with r,2 generators
Al p.qCp A2 pIqC.sIr associated with TA is not a t.a. Proof: The only
A3 p'(q.r)'sI(r-s.(q-s)-p)..p.qC(p-q)..p qDp..pDq+Lp identities that hold in that free algebra, Fr(TA),
A4 q+p.pIp..pIpIi..r.s+pI.r+p..s+p are the ones that hold in all and every t.a. Hence,
A5 pIqC(qCp)..pDq+(qDnp+.pImq)..fSp.fSqC(p q%.p.q).. for some polynomials, p and q, such that in some but

XpDXqC(pD)..mpDnp--(Yp+YNp)..XmpImXp..mpDmnp+Hp.. not in all tt.aa. p=q, it is in Fr(TA) the case that
Hp+HqIH(p+q)..H(p.q)IL(Hp.Hq)..Y(p-q)C.Yp+Yq p4q; therefore, were Fr(TA) a t.a., pIIq=O. But that

The Tarski algebra of classes of formulas of Ap is impossible, since then some equation would hold

is formed by identifying LPI with LcJ iff "pIq" is in Fr(TA) that did not hold in every t.a. Conse-

a theorem of Ap. The operations on that algebra are quently, Fr(TA) e TA.
defined as is usual for other Tarski algebras of Theorem 38.- Every scalar q.t.a. is a t.a. wherein
clends i fmul. oreovert Tarski algebra oBx is trivially "defined" like this: /Bx/ eq /x/.
classes of formulas. Moreover, the Tarski algebra And, conversely, a t.a. such that, for every x,of classes of formulas of Ap is provably isomorphi c x ,isaclrqta.Poffthfrtpr;
with F2 (r), r being the class of qq.tt.aa. So valid- Bx=x, is a scalar q.t.a. Proof of the first part:ity for Ap is very easy to establish: a valuation v (25), Thin32&35. Proof of the second prt: in such

an algebra xIy=xIIy; but, for any x and y, xIy
of Ap is a mapping F-A, where A is any q.t.a., pro- either I or 0. Then we apply Thm32.
vided: V(a)=mO; V(Hp)=HV(p); V(p+q) = forp)l(q); 1et CoroZlary: Every direct product ntET(At) of a

v(p-q)=v(p)v(q); v(plq)=V(p)Iv(q). A formula "p"cF faiy(t clrq~ta.cnb aeitis valid iff every valuation of Ap, v, is such tha family (At) a scalar qq.tt.aa. can be made into a
t.a. by adding thereto an additional operation B as

v(p) ED, the respective set of dense elements of the
algebra in which the range of v is included. (I sup- follows: Bx=x if, for every projection-function pt,

pose no ambiguity arises from our twofold use of pt(x) is a dense element of At; and otherwise, Bx=0.

symbols, as functors of Ap and as operations of any 2d CorolZary: Let A be a t.a. and let A' be a sub-
q.t.a.) Accordingly, Ap is both sound and complete algebra of A whose carrier, A', is such that, for
§8.- TRANSITIVE ALGEBRAS PROPER every xt4', x=Bx. Then, A' is a scalar q.t.a. (No-

A transitive algebra, t.a. for short, is an alge- tice, though, that that by no means entails that a
b A e-r , t.a. whose set of generators is such that, within

1b) <A,<,N,H,n,+,,I> is a q.t.a.; 22) B is a una- that set, x=Bx for every x is a scalar q.t.a. For,1)<,lNHn ,I>isaqta;2)Biaun- even if x=Bx and y=By, it may be the case that
ry operation and the following postulate holds for

every xL:4: xIy xIIy.)

(25) Either x+a=x=Bx; or else: a.x~a and Bx=O. THE SYSTEM OF TRANSITIVE LOGIC Aj -

Since the class of tt.aa., TA, is defined through A$ is Ap adding to its vocabulary the one-place

an identity-disjunctive postulate, it's not closed functor 'B'; and adding one additional axiom-schema

for the formation of direct products; the free alge- and an additional inference-rule, the assertion- -

bra with r>2 generators associated with TA is not a rule, viz: p kBp. The additional axiom-schema is:
a t.a., as we're going to see. A6 BLpDLBp..Bp+BFBp..BpIp+FBp..B(pDq)C.BpDBq
DEFINITION.- An identity algebra is an algebra A valuation of Aj will be a mapping, v, of the
<A,<F,.,+,II>> such that: <A,<F,.,+>> is a Stone al- set of formulas of Aj into any t.a., A, which is

gebra, and, for any x,y cA: F(xIly)=O iff x=y; and like a valuation of Ap and, besides, is such that
otherwise, xIIy=O. V(Bp) = Bv(p). Of course, a formula "p" of Aj is

Le na 1.- Every t.a. is an identity algebra. Proof: valid iff every valuation, V, of Aj is such that
let's definitionally introduce the operation II in r(p) ED. with that semantics, Aj is both sound and
any t.a. as follows: /xIIy/ eq /B(xIy)/. Then, apply- complete.
ing T1i25, we know that aixIy, i.e. xly+a=xIy iff § REDUCTIVE QQ.TT.AA.
xIy ED. But, in virtue of (25) a xIy entails that 9 ill QetT .AA . " " fxy=xIly. In virtue of Corol of T~nl0, xy D iff I Ill reductive any q.t.a, wherein some further
x-= y. In virte of C D. of The ote ED equatiuns hold containing OK' and 'X'. A q.t.a. is

y; thus, if x=y than xIIy oD. on the other hand, strongly reductive iff, for any x thereof, KXx=x.
iff xy, hich in virtue of Chir25, afIy; i.e. xIy Consequently, in any strongly reductive q.t.a.,
iff xhy, then, in virtue of Thm25, ati KXx=x=XKx. 2 is a strongly reductive t.a. (A is a

awhich in turn entails, in virtue of (25), that reductive t.a., too, since, for any xeCi, XXKxLI(Xx,
xIIy=O. Therefore: xIIy=J iff x=y; and xIIy=0 iff
y. That completes the proof, since F =0. and KXx5XKx.) We can set up a reductive transitive

Lemma 2.- Every identity algebra is simple, which logic by adding to its axioms this one:
means that it has only two congruences i and w. A7 KXpIp (where /Kp/ eq /NXNp/)

Proof: suppose xey. Then (xIlx)e(xIIy). Since xIIx My own feeling is that (every instance of) A7 is
D, then, if xIIy=0, e=i (in virtue of a well-known true. The reader is invited to think it out himself.

fact about Stone algebras, viz that the only congru-
ence 6 such that, for atleast some dense element x,
x6O is the universal congruence i, since, if x is
dense and xOO, then FFxeFFO, i.e. 100); hence, if
(xlIx)O(xIIy) and 0,t, then xIIy0, so x=y; there-
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group, in effect, becomes a "super binary
variable", and the functions to be

ABSTRACT mapped, are first transformed into
groupings of sub-functions. As shown in

In this paper, multiple valued logic is Figure 1, this grouping (mathematically
discussed in terms of its implementation identical with factoring) can result in a
by PLAs. The history of the PLA is substantial reduction in the number of
described and the relevance of PLA cells required to implement the
multivalued logic to PLA development and function, in this example, the symmetric
logic minimization is discussed. An exclusive-OR.
important aspect of VLSI implementation
is used as a parameter to compare binary If we group two binary variables into a
logic circuits with multiple valued logic single "super binary variable", we
circuits and certain conclusions are generate a variable which has four values
reached. The functional usefulness of associated with it. A grouping of three
n-valued Post logics is identified in binary variables results in a single
terms of various applications, variable with eight values, and so on.

This enumeration describes a subset of n
valued Post algebras, containing only
those n that can be expressed as a power
of two.

HISTORY OF PLA AND
ITS RELATION TO MULTIVALUED LOGIC So, it is clear that this type of

multivalued logic has been important in
The PLA emerged in the late 1960s and developing the bit-partitioned PLA
early 1970s as an approach to utilizing structure. Hong, Ostapko, and Cain (31
more effectively the attributes of LSI. recognized this aspect of
It had been well established that regular bit-partitioning in their MINI program,
structures such as RAM and ROM were more which heuristically determines the
effectively mapped at high density into minimum number of cells needed to .. -
LSI than random logic. Knowing this, I implement functions under different ..0
started an investigation into the use of groupings of input variables. Sasao [4]
memory-like structures into which logic also made use of MINI to manipulate
could be effectively mapped. multivalued logic in using PLAs to

implement multivalued functions. .- ..
However we recognized that the typical i ev do
PLA structure, while avoiding the THE USE OF PLAS TO IMPLEMENT
exponential growth of memory cells of a MULTIVALUED LOGIC FUNCTIONS
conventionally addressed memory when used 0
to implement combinatorial logic, The implementation of multiple valued
nevertheless also had an exponential logic by appropriate hardware has
growth factor built into it when the received extensive treatment, especially
input bits addressed the PLA via 1-bit efforts to devise circuits to handle
decoders, in a manner analogous to multivalued logic as extensions of binary
addressing an associative memory. In the circuits. N-valued logic circuits must
effort to develop a PLA which would have n stable states and the transmitted
contain, to a greater extent, the rapid signals must have n distinguishable
growth in memory cells that occurs with values. Although PLAs, as presently
either the conventionally addressed constituted, are binary output devices,
memory structure or the associatively nevertheless, in light of the discussion .' . .
addressed PLA structure as the number of above, they can readily be used to
variables increases, a method of implement n-valued Post logics. With
partitioning, or grouping, the input appropriate coding, they can also be used
variables was devised [1], (2]. Each a
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to implement other logics as well. As multivalued logic may also be directly
indicated above, a single variable of n mapped into multistate circuits. There
Values can be encoded by a group of are many papers in the literature
binary valued variables containing k bits describing efforts to devise multivalue
where k is the smallest integer such that logic circuits that will send multilevel
2**k n. Thus for n=3, k=2; for n=4, k=2. signals from one logic circuit to others,
For n=5 through n=7, k=3, etc. With this making more efficient use of the
encoding in mind, we shall discuss three interconnecting wiring.
functions in n-valued Post logic: the
MAX, MIN and arithmetic (SUM/CARRY) K. C. Smith, in a recent paper [7],
functions. relates advances in multiple valued logic

to advances in integrated circuit
These are illustrated for n=3, 4 in technology. While he recognizes possible
Figure 2. advantages to multivalued logic for S

encoding information, he neglects the
It is clear from these tables, that the trade offs involved in considering such
MAX and MIN functions reduce to OR and parameters as power dissipation and
AND for n=2, the binary case, and that we relative area of active elements versus
have defined the SUM and CARRY functions area needed for wiring. Thus it is
for single digit addition with no carry instructive to analyze these circuits
in. Using positional binary coding, we from the point of view of power
present these functions in Figure 3a. dissipation and area on the silicon chip

[8]. For comparison, I will use a binary
As is well known, the configurations switching circuit, an n valued switching
shown in Figure 3 can be directly circuit, and a binary encoded n valued
translated into PLAs with the input bits switching circuit, all represented in
grouped as (Xl, X2) and (Yl, Y2). idealized form. These are shown in

Figure 5.
However, the proper grouping of bits can
result in a substantial reduction in the In each of these circuits, the capacitor,
number of cells needed to implement the C. represents the combined output
function t2]. In the case of the SUM capacity of the sending switching circuit
function, a grouping of (XI, Yl) and (X2, and the input capacity of the receiving
Y2) produces a more efficient mapping. switching circuit. Transmission line

effects are neglected as are fan-in and
Figure 4 shows a tabulation and a plot of fan-out considerations. We also assume
the number of products versus radix for a the value of the capacitor to be the same
one stage adder with no carry in. This for each circuit configuration.
tabulation was accomplished using IDL [5]
to design the adders in the different In Figure 5a, the signal on the line is
radices. MINI [6], as incorporated in either 0 or Vout, corresponding to the
IDL, was then used to obtain the optimum logic values of 0 or 1.
PLA configuration for each radix, using
the "vertical" bit pairing shown above. The energy to be switched is thereforethe energy stored in the capacitor: S
The graph shows great variation in

efficiency of mapping these arithmetic
functions. Strong minima are shown for E CV2u/2
radices 8, 16, and 32, all of which are bsw out 2

powers of two. Other strong minima are
shown for radices 12 and 24, both In Figure 5b, the signal on the line
containing 3 as a factor multiplying ranges in discrete values: 0, Vout,
powers of two. 2Vout, ... (n-l) Vout corresponding to

the logic values 0, 1, 2, ... (n-l) in
A significant aspect of mapping the n valued logic.
multivalued logic functions into PLAs by
means of encoding the variables and Therefore the maximum energy to be
outputs from the given radix into binary switched corresponds to the maximum logic
groups is that a standard hardware is value (n-l):
used for all radices. In this way,
effective comparison can be made of max 2 2 2
relative hardware utilization. En a(n-l) VoutC/2 = (n-l) Esw

COMPARISON OF BINARY AND
MULTI-VALUED LOGIC CIRCUITS Figure 5c shows the k lines for binary

encoding of n valued logic. In this
As we have discussed, binary encoded case, the maximum energy to be switched
multivalued logic may be mapped into simultaneously is that of the k S
binary switching circuits. However capacitors each charged to Vout, yielding
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max 2
Ek =kCVout/2 = kEbsw circuit.

Hence a fair analysis requires a
To analyze the silicon chip area discussion of the physical parameters as
associated with circuitry, let the well as the logical factors.
minimum area associated with the binary
switch be denoted by AB. Then the energy A more recent example of a possible •
density for the binary switch is application of multivalued logic appears

in "A Unified Switching Theory With
Ebsw/AB Applications to VLSI Design" (10] by John

P. Hayes. Hayes develops a theory that
For the n valued logic circuit, the area attempts to unify classic switching
must be determined to maintain the same theory with circuit parameters. In so
energy density: doing, he introduces 4 basic types of

logic values - the Boolean 0 and 1, an 0
max indeterminate value, U, and the high
En  /An= Ebsw/AB impedance state of the circuit, Z. These

values can be treated as a 4 valued
logic, and appear to be relevant in

whence: analyzing and testing circuits.

2 An interesting relationship evolved by
An=(n-l) AB the author, is the similarity between the

binary logic circuits as evolved by his
theory and relay networks on the one

Similarly, we find that the area hand, and PLAs on the other.
associated with k binary circuits is kAB. A third application of multivalue logic

It would appear that the n**2 growth of arises in handling some of the procedural
both energy (power dissipation) and area aspects of programming. For example,
of the circuit needed to handle the power radix conversion must be programmed for
dissipation militate against the use of many commercial applications, for data
single line multivalue logic circuits, entry into the system, reformatting and
but the linear growth of energy and area processing, and for exit of the processed
for binary encoded n valued logic data.
consumption implementations may still
permit the use of such log~cs where Similarly, the use of multivalue logic
system design considerations and may contribute to simplifying instruction .5
applications may be advantageous. Thus, sets.
for ternary logic, n = 3, and k = 4, and
An = 4AB while Ak = 2AB .  While these are fairly simple examples,

they are, nevertheless, suggestive of a
APPLICATIONS growing role MVL may play in a world

dominated by binary-value hardware.
The possible application of multivalued .
logic to arithmetic operations is fairly SUMMARY •

- straight forward, and has been
extensively discussed in the literature. Post n-value algebras are currently in

. For example, V. C. Hamacher and Z. G. use in aiding logic design of computer
Vranesic (9], in an analysis of ternary functions. However their direct
logic applied to multipliers conclude implementation by means of n-value
that the use of ternary gates will result circuits does not appear to be promising
in a 70% reduction in gate cost and an because of higher power dissipation and
80% reduction in input count, with, area requirements than binary logic, as
however, a doubling of delay. The cost well as other factors. On the other
factor is somewhat ambiguous however, hand, binary encoded multivalue logic
since they assign the same costs to the circuits retain many of the advantages of
ternary primitives of AND, OR, and INVERT binary circuits. These will enable the
as are assigned to the same binary designer to make optimum use of
primitives. Moreover, as they state, multivalue logic.
such factors as power consumption, level
of integration, etc. were not taken into ACKNOWLEDGMENT
account in their discussion. As we
determined in the previous section, power I want to thank Steven K. Heller, who so
consumption of n-valued logic circuits ably used IDL to develop the optimized
transmitting multiple signal levels on a designs of the arithmetic function in
single line have a power consumption of different radices. -. ''*
the order of n**2 times the power
consumption of the comparable binary RFFERENCES
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PULSE-TRAIN RESIDUE ARITHMETIC CIRCUIT USING MULTIPLE-VALUED CHARGE-COUPLED DEVICES

AND ITS APPLICATION TO DIGITAL FILTER

0 Nobuhiro TOMABECHI, Michitaka KAMEYAMA
+ 

and Tatsuo HIGUCHI.

+ Department of Electrical Engineering, Faculty of Engineering,
-* Hachinohe Institute of Technology, Obiraki, Myo, Hachinohe, 031 Japan

++ Department of Electronic Engineering, Faculty of Engineering,
Tohoku University, Aoba, Aramaki, Sendai, 980 Japan

ABSTRACT logic implementation by CCD's have been investiga-

ted [9-101.
A new design method of the compact residue In this paper a new design method of compact

arithmetic circuit using multiple-valued charge- residue arithmetic circuits using multiple-valued
coupled devices (CCD's) is proposed. The multiple- CCD's is proposed. A multiple-valued ring counter 9
valued ring counter for the residue arithmetic is for residue arithmetic circuits using CCD's is
designed by using the CCD's. Because the structure presented. The multiple-valued ring counter is
of the counter is very simple, it is effectively essentially an N-stages feedback shift register
used as the basic component to construct the residue operating such that only one of the memory elements
arithmetic circuit. The modulo-m addition is takes the logical values except 0. Some types of
performed by shifting the modulo-m multiple-valued the multiple-valued ring counter have been designed
ring counter, and the coefficient multiplication is (11-12]. In this paper, the implementation of a
done by converting the multiple-valued code between multiple-valued ring counter with compact hardware
the counters. The most important advantages of the is considered, because it can be easily implemented

- proposed adder and multiplier are the compact hard- by CCD's. By the use of multiple-valued CCD's the
ware and the uniform operating time, so that these number of cascade chains of the memory elements in
arithmetic circuits can be effectively employed for the counter can be significantly reduced. The
the pipelining digital signal processing system. multiple-valued ring counter is used as the basic

• Finally, it is demonstrated that the hardware component to construct the residue arithmetic
complexity of the digital filter constructed with circuit.
the quaternary logic CCD's can be reduced to 70% The residue adder and the residue coefficient
compared with the corresponding binary implementa- multiplier using the multiple-valued CCD ring
tion. cor-ter as a main component is also proposed.

The modulo-m addition is performed by means of
shifting the modulo-m multiple-valued ring counter.

I. INTRODUCTION On the other hand, the modulo-m coefficient multi-

plication is realized by the multiple-valued code
In the residue n.umber system, the operation of conversion between the multiplicand counter and the O

addition and multiplication can be performed very product counter. These residue adder and the
quickly because of the separability of operations residue multiplier can be implemented with the very
on each digit [1]. These residue arithmetic compact hardware, and the operations can be perfor-
circuits are usually implemented by storing arith- med in the uniform operating time, so that they can
metic tables in read only memories (ROM's) [2-4]. be effectively used as the basic building block for
Much memory is required in the implementation using the pipelining digital signal processing systems.
ROM's for the storage of the arithmetic tables so As an example, an n-th order non-recursive digital
that the complexity of the hardware is increased, filter is designed. It is made clear that the

On the other hand, ring counters are suitable hardware complexity of the digital filter construc-
for residue arithmetic because of its inherent ted by quaternary logic CCD's is reduced to 70%

* nature of circulation. We have presented a new compared with the corresponding binary implemen-
residue arithmetic circuit called pulse-train tation.
residue arithmetic circuit by the use of conven-
tional ring counters [5-6]. It has been made clear f. OVERVIEW OF THE RESIDUE NUMBER SYSTEM
that the number ol gates and memory celles in the
pulse-train residue arithmetic circuit can be In the residue number system (RNS), an integer 0
reduced to 1/100 of that for the equivahnt ROM. X is represented by N-tuples as

Charge-coupled devices (CCD's) can offer very (1)
simple charge storage and transfer with very dense X = (x0' xI ' ..... 'N1LS "or VLIstutre-781 ulil-vle

. LSI or VLSI structures [7-8]. Multiple-valued where x. is the remainder of X divided by the i-th
charge storage can he done in the CCD because it is I

. an analog device by ature. By u-ing these advan- modulus mi, and is denoted by
tages, multiple-valued memories and multiple-valued
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mi (2) 3.2 Implementation of the multiple-valued ring
If all values of m are mutually prime integers, counter

i aA multiple-valued ring counter is composed of

the dynamic range of X is N-stages of multiple-valued memory elements casca-

0 < X < M 1 (3) ded in the feedback shift register form as shown in
Fig. 2 (a). For the modulo-m arithmetic operation

N-1 the number of stages 1' is given by
where M = ia0m. The addition and the multiplica- N -Lm/pj (9)

tion can be done separately in each digit, which where LxJ denotes the smallest integer such that
are given by LXJ > x. The states of the memory elements are

X + Y = (x0 ® Y0, Xl ) Yl .... N-l N-l)  .4) assigned such that only one memory element stores
the value except 0. For an example, the state

X - Y = (x0®Y 0, xl1 ®y 'N-i(0 YN- )  
(5) assignment of the ternary counter in modulo-7 is

shown in Fig. 2 (b). Let the state of the counter
where andO are modulo-m i addition and multipli- Q = (q0, ql. . . .. , qN-

) , 
and let qx take the value

cation on each modulus, respectively, which are x + 1 except 0, where x + 1 E L. Then, the number
written by stored in the counter is expressed by

xi Y = Ixi + Yilm (6) Y = N-x + X. (10)

xiEOy i = lxi • Yim" (7)

Symbol circuit Loqic funct 10n
M . MULTIPLE-VALUED RING COUNTER 

USING CCD'S

3.1 Logic model for CCD's Addition ,l

Let the set of the logic value in the r-valued n
logic system be L - {0, 1, ... r-l1 and p- r-l. Fi4 4 00 

°
- i*1

A CCD acts as a shift register storing analog or 0o Q IJE g
multiple-valued logic informations. Let us consi- inn-n2
der the r-valued logic CCD's including binary logic. n-2 n-2,3....
A charge packet Q of the CCD can be written as

Q=nQE (n = 0,, • r-l) (8) Contant

where QE is a unity charge packet. -o Q. L

The set of logic models for CCD's proposed by .0
Kerkhoff [13] will be used in the following system L-2__-_,__....

design, because this set of logic operators is r- I C
functionally complete, namely any multiple-valued Fixed Overflow Qi I.- -wo Q,,-C*Q' kI-

logic function can be implemented by using the (Q.- C C-...
logic operators. In Fig. I the set of logic ope- ( ..-kl"..

rators is shown, which consists of addition,const- i  . 1 
°i

* 0 02 Qllk lCk" C..k'lCk "

ant, fixed overflow and inhibit. A simple delay I or L...,-....-
element is included in Fig. 1 as a logic operator, r-2, c.l1, c2 .2 -0. 1..

because it is most frequently used in the counter. +0
The detailed explanation of these operators is Inhibit

found in Reference [13]. Signals in the logic CM Q."

operators is "charge", whereby there are some rest- il Oin -
ing of signal lines should be permitted only at the O Q _"rictions such that fan-outs of a signal and cross- 

.. Lplaces where the logic level can be regenerated. CO n
5  J

The common clock pulse is fed to each operators so c ,,.2,2... n

that logic operations are performed with synchroni- Od1 dn n - 1,2....

zing to the clock pulse in the pipelining manner. n-l +Od.
In the following discussion, let us introduce ._-___-.__-__".___

"clock control". By the use of clock control, the Delay

clock pulse applied to the operator can be control- - . "-.'--.0-'
led by the output of the other operators. By O . Q. o I D
means of the clock control the counter can be easi- -
ly realized by the CCD shift register. Further-

more, the single output of each operator can be fed
to the input of the other operators controlled by QI. .I.h- Q "0 Q..

the different clock pulses, namely many fan-outs of "-hr "-'-"
each operator become available.

Fig. 1 CCD logic operators proposed by Kerkhoff

147

.. . . ... . . . . . ..

..... .... .... .... .... .... ....



The following notation is also used for the expre- In the multiple-valued ring counter proposed
ssion of Y: here, the number of delay elements can be greatly

Y (x, X). (11) reduced compared with the corresponding binary
ones.

The waveform of the input and output signals of
the counter is shown in Fig. 2 (c), which is expre- IV. RESIDUE ADDER AND RESIDUE COEFFICIENT
ssed by MULTIPLIER

A(kT) - 0 if k 4 X Consider the design of an adder and a coeffici-

11 if k = X (12) ent multiplier on each digit using the multiple-valued ring counters as main components. "..
where A(kT) is the input and output at the time kT, ig ountersin cments
and X is the number expressed by the signal. Fig. 5 shows the residue adder which consists of

The shift operation of the sin by a difference counter and a buffer counter. The
difference counter is designed as a bilateral shift -.

q= qi-i register so as to perform the subtraction, A - B.

The operation of the adder is shown in Fig. 6 in
go' 

=  qN-1 if qN-1 = 0 the case of A = 5, B = 2 and m = 7, namely the case
4 0 (13) of A > B. First, the difference counter is reset

Iif qN-1 by the- clock pulse 0 . From input signals RA and
!p

where qi represents the next state of qi" The HB are produced, respectively. The difference,

excitation of q; is performed by the feedback gate

FG in Fig. 2 (a). The counter must be reset to S
*the initial state Q0= (1, 0........ 0) when the ()crutF

content in the counter becomes m as well as at the
initial timing. This reset condition is expressed p-R

by I p
qxfi p®

Ai(ktl I

x = ( p + 1 )N - m. (14) q, 0
A ternary ring counter constructed with CCD's Clock Generater

is shown in Fig. 3 (a). The operation of the
counter is illustrated in Fig. 3 (b). First of
all, the counter is reset to the initial state
(1, 0, ... , 0) by the clock pulse p. Next,

P t ; :0 : 3 4 5a
shifting is performed by the clock pulse Of until (- c

hib Tine chart OP :::,,

the arrival of the signal A(kt). The feedback
gate FG and the reset gate RG can be implemented
using CCD's as shown in Fig. 4. Fig. 3 Multiple-valued ring counter composed

To construct the shift control circuit MOS of CCD's-. --
devices may be preferable, since the circuit needs of'CCD-"
power to drive and MOS devices has good compatibi- ( h e e cu e- •lity wit a CCD.(a) Truth table of the (b) Circuit of the -- '.'
lity with a CCD. feed-back gate feed-back gate -

input output '."

(a) Model ofth
multiple -valued
ring counter 10 0 qoin

1121
X q0 q, q 2 q3  2 d[, t 0

(b) Code of the 0 1 0 0 0
number X 1 0 1 0 0 (c) Truth table of the

reset gate (d) circuit of the

200 1 0 reset gate

3 0 0 0 1 input output

4 2 0 0 0 q,_2  rp q
5. 0 2 00 0 0- rp S
6 0 0 2 00 o

1 0

(c Input/output 021
signol h 4 4 1 2

g. Multiple-valued ring counter Fig. 4 Feedback gate and the reset gate
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A-B can be obtained in the counter by applying the where X(kT) denotes the output at the operating
right shift pulse 0f in the period of HA = 1 and cycle of kT, and A((k-I)T) and B((k-l)T) denote

HB - 0. The content in the difference counter is the inputs at the previous cycle of kT.
On the other hand, the coefficient multiplica-t ransfered to the buffer counter at the timing 0p, tion can be done by the multiple-valued code con-

Then, the content in the buffer counter is trans- version between the multiplicand counter and the
mitted to the next stage in the next operating product counter. The code conversion is performed
cycle. Fig. 7 shows the operation in the case of by
A < B, in which A - B is obtained in the form of y,-y+
the complement by applying the left shift clock
pulse *r in the period of HA = 0 and HB 1 1, where I K.X Im (18)

the complement, X of a number X is defined by where X and ( y, Y ) denote the multiplicand and

X = m - X (15) the product, respectively. Eq. (18) implies that -
subtraction as the basic operation the value of y + 1 is set to the Y-th memory 0

By adapting subthe as te the operation element of the product counter. Table 1 shows theand by the use of the buffer counter, the operation multiplication table in the case of m = 7, K = 3.

of the addition can be finished in the time given mutiplier following the Tabl 1,
by Fig. 8 shows the multiplier following the Table 1,

which consists of the multiplicand counter, the

T = ( m + I ) T (16) product counter, the line exchanger and the level
converter. The code conversion is realized by the

where T represents the interval between each clock line exchanger and the level converter. The code
pulse. The operation of the adder is expressed by conversion is done at the final timing 4p after the S

-B((k-l)T)Im (17) multiplicand A is set to the multiplicand counter.

The content in the product counter is used in the

next operating cycle.
Since the voltage mode operation can be done in

F~r the control line of the inhibit operator [10], the
crossing over of the signal lines can be possible .

Shift putse in the line exchanger. S
generater The operating time of the multiplier is given by

Eq. (16) similarly as in the case of the adder.
Sig. f Difference The function of the multiplier is represented byA A>8 f Or Cou nter : ? :
S'g. FI .O X(kT) = I K-A((k-1)T) Im (19)

B IL1Buffer
MBuner where A((k-l)T) and X(kT) denote the input and the

output, respectively.
The adder and the multiplier presented here are

Output very compact and regularly constructed with uniform
delay time, so that they can be effectively employ-
ed as the basic building blocks for the pipelining,. -

Fig. 5 Adder digital signal processing system.

is) initial state of the (a) initialstiateof the 1000
difference counter difference counter

(b) signal A 1 0 1 2 3 4 (b) signaL A 1 1 4 5 "

(c) signal B (c) signal B

(d) HA WL~ . d HA

Ce) MIB (a) HB

Cf) NA-9B if) HAH9B

(q) HA.HB I (g) HAHB

( h ) s IF ( h i H f

(1) Hr I C) Or .1 . JLi 1 i .

( ihfference counter (j final stat, of the
C if na e ofnte difference counter "..

(k), 0(k) HPfl

Fig. 6 Operation of the adder A = 5, B = 2 Fig. 7 Operation of the adder A = 2, B = 5
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Sig. Multiplicand Counter

Table I Multiplication table A

the case of K - 3, m = 7 E f:E - q0o , q q 4 q q6"
Shit pulse---ZgeneraterI ._ _ "

Product Exc7ctnge

q0 q, q 2 q 3  M ..

0 10 0

1 0002

3 00 1 0L-"
2- 00 20Cnere
4 0 2 0 0 qloI  I  l L  

c12
L -t-  

q31 1 I -  
-

5 .0Product Counter5 0 1 0 0 I
6 2 000

Output

the case ot m=7, K=3

Fig. 8 Multiplier

V. APPLICATION TO DIGITAL FILTER

5.1nths sectfilter reaimplementation of determined by the product of all the moduli given

filter using the residue adder and the residue oe- by Eq. (3). Because of the separable nature of

ffilnt uiplher siusd. on eside the the residue arithmetic it is feasible to completelyffcientseparate a digital filter to the sub-filters corr-implementation of the n-th order non-recursive esponding to each modulus m. Therefore, thedigital filter which is represented by i .

y(kT) = x(kT) + bstructure of the digital filter becomes significan-
tly regular.

+ b 2x((k-2)T)

0 5.2 Evaluation of the hardware complexityIn Table 2, the numbers of operators required in
+ bnX((k-n)T) (20) the adder, the multiplier and the 2nd order non-

recursive digital filter with one modulus are shown
where x(kT) and y(kT) are the input and the output in the cases using binary, ternary and quaternary
of the digital filter at the time kT, respectively, logic CCD's. Only the number of main logic ope- .
According to Eq. (20) the digital filter can be rators constructing the system, which depends on
realized as shown in Fig. 9. The fractional coeff- the modulus m is considered. In order to evalua-
icients such as b_, b2, ... , and b are transform-
ed into the integer by multiplying a constant K, te the hardware complexity, the operator must be
because the residue number system defined over the weighted by the relative complexity factors. In
integer. The delay function is realized in the
adders and multipliers, so that none of delay
elements are used in the digital filter. 5

The operation of the digital filter can be per-
formed in the pipelining manner because all of the
adders and multipliers operate in the same opera- y'kT) y((k-2)T)
ting time. The sampling time of the digital filter 4-
takes only one operating time , i.e., T, so that the ".-
operating speed of the digital filter will be incr- -(Kbn) {Kb2) Kbi- -K
eased.

Since the basic building blocks used in the
digital filter are very compact and CCD's offer
very dense LSI or VLSI structure, the digital
filter may be completely implemented on a single ,"kT)

LSI chip
Fig. 9 shows the digital filter in each modulus.

The dynamic range of the digital filter, M is Fig. 9 n-th order non-recursive digital filter
S
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Reference [13], the relative cost factors have been [4] W. K. Jenkins, "Recent Advances in Residue Num-

also described, which are shown in Table 3. Let ber Techniques for Recursive Digital Filtering,
us take these factors as the relative complexity " IEEE Trans. Acoust., Speech, Signal Process-

factors for the logic operators. The weighted sum ing, vol. ASSP-27, pp. 19-32, Feb. 1979.

of the operators is shown in the right-most column [51 N. Tomabechi, "Residue Arithmetic Using Ring

of Table 2, it is found that the hardware complex- Counters and Its Error Correcting Circuit,"

ity of the digital filter constructed by the qua- IECE Japan Trans., vol. J64-D, pp. 545-546,

ternary logic CCD's can be reduced to 70% compared June, 1981.

with the corresponding binary implementation. [6] N. Tomabechi, M. Kameyama and T. Higuchi,
"Pules Rate Arithmetic Circuit Based on Residue

VI. CONCLUSION Number System and Its Application to Digital
Filter," IECE Japan Trans., vol. J65-D, Feb.

In this paper, a design method of compact 1982.
residue arithmetic circuits suitable for multiple- [7] C. H. Squin and M. F. Tompsett, Charge Transfer

valued CCD implementation has been presented. Devices, Academic Press, 1975.
These residue arithmetic circuits can be effective- [81 T. A. Zimmerman, R. A. Allen and R. W. Jacobs,
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cessing system, because of the reduction of the Solid-State Circuits, vol. SC-12, pp. 473-585,
hardware and the uniform operating time. An app- Oct. 1977.
lication to n-th order non-recursive digital filter [9] M. Yamada, K. Fujita, K. Nagasawa and Y. Gamou,
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tion. Valued Logic Charge-Coupled Devices," IEEE
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Table 2 Comparison of the hardware complexity

Table 3 Relative cost factors of CCD
Adder Multiplier logic operators

Addition Addition Constant Fixed Inhibit Delay

overflow

Binary 2. m m m m
BnAdition C stnt Fixed Inhibit Delay

Ternary a .a M - m overflow

T 2 1 4 6 2
Quaternar .66m .33m - m m

Digital filter

Adition Constant Inhibit Delay Total Weighted S
Sum

Binary 9. 3m 3m 3m 18. 42m

Ternary 4.5m 3m 3m 3m 13.5 33a-

Qu3ternarm 3 3 3, 3m 12m 300
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eTOLERANCE ANALYSIS AND RELATED MEASUREMENTS ON MVL-CCD'S

0 H.G. Kerkhoff, J. de Groot and A.C. Brombacher

Twente University of Technology, Department of Electrical Engineering
Solid-State Electronics Group

7500 AE Enschede, The Netherlands

__.__'_ a desired yield or marginal reliabilicy.

However, few papers have been published
zyi£ o , ztm oy a e regarding this subject. This is probably due to

"'JOP"QY'?f 2 the fact that until now only a small number of
o t-17, the m,,p zral r,/!Lb£litj relatively simple MVL-IC's have actually been

3.,,. "e ""q, '?er/,led. 1P t;Z'Z.r- realized. In addition, sufficient possibilities
V, ;1 ' in Z:' ( ate were available on PC-boards to adjust voltages or

" :" ,' ', ,.. : ' 2t...2 bu: z stat i~c a currents in order to compensate for tolerances of
Z"; y" 4,: t., ., 'm W n';l tlhe Monte a1lo parameters.

mc,, , ,i c ' i; c'ztual data oLtaned The influence of tolerances on the behaviour
fcr' . ?., futnNon an be of previously-designed MVL-1

2
L circuits has been,nd' 1'UratlonS, the investigated by Slob and Bos [i]. They performed 0

' o ;:,I _iu qn b)e in eot- a so-called worst-case tolerance analysis on a
** ,:e thod quaternary logic demultiplexer circuit and the

-o2 ,ys calculated tolerance behaviour turned out to be
X",' , ;, , Z "*:,! W used t& discouraging for this circuit. These tolerance

, " ' .problems stimulated the design of basic 1
2
L

transistor configurations which are less sensitive
to parameter tolerances [2].

1. Introduction Worst-case calculations on MVL-1
2
L circuits S

(a threshold gate and a full adder) have also been
In the design and implementation of multiple- made by Dao [31 and Friedman [4] respectively.

valued logic systems on a single silicon chip, Both concluded that the required tolerances for
dctailed knowledge about the influence of tolerances their circuits could be met by 1

2
L technology.

of process and bias parameters on the overall A different approach, which also incorporated
performance is of extreme importance. This results the ambient temperature as a variable, has been . . -
from the fact that with single-chip implementations used by Russell in the investigation of the
it is usually not posssible to adjust components tolerance behaviour of a ternary logic NMOS output Safterwards in contrast to systems realized with circuit [5]. He performed a deterministic worst-

le;s complex IC's on a PC-board. A poor tolerance case analysis of the output voltage of the circuit
and drift behaviour of a system can result in an by using a computer program for circuit analysis
unacceptable low manufacturing yield and marginal (SLICM). It was then verified that the next
reliability. On the other hand, the system might (digital) stage could be controlled by this output
require such a large number of logic-level voltage.
regenerators in order to guarantee a good
tolerance behaviour, that the advantage of using There is, however, one major drawback with
MVL devices in a specific application is seriously the above-mentioned approaches in the marginal
diminished or can even turn out to be a disadvan- analysis of MVL-IC's: it is not possible to
tage. incorperate probability-density functions (p.d.f.)

The tolerance analysis and synthesis of MVL of parameters or correlation coefficients between
circuits is evidently of vital importance. The parameter values. However, the parameter value
tolerance analysis is able to contribute to the p.d.f. and correlation coefficients are of special
improvement of the tolerance behaviour of basic importance in integrated circuits. Therefore the
transistor/gate configurations. In the tolerance previously obtained results do not seem to be very
synthesis, tolerance requirements can be assigned realistic and/or accurate.

to process and bias parameters in order to obtain

Except for a few publications concerning the
error rates in multiple-valued CCD memories [6, 7],

Research funded by the Foundation for Technical no papers have been published about the degradation
Research (STW), Grant TELOO.0095
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in performance of MVL-CCD's [8]. There are several the results are often too conservative and
reasons why tile actual output of an MVL-CCI) may uncertain, especially where nonlinear circuit
deviate from the required performance: behaviour (a change in sign of tile partial

derivatives ot the function with respect to the
- deviations resulting from aging (e.g. long- parameters) and many parameters are concerned.

term drift of parameter values) or different Correlations between parameters are moreover not 5
environmental conditions (e.g. temperature incorporated.
and radiation effects). Although tile sensitivities of some para-

meters of MVL-CCI) circuits (e.g. the successor
- deviations resulting from a high value offunction) are known 7, they have never beenthe charge-transfer ineff ic iency i: E6] due fucton ar knw.1-te aenvrbe

to surface states and/or short transfer applied in tolerance analysis; they were merely . "
used to investigate which parameter required

clock periods, special attention in a design. Initial deter-

- deviations caused by tolerances in process ministic worst-case calculations on the multi- S
and bias parameters, that primarily affect threshold CCD gate configurations show a serious
"yield" and in the second place drift- degradation in charge levels.
reliability.

The Monte Carlo tolerance simulation method
The first problem will not be discussed in this is a computer-implemented procedure in which a
paper as we shall assume normal environment system model is programmed and the outputs are
conditions and neglect drift. In general, MVL computed for a sequence of sample functions from
surface-CCD's will operate at such clock frequen- a stochastic input process [9, 10, I11. The pro-
Lies, that the inefficiency , per transfer will cedure is frequently used by IC manufacturers
range between I°/oo and I

0
/o. The deviations in because it mathematically simulates the production

the outputs of basic CCD gate configurations [8] process and its variations for many circuits. It is
as a result of tolerances in process and bias universally applicable to any network function,
parameter values, are assumed at present to exceed produces accurate results and is easy to use but
the above-mentioned values of L significantly, usually requires a large amount of CPU time.
Therefore, the inefficiency L will be neglected in A probability density function, together with the
the first instance. Hence, only the behaviour of mean and standard deviation values can be speci-
MVL-CCD's with respect to tolerances in process fied for each parameter in the system model.
and bias parameters will be treated. In order to Correlations between parameter values can also be
avoid the previously-mentioned restrictions in the incorporated. When the calculation of the output of
tolerance analysis methods as used for MVL-1

2
L and the system is repeated for a large number of times

NMOS circuits, a statistical, Monte Carlo tolerance and using the stochastic input variables, a histo-
analysis approach is chosen for applying to MVL- gram is obtained which is an approximation of the
CCD's. This method is discussed in section 2 and distribution of the output. The yield of the 5
subsequently applied to basic CCD gate contigu- circuit can then easily be calculated from this
rations in section 3 in which also the simulated distribution when the permitted tolerance of the
results are compared with actual measurements. In output is specified. As the accuracy of the result
section 4, the Monte Carlo method is used to is directly related to the number of calculation
predict the circuit behaviour of the predecessor runs, the amount of required computer time can he
[8] when tolerances are assigned to the process very high for complex system models.
and bias parameters. This simulated behaviour is - "
compared with measurement results. Finally, con- According to the formula which relates the number 0
clusions and suggestions for further research of computer runs to the accuracy [I0], this number
are given, should be at least a few thousand in order to

obtain a high accuracy. The large amount of
computer time required is the only major drawback

2. Tolerance analysis methods of the Monte Carlo tolerance analysis method.

Tolerance analysis involves the investigation The Monte Carlo procedure that we used to
of the influence of tolerances of parameter or investigate the tolerance behaviour of MVL-CCD's 0
component values on the total performance of a
circuit or system. Two different approaches have was implemented in the following way:
been suggested for tolerance analysis [9, 10]: - pseudorandom (uniformly distributed) numbers

the nonstatistical approach, which includes are generated by computer

the worst-case method - the numbers are transformed to pseidorandom

the statistical approach, of which the Monte numbers with a specified distribution,
Cal metod [11] is an example.eskewness, mean and standard deviation 5Carlo method Il] is an example. values which corres2ond to the actual

In the worst-case method, the extremes of a circuit circuit parameters 13]

performance are calculated with aid of the first - the mathematical relationship between. '
order sensitivity coefficient for each component input(s) and output(s) of the system is

or parameter involved and the corresponding programmed in the computer in terms of
maximum deviation from its nominal value. The process and bias parameters

required calculations are relatively simple, but S
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-the probability density function of the
output is obtained by repeating thle circuit
analysis of thle sys;tem for a large number
of times, where thle input variables are
obtained from the transformed pseudorandom

* numbers.

The Latter method has been applied to basic
CCII gate cantfiguratitons and the predecessor func-

- . ie'I is it can provide much more realistic and
ictoitec results thtan tile worst-case approach.

3. Tolerance atialysis applied
to C(CI gate configurations

* Any MVL juniction can he imp lemented in CCD
* thlno logy With tile aid of four has ic CCI) gate

con1figurations . 8 _ tHence, thle tolerance behaviour
ofi thle constant, multithirecho1l d and ihbit confIi-
gitrat ioais will cant r i hte to) the degenerat itn of
charge levelis in a systerm and therefore these
cat igur at ions will bc discussed inl detailints

* section.

inl order to perform a tolerance analysis, it
is necessary tu know tile distributions of process
and bias paramteters as well as thle equat ions that
descrilte thle system hehiaviour. In table I, the 200 m

ian (..) anid standard deviation ( -) values of thleS
(-type siitan) suhstrate concentration N1A, oxide -P I, Z" t i

tickness to and the f iatlband voltages VEB I and rc u~i.:~ t2 .

V1 Fb 6 ' ntder thle two diifeuretit polysilIicon gates Z., 1-'..i

ir 1listd. Tedsrutisatthu paratneturs
ae assumed to be ga1ussian. In1 thle physical models of CCi) gate cOnittIgo-

rat ions, gate areas and power-supply vol taKL
lel I: Mean and standard deviation va iue, of the appear. In the calculation of thle eflIectLive gate

process parameters used areas, effects like underetching and underd i fus ion
have been taken in to ac count . Althtough the design

ol anl ac:curate and stabilized c lock generator and
Ititc power sutpp ly for NVI-CCD'5 inl compat ibl h Ia (

technology has atlready been accomp Iishied (poweI.r

NA C' .3 1 I31 I' i.1c)" supply variatiton ratiofa - 10' -15,, thle

tolerances of vol tages are at present set to

tax C-) 1100 32.5' (=2 '). The distributions ire assucted tv he i

gaussian. Pos i tive volt ages are assumed to0 he
'OCV) -1.1 0.0 comTpletely' correlated with cach )ther, whtile the

v~~2 v -i~e ~ aebulk voltage Vbotk is CQ71iipletelv uncirrelate'd.

_________________ ____________ ____________The CCI) gate cotif iglirit ion miadel s to h

discussed, are :iilI baIsedL I'n thet lane-dianites ional )
calculat ion of tlt, suirfice pat entia :,i under cacit

It is emtphtasized that these parameters are specified . :' ;zgate. Tis enables thn introduct ion Ot

iO tin a certain water. Especially the mean values catre at ions and systeittic sifts it parameteirs

ol tile t lat hand voilages dIiffer front wafer to wafer. (eg ftthn voaes itI attsmpe
Usuill;.', lusters at corrutated dopinig and oxide and therefore Iong' ca ulit..Ile iclat lotshtip

tiliL.11- ktie. VS aesWill occutr an silicon waters 1- t buhtween thte suratce potential :stindir i sur a~ el

Ili t~n li:-,t ttstattce, however, substrate dapings, "Cgaead theargae Qro N Gai I~ .'il ltg
oX i 1eL th i knes s unttitr aindh fIa thand vo Ittages of VhulIk,-~ stia Aia 

0
,N, t0 , itid 'li is w 

11

ld ~l. 1tit gatLes w i I I he is sumed t o be itneorre I ted. kntown 6 intl g'ivenl by:

ilii Vililes of thet I lathand voltages were calculated I' I'-2
I rots stat i t:V ind thresholId voltrage measurements 1 -;

p1ter i rved ont te tes t ehti t shown i n f ig . I . Thie t.
ip thu I i ncurl- .1 rtes two bas ic CCD gate cuntfigt- V k' V - + 11

raiti i)i:as wel a s read- ini and read-ou t s truc tures. I C hitt I b k Hl

ile . hip is matutitured tits lot the douible poly- qi N (tL 1
it--level sirf e-.cII IrneLSS and measures V Ic ox

-,by 2 0mi it x)
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The hybrid drawing of the CCD gate configu- potential of the adjacent gates 0 SF IJ LSE I).
ration performing the generation of a conotant in late g is equivalent to gate 3 in fig. 2 and
the charge domain (in this example Qo = < 3 >) is the adjacent gate involved is gate 2. The output
shown in fig. 2. charge Qo of the constant configuration is

equivalent to C (eq. (2)). Hence Q. is known in
terms of process and bias parameters. •

14 A Monte Carlo analysis was carried out for

the constant < 3> configuration using the
equations (I) and (2) and the previously given
process and bias parameter data. The result in the
form of a histogram is shown in fig. 3.

2 - C0NSTAN'31

4 4

z.iI

IL

U1 0  ..

(I-

Vin =10V

14

!!bria ,bezwZz3 o t;:c ;atc oonJ'-,juration
perrmli ij gh e Jc?2craotor, uf a constant I

i) ro. t Ion j' ti e I:tc -OnfZi ;rat on ,
I) .rt, . .a.)-) it /010i,2UlitO : *

The bias voltages which are used in the model of t

the constant gate configuration have also been
listed. The complete operation of this structure '
and the configurations to be discussed have
already been explained in detail in another

publication [16].
Besides the tolerance data regarding process The output charge Q. is plotted along the hori, /ntal

and bias parameters, it is also required to provide axis and the numher of occurences along the
the models that relate the input(s) and output(s) vertical axis. The number of computer runs was
of the gate configurations in terms of these
parameters. A very important design variable in 0,000 and the total CPU time 6 seconds.

digital CCD's is the charge-handling capacity C The distribution of Qo in fig. 3 is gaussian
under a gate labelled g. For n-channel surface- and the mean and standard deviation values areunder ahis g pate ty abl gonn el surf: respectively 0.891 pC and 0.055 pC. It is als,,
CC's, this capacity is given by [171: possible from the histogram in fig. 3, to

calculate the yield of gate configurations whi, ."

(C=A . --°ox ( ) "r+F(2) meet d-,-ired tolerance requirements. As an example,
g tog S o 1F SE SF- SE] the yield was calculated for configurations ol

r g which the tolerance of Qot is less ,r equal t, 0
where A, txg and Vo1, denote respectively the (Y = 61-).

effective area, oxide thickness and a material
constant (eq. (Ic)) of gate g. The surface poten- The constant gate configuration has been
tia1 'SE is the potential under gate g in the incorporated in the test chip of fig. I. Quasi-
absence of -harge and 'SF the lowest) surface static current measurements at a clock frequenh

0
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of 100 kHz showed a mean and standard deviation A representation for Q0 1 and Q.2 similar
value of Qo of respectively 0.903 pC and 0.022 pC. to the one shown in fig. 3 is awkward as the
The difference in calculated and measured mean outputs are dependent on the input charge Qi"
values is probably caused by charge inefficiency Therefore, mean and standard deviation values are
and/or a small difference in the values of the abstracted from the distributions of Q0 1 and Q.2
actual flatband voltages and the ones used in the as function of Qi. The results are shown in l
model. As correlations between process parameters fig. 5a and 5b together with the actual measure-
of nearby gates have been neglected in first ment results.
instance, the calculated standard deviation values
are expected to be always somewhat larger than
the measured values.

MUL r i THRFSHOLO .'•
The hybrid drawing of the gate configuration LE PERI MCN rS

performing the muitithrcoshn14 operation in the o

charge domain (in this example C1 = <I > and C 2 = ODjNrF-CA LO

< 3>) is shown in figure 4, together with the
voltages involved. The circuit is discussed in

detail i. -6].

. C R. .. " I= I" °=

T T3

00

...Io. -V

0V0 0-- 3 40 0 60 a 80
0 (PCi )0 0

Fig. 5a Monte Carlo simulation and actual
measurement results of the output
QoI of the multitreshold configuration

Fig•4 iyiFrid dr<a;'ing of the gate confi.7uration ( 1 >, C2 = >) versus Qin.
rj r jf', r rm :n < 2 a u l t i t h r e s h o l d o r, t i o n ° <->-2 3-v" --i"

n t;e hzrje domain For the sake of clarity, the standard deviation .

'i) oro e-se;xt on o" the qate configuration values have only been plotted for a limited 0
b) czurJI 0 [otential in lateral direction number of points. The number of computer runs

durin! Cverflow) of cliarge was 12,000 and the total CPU time 76 seconds.
Quasi-static current measurements at a clock

The relationship between the input charge Qi and frequency of 100 kHz were carried out on the

the outputs Qom (m= 1,2,..) of the generalized multithreshold configuration which has been

" multithreshold gate configuration is given by incorporated in the test chip of fig. 1. As shown

[8, 16 ] in fig. 5a, the measured values of Q0 1 are shifted

slightly in the vertical direction with respect tor r M m F the calculated values. This is probably caused by a
Ck m IkCk-Cm X Ck mixture of effects, such as slightly different

QiQ=Cm l +(Qik C .C)Q
k  

(3) actual flat band voltages, dark currents and theQ"m= CM" Qi ( I- C k+ Cm). (3)
=I influence of charge inefficiency. The shift of

the measured values of Qo2 in the horizontal axis
It is obvious from eq. (3), that the charge- with respect to the calculated values is probab-
handling capacities Ck (k=1,2,..m) determine which ly due to the small (measured) charge-handling
specific multithreshold operation is performed. capacity of C I. As fig. 5 shows, the measured mean
The expression for Ck can be obtained from eq. (I) and standard deviation values fall within the
and (2). The input and outputs are now again values of the Monte Carlo simulations. For the
related to each other in terms of process and bias difference between the calculated and measured " .-

parameters. The Monte Carlo analysis was carried standard deviation values, the same comments hold
out for the multithreshold gate configuration as given for the constant generator. " -

(m= I and 2 and C =< I >, C2 =< 3 >) using table I
and the equations (I), (2) and (3). 5
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MULTI THRESHOLD

0 EXPER I MENTS C)FrONT-CARLO 0

C)0

Fi.6 c)cross oetion of the control part
I~d) corresponding surface potential in

.0 20 3 0 0 0 o 90 lateral direction.
0 -(PC)

The values Of the dc voltages and reset pulse
Fig. 5b Monte Carlo simulation and actual involved in the tolerance analysis as well as the

measurement results of the output floating gate sesiivt d Vfg F12] are listed
o2versus Qin. d Qc

in fig. 6. A detailed explanation of, this gate
The gate configuration performing the configuration is given in referenc e [6] . A close

inhibit operation in the charge domain consists of look at fig. 6c, d and lig. 4 shows that the
a sensing and a contrcl part. The hybrid drawings control structure is almost identical to the
of these parts are shown in fig. 6a, b and 6c, d previoasly-discussed multithreshold gate <onfigu-
respectively. ration. The difference lies in the status of

(barrier) gate 3, which is electrically connected -.-

with gates 7b and diffused region 9 (fig. 6a, b,

* ,, ,,c, d). In contrast to the multithreshold gate
.configuration, in which a fixed bias voltage is

S applied to gate 3, the potential Vfg depends on the
~~7 i l~ value of Qc. Hence, the relations hip between Vfg

. (or the corresponding surface potential under 0
gate 3) and Qc has to be found in terms of process
and bias parameters. This is, however, a complex

vproblem.

* When the (shielded) reset MOS transistor
* (9, 10, 11, 12) is switched off, two shifts of
* ~ o L L1~ ~Vfg from the reset potential DC2 (applied to

drain 12 of the MOST) will occur:

-a shift (Viny) in Vf as result of inversion
charge of the re T which is independent
of the control charge Qc[ d Vfg 1 a euto

a shift Qc in Vfg a euto
-ashftd Qc Jl

Fig. 6 Hybrid drawingj of the sensing and control tecnrlcag c

part of the gate configuration performing Hence,' the floating-gate voltage Vfg can be
the inhibit operation in the charge domain written as [18]:

a) cross-section of the sensing part dV
b) corresponding surface potential in v DC V +. (4)

lateral direction fg 2 direco + (
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S-In order to avoid the influence of tolerances on
the blocking behaviour of the inhibit configuration,

the floating-gate swing [ Vfg . Q is usually Iw°"B't

larger than strictly required for proper operation. 0DC-O 5

The voltage swing Vin v is a function of the r_ a 30
dimensions of the reset MOS transistor, Vsh, reset
pulse r, its fall-off time and the total floating- I +C0 45"

gate capacitance Cfg with respect to the substrate
[18]. The latter consists of the total oxide and
depletion capacitances of the sensing and barrier
gates and a (parasitic) rest capacitance Cr S oFV

The related floating-gate sensitivity
d Vfg for a simple floating gate is given by

[,, 12, 17, 18]:

d Vfg Coxsd Qs (5)
d• C s AsCds Coxs 

+ 
Cr Cds (--)

where Coxs, Cd and As denote respectively the
oxide .nd depletion capacitance and the area of
the sensing gate.

The relationship between Qi, Qs, Qd and the
well capacity C, under gate 2 (fig. 6c,d) in an oo oo ,o
inhibit configuration is (ideally) given by:

Qi CI L Qi Fig. 7 a) Monte Carlo simulation of the output
Qs if (6a) charge Q8 of the inhibit gate . .

0 C1 =0 onfiguration as function of ki with

0 C > QiQc as parameter.

Qd- if (6b)
Qi C = 0

The charge-handling capacity C1 is dependent on
Qc, through eq. (4) of the potential Vfg and can be I,,;,•

calculated by using eq. (1) and (2). Hence, Qs and or 0 5

Qd as function of Qi and Qc are known in terms ofprocess and bias parameters. For the inhibit ~c- 0 1, -1i-'.

"'' configuration in which a floating diffusion struc-
ture L16] is incorporated, the same procedure can
be followed.

The Monte Carlo tolerance analysis was 
'- .applied to the inhibit configuration of fig. 6 and S

the results are shown in fig. 7. The outputs Qs ! V

and Qd are plotted as function of Qi with Qc as
parameter in fig. 7a and 7b respectively. The
number of computer runs was 20,000 and the CPU
time 3 minutes and 30 seconds. A stand-alone,
standardized inhibit configuration as shown in
fig. 6 has not been incorporated yet on a test
chip and therefore no direct measurement results S
are available.

The switching behaviour of the inhibit confi-
guration as function of Qc can be clearly recognized
in fig. 7. The control charge Qc is increased from
0 to 0.45 pC in discrete steps of 0.15 pC. When the ... *o D A . .. A. .. ,"
value of Qc lies between 0 and 0.3 pC, the inhibit 0 '
configuration operates as a projrumatLe nrltK-
t.~to.' lU [87. The standard deviation values are
high in this operating range, as can be seen in ' I) Montc Carlo cimulatirn of the c .ut
fig. 7. It illustrates why this operationhas a high c (Ir:'C d as no t on of Qji" t;--
cost factor [8] and is usually avoided in MVL-CCD's. as parameter.

.-. . . . . . . ..-
*. .-..- ' .



The tolerance analysis of MVL-CCD functions The (Pascal based) computer programs
developed for the (Monte Carlo) tolerance analysis

In the past, several methods have been developed to of basic CCD gate configurations have been combined
decompose any MVL function into basic CCD gate and extended in order to quickly simulate the
configurations [8]. A simple example ot a decompo- tolerance behaviour of multiple-valued logic CCD
sition scheme is seen in fig. 8. functions starting from the decomposition schemes.

The distributions of charges at each point of the
decomposition scheme can be recalled, which is
important in order to determine the optimum

C30 location of logic-level regenerators. This (inter- - .
3 active) computer program was applied to the

predecessor circuit and the results are seen in
o. fig. 10.

GO PREDECESSOR
MMONTE-CARLO

oDEXPERIMENTS
Qd l  

PRED CX)

a.--

j'oE :r r "n.c~bcccU prcl ' ol~r0

It is the scheme of the circuit which performs the
predecessor function in the charge domain in radix
four. A photomicrograph of the actual circuit I
layout is shown in fig. 9.

oa ___ __ -- I I .- •",

0.00 0. 1 0 40 0 60 0 80

0 IN (PC)

.k~n .~rt . ... ..

The input charge Qi is plotted along the horizontal

axis and the mean and standard deviation values of

tile output charge Q0 along the vertical axis,
together with the measured results. The number of
computer runs was 12,000 and the required CPU time

Tile input and output signals of a complete
CCD operate in the voltage domain. A photograph
of the input and output voltages of the predecessor
circuit, working at a clock frequency of 50 kllz,

- is seen in fig. II. Because equal flat band

40 cm voltages were assumed for the first and second
poly silicon gates during the design of the circuit,

rc im :.p ,, * , i the gate voltage Vin (fig. 2) of the constant - 3 >
,r'o,0j Y;_ . . gate configuration (fig. 8) has been increased in

•i 'oat. fig. II to compensate for the resulting effects.
Tile occupied chip area is less than 0.01 

2 Using The total delay between input and output voltage . .
The ocuied hip resis, lessthan0.0 in usin is two clock-pulse periods. The influence of surface

0 ..m minimum dimensions.
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In a similar way as discussed for the
predecessor circuit, the tolerance behaviour and
associated yield at each point of any MVL-CCD
circuit or system can be investigated by using

a) this extended Monte Carlo tolerance analysis
computer program. -

5. Conclusions

The tolerance behaviour of basic CCD gate

configurations has been investigated by means of
* - the Monte Carlo tolerance analysis method. In can

be used to improve the behaviour of these configu-
rations. The calculated results have been compared
with measurement data. Deviations in flat band
voltages under first and second poly silicon

gates and the presence of dark currents and charge-
transfer inefficiencies are suspected to contribute

Fig. 11 input and output signals of the to the differences between calculated and measured
quaternary logic predecessor circuit values.
(fe = 50 kHz) A computer program was developed to

a) quaternary logic input signal calculate the tolerance behaviour of MVL-CCD .
b) out~ut f nal of the prdecessor functions and systems from the decompositiont[ <gnal of the pedecsod r schemes with little effort. The re,,ults can be

used to locate the positions of lcgic-level

states on the behaviour of the predecessor is regenerators in an MVL system. It was found that
clearly seen in fig. l1b. In order to investigate differences in flat band voltages play an importantthe relationship between the charges in fig. 10 role in the logic behaviour of MVL-CCD's. The

and the input and output voltages of the (non-com- influence of dark currents, surface states and

pensated) predecessor circuit, the behaviour of speed limiting efforts on the overall logic S
the read-in and read-out structures must be behaviour of MVL-CCD's cannot be neglected and
accurately known. These structures have been therefore the system models should be extended

incorporated for this purpose in the test chip as in the near future to incorporate their effects. --
shown in fig. I. The measured mean and standard
deviation values of the sensitivities of the Acknowledgements
read-in circuit are 0.203 pC/V and 0.004 pC/V and
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. TABULAR METHODS FOR THE DESIGN OF CCD NJLTIPLE-VALUED CIRCUITS

Joo-kang Lee and Jon T. Butler

Department of Electrical Engineering and Computer Science
Northwestern University

Evanston, IL 60201

ABSTRACT In this paper, an improved version of the
tabular technique [3,41 is presented, which pro-

A tabular method for the design of multiple- duces lower cost realizations. Also, a universal

valued CCD circuits is introduced which produces cost table approach is described which produces

less expensive realizations with a significantly even lower cost realizations. These techniques are

smaller table than a method proposed by Robroek [41 compared on the basis of the average cost of the

and Kerkhoff and Robroek [3]. In addition, a realizations produced and on algorithm complexity.

universal cost table method is shown which produces Additionally, a programmable circuit is introduced 0
even less expensive realizations, but which has a and compared with the above techniques. Although

considerably longer table. Further, a flexible CCD the discussion will concentrate on one-input

circuit is shown which produces any unary function functions, the synthesis can be extended to n-input

by a simple adjustment of voltage levels, functions for n > I in a straightforward way.

I. INTRODUCTION II. BACKGROUND - -

In multiple-valued CCD circuits, logic levels Fig. I shows four basic operations which are

are represented by quantities of charge. Opera- the basis of the two synthesis techniques proposed

tions, such as charge addition and charge overflow, here. These operations are the set of five

can be combined to form combinational logic described in [1,21 less the linear programmable

devices. Because preservation of a logic level overflow. This has been omitted, as in [31,

does not depend on a flow of charge, as in T
2
1. and because of its high relative cost. The set shown

1
2
L technologies, very little power Is consumed, in Fig. I is functionally complete [11; any

As a result, CCD is well suited to high density 4-valued function can be ralized from this set.

VLSI implementation. Problems such as low speed The ncrition here used here is identical to that

and logic level deterioration do exist and remain used in [31:
to be solved. In spite of this, multiple-valued
CCD technology is an area of considerable interest. 0e[ = l if 0 4 a

0 otherwise

In a pioneering paper, Kerkhoff and Tervoert
[11 described the implementation of a set of 4- 0] = {1 if 0 > a
valued CCD circuits which comprise a logically otherwise

complete set of gates. The sensitivity of such
gates to manufacturing imperfections and power [1a , l {l if a < 0 < .

supply fluctuations, was described in Kerkhoff, 0 otherwise

Tervoert, and Tilmans [21. CCD technology has now
matured to the point here logic design techniques The synthesis technique proposed in this paper

have Me9, give, careful study. InKerkhoff and is presented in more detail in Lee [91. It
obroeh r 31, synthesis tecnnques forother techno- consists of the successive decomposition of a given
logies were adapted to CCD. Similarly, Ishizuka function f(x) into restfunctions which in turn may
[51 has considered the synthesis of unary CCD be further decomposed. The process continues until
circuits using multithreshold design techniques. A a restfunction occurs which appears in the table.
synthesis technique expressly for one-input For example, Fig. 2 shows the binary tree of an
4-valued CCD circuits was presented in (3] and, in example decomposition. Here, f(x) is divided into

greater detail, in Robroek [4]. It is based on the restfunctions R (x) and R,(x), neither of which are
decomposition of a given function into subfunc- in the table.

1 
However, R (x) can he divided into

tions, which, in turn, are realized from a set of two functions, S (x) and k (x), both of which are S
four basic logic operations. A cost is associated in tile table. Tus, the tiee terminates at Sl(x)
with each basic operation that is based on fabrica- and S Cx). The function at a parent node is the
tion complexity. For example, a basic operation sum o functions at the two daughter nodes (using

which occupies a large area tends to have a high the addition operation In Fig. 1). Therefore,
cost. The synthesis technique produces realiza- summing the functions S (x), S Wx S x),
tions with small cost. Unlike previous algebraic and Ss(x ) in Fig. 2, produxces fix). ,."
techniques [6,7,81, this technique is tabular. 5
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dl dn

Figure 1. Four Basic Operations in 4-Valued OCD.

Definition: The transition count (TC) of a mixed
f(x) function is the number of times the trend in output -

logic values changes from decreasing to increasing

or vice versa plus I if the function is initially
R )X) R W decreasing.

In general, the cost of an increasing function
R (x) is less than that of a decreasing function, which

S1(X) S2(x) S3 x) in turn, is less than that of a mixed function.
Increasing functions require fixed overflows only, . O

S4(x) S5(x) plus perhaps an adder. Decreasing functions

require, in addition, inhibit circuits. Within the
Figure 2. Example of the Decomposition of a set of mixed functions, those with a higher TC

Function f(x) Into Five Cost Table generally, have a higher cost because of the
Functions. additional inhibits needed for each transition.

This can be seen in the preview of the synthesis
It is convenient to represent a one-variable technique shown in Table I on the next page.

4-valued function as a 4-tuple <x ,x ,x2 ,x >, where
0, 1, 2, and 3 map to x , x x2 anI x , re- The number of increasing, decreasing, and
spectively. There are three 2ypei of one-variable mixed m-valued unary functions can be calculated as
functions, follows. Consider first the enumeration of

increasing functions. Rather than counting such
Definition: A function <x ,x ,x ,x > is an functions directly, we prefer to establish
a-increasing (s-decreasing) f~agioi i? and only one-to-one correspondence with sequences of values
if x0 4 x1 1 x 2  x (x ) x ) x > x ); otherwise whose number is determined in a straightforward S
it is an 2m ted0  fm4ctio., ahere U - way.
Maxlx0 x l.x 2,x3 - MInjxox l x2,x3 I.

An increasing function f has the form f - <f0'
For example, <0,0,2,3>, <3,2,0,0>, and <0,2,3,0> f f > where f f Appending 0
represent 3-increasing, 3-decreasing, and 3-mixed te sequencem-, I ..... 1-1nd rearranging in
functions, respectively. Note that the four con- increasing order, produces an ordered sequence of
stant functions are each 0-increasing and length 2m, where every value, 0, 1, ... m-1,
0-decreasing. occurs at least once. Let F denote the set of

M
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Example 1:

Function TC Type Cost Decomposition Composition

(adders are not shown)

<0,0,2,3> 0 increasing 10 <0,0,1,1> , <0,0,1,2> 2 fixed overflows

<3,2,0,0> 1 decreasing 20 <2,2,0,0>, <1,0,0,0> 1 fixed overflow & 2 inhibits

<0,2,3,0> 1 mixed 22 <0,1,1,0> ,<0,1,2,0> 2 fixed overflows & 2 inhibits

<0,2,0,3> 2 mixed 29 <0,0,0,1> , <0,2,0,2> 3 fixed overflows & 2 inhibits

<2,0,3,0> 3 mixed 38 <2,0,0,0> , <0,0,2,0> , <0,0,1,0> 2 fixed overflows & 4 inhibit

Table I. Results of the Synthesis Technique on Example Functions

n-valued increasing functions, and let S denote (smaller), unless a cost table function would
the set of ordered sequences described

m 
above, otherwise be obtained. For example, under this

then, F 4 Sm. conversely, for a given sequence principle, 6-valued function <1,0,3,2,5,4> would be

S eliminating one copy of each 1, for 0 4 1 < divided into two functions containing O's, I's, S.
m f, yields a distinct increasing function in Fm. 2's, and 3's, while <4,5,4,4,5,4> would be divided
Thus, Sm 4 Fm,and we have Fm - Sm. into a function containing O's and l's and

<4,4,4,4,4,4>, since the latter is a low-cost table
An increasing sequence in S can be specified function, and

as a set of 2m positions separateg into m groups by
m-I dividers. The dividers mark the transition 3. the functions r and r2 should be chosen to
from i to i+l, for 0 4i m-2. Since there are 2m minimize the total kumber of component functions.
- I spaces between the 2m positions, S - Dividing the logic values equally among rI and r2
C(2m-1, m-1), where C(n,r) is the number

m 
of tends to do this.

combinations of n things taken r at a time. Thus,
the number of increasing functions Ninc is given as

ncl. THE (OST TABLE
N =i C(2m-1, i-i). (1)
inc The basis for the technique reported in

Applying Sterling's approximation yields, Kerkhoff and Robroek [31 and Robroek [4] is a table
of 45 four-valued one-variable functions. 5

N = 4
m 

/ 2(, m)
1
1
2
, (2) Associated with each is a cost which is the sum

inc total of the costs of the basic operations that
when m is large. (2) is also reasonably accurate make up the function. Such a table is called a
for m as small as 4. cost table. In this section, we introduce a cost

table of only 24 functions and show that the
The set of decreasing functions are built up in functions produced have a lower cost, on the

an analagous way, and we have average, than that of (3,41.

N = Common to both the cost table of (4] and the
one presented here are the four unit functions,

Since the total number of unary functions is m
m
, <1,0,0,0>, <0,1,0,0>, <0,0,1,0>, and <0,0,0,1>.

the fraction which are either increasing or From these, all 256 one-variable functions can be
decreasing, synthesized. Thus, a cost table of size four is

sufficient for the realization of all functions.
(4/m)

m 
/ 2(n m)

1 2
, However, target functions synthesized from this

table will be quite costly since many unit
becomes vanishingly small as m approaches infinity, functions will be required. The addition of

. However, for m - 4, the fraction of functions which functions to the table which are realized more. -
are either increasing or decreasing is a efficiently by other combinations of basic
substantial percentage, 25%. operations results in more efficient realizations

of still more functions. Ultimately, one can have
Consider now the synthesis technique. Three a table of 256 functions, in which case the

principles drive the decomposition. At each step, synthesis of a one-variable function f consists of _
where a function f is divided into two restfunction just looking for f in the table. The latter is a
r, and r2; universal cost table. This larger table produces

the lowest cost realizations of unary functions,
I. the TC of both r and r should be less than (or but it is considerably longer than either of the
at most equal to) that of i, other two tables described here.

2. if f contains a 3 (or larger value), the For ease of representation, we adopt the nota-
corresponding values in rI and r2 should be 2 or 1 tion of 14] for the four basic operations:
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C(L) Constant L generation search produces the minimal cost realizations.

A(01,02,03 ) ; Addition of three input A de.Lcasing function which is not a constant
charges Q1. 02' and 03. function is handled in the same way except for

three functions <2,1,0,0>, <2,1,1,0>, and
I(Oi,OcOo) Inhibit where, 01, Qc' <3,2,1,0>, whose minimum realization involves

and 0 are the input, <2,0,0,0>. 0
contr

8
l, and output

charge respectively. For a mixed function f, the procedure is dif
ferent, depending on whether f has O's and where

F(OxCI,C2 ,C3 ,01,0 2 ,o3) ; Fixed overflow where Ox they are located.
is the input charge,
C, C2, and C3 are
oitonal well capaci- procedure DECOMPOSITION (f)
ties, and Q and 03

are optiona outputs. // f(x) is a target function to be synthesized. //

// M(x) is a multiple function. //
Shown below is the cost table of 24 functions. // R (x) is a restfunction, where i = 1,2, .... /

For each entry, both the function cost and its // T is the cost table. /
realization are shown. // C (x) is a function in the cost table. //

// I is the set of all increasing function. //
No. Function Cost Realization // D is the set of all decreasing function. I•

I I 1 1 1 1 C(l) I if f(x) E T then return
2 2 2 2 2 1 C(2) 2 if f(x)/2 c T them call MULTIPLE (f); return
3 3 3 3 3 1 C(3) 3 if f(x) E I them /f(x) is increasing function/
4 1 2 3 3 3 A(1,Q )4 If J{C (x) C (x) E I) IC (x) + C (x) -f(x)J
5 2 3 3 3 3 A(2,Ox) i t xist C (x) L (x ,hich are
6 0 0 0 1 4 F(Ox,,1,1,03) in I, such tha! they f rm f~x)/
7 0 0 4 F(Ox,0l,l, 2 ) 5 them choose lowest cost pair; return

S0 1 F(Ox,, 0 ) 6 else split f(x) into C (x) & M(x) such
9 0 0 1 2 4 FCOx,, 2 02 ) that C (x) c I and A(x)/2 c T;
10 0 1 2 2 4 F(Ox, 2 ,0 1) 7 call MLTIPLE (M); return

II 01 l2 6 F(O,1,1l,l,03); A(01,03)12 0 1 3 3 6 F(Ox,1,2, 0 ,2); A((2,0x) 8 if f(x) c D them /f(x) is decreasing function/

13 0 2 3 3 6 FCOx,10) AQ,x) 9 cs
14 1 0 0 0 7 1(•x,,Od) 10 :f(x) - <2,1,0,0>, <2,1,1,0>, or <3,2,1,0>:
15 2 0 0 0 7 1(2,Qx,Od) split f(x) into <2,0,0,0> & R(x) •

16 0 2 2 2 7 1(2,0,0) 11 call DECOMPOSITION (R); return
17 0 0 1 0 10 F(O , iC02,03,0d) 12 :x3 * 0: split f(x) into <x3,x3,x3,x3> &
18 0 1 0 0 10 F(oX ~ 1,0,); I(0,020 d  R(x);, -"

19 0 1 1 0 10 F(0x,Il 1I0,0); I(01,03,A) 13 call DECOMPOSITION (R); return
20 0 1 2 0 10 F(Ox, 2 1,0,o, ,; I(0,o 2,Od 14 :else: split f(x) into C (x) & C (x) such
21 1 1 0 0 11 F(OX,lI,,0 ); I(,O 2 ,) d 15 that C x), Cj(x) i D; return
22 1 1 1 0 11 FC II/0'0d) /there Are six decreasing functions
23 2 0 0 F(OX 1,0) 2,0,. ) to be candidates in T / 0
24 2 2 2 0 11 F(x, l,03) 1(

2
,03,0d) 16 end

T.*Ie II. Cost Table Used in the Synthesis / if f(x) is mixed function, then there are
Techniques several cases to be considered/

17 case
18 :x x Oor xx- 

=
-0:

IV. SYNTmIlSIS OF UNARY FUNCTIONS USING COST TABIK 19 if ]tCi(x), Ctx)} XCi~x) + C (x) - f(x)]
20 then return

The synthesis technique is described in ALGOL 21 else split f(x) into C (x) & the largest
in Table IIl. Although it appears to be compli- value of M(x) [M(0)/2 E TI;

cated, it is not. call MULTIPLE (M); return

T he co nstant functions < , , , > , <2 ,2 ,2 ,2> , 22 :x I  = 0 or x2  - :0 an x3 ) 2and <3,3,3,3> are synthesized trivially; each is in 23 if or >2 x2  2 t0

the cost table. 24 tien spli f xi into <6 2,0,2 & R(x);

25 call MULTIPLE (<0,2,0,2>);
An increasing function f which is not a con- 26 call DECOMPOSITION (R); return

stant function can be split into a pair of 27 else split f(x) into <x0 ,xl,0,O> &

functions C and Cj whose sum is f, where Ci and C <0,O,x ,x>; 0
are both In the cost table or one of Ci and C is 28 call DECOMPOSITION (<X0 ,xl 0,0>);
in the table and the other is a constant timis a 29 call DECOMPOSITION x,
function in the cost table. In either case, a return 9
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(procedure DECOMPOSITION continued) (procedure MULTIPLE continued)

30 :xO or x3 - 0: :else: call DECOMPOSITION (M/2);

31 ease attach an inhibit with its input

* 32 :fix) - <O,2,1,3>: of constant <2> at the end of

split f(x) Into <0,1,1,2> & <O,1,0,1>; the string(s); return

33 call DECOMPOSITION (<0,1,O,1>); return e n

34 :f(x) - <2,1,3,0> or <3,1,2,0>:
35 split f(x) Into <2,0,0,0> & R(x); end MULTIPLE
36 call DECOMPOSITION (R); return
37 :](Cx), C Cx)) rC1(x) + C1 (x) - f(x)l: Table Il1. Procedure DECOMPOSITION and MULTIPLE
38 cnoose lAwest cost paIr; return for the Cost Table Synthesis of

39 :3fC (x), M(x)} [M(x)/2 e T and Cj(x) + 4-Valued Unary Functions
M(d) - fix)l:

40 call MULTIPLE (M); return Procedure MVLTIPLE is called by DECOMPOSITION
41 :else: split f(x) into <x xi,xi,O > or to synthesize a given function which is a constant

<O,xxi,xi> &h that times a cost table function. For most functions,Mnxxx, xx = xi 0; the product is obtained by an inhibit at the end of

42 call DECOMPOSITIO8(R); return the string(s). However, function <0,0,0,2> and

43 end <0,0,2,2) are obtained by adding two identical step

functions, <0,0,0,1> and <0,0,1,1), respectively,

44 :else: /n this case, f(x) has no O/ since this produces a lower cost realization.

45 if x - 2
46 t~ien The total cost C{f} of a target function f is

47 case
49 :f(x) - <2,3,2,1>: split f(x) into v

<1,1,1,1> & R(x); C{f} - C{S + (v - 1)C{A),
49 call DECOMPOSITION (R); return 1-l
50 :f(x) - <2,3,2,3>: split f(x) into

<0,1,2,3> & R(x); where C{S ) is the cost of a cost table function •
51 call DECOMPOSITION (R); return (or a consdant times a cost table function) used in

52 :x ) 2, x 2, x > 2: split the realization of f, v is the number of such
53 f() into x2, 2 & R(x); functions, and (v - I)C{A) is the cost of adder.

54 call DECOMPOSITION; return
55 :else: split f(x) into the largest Consider how the algorithm proceeds for the

two valued Ci(x) iCix) Di following two examples:

& R(x);

5b call DECOMPOSITION (R); return Example 2: <1,2,3,0>
57 end

Because this is a mixed function with x - 0

58 else / x 1orx O -3/ line 30 of DECOMPOSITION is executed. -irthr, it
If <3,9,1,2> or 3,2,1,3) them corresponds to the case associated with line 37;

59 split f(x) into <3,2,0,0> & R(x); i.e. it is the sum of cost table functions. There
0 call DECOMPOSITION (R); return are only seven candidates (<1,O,0,0>, <0,O,1,0>,

61 if (Cr 
(
x) C4 (x)

)
[Ci(x)+C Cx) = f(x)] <0,1,0,0>, <0,1,1,0>, <0,1,2,0>, <1,1,0,0>, and

62 thel choo e lowest cost pair; <1,1,1,0>) in the cost table for which the target

return is the sum, and of these only the pair <0,1,2,0>
63 else split f(x) into <x.,x , >,x1 > and <1,1,1,0> sums to the function. Fig. 3 shows

& R(x) such tha
1  

the decomposition tree. The total cost is 23; 10 +
Minx 0, X19 x2 ' x3  x x ;  11 + 2. 0

<I192,3,0>
64 call DECOMPOSITION (R);return

65 end

end DECOMPOSITION <0,1,2,0> <1,1,1,0>

procedure MU.TIPLE (M) Figure 3. Decomposition of <1,2,3,0>.

Example 3: <3,0,3,2>
case

:(),2,O,2>: call DECOMPOSITION (01,l,0,1>); This is also a mixed function and, since x -
attach an inhibit with ts Inpt t 0, line 22 will he executed. Further, line 27 will
of constant <2> at the end of he executed, and so the function will be split into
the string(s); return <3,0,0,0> and <0,0,3,2>. DECOMPOSITION will be

called again for each of these functions.
:<0,0,0,2> or <0,0,2,2>: <3,0,0,0> will cause line 14 to e executed, ""

call DECOMPOSITION (M/2); qplitting this function into <1,0,0,0) and
call DECOMPOSITION (M/); return <2,0,0,0>. <0,0,3,2> will cause lines 18 and 21 to

be executed producing <(0,0,1,0> and <0,0,2,2>. •

" 64
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MULTIPLE will be called to decompose <0,0,2,2>. Thus, there is a tradeoff between the costs of

Fig. 4 shows the decomposition tree for this the funtions produced and the length of the cost

function. The total cost is 40; 7 + 7 + 10 + 4 + 4 table. At one extreme is the cost table of all

+ (5 - 0)2. C] functions, i.e. the universal cost table. A
universal cost table is shown in Lee [9] which

<3,0,3,2> improves on 106 functions produced by the technique
described here and on 126 functions produced by the S

technique describe in [3,4]. Because of its large
<3,0,0,0>" <0,0,3,2> size, the table is not repeated here. However,

improvements on the cost table by Lee 19] have been
found, and these are shown in Appendix A.

<0,0,2,2> It is interesting to note that a significant
<1,0,0,0> <2,0,0,0> <0,0,1,0,> portion of the functions in the universal cost

table can be eliminated without reducing the S
average cost of realizations. These are the

<0,0,1,1> <0,0,1,1> functions which are the sum of other cost table
functions. In the Lee [91 cost table modified by

Figure 4. Decomposition Tree of <3,0,3,2>. the changes shown in Appendix A, all but 82
functions can be eliminated. Although this

Although there are 24 functions in the cost 82-entry table produces as efficient realizations

table, 3 (<3,3,3,3>, (2,3,3,3>, and <0,2,3,3>) do as the 256-entry universal cost table, a search for

not contribute to the decomposition of any other optimum component functions is needed for many 0

unary function, while 2 (<1,2,3,3> and <0,1,3,3>) functions. Of course, in the universal cost table,
ontribute to the decomposition of only one other such a search is not required; the realization is

function (<3,2,3,3> and <2,1,3,3>, respectively), achieved by a table look-up.

A comparision of the decomposition technique
for the 24-entry cost table proposed here and the VI. THE SMALI.EST COST TABLE

technique described in Kerkhoff and Robroek (31 and 0
in Robroek [4] using a 45-entry cost table is shown As a basis of comparison, consider the

in Lee [9]. For each of the 256 4-valued unary smallest cost table consisting of the four unit

functions, the technique described here produces a functions <0,0,0,1>, <0,0,1,0>, <0,1,0,0>, and

decomposition with a cost less than or equal to <1,0,0,0>. Although, no search is required, the

that produced by the technique described in [3,4]. realizations will be of high cost due to the small

In 27 or approximately 11% of the functions, there number of cost table functions. The average cost

is an improvementt. Further, the realizations can be calculated as follows. Over all 256 ulary

produced by the 45-entry cost table approach are funstions, 9ach unit function will be used 6.4 (= - 0
achieved by an exhaustive search of all 0.4 + 1.4 + 2.4 + 3.4 ) times. Since the unit

decompositions of a given function, while the function cost is 7, 10, 10, and 4, respestively,
realizations produced by the 24-entry table are the total cost of the unit functions is 6.4 (7 + 10

achieved with considerably less search. + 10 + 4) = 11904, while the cist of the adders .
over all unary function is (4.6.4 - 255)2 = 2562, - .

for a total cost of 14,466. Dividing by 256 yields

V. THE UNIVERSAL COST TABIE 56.51, the average cost. As will be shown later
this is considerably larger than the average costs S

A further improvement can be obtained by adding associated with any of the other techniques. The

to the 24-entry cost table lower cost realizations worst case cost, 115, occurs with <3,3,3,3>.

of functions for which the decomposition method is
• inefficient. For example, the function of Example

1, <1,2,3,0> was produced at a cost of 23 by adding VII. UNIVERSAL UNARY PROGRAMIABLK CIRCUIT (UUPC)

two cost table functions. However, another
realization exists using a fixed overflow, two An alternative to the custom design of an
inhibits, and an adder, (specifically unary circuit is a fixed structured circuit in 0

{F(Ox,2,1,01,O2 ), ii(01,fl2,Od), 1(l,02,0d). and which the function is determined electrically.

1 2 Fig. 5 shows the configuration. A constant charge
A(Od ,O)}) with a cost of only 19. (30) is injected into the root (a) of the tree.

The input charge X controls which path the charge
e t c o c mflows, while four voltage levels determine the well

tTbe cost table technique of [3,41 can be modified capacities III of the wells associated with nodes
so that the cost of all realizations is equal Lo d, e, f, and g. If the three charge units from
the cost produced by the technique described here root node a exceeds the capacity of the destination
by replacing F(O ,1,O ) in the realizations of well (d, e, f, or g), the extra charge is discarded

<0,1,1,1> and <f,2,3,> with 1(1,0 .0 ) and by into a dump 141. The single output is the sum of . .
adding <0,1,1,2> to the 45-entry coft Fable. In the charges in d, e, f, and g.
addition, 22 functions are redundant; they can be

* removed without increasing the cost of any This circuit can be designed nicely with a
function. The resulting cost table is the 24-entry fixed overflow and inhibit circuits, as shown in
table shown here. Fig. 6. The 

0
d output wells of Inhibit circuits 2
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S- -

constant charge (30

O'l 2,3

d 9~

Figure 5. The Universal Unary Programmable Circuit.

7 B

Figure 6. Decomposition of the UUPC. Figure 7. A Lower Cost UUPC.
and 4 correspond to nodes d(f(0)) and f(f(2)) x

and can be programmed. However, the 0 output wellY O 0 1 2 3 cost

cannot be prograsmmed, and so programmable wells 5

and 6 must be added for e(f(1)) and g(f(3)). 0 0 1 3 2 + 16

The coat of this UUPC implementation is high, 1 2 1 3 0 -*31

82 (one fixed overflow - 4, three inhibits with a total cost
0i of 3an ~69, one constant, one 

4
-input addition 2 3 0 2 I 3 l

~6, an two programmable wells - 2). A cost
reduction can be obtained by replacing each of the 3 1 2 0 3 * 30 -•. .

high Cost inhibits with a capacity of 30 % y

inhibits which have a capacity of I 0E and 2 0E .  cost 16 92 1 € ' toa ot7
The cost of the latter is significantly less than -ot 1 9 2 9 oa ot7
the former, so such so that, even though more basic
operations are required, the overall cost is less. Figure 8. 0-map of Function fix,y). -i "-:'

*Fig. 7 show the new UUPC. It is achieved at a cost"i: ' "

of 60. With respect to the synthesis of unary Example 4: Realization of the Function in Fig. 8. -
functions, the UUJPC offers an alternative. "...

Although it is significantly more expensive than Consider the two choices for subfunctions,

any fixed unary function realization by the rows of Fig. 8 or columns of Fig. 8, As shown,
decomposition method, it is flexible enough to there is a lower overall cost if the columns are
realize any unary function by adjusting four chosen as the subfunctions (the costs listed are

*voltage level, from the universal cost table). Thus, we will let

x be the controlling variable and synthesize the

unary functions as seen in the columns. Fig. 9

VIII. u[xTENDIuc TO TWO OR MORE VARUIBLS shows the decomposition of the function of Fig. 8.
- -The total cost is 171; 74 + 91. Q S

* A direct extension of the cost table technique
is difficult for n 2 because the large size of Fig. 10 and Fig. 11 show the decompositon-
such a table could exceed the memory of present day scheme of the product and carry output, respective-

computers. For example, a universal cost table for ly, of the 2-input 4-valued multiplier, using the

4-valued 2-variable functions would have 4.3.10
9  

universal cost table method. It is intresting to

entries. As an alternative, the quaternary or note that these multiplier circuits are more cost

0-map [41 can be used, in which 4-valued functions effective than circuits presented in [41; the cost 5
are expressed as a composition of one-variable of the fomer are 114 (product output) and 32 (carry
subfunctions. An example is shown in Fig. 8. output), for a total cost of 146, while the costs

Here, the four subfunctions can be either the four of the latter are 133 and 50, respectively, for a.

rows or the four columns. Each aubfunction is total cost of 183. It is shown [41 that an.- .
realized as a unary function by the techniques dis- implementation using the A lenGivone algebra [3,41.
cussed perviously, while the choice of the subfunc- would cost 709, while a method based on s procedure
tion is controlled by the appropriate variable, introduced by McCluskey [31 would cost 267.

16
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Figure 11. Decomposition of the Carry Output of
a 2-Input 4-Valued Multiplier.

constant charge (3 0

Figure 9. Decompositon of the Two-Variable
Functions f(x,y). -ontrolled

by x

" 1 2 p3•

controlled

1 0 -- 1 P P L by y

, 2 'Figure 12. A Universal Binary Programmable
Circuit.

2r=1 expensive 4-valued unary circuits and has almost
half the number of entries than does that proposed
in [3,41 . A un iversal cost table is introduced
which produces even lower cost realizations at the
expense ot considerab ly more entries. In addition,
an electrically programmable circuit is introduced

"" in which all unary functions are realized by a
single structure of considerably higher cost, but
which has the advantage of flexibility; any func-

tion can be realized by choosing appropriate vol-
tage levels. Table IV shows a comparison between

the four implementations. Although the emphasis

has been on 4-valued logic, which is currently
realizable [11, the methods can he extended to

higher radix.
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techniques for the implementation of CCD circuits, counting argument for the number of increasing

A tabular method is shown which produces less functions.

169

• ~~~~~~~~~~~~~~~~~~~~~~..."..-.......... ....... . .. . .-..... . -............................. .........-...........-. ---.--- ,--....-:-



Cost Table Improved Universal Smallest Programmable
of 13, 41 Cost Table Cost Table Cost Table Circuit

number of functions 45 24 256 4 0
in the cost table I

!average cost 21.10 20.72 18.38 56.51 60

maximum cost 47 47 47 115 60

number of functions "
1which are not minimized 126 106 0 246 -

method of realizing by computer by computer by computer by computer by electrical
a target function I or by hand or by hand or by hand or by hand programming of

(synthesis (synthesis is well capacities 0
is a search) additions of

. . . . -L_unit functions) _

Table IV. Comparison of the Cost Table and UIPC Implementations of Multiple-Valued Logic Circuits
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0.0 SYNTHESIS METHOD FOR TERNARY LOGIC FUNCTION

BASED ON NAND-TYPE POLYPHECK-

" Michiaki Yanagita, Naohiro Fukuda, Yoshiaki Miyoshi, 0C)Kyoichi Nakashima and Kazuharu amato. .

Department of Electronics, Himeji Institute of Technology
Himeji, 671-22 JAPAN

Abstract Table 2 expansion of unary functions

This paper studies the synthesis of ternary x
logic functions based on a NAND-type polypheck. 0 1 2 expansion

The size of term is the arithmetic sum of its truth
values over all assignments of variable values. It 0 0 0 0
serves as a measure of complexity. 0 0 1 x x 

0 0 2 X.x .x.x

Introduction 0 1 0 x.-

Multiple-valued logic, especially the ternary 0 1 1 X (. x vx
one, has the following advantages over the binary 0 1 2 x
logic. -.

(1) data capacity per line, 0 2 0 x .x.x

(2) simplicity of line formation, 0 2 1 X ( x .xvx ) 0

(3) speed of data processing,
(4) efficiency of data conveyance. 0 2 2 X

Some papers about the functional completeness have 1 0 0 X.7. X

be reotd1,2,3 14 1 X.( - X
been reported Polypheck is a function which 1 0 1 x-.( v )

4 1 0 2 (X. XVX).X
is functionally complete by itself . From both tv
practical and theoretical viewpoints it is inter- I 1 0 7. ( -"---xv .-: ) V -

" eating to develop a synthesis method based on f(x) 1 1 1 1
single devices. In this paper the ternary logic 1
and its utility based on NAND-type polypheck 1 1 2 ( .

is discussed. The proposed method could serve for 1 2 0 X_
the design of ternary logic circuits. ._ --1 x . x v x ) . ( x v ) ".. -.. -

Notation and Definitions 2 2 0

2 0 0 3: XX

The variables x and y range over the set of 2 0 1 x

truth values L=(0, 1, 2). The logical sum V and
logical product - are defined by 2 0 2 x "X

x V y= max(x, y), x.y-min(x, y) 2 1 0 ( vx ). X X

We introduce a set of 6 prime operators, called 2 1 1 ( x.xv
7 

).( x vx )
literals, on one variable such shown in Table 1 2 1 2 x • x * x
where "xare called cyclic, inverse cyclic,
respectively. And every ternary logic function2 0 XX

* . has product-of-sum form: 2 2 1 x. xvx

'. Table I A set of 6 prime operators 2 2 2 2

: 3: X SOWx 61 Wx 62(x) . n0

0 1 2 0 2 2 Xn

1 2 0 2 0 2 a1  )., va , }

2 0 2 2 0 nf ... ' )Vxl vn 1 (x 1
0 1(- 2-.,()

where x x, x =x x and -a(a) and a, 2- a.
0
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0

p0
The three 0-consensus functions 6 (X), lX), 112 Y (3nlj)) 3-i 1

i2 x) are represented as follows. if - 60, 9=n
0 I( 2 where p, q, r are the numbers of element' 0

6 (x)= , (X)= ' ( X)= " 1 , ' 2 ", respectively, in P.

Proof: Define the following term E
Only Eq.(1) is the form which includes all 6 prime - *-
operators. The unary functions are expanded as in E s xa, - Y . "aa.i

Table 2. i i+l i+l i+
Definition 1: The logical sum E(x), (Z)=(l, x2, 2M. a,.3 , ab,•

n n n - -

X ), which often abbreviated as E, of some I) If T=(2, 2, ... , 2), then
distinct literals is a term of the order denoted by E)=S C 2 v x
O(E ) which is the number of literals included 1 1 V s' V E)

in E. The total number of literals in f(x), S(2vE) + S(2vEI) + S(VE
which often abbreviated as f is said to be the
degree of f and denoted by D(f). (from Eq.(4))

Definition 2 : We also treat constants 0", = 2 3 + 23 + E Cfrm q.."
"1 "," 2 " as terms, and define 2 3 n _ 1

CC0 )0 , 0(2 )= 2n+l where + denotes the arithmetic sum. In this case,

We do not define the order of constant " be- it is clear from the process of this proof

cause it can be represented by the product-of-sum that this term E takes 3 truth values " 2

form of at most 2n-order terms. Therefore, from the Definition 3, S( )= 2 x 3n-
[3n-]

2) If P=(, 1 ... 1, ), then from Eq.(3),
Size of Term

S( E')= 12" (3n-l)1 [ 3n-4 ] n

Definition 3: The size S(E ) of a term E is defined 3) If P=(, 0, ..., 0), then from Eq.(2),
as the pair (a+2b)[b] where a and b are the number n n
of truth values of E, 1 and 2. - -- " S(E)

= 
(2 3)[ 3 1

Lemma 1: Consider the size of Ef x axb 'x (2., b, 4) If 1iE( 1, 21 for all i C ?#n, rnn, q+ rn),

E cL). a
(i) If a= b- c, E= s . Then, then

S( E)= 3[ 1 E E q V Eq •
a s where suffix numbers of x, a, are renumbered such(ii) If a/ b= c, E= x v x. Then,

that the mod.3 sum of the superscripts of each
SC E)= 5[ 2 ]. variable in E is I and that in E is 2, i.e.,

(iii) In other cases, q q
a *a &a = a *a 9a

6[ 3] if a fb ec= 0 (2) 1 2 3 4 5 6

S(E )= 2 ] if asbec= 1 (3) .... a 3q-2 ea 3q-1. a 3q= I .

5[ 2 1 if a b *c= 2 (4) 13q+l a3q+2
0 a3q+3= a3q+4O a3 q+5 a3q+6 =""

... = a 3n-2 * a 3n- le a 3n =2
where 0 denotes the mod.3 sum.

From Eq.(), any term E can be represented as a- -. 4- 4- l

follows. a, a a a 2  a a

(7 a. a, a,~a a q 1 1 1 2 2 2
E=s Vs *s V5  

a6 2
4- # -
aV 2  a_, a, ... V V n V3. vs 3

v xn  V Xn  Xn q q q
a a a C- L, 1 i .n (5)

and define the parameter vector P as follows. Eq= Xq+1 
5 q+1 .q+i v... . .

1 a a2  a3 'a 4 a5 a 6 ' "' a 3n-2 a 3n-lan) . . .X aV,1  2 3n

n n n
Lemma 2: Consider the size of 2n-order term E given T f•
by Eq.(5) where i a31 (fi1 n). Then, Therefore, -a a, a.

C,[ n irS(E)= S( x1 V x1  •x v E1)
* (2 X3 n)[ 3n, if pvO, p+ q+ r-n I 1 ) + SC0 v El)

if P-0, r/io, q+r n Cfrom E.C3))
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S 0

Y(3 n+3-+ + 4 From Lemmas 2 and 3, we can find out that the

2 n- -2 -q+ln-q)+ q size of a term in a canonical form tends to de-
= 2 x(3 +3 + ...+3n++ 3n) crease with the decrease of its order.

+ S(2 vE +l) + (2v q+l) + S(IvE q+)

2 53 n [ 3n_,, (from Eq.(4)) Subterm and Implicant

Definition 4: The ternary n-variable function f
5) If 0, 11 for all i (P #0, P+ q=n), then implies the ternary n-variable function g

S(E )= 2 x3
n 

[ 3n (notation: fjg) if for every (al, a2 ... -"an)

6) If r ij 0, 21 for all i (p #0, p+ Y-n), then f( al, a 2  '', an) g( aa 2 .... an)
,(E )= 2x3n [ 3' If f doesn't imply g, then it is denoted as fig.

te If ! 0 213 f Definition 5: A term e is said to be the subterm
7) If r~il 0, 1, 21 for all i ( '0, p- q+ ran), of a term E if P is the remainder after the re-

moval of at least one literal from E

n n Lemma 4: If e is the subterm of E, then the order
S(E )= 2 3

n 
[ 3

n 
]of e is lower than that of E , i.e. O(e )< o(E)

This concludes the proof, and e implies E, eKE. From Definition 2
Lemma 3: Consider the size of (2n-j)-order term E' constants " 0 ", " ", " 2 also satisfy this
which is an n-variable function (1i jan). There lemma.
are two forms of E'. One is the form which con- Definition 6: A term E is said to be the implicant
sists of literals of n variables. Another is the of a ternary logic function f if E satisfies the
form which consists of literals of (n-i) variables following two conditions.

(1lijn, i_- j). In the former case, E' can be
represented as follows. 1) E R f (6)

aa aa 2) e o f for any subterm e of E. (7)
E'= x 1/ x2 i V i+l i+, .

a.. . i l " Definition 7: A simplest form of a given n ternary
•.. v a v E. logic function is a form minimizing the degree of S

the function.
where a3k-1 a3k (i+l6kIn, 0OiSj). The param- Lemma 5: If a product-of-sum form of f' is

simplest, then every term is an implicant of f and
eter vector P' of E' is that of E.. Then, each term is equal to f<2 for at least one as-

(2 - 3n)[ 3n signment of variable values.
Proof: Assume that the simplest form of f is

ni if p'i0, p'( q' r'n-j f = El. E2 . . . . .  Ek  (8) .

S( E')= (2s3n-2i) [ 3n-2] Clearly Eq.(6) is satisfied. Suppose, for a

if p'=O, r'10, q'+ r'"n-j subterm e of E

(2- 3 -2il)[ 3 n-2i e

if p'= r'=0, q'=n-i Then,
where p', q', r' are the number of element " 0 "

", 2 ", respectively, in p'. E E 2 Ek
In the latter case, E' can be represented as fol- =)el. E2 . Ek
lows. -- . -

11 3. 1) f. f
E'= x V i2 " V x x + V ... Therefore,

_a "- f = e . E(9)
V i Xjii V J- 1 2 k()

The degree of (9) is lower than that of (8).
where a 3k-I a 3k ( 1+1 ' k -n, i Z j-i). The pa- This contradicts the assumption. This completes

the proof of the first half. The latter half is

rameter vector P' of E' is that of E Then, self-evident. This finished the proof.
n [ 3 Definition 8 : Let the terms E , E . be

all implicants of f. If an implicant E satisfies

if P'#0, P'+ q'+ r'=n-j the following equation, i
n-i -i i n-i- i E Ei.E. E...E ....E (10)S( E')= 3 i ( 2 r 3  2 3 (3 -2 E,

if P'-0, r'y0, q'+ r'-n-j then f can be realized without Ei. An implicant

i n-i 7-i i - -i
3 x(2x 3 -2 -1) [ 31 X( 3n

-
i
-
2

-
i)] which doesn't satisfy the Eq.(10) is called an

if p'- r'-0, qn-J essential implicant.

where p', q', r' are the number of element" 0",

1 1 ", " 2 ", respectively, in P'.
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Simplification Algorithm EL (1kik).Step 2: For the term Liz , e L, having the

Algorithm for Determination of Implicant

If 2n-order term A'is an implicant, then for smallest size (in the case having two or three
its (2n-l)-order subterm 0, F g cif, and its terms with the smallest size, for the one which

(2n-k)-order subterm ' is also the subterm of has the greater number of truth value " 0 "), 0
(2n-k+l)-order term , 21k%2n. Then, 2n-li determine its implicants. If both the size and
2n-k+l.1. Therefore, when we want to check if the number of truth value " 0 are the same, then
a term F whose order takes from I to 2n is an -

implicant, we only examine the conditions of the determine the implicants of. " " "'"

S implicant for the subterms with the order by one Step 3: Determine the simplest form of
lower than F. A term is expressed as the logical St 4:su th teips fo of i
sum of several literals. Therefore, the algo- S

rithm for the determinatiott of implicants is as as follows.
follows. *
Step 1: Make a term F by taking one by one out of 'M "V' K ' 1 -

2n sets kk' , 0',, , "' .. ' Then, = 1 '

2., o, k=l, 2 ... , n, and combine them by

logical sum. Repeat above steps for '., 1 4i im, until every

Step 2: Examine whether or not the term i'satis- implicant can be expressed as the logical product •

fies the following condition, of some literals.

F From above steps, any ternary logic function
can be synthsized based on NAND-type polypheck.

where the equality must hold for at least one as- Example: Consider the function f(x, j), ternary
signment of variable values for which .= 0 or 1. half-adder, given in Table 3. First from the
If not, return to step I and make a new term. algorithm for the determination of implicant,
If satisfied, proceed to step 3. we have 15 implicants as shown in Table 3. From
Step 3: Examine whether or not the following con- the simplification algolithm, the simplest form of
dition is satisfied for the subterms .' with the .r, :) is
order by one lower than E .

If not, return to step I and make a new term. . . 4

If satisfied, proceed to step 4. =( XX V. ).( X.x i., )( €x V )y

Step 4: The term obtained in above steps is an 0

implicant. So write it out. Repeat above steps Consider the former case. Define the following
until no more combination of literals is found, terms.
Then this algorithm is terminated. - -

2 3'
Simplification Algorithm From step 1 in the synthesis algorithm,

Assume that all implicants of fhave been ol -
tained. 1( F)=I5[ 7 1 T0=9[ I
Step 1: Construct a table relating the truth values [ 7.( 1,(.[1
of 'to the truth values of each implicant such as ( F)15[ 7 ] .( !<2=3[ 1 ] S( 2)=91 1 "
Table 3. E 2 ."-" ")-("-
Step 2: Encircle the point at where A, f<2. ,( E3)=15[ 7 L, :( i 3)=3[ 1 l S( E 3 )=9[ 1 1
Step 3: Determine essential implicants.
Step 4: Determine the implicants which realize some
truth values " 0 " of "that are not realized by Therefore, determine the implicants of '
the product-of-sum form of essential implicants -..-- 1--
from lower order terms. 3 " We have 6 implicants of , .2' i3' respec- 0

Step 5: Determine the implicants which realize the tively. The simplest form of them are
remaining truth values of '"from lower order terms.

The product-of-sum form of implicants ob- ' =
rained in above steps is the simplest. ' X

Synthesis Algorithm X3 = x • , •

We start the synthesis algorithm with the simplest
form of a function f. Assume that the simplest Therefore,
form of f consists of k implicants, ', F2, ... , , - --

p : Operate cyclic or inverse cyclic operator r ' ' . , x

upon each term and determine their sizes ,(Fi ),
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Table 3 Implicants of fAX, Y) a34 2, 4 9 a8 0

X 0 0 0 1 1 1 2 2 2 a=lor 2, aO t 2 (o C-C 0il.

0 1 2 0 1 2 0 1 2 The proof of this lemma is omitted.

j(X, 11) 0 1 2 1 2 0 2 0 1 From lemma 6, there are 54 LSPs. Out of

X' .V X " I Q 2 2 2 2 2 2 2 these 54 LSPs, we select polypheck suitable for-
- the product-of-sum form. Then, we set following

XV X V 2 2 20(D2 1 2 2 2 condition.

S2 2 (D 2 2 2 2 2 It is easy to generate 0-consensus functions

XV y 2 2 2 2 2 2 2 1 (Dand logical product from the polypheck.

2(13 2 22212We try to synthesize these functions with the

Y 2 @1 2 2 2 2 2 (032 polypheck f(x, y) within the limits of 4 stages.
-~ The result is shown in Table 4 whereX vy Vy 2 2 2 2 2 1 2 2 Q

22 0) 2 * 2 2. x2  2-
XVY 2 2 2 2 2 (D 2 2(l(,y=1 iax Zf ( 2x Y 0 2xY02x j X-

X - XV! u OHI2 2 2 2 2 2 2 2 2 2 2& D ~ ~f (x,Y)- 2 4X Y * 2x Y *2x 1 0 2x =X-Y
~X Vy/ Y 2 2 22 22 2 22

- - -~~r-' ~Other 52 LSPs cannot generate all four functions,
X X Vy 2 2 2 2 2 2 2 @ (D~)
0 t:; s ( X) and logical product within the limits. We
.X y -X y 2 2 2 2 2 2 2(032

!Z 20 D prefer f 2 (xr, y) to f 1(x, y) because f 2(x, y) re-

X -XVY Y 2 2 2qie less gates to generate 0 x and

1 2 2 (D 2 2 2 2 2 Table 4 selection of polypheckY Y 1 stage 2 stages 3 stages 4 stages

00
This function requires 13 NANDf-type gates to W x f2  fl
implement the function as shown iZFi. . If 1 X
we apply the synthesis method to Ell, E2, 3  F 3' 1 2
then f(x, 4 requires 28 NAND-type gates. The 2(Xff

original~F~x funtio reurs82AN-yegts
origial fnctin reuire 82 ANDlypeiates

Conclusion

The proposed method is simple, systematic and
familiar to us because the simplification method
is similar to that in binary logic. It is also

OD IC easy to apply many variables. In this sense, the
proposed method is the beat.
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VECTOR EXPANSION TRANSFORMATION OF LOGIC ALGEBRA0

by Liu Zhimo and Yuan Youguang

Wanzhong Machinery Plant, Sichuan, China
Vuhan Digital Engineering, Institute, Hubei,China

Abstract Theorem 1. For any variable x in B4 ,

We aialyse the mathematical structure to be corresponding to which, choose _

of-Ithe vector expression of star algorithm four proposition variables x , x , x*, x*

here, where the concept of vector expan- in B2 such that 1
sion transformation is presented. We also x=0 iff x0 =1 and x =x*=x*=O,
describe this transformation which can be x=I iff x =1 and x°=x*=i*=O, -1)
generalized to the general Boolean algebra 0 1 - (I) adx
as well as other logic systems. Virtually x:D iff x*:I and x :x :x*:O.
we demonstrate that the operation problems x=D iff X*=1 and x°=x =x*=O,
of general logic value can be transormed then
into those of binary Boolean expression x=x e+x lI+x*D+x*1 (2)
and advance calculation formulas of trans- satisfies I 1
formation under various situations. It is x +x +x*,x*=1 (3)
proved that this method is of certain sig- i j . - . (4)
nificance in switching theory and in Eq.(2) is said'to elteectorexpres-
[. practical applications. sion of x and x is called vector. So x° "

Introduction xI, x*, x*are called components of x.

In the fault diagnosis of logic net- Definition 1. Jet the vector expres- -

works, the ltivalued logic method is sian of xfJ34 be
widely usedU , which, starting from dif- x=a.O+b.I+cD+d., a,b,c,dEB 2
ferent point of view, considered the com-
patibility with logic variable valuing, if a,b,c,d satisy qs.(3) and (4), then

as a result of those achievements the cal- we call this vector expression standard- -:

. culation process is simplified. Especially ized vector expression.
in 1) the vector expression is presented, b .Lemma .Set -ny vector expression x
which with obvious advantages transforms be
the four-valued logic calculation problems a=a.~b..Ic.D+d.fl, abcdEB32
into those of binary Boolean expression. then this one can be transformed into the
In this paper we are going to start from standardized vector expression
the analysis of star algorithm in (1) to o
explicit the essense of the vector expres- x=x ..+x I'x*.D+.*.1-,
sion and generalize this method into more and there exists
general situations. It is proved that the o x-- b" -
result of this paper is more concrete both =bd xbd (5)

* in theory and application. x*=Eca, x*=bacd.
, ~Let ."Vector Expansion Transformation xx.x . 1.

•of Four- Valued Boolean Algebra 0 -
y=y +~y D+ ~In t1) the vector calculation pro- t"

In -vted to lat ro be the standardized vector expressions of
blem of four-valued Boolan algebra x, y, the following recurrence formulas
B 4 =B 2 2 has been studied. In this sec- of basic logic operation is obtained in

tion let us first list some of the re- LI) -
sults in (1) and then make further dis- ci xI  Ix
cussion theoretically. ( o=, (6)

Let the elements set of B4 be {e, I, (x)*=*, (i)*x,

D, 'b, as shown in Fig. 1(a), whereq= (x.y)°=x°+y°=x*-*+*y*,(x.y) x y
(0,0) being minimal element, I = (1,1) . I 1kxy xy+x y*+x*y*, (7)
being maximal element, D = (I,0), = " 1: I y*"x"*'"(7
(0,1) being respectively their atoms. T(-7*=ix*y +x y*+x*y*
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(xi-y)°x°y°,(x+y) =X +y +X*Y*+X*Y* pletely defined by its components when x
(x+y)*=x*y°+x 0y*+x*y*, (8) takes its value on B for those compo-

y 0  
nents are all orthogAal, therefore, x can

T-y7*zj*Y°+x°*+-X* *  be expressed by tnose compo-.ents' -oolean
Eqs.(6), (7) and (8) are called com- sum when x t~keslits value onO(B ).

ponent recurrence formulas of four-vlied Hence with x , x , x*, x* as its atoms,
variables, they show the combination situ- another 16-valued Boolean algebra isomor-
ation when logic gate output is taken by phic to P(B 4 ) can be constructed (shown
certain definite value, its input may also as Fig. 1(c)). In this way, by the trans- ..-
take value, formation of Theorem 1, Lemma 1 and Eqs.

Theorem 2. Let F(x 1 .... ,xn) be any (6), (7) and (8), the star algorithm ex-
nBoolean function of - then F can be pands the previous four-valued problem44 into 16-valued problem. Ve call this

expressed by the vector expression, and treatment the expansion transformation ol S
its components can be calculated recur- Boolean algebra.
rently gate by gate according to Eqs. (6), Definition 3. The star algorithm is
(7) and (8) and structure rule of the an expansion transformation of Boolean
function. algebra *: B4 --B2 4, the transformation *

In the fault diagnosis of logic net- is only defined by Theorem 1, Lemma i and

works, by the stipulation ofe , I, D, eqs. (6), (7) and (8).

we could make comprehensive analysis of E y expand (8).

fault-free circuit and faulty circuit, the By expansion transformation, the
range of the variable's taking value is

component F* and * expansion of F, there- expanded, in practical application, the
fore,0 could be used to generate the tests, compatibility of variable's taking value
and F , F can be used to analyse the can be considered. At the same time, four-
problems of fault-tolerence, etc. In (1) valued Boolean operation becomes binary
the recurrent calculation method according Boolean operation, which greatly simplify
to Zqs. (6), (7) and (8) is called star the cilculation. In the generation of lo-
algorithm. 1 gic networks test, especially in the

Definition 2. Let x B4 , define =x + treatment of sequential circuit, there

x*, x=x +x 4L, is called the anterior com- emerges wide application. It is easy to
ponent of x, and lis called the posterior prove the following theorem.
component of x. Obviously fheorem 5. Under the transformation

C=T-L =xO+.*, 2J =Ta-7=xO+x*. *" B4 --B24, the operation properties of

Theorem 3. Let x=i(x .. xn ) then the element on B4 are retainea by Sqs.(
6 ), ..

'=F( "x I =) ( (7) and (8).

Vector Expansion Transformation of
Theorem 4. Let x=xl... xi. ..Xm, then General Boolean Algebra

m m m m Lemma 2. Let Bn be a non-degenerate

x*= (xlIIxi) I*: -(x x Boolean algebra, there should exist a po-

=-i j=1 i=1 j=l sitive integer m, which makes the number
ji ji of Bn's element be 2 ', namely n = 2 m 6).

It is not difficult to generalize Let the element set of Boolean alge-
this into other types of gates. bra Bn be n{ =,E 1=, 2 ... n-1

Since L, x show tIhe aspect of compa- BA={E2  E where 6is the minimal
tibility with values line, therefore after element'and I, the maximal element.S
introducing anterior and posterior compo- up
nents, the star algorithm can be corres- pose N=•O,1,2,...,n-1j, N'={2,3,...n-1) . . .

ponding to the calculation results in (2), Corollary 1. Suppose IBn1> 2
, then V

(3), (4) when calculation of a given fault EiB n , there should exist a unique com-
tests is under its way. p e

After the introduction of both anter- plementary element E..B', that is,
ior and posterior components, the value 3i+Ej=IE E
fields of variable x is expanded, that is, 1

x is not only taking its value from set Theorem 6. Let xeB . Taking val8 e of
B4 =16,I,D,L), but also taking its value every x in B , we choosR variables x ,sefB)o i.1b a 1  x2  1 -I
from power sett(B4) of B4 . Fig. 1(b) has x , x,...,x in B2 corresponding to it,

shown that the power set r(B 4 ) consists in such that4x=e iff x°=1 and x =O, iEN, ijO "'' -''

a 16-valued Boolean algebra for the logici ( 10)
operation of "" "+" and "-", where ele- x=I iff xi1 and x.0, iEN, i i (10)
ments t), {I), D}, 1)} are its atoms. x=Ejiff xJ=1 and x'=O, iEN, igj "

from Theorem 1, variable x can be com- then

17X
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n-1

X X =7 xE () a1E., E.,ti% complementary (15)
1TTT

satis±'iesLet VhBA, by Corollary 1, there should
be E kEBA, which makes E h -9 then from the

y 1=1 (12) first term of Eq.(15) we have
* i~ a1 I=a1.I+a1 *Eha E

x *xj=O, i,jEN, i~j (13) Therefore factor a 1 in the third term can
Eq.(11) is called standardized vector ex- be eliminated. And for any element a in
pression of.x. And x is called vector the second term, there should be ak, hwe
and every x , iEN is called the components hv

oX.Theorem 7. Let a 'I=a h' ak'.Eh+a h a k'.Ek# h =9k*

x=ao.e+ai.I+a2.E +...+aniEn Simultaneously there should be the cor-
1 , 22 n- n-1responding term in the third term

be any vector expression of x, where aje (hhan eliinth
B ,ie-N, then this vector expression aj~ +aiminated
cNA be turned into the standardized vec- Adigufh ww aveor
tor expression shown as 1Eq.(11), and Adn pteto ehv

itN1 Hence the iirst part proof is immediate.

x1=n~s~ a~~, E cmplmenaryIt is not difficult to prove

i, jkN' x (14 1, X~ xx=O, i~jEN, i~j

Xi=a aait i,iE-N',EiE4; complementary U

Proof. First it is necessary to that is, every x (iEN) satisfies the re-
* provequirement of standardization. The proof isprovecomplete.

i Theorem 8. Suppose x, y6B, xO =

=e -- ?x iEi, y= yEi be the standardized
By the supposition we know Za =1.

* If i~Nvector expression, then for the operation
if, +: -, on Bn their components' recur-

then 2 ana-1.+~, rence formulas will be
let - i,jfrN, EEcomplemen-(16)

aoa 0 (a 1+a 2+ +a n-1 )+a 0(a 1 +a, + a n... (X.Y)0 =x0 +y0 + ta
because E o+E.i=E. iV iEN hold, then f ollcws

Z- aTi xa. n-i Y) Eiv compleen- (17)
a i = ol.o a tEit ,j~ttr

* where k (1y)a k k 1 k k
a'=a (- =X y +X- y +X y , kfN'
o 0 (a +a 2+. ..+an-1) (X+y)O 0 0

* and (xy~x 1 y1

aO1+a1 +a2 +..+an =1,(x+Y) =x kY + .,' , %Ecom- (18)
( ky)=~ o~ k k"9 k kE plementary

Le 0t(,a+.+n)O Corollary 2. Suppose F(xi, ... x,) be
Le awe get x0 =ao1=9j,*2 ..an- 1, any Boolean function of BlTI.*B , then F can

Notice: Here we have treated every be given out by the vecto ' exfression, and
a ai and every i~ as independent logic its components can be r- currently calcu-
transformation. lated gate b gate accoi-ding to Eqs. (16),

(17) and (185 and the structural law of
In the following we should provetefucin

Let the power set of B bef'(Bn)
a,.I+~ aia I+ ~aaijj~i then we haven

Lemma 3. Algebraic system r(B )-<r(B~
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I.% fill, ,#. >is a 2n-valu,-d 1Rool- then u
ean algebra. x=x.B +x I+x *U (20)

By Theorem b, variable x can bs corn- datisfies
pletely defined by its components x 0 1 (1

, x when it takes its value on B, (22 0 0
since every component is orthognal, then .x=X X.x=0(2
x can be expressed by each component's Aq.(20) is called the vector expression
Boolean sum wrien it tikes its value on of x, and its components are x , x1 , x.
P (B n ). Let N n={x . ,.... n 1, P(Wn) isTheorem 11. Let x=a*6+b-I+c.U be any
the power set of 4i1 we have vector expression, then the following for-

mulas can be turned into the standardized
Lemma 4. Altgebraic system P(4v n)etrexrsinas<.2

VV nWi), 1*" +"1, 11-", 0, 1> is a Boolean veto e ,cxpeso as 0, q.(20) (23)
algebra isomorpohic to 9(B n) Theorem 12. Let

*Theorem 9. There exists an expansion xtygL 3, 1. xuUtransfo-rmation of Boolean algebra as fol- X=X .8+ ~x.U
*lows: T:B n--B 2 n, T is uniquely defined by Y= eyi . I-+ Y. u

Theorems 6, 7 and 8. be standardized vector e.7pression, the
Corollary 3. Under transformation T, basic component calculatio-n formulas of

*the operation properties of the element on oeain fxadYo r
B,,are retained b,,. Eqs. (16), (17) and oprtos , = o n 0y on L are3

* (Th).(jX O=x ( ) =x, (xu (24)
From the Above results we could see (x.y)0 =x0 +y0 , (x.y) 1=x 1y 1*that tuie vec tor expirisiori transformation 1 (x u 1x U u uu (25)

of four-vallued Boolean aleebra is only a (XYUx.Y +X y +x yI
special case of transformation T. The es- (X+y)0 =xoy0 , (xiy) 1=x 1Y1

*sential of' tfd'i truniiufra;ion is tiirou~h (+ U 0yu +xu o + u yu, (26)
vector's form expanding the study of B~ool- (~)~~ xy±
ean algeora Bn to tfie study of the power Due to the expansion produced by tne

settha cnit fBeeet n h transformation, it is possible for us to-se tatCositsof 3n elmnnn h andle the compatibility on L~ when the
approach of study we adopted is the form vaibetksisvau.I3i.2c
of' vector expression (i.e. the form of o -u -1
binary 6oolean expression), trie logic x , x , x show us the compatible charac-
operation properties oneb8 can be snown teristics of taking value, where
by these component expres ions. Therefore, x o=x U+xl1, xu =xo +x 1 1X1 =x0 +xu

a new analytic rnetniod of boolean algebra
*appears. It is easy to prove the correctness

EJxample 1. Consider toie vector trans- of the following formulas:

formation of B~ 1reI, 1+1 ,B 2, there (xyu -oyux y (25)
exist 1 (x.y) =u 1 Y. U Xu (26)'

x 0= 14-x=O, xl1= 1.*x=. x=x 0. 19+x 1.1, (XY~ Y +xY(2)
o~ 1 1 o~ 0 xy~yx

y=ye .y!I, ,) 0  1= 1 o
(xy0= 0+y0  xy 1 x1 1  (xer) =X y +x y (27)

(X.Y) =x y ,(xy) =x y u (y u ~ Uu
o-T =1 -o u-

Virtualiy thils is a general calculation -mXO~ 1 (x ixI(X x(8
problem of binary Boolean function. (y)=Xy , (X.y) =x +Y

u 11 00 1i 0 0(x-y) =x Y +X y =x y+x +y = (9
Three-Valued Loic Vecetor = 1 o o(u29)

exanio Tanfomtion x y +x +y =xy+X +y

Consider the three-valued logic L3  (x+y) =x +y , X+y7 =x y
shown in Table 1, the relation diagram 3of a o o0 o-'U 1 1
which is shiown as Fig. 2(a) . T X +Y7 =X y +x +y =x y +X +y = (30)

Theorem 10. Let lod,,c variabl e xEl, u o 1x 1y uuy+ +
when x takes its valuie on L , we choose 3xml .cnie h eeNpo

three proposition variables x0  u x1 to blem of synchronous k-S flip-_fijp . When
* cc correspondent to it in B, such that 3=6=1, under tne action of syticuronous

x8f 0 1 an U=x 1'- pulse at end A, R-S flip-flop will be re-
x= if 1 1 nd~ou =0 1) set. But by the direct use of three-valued
XIifx 1adx =0, (1) logic simulation we cannot make .he deci-

x=U 1ff x1u=1 and x =x 1=0 sion. N~ow let us analyse this b, means of



our method. In order to be simple, we as-
sumel the delay only occurs outside th efi
feedline.

TO=(C.±j.+F 1= =C 1, 1 = A 1 1+Do0To

1 2 2. 11 1 i i -i

=A B S Tu,+A B T 1 +A 1 I i1
i i -

1 1lo uwhere the first term A 3 .3.T. sh~ows that

when A=B= 1l, no matter what the previous0
state of R-J' flip-flo)p is (actually it
only tak~es trne definite state valueo 0,I).Fg Ib
it can be synchronized to the state of
T=O. Henice we see that T'-1 and Tu is dif- power set algebra constructed by
ferent in meaning. This means a new sio:u- element B4 0 1
lation method can be adopted, i.e. add up x+X+4+*
another state 0/1, or handle tne siliula-
tion problem by means of component 71.0+11+

X ±~X X 1x~ X ±xl+x*
Conclus ion

' e have discus.,ed the mathematical
* structure of the star algorithm and g en--

eralized the vector expression into the x+
general log;ic system, It is worthwhile to
point out tnat this expression is avail-
able to any logic algebraic system vhich
defined operation *, +, -. It is only when x XX
the operation in these systems satitfy the
bidirectional distribution law, de organ
law tnat we can use tne component f'crmula Fj c
to cqlculate recurrently'. 16vle0ola agbaB 6 cn

Because trie corn atibility can oe strvued Bothea compoents B1on-
dealt witto tne metniod develo~.ed, it brings variabled byi the vopet epson
the si.:ia.inof tnie calculation on onevaibex nthvcorxp sin
hand and on tite otrier the funct ion .)f des- o B4
cri'-ine tne rot lem is also strengtilered. Tal .he-led oic prton ue.-
1.n uddition, due to tne stricktnieso of our Tal .he-lud ogc prtin ue

me~rncd, th-e recuirreric- 'ormula established (a) (b)c
could con; le',ely snow out toe rule of ) IU + 01j
log_-ic operatioii. t is easy to make com-
prehertsive conts idrat ion to the problem, e e e e)ii
th-erefore, it can be used to test tne U I I
correctness of' a new calculation process. U--4-i-
Finally, Dy tne use of the vector trans- U U U U U
forritttion we cun deal with, those geieral
multiLsle-valued log-ic problems. Therefore, i..asomt nof hrevld
it's prosiect of applicaion is promising logic L. to B.

Fiegl. Pour-valued Boolean algebra I A=',O,U,I) 1=xo~x +X

B4 and its expansion t-ransformation I , Uu-

~ xu
U=10 D=(0,1 '8XfiU

e =(090) Fig.1(a) B4  (a) (b) (c)

.2S



'.a) relation diagram of' L3
(b) power set algebra constructed by

A= !I,U
(c) 8-valued Boolean algebra B construct-

ed by the components of va~iable x in
17A the vector expression of L 3

Fig.3. Reset of synchronous R-S flip-flop
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Definition 2. A simple function is a function vI  v . . .

h: <m> - <m>, h t 1m , whose graph Gh contains an .

cycle C such that v,-ry vertex x f <m> satisfies
one of the followirn ', ,nditions: transformations of the set <m> having the spectrum

V.
i) either x is a fixed point of h (i.e.

h(x) = x) or Example 1. For the transformation f whose graph is

b given in Fig. 1, we have Spec(f) (0, 2, 0, ... ).
ii) there exists b E J such that h (x) j C. The graphs of the components of f are given in

Fig. 2a and Fig. 2b.
We have denoted by 1m th, identity mapping on

the set <m> .

Theorem 1. For every function f : <m> - <m>, 2

f # lm, there exists a family of simple functions

{h . ' h2 } such that f 1 = h o ... o h and 0
h. o hi = h 0 h. I for 1 < i, j < .. We shall re-

fer the functions hi, ... I hi, as the components of
the function f.

Proof Let (C C be the set of cycles

of the graph 0f and let D. be the set of vertices
1

belonging to the cycle C. or to one of the trees - .6
1

attached to it, for 1 < i < 2 . Clearly, D r) == = • -.. .,
0, for 1 < i, J f, i J. We remark also that Fig. 2a

x Q D. implies f(x)6 D..

The simple functions {h 1 < i <2.1 are
given by 1'.4

f(x), if x 6 D,("
h (x) = 0 0'd

x, otherwise,

for 1 < i < 9. 4

Based on the previous remarks, the reader can -. '-.*
easily verify that h i o h, = hj o h. Moreover, 5

if x e D. we have

(h o...o h h O h o h)(x)
... -1 i... 0 h2 ...

= (h1 o ... o h_ 1 o h i(x)

(h1 o ... o h .2 )(h . (x))Fi.2

= f(x).
III. Roots of Permuations

Definition 2. The spectrum of a function f
<V> * <t.>, f 1, is a sequence of natural numbers. If (hi, ..., h is the set of components of

n, the function f : <m> - <m>, then for every
Spec(f) =(ss .s,.

where s is the number of simple functions, compo- 1 .
n that if h : <m> * <m> is a simple function whose

nents of f, whose unique cycle has length n; rp otisacceo eghite tSpe~l) =(m 0,0,graph G h contains a cycle of length i then its--'
Sp ml =Cm,0, 0,iteration h 

u 
is not, in general, a simple function

Clearly, since f is a transformation of a fi- because Ghu will contain (iu) cycles of length
nite set, only a finite number of initial components H
of Spec(f) are non - null. If v =i(iu). Here (iu) stands for the greatest common

(vl, ... , ve, ... ) is a sequence of numbers for divisor of i and u.

which Z £vi < m there exist at least

184
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Let Au, be the set It is clear that the previous condition is
sufficient because it implies that (1.J) is consis-

A U,- {i I iC N, i/(i,u) = 21, tent. Moreover, under the 2anditions of the Theo-rem, the system (1.) has l{ft . /ul I k 1 0 (mod

for u, X f N. Assume that u)} solutions.***

1~I a1t ca Example 2. Let us condsider the permutation f:...
u = P a 1 k and X = 1 " k <7> - <7> defined by the following Table

where pI, ... I P n' is the sequence of primes. x 0 1 2 3 4 5 6

f(x) 5 2 1 4 3 6 0

If i = 1 ... Pk then we have whose graph is given in Fig. 3.

y- min(j j) = a for 1 < j <k

We obtain two cases:
i) ai = 0, which allows y to run from 0 to 2 6

a nd

ii) aj 0 0; in this case y =a + a.

Therefore, Au,i contains 1" "-",- ." 13"

Let us consider the transformations f, g:

<m> - <m>, such that f = gu, Spec(f) = Fig. 3

(t I . ... t, ... ) end Spec(g) = The spectrum of f is Spec(f) = (0, 2, 1, 0,
(sI  n ... ). In view of the aoove discus- ... ), hence it is clear that it is possible to
sion, a cycle of length k of G can arise from extract the square root of the 7 - valued function.

The spectrum of the rouL can be obtained from the
splitting a cycle of length i of G into (i,u) following system:

cycles i/(i,u) = 2. Therefore, 0 = s + 2s

12

"-'-Au, 2.  (1.2.)i =2 2s

for X > 1. We have proved that the existence of a 3 6
root of order u of f implies the solvability of the
system (i.2) in natural numbers, for sl, ..., S, Therefore, the spectrum of the root can be only

n "'(0, 0, 1, 1, 0, ... ) and there are at least
71(31iW) = 35 functions having this spectrum.

Theorem 2. Let f : <m> - <m> be a permutation of
<m> and let u be a prime number. This function has To find a root we have to join the two cycles

*'. a root of order u iff 2 EO(mod u) implies t, = 0 of length 2 into a cycle of length four; the cycle

(mod u), where Spec(f) = (tl, ... , tt, ... of length three comes from a cycle having the same
length. The graph of one of the roots is given in

" Proof Since u is prime, u = pd' we have Fig. 4

d and 0, for 1 < j k, j # d. There-

- fore, Au, {t, tu} if a = 0(i.e. if 2 is not

a multiple of u = pd )  otherwise, Au,2 = {£u}. 2'..6

The system (1.2) can be rewritten as

tz - Sz + usu, if 2 1 0 (mod u) r"7

tX = us u, if 2 . 0 (mod u)

and this clearly implies that t2.  O(mod u) if 3 5

I E 0 (mod u), which proves the necessity of the
condition of the Theorem.

Fig. It
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In general, we can find the roots of order u 8 10
of a permutation f <mn - <M>, where u is a prime,
by applying the following algorithm%

i) Verify if Spec(f) satisfies the conditions
from Theorem 2. _

If yes, proceed to step ii); otherwise stop.U Determine those components s n of:.: the .....
trum of the root for which n E 0 (mod u

by s = tn/u.If n f 0 (mod u2 ) but n 0 1 13

(mod u) chooses < rtn/iu ; Sn is
given in this case by s t - us .

n/U n/u n
iii) After choosing the spectrum of the root

among different possible spectra, assum-
ing that I 1 0 (rood u) and t.  s + 15 18 21

us tuwe shall "aggregate" u cycles of

length t of the graph G into a cycle of
f

length Zu by using the following proce- 16 19 22
dure. If these cycles are C1, .... Cu 16 .0 22

and x1 .... x are arbitrary vertices
U

on these cycles, respectively, we shall
consider the edges (x1,x2 ), (x2 X

.., (x x). The vertex x will be lh 17 20
u-l, "u u 1 72

joined to vertex x I following x1 on the

cycle C ; x1 will be Joined with x5, 7 7
11 2' 2Li 27 30

the successor of x2 on C2, etc.

The number of distinct cycles of length u, 25 28 31
which can be obtained from a set of u cycles of
length 2 , is dependent on the number of ways in
which we join the cycles of length Z (modulo cir-
cular permutations of selected joining orders) and
on the number of choices of theinitial vertex in
every cycle of length 2 (modulo these choices de-
termined by the inital choice). Thus, we obtain

1 23 26 29
(u-I)! u-  modalities of generating a cycle of
length Zu from a set of u cycles length 2 ; there

are (u-l)!£ u- I ( distinct cycles of length £u.
Fig. 5

Example 3. Let f : <32> - <32> be the permutation
whose graph is given in Fig. 5. Its spectrum is The equations (1.2) give .
Spec(f) (0, 7, 6, 0, 0, .. ) . t +

t= 3s- 0

2 6 By choosing s 2 we obtain the following
spectrum for the cubic root

Spec(g) = (0, 1, 0, 0, 0, 2, 0, 0, 2, 0,

and the following graph: .

I3 5 7

0 186
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where X (x, .. xi, ... x) and X'

0 2 4 6 8 10 12 (X1. ... .. xi1 , xi 1  ... , x n) and let us fix the

(n-1) - tuple V'. According to the values assumed
by h and k we can have four different aspects
of the function X : <2> - <2>, where xp(xi) =

x h(X') + x k(X') (see Fig. 7).

1 3 5 7 9 11 13
Xl" 0 0 

""".- .-
i 18 21 24 ~ ~pec(,x )=(1,0 ... ) spec(,x )=(1,0 .... )-i ii
15 1,12 ~ 3 x,(Xj) = 0 ,x,(X ) = 1 :- -

30O

16 19 22 25 8 31

14 17 20 23 26 29
0 1 0 1"-.-.-.-"

x( = x x = " ".
SpecC(1x, =(2,0,0,...) Spec ( X )=(,1, ... ) .. [ . .

Fig. 7

It is evident that no square root exists in
the case when x,(xi) =7. i.e. when Xl is

Fig. 6 negative in xi. We retrieved the necessity of the

It is clear that if there exists a number positivity of f in x i established in (2 .
2 E 0 (mod u) such that the 2k- th component of the -.: . "qq1
spectrum o f the function f : <m > <m > is not a Let noW F : < > be a q - ar , p --

multiple of u (i.e. tR 1 0 (mod u) then f does not valued switching function. We can apply our pre-
vious arguments to the function F by encoding b...

have any root of order u. each q - tuple (al, ... , a q as a number in the

F o r i n s t an c e , t h e r e i s n o s q u a r e r o o t o f t h e b a s i s p , v i a t h e b ij e c t i o n < p> < q> T h e

function considered in Example 3, because t function f: <pq pq is given by f(n)

7 1 0 (mod 2). O(F(O -(n) )). If there exists a root g of order

u of f then the function G(al, ... I a ) =
IV. Miscellaneous Aspects of Extractina Roots 0-1(g(O(al, .. , aq))), for (al, .. . .  aq <p>q

Let f, g : <2 >n - <2> be two Boolean functions is a root of the function F and every such roct can

of n variables. In our previous paper [23 we have be obtained by the above mechanism.
considered the special product "o." , where
f o g(x ... , nx = fx , xI gx ... , Eample 4. Let us consider the 3 - valued, 2 - ary

*I 1 n 1 * i- l 1 2 2
x ), x. By regarding x1 , ... I function F <3> <3> given by Table 1. .
n ni+l ,

X.. .. .... xn as parameters this operation is

essentially a superposition of one variable func-
tion.

Assume that the Shannon's decomposition of f
is f(X) = xi h(X') + ik(X')

187
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Table 1 Table 2

F x (x x )x 1  x2  I l,x) x
1 2 1l'x2 F2 l',2 112G) 1

0 0 0 1 0 0 0 2
0 1 1 2 0 1 1 0
0 2 1 0 0 2 0 1
1 0 2 i 0 1 2
1 1 0 0 1 1 2 0
1 2 1 1 1 2 2 1
2 0 0 2 2 0 0 0
2 1 2 0 2 1 1 1
2 2 2 2 2 2 2 2

Table 1' References

m f(m)
0 1 Li. M. Davio, J.-P. Deschamps, A Thayse,5 "Discrete and Switching Functions",
2 3 McGraw-Hill International Book Company

3 7 New York, 1978.

4'05 4[2]. C. Reischer, D. A. Simovici, "Associative
5 4

Algebraic Structures in the Set of7 6 Boolean Functions and some applica-
S8 8 tions in Automata Theory", IEEE

Trans. Computers, vol C-20, (1971),
Table 1' contains the encoded version of Table 1; pp. 298-303.
the graph of f is given in Fig 8.

[31. C. Reischer, D. A. Simovici, "Several
Remarks on Iteration Properties of

4 5 6 7 Switching Functions", Proceedings of .*

the Twelfth International Symposium -
8 on Multiple-Valued Logic, May 1982,

Paris, France, pp. 244-247. .

(41. S. Rudeanu, "Square Roots and Functional

0 1 2 3 Decomposition of Boolean Functions",
IEEE Trans. Computers, vol. C-25,
(1976), pp. 528-532.

Fig. 8

and Spec(f) = (i 0, 0, 2, 0, ... ). It is clear
that it is possible to extract a square root from %
f ; The Tables 2' and 2 contain the definition of
one of the square roots in its encoded and decoded
form, respectively.

Table 2'

Sg(m)

0 2
1 3

2 1
3 5
4 6
5 7
6 o
7 4
8 8

".- . .,- .
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A QUATERNARY LOGIC ENCODER-DECODER CIRCUIT DESIGN USING CMOS*

David A. Freitas and K. Wayne Current
- Integrated Circuits Laboratory

Department of Electrical and Computer Engineering
University of California, Davis

Davis, California 95616

ABSTRACT disadvantage that they cannot be bussed to multiple
loads. However, in some digital signal processing

A binary-to-quaternary encoder and and interfacing applications single loads are
quaternary-to-binary decoder circuit pair is expected and in these applications current outputs
described as designed in a 5-volt CMOS technology, should function well.
These circuits communicate with logical currents.
Using model parameter values for a standard The trend in LSI and VLSI circuit design and
5-micron polysilicon gate process technology and 10 process development seems to be toward two .-
microamp logical currents, we have simulated technologies, ECL and silicon-gate CMOS, that will
propagation delays of about 20 ns from binary dominate new chip developments. ECL speeds and
encoder input to binary decoder output. With the chip densities are improving each year. Only GaAs
encoder using scaled-up logical currents and can seriously challenge the overall performance of
driving a 100 pF load on the decoder input to ECL, but GaAs gate densities are still very low.
simulate communication between chips, we observe Silicon-gate CMOS processes are being developed and
simulated worst-case delays of about 35ns. refined to the point that CMOS LSI circuits can in 1 0

general out-perform most TTL-based circuits. Gate
INTRODUCTION counts and chip sizes of VLSI CMOS far exceed those

of VLSI LSTTL chips. Thus, we see ECL and". " . -
Much of the recent research in multiple-valued silicon-gate CMOS dominating VLSI chip designs in -

logic (MVL) circuits has dealt with performing the near future. For that reason, we have turned
arithmetic and logical operations with quaternary our attention to some MVL circuits for realization
logical signals on-chip where the noise environment in CMOS.
is considered less severe. Advantages claimed are
reduced signal interconnect lihes, fewer devices, Over the past 10 years, a substantial amount of
and reduced chip area at the expense of increased work has been published on MOS MVL circuits; see,
delay times. The advantage of reduced signal lines for example, [1-23]. In this paper, we describe
may also be important in easing some of the the design and operation of a CMOS binary
packaging pin-out limitations of LSI and VLSI voltage-to-quaternary current encoder circuit and a
circuits. Rather than multiplexing signals on one CMOS quaternary current-to-binary voltage decoderpin, we can encode two digits of binary data circuit that are input-output compatible. These
simultaneously on one pin as a quaternary logical current-mode circuits are designed for use in a ,
signal for delivery off-chip. This quaternary standard 5-volt CMOS technology and all binary
signal is decoded into its two binary digits by the voltages are completely compatible with standard
input stage of the receiving chip. Depending upon CMOS logic. Thus, the encoder-decoder combination '''
the application, the delay penalty for this method described is completely realizable in present CMOS
of data transmission may be easier to tolerate than processes.
the additional complexity of multiplexing
circuitry. However, the quaternary logical system CIRCUIT DESCRIPTION AND OPERATION
we might define must allow for reduced noise
margins when we put twice as many logical voltage The encoder-decoder circuit combination to be
levels in the same total voltage swing available described is designed to serve both on-chip and
for binary signals. Transmission and decoding of off-chip interface functions. With proper scaling
quaternary-valued logical currents will not be of device areas the encoder circuit can drive
directly limited by the power supply voltage, larger capacitive loads with reduced propagation
Traditional noise margin concepts will still apply delays and the decoder can maintain its high degree
when the currents are converted to voltages, but we of logical discrimination.
may be able to take advantage of the analog summing
of logical currents at a node to provide improved Any two binary signals can be assumed to
performance or additional logical functions before represent a binary weighted number. That two-digit
conversion to voltage. Current outputs have the number can then be encoded into a single-digit

base-four equivalent number. Thus, it is well
(*Research supported in part by Data General known that we can reduce the number of signal lines
Corporation under a State of California MICRO required to transfer this information from one
program grant.) location to another to half that required for r
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binary signals. With fewer signal lines containing decoder circuit. The three current comparators
more information, some of the difficult pin-out used in the decoder exhibit the DC input-output
limiting problems in LSI design may be alleviated, transfer characteristic shown in Figure 3.
In an effort to provide this quaternary-to-binary Referring to Figure 2a, the decoder input current,
encoding and binary-to-quaternary decoding, we have I , is applied to the drain of the diode-connected
examined several schemes using lonical voltage IN
signals and logical current signals in enhancement N-channel transistor T7 where it generates V
NMOS, enhancement-depletion NMOS, and CMOS GS7
technologies. The encoder circuit shown in Figure Since we want the voltage C to fall to a LOW value
I and the decoder circuit shown in Figure 2 are one when its comparator threshold current is exceeded, ".
realization of these functions that we have transistor T12 will be operating in the linear
developed for CMOS. region. For T7 in the saturation region,

A simplified schematic of the encoder circuit is 2
shown in Figure 1. A reference current is I = K (W/L) (Vs - Vestablished and duplicated by transistors TI-T4. IN 7 7 GS7 TH7

Notice that the current in T4 is twice as large as
that in T3. The binary signals to be encoded are and for T12 in the linear region,
input to the pass transistors T5 and T6, where the
signal assigned the most significance is applied to 2
the gate of T6 which will pass the doubly weighted I = K (W/L) (2(V - V )V - VD ).
current. The pass transistor sources are tied D12  12 12 GS12  T1 2 DS12 DS12
together to form the analog sum of the currents.

The binary inputs are derived from CMOS logic gates The identical NMOS transistors (with identical
that swing the full power supply voltage, 5 volts, width-to-length ratios) are assumed to have
The summed source currents, Io , is the four-valued identical K's, and threshold voltages. For ease of
encoded output current, this discussion we will use K=IE-5 and a I volt

threshold. We must force V to be low enough to
The encoder's four-valued output current is DS 12

connected either on-chip or off-chip to the turn off the gate that it will be driving. For S

compatible current comparator section of the this calculation, we set the maximum allowable LOW
decoder circuit shown in a simplified schematic in logic level of C to be about one-third the NMOS
Figure 2a. The four-valued current is applied to threshold voltage, or about (1/3) volt for this
the drain of the decoder's input transistor T7. T7 discussion. All that remains to be specified is
develops a gate-to-source voltage that then drives the relationship between the input current and the
three current comparators made up of transistor threshold current. Let us assume for now that the
pairs T8-T9, TIO-T11, and T12-T13. The common LOW C output occurs when the I current is 1.1
drain connection of each current comparator IN
transistor pair is labeled A, B, and C, times as large as the I current. Thus, when C
respectively. Voltages A, B, and C will remain THC
HIGH as long as the input current is less than is LOW,
one-half the logical output current increment, I.
For an input current greater than .51, A will go
LOW, while voltages B and C remain HIGH. For an I 1.1 I
input current greater than 1.51, B will also go LOW IN THC
and C will remain HIGH. Input currents greater
than 2.51 will drive C to the LOW state and all Using the two drain current equations and the
three comparators will be LOW. The three relationship between drain currents we have
CMOS-compatible logical voltages A, B, and C then selected, we can solve for the V required to --...
drive the standard CMOS decoding logic gates shown GS ..

in Figure 2b. The decoding logic recreates the two satisfy all these relationships. A value V u 1.5
binary logical voltages in the same order of GS
significance that they were applied, volts results. Given this VGS value and the value

In the next section, we examine in more detail of the input current to be detected, we can solve
the performance of the current comparators, for the width-to-length ratio of the transistors T7 .
Input-output characteristics of the encoder-decoder and T12. Transistors T14 and T15 in Figure 2a
combination are also presented and evaluated in the establish a reference current, 21, that is mirrored
sections that follow. and amplified by factors .25, .75, and 1.25 by

transistors T9, TII, and T13, respectively, to
EVALUATION OF THE CURRENT COMPARATORS establish the three threshold currents. For the A

logical output, the threshold current I is .51.
The operation of the current comparators [24] THA

must be examined to evaluate the decoder's ability For B and C outputs, the threshold currents are
to discriminate between the different input current I = 1.51, and I = 2.51, respectively. In the
levels. Since the three current comparators differ THB THC
only in their threshold currents, we will analyze simplified encoder-decoder shown in the figures, we
the operation of the C output comparator and then are using logical levels of 0, 10, 20, and 30
list the specifics of each comparator used in the microamps. Current comparator C is to provide a _
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HIGH output voltage for input currents less than 25 impedance decoder input will also respond to
microamps and a logical LOW voltage for input voltage noise signals with a high gain. To reduce
currents greater than 25 microamps. Thus, the sensitivity to input voltage noise, we can replace
threshold current for current comparator C is 25 the Widlar-type current mirror circuits with
microamps. For the data used in this example, circuits that have a common-gate buffered input,
width-to-length ratio of 10 is required to provide such as the commonly-used cascode- and Wilson-type
the necessary voltage swing, current mirrors. .

Greatest comparator discrimination is obtained In the next section, results of encoder-decoder -. .'
by using maximum comparator gain. This current simulations under on-chip and off-chip interface
comparator configuration converts the input current loading conditions are presented and discussed.
to a voltage, V that drives a common source

ENCODER-DECODER PERFORMANCE -- SIMULATIONS
amplifier with active, current source, loading. -
Another way to describe the operation of this The decoder current comparators' . .
circuit is to consider it a current mirror that current-input--voltage-output DC transfer
reproduces I as ID , and I drives a high- characteristics are shown in Figure 3. These and

IN D all simulation results presented in this paper are
impedance active, current source, load to convert obtained using HPSPICE [25] and the model
the current difference to a voltage. Either way, parameters shown in Figure 4 [26]. The model
we can analyze the comparator and find the parameter values are for a silicon-gate process
transresistance amplifier gain, Ro, to be the that yields 2ns inverter propagation delays for the
parallel combination of the output resistances of center inverter in a cascade of three inverters. .
the n-channel driver and p-channel load devices; In Figure 3, we see the current comparators

switching at the appropriate threshold current
-1 -1 levels with gain that decreases at higher threshold

R (Vc/II) r r = (I ) 1(i An current levels, as we expected. Transmission of
O n binary data through the encoder-decoder combination

is illustrated in Figure 5 where we see on top the
-1 20 input, below it the 20 output, then the 2'

R (ID(Ap+ )) ,input, followed by the 2' output, and finally the -=O (I A+n _ . .. -
D transmitted encoder output current. Transient

"glitches" are observed on output waveforms when a
for the active load connection, where X represents change in the input combination is greater than one
the channel length modulation effects and has units and thus requires the decoder to temporarily decode
of V-1 . A large gain is desired to provide a sharp the intermediate state. Worst-case propagation
comparator transition and greater noise margin, delay, when the encoder output current changes
Lower I values will increase the gain at the three full units of logical current, is simulated

TH to be about Sns using logical current increments
expense of greater comparator delay times. One can of 10 microamps. The total encoder-decoder power
increase the interface driving current, II, by, supply current during this transition reaches a

maximum of 120 microamps. This delay can be
for example, an order of magnitude to provide reduced to about 2ns by biasing the encoder and
increased capacitive loading drive capability decoder circuits with a small idling current.
independently of the threshold currents and still
maintain the same comparator current levels and By adding a 100pf load capacitance to the line

gain by appropriately designing the width-to-length connecting encoder and decoder, we attempted to
ratios of transistors T7 and transistors T8, TIO, simulate the environment of chip-to-chip interface
and T12. The comparators and decoder performance through a PC board. Obviously, the small geometry,
will be unchanged. For example, using 101 low current encoder-decoder will operate very

IN slowly under these conditions. Just as in standard
instead of I for interfacing, we will need to CMOS logic design, we need to scale-up the area of

IN off-chip driver devices. Using a four hundred
increase the width of T7 by a factor of 10. This scale factor to develop about 3mA logical currents, S
feature allows considerable design flexibility. We worst-case propagation delays were simulated to be
could apply the same technique to each comparator about 45ns. With a small idling current biasing
to give them all the same low quantity of drain the encoder and decoder, this propagation delay can
current and, thus, the same high value of gain and be reduced to about 35ns. One may vary the speed
still detect the same three input current levels performance of this circuit pair drastically with
selected previously. The trade-off here is the variations in the logical currents. Since this
reduced load driving current available in the design uses constant curren' source circuits,
scaled-down current comparators. These scaled-down static power dissipatinn will increase and be
threshold currents are not used in the circuits nror)rtional to the loiical value of the output
discussed in this paper. 11 nal.

One potential problem we should point out with
this circuit as shown in the figure is its
sensitivity to input voltage noise. Although we
are transmitting logical currents, the high
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SUMMARY AND CONCLUSION 6. Mouftah, H.T. and Jordan, I.B., "Design of
Ternary COS/MOS Memory and Sequential Circuits,"

Compatible CMOS binary-voltage--to--quaternary- IEEE Trans. on Computers, pp. 281-288, March 1977.
current encoder and quaternary-current--to--
binary-voltage decoder circuits have been described 7. Etiemble, D. and Israel, M., "Implementation of
and simulated performance Ciscussed. Encoder Ternary Circuits with Binary Integrated Circuits,"
current outputs are easily dfnd reliably generated Proc. 7th Intern. Symp. on Multiple-Valued Logic," -
and can be a~nalog summed to perform that arithmetic =9 -7T =-.
operation with reduced hardware requirements, but
they do suffer from the inability to drive multiple 8. Liu, T., "Synthesis of Multivalued Feed-Forward
loads. However, in some digital signal processing MOS Networks," IEEE Trans. on Computers, Vol. C-25,
and interfacing applications single loads are used No. 6, pp. 581-TW -une 1977..
and current outputs should function well in these
applications. Our simulations of this 9. Carmona, J., Huertas, J. and Acha, J.,
encoder-decoder circuit pair indicate a wide range "Realisation of Three-Valued C.M.O.S. Cycling 0
of propagation delays are available that vary Gates," Electronics Letters, Vol. 14, No. 9, pp.
inversely with the magnitude of the logical 288-290, April 27, i-7-
currents used. The decoder comparators show good
discrimination and their thresholds are easily set. 10. Koanantakool, H., "Implementation of Ternary
Overall, this encoder-decoder pair works well and Identity Cells using C.M.O.S. Integrated Circuits,"
shows promise. Further development and refinement Electronics Letters, Vol. 14, No. 15, pp. 462-464, -.
of these techniques are under investigation. Ju1y20, 97T. .

Given the reduced noise margins of the 11. Huertas, J., Acha, J. and Carmona, J., "A Note
quaternary logical signals, a well-behaved noise on the Implementation of Three-Valued Unary
environment would be necessary to minimize Operators with CMOS Integrated Circuits," Intern.
transmission errors due to spurious voltage noise. Journal of Electronics, Vol. 46, No. 2, pp.
Nevertheless, communication between VLSI chips with 705-M,-February 1979.
quatrnary logic signals could provide important new
options for pin-limited chip architectures. Use of 12. Huertas, J.L. and Carmona, J.M., "Low Power
the two "extra" states in quaternary logic for Ternary C-MOS Circuits," Proc. 9th Intern. Symp. on "

* testing and diagnosis could also be valuable. MVL, 1979, pp. 170-174.
Continued investigation into alternatives to binary
signal processing, such as MVL, is necessary to be 13. Israel, M. and Entiemble, D., "Some New
able to take full advantage of the rapidly evolving Results for Ternary Circuits," Proc. 9th Intern.
IC fabrication technologies in the future. Symp. on Multiple-Valued o
Quaternary logic's potential has been widely
acknowledged; reduction to practice remains a slow 14. Lloris, A., Prieto, A. and Velasco, J., B
process. These studies attempt to carry the "C.M.O.S. Circuit for Implementation of Unary
practical consideration of MVL closer to Operators in Ternary Logic," Electronics Letters,
viability. February 28, 1980, Vol. 16, No. 5, pp. 161T12.
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Abstract 2. 12L Multivalued Operational Circuit

This paper presents a new mask- Fig.1 shows the general scheme of an 1
2
L .1

programmable 1
2L multivalued logic circuit. multivalued operational circuit using the

The proposed logic circuit is a variable ROM structure. Logic circuit A is shown in
operational circuit using the ROM Fig.2. Logic circuits C for the MAX/MIN
structure. The sensitivity analysis is and the multiplication operation are shown
given for this logic circuit assuming equal
current gain error for all multicollector
transistors and equal current error for all Ix OutputL1ogc
threshold current sources. The limitations 0-circuit Logic circuit C
on the number of the truth values and on
that of the input variables are discussed A -oOutput2
using the results of the sensitivity
analysis. The operation of the proposed
circuit is confirmed by the breadboard Logic circuitA
testing.-

1. ntrducionFig.1 Circuit configuration.
1. Introduction LJ3-0

This paper presents a new mask- =1
programmable 1 2L multivalued logic circuit. i J- 0
Multivalued logic circuits have been r0.5 -i
constructed by the voltage-mode bipolar or
CMOS circuits in the pastil]-(31. But these - 2-1
circuits required large number of elements Jl-2
and were not suitable for high integration. =1.5 Tr2-2 =1 2
Recently, 12 L technique has been recogni- 2 2 W m N 1 1

zed as a promising method for implementing Ix I

multivalued logic circuits[c4-15]. For L- J2-(n-2)' Tr3 -(-2)
implementing multifunctions in the form of n-1)
the I2L circuits, th__resent authors have o- r n - n-1.
been proposed a MIN/MAX circuit, a Literal/
Successor circuit, a D latch circuit and
etc[6)-(8]. In this paper an 12 L multi- circuit A.
valued universal operational circuit using Fig.2 Logic C
the ROM structure is proposed. The proposed
multivalued operational circuit can provide IXaxis I C2 _ ,-..C3 .-

both the multivalued arithmetic and logic 0Tr Tr"
operations by mask-programming the ROM's. -- _"_: '
Further it has two output terminals, and at 0 MAX
each output terminal a different output can

Sbe obtained simultaneously. The features of Tr
this circuit can be summarized as follows: *V

(1) high flexibility. T-"
• (2) low cost as a result of standardi- Tr.

zation. Tr3 l MIN
" (3) suitability for high integration. 2

By the sensitivity analysis of the propo- '"-
sed circuit the limitations on the number 2 Yaxis

of the truth values and on that of theFi.3LgcirutC(X/Icrut)
input variables are discussed. Fi.3 Logic circuit c (MAX/SIN circuit.
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multicollector transistors. From Figs.3,
1 Ouput Oututl4, and 5, it is clear that the value

tputlwritten in the unit cell can be read out

-u only when the X-axis and Y-axis
to the crosspoint of interest are both in

Inputi 1 input 2 the on-state. The outputs of unit cells in 0
Out the other crosspoints are zero according
Outpt 2 Outpt 2to the property of the logic circuit A

tupt 2up~t given by Eq.(3). Then the output of the
logic circuit C is obtained by taking *OR"

Piq.4 unit cell (two-input case). of the outputs of all unit cells. Now if
the arithmetic operation with two

tx sC C' +Vvariables is symmetrical with respect to

a 
two variables in logic circuit C, 

the

MAX 2

# 0-

0 r5 t,*MIN2 F r4 xT Trs

Fiq.5 Logic circuit C (multiplication circuit).

in Figs.3 and 5, respectively. In the Input 20
logic circuit A of Fig.2, the output for I~A
each input Ix is given as follows: y(A

(f0 ,fj,1  ,,j=l,0, - ,0) (for Ix=O)
*(f0,fj,-,f.K,)=(O,l,-.,0) (for Ix=1)2

(ff,,,~,)(00,-.l)(for Ix=n-l). Ix (mA) 10

Thus the logic circuit A performs as the rcuitvlogic circuit with one input Ix and n Pig.6 input/output waveforms Of eIAX/MIN cirut
*outputs fils (1 = 0 - n - 1).

From Eq.(1), fQ can be given as Carry 1

1 ... max(0,i-O.5) :SIx 4. i + 0.5 (mA) a
0 .. elsewhere (2)

*where max(a,b) is defined by Multipli- 2
* max(a,b) = a if a ?_ b cto

(mA) a -

*max(a,b) = b if a 4 b.
Evidently from Eq.(l), a following
property can be obtained; Input 2

= 1 (3) I~(A 0
As shown in Figs.3 and 5, the logic-V.

circuit C of Fig.l is a current switch 2
array composed of multicollector transis- Input 1
tors. Fig.4 shows the unit cell for theIx(A
crosspoint which is denoted by the circleIx(A a
in Figs.3 and 5. The numerals in each
circle denote the magnitudes of the so,. jv
current sources. In Figs.3 and 5, let us
name Trl - Tr3 as X-axis multicollector Fiq.7 input/output wavesform. of multiplication
transistors and Tr4 '-Tr6 as Y-axis circuit.
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Table 1 Truth value table f(I r) f(Ix ly,."" ;jp4) (6)

MAX MIN cation Carry f(I 0) f(Ix,Iy,...,;p,)lScation # -

-Input Ix Input Ix inputIx Input Ix (7)

0 1 2 0 1 12 0 1 2 0 1 2 will be used in the following. 0

11210 0 0 0 0 0 0 0 0 In the arithmetic circuits, let us
':: I 1 1 1 1210 1 1 Oi 1 2 0 0 0 cn i

tions:
2 2 0. 1 2 012 0 0 1 1. Gain errors of all multicollector

transistors are equal to .

2. Normalized threshold errors of all
required number of the unit cells in the current sources are equal to 4'.T•
n x n current switch array can be reduced The input currents can be assumed to have "
to (n2 - n)/2 + n. no errors without loss of generality.

In comparison with the two-valued ROM's, If the value of f(I,0) corresponding to
the circuit in Fig.1 can reduce the number the truth value 1 is denoted by f0 , the .. .
of the input and output terminals as well relative error M of f(Ij) with respect
as the number of the unit cells. Further to f(I,O) is defined by
the function of the circuit can be mask-
programmed and two different outputs can f(Is) - f(I,0)
be obtained simultaneously. Since the M 4 (8)
logic circuit A in Fig.2 is not so simple, f.
further simplification is still in study.
Figs.6 and 7 show the input-output

waveforms of the MAX/MIN circuit and of 3.2 Analysis on the Arithmetic Circuit
the multiplication circuit. In the
experiment the three-valued MAX/MIN and For the current source JI-k in Fig.2, -
multiplication circuits were tested. The let us denote the designed threshold
current values 0, 1, 2 mA were chosen to value and the deviated threshold value by

the respective truth values 0, 1, 2. Jh and J%(l-ij), respectively.

A truth table is given in Table 1. For the input value kIo of the logic
circuit A, let us denote the deviated
input value by kIO(l-r,), where Io is an

3. Sensitivity Analysis output current corresponding to the truth

3.1 Preliminaries value 1.
The logic circuit A operates correctly if

.. Let us conFider the general I2 L arith- the following condition is satisfied:
metic circuit composed of the current
mirrors and the threshold current sources. J.(l ) kIl(-) JM(14) k=l~n-1
Let Ix, Iy, ... denote the input currents (9)
or the threshold currents. The symbol ;P w e-,(-0.-
is the gain error of the current mirror where Jh (k - 0.5)Io.
defined by The relative error of the effective

threshold values (the right or the left
side of Eq.(9)) must be less than a

. in - lout (4) constant d, given by the specification.
Iit Then the sufficient condition for this is

where Iip, lout are the input and output
currents of the current mirror, respec- ( [ + 141 ) J" < di (10)
tively. The symbol j3 is the normalyzed
threshold error of the constant current where J, 7J,+ k J,, [ 0, IJD -11 "
source defined by

+ 141 , and J J,/Io = n - 0.5 were
* J - j"ued4,1 J (5) used.

Since the logic circuit C is a current .- '
switch array composed of multicollector

where J and J' are the design value and transistors, the error in the output
the effective value of the constant currents is directly due to the errors in
current source, respectively, the values of the current sources or the
Then the output or the effective threshold current mirrors. Hence, the relative
current of the arithmetic circuit can be error Mc at the output terminal is given

'*:::: expressed as the function of Ix, Iy, ... , as follows: -...:
p -, and C , which will be denoted by f(Ix, ^ .. :

,). Further in the follow- Mc = J- J(1-)(1-) -
ing equations, let us assume Xp L 0 and . ...
can take positive or negative value. .
For convenience, the abbreviated forms 1 J(2 3 + fj) (11)
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where J , 1l < 1, J J/Io and J is the V
current value of the unit cell in Fig.4.

IMcI is restricted by the condition

II < d2 (12)-
where d2 is a constant provided by the 2Pt
specification, and must satisfy d2 : 0.5. 0 V
From Eq.(12), Eq.(13) can be obtained

AA

S(2 f# + IJ) < d 2  (13) U2

using 12 + S 2 5 + + 7 2. 
.. •--2

As mentioned above, it is necessary Eqs.(
10) and (13) are to be satisfied simulta-
neously.

Numerical Example 1X1 "

As a numerical example, let us consider 2

the three-valued(n = 3) two-input case:

d, = d 2 = 0.5, IJ1 I = 0.05, J = 2.5 and
5 2. Fig.8 Three-valued four-input operational circuit.

Then we obtain out

< 0.15 from Eq.(10). (14) ?" '

.01 from Eq.(13). (15) SW

From Eqs.(14) and (15), we obtain
uvw uv.w (

( 0.1. (16) Fig.9 Current switch.

Therefore, the current mirror with the
common base current gain more than 0.9 In this paper an 12L multivalued
should be used. universal operational circuit using the

ROM structure is proposed. The proposed
3.3 Limitations multivalued operational circuit can

-The limitations on the number of the provide both the multivalued arithmetic

" truth values can be obtained by Eqs.(i0) and logic operations by mask-programming
and'13).the ROM's. At two output terminals,• .- and 13).different outputs can be obtained
As a numerical example , let us consider differentous ab i"- h*aewt p=00 =d • simultaneously.
the case with rp 0.05, di = d2  0.5 By the sensitivity analysis, the

and j j = 0.05. relationship among the tolerances of the

From Fqs.(10) and (13), we obtain multicollector transistors, the number of _____

the truth values and that of the input

n < 5.5 (17) variables are made clear.
The experiment was carried out using

and n < 4.3, (18) the current mirrors constructed by

respectively. discrete elements. The performance of the
From Eqs.(171 and (18), the maximum number circuit was confirmed up to about 500 kHz.

of the truth values is four. Further this The signal level was set to mA orders.
circuit configuration can be extended to The problems such as operating speed i
the multivariable case. In this case the and power consumption are not treated in -

number of the input variables will be this paper. More work is needed on these
limitted by the area of the chip, the problems.
complexity of the layout pattern and etc.

Fig.8 shows the scheme of the three- References
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Logic-type Schmitt circuit using multi-valued gates 0

by Fumio WAKUI and Masairhi TANAKA

Depertment of Electronic Engineering, Faculty of Science & ""A:

Technology, Nihon University, Funabashi City, Chiba, Japan

Abstruct 2. Physical meanings and Definitions

Logic-type Schmitt circuits (LTSCs) proposed in 2.1 physical meanings
this paper by author's proposal are a new detector A r-vlued v-threshold logic function is known
for a multi-valued multi-threshold logic circuit, with the interesting contents by1] , [2], inwhich it
and it realizes the high resolution with a little realizes a single output for the many inputs. Alog-
hysteresis or the high noise margin. The detector ic input vector X (xl,... ,xn ) of it generates an
consists of the conbinetions of the multi-valued excitation "e" by a transformation of a logic func-
gates (r.VGs) and a positive reaction device (PRD), tion with a proper weight vector W(wl ,... ,wn ). The
and each circuit can be realized by the convention- 'V"' is chosen according to Eqn.(l) so that the "ell
al circuit elements, shall be taken the different values for different

This paper shows their practical circuits, and truth values. And the"e" producea logic output "y" ,
*- describes the regions and the conditions for their e=W.X (i

°peration. classified by a multi-ti'eshold detector with a

1. Introduction duhesbold vector T(t1 ...., 
t
v
1
. Here, the "y" against

It is well known that Schmitt circuits detect an the "X" can be presented by a value vector Y(y 1Yk''yv+) of the logic values accordin! to the"- .•".'
.. analog input levels and obtain a digital output trnsfo o th ic vs ef inb the

with the waveform-sharping under the high resolu- tranformation, so tat it is defined by the follo-

tion orthe high noise margin conditions. The positve win0ge~uation.
' feed back circuits correspondinp to their circuits Y 3 Yk (2)

are used as the logic circuits with the high noise k 1,2, .,v+l
margine in digital systems. However, it is difficult y (0,1,2,...,r-l)
to realize the large logic circuits because of the 2.2 Definitions and operation for the LTSCs

*' circuit and logic analyses for it. But, the LTSCs This paper describes about the construction
wilt realize a larger circuit than them. "-p'd c"'-t-o-"i

As the input-output characteristics of i:ie LTSCs
depend directly on the graphical presentation which C + WC
is shown by a transformation of a logic function[l] x _r e-
I;,]- they have transfer characteristics with pros-
pects for less circuits and logic analyses 

etc. by X3 - G e-

. comparison with the conventional ones. R" "

The construction methods by the practical cir- G ": "
- cults of the LTSCs use a combination of the MVGs real- " " "

l;zed by the conventional elements with a reference S
Iorminal and n PRt) C3 with a special response in
r, nrl to the current innuts. As the LTSCs in this
way e constructed by the simple couplings of the (a.

a OIRt, the sufficient temperature stabil-
ity -in; the permissible error for the elements can X[:-
be prov'ec' with a few considerations. Further, the . .ro "
minimur gate-current and the operational region for X2  2JO I
the L.TSCs are described and investigated by the X3_W.9
comparison with the experimental circuits in this I , .Y""
paper. As the future problems, when the LTSCs shall +'".
he attempted for the practical applications [4)-[6), X"
then LTSCs will gain their position so that they are
required for the binary logic or multi- valued logic
circuits.

F '. I rn t ical modul h of the L'!('i- -
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signal jpofa PD byawired summtion of the cur-
;' Vs •Et(V rents(jG.j--( judged by the multi-reference voltages

" ~of the MVGs. As a PhD has an alteration quantity. . .

[' . ~ ~~AJp of the (p. The response signals (eRip) generate L. ."

. - iGG the varieties (aeR,ai R ) corresponding to them. And
the (eR,6R ) are distributed the multi-reference

it;i:--)p signals (erk,e-rk) by the level shifts in the MVGs,
so that they supply as the positive feed backs for

____ __ the reference voltages.
0 | 0 -In Fig.l(b), A special connection between the JG

S0 Erk erk_1 ev 0 IS 4P and the ev ensures to operate at smaller gate-cur-

(b) rents than another. They are designed so that, dur-

Ftp. I i nput-output claract rlntics of ing the operations of the LTSCs, the (AERA4p) of a
th- MVGs and the PHI) PRD can be ignored against a DC voltage ER in Fig.2

(b). But their conditions for the LTSCs with a bi-

methods of the LTSCs based on the preceding physical nary output can be excluded. Accordingly, in Fig.2

meanings. And it is almost expended by the descrip- (a), when the ER is used as the reference voltages
tions in which a new detector is realized, of the MVGs, the JG can be shown against the jG.And, "

For constructing the practical models by our pro- at the time of the perfect cut-over of the (Jgk'Jgk
*posal in Fig.l, the following symbols are used. ) of the MVGs, the ew is required for the ev.

(1) A voltage signal ev and current signal Jo In Fig.2(b), the linearity and stability of a
are defined as the circuit symbols output signal jo and the (eR,e R ) corresponded to a 5
corresponding to the "e" and "y". variation of the input signal (jp or jp+,jp-) of a

(2) The currents (Jl,. -,Jk,..,Jv+l)correspond- PRD are required.
ing to the vector "Y" are defined. Fig.3 shows the J. of the LTSCs obtained by the

(3) A excitation voltage $u with a minimum unit mutual operation between the MVGs and a PRD. Now,
is defined as a minimum distance between when a input terminal of the detector by the MVGS

the each thresholds. has the ev, the Jo can be shown with a general form

(4) The gate-currents (Jgk,
T
gk) which are pres- as a dotted line at the right of the same figure.

ented by the polarities and a magnitude of And at the left of the same figure, a PRD against S
the (Jk+l-Jk) are defined, the ev generates an output and the (eR,-R )

(5) A (
0
, gk with a magnitude of the (JgkJ'gk) corresponded to the points shown in the Jo.

is defined as a magnitude of the Next, as a loop current gain at the all regions
differential voltage in regard to the ev of the transitions of the LTSCs is 1 or more, they
with the hysteresis. have a hysteresis characteristic in proportion to

(6) A DC voltage Erk which correspods to a value the Jgk at the points (k and v) shown as a sample.
of the threshold "tk", and the reference And, near the point (k), when the Jo of the LTSCs
signals (erk,-rk) in which the Erk and the changes from the Jk+l to the Jk by increase of the S
two signals (AeR,&aR ) corresponded to a ev, then in order that the eR is kept to the point

variation of the ev are included, are (k)+, the holding are executed so that the eR
- -. defined. against the Erk is too large by the Ow(Jk+l-Jk)/2.

(7) A DC voltage ER from which the Erk is Here the $w is a quantity corresponded to hysteresis
supplied, and the response signals (eR , R

)  
with a unit current. While the restraints with the

from which the levels of the (erk,Irk) are inverted holding are applied at the time of decrease
shifted, are defined. , so that a hysteresis corresponded to the 

0
w(Jk+l-

(F) The (AER,&ER) are defined as the maximum J
) 

in the same figure is caused. In the same way, .
voltages of the (&eR,.-pR), and a signal AJp inverted hysteresis is caused near the (v).
corresponded to the (AER,aE R ) is determined.

In Fig.l(a) the ev of the detector with an analog

or a multi-valued input becomes an input-current Iu/(iJ

e 
e r  E r k  

O I

(k Ic-il (Il

"-(J -J 1)(O (k) • " " -"2

"I"T -k I
w  

I -Ce,). ".

I) (k-1) .... . i

-•I. .,. . .

, *,_ _*_. E_,EgT,,,,LUni

I- j.' ) . 3 MuIt- I, l (rt't ion btwci'rr thet V(;!; 4 1'r- tiI
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Fig. 5 Graphcal presentation as example
of the MVGs .-

JG v
3 K 1 _V.__ _

2-7V - - - - -j 9  (a)

(2-A) V
a 2  VC

Jg2
C4 3 O.s

•Jp. 12. . .

jo (1 
.A)

Fig. 6 Special operation of the 1lVGs Js Jl

-" 3. Practical circuit and operation conditions _/ -

mL The LTSCs shown in Fig.1 consist of an weight _b)

" circuit with no feed back and a multi-threshold (b)

circuit which has the positive feed back loops from Fig. 7 Practical circuits for a PRD

a PRD to the IIVGs. And, the LTSCs execute some logic Vc
functions by the set of the resourceful weights
against the inputs(xl,. .,xn) and with the several it

thresholds, in which the multi-threshold circuit
consist of the MVGs obtained by, the vertical-cascade VI

connections and a PRD with a common base 1"" 
-

connection at the terminal of the jp, so that it ...-

will have a high speed characteristic. -i I . .
To ensure the stable operation for a realizati-

on by the circuits, a circuit design under a consid-
eration of temperature characteristics is important.

The LTSCs are constructed according to the following R R
conditions. R

(1) The logic inputs (xI, .,xn) shall consist of IRV
the currents with tne sufficient stability,(b
the all currents shall be supplied from a (a) (b)

multi-current source. Fig. 8 Voltage and current sources

(2) All internal reference voltages of the NVGs are R2 =O.6k,R3=0.9k when the S2 is off, because, the cur-
shall be decided by the resisters (R2 ,..,Rk, rent Jgk in thisMVGs canuse the quantity (2mA) with the

Rv) and the current source, (Jgl, - ,Jgk, 2(Jpk)in in the same figure. Further, as a special oper-
.... Jgv). ation, when the ER is supplied to (+) terminal, the MVGs

(3) The signals (eR,TR) shall have DC voltage operate by the levelshiftsof the ev, and theERis ad-
component ER with the sufficient stability. justed to the Erv. At this time, arelation of the comple-

Fig.4 shows a practical circuit for the MVGs. Wh- mentary outputs UJG & TO inverts, and an unshown resist-
en the e R is supplied to the (-) terminal, one of ance R, must be used between the ?M/-s and the PRD so that
the PIYGs decides the many internal reference voltag- the differencial voltage ((ev)max-Erl) canbe gainedby
es (Erl,..,Erk,..,Erv by the voltage drop from the the Rland a costant current JB. For example, the Rj for
resistances (R2,...,Rk,..,Rv) and the currents (Jgl, the iVMswiththe((ev)max Vs=6V, andJB=(Jgk)mina-

.Jgk,.. Jgv). Here, the Rk is decided by the J gk gaint the jG ) becomes (0.6(6-1)+0.3)/l3.3k when the
and the differencial voltage (Erk1lErk). S2 is on in Fig.6. Fig.7 shows two types of the practical

For example, now we are planning to design for the PRD. The type in Fip..7(a) puts out the response signals(
realization of a graphical presentation shown in Fig.5. eR,WR) corresponding to the ER and the&eR and the level
Andas thecircuit conditions, when avalue of the uand of the (eR,FR ) is shiftedby the (Jv+lJv+2) the Jp, and
a aminimumgate-current (Jgk)min aregiven by0.6VandlmA resistances. Here, in the same figure, a small
,one of theH VGshas the resistances (R2=R4=O.6k,R 3=I.2 resistance Rr must be chosen according to the
k) when the switchS 1 ison. Foranother the resistances Pr.Jv~l,qr.Jv+2aot so that the PRD can be satis-

2D3
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Fig. 9 Presentation Of the LTSCs for
the loop gain

* " fied the condition of the unsaturation for the MViGs. 015v

And, when the AER and the *Jp were given as the op-. .

erat ion range of a PRD, the RR.Pp*Jv+l/(2ew) must be CC 1 J' .
designed to become the ratio (&E8/AJp). *i es t ,, 91

For example, at the (AJp=5mA,AER=0.6V,8,=0.l5V, iga a (mA)l
and Jv+l=Jv+2=lmA). the P.pbecomes 0.036k, so th- (a)
at the RH at the Rp=0.5k Must use 0.072k. Fig.7(b)

* ~shows a circuit with a loose coupling condition for e a
the MV~s. For a PRD in this case, it is necessary,
that the Rin same figure shall be chosen by the E 05V

(hER/Aip), and no other conditions are necessary in *Z0 ,t 51
order to operate in the wide range of the J.oli

rig.8 shows a voltage source snd a current source

used for the LTSCs. The voltage source shown in Fig.

8(a) can Supply Vsnl,Vsn2 with a negative tempers- 6. ty

ture coefficient and the Vs with the sufficient sta- Ilk

bility in regard to the temperature. With AK -1+Allt/ Oak
Rt and AKiot=l-*it/qot as the coefficients offtempera-_ 6.36 8.4
ture variations for the transister current amplifi- 64k

cation factor fit and the forward voltage $t, a con- kt

stant m=AKt'hKlt can be established as an approx- _________________

* imation over a wide range. Using these, the stahil- i

i ity cond it ion for the Vs caibe expresed afollzi6; ZI (kfl

V13t 
8
v3 2 RV3 Vit (b)

2m~o - +V (.)+V -2m -o- =0 Fig. 10 Specification of the PRD ad
c0N- Sc Vc) c the MVGs for the LTSCi

At this time, the V, is obtained by Eqn.(3). are not to choose a beat method.

Pv3 VS t When the LTSCs in Fig.l(a) are applied to 'e re-

v5=v mcV-l--c- alization of an r-.valued logic function, the magni-

with80,4~o fi an *o t rom empratre.tude of the AJi. shows with the (Jkmnand the '
withBo,0o: t ad $ at oomtempratre.by Eqn.(5). Accordingly,CGR-hJP is required for the

PR1 //Rv? Rvl//Rv2 AER.
8081 c V c Ri V For example, now the LTSCs are used in order t o

* 3.. Lop ain nd asi deign f te LSC5realize a quaternary logic function, and when the
conditions of the construction and the operation are

The LTSCS are designed so that a loop gain be- shown by the (G=1.5, (.Tgk )min lflnA,6O.l5V,43-lk),
tween the 1lVGs and a PRD becomes 1 or more. The fol1 then theaR according to Fqri.f4)becomes 0.1%k. Ac-

lowing definitions are made from the I.IVGs and a PRD cordingly, a PRO must be designed so that the UJp

characteristics of Fig.2. Next, a positive feed back and the ER have 3.73mA and 0.73V.

Definitins;CLR=deR/djp, (Cc)k~dev/djgk UJp (r-1)(Jgk)'min

model for the LTSCs is shown in Fig.8. According to rlZ JYn/Z -~0

Fig.9, the circuit loop gain Gi can he shown by With (Jgk) 'min (l+(%/78H).(CN/Zp),.

Eqn.(A). The G for a PRD of Fig.7(a) is obtained in ,,,

the same way, and it corresponds to the case of Z 1km00

G gk(eR)+eR( (ip)k)/ZB
Up~k For the LTSCs, the magnitude of FEqn.(6) can be

expected for the ($w)gk from the definition and Eqn 7

(4) .(4). For desipgninp. some log~ic circuit by the LTSCs9
shown in Fig.l(b), the AJ and the &EP with *.he jar-

wihp (j )% Kr ge values for a PRO ca n be exp ected and their magni-

S( )~R -e ((j )k)/(CA =(,)VI(CQc~ tudes can be obtained by Eqn.(h)) and a value of the

g logic levels in the detector in which it shall be

in Eqn.(4). The LTSCs for the small current of the decided by the number of the threshold and the shape

14VGs can be designed with the large aR or the small of the step-slope in Fig,.3. Next, when a condit.on

ZBfrom the definition and Eqn. (4), but our objects (wg 5 e. 6

sw k ZB-(G-1 V,
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waveform is shown in Fig.16.

?0~C I i4. Conclusion

It has been shown that the LTSCs can be realized

easily by a simple principle in case of the MVGs
constructed by the elements (ECL,SCL) with a

0 301C reference terminal. The stable operation of the
0 3threshold voltages and the logic output levels of

the LTSCs over a wide temperature range fiave been

confirmed.
The LTSCs will advance the increase of the noise

I0*r margine or the resolution for the detector of a

multi-valued multi-threshold logic circuit, and the

3 4 b 6 7 8 9 l new circuit realization for an application with the

different region in regard to the conventional S
region will be expected. And in this paper as an

Fig. 15 Independence property of the thre- investigation for the integrated circuits of the
shold voltages from temperature LTSCs, the LTSCs have been constructed so that the

decrease of the gate-current and the large or small
quantity of the (Ow)gk were attempted to the cir-

cuits for the practical applications. And, by the

2' analyses and the experimental circuit, the reasons
stopping their attempts could not be found. S

In regard to the practical investigation for the

packing density, the operation speed, and the noise
margine etc. When the LTSCs for the applications in

the regions with the grate effects will be used,

their magnitudes must be investigated as the prac-

-2 tical values.
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At the first, a schmitt circuit has been con-
structed so that it executed the detection and the
waveform-shaping for a input with a symmetrical

signal against the ground. And the input-output
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.C If "is propositio.,l 1v ri~bl ! occurring,
bstract in the formuir F rnd the result of rtnl~cin?, 11

Substitution rule typo fornlisations of occurrences of 'in 11 by tt.P formpla ti it a then,
proposition-1l calculi without nonstants a re if F ir correct formuli, Z: is correct fonflul' *

derived from existing ;:xiom scheme typo
formalisations. .The degree of completeness is R-1 If,& is -v riaible functor occurrmne in P :

evduated in tif'~ c.,se here the variable functors iand the result of repl; n all occurrences of,&

take vwlues in the set frc, 011 of Zukasip.eicz in P by the variiable functor.& is then, if P in

rn-valued or N0 -vplued implica tion and its correct formuln, is corr(ect formula.

* ~converse. *C enerise rRuti1otie frte may be repla.ced by the following rule RI A,

*-.cases where the degrees of completeness of the since R1 follows from PlA ;nd TV:
correspond ing fonaalisations of conventionail
rn-valued -nd ?4,-v.,lued propositional calculi ire 51 A If P .nd C PQ ire correct f.*tsulae, then

lioin. A method for the eviluatioh of these latter is .correct formula..
degrees of completeness in a wide clzss of cases

* s ls gve.(Let P" be the result of repla cin, 11 occurrences

of 8 in P by a variable functor-k which aoca not
ocuri and let P* be the result of

.~eshal onsde fist n-alud rn6 3replacin6 iall occurrences of A in 11 by S. Let'

and 4-vnlued propozitional calculi whose only dind siiPry Thu Pr /J hPCC -*, CP* *by F'. tUsinc; MIA -nd R,
primitive symbols Pare propositional variables p, q, nPC''P*/
r, ... and binary variable functors , 1,*.we then infer Q'*, Q and Q.)
having va lues in the set [o, c' where C denotes ~ usino h -uso h rma~

the implication functor of Isukasip,,,icz ndCdegrees of completeness of the new formalisations
denotes the corresponding converse implic-tion then arises a-nd we shall estr-blish , theorem for

*functor. The synt~ctica-l variables P, " .. a 6 cl.as of fformzlis t ions which includes 91*(m=2,

10.... will be used to denote formultas and ',..) nd It qe ghll then consider, insi
* variable functors respectivelk. These calculi hqve -

been formrlisen by the author [4] -d2 ns[]b oegnr, wtterltosi ewe h

me-ns of -finite number of ;axiom scnde on the deree ofcpeeners of th foL tina is beteen thea
sceenn te dge o l so pltens wof t onstisatio of t

f, llowing rule of modus ponens, hore proposition,; aclswtotcntnsadt
degrees of completeness of the rel ted

CAPQ-4JFAAPAPK conventional forxwalis; tions9. Pin'lly 1we sh- 11
give -- method for the evilu tion of these litter

(so that G APY= ~CI-): degrees of completeness which Fapplies to ;wiCe

class of c,-ses.0
RI If P ad C XK re correct formulae then Q

in acorrct orrnlv.Theorem. If formalisitions of -,n m-valued
is(=2 a, coretfo*) and -20 .. alued propositional

ie may obviously obt-in new wea-kly conplete Ind clusithout constiants correspondinE to the

pla-usible form; lis: tions 3 '.(m=- 24V 9,..) set fc, C' f Pre weakly complete and

usinlg only finitely sin3; xioms, if ve replTce the uil an tholY rmtveues f

syntactisal v-ri bles P. Q0,H 6, 1:19A of tihe procedure are the rules RiA, R, , HI then the

xiomschmes(bu ho d'I~1 by~, r,~, , X formplirations have degrees of completeness

respectively (so th-,t, for ex-mple, the oxiom m2adWencies

scheme 41 of the ituthor's preiuparbcos We note first that, in the n-valued. cis,rc
the xio ;pqp, pe.4 6 usinr the notation of at previous paper of the

djoin tOke two following primitive rules of author [51 concerning the correspondin6

procedre p-otlem wQere there are no variable functors and
0
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C is the only primitive functor, b 5, c->,>. In both .es tie result folloas t

(:,C(Cp) ,pp)=k (k=1 ..... . once.

.nd the formul / C /(C p) k4pp takes the srme le now assive ,the result for 0 -p 1- 1 ao.
truth-vlue : s CpCpCp or s ('pCpCCepp rccordin- deduce it for 1. If the I et step in the derivetion
.s k is even or odd. Thus the formula of is' , pplic Ation of hlj to two foaul e R,L.eu CS: 'Yid, under r, p rticul, r -ssi.nment of value"

ES(E~k-qptskes the snve truth-va!lue aS to tevr;befntr f' Otefrua tformul- Pk for hich (Pk)-k when 3 t-kes the the vripble functors of , *, the formulae .,

v-elue C ,nd it ,,lw.-.ys t.kes the truth-velue 1 wher. C. take the S;me truth-valuegs s formulae R

t kes the vlu- C . It follo s -t onc e thit, for CR r respectively,then •

A/
the formulP CpopSOp ... p, the roles of C nd C p

.re interch; ned. Let us atbbrevi te the lptter to/', S(C.t /  ),,c
formul;- .id its countcrpart by Yk, Xk respectively. s) th. .Cso t.-t C. 'Prus the 1rst member of the

'*e note 1iso that if Z. denotes the formula ordered trinle - (Q) is Pt le, at 1_ If li

v-pp pp vri ble functors re ssinel the v':lue c (C')
t her." "h-

then Zk takes the truth-velue 1 unless F, E take .A / .A

the values C, c' respectivel,, in which caso it
takes the sme truth-value as formul. Pi so that -(n') .;(B) ond the first (second) member

S / C(Cp) -- pp) for which of the oered triple -- Q) is at le-st A(B).
(,cCpp(Cp) i. pCp-- ence (A., B,) )

t(p )=k. Let P , P be the formulae obt;,ined f h, B, s in."Q)K
from en arbitr~ry fonnul . P by replacing all If the lcst step is .n "'pplicetion of R2 to s S

/ formul R then, using the notation of the Irst
occurrences of veriable functors by C, C / n

repetvey(naltd,. . ) Pr h, ph, r and, since C is obteinablerespectively nd let P P be the per- 
"

remainin_ formul;,e, obtained by replIcing all from R by substituting for - propositional

occurrences of v rieble functors by C an C , veri ble, (),eC. In the two specipl cases it
each occurrence of the same vri: ble functor follows simil-,rly that _(Qq ),A(B) and the result
beine replrced by the sime constant functor, follows "t once.
where O& is the number of distinct variable
functors occurring in P. Let If the last step in the derivation of Q is -

application of 37 to i formul,. R e'nd 2.la)=,.- .aO 2^R)=Ythen """""'"
-_- (p)=( (P'), 4( "), .f)(i,)). 2 ... J,'then. ,:::::-:::. .

e p r t i a l l y o r o e r t h e o r d e r e( t r i p l e s -( P ) b y s o , . =R 0 .ar
re' uiring ta I -re'uirig thatSO., ", =R ,.a(Q) a(R) and the result.. ..

follows :t once.

Proof of sufficiency . We may suppose tdl witWd!
if %nd only if , Uthe first, second ang third

/ /Z memderd(of tPte ordered triples -(p-) are least
t ( P ( ' ad -t - V , for P~e , respeotively. Let X( be chosen from

We then define the relation ".- in he obvious f 1 , c fro

the se t . 2_**in such a way that AP"-.

w ema... If -1- Y ( ,l, cA) is least. It will be convenient to define (of.B, C efined m , s nd the summation operators wth respect o C,
sufficient condition that P, .. , P j- is CS respectively. We may, as in £5], infer from'" ~ fcin codiio tha P)L.-O) p.oostina vaibesIo&ua t .. PV
(A, , C- (~Q).and the classical rule of substitution for

(A, Bpropositional variables, formulae Plt..I Pt*
Proof of necessity. Let 1 denote the tot-l such that the formula
nutmber" of applications of R4A-4 in the s,. h. h.,,m"

derivntion of (i. ie shpll prove the result by p
atrong induction on 1. If 1=0 then , is .n Pxiozv P ..
in which case Z(Q)=(m, m, m), or Q is one of always takes the truth-v;lue 1. (The forilee P.,

.... P in which ce-se, for Bore Pj may not be distinct, but it will not
i 6 I, .... n , ---()=(a, b, ci) and a1 .A, alwa'r be necessary to repeat each formula -I

2D9S
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times, correspondinj: to the dei11o o
standird condition im efination of (i-

fold iteration of th uctrC O*CJ.') Thus, imilarly ~ ~ *.

if A is , variable functor of and P* is t '+ " -

obtiined from F' by repLi'oin6 all occurrences of C If, in the hypothetical ie~luctio,

* by A (i=n'.1, .. , ), the formult-

,ie repi-ice aill occurrences of ~ b A
vill t-tke the truth-vduo 1 whenever oll vnria ble respectively, we obtijn, in our precert
functors of t, t-ae the vrlue C. Similarly Ve MY forn,-,intior,t~c hypothetical deduLction
construct a forMula1

corre. pondinE to the c'ise where they qll take th- w --r is obt-ined' fro~i~ ~ai( ')n

rc .:those vi-i-,'blp fanctors which u~rp

v u sin)_ np;c rtpl c'i by .'in the conatrxiction Of by A
if YT 6 f,4P ... , 2. we .y similarl.y, A-d the oter bv F~us

Ein.ce (A, 1-, )Z),ifer fron Pr. r~ h

clsilrule of substitution for propositional .. ,Ple=',,., )

v -riables, formula e FeT ... PST sucl, th, t the vnce

formul. dy t7kes the truth-vatlu'e

. nc 1,Iemi'choose variable funotors" PA Py

A ,.which ire rzeplcecL by ',q C rerpeCtivelY nd, since

irn +;c, ?onstruction of t. from (,. Thus if P* Ir is

obt,,incA from P.-T by replacif ,l1 Occurrence, Of ~I~

C by A T 1' **'tn'. romulrProof of the %ain ''heorem. We first re-name the
tn" foru formulae : K-..I A x-....L Xt1 ... "t.

=,e~... 4.hj, respectively. It folloa's at < -

will take the truth-value 1 whenever all that, if A, Bi, i. correspono to the set
v .ria-ble functors5 of Q, take vj.ues corrosqrondiL- C

.* .... - (i=1, ... m-3) then f)Ot (A. b. ..

to thie construiction of h . - -y*~( 1 ., 3M - 1)%45, by l ei4vjj'

It then folw 'it once that if thce foxrulaeP

'tV..,P ~ev t+1,3 -1 P*J3, F~~,ea (s-ince, by Pl~lusibiiity, riot -V.) -ird, for all Q,
.~'~B) 'r~ e-naed , .. , Crespectively, .

* .. the the formula x
"'he deP7-es of comple t-ness in therefore at le r't

sn ince th-, number of ordered triple s =-4r,) in
A, q ~se uence orders , in such a . iv thit :rP)

.lw.,yo t ikes thie truth-vnlue 1 -and is, by the pr.eceriea Pq ) 'ee~~-~ is at siost
Wer.< completeness, provable. If, in the '- the theorem, now follows fromn the sufficienc'

hypohetcal ecution(usnt. he lasscalresult of the lemma. ((Mn, A r is ,,of course
hybatittio. deue) uin h l~sc i~mored )as tre trples (A, ~,) ~W -Ch A<C OR(C)

/~~ I-F"o trictl' -innlai-ois ar,-unent, usint, Cenerai

a nd the~ climinqabilit.- of negation

.c replaice til occurrences of (. by A we obtain, ~ f !) rvstai h 0 vle ae

* in our pr~'sent folmelisction, the hypothetical the lptrec of nompleteners is W). C.orresponding .

1e utr %r~'inerts may ilso be used in cises related to thetior smet £ ,...# , where, in the , L-1 related

propositionnl calculi with constant functorr

wrepre it' is obtained from (uvint- R') t);' formine non-emTsty subsets of tne Criven set, the

replacinp ~ ~ ~ ~ ~ ~ de wl curecsofvrabefntoad of completeness ciii be evaluate(] by the~. pr~e enera'1 method given later in this paper for
firnite-value6 po posi tional calculi or by similit.
ethods of. [6j) in t he ri j-valued cse. Strictly
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analagous are.iments show that. if the set can define the implication functor of Bkasiewicz,

*possesses gEneralised functional completeness in the case where s-1.)

L49 91 and the 7-1 related propositional calculi '"ihe primitive rules of procedure are the

have degrees of completeness DLP .... De,. al or rule of substitution for propositional variables

*which are finite, then the present system has and the rule of modus ]2n with respect to I.

degree of com'p1teness ~e shall use the opPrator rto denote sumnsition
Dy I with associption to the right.)

We shall say that a subset E of ~I, .,I

If any of the numbers DI., j are infinite is closed if the truth-values of the formulae

*- then the addition of these ordinals may not be -F j . P11 (i=1, ... , b) belong to & whenever

comutative, and the detree of completeness will, the truth-values of iP1 , ... 9 p, (h=max(r.L, ... 1 1

by corresponding, arguments, -be the greatpst value, belong to .Clearly there is an effective method

(as the orderine of the A'icalculi varies) of the of decidin6 whether a given subset is closed, so we

least ordinal Sk for which may enumerate the closed subsets 6g, . .... We
aaa. note that :)-<I The V sub.-ets are, of course,

0( > partially ordered by inclusion and we shall extend

whenever !-.<L i .) subject to the this, in future, to a simple orderinE in which

D4"1%k-whenever i<j and whenever .6

* r~stri~tion that ifrespond to subsetF

of th t -t tL and C P is of class i if there is an assignment of

Lir ktruth-values in 9ito its propositional variables
then k <j. under which P takes an undesignated truth-value,

ds an example of the applicability of the but there is no such assignmment in any of 91 ... ,

above resiilts we shall consider the case where SA-J. which is a subset of g 1. Thus, for example,

M+1 (mod ),SFQ=TL.iP'Qt n=A and J111 F, - if4.S j g~~

C~ /', s . -he functor S is a ,uasi Sheffer

*function for th m iaud rkasi erict ,51 1 .3,4
propositional calculus fi and enrlie , 4

*functional coilpleteriess holds 111 for the abov and' P.Y tae 53esgnte trt-ausw t w

set. The degrees Of COMPletefless corresponding andoiioa Pibe take thes~ae truth-values he o it 3w
to th sust ifq 1,1 (t, 49 respectively or 2, 4 respectively, but not in the

ma thnb valuated in the remaining 2.3 cases, then P is of classes 6, 7 but

d wa (o. (5 an [8 ~ a mm, 1d~m1), not of classes 1 ,~ ,~ ,9

* ~ ~~ m d 1(m-) 1~m ,I+d~m-l1 rospectivel',so
* there~ured dgreeof cnpietnessisLmma 1. If P1,..3M,4~l1

2  Q are of classes .

3m+4~m-l-.i; J.1, ... , jp (only) respectively and
C;for some d (=d(c)) a fl, ... ,oi

* phe general appl icability of the result (oft P,..henTFP P H-t.

would depcrnd cn the construction of an thn~A

algoritm for the evaluation of the degree of Let us denote the propositional variables ofPC
completeness of a wide class of propositionalQbyP.,., L
calc~ili. 'his problen was raised 1b2' "isser and C ~, ~ P ; qL, ... q respectively (C=I,

'!uryiette C143 for a wide Class Of formalisations ... A ). Let ,take an undesignated truth-value

which they gave (though it would, of course, be when q.'*~ k take the truth-values y, .. , i

necessary to rePlace their axiom schemes by the respectively (0=1, ... , h) but not otherwise. Let
corresponding ali~oins and adjoin the usualthasinet7, .. h corpndo
substitution rule) and we shall consider ca closely 1:the N buigmet yot to. ay rorrespond to
rclated ctlass of formalisations. 'Ae shall make (1 _TiN) but S n t n prop ieer su tha

tefollowing adsimPtiOns: (~~)o n e ea nee uhta

the 6 .G~ (c=c(O)) and let an assigiment of truth-
(i The formalisation is Weakly complete and i~ i

plausible and relates to an rn-valued propositional values to the variables Pco ... , P~ cq correspondiAg

calulu wihs designated truth-values todc exj,.
calclus itt o dc) b .1b . ... (for a suitable value

(I s. m -Cl, of c). By the minisality property of Fr., we may

(ii) In terms Of the primitive funntors, construct a formula ~Ii i e(OL~, )

which we shall denote by P1.9 ... , onj which takes the truth-value e when Q .*,

n4arturnents respectively, we may define an take the truth-values y,&, ... , yi9 respectively

implication functor I which saisie thervie ha
standard conditions of Rouser and Turznuette £1.. poiedta (Otherwise there would be a

(Trhis Condition i's automaticallY satisfied it we closed subset & containing YJ, .,~ but not

21'71
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b, ,

S

e nd n would be a Plosed proper subset of
.) ~since Xi~ .... ,I!r we -. .''Since4 C ,..., ) exists. (This is iven by sli ht

''i-' may construct the fcrrulle . . w .. f
may contutt f'le ,ext nsions of the methods of Kalicki (see fJ and

=1, .... n). If we substitute thee for 1 ) We may therefore construct the (finitp),Aetpi I, of sets of cl'isses. w:ach ordered subset of -
Pt C respectivel, in PC we infer a formula will then induce a correspondine secuence of

(., qk) which takes .3n undesignn.ted truth- formulae P. .... P (for some finite n) which may,
value when Q., "'', Qt take the truth-values Ylt by Lemma. 1 and ",be tested to ascerjin whether

it has the properties of the se'uence of the

.-.. y respectively (9=, .,., h). .'ence, by previous paraaph. (t least one acceptable
the weak completeness, se-uence exists since not P p and p -. ) Thesuccessor of the leng.th of the longest acceptable

... , Q oence is the re'.uired Iegree of completeness.

Since we have established that , C

P FiQ ** () ,.. h) c' .Jones, "A fonimaisatior., Of an ra Je
propositional calculus wit. variable functor ,

the lemma now follows at once by h uses of modus 7. ftr Math. Logik, vol. (199 , pp. 505-"
,ponens. 50

Lemma 2. If Pit ..... P. - d q is of class. i T. Kalicki, "A test for the existence of

then there exists an ier j such that 1-<J-<n, tautologies in many-valued logics",vod:.1 - .2A.
P. is of lass & .n C; 3ynrqltc Logic, vol. 15 (1950), PP.

If no such integer j exists then P, ... P J. Ert]:zsiewicz end A. Tarski, "UntersuchUngen
tafC no utheger exis h all ther ber den Aussaeenkplkal", lomptes rendus

take desinated truth-values whenever all their (Warsaw), Clasce III, vol. 'l (1930), P
propositional varipblres take truth-values in 9 •30-50. (For an =hglish tr.rslatiCn see 161.)

it then follows easily, by strong induction on .a l r ilthelenth f te drivation of q (.2f- [8]) that 4] P. 11tose, "Ea;ny-valued propositional calculi,. ..

* the length of the dervto ofQ(c.~J without constants", Proc. I6M.V, Vol. 9
the latter formula takes designatedtuhvle (1979), p.128-1714.whenever all its uropositional variables take

whenevis of t 1r~ class i andtruth-valuer in ." Thus q is not of A. Rose, "Le degre'de saturation du calcul
propositionnel implIcatif I m vpaeurs de

we have a contradiction. lukasiewioz*, Comptes rendus (Paris), vol.
It follows at once from Lemmas 1 and 2 that 4 c (1955), pp te 7780-'en. ("-ris'Jvol

the longest sequence of formulae P, ... , P4 such rT A. Rose, "The degree of completeness of the
that L6 J ARoe"Tedreofc pltnsofte- .a valued ktakasiewicz propositional

not P4 , ph -p (k=1 .... n) and calculus", J. London Math. Soc., vol. 28
I ,k (1953), pp. 176-184. ,""

for allW; P1 , ... I. ~ P5 -
fo all bQ;oos P pt e s [7 A. Rose, "Formalisation du calcul

btknod by choosing Pj to be of class N+1-k ~propositionnel implicatif " N. valeurs de

nlv'j;;vided that these S-1 formulae all exist. bukasiewicz, Comptes rendus (Paris), vol. 243
- In that case the ,.egree of completeness is N1 and (1956), pp. 1183-1185.

the existence requirement is met provided that, in
terms of F., ... , F&, we can define functors J1 , C83 A. Rose, "The degree of completeness of the

sof m-valued .Ukasiewicz propositional calculus",
'., Jt satisfying the standard conditions oJ. London Math. Soc.,"vol 27 (1952), pp,

Rosser and Turouette. We may then (cf. dJ) 92-102. (See 9;so correction and aIdendum,

define standard condition ne~ation T) and ibid., vol. 4.11967), pp. 7-5)
• conjunction (K) functors, so we may choose P to be

I9h A. Rose, "A generaation of the concept of
NKJ P Y P *. .. J P 7 ,lqP functional completeness and applications to

olp.ii 'no sh - u i o modus ponens" Z. fr Math. Logik, vol. , 28
where 447o wc (k. , a-'. (1982), PP...-,'

in general, however, the existence [11 A. Rose, "some neralised Sheffer functions"
renuiremaent will not be met, (For example, if the C rc Cabig Phl o.,vl 8 15)
only primitive functor is the r-valued implicationProc. abe Phil ol 46l(u9i,
functor of Jaikasiewiczv then no formula is of the pp. 69-3?3.
class corresponding to il or if m>2, of the
class corresponding Ito J1, m~ only.) We have, as £l114 A. Rose, "Generalised functional completeness

a means of coping with this situation, an in ~zkasiewicz proyositional calculi"p

algorithm for deciding whether a formula of (submitted to NwFL).
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THREE-VALUED LOGIC AND ITS APPLICATION TO THE QUERY LANGUAGE OF INCOMPLETE INFORMATION

by Akira Nakamura

- Department of Applied Mathematics, Hiroshima University
Higashi-Hlroshima, 724 Japan

• ABSTRACT sort of domain. This corresponds to the fact:
hi - For an element w of the new domain, it is possi-

Lipski has considered a mathematical model of ble to give an interpretation of extended
incomplete information and discussed some problems formula at the world w.
related to it. Also, we introduced a second-order
predicate logic corresponding to the query language 51 Preliminaries
and solved some interesting problems about the de-
cidability of this language. This paper proposes In this paper, we will use almost the same termi-

. a 3-valued (0,1/2,01) logic based on this model nology and notations as in [2]. First, we will
instead of the above second-order predicate logic, give a brief account of internal interpretations
By the aid of this 3-valued logic we give an axio- for a query language.
matic system of this query language.. A first-order language L is a language which con-

sists of a list of countable n-ary predicate sym-
SO Introduction n n

bols P .,P,P 2 ,..., for each nzl, a list of

In [1], Lipski proposed a mathematical model of countable individual variables x,y,...,Xlx 2 . .
incomplete information and discussed some problems
related to it. According to his proposal, propo- the logical connectives-,A, and the quantifier .
sition which express queries to an information Other connectives v , can be defined as ab-
storage and retrieval system can be regarded as a breviations in the usual way. We suppose that L

special kind of formulas of the first-order predi- does not contain any function symbol and any in-

cate logic. So, in [2] he gave two ways (i.e., divldual or predicate constants. Then n denoting _
external and internaL) of interpreting formulas of n-ary of predicate symbol is sometimes omitted. _'i-]" the predicate logic, by making use of models of in- rt-refouasfLaedfidinhe sul""'".

.. complete information. In regard to this interpre- way. Next, we add a unary connective 0 to L. The -
tation, some similarities to Kripke models for modal language thus obtained is denoted by L*. (First-

logic are known. In fact, some relationships to order) formulas of L* are called extended formlas.
modal logic S4 were mentined in [2]. In the following, formulas will be denoted by €,

In [3), we introduced a second-order predicate £ or @ix I .. xn ) , S'(xI .... xn)9.... (Some of

logic corresponding to this query language and variables xI , .... xn may not occur in (x, ...,xn) .
solved some interesting problems about the decida- and other variables may occur in it.)
bility of this language. In this paper, we propose
a 3-valued (M,1/2,0}) logic based on this model in- Following Lipski [2], we will introduce internal

stead of the above second-order predicate logic. interpretations of extended formulas.
Further, by the aid of this 3-valued logic we give Definition 1.1 An incomplete model (or a model

an axiomatic system of this query language. That for short) is triple M=<X,u,U>, where X is a non-

is, we give a translation of formulas of the query empty set called the Individual domain of M, and u

language, called extended formlas, into formulas and U are mappings which associate some subsets

of this 3-valued logic and show that an extended u(P) S U(P)S. Xn for every n-ary predicate symbol P
formula is true in every interpretation if and only (nl).
If the corresponding formula of this 3-valued logic If u=U holds in a model M=<X,u,U>, then M is
is valid. Then, by making use of this result we said to be complete. Complete models are nothing
give a complete tableau method for the extended but ordinary models for the first-order formulas,
formulas. The problem of this axiomatization for as explained later. .-.

the query language has been an open question pro- Definition 1.2 Given two models MI=<X,uI,UI> and 7•
posed in [2]. M =<X,u2,U2 > with the same individual domain X, M2  '-_-]'

The key Ideas used to show results of this paper 2= u2 9U2  2
are as follows: is an extension of M1 (MI' M2 or i2 ' N1 , In symbol)
(1) Incomplete information corresponds to the value If ad ol if o y pMolP]. 1/2of the -valuedlogic•if and only if for every predicate symbol P ul(P-"z:. ]i

1/2 of the 3-valued logic.
(2) Formula of modal logic can be induced into the u2 (P)S U (P) _UI(P).

first-order predicate logic by introducing a new 2
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Let (x .... xn) be any extended formula with First, the truth values are 1,112,0 and they -free individual variables xI .xn For any model mean truth, unknown, faZse, respectively. Domains
of individual constants have two sorts X and W. X

M=<X,u,U> and a,....an e X, we want to define the is the usual domain and W is the special domain,
notation "(x.,x) is satisfied in M when xcalled the set of worlds. The ordinary individual

notation " 7ix ..,) ifed ad all ... whie , variable ranges over X, but the special individual
... ,x n are inte'reted n' , respeetivel", variable wi over W. Let Cl be a closed wff of 3L.
in symbol Then. v(C2) stands for a valuation v ofe-l. The

Ml o(a .. an). truth value function of v, A, -I,Jll/ 2 ,J are %
To do so, we first extend our language L* by adding defined as follows:
a new individual constant a for each at X. (By v(z-2v1,)=max(v((),v(-)),
abuse of symbol, we will use the same letter a for v(cQ,.,)=min(v(c?),v(L
a, in the following.) The language thus obtained
is denoted by L*[M]. v(-v2) =l-v(C),
Definition 1.3 Let M=<X,u,U> be any model. For v(JiC)= 1 if v(ez)=i
each closed extended formula of L*[M], define = 0 otherwise.
M @ recursively as follows: Further, we use in the usual way the following de-
1) M P(a ,... a) iff (a ... a )e u(P), finition for closed wff's VxcZ and VwO. . That

n ~ n
where P is an n-ary predicate symbol, is as follows:

2) M I p iff not M , Let x be an ordinary individual variiole.
3) M xA 0) iff Mre and M a, v( Vx a(x))= 1 if for all ac-X v(t?(a))=l,
4) M Vx,(x) iff for every a -X Mt(a), =1/2 if for all a(X v(oa(a))_>l/2 and5) MV=-J iff for every M'>M M'j-j. there exists be X such that

Next, let t(xI ... xn ) be any extended formula v(ci(b))=l/2.
of L* with free individual variables x1 ... x. =0 if there exists aeX such thatn' v ( a(a)) =0.
Then, define Let wi be a special individual variable.

M (x I . .xn) iff M ... V n(x I  . n ) v(VwiCZ(wi))= 1 if for all r ( W , v(c7 (r))=l, 4

Notice that Vx-...Vxn(X 1 ... xn ) is a closed formu- =V2if for all re W, v(az(r)) _/2
la of L*[M], in the above definition. When M is and there exists seW such
a complete model, the definition of Mt= coincides that v(CZ(s))=l/2,
with the ordinary one, for every first-order formu- =0 if there exists r&W such that
la. vio(r))=0.
Definition 1.4 Let and ip be arbitrary extended 3xi- and 3wi01 are defined in the similar way.
formulas. 1
1) p is internally valid if and only if Mf= 0 holds The validity and satisfiability of wff .17 of 3L

for every model M, are also defined in the usual way. -2) ¢ an re ntenaZly equivaZent if and only if-"-"-'-

- is internally valid. §3 Embedding theoremHere, we give the meaning of some notations.
vxl...Vxn(P(xI .... Xn) Q(xI ... Xn)) is denoted Let S1 and S be the sets of extended wff's and
by P Q. Also, P-QAQ-R is represented by P<,Q- 3L, respectively. Also, define a transformation "
R.

on the set S2 as follows:§2 Three-valued predicate logic 3L T(CI) is a formula obtained fromo Cby replacing
(irrespectively of free or bounded) P(xI ..... XnWi-.. .We consider a 3-valued predicate logic 3 L. The n(Iespec il for bound e x .  n ,.)

symbols of this logic are the same as in the usual b"."n f
predicate logic except the logical symbols and the Then, we define a mapping f:S l-->S2 as follows:
special individual symbols. Further, well-formed (1) If O=P(x I .... x ) then f(o)=JiP(xl,...,x ,w ),
formulas (wff's) are defined in the following way:
(1) The argument, of every n-ary predicate symbol (2) If = Ii then f(o)--f( ),

P( ....... ) must be occupied by the special in- (3) If p=ip^ then f(c)=f(p)^ f(e),
dividual symbol wi (Mi) at the n-th argument. (4) If 0= v'x then f()=Vxf(),

(2) Other construction rules except (1) are the (5) Let k=p and P1  be all predicate sym-
same as in the usual one. bols appearing in ¢ . Then,

Logical symbols areA,V, , ,J 'Jl 1 2'J 0 " A, f(M)=Vwl((Jl P(xl ... xn'w 0 )<JlP(xl .... Xn Wl)) -•

V, and D are duadic and J1J are monadic. A(JP(x.l . xn,W) Jl/f(Xl.....W I)

*-" VXl...Vxn(P(x ..... Xw i ) - Q(xl ..... xn ,wj)) is de- JiP(X ... xn,w 0) J /
2P(x l .Xn'W 0 ))

noted by P(xI ..... XnW)Q(xI ... , ) in the
" similar way to L*. n 1 nwhere JiP(x1 ,.....xn,W )  0)<J (xil ... XnWl)

The semantics of this logic is defined as follows: means
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(JlPk(xll--xn'w) i, JPk(xl..,xn'wi and 1 J1P(xl'.. x .qm)Vj P(xl..I

i px,..x' Vjn Now, let us define a model M'=<X,u',U'>by u'(P)
1 n 1 ?x 'nw V(A)eand U'(P)=v(B). Since M<M' holds, M'tl=,.

the similar meaning. (3.4) M r T (f(p(q))),
Lemma 3.1 Let M=<X,u,U> and M='XvW ,v, v> be models 3 0

3 m+l+
* ~for L* and 3L, respectively. Let q be a constant wee tf~q)) dntstefruaotie

3fl m+l
such that the corresponding q is in W. Moreover, from T (f(f)) by replacing each occurence of

* ~suppose that for every predicate symbol P of L* JPx, .x~ml)adJPx ~ kW~)
*u(P)={( ... )Iv(J1 P(...,q m))) and U(P)=t((...) '1112 P(x. .'x k'w m+l ) by predicate constants A and

v(J P(. ....q )Vj P( ....q ))) hold. Then, for any B, respectively. Since (3.4) holds from (3.3) for
Il/1 2 m each A and B, (3.2) holds.

*closed extended formula (v of L*EM] Conversely, suppose that (3.2)holds. Let M'=<

M r- iff 3M r m(f( p(qo))), X,u',U'> be any model such that M< M'. Define
where rm(f( (q0))) means a formula obtained from subsets A and B of Xk by u'(P)=A and U'(P)=B, res-
T pectively. In this case by making use of a cons-
T(ftp)) by substituting qm for aspecial indivi- tant qm in W and v of 3 M, A and B are always re-

dual variable win presentable by {(xl,... Ix k)Iv(Jl P(x.l-I m,)
Proof and {(x .. Ix )Iv(J P(xi .. x ,q )N P(xl

*We will show this lemma for every M and 3 and k l.....k' m+l 1/21'

m, by the induction on number of logical connec- .'xk' qm+,l))' respectively.
tives in Then, it holds that for the above 3M
(1) The case where 0 is P(al. .a)n for some a1, 3M 1 1 . .Xq) A' mB

a n C- X IP(x,'... Ix kq m)vJ 12P(x ... x kqm)

because M40' SO, M = TM+l~(Pq)) holds
TTm(f(0p(qQ)))=JjP(al -,a n mM+l0

The,................n ). too, where T (f i(q0)))+ is the formula defined
SM Pa an) in a .  e() above. By the hypothesis of induction, MkipO.

v(J IP(aV ..  a n. q Thus, M = II
m Theorem 3.2 For any extended formula 0 of L*, 4

iff 3 M trT(f(P(a...a n qO)) is internally valid if and only if f( ) is valid-
(2) Induction step in 3 L.

*We will prove this lemma only for the case where Proof
p is of the form o p Other cases can be provable Let P. '---h be all predicate symbols appearing
easily. For the sake of brevity, we suppose thath
predicate symbols appearing in are only P and in 0 . Suppose that p is not internally valid.
that P is k-ary. Then, there exists a model M=<X,u,U> such that M t-

*By the definition, 0 does not hold. Let 3M=<X"'W,v,v> be a model
M t-_9 iff for every M',>-M M'- such that (J P 'l . I ~1 ,x1,'q ))=u(P ) and vJP .

**So, it is sufficient to show tiat kli
(3.1) for every M'_ M M' = ( .  x ,q)V31  p(
if and only if k' 0 /2 i 1 x q)=( 1  o

*(3.2) 3M T m(f( (q0 ))). every i=l,...,h, where qOis a constant in W. Then,
Werear hrethtit is obvious that u(P )S U(P. for all iml,...,h.

T m(f(o(q0))) Therefore, 3 f(f) does not hold by Lemma 3.1.

10 (WP~il .. x J P(xl , ... 'xk wml Hence, f(Wp does not valid in 3L.

(J1P(xl .,xk wm ),'/j P(xl,....xk wml) Conversely, suppose that 3M i.=f(f) does not hold

I P(x k' qm)v 1/2p(x. ."xk qm)) for some model 3M=X ~ ,v'>.Define M'<'u,'

Dby k(1 v( 1  ( . x ,q0)) and (P ='iI
We considerJ 1 1~l..xk' q x'.' v Pi(l . xik 112 P 1(x1 l .. Ix i 'q0 )) for i=l,.

1 1 .,x k qm) as the corresponding formulas .,h, where qOis a constant in W-. Then, M' is a
really incomplete model. Moreover, by Lemma 3.1 .

of Pm, Pm* in (3], respectively. Mtp de o odsnc N
First, let us assume that (3.1) holds. For an 3 f~ os o od

arbitrary constant q let A=J P(xil...I Then, pD is not internally valid. //.
m~l' 1 k'm~lTheorem 3.2 is considered as an embedding theorem

such thatx, ..I k qm+1l\/ 112 PX1,...I k m, of wff's in L* into 3L

216

% %



§4 Method of tableaux for L* In 9) and 10), (4'H) has the same meaning mentioned
above. P appears in ip , but(d, IR are ne" predi-

In this section, we show a method of tableaux cates. p,) is the same to 7).
for L* and prove its completeness. This method is Predicate Q introduced in the rules 7)-10) are
obtained by the aid of Theorem 3.2 from the usual called extended predicates of 1P.
one for the first-order predicate logic which is Then, a closed branch of this tableau method is
explained in [4]. We use here the same terminology defined as follows:
as in r4]. That is, we use a complete branch, a For an ordinary individual a, if TP(a) and FP(a)
closed tableau, an open tableau, an open branch and appear in one branch, then this branch is closed.
so on. The usual analytic tableau method for the Here, to prove our main theorem we introduce a
first-order predicate logic is as follows: modified Hintikka set S (for an individual domain

Let 0 and p be wff's. X) and show a lemma. A modified Hintikka set is
a set S that the following conditions hold for every -

1) T7 F 7qb wff of L*. •
(1) No prime formula and its negation are both in S.

F ¢ T q (2) If p^ES, then €, p are both in S.

2) T(ip A p) F( A ) C3) If OOptS, then cpS or lpES.
(4) If Vxip-S, then for every keX p(k)ES.

T ip , T F F p (5) If 3xipeS, then for at least one element kEX
i(k) e S.

3) T(O V) F(O v p) Let P1 .... 1Pk be all predicate symbols occuring -

Ti Tp F i ,F p in 0 , then be a formula obtained from 0 by
substituting their extended predicate symbols for4 ) T ( O D P F( D ) P I .... k '

F T T ip (6) IfcjpC-S, then for every set of extended predi-
cate symbols (S.

5) T Vx F 3x (7) If <@ cS, then for at least one set of extended
predicate symbols 'e-S.

T x  
F a Then, we have the following lemma:

where a is any individual, Lemma 4.1 (Modified Hintikka's Lemma for L*) Every
modified Hintikka set S for an individual domain X

6) T3x FVx is satisfiable.
Proof

T jx F ajx First, we consider a partial system 3L° of 3L in

where a is a new individual, which every prime formula has always J-connective
in front of it. In L', we can easily prove Hin-

Here, we modify the above usual method to L*. 3
In the following, we use the symbols P, , , H tikka's Lemma in the usual way. Because, JiP(...)
which correspond respectively to one in (5) defi- is considerable as an ordinary predicate in the
ning the mapping f:Sl-->S Now, the method is first-order predicate logic.

1  2 Now, we consider a correspondence of P(...) of
as follows: 0-, in L* to JiP(....wi) in the form wi+(-_ 2).

The rules l)-6) are the same as above, but the l iil 2
following rules 7)-l0) are defined. of f(Oip). Thus, it is possible to give a corres- .

pondence of an extended predicate Q of P to a prime
7) T [ formula obtained from JiP( .... w..) by substituting

arbitrary constant for this wiT. Similarly"
T( P Q R ( 1 H) - p~q) -- "

IR, IH in 7)-l0) are considered, respectively,corres-
8) F 0 ¢ ponding formulas JIP( .... i+l)' Jl iP( .... wi+)VJl/2

T( IP ,r IR (<1H) -1 p i+l)' Jl P ( .... wi)vJ1/2 P(...wi)"
In the above 7), (<IH) does not occur in the case Then, it follows from the definition of f:S I - S2
that there exists no IP- *1 in the upward path
from Tijo. But, otherwise (.4 IH) is really -,H. and Theorem 3.2 that our rules 1)-lO) are quite

( i#) of 8) has the same meaning. Further, IP similar to the usual one. Thus, we get this lemma
appears in ¢, but Q, R are arbitrary predicates. by the same technique as the case of the first-
Furthermore, p(c) means that every predicate P in order predicate logic. //
0 is replaced by Q. Now, terms a systematic tableau and a finished

tableau are defined in the similar way as in [4].
9) TK'cP In this case, this systematic tableau is also de-

fined for 7) and 8). Then, we have the following
T( iP < I R ( 1 IH)), T p(¢) theorem.

10) F ¢ Theorem 4.2 (Completeness Theorem of Modified
Tableaux for L*) If p is valid, then € is provable

T( IP O R (< H)), F p() . - i.e., there exists a closed tableau for FO . . .'.
Indeed, if € is valid, then the systematic tableau
for FO must be closed after finite many steps.
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Proof
Suppose that 0 is valid. Let T be the firished

systematic tableau starting with F0 . If T contains
an open branch B, then by Lerma 4.1 B would be satis-
fiable, hence F0 , being a term of B would be satis-
fiable, contrary to the hypothesis. Thus, 4 is pro-
vable.

* Concerning the second statement, by K~nig lenmma,
a closed infinite tableau is impossible, because if
T is closed then every branch of T is finite length,
hence T must be finite. //

From Theorem 4.2, we are able to give a complete
axiomatic system for L* in the familiar method. -

§5 Conclusion

We have proposed a 3-valued logic based on the
query language of incomplete information. By the
aid of this 3-valued logic we have given a complete
axiomatic system of the query language. There
would be further interesting research topics on
applications of the 3-valued logic to theories of S
incomplete information.
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~ TOWARDS A FORMAL MULTI-VALUED UTILITY THEORY*

Michael Katz

School of Education, Haifa University, Haifa, Israel

ABSTRACT** (A ^)j = max(Wi,0i)

The paper provides an axiomatization in a (l6)x = max(O,Oi - Wx).
multi-valued language of some basic predicates of
utility theory. This axiomatization is based on The special feature of the logic of approxima-
deductions interpreted so that assertions which are tion is the way it treats deductions. A deduction
theoretically error-free can be treated in an ap- of the form F I- A (read: "from F deduce A", where
proximate way in actual structures for the language. F and A are finite sets of formulae of L) is to

hold in a structure for L if the error in at least
1. LANGUAGE AND LOGIC** one member of A becomes as small as we wish when-

ever the errors in all members of F are made small
Utility theory, as well as other theories of enough. More precisely, in the logic of approxima-

Social, Behavioral and Economic Sciences, is par- tion the structure I for L (with domain X) is
ticularly suited to test the usefulness of multi- a model of the deduction F I- A if for every (posi-
valued approaches. These theories, in fact, are tive real number) c there is a (positive real -

based on notions like preference and indifference, number) -s.t. for all E X
u

which empirically are strongly interconnected with
*approximation and errors, while there is a need to()-<6 vAj .

consider them as crisp notions at a general theo-

*retical level.
Here AF is the conjunction of all members of F,

To handle this we introduce what in [3] and vA is the disjunction of all members of A, - de-
[4] we called "the logic of approximation" (which notes implication in the meta-language, and
is analyzed algebraically in our paper "Quotient . . ..... u are all the variables of members of FUA.
Algebras for Logics of Imprecision" in this volume).
This logic is based on a certain version of the
tukasiewicz Logic, where truth values are considered 2. THE AXIOM SYSTEM

degrees of inexactness, and hence the usual seman- Our "
tic rules are reversed, since the smaller the truth- Our elementary utility theory is based on
value, i.e., the degree of inexactness, the truer unary "gain" predicates, binary "indifference" and
the assertion (and see files [1] and Scott 191 for "preference" predicates and ternary "betweenness"

similar ideas), predicates (g,i,p, and b, respectively). The for- -
mula g(u) asserts that the object to which u

We start witha formal language L containing refers is "gainful" (or "utilizable"); i(u,v) as-

variables (u,v,w,1 ,u2 .... ), predicate symbols (p,,,, serts that the objects to which u and v refer
i,g,p,b,...) and the usual connectives (1,vA, ). are "indifferent"; p(u,v) asserts that the object .. -

In a structure X for L with domain X every to which u refers is "preferred" to the object to
m-place predicate p., of 1. is interpreted by a which v refers (this is a non-strict preference,
[0,11-valued function p. on X'. If x is a func- admitting also indifference); b(u,v,w) asserts

. tion from a set containing all variables of a for- that the object to which v refers is "between"
mula P of L into the domain X of X we denote the objects to which u and w refer. (Gainful,
by Dx the truth-value of V at x. These truth- preferred, etc., only up to a certain error; hence
values are defined as follows: the inverted commas)

u-i - (u The following list of deduction expressions
, ., . x(or "axioms") is our formal theory of utility in

x 1 the logic of approximation: . --

(;v H)x = min( i,(x) (1) i(uu) ,

(2) I-i(u,v) i(v,u)

. A fuller version of this paper is to he submit-
. ted for publication in the near future. (3) *Ii(u,v) - (i(v,w) i(u,w))

The Abstract and the first paragraph of Section (4) i(u,v) - g(u) - g(v)
I are quotations, almost word by wo-d, from the

.SMVl.'s Referee's Report to Author. (5) Ip(uv),p(v,u) •
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(6) -p(u,v) - (p(v,w) - p(u,w)) all the properties of classical equality and order-
ing (and their inter-relations) in the formal theory

(7) p(u,v),p(v,u) - i(u,v) but they satisfy these properties only approximately
in models of the theory. Gain predicates can be

(8) i(u,v) - p(u,w) - p(v,w) considered inverse utility functions in a model X:the higher the value of g(x) in [0,11, i.e., the•

(9) i(u,v) I p(w,u) - p(w,v) higher the error in asserting that the element x
of the domain X of X is gainful, the smaller the

(10) I-b(u,v,w),b(v,w,u),b(w,u,v) utility attached to x. Finally, betweenness, as
axiomatized in (10) to (15), is analogous in our

(11) b(u,v,w) I- b(w,v,u) logic of approximation to Tarski's [i0] "classical"
betweenness and Roberts' [7] "tolerance" between- - -

(12) b(u,u1 ,v) ,b(u,u2 v) - b(u,ui ,u2 ), ness.

b(uu 2 ' u1 ) 3. UNIDIMENSIONALITY •

.* (13) h(u,v,u) I i(u,v) In this section an indifference structure is

(14) (i(v,w) - i(w,u)) - i(u,v) b (u,v, a structure X for L which is a model of deduc-tions (1), (2), and (3), for some binary predicate

(is) b(uu 2 ,v),h(u2 ,u 3 ',v) I- b (u1 u 2,'U3 ) i of L. Given such a predicate i and a cor-
responding indifference structure X we define the

i(u2 ,v) A i(U3,V) following notions w.r.t. these X and i. S
(a) A unary predicate g of L is a gain

(16) i(u,v) I- b(u,u2 ,u3 ) b(v,u2 ,u3 ) predicate in X if X is a model of axiom (4) for

(17) i(uv) -(u , u u) - b(u1 ,vu ) this g. It is unidimensional in X if in addition
3 3 X is a model of the deduction

(18) i(u,v) b b(u,u 2,u) - b(Ul,U 2,V) g(u),g(v) F- i(i,v)

All of these axioms have plausible intuitive (
meanings. We show this by looking at the following (b) A binary predicate p of L is a pro -
three groups of axioms. ference predicate in X if X is a model of..

axioms (5) to (9) for this p. It is unidimensional

(A) Axioms (1), (2) and (3) make indiffer- in X if there is a unary predicate g of L
ence an equivalence relation in L. Yet in a which represents p in X in the sense that X
structure X for L they translate to a (pseudo-) is in addition a model of the deductions
metric on the domain X of X. In particular the
transitivity axiom (3) translates to a triangle p(u,v) - g(v) - g(u)

inequality in X. This seems an interesting and
useful treatment of indifference as transtive in g(v) g(u) F p(u,v)
principle (as in, e.g., Luce and Raiffa [5], p.28)
but intrasitive, or only partly transitive, due to (c) A ternary predicate b of L is a be- -'
measurement errors, in practice (as in, e.g., tweenness predicate in X if X is a model of
Roberts [6]). axioms (10) to (18) for this b. It is inidirm-n-

(B) Axioms (5), (6) and (7) are connected- sional in X if there is a binary predicate p of

ness, transitivity and anti-symmetry-up-to-indif- L which represents b in X in the sense that X S
ference deductions for preference in L. They are is in addition a model of the deductions
satisfied in an approximate manner, according to p(u,v),p(v,w) .- b(uvw)
our notion of deduction, in a model X of the
theory. For example, preference transitivity in bp
translates again to triangle inequality in X so
that it holds fully in principle (as in, e.g., Luce
and Raiffa [5], p.332) but not in practice (as in, In (a) we feel that it makes sense to say that
e.g., Tversky [11]). if every two elements of X which are "almost fully"_gainful are "practically" indifferent then gain can-

(C) Axioms (4), (8), (9), (16), (17) and (18) not have several dimensions, or attributes, in X.
are substitutability properties in L w.r.t. i. In In (b) and (c) the unidimensionality idea is that
a model X of our theory they translate to uniform the objects of X are ordered(by p or b) from
continuity conditions w.r.t. i. For instance, (4) the more to the less truely gainful (or vice versa).
says that any two objects of X which are nearly This, and the fact that gain is then itself uni-
indifferent are about equally gainful (more pre- dimensional in the sense of (a), is the content of
cisely, the assertions that each of them is gainful the following theorems (which are only a few of the -

are about equally erroneous). That is to say, for interesting results which can easily be obtained
every E there is a 6 s.t. for every x and y w.r.t. unidimensionality).
in the domain X of X (i) If the predicate p of L is a unidi-

i(x) <6- Ig(x) - (y < c . mensional preference predicate in the indifference . ... *

- ,y- Cy)I structure X then the predicate g of (b) above -.

In conclusion indifference and preference have is a unidimensional gain predicate in X. "
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(ii) If the predicate b of L is a unidi- REFERENCES
mensional betweenness predicate in the indifference
structure X and the predicate p of (c) above is
transitive in X , i.e., X is a model of axiom (6) [1] Ciles, R., A non-classical logic for physics,
for this p, then p is a preference predicate in Studia Logica, 33, 1974, 397-415.

(iii) If b, p and X are as in (ii), and in [2] Katz, M., Inexact geometry, Notre-Dame Journal
(ii-fb n rea n(iadi of Formal Logic, 21, 1980, 521-535.-addition p is unidimensional in X , then the pre- o

dicate g of (b) above represents b in X indhe ete ghat of h aoelo epresents uins i[3] Katz, M., Two systems of multi-valued logic
the sense that X is a model of the deducti5ns for science, Proceedings of the llth Inter-

national Symposium on Multiple-Valued Logic,
IEEE Computer Society Press, New York, 1981, -

b(u,v,w) - (g(u) - g(v)) A (g(v) - g(w)), 17S-182.

(g(w) - g(v)) A (g(v) - g(u)}. [4] Katz, M., The logic of approximation in

quantum theory, Journal of Philosophical

It should be clear that instead of defining Logic, 11, 1982, 215-228.
unidimensionality for preference we can define, in [de
a similar way, modifying (b) above, unidimensiona- 5 Luce, R.D. and Raiffa, H., Cames and Decisions,

lity of indifference (or derive any one of these John Wiley, New York, 1957.-

two from the other one). Then, modifying also (c), [61 Roberts F.S., Indifference graphs, in 0
we can prove theorems like (i), (ii) and (iii) with F. R r (.) ProofeTecniques in

inifrnerplcn rfrnc.S ehv . Harary (Ed.) Proof Techniques in Graph •
indifference replacing preference. So we have Theory, Academic Press, New York, 1969, "

"representations" of indifference, preference and 139-146.

betweenness by gain predicates.

It is interesting to note that these repre- [7] Roberts, F.S., Tolerance geometry, Notre-Dame
sentations can be strenthened as follows. We add Journal of Formal Logic, 14, 1973, 68-76.
certain axioms to the formal theory (see, e.g.,
our [2] or [3]), to guarantee that in a model X [8] Scott, D.S., Completeness and axiomatizability
of the extended theory one can build a function g, in many-valued logic, in L. Henkin et al.
with the properties of the interpretation of a uni- (Eds.), Proceedings of the Tarski Symposium
dimensional gain predicate in X, which satisfies (Proceedings of Symposia in Pure Mathematics
for the interpretations of i, p, b in X , and for 25), American Mathematical Society, Providence,
every x,y,z in the domain X of X R__. 1974, 188-197.

i(x,y) = lg(x) - g(y)l [9] Scott, D.S. and Suppes, P., Foundational
aspects of theories of measurement, Journal

p(x,y) = max(O,g(x) - E(y)) of Symbolic Logic, 23, 1958, 113-128-.

b(x,y,z) = (Ig(x)-g(y)l + Ig(y)-g(z)l - [10] Tarski, A., What is elementary geometry, in
- -- L. Henkin, P. Suppes and A. Tarski (Eds.),

lg(x) - g(z)[) . Symposium on the Axiomatic Method, North

Holland, Amsterdam, 1959, 16-29.. ..
In this case g represents the (interpreta-

tions of) the three predicates under consideration [11] Tversky, A., Intransitivity of preferences,
in the way such predicates (especially preference, Psychological Review, 76, 1969, 31-48.
as in, e.g., Luce and Raiffa [5], p.29) are usually
represented by utility functions. And we conclude
by noting that the equations above are multi-valued

analogues of the representations of, respectively,
indifference graphs in Roberts [6], definite pre-
ferences ("semiorders") in Scott and Suppes [9] and
tolerance betweenness in Roberts [7].

221

: - , --: . _ -::: -:.:-. : , .:-:.:............................................................. ... :':.i
.. '-.'.'..' '..', -. .." ..,'.....'. .... ..............................................................".-,..............-•"-....-.... ' ... " . " '. ,' -'.'..'



"'' 1 AN APPROACH TO FUZINESS IN THE SETTING OF IUkASIEWICZ LOGIC (*)

oby Enric Trillas

Departament de Matematiques i Estadistica (ETSAB)
Universitat Polit~cnica de Barcelona, Spain.

Abstract ristic function A:X - 10,11, whatsoever the method
of obtaining it was. The study of fuzziness through

The paper seeks to understand the meaning of entropies in the sense of DeLuca-Termini supposes
Wfuzzinessy. Its aim is to show how in some cases that the measure of the fuzziness of A can be ob-

fuzziness comes from the indistinguishability bet- tained by knowing only one membership function A
ween a fuzzy set and its falsum, in a sense close (understanding by different membership functions
to-Lukasiewicz ideas in Multiple-Valued Logic. those that are pointwise different) that, always,
With such an aim the notion of "indistinguishabili- captures all the fuzziness of 6. Such pressuposition
ty relation" is considered and some partial results is hardly realistic by the existence of A itself
are obtained. and it is really difficult to assert that A and A'

do not represent the same 6 when the differences
1. Introduction LA(x)- A'(x)j are small enough.

After the foundational paper (1) by A.DeLuca Perhaps, it Is in the line of formulating ma-
and S.Termini a lot of papers on measures of fuzzi- thematically other kinds of "equality" (see (6))
ness were produced (see references in (8)) special- where lies the possibility of founding the roots of
ly about the use of entropies and on the analysis fuzziness and its meaning, by which entropies are
of its different types, but essentially no new ideas some sort of measures and, from another point of
appeared in the first eight years. In 1979 R.Yager view, where lies the real beginning of a new study
(7) introduced the idea that fuzziness comes from a of vagueness and booleanity. As always, when measu-
"lack of distinction" between a fuzzy set and its res are needed the analysis of concepts became more
complement A = I-A in the setting of the classical and more rigorous. This paper, only a preliminary
theory of fuzzy sets i.e., giving the union by the step towards this goal in the line of Yager, will
max operator and the intersection by the min opera- try to elucidate what the "distinguishability" of
tor. In that approach fuzziness is measuredby some two fuzzy sets at every point of X can be by intro-
distances, which election is not clearly related ducing the thesis that, in some cases, fuzziness
with such a lack of distinction, and although the can be considered as the "distinguishability" from
idea seems very interesting it pressuposes the exis- the so-called falsum that reflects the indistingui-
tence of some crispness between A and A, as if all shability between 8 and the empty set 0 and that,
the region "neither not nor yes" were a broad bor- with special restrictions, is coincidental with the
der separating both the "yes" and "not" regions:for complement A.
example, to think what Yager says in the case of
fuzzy set of "round natural numbers", and specially 2. Indistinguishability operators
with "large round numbers", seems very difficult. Let X be a ground set of "forms" x,y,z ... and
Yager's paper is a good first step towards a nice' -i.-"iaer's ape ie s amook firt tep tineo ara c L a set of "values" provided with a binary operation
idea that needs more work in the line of clarifying *anabiryelto<.Iitscnvintw
the mathematical translation of "distinctness" and * and a binary relation R. If it is convenient we
its dependence on the distribution of the values of will suppose that (L,') is a semigroup and (L,) a
the membership function (see (3)): it is not evident partially ordered set or that L,'tn ) is an ordered
that only one family of distances are predestinate semigroup. Let h F L be a distinguished element and
to measure fuzziness. E a map from XxX into L, such that

1) h < E(x,x)
In the theory of fuzzy sets there is an essen- 2) E(x,y) = E(y,x)

tial difficulty with membership functions other than 3) E(x,y) E(y,z) < E(x,z),
the problem of determining it; that difficulty is for any x, y and z in X. We call E an indistingui-
its non-uniqueness when membership function exists. shability operator in X relative to L, * and < at
We will limite ourselves to fuzzy subsets A of X the level h. We also talk about indistinguishabili-
that are representable by, at least, one characte- ty relations.

Equivalences in ternary Logic by £ukasiewicz,
Bo~var, Kleene, G6del, Reichenbach and Destouches-

(*) To Aldo (De Luca) and Settimo (Termini) on the Fgvrier are particular cases of indistinguishabili-
occasion of the tenth birthday of "Fuzzy Entropy". ty relations (see (5)).
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Also, being H a complete Heyting Algebra, H-valued for any A, B and C in P(X) and being < the poinwise
sets (11) on X are such kind of relations. In the order, = the corresponding equality, and C the law
case that X = L is a boolr3n Algebra is well known 0 U (sum-1) defined by
that the operator E(x,y) = l+x+y comes to be an in- (A 'B)(x) = max(O,A(x)+B(x)-) = A(x)" (x).
distinguishability operator, relative to both Th. 3.1 A map -:P(X) x E(X) -(X) is an indis-
(L, ,0) and ((L,+), (L,<)), at the level h=1. If L tinguishability operator for P(, rela-
is the boolean Algebra P(X) of the crisp parts of X, tiveuoshablity ifeand on if
it is E(A,B) = X-AB, i.e., the complementary set t ive to ( (X) if and only if. .

of its symmetrical difference. dx(A'B) = 
I-(A B)( are, for every x C X,

If in L a strong negation function n exists, pseudo-distances boun ed by I.
then the map noE : XxX -L is called a 'distingui- Proof. Given , d verifies dx(A,A) = 0 and
shability operator" in X. For example, in a boolean d (A,B) = dx(B,A), for any x F X and every A and B
Algebra, with n(x) = +x, is noE(x,y) = x+y. Tho-
se operators are, at it is well known, generalized in •. Moreoier:

distances (see (9) and (0)). dx(AB)+dx(BC) 
=  

l-((A-B)(x)+(B C)(x)-l) ; •

In what follows we will consider only the par- max(O,(A=B)(x)+(B-(AC)(x)- = dA

ticular case in which between -; and < there is a -((A--B)9(B'C))) W ;-(A-C)(W = d (A,C),

compatibility law and that h=l is the neutral for then all the d are pseudo-distancesobviously boun-
• and the maximum for the order <. In Fuzzy Sets li- x

terature the cases in which, being L = 10,11 and ded by 1. Reciprocically, if {dx;X C X1 are such

-< the usual order of R, is either = A = min (Za- kind of pseudo-distances, by definig (A B)(x) =

deh's SIMILARITIES (15)), or '= = prod (Menger's 1-d (A,3) e have that AA and AB = BA.
PROBABILISTIC RELATIONS (12) and (13)) or x

= 0v (sum-l) (Ruspini's LIKENESS RELATIONS (14)) Moreover:
are well known. As it is Ova+b-1) < a.b < min(a,b), ((AB)!(B-C))(x) = (A-B)(x)4(B C)(x) =
it is obvious that with OV(sum-1) we have the wea- max(O,I-d (A,B)-dx(B,C)) =
ker case. After next paragraph we will del only 1-min(dx (AB)+dx(BC)) < 1-d (A,C) = (AC)(x).
with a 4 b = max(O,a+b-1) and A q B = OU(A+B-1) if X x x

L = P(X) = 10,11X. That theorem enable us to consider every indis-

The following two results are well known (see tinguishability operator in Z(X), relative to
(5)). ((X),< , W;1), as a family of co-distances

{1-d ;xEXI depending on the point.
Th. 2.1 E is a similarity relation if and only if x

I-E is a pseudo-ultrametric bounded by 1. As it is 10,11 r Z(X), via the identification
Th. 2.2 E is a probabilistic relation if and only between t '

- 10,11 and the constant function L(x)=t,
(-logE(x,y), if E(x,y)#O it is also (0,11, <, C;1) imbedded in ((X), <,1i;I)

if =(xy) and we can consider the case in which the values of -

~if E(x,y)= 0 are in 10,11 as a par-ticular one formulated by the
is a pseudo-distance.

Next two assertions are easy to prove. Th. 3.2 A map m:P(X) x U(X) - 10,11 is an indis-

Th. 2.3 E is a likeness relation if and only if tinguishability operator for Z(X) relati-
l-E is a pseudo-distance bounded by 1. ve to (10,11, <, 4;1) if and only if

Th. 2.4 E is a probabilistic relation if and only d(A,B) = 1-(A13) is a pseudo-distance
if 1-E is a generali7ed metric relative bounded by 1.
to the ordered semigroup Proof. The same as in the theorem 3.1.
(0,11, <;sum - prod). In that case indistinguishability operators

Those results, that do not need more comments, Inh cae st
show the role of ordinary distances and of genera- are co-pseudo-distances.
Ii7ed metrics ((9),(10)). If pseudo-distances are distances is

"dx(A,B) = 0, 4 x e X iff A=B iff A(x)=B(x), V x c X".

3. On the case of Fuzzy Sets under the law x - -

Then:
U (sum - 1). "A-B=l iff(A-B)(x)=1,Vx(GX iff dx(A.B)=OtxCX iff A=B",

If A,B E- (X) and E is an indistinguishability and pointwise equality means the greatest indistin-
operator for P(X) relative to some L,E(A,B) shows guishability. In any case, as it is AB = 1 iff
the degree in which both A and B are indistingui - d (A,B) = 0, it is possible (if ;t is needed) to
shable. If we choose L = P(X) and suitable opera- x

tion and order, then (A-B)(x) = E(A,B)(x) can be consider the classical equivalence "A=8 iff A 8=1".
considered as the indistinguishability degree bet- Example 1. If d (A,B) = A(x)-B(x) , we have

ween A and B in the point x E X or, in Zadeh's ter- x •
minology, the possibility of being A and B indis- (A-B)(x) = 1- A(x)-B(x)! the so-called equivalence

tinguishable in x E X. In what follows we will con- of kukasiewicz, well known in MVL.

sider : P(X) x P(X) - P(X) verifying IA(x) - B(x)"

1) A A = Example 2. If dx(A,B) = , the
2) A B= A X I + IA(x) - B(x)I

3) (A B) ! (B C) A C, Minkowski metrics, we have
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7 7

1 proposition and the truth and the concept of fals-um
= _____________as the equivalence between z proposition and the

1+;A(x) -B(x)I false. We will consider only the falsum defined by:

Example 3. Consider binary expansions (As)x 1-dA0

A~x)= ~ A~). , Ax).E{Ol}. that in the case of tukasiewicz is (A-0)(x)=1-A(x)

i=1 i or A4= T :the falsum coincides with the ~comle
Thn isanesment. This is not the situation with MinkowsFi dis-

I -Itances, being (A-0)(x) = 1 / 1+A(x), fuzzy set that

* ~d (A,B) A~) ~ )Idoes not have the properties usually required for a
x i~lcomplement". With the binary indistinguishability

it is
*are different from the euclidean and gives (A-0) I 1- A A(x). i/ 2' = I-A~x),.:-

IA(x) i - B(xYI i=
(A B)(x) = 1 - rithat is A-0 = A.

i=1 2
To have A-~0 =A it is necessary that

a,. as.sociated indistinguishability. We call it the d,(A,0)= A(x). To such an end let us consider the

''binary indistinguishability", following definition:A "translation" in P(X) is eve-

Example 4. If d(A,B) = sup JA(x) - B(x)l, ry map such that t 6(A) r)f (A+B), that-is, such
ve X

(A-B)(x) =inf (1-IA(x)-B(x) ) the uniform in- that it associates to every A the fuzzy set

xCX (t B(A))(x) = min(l,A(x)+B(x)). Let T be the set of

distinguishability, all translations in P(X). As

Example 5. If X is finite, X (x { 1 ... Ix}n,( C.tB)A= tB()= j AB)I(I(+)+)

and d(A,B) ~ (A(x. ) -E (x.))p , p >_ 1 , we have w ae

pnl - If A+8>1, it is (t OtB)(A)=l and also tBl (A)=l

(AB)(x) I (A(x~) B (x ))P - If A+B<l, it is (t otB)(A) = t + (A),

the case p=l corresponding to the Harmyning distan- that is tCot B = t B+C and T is a coimmutative semi-

ce and the p=2 to the Euclidean distance, group. To have a group is it needed to enlarge P(X)

X
When, relatively to (EMX, <, 06);1) a functtio- till P'(X) = [-I'll . If it is necessary we will

nal expression (A-B)(x) =E(A~x),B(x)) is possi- consider P_'(X).
ble, the operator E: 10, 1 x 1 0, 11 - 10, 11 i s an

indistinguishabil ity operator for 10,11 relative to ?linkowski metrics are not invariant under

(10,11. 15, C;1i). Conversely, if E is such an opera- "translations" of T, being so under usual transla-

tor the preceding formula gives an operator for P(X) tions. In fact, it is enough to take A, B and C such -

* ~~relativ, to C(s(), <-, P.;1). Those are the cases with ta ~)Cx> n ~)Cx>,fraxX oh-.
ye dx(tC(A),tc(B)) = 0 but dx(AB) ,' 0.

t I) -[x-y' and E(x,y) - Ix-yi In any ca-
,_xy Th. 4.1 The only distances invariant by 'transla-

se I-E(A(x),B(x)) = dxCAB) are pseudo-distances tions" of T and verifying d x(A,0) = A(x)

in P(X). are the Euclidean d x(A,B) = JA(x)-B(x)l.

As 1- A(x)-B(x) = 1-max(A(x),B(x)) - min(A(x),13(x))) Pof o ie E ti Ax-~) ~ )Bx

it is natural to wonder when it ;s possible to wri- Pro.Fragvnxzits Ax-xl-Ax)B)
or IA~x)-B(x)I = B(x)-A(x). In the first case, as

t,. (A B)(x) =1-(F'(A(x),B(x)) - F(A(x),B(x))), dx(A-B,0) = A~x)-B(x) it is dx(A,B) = dx(A-B+B,0+B)=

heinq F a t-n'-rm aod F the corresponding dual dxCt (AB),t(0)) = d (A-8,0) = A(x)-B(x). in thex B ~ B x
t-c,,norm (10). From F(t~t) 'E t ' : F (t,t) and the second case, as d X(B-A,0) = B(x)-A(x), is it obtai-0

fact that it is (AMA)(x) = 1 iff -(A(x),A(x)) = ned dx(A,B) = d x(B,A) = B(x)-A(x). Then the theorem

(Aix) ,A(x)) , it fol lows, F (A(x) ,A(x))=F(A(x) ,A(x)) holds.
-A (x) : I n 1 0, 11 any number is idenpotent by F, and

F min. Then, It is a consequence of last theorem that "bina-
ry" distances are not invariant by translations. No-

Th 3 .3 if F is a t-norm and F its dual t-conorm, te that those distances are greater than the Eucli-

(A-'B)(x) = 1+F(A(x),B(x))-F (A(x),B(x)) dean:

is an indistinguishability operator iff ~I~)Bx.
F=mir, and F =max, 1i i=1 2

Such a situation is general .
4. Fuzziness under the law 0 U (sum-I-).

in multiple-Valued Loitukasiewicz defined Th. 4.2 Any distance d xveiyn dx( Ax

the concept of verum as the equivalence between a is greater that the Euclidean.
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Proof. It is = X"(1-21A(x)-1/21) if AOI/2, and 61L2(x)=0,

d x(0,A)+d x(A,B);?-d x(0,B) writing XA for X - We call Xxthe specificity func-
* X XA AA A

and tion of A.

dx(,B)+dx(B,A1dx(,A), The fuzziness corresponding to Euclidean dis-

that is tances IA(x)-B(x)I is exactly 1-21A(x)-1/21. We will

write 6 EA(x)= 1-21A(x)-1/21 and call that function
d x (A,B)>B(x)-A(x) and dx(A,B)>A(x)-B(x)

,  the euclidean fuzziness of A.
implying

dx(A,B)>max(A(x)-B(x),B(x)-A(x)) = IA(x)-B(x)l. Th. 4.5 The fuzziness of AQ(X) is 6A(x)=.6EA(x)the product of the specificity function

Moreover,as d x(A,B)d x(A,O)+dx (0,B)= A(x)+B(x), and the euclideanz fuzziness. It is

it is d (A,B)<IA(A(x)+B(x)). (2 A(x), if A(x) < 1/2

Then, with the definition 6A(x) = 2 A(x), if 1/2 < A(x).
0, if A=B I A

Dx (AAB) = In any case it is 6A6 EA:the euclidean fuzzi-
1i(A(x)+B(x)), if AOB ness is the greatest fuzziness under the law

we have a family of distances such that Dx (A,0)=A(x) OU(sum-1). Both fuzziness are coincidental if and - -

verifying only if the specificity function is equal to 1. On 9
IA(x)-B(x) dx(A,B)Dx(A,B), the other hand, it is 6A(x)= XA, xEX, if and only

if 6 EA(x)=I, that happens only when A=)/2: the spe-
and giving the theorem cificity function is the fuzziness only for the

fuzzy set 1Q2.
Th. 4.3 Every distance d verifying dx(A,0)=A(x) E

x x Th. 4.6 The euclidean fuzziness 6
E 
verifies the

is less than the corresponding Dx properties on an entropy in the sense of 0
In those conditions is immediate the general DeLuca-Termini (but relatively to the

representation given by structure of p(X)).

Th. 4.4 If d is a family of distances verifying Proof. 1) It is 6EA=O iff 6 EA(x)= 0, ixEX, that

d(A0) = A(x), for any xEX and any cou- happens only when A(x)E{0,1}, i.e., when A is a
x( X crisp subset of X.

ple A,B in P(X), there exists XABE (0,1] 2) It is 6EA=l iff a=1/2. -

such that 3) it is also a straighforward computation .

dx(A,B)=XIA(x)B(x) +IB.Dx(A,B). to prove that if A< B (sharpened order (3)) then
• EAx 

6
EB (pointwise order).

Consequently, all the indistinguishability operators The formula 6A=XA').6EA shows that fuzziness
such that A'E=A are representable by can be a very sophisticated function, because of

(A-8)(x)= I-XAB IA(x)-B
(
x)I- (1-X'B) Dx(A,B), the specificity function that is an unknown function.

The study of the properties of "entropy" for 6A is
that is a very large family of indistinguishabili- more difficult that for 6 EA:It is certainly, 6A=
ties. Those formulas are rarely useful due to the more d ta

x iff u o f)nE A =1, that happens only if A=1/2, but
o AB "to analyse its-comportment relative to the sharpe-

Following the ideas of Yager (7) we will intro- ned order is necessary to know the comportment of
the specificity function by the same order and, al-

duce the so for example, it can be 6A-0 without being A crisp:

Definition. Given an indistinguishability opera- it is ennugh for that that in some points x of X be
tor - in P(X), relative to (E(X), <, 0;0), the fuz- E E
zy set 6A = A(A4), is said to be the diffusum of \>O and and in the remainder 6EA(x)=.
ACE(X), and it shows the indistinguishability de- The study of SA deserves a more acurate research
grees between A and its falsum. When the operator and, for the time being, we will only consider the -..-
is such that A-0=A we will speak of "fuzziness" case in which distances d are in the convex hull
instead of "diffusum". d(A,B),

i 
A  

In that case the specificity functions are constants
Taking dx(A,B) = , p > 1, E

x nand equal to X, and 6A=I. 6 A
Moreover,

we have just the cases considered by Yager.

In what follows we will limite ourselves to Th. 4.7 When the specificity function is a cons-

the case of fuzziness, It is (A= A or tant, different from zero, the fuzziness
6 verifies, relatively to the structure

8A(x)=-dx(A,A)=1-XI2A(x)-1I-(l-Xx).l of P(x), the properties of an entropy of
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DeLuca-Termini. References
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* SYNTHESIS OF AXIOM SYSTEMS FOR THE THREE-VALUED
PREDICATE LOGIC BY MEANS OF THE SPECIAL FOUR-VALUED LOGIC

0 Motinori Goto and Shinji Kao and Tomoko Ninomiya

* . Meiji University. Tokyo, Japan

*In the preceding papers 111 12). M. Waisberg's axiom 1 10) for the operators z) and 7. which follow Wajsberg's
*-systemi and their undefined operators D and 7 were treated as axiom set (WI) (6.51 (6.8). as shown in Table 1.I. Similarly

given logical equations and their unknown variables. where those Kicene's three-valued system (K 3 ) 131 and Bochvar's system (BI )
*solutions were indicated in the truth tables. By mean,, of the 141 were axioniatized. where their truth tables were derived as-

similar method. Kicene's three-vralued logic and Bochvar's one shown in Table 1. 1 and Kleene's system consisted of three sets Of
were also axiomiati,'ed. In this paper, abose-mnentioned axiom truth tables.
systems are extended to the complete predicate logic. To solve In this paper. the coexistence of any two of X=I".

suhsimultaneous logical equations. the special four-valued logic ....X = 3" is prohibited. as "Contradictory'> Then each general
is used. solution for Wajsberg's, Kleene's or Bochvar's system converges

to a single truth table tW 3 , K' 3 , B'3 ). The above-mentioned
I. introduction process of the solution of any given axiom set perlormed by

In the recent mathematical logic. the operations of operators means of the special four-valued logic IlIl which is independent .-

in axioms are not defined explicitly but done implicitly by many of the number of the truth-values of the given set.
formulas derived from the axiom set. However, especially for Finally the axiom set for the predicate logic of the-
many-valued axiom set, it is very laborious to derive the truth above-mentioned systems are also improved to obtain "Coin-
tables for those undefined operators. pleteness".

In the preceding papers I 11 121, for example. undefined REMARK 1.1 In this paper, the marks "!" and '1"* and
operator% in M. Wajsbe.rg's axiom set 121 were treated as "' I" indicate "Assumption or Definition" and "Essential result"

* -unknown logical functions and axioms were treated as given and "Axiom" respectively.
* - logical equations. The general solution consists of truth tables (P

Tahle 1.1

X X Y X DYX

1 1122 2 3331 11 22 23 33 1 23 1

I I 1 2 1 3 2 23 31 3 P

12 1 11 1 1 I

1 1 23 1 111 1 1 211 3

1 23 11 11 1 13 11 4 o
*I 13 33 13 33 112 3 11 211 13 2 1 5W,

12321 11 1131 211 7

1 32 1 11 111 2 11 7

1 132 11 1 11 3 11 10

1 3 3 13 I ' I I I 1 2 I 3 1

K' I 3 2K 3 1311 1

B3' 1 [ j 3 33 3 3l 1 2 3 12 22 1 j32 1 B3K
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2. General construction of axioms (77) A V I' li N' N- I k X, yy
Axioms are assumed to have the form "A D B" or "A B". m y

The logical expressions A and B consist of any variables X. Y, Z, A V 11 11 N' N lky
.of a finite number and their connectives ( .D, 7. and = of a .. Ik ),kem jk Y y(."

fnite number. where ( ) are parenthesis and 7 is an unary-

oeaowhile D and =are binary ones, without any other transformation, the sign being omitted in
3.TrthvaueEqs. (7.2) (7.8). Eq. (6.0) is transformed to Eq. (7.0'),

Every one of A, B, X Y. Z. .takes only one of the A' V IMP(A. B) V B' I= . (7.0') . ..-
truth-values I., 2..,No simultaneously where "I" lis designated

-. as "True". In process of solution of logical equations, from Te2dtr ntelf-adsd hudb o .B*I
Section 5 to 8. the following special expressions are used.ThnE.70)iobaed

"Xtakes the truth-value x" is represented by Xx = I. (3.1) ThnE.(0)iobaed .

"X does not take x" is represented by VX 0. (3.2) j '. ' 1 .(.)

4. Connectives for classical two-valued logic
NeainAor -A. Conjunction A-B. X I, l

Disjunction A V B. Implication A -B. Equivalence A -B.3 3

Identity in many-valued logic A _=B. which means "Truth- Al. V1 P' N) N' k (7.2)!!
values of A and B are equal for every truth-value of the 0Ijk- k

consitituents X Y. Z . .. A V, E,1 Ni E' k I (7.3)'! 0
___ Re_____aio of the un de fined operators 3 3

Using the form (3.1 ) or (3.2). No-valued implication, equality A V IV E), I. El, E- (7.4)!!
and negation with truth value"V" are exp~ressed as the following AS.~ .. I' jk YO y x

two-valued expressions. where IQn, EV~n and NV are indetermi-
nate coefficients. inA V Ii 11 7.)!

N(. N. 3 3[A D 131'MPA, B)' V Vn~* m B. (.) Az V =, I'~ 1j, I'. 11, 1. (7.6)!!
V I m -B,(S.,I j.k.Q.tmI k y m ya

No No 3

EABI -EU )
5 V V F A m-B0 . (5.2)! A V, I' N'k N" X (7.7)!!

17A1 5  NEG)(A)' =V NQ *A m (5.3)! A V I~ l~k I k Nk 1 . (7.8)!! .
m m x I j*,Q5 I

6. Basic tautologies for WajsbMr's three-valued logic where in general

A' -A DB' Wo. (6.0)! An K.~ n AN ,NN1 (7.00)!W

IX= X1' (6.1)!! 8. Solution of Eqs. (7.0) - (7.8) by a computer

IX 7X1',(62)!! Simultaneous logical Eqs. (7.0) -- (7.8) are easily solved usingIX 7X 62!! FORTRAN by a computer. In FORTRAN. in place of "*x. y. z,
17(X = X) = 31 .(6.3)!!! ... '.. we use corresponding capital letters.

For example.,

I( Y (Y Z D( X 0.)!= l(P. IBC), IBC =9*L + 3*M + N. (8..!
I X D(Y -D Xj ' (6.5)!!! na

I(X D Y) D ((Y D Z) D )X D Z))'1 (6.6)!! E',i n EQ (P. IBC), EBC =9*L + 3i'M + N (8.0.2)

I(7 D7X D(XD Y1 , 6.)!!' N(P, WA). NA 9*L + 3*M. (8.0.3)
[((X D7X)D X) D XI. (6.8)!!! 0

[(X 7X) D(X =2)]' (6.9)! P 1 .2,. .,R.

fTX =7TX1 (6. 10)!!! 8.1 Initial values of
where "!!!" indicates "Independent tautology" as proved in (.)-12=13, = 0. (7.0)!
Table 10.1 and T is Slupecki's operator. [5)(.0 1

7. Transformation of the tautologies in terms of Inn E~n NQ 8.2 Initial values of E

Substituting Eqs. (5.1) - (5.3) for the corresponding terms in The coexistence of "X=2" and "X)or (X=n3)" is assumed-
Eqs. (6.0) - (6.8). we have Eqs. (7.0) - (7.8). For example, to be "Contradiction".
"I .JKl m" in Eq. (6.7)

3m I k (6.4)1- (X= D ((I 2) D (2=X)),
(7Y D7X) D(X DY) (7.7') (8.2.1)

expresses the truth-values of the terms in Eq. (6.7) connected by
operators "D, D, D. 7.7" respectively. Then, for any truth-values 1.I 2. 2 *3 .. E;, =E,, 0 (8.2.2)!!
of x. y. z. we obtain by Eqs. (3.1) and (3.2).
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Similarlywhere p,- means the 4-valued disjunction (8.3.3) from (P 1) to
F,, Ii- -2 - 23 -SI ~32(P = R). R being the last ordinal number. Since the flow of

E11 = , 1 =E21 = 2 =E 3 E32,(S. 2. l! computation proceeds unidirectionally from the first tautology

E2==20=E2.1=E to the last, any set of' provisional solutions is the summary of all
1
2  

1
2

=E 2 F 2
2 

3 2 the preceding results.
The general solutions of 1, EQ and N converge to the last

The initial values of the remaining variables Inn. EOnn, Nn single set of the provisional solution under the condition (8.2.3).S
shoud b "2 as"Ineteminte" This set is transformed to the truth-vilues of IMP(A. B). EQU(A.

shudb 2 s"neemnt" (8.2.4) B) and NEG(A) according to Eqs. (8.3.6) and the truth table at
8.3 Process of solution by means of the special 4-valued the end of Table 8. 1.

logc 8..2) (.33)IMPtA, B) = 3 - 2*I(P. lAB) l(P. IIAB).
* In Table 8. 1. XYZJK... B = 100 ... 0, means X=lI where O's

mea "Te orrspndig . Z B re oting. QU(A. B) = 3 2*EQ(P. lAB) -EQ(P. IIAB). (8.3.6)

IB c ,l'. (2BC)1=". EQ (IBC) N EG( I =3 2*N(P. NA) NtP. NNA)
EQ ~~ ~83.. NIG(A'.N(IA N 2A :

EQ(2BC F 2  }where
To combine many conditions, let us use the following special

4-valued logic 18.3.2) & (8.3.3). IAB_=9 + 3*A +B, HIAD 9*2 +3*A +B,
Truth-value: 00 1. 2.
"0 and "2" mean "Contradictory' ,ind "Indeterminate". N *. NA 9~+3A"10" and "I " mean "False" and "True", respectively. N _9+3A N

*Conjunction 0'0 _0*O0' -1=0 -2 -0. 9. Fittest number of truth-values and a canonical form

0-O0. 01 l4. 0.2-=O, (8.3.21.)! Table 9.1

* .l~ll.2l..2w. JU 7XJXIIjX2X' Y

Disjunction 0 v OF-0v Ov iw, vI =-, 02=_2 I 3 l 3 3

OvO=O. Ovl1E2. Ov 2 2, (8.3.30! 2 2 3I I

*.lvIll v2=2. 2v2=2. 3 1 3j Ii
For the above-mentioned 4-valued operations. the following Table 9.1 shows the truth-values of the hollowing three basic

2-bit expression may be used, functions:

0=00 ll=0.2_ll (8.3.4)! Xl'=-(X iX X)), X2' X 7X). X3'=-(X (X 7X).

We can easily derive (8.3.2) by the bit-wise conjunction of (.)
(8.3.4) and also (8.3.3) by the bit-wise disjunction of (8.3.4).

On the 1st row of TFable (8.1 ). "20022 ... 22 2" is-the I1st set for W. K; and B; in Table 1. 1.
J1I of particular solutions which follow (7.0). (7.1).,(7.00) REAK .1 l X 2'X X X3

for (X = I ). RMR . l-l 2 2 3 3

On the 2nd row, (here is the I st set (P = I ( of the provisional for K3 & B3 in r 3 1. (4!1.
solution produced by the conjunction of every !iitia value
(8.2.3) and the corresponding values of' the particular solution on Xl' = 7X I, X2' 7X2, X3' 7X3, 19.2 11!
the I st raw.

On the 3rd raw, there is the Ist set (PI I ) of the particular for W3 in !
solution whichfollows (7.0), (7.1) (7.00) for (X =2

On the 4th row, the I st set (P =I ( of the provisinlslto XUY =_7XDY for K , K3, B., B3,
is derived by the conjunction of the preceding provisional
solution (2nd row) and the preceding (3rd row2 particular XY (D)Y frWW., (.)
solution. XN=(D)Yfr;W, 93

If "0" is found in any new set, then that set should be
cancelled and its ordinal number should be transferred to the Xny 7(7XU7Y) for W ,W 3 , K , K3, B , B3.
next set.

As shown in Table 8. 1. the truth values of I' E'05 N' are
settled to "0" or "I" successively. Let us indicate such settled whrteodrofheprainsasolw:
results as 10 (IBC). EG (EB(') and NO (NA). which are derived
by (8.3.5). 7, fl, u, D. Dc,

R
10 (1BC) V Il(P, I BC), 1: 0(E BC) =V EQP.EB

P.- IB(=1 As already reported in 161. 131. 141. we can divide the whole

NO(NA) 0 N(P. NA)., domain of X into three subdomains Xl'. X2'% X3%. which are
P_ displayed in Table 9.1.

If we use the operators nl and U we can construct the
(8.3.5)!! canonical form F(XI which takes the truth-value Ln (or (X n).
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Table 8.1

I(1BC) I(2BC) EQ(IBC) EQ(28C) N(lA) N(2A)
A 123 123 .
B 111222333 111222333 111222333 111222333
C 123123123 123123123 123123123 123123123
XYZJKLMHGFEDCB, , , , , , P1, P ' ' ' -

10000000000000, 200222222,222222222, 122222222,022222222, 222 222, 1

200222222,222222222, 100020002,000020002, 222 222, 1
*.20000000000000, 200222222,222222222, 222212222p222202222, 222 222, 1

200222222,222222222, 100010002,000000002, 222 222, 1
30000000000000, 200222222,222222222, 222222221,222222220, 222 222, 1

200222222,222222222, 100010001,000000000, 222 222, 1
10011000000000, 200222222,222222222, 122222222,022222222, 122 022, 1
10012000000000, 200222222,222222222, 122222222,022222222, 012 102, 2
10013000000000, 200222222,222222222, 122222222,022222222, 021 020, 3

200222222,222222222, 100010001,000000000, 122 022, 1
200222222,222222222, 100010001,000000000, 012 102, 2
200222222,222222222, 100010001,000000000, 021 020, 3

20021000000000, 200222222,222222222, 222212222,222202222, 012 102, 1
20022000000000, 200222222,222222222, 222212222,222202222, 202 212, 2
20023000000000, 200222222,2;2222222, 222212222,222202222, 200 201, 3

200222222,222222222, 100010001,000000000, 102 012 1
200222222,222222222, 100010001,000000000, 100 001, 2
200222222,222222222, 100010001,000000000, 012 102. 3
200222222,222222222, 100010001,000000000, 001 010. 4

30031000000000, 200222222,222222222, 222222221,222222220, 021 020, 1
30032000000000, 200222222,222222222, 222222221,222222220, 200 201, 2
30033000000000, 200222222,222222222, 222222221,222222220, 220 220, 3

200222222,222222222, 100010001,000000000, 100 010, 1
200222222,222222222, 100010001,000000000, 100 001, 2 -
200222222,222222222, 100010001,000000000, 010 100, 3
200222222,222222222, 100010001,000000000, 001 010, 4

omitted

23022120000000, 200210222,212201222, 222222222,222222222, 201 210, 1
100110111,011001000, 100010001,000000000, 001 010, 1
100110111,010001000, 100010001,000000000, 001 0100 2

31011310000000, 100222122,022222022, 222222222,222222222, 021 020, 1

100110111,011001000, 100010001,000000000, 001 010, 1
100110111,010001000, 100010001,000000000, 001 010, 2 0

32011210000000, 100122212,022022202, 222222222,222222222, 201 210, 1
100110111,011001000, 100010001,000000000, 001 010P 1
100110111,010001000, 100010001,000000000, 001 010, 2

33011110000000, 100222221,022222220, 222222222,222222222, 221 220, 1
100110111,011001000, 100010001,000000000, 001 010, 1
100110111,010001000, 100010001,000000000, 001 010, 2

10012300000000, 100122222,021022222, 222222222,222222222, 022 022, 1
10013300000000, 100222122,020222022, 222222222,222222222, 022 022, 2

100110111,011001000, 100010001,000000000, 001 010, 1
100110111,010001000, 100010001,000000000, 001 010, 2

20021200000000, 200212222,212202222, 222222222,222222222, 202 212, 1
100110111,011001000, 100010001,000000000, 001 010, 1
100110111010001000 100010001000000000, 001 010, 2

30031100000000, 200222121,220222020, 222222222,222222222, 221 220P 1
100110111,010001000, 100010001,000000000, 001 010, 1

IMP(AB) EQU(AB) NEG(A)

A 111222333 111222333 123 P
B 123123123 123123123

TRUTH VALUE
123112111 133313331 321 1
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FX~(X fl~ (U (2' fC2U X flC. (9.)!11. Tautologies for K ad .
In this case: As already reported 131, 141. independent ~axiofl sys~tems

F~n= C. (!!)or K; and B; are as follows.

When Axiom (6.10) or constant 2 is not used, "C2=2" appears A(AD)B i -B'
only when X=2, then we may use X in place of C2 in such case.

(KI I
Table 9.2

- _ __---- (X=XI''I-
XUY n

X 211 22 2 333 1 1 I 2 2 2 3 3 3 [(X=Y)=7(X=Y))DZI!

Y 123 12 31 23 1 23 12 3 123 17X=)X=pxY)Dzj'

W; I I I 1 2 3 1 2 3 2 2 3 3 3 3 (X~y)(Y=Z)i(Z=X 0 1

I I I 1 2 2 2 3 1 2 3 2 2 3 3 3 3 !7XDY=7 YDX .1

Bl 2 1 2 2 2 12 3 1 23 2 2 2 3 23 7XX)DXY(X)JH

if there is Cn = 2 when Axiom (6. 10) is used. we may use TX l(X=7X)D((7XDYD::7(XD7N')=X)J!
in plaLe! of that Crn.

For F (X Y). we may use Fn (Y) in place of Cn. I (X=7X)D((Y=7Y(D(X=Y)1!

1-0. Selection of the independent axioms for W3 ' I X=(XD7Y (DXI11!.
Let us select the independent tautologies among EqIs. (6.1)-

(6.8). Table 10. 1 shows the result of the selection, where "MS" I(7X=7N)D(X=Y)I!
indicates the ordinal number of the tautology and "R- does the
cardinal number of the sets of provisional solutions at that 1X=77X1. '

tautology and -D" does "Independent tautology" and"A"does
-This is not independent. "c)" and -A", indicate "Already" (3

* . decided as "independent" and "Already decided as dependent"(B
respectively. Then. Axioms (6.2) (6-8) give the unique solution
for w 3% I X=X I

ITable 30.1 [X=77X1
MS 1 2 3 4 5 6 7 8 7(Y=XYO

R 1 4 1 2 16 12 2 1
U(X=Y)D((N=Z )D(Z=X (I!

0 a

MS ms 2 3 4 5 6 8 7

IR 1 4 1 2 16 12 9 t I7XDY=7YDXI --

0 0 A [(7X-7Y)-(X-Y'))'
NIS 1 2 3 4 5 8 7 6

R 1 4 1 2 36 9 1 3 i(X=7XD(XD'=Z)J

0 0 0 A7XDY=Y7XD~
MIS 1 2 3 4 8 7 5 6 7X XPY YDxyJ
R 1 4 1 2 6 4 1 1 [XD7Y=YD7XI'1

0 0 0 A
MS 1 2 3 5 8 7 4 6 1IXDY7Y D7X I
R I 4 I 20 It I I I

MS 0 2 § 0 12. Predicate logic
7 S 8 3 4 612.1 Classical two-valued predicate Igic

R I 4 180 4 2 1 1 I Usually the following two axioms are used for classical
two-valued predicate logic

MOS I 3 7 5 8 2 4 6

0 0 0 aVxP(x)- P. (12.1)!!! P -1xP(x). (12.2)!!!
R 1 I 235 t0 4 1 I 1

0 0 0 0 0 A AFor simplicity, let us use the following expressions.
MS 2 3 7 5 8 1 4 6

R 4 1 40 2 I I 1 1 P=P(YnI)=Pn, V-AxP(x), 1wExP~x).(23)
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Ihen 412.1).I 2.3) l. IVxP(x) DP] '-=[V DPJ '=AIVD Pn) = l'=iV D/\ Pn= I][

A pn -A- V vP - VvA Pn-V - IV =3I.IAPn = 31 viV=3IjtAPn=2I vlV=31iIAPn= I1

I V -vV- v IV =21 "An= [ = APn=1JvIV=I .I 'Pn= H.

Similarly. Eq. (12.2) has the general solution (12.8).
2.2). 112.3 A( P.- -1 =A( PnvF I-=A P' n-vA1  . ..D

IP lpi) [P FII'P: IV r

_=!? H V Pn~ l v I ' ,I _ l )t( V pri-O )v ( q - -0 (V pn,- ) " IP 3 P x ]a =I 3 1' I Cn 3 ) = Il' IV P = II . . .. .[ ,

112.2.1) =11"[IVIVPn11viq=1 1VP vI 2 1 IV IVP n
A3= "I I " V

In these general solutions 412.1.1) and) 12.2.1 ). the special v[1=21 IVPn= 21v[ =21 [VPn=31vI-4=31-[VPn=31.
terms with Mark A contradict the usual meaning.

Then we add the following axioms which exclude such 112.8)!
unfavorable solutions A .

[P (y)-l I - A (Plx) - (x - x)). 412.4)!!! Then, instead of (12.1 ) and 4 12.2) the following new axioms
should be used as shown in Table 12. 1.

(P-I )4 VxP(x). 412. ! PE-I 4 I) xP~x). 12.6) l!!

12.2 Predicate logic for WI. Kj. B'4 13. Conclusion
In this paper. M. Wajsberg's axiom system is improved to the

Using 11.2.3). any representative "P or P, or P3 ' of P takes complete system by means of the special 4-valued logic. Similarly
value "1 or 2 or 3". Kleene's 3-valued logic and Bochvar's one arc also axiomatized to

For W in fable 1 1. (12.1) has the following general the complete systems. Finally those three systems are extended
solution. where the Marks A indicate the unfavorable solution as to the predicate logic systems. Such method is applicable to
in 112.1.1). other multiple-valued logic systems.

II
Table 12.1

Axioms Derived general solutions

4P4Y) 1) = A IPlx)=x=xl' -

itP =-  
D VI. (A Pn = IV= I.

liP = (P 7P)) D 4V = P)l (A P, =3)'IV=3).

If7 (P=4P=7P)) I

W-4 D ((Ip=71) D (V=P))I (A Pn = 2)'tV= 21 )'- ."

& n fl

1(7P - If D 7 1 (V P,, = 3 ( 1=3).

I(P = (P = PH4 D I 1 = P)' (V P = I4 4.1 = 1I
n

1(7 (P = (P = PH-I

D ((P =7P) D A= P))I (V P = 2)(31=2.

I(P- I D VI. (A P = I4(V I)

[(7(P=7P) - 
If D (V DP)'.I [P t 21 - I(A P = 

I)'V= 1
V(V ' = 3). (V= 3)1.

n

I(P=7P) D IV=P)I' (A P, =2).V=2 .n

B 3 ' - -

(7P -I D 7 .!1 (V P = 3 (-1 =3).n

17(P=7P)I) D (PD,q)]l IP f 21 "IV P = 1.I=1)

V(V Pn =3) (1 3)1.

[(P=7P) D 41q= PW]. IV P =2)'(.1=2L • "-..I I.'- ""
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0 . IMAGE PROCESSING ALGORITHMS FOR A MULTIPLE-VALUED ARRAY PROCESSOR

Michitaka KAMEYAMA, Kenichi SUZUKI and Tatsuo HIGUCHI

Department of Electronic Engineering, Faculty of Engineering

Tohoku University, Aoba, Aramaki, Sendai 980, Japan

ABSTRACT instructions can be generalized by template
matching. The r-valued logic system has much

A new digital image processor called multiple- more logical functions than the binary logic
valued array processor (MVAP) is effectively system. This logical richness and powerfulness
employed for systematic image processing without in the MVAP makes image processing more and more
encoding and decoding because each pixel can be efficient and flexible than in the binary array
directly expressed by a single multiple-valued processor (BAP). On the other hand, the number
digit in the images with gray levels of several of state transitions corresponding to the templates
colors. In this paper, some properties of image becomes large in the multiple-valued logic system
processing in the MVAP are presented. Especially, because of its logical variety. Therefore,
the near-neighbor instructions can be attributed simplification of the image processing algorithms
to template matching as the state transition is required for effective execution, implying the
function. In multiple-valued logic, there exist minimum number of execution steps. For this
many templates because of its logical richness, purpose, a systematic synthesis method of the
The simplification of the state transition function image processing algorithms is discussed.
is very useful for the effective execution of the Finally, it is demostrated that the method is
image processing. The systematic design method highly useful for the simplification of image
of the image processing algorithm and its processing algorithms in the MVAP.
simplification using a minimization technique of
multiple-valued logic functions are discussed. II. OVERVIEW OF THE MVAP

The basic structure of the subprocessor in the

MVAP is shown in Fig. 1. The subprocessors are
I. INTRODUCTION arranged in each pixel (i, J), and theiroperations .-S

are controlled by microprograms. The value of
In recent years, a great deal of time and effort one of the inputs is transmitted to the eight

has been expended in the field of image processing. near-neighbor subprocessors (N, N2, -1 N8)
Image processing machines are used to analyze defined by Fig. 2. The control vector = (gl"
satellite pictures, count blood clls, analyze d
histological sections, and process other forms of g2, ... g8 ) determines which directions are

image data. Many approaches have been taken from permitted to infulence the variable P expressed by
both the hardware and the software in imageiP

\8
processor design [1-5].P Ni(i"

i=l

Until now, image processor designs have been where V andA are OR and AND, respectively, and
based on binary logic circuits. The use of
multiple-valued logic in image processing was
first introduced by Rine [6, 7]. If the maximum ' N

number of gray levels or distinct colors is set at
r, then each pixel can be represented by a single
r-valued digit. In this case, digital encodings N1I
and decodings of the images are eliminated.. .
Moreover, the complexity of the image processing
algorithms is reduced due to reduction in the N 82
number of pixel iterations. From this point of N8
view, we have designed the multiple-valued array 2 2
processor (MVAP) which is an extension of the
BASE [5, 81. The MVAP can directly accept the
pixels of the input image, process them and produce MeF~ry
the output without converting back and forth
between the actual image and the binary data.

y" ______-'.
In the MVAP, multiple-valued logical opeiations

and near-neighbor instructions can be performed

without encoding and decoding. The near-neighbor F Subprocessor structure of MVAP
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they are defined by difference called "MEXOR" is given by [6] J

V : OR(xI, x2) = max(x I, x2) (2) f(xl' x2) -
Ix 

- = T(x2, T(l, 0, 1, 2 ; x2,

A AND(x i, x2 ) = min(x I, x2) T(2, 1, 0, 1 ; x2), T(3, 2, 1, 0 x2 ) xl).(6)

for xl, x2 C L = (0, 1. r-l}. Each el'ement of the set L - (0, 1, 2, 3) corre-
sponds to a symbol of Table I. For the input 9

The variable g. is defined by images of A and B, applying Eq. (6) the resultant

i r-I if Ni is selected image can be obtained as shown in Fig. 4.

0 otherwise. (2) Simple near-,'eighbor instruction

As a basic building block to construct any
combinational circuit, the multiple-valued T-gate Simple near-neighbor instructions use the

is useful because of its universality [9, 10]. interconnections between the subprocessors, and

The multiple-valued T-gate which is a multiplexor their structure for each subprocessor is shown in

function is defined by Fig. 5. The near-neighbor function is specified
by

T(P0' Pit . Pr-i ; x) = Pi if x = i (4) P -- NN(<list>) of h(X) Edge<value> (7)

where p. (i = 0, ... , r-l)E L and x E L. Any where X is the name of the multiple-valued array
2-variatle functions can be expressed in the being operated on, and the notation <list>C{l, 2,
following canonical form: 3, 4, 5, 6, 7, 8) is a vector indicating which of

f(xl, x2) = T(f(xl, 0). f(xl r-l) ;x 2) the near neighbors are to be involved. Thenotation <value>EL indicates the value of near-
= T(T(f(O, 0), . f(r-l, 0) ; xl), neighbor inputs to the subprocessor at the edge

T(f(0, 1), . f(r-l, i) ; x), of the array. If the edge is not specified, all
edge elements are set to 0. Once the variable P

•.., T(f(0, r-l) ... , f(r-l, r-l) has been evaluated, it is then combined with the
xI) ;x 2). (5) other variable by two-input logic function to

Various near-neighbor instructions can be performed form the resultant multiple-valued array R. The
by the multiple-valued logic circuit f(xl, x2 ) as complete notation for this instruction is
well as two-term operations. R.--f(A, P) where P.-NN(<list>) of h(A)

The different types of instructions are selected Edge<value> (8)
by the switches S1 and S2. The switch S2 selects Table I Symbol of each
either a multiple-valued or a near-neighbor pixel in the 4-valued
instruction, and the switch S1 selects either a logic system
simple near-neighbor or a recursive near-neighbor loisyt
instruction. The control vector h enables the f(A,B)
propagation signal to be transformed according 0 1 2
to the mapping. That is, h(x) can realize any
single-term operation.

III. IMAGE PROCESSING ALGORITHM

(1) Multiple-valued logical operation A

In the r-valued logic system, the number of N1  2  N3
single-term operators and two-term operators are B

r
2

given by rr and r , respectively. This logical N N N4
power and richness enables the subprocessor to
execute various types of image processing. The R
structure of the subprocessor to realize the
multiple-valued logical operation is shown in N7  N6  N5
Fig. 3. As an example, let us consider the Memory
differenceof two input images. The logical

Fig. 2 Near-neighbor Fig. 3 Structure of the .

labeling multiple-valued operations

(2-term operations)

• -- + • ........ .. ..........

• * .. +. 4.-|-..,.s1 . *.4 .+ . . " •+ +* •
S* q+ "•• -_m I 4* . .* .. Cl... + .. .

S. . .......... .

* .. - ..-... .• , . . .. .
* . . + + + .. ~* " • -*4,-,+-+ -+4cc -~ . F~it. 4 Difference

.............................................. operation

(a) Input image A (b) Input image B (c) Difference 0
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where f is any r-valued function of its arguments. where x means the complement of x such that x =
r-l-x. The sum terms in multiple-valued logic

The simple near-neighbor instructions are are used for the execution of the template

generalized by the template matching. The tran- matching at each step because the near-neighbor

sition function should be defined by a list of function P is the logical sum of the near neighbor-
only those neighborhoods that actually will produce hoods. Let the set of all the near neighborhoods -

a change of the state in the center module such that pi = c be (Ic } for cC L. With respect
together with the new state where the transition to the near neighborhoods I c }  the template
will be made [4]. The following notation will c

be used for the transition 6: matching for the input A can be performed as

1 1 1 ~ . kR(lnitial) 0 __ (14)
V V V V V _" -1 2 3 1, R.-- OR(P, R) where P..,-NN(<Ic>) of Ac (15)

6: V8  V0  V4  V1 , 8 0 4 If the result remains 0, after the iteration of •
1 1 1 Vk the operation in Eq. (15) from c = 0 to c = r-l,
V V V 7 6 5 then all the near neighborhoods are matched with

It is interpreted in the following way. If for the template. Therefore, the result of the

any ij, I < w< k, A(i, J) = V11, A(i-l, j-1) = V , template matching is obtained by

and A(i-l, j) = V
1
' then the result R(i, j) =R - f(R, A) (16)
8' where f(O, po) = p, otherwise f(R, A) = A.

V or else R(i, j) = A(i, J). As one of the
templates in Eq. (9), consider the template given (3) Recursive near-neighbor instruction
by

Pl P2  P3  The recursive near-neighbor instruction can be

p4 p (10) implemented by the subprocessor structure shown in
8 P0 P4 - (i0) Fig. 7. The general notation for the recursive

near-neighbor instruction is given by
P7P 5R(Initial) ; given

If the near-neighbor input variables are defined
as shown in Fig. 6, the product term corresponding Repeat R - f(A, P)
to Eq. (10) becomes where P-

p p p NN(<list>) of Xi X2  X3
g P x 2 x 3 x 4 P PxP7"xP8 (11) h(R) Edge<value>. "0 1 2 3 4 5 6 7 8(17) .

whcre • denotes AND, and where x~i is a literal This instruction is also X0 X
defined by r-l if x (12) represented by the state

0P = (12) transition of R using
x 0 otherwise. templates as follows:

[Ih. omplement of Eq. (11) is equivalent to

0 + xPl +2 + x 3 + x 4 +Fig. Near-neighbor inputs

f( 6 ""
N N

___91h :"

N N

Fig. 7 Structure of the recursive near-
Fig. 5 Structure of the.simple near-neighbor instrucitons neighbor instructions
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R(Present state) A(Input) R(Next state) The algorithm can be written by

ri r2  r3  R(Initial); given
Repeat R -T(T(R, R, 2, R ; A), d, d, R ; P)

r8  r0  r4  a0  - r0  (18) where P---NN(all 8) of T(3, 0, 3, 3 ; R)
R -T(T(R, R, R, 3 ; A), d, d, R P)

r r6  r5  where P -- NN(all 8) of T(3, 3, 0, 3 ; R)
7 R --T(T(R, 1, R, R A), d, d, R P)

where a and r are the center pixels in the arrays where P.--NN(all 8) of T(3, 3, 3, 0 ; R).
(19)

A and R, respectively. The recursive instruction Fig. 9 shows the input image and the result based
is effectively repeated until R reaches a constant on these templates. After the state transition
value, corresponding to the templates occurs, the center -

oixel remains unchaged. In other words, the
The sufficient conditions for the convergence state transition occurs once in the given

of the array R within the finite repetition are templates. Therefore, the condition (a) is
classified into the following two cases:satisfied, and the result R is in the stable

(a) Fig. 8 shows the discrete Markov graph state after the finite repetition of the algorithm.

in the transition of each pixel. Let the
initial state of the array R be in the state IV. STMPLIFTCATION OF THE IMAGE PROCESSING
S in Fig. 8. The new-state transition occurs ALGORITHM
by use of templates in the state S., while no
state transition occurs in the state S . If With the near-neighbor instructions, the number

there is no closed loop in the state S the of templates required for the state transition

reslut R remains in either f the states Sr often becomes large as shown in the previous
and Sc .  example. In this case, the compression of the

(b) The propagation of the signal is unidirectional, templates can be done using a minimization

Namely, the array R is determined in order technique from multiple-vdlued logic [11, 12].
according to the specified direction.

As an example, let us consider the extraction of

the connected components where the order of the +,, -

chain is 1-2-3. The templates for the state , -+
transition are given below, where d denotes don't .,,+ ++- .. ,-- ,

care.

I .1 d d. d dd *t,.-III

. d d2 2. +. Q+ .+

d d 51 A d a d :1 d

d 2 -2. da -Z, lddd 2 , 2 -02. (a) Input image

Ed ] d~i d ad dd

- " "II- ."-

2 I d~ a d d -~

-3 'd d, d. .3 3.dM03

add d M d d d~. II ~ld dd~I

d a 2 d , d d
d d 31 a d 11 3 d d1

]d . 1 4- " d d-.1PI

+

(c) Final state

Fig. 8 State transition in the ricursive S
near-neighbor instructions Fig _ Extraction of the connected components
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Let the sum-of-products terms concerning 1 13 1 1 3
templates be R, R1 ... Rr_2 and Rr, where 313

R. is the sum-of-products term which causes the
121 21121

state transition to iE L. The other terms which
are not contained in the given templates can be 3-3 1 2
written as r-l 1

01 . r-l i=O i (20) 1212 1

The state transition in the center module does not
occur, if the term of Eq. (20) takes the value r-l.
Therefore, the state transition function f(a0 , X0, In this example, let all the patterns except these
x 1- , x8) is given by templates have a transition to 0. Therefore, the

r-1 l sum-of-products term of Eq. (21) is given byf(a0' x0, ..... x8) = YiV-tRi + x0" 7i (1)0
f80 10 V P 0  A R (1 = ir 1=0 i, f N I i*R V With r4;spect to the terms R 3and R 2

In the operation in the MVAP, each sum-of-products i1 i 3 n 2
term Ri is sequentially calculated, so that the the following cubical representation can be
minimum form of each R. (i = 0, ... , r-l) isrequiied obtained from the templates:

for minimum execution time. From the above R3
discussions, the procedure for obtaining the
simplified image processing algorithm can be X0  X1  x2 X 3  x 4  x5  x6  x 7  x8
summarized as follows: (0100)(0001)(0100)(0100)(0010)(0100)(0010)(0100)(0100)

(Step 1) Find all the templates whose neighborhoods (OlO0)(0001)(0100)(0100)(0010)(0100)(0010)(0001)(O100)
will pruduce a change of the state in
the center pixel. (000)(0001)(000)(0001)(0010)(O0OOXO010)(0109)(0100)

(Step 2) In order to get the minimum sum-of-products (0100)(0001)(0l00)(0001)(0010)(0100)(0010)(0001)(0100)
r-i

form in the function g = iVi-Ri, express (0100)(0001)(0010)(0100XOolo)(0100)(0010)(0100)(0100)

the product term concerning each template (000)(O00lxo010)(01O0)(0010)(0100)(0O010)(0001)(0100)
using a cubical representation [12]. (0100)(0001)(0010)(0001)(0010)(0100)(0010)(0100)(0100)

(Step 3) Obtain the minimum sum-of-products form
in the function g from the cubes using (0100)(0001)(0010)(0001)(0010)(0100)(0010)(0001XO100)
the minimization technique [12]. R

(Step 4) Obtain the minimum sum-of-products form 2

in the function %. In the ordinary (0100)(0001)(0I10)(0100)(OO00)(0100)(0010)(0100)(O100)

minimization, this term is not necessary. (0100)(0001)(0100)(0100)(0010)(0100)(0010)(0100)(0001)
However, the term R is used as the

r-1 (ooo)(0001)(0100)(0100)(0001)(0100)(0o10)(0100)(ooo1)
the calculation of the function xO . A 0 (0100)(0001)(0100)(0010XO010)(OIO0)(O010)(OO0)(O0) 

"  
"

A similar minimization technique can be (OlO0)(0001)(0100)(O010)(O0O1)(OlO0)(O010)(O1OOXOOO)
applied to the term RO.

,0,0.....)1 1)0
0'(0100)(0001)(OlOO)(0010)(0010)(0100)(0010)(0100)(0001)

Let the state transition function thus obtained be
r-1 r-l (0100)(0001)(0100)(0010)(0001)(0100)(000)(0100)(0001)

f V l is + 0 iO +" (22)
i=10

[Example] Consider a template matching whose Using the minimization technique [12], we can

state transition is given as follows: obtain the following simplified terms:

-3
(0100)(0001)(0110)(0101)(0010)(0100)(0010)(0101 X0100)

1 - 3. 1 2- 3, 11 2 3, S2
(OOO)(O001)(0100)(0110)(0011)(0100X0010)(0101)(O101)

* 31 33 3 2 21The image processing algorithm becomes as

3, 2 3, 1 3, R34*-P where p<--NN(5,8) of T(3,0,3,3;A)

R34-OR(R3,P) where P--NN(4,6) of T(3,3,0,3;A)

1 1 2 -~ 3, 1 3, 1 1 3 - , R3 - OR(R3,P) where P'-- NN(1) of T(3,3,3,0 ;A)

1 2 1 R34--OR(R3,P) where P--NN(2) of T(3,0,0,3;A)

R3.-OR(R3,P) where P<-NN(3,7) of T(3,0,3,0;A)
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7

R34*-T(O,T(3,d,d,O;R3),O,O;A) with level refreshers is the most promising
technology for use in multiple-valued memory.

R2*-P where P<--NN(2,5,7) of T(3,0,3,3;A)

R2,*-OR(R2,P) where PE--NN(6) of T(3,3,0,3;A) REFERENCES
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TERNARY TRANSMISSION IN LOCAL AREA NETWORKSS0.
0 -S. c. Zaky and Z. C. Vranesic

Department of Electrical Engineering
University of Toronto . 7"

ABSTRACT no IC's of this type have been developed

commercially.

This paper proposes a number of ternary codes A more plausible application in the near future
for the transmission of binary data in local area
networks. The proposed codes are suitable for may be to exploit the reduced interconnection

complexity at a subsystem level, particularly for
asynchronous transmission. It is very easy for the interconnecting subsystem units. This may be S
receiver to recover the transmission clock, without considered with systems that involve relatively
the need for phase-locked loops and related hard- long interconnection links, as in the case of
ware. Provision is also made for unique represen- local area networks. Here, binary subsystem
tation, for message delimiters, or flags. The main units, namely the receiver/transmitter stations,
advantage of the proposed approach is the simplifi- might be advantageously interconnected through
cation of the transmitter and the receiver hardware. multivalued channels. This is a possibility that

A we think should be investigated.

Section 2 of this paper discusses the relevant
1. INTRODUCTION aspects of local area networks, focussing on the

ring structure. The next section deals with the
Multivalued logic has been the subject of consi- possible ways of encoding the transmitted data.

derable research activity during the past two Secrlon 4 considers the transmission issues, and
decades. Many techniques for design of multivalued presents a practical scheme for implementing
switching functions have been proposed, and a ternary transmission. Finally, the results
number of potentially useful electronic circuits obtained from prototype circuits are described. -

for their implementation have been developed. Less
successful have been attempts to apply multivalued 2. RING STRUCTURED LOCAL AREA NETWORKS

S. schemes in engineering practice. There are several

* . reasons for this, perhaps the main one being the A local area network (LAN) provides communica-
fact that binary technology is well understood and tion links between digital equipment spread over a
readily available. A multivalued alternative is geographical area that may span distances of up to
likely to be tried only if it offers some clear a few kilometers, but more typically up to a few
advantage over the binary case, hundred meters. A large building wired for this

The evolution of multivalued logic techniques purpose is a good example of the size that a LAN
Thas ot rched apointwhe lrgc stemshmaymay be expected to have. Three types of LANs are

has not reached a point where large systems may be of practical significance: bus, ring and star
built using multivalued logic exclusively. However, structured networks.
there are interesting possibilities where multi-
valued approaches can be used to advantage within Bus LANs have gained an early acceptance,
what are essentially binary systems. This paper mainly due to the commercial availability and
pursues one such possibility, namely the use of popularity of Ethernet [3]. They are highly suit- 0
ternary signalling in a ring-structured local area able for traffic dominated by large file transfers,
network, but not very appropriate for character based

traffic. Ring LANs offer an alternative that
It has been advocated for some time that multi- alows s tnlNg of both flend chatvaledlogc rovde naurl man fo rducngallows smooth handling of both file and charactervalued logic provides natural means for reducing based traffic. Their critics claim that this ..'".

interconnection complexity [1,2]. The most obvious ad taei ofe by te csit a mris
advantage is offset by the necessity for a more .ii

application would involve using binary integrated rigid physical configuration and difficulties in
circuits with multivalued signals on the input and rig i nic al o pration o f ie n e in
output pins of the IC packages. Each IC would havewhen
ouput pinsd the eCsadckge. ach enCold he some parts of it fail. Star LANs make use of the
to include the necessary decoder and encoder cir- well understood telephone technology, which is
cults to translate the incoming multivalued signals their chief advantage. On the other hand they
to binary and the outgoing signals back to multi- reuethmot xeniewigplt. A
valued. 'All of the processing within the chips reur th motexesvewrigpan.Avalued. Alole ofthedrocsingy ituinthe hips illuminating discussion of the relative merits of
would involve standard binary circuits. While this the three types of LANs can be found in
approach may be attractive and generally applieable, reference 141.
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Our objective is to scrutinize the problems binary schemes. For example, the extensively

related to the transmission techniques used in used Manchester code defines uniquely only two

LANs. In particular, we are interested in using symbols, 0 and 1. Unique flags can be represented

multivalued logic to simplify the transmission only as violations of the code.

protocol, and hence the receiver design. Multi- Another requirement may be that the transmis-

valued implementations are attractive in point-to- sion code be electrically balanced. This is

point wiring, which is the case in ring and star necessary in transformer coupled systems.

LANs. Our preference is for ring LANs, hence this n s i r o e u y m

is the structure that we have concentrated on. Clock recovery is a key consideration. Correct

A number of ring LANs have been constructed interpretation of the received signal depends upon .-
A u b r o r n A s h a e b e on t u t dthe ability to extract the clock information from - - ' '

[5-81, but they have not yet proliferated in prac- the ailittextac t thetloc inm in from
tieo h caeo u As. Hwvr h the transmitted data. Present systems inevitablytce on the scale of bus LANs. However, the -.-. ".''

employment of LANs is still a recent phenomenon. employ a phase locked loop in each station for .'•J

A true assessment of the popularity of any given this purpose. Phase locked loops provide a

Astrue assess t ony te posblerity afw aygeas reliable means for clock recovery during normal .
structure will only be possible in a few years operation of a LAN. However, synchronization is .""

time, when experiences with numerous LANs are 
ost ion o tHeer, stonition is

accumulated. It is interesting to note that the lost if transmission on the LAN stops, either

foremost computer manufacturer, the IBM Company, because of temporary failures or at times when

freenty anopuncthe a achcer the ing oman, tstations are inserted or removed from the LAN. In

recently announced the choice of the ring as the order to provide for fast resynchronization, the

structure for its LAN [9]• phase locked loop is augmented with additional

Transmission related considerations in the circuitry. An interesting discussion of the

design of ring LANs include the following: related problems and possible solutions if found 0
in Muller at al [I01. Our objective is to study

- speed, transmission codes which allow simpler recovery of

- transmission medium, the clock in order to reduce the complexity of the

- synchronization, receiving circuits in a station.
- transmission code,

- complexity of the transmitter and the

receiver,
- supply of power, and 3. TRANSMISSION CODE 4

* -fault tolerance.
The di-cus.;,n in the previous section suggest-

A typical ring LAN is depicted in Figure 1. Each ed that the trans.'tssion code used in a LAN should

device is connected to the ring by means of a have two important .haracteristics. First, it

station, which contains the required transmitter should provide a simple mechanism for transmission

- and receiver circuits, as well as an appropriate clock recovery. Secondly, it should allow easy

interface to the device. The transmission medium separation of data and control information by

depends upon the speed requirements. In very high having unique and easily recognizable codes for

speed applications, in the range of 50-100 MHz, the one or more flags. This means that the transmis-

medium may be coaxial cable or optical fibres, In sion code should be capable of representing at

the range of 1-10 MHz, it is possible to use least three values. For example, values 0 and I

ordinary twisted-pair wire. Thus, the cost of may represent the transmitted information, while

cabling is largely dependent upon the cost of the third value serves as a flag F. High utiliza-

labor involved in its installation. tion of the available bandwidth, while important,

Most ring LANs are likely to operate in environ- should not be achieved at the expense of increased

ments where high speed of transmission is not a complexity of the transmission hardware. 
S

* primary requirement. In fact, baseband trans- Consider a transmission scheme which allows S

mission under 10 MHz is quite adequate. Thus, distinct symbols, one of which is transmitted

' utilization of the available bandwidth need not be during each clock period. The maximum information

* . an overriding concern. The important issues are carrying capacity of such a link is represented by -. . -

" the cost and reliability of operation. the case where one of S different values, or

The cost of a LAM is a major factor. It has digits, is transmitted in each clock period. Such

greatly influenced the design of two of the above 
is the case for binary NRZ codes [Ill. We will

mentioned LANs [5,8]. The ultimate goal is to have use this as a basis for evaluating code overhead

simple enough stations so that they can be imple- for different transmission codes. Thus, if a

mented as single IC chips. Thus, the complexity of particular code allows one of V digits, where V

the transmitting and receiving circuits must be 
S, to be transmitted every period, the overhead

kt twill be taken as (S-V)/S.kept to a minimum....."'"

" The transmission code is of utmost importance. We will examine transmission codes in which a

Data is transferred in packets, delimited by flags. transition is always present at the boundary

*The code used must allow for easy designation of between any two successive symbols and nowhere else.

the transmitted data, flags and any control inform- This makes it easy for the receiver to recover

atlon that may be required. It is particularly timing information. Such codes lend themselves to

useful if flags can be asserted as unique code completely asynchronous transmission, where the

patterns. This simplifies message synchronization duration of each transmitted symbol is independent

and recovery from failure. Such an arrangement is of the duration of earlier symbols. Furthermore,

difficult to achieve with presently available the receiver can clock in each symbol without
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having precise knowledge about the transmission A simple circuit which uses this approach is
clock period, given in Figure 5. Two ternary receivers generate

Asynchronous codes for binary transmission were 4 binary signals Y1-4" These signals are connect-

studied by M'Rabet et at [12]. The code proposed ed to a 4-bit input latch as well as to 4 address
by M'Rabet involves more than one transition per lines of 256 x 4 bit read only memory. The out-
symbol, which is a necessity in the binary case. puts of the latch are connected to the other 4 0
As will be shown below, a much simpler receiver address lines. The least significant bit in the
can be realized if multiple-valued transmission is ROM is programmed so that it contains a 0 whenever
used. the low and high order nibbles of the address are

In the proposed ternary code, no two successive identical, and it contains a 1 elsewhere. Start-

symbols can be identical. For a given symbol in ing with a random state in which the receivedponinformation is different from that stored in the
nperiod i-, only one of the remaining S-1 symbols latch, the clock output of the ROM will be in the

can be transmitted during period i. As a result, 1 state. Thus, the received data will be loaded S
the minimum code overhead is 1/S. This implies into the latch, making the high and low order
that high utilization of the bandwidth can be* acievd oly itha lrgevale fr ~nibbles of the addres- identical. As a result,achieved only with a large value for S.

the clock output becomes 0. This sequence of
Consider aternary, 4-wire transmission system. events will be repeated whenever a new transmis-

Since 2 signals are transmitted, each having 3 sion symbol is received [13].
possible values, a total of 9 code symbols exist.
In view of the self-clocking constraint, only 8 The block labelled represents an integrating

symbols are available for transmission. Thus, it delay, intended to filter out any multiple pulses 5
which may appear at the ROM output during address

is possible to transmit the equivalent of 3 bits dcdn. Asi opnae o h feto
of data in one clock period. However, this would decoding. Also, it compensates for the effect of

not leave code space for a unique flag. A more

interesting alternative is to provide for trans- One of the 4-wire codes presented in the pre-
mission of either 2 bits of data or one of 4 flags vious section, namely that of Figure 4, is charac-
in a given clock period. This may be achieved terized by the presence of a transition in each of
with the code shown in Figure 2. Note that each the two ternary signals between any two successive
digit is uniquely defined in terms of the current symbols. The receiver realization should take
symbol i and the symbol i-l transmitted in the advantage of this feature to compensate for trans-
previous clock period. mission skew. In the scheme of Figure 5 this can

be easily implemented by suitable choice of the
b A similar code may be derived for binary trans- be

mission on a 4-wire facility. In this case, 4 stored in those ROM locations whose addresses aretransmission symbols are available, which means
that only the 3 values 0, 1 and F can be encoded, consistent with this constraint of the code.

Such a code is given in Figure 3. A code of this Only one bit of each word in the ROM is used . .
type, but without a provision for a unique flag is for clock recovery. The remaining 3 bits can be

• used in the Cambridge Ring [51. used for storing the decoding table for the trans-

Finally we should note that a ternary, 4-wire mission code. The receiver arrangement shown

- -scheme allows other possibilities. In any 4-wire allows this code to be based on both the current
system consisting of 2-wire pairs, there is a and previous transmission symbols. Hence, any of

potential difficulty caused by signal skew, 1.e. the codes discussed in the previous section can be

by differences in the propagation delay along the ported.

two separate transmission paths. The effect of
skew can be eliminated if the code is designed
such that a signal transition must occur on each-5.-TR.AN.-ISSION
of the two pairs for each symbol transmitted. The A few schemes have been proposed for ternary
receiver then simply waits for both transitions to Ae smis A simpe schem is to

arrive, before recognizing a new symbol. Obvious- baseband transmission. A simple scheme is to tan-

ly, this approach reduces the number of digits introduce an intermediate voltage level to stan-
that can be transmitted. An example of such a dard TTL level 11,11. This approach Is suitable
code is given in Figure 4. only for very short distances, such as encountered

in computer backplane interconnections. Another

In the following section, we will show that a 3-valued scheme [15] has been suggested for trans-
simple receiver design can be used for any of the mission over distances of up to 1.5 km. However,
codes of Figures 2, 3 and 4. It performs both the the complexity of the receiver required makes it
decoder and clock recovery functions, unsuitable for use in a LAN environment. As

pointed out earlier, simplicity and low cost are
4. CLOCK RECOVERY the key requirements in the design of LAN hardware.

The codes presented in section 3 guarantee the We are presently testing a differential trans-

presence of one transition between any two trans- mission scheme, illustrated in Figure 6. It is
based on the use of standard binary drivers and

mitted symbols. Thus, the transmission clock may ba.e The us e tia binay d a
be recovered by a transition sensitive device, or receivers. The differential signal, 1 -2

a differentiator. obtained from two single-ended line drivers is
transmitted over a twisted pair. Thus, the
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transmitted signal can be regarded as having that the duration of each symbol is long enough to
three states 0, 1 and 2, which correspond to be recognized. When a number of links are oper-
X1X2 = 01, 00 and 10, respectively. ated in tandem, as in a ring network, a problem

can arise. Jitter causes the duration of succes- - "
A ternary differential receiver is implemented sive symbols to be unequal, and the effect can be

in the form of two optical isolators connected in cummulative over several links. Therefore, it is
opposite directions, as shown in the figure. It important to ensure that the duration of any sym- S
can be easily verified that, in the absence of bol does not drop below some minimum value. This
transmission errors, the two outputs Y, and Y2 are may be accomplished by delaying the response of

the receiver to a transition if this transition
equal to X, and X2, respectively. occurs before the required minimum duration for a

The system shown in Figure 6 has been imple- symbol. The delay block labelled A in Figure 5
mented using DS8831 TTL line drivers and GN137 can be easily designed to implement this feature.

opt ical couplers. It has been tested with a The circuit used by the authors is given in
transmission line consisting of 1000 feet of Figure 10.

ordinary telephone cable at a baud rate of 5 MHz.The differential signal at the input of the 6. CONCULDING REMARKS
receiver is shown in Figure 7. This paper has investigated the possibility of

Because of the finite bandwidth of the trans- using a ternary scheme for asynchronous transmis-
mission channel, different level transitions will sion of binary data. Several possible codes have
result in different delays. This is illustrated been suggested. These codes are intended to pro-
in Figure 8. The delay introduced for a given vide self-clocking and lead to simple transmitter/
transition is a function of the ratio of the receiver circuits. They also provide one or more
threshold voltage V to the maximum voltage V. unique representations for flags.

t

Assuming exponential behaviour with a time We are presently testing prototype circuits for
constant T, the four delays defined in the figure implementation of the proposed scheme. The basic
may be estimated as follows transmission and clock recovery circuits have been

b = T n (V/Vt) tested successfully. The experimental results
21 t indicated that the designed circuits provide reli- •

b = T 9 (V/(V - V )) able operation up to a baud rate of 5 MHz.
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Figue 2 An -vaued odefor ernryFigure 1. A ring-structured local area network.

4-wire transmission.

Symbol i Symbol i
Symbol Trnmte -ii Symbol
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00 01 10 11 00 11 12 21 22
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11 20 22 00 02
Figure 3. A 3-valued code for

binary, 4-wire 12 21 20 01 00

transmission. 20 01 02 11 12

21 02 00 12 10

22 00 0l120 11

Figure 4. A 4-valued code for ternary,

4-wire transmission.
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MlII'lPLE-VAILEL) MOS CIRCUITS
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Universitv of Moaryland, Co le Park, MD 207-'

ABSTRACT single layer of ROM output decoding; and second are -
The design of decoders for multiple-valued MOS the k-bits per cell formats that use r-valued ROM

read-only memories (ROMs) used for reducing chip cells with r=2k and that employ 2k-to-binary code
area in microprogrammed digital processors is con- translators as a second layer of ROM output
sidered. Using the threshold detection circuitry decoding inserted between the ROM outputs and the
implemented by Intel Corporation, we present binary decoders used for binary direct encoding.
designs for one-out-of-four, one-out-of-sixteen, It is now well established that reduced micro-
and one-out-of-thirty-two decoders for use with instruction word width achieved through multiple-
optimal radix four encodings of the microopera- valued encoding of microoperations and implemented 5
tions in control stores, thus providing single using multiple-valued circuits in the form of ROMs,
layer decoding of the microoperations at the ROM code translators, and decoders significantly redu-
outputs. We also include discussion of a design ces chip area for the control store portion of
for a one-out-of-eight decoder for octal ROM single-chip processors. The use of quaternary HMOS
cells. We use a~newly obtained radix four optimal ROM cells and quaternary to binary code translators
grouping of mioooperations for the 256 word, 75 in the INTEL 8087 Numeric Data Processor [21,131,
microoperation control store example derived from and the iAPX 43203 Input/Output processor [31,[4), -

the control store of a Digital Equipment Corpor- demonstrate that at least with four-valued circuits O
ation PDP-11/40 central processing unit to the gain in yield through IC chip area reduction
illustrate device counts obtainable, and we com- overcomes the disadvantages of meticulous pro-
pare these counts to the two layer decoding scheme cessing needed to construct reliable and reprodu-
obtained by using a k-bits per cell encoding cible nultiple-valued circuits.
with 2k-to-blnary code translation. _ A further discussion of the effects on IC yield

resulting from choice of either binary or quater-
I. Introduction nary ROM circuits in the two-bits per cell form is

Requirements for increased functionality and presented in section II.
speed for single-chip integrated circuit (IC) The main thrust of this presentation is a con-
microprocessors, coupled with those for ever wider tinuation of a discussion begun in Silio et al.[51;
data buses for on-chip information flow, lead to however, here we make use of metal-oxide semicon-
increasing IC chip areas with corresponding impact ductor (MOS) field effect transistors. Optimal snd
on yield. Multiple-valued circuits used in con- alternative suboptimal encodings of microoperations
junction with existing binary circuit components are often available for direct encoding and storage "
provide a way for realizing increased func- in a quaternary (or even octal) ROM leading to the
tionality without suffering corresponding seed advantage of a single layer of output
de-reases in IC yield under both present and decoding over the two layers usually required for
future processing technologies. Even if problems code translation and decoding in a two (or three)
associated with reducing feature sizes, such as bits per cell scheme. To make use of this speed
those associated with the scaling of metal lines advantage, one-out-of-four (or one-out-of-8), one-
[11, are successfully solved, problems of out-of-sixteen, and so on through one-out-of-4

m

increased functionality versus available chip real decoders of practical complexity are required to
estate and yield will remain. Greater func- decode the directly encoded microoperation infor-
tionality and orderly processor implementation mation on the quaternary digit lines of the ROM
techniques will continue the present trend array. In section III we present designs for
requiring placement of ever larger control stores several such output circuits that make use of input
or read-only memory arrays on single-chip signals from Intel's latching differential
microprogrammed processors. Because not all threshold detector (LDTD) circuit (Fig. 12 in
control points in a microprogrammed processor can Bayliss et al.141), thus expanding the utility of
be meaningfully activated at the same time, those basic and successful multiple-valued cir-
various forms of encoded field control are used to cults.
encode subsets of microoperations into fields in In section IV we reconsider the 256 word, 75

order to reduce the width of ROM words at the microoperation control ROM specification derived
expense of introducing additional circuitry with from the actual ROM specification [61 for the
corresponding delays to decode the encoded fields. Digital Equipment Corporation PDP-11/40 computer.
Two forms of encoded field control are of interest This microcode specification was presented in Silio
here. First are optimal and suboptimal directly et al.[5[, and for economy of space is not repro-
(or minimally) encoded formats that employ a duced here. For this example the prediction of a

249
0195-623X/83/0000/0249$01.00 1983 IEEE

. . . ..



lower bound digit dimension using the tools YRED.
-
33.3%; and if F-20 per cm

2  
then YRED.=

derived in Jeng [71 & [81 and presented in Silio -55.5%; rather significant decreases.
et al.[91 & [101 results in a lower bound Stark [31 also states that use of a two-bits
microinstruction word width of DZb15 for micro- per cell ROM on the iAPX 43203 resulted in a 31%
instructions that are directly encoded using decrease in control store chip area over a purely
quaternary digits for storage in four-valued ROM binary implementation. From information in [4]

cells, and measurements of a photograph in [16] it appears S
In Silo et al.[5] we presented a suboptimal that the microinstruction ROM on this chip repre-

grouping of the microoperations to be encoded into sents about 10.2% of overall area. Die area for

quaternary ROM words that require 16 digit posi- this chip is Al=326X358 mils
2
=116708 ils

2
=0.753

tions. The branch and bound depth first search cm
2  

of which approximately 11886 mils
2 
would be

'-" algorithm of Baer [111, modified to search for devoted to the control store. With this informa-

multiple-valued encodings as shown in Silio et al. tion we estimate the die area resulting from use

[121, was used to find an optimal radix r-4 of a purely binary ROM as A2=(.0458)AI, which

grouping of the microoperations for encoding in 15 corresponds to a 4.6% overall increase. If F 0
digit wide quaternary ROM words. This example is equals 10 per cm

2
, then the estimated reduction in

used to motivate the choice of decoder designs yield would be YRED.=29.1%; and if F equals 20 per

presented in section I11. cm
2
, then YRD.-49.8%. The advantage of using

We then compare device counts required for quaternary instead of binary ROM cells is clearly

implementing in KOS circuits this optimal r=4, increased yield, even when overhead devices in the

digit dimension D=15 direct encoding of micro- quaternary-to-binary code translators are taken

operations to those needed in a more easily found into account.

D=16 suboptimal encoding presented previously [51, In the next section we consider design of deco- 0
as well as to a suboptimal two-bits per cell ders in addition to Intel's quaternary-to-binary

encoding in this empirical example to see if there code translator in order to enhance opportunities
are significant differences in the approaches, for using MOS quaternary ROM cells in situations

Because an optimal radix r=8 direct encoding of when greater chip area reduction over that pro-
the microoperations in the PDP-1I/40 based example vided by a two-bit per cell structure might be

has also been found, and because in principle obtainable from optimal and alternative suboptimal
there is no obstacle to implementation of MOS microoperation encoding schemes.
eight-valued ROM cells in a fashion similar to
that for quaternary cells, we include a design for I1l. Some New Decoder Designs
a one-out-of-eight decoder in section III and use Intel's four-valued MOS ROM cell [31 uses a
it in our device count comparisons in section IV. transistor having one of four distinct channel

widths and, hence, one of four possible resistance
II. Estimates of Yield Variation values to store a quaternary value at digit posi-

The yield Y of working IC chips per wafer pro- tion j of word i in the ROM. In order to discrim- - .

cessed has been described by the equation Y=ke
-
FA inate which value is stored at that ijth loca- S

[131 & [141, where k is a proportionality tion, three effectively simultaneous actions are

constant, F is the defect density (i.e., flaws per performed.
unit area) on the processed wafer and A is the First, word i is selected by the address
chip (or die) area. Whitney [14[ cites defect decoding circuitry to connect the ijth resistance
densities of F equal 10 to 20 per square cen- value between the jth digit line and ground while
timeter (cm

2
) as typical of early 1980's all other jth digit line devices act as open

processing. circuits.
Given one IC chip with area Al and another IC Second, a feedback compensated sense current is S

chip with area A2 greater than Al, one can then driven down the jth digit line to generate sense
estimate the percent reduction in yield (YRED.) voltage VS on this line using the ROM cell tran-
due to this increased area, assuming other pro- sistor as part of a voltage divider circuit. At
cessing variables to be constant (viz., kl=k 2=k the same time three threshold reference voltages

A-FA VRI VR2 VR3 are generated by identical drive cir-
and F=F 2=F). For Yl=ke

-
FA and Y 2=ke 2, we cuitry using each of three reference transistors

F(2 2 -A)I with resistances RI-R2-R3 to form three indepen-

find that YRED.=[(YI-Y2)/Yl XlOO%=[I-eF IX dent voltage divider circuits. The reference

100%. devices are adjusted so that their impedances lie
According to Nave [151, the IC chip for the strictly between the impedance values chosen for

Intel 8087 represents an "area larger than 280 the ROM cell devices. VS is then threshold
mils square." Although the die for this processor detected against each of the reference voltages
is rectangular, we can estimate the deleterious VR1, VR2, and VR3, respectively, using three dif-
effect on yield caused by increased area by ferential amplifiers with binary logic outputs x1 ,
assuming A =280X280 mils

2
=78.4K mils

2
=0.5058 cm

2
. x2, and x3. If VS is less than VRI, then x1=x2 x3=

Stark [1 points out that if the 8087 would =0. If VS is greater than VR2 but less than VR3,
have been implemented using a standard binary ROM then x1=x2=1 and X3=0, and so on for all four

instead of the quaternary two-bits per cell ROM possible combinations of threshold values in the
actually used, its area would have been 8% larger; set xt, t=1,2,3. An improved threshold detection

hence, A2-1.08A I. Estimating the decrease in circuit reported in Bayliss [41 combines the dif-
yield suffered by using a larger area binary ferential amplifier for comparing VS and VRt with
control store, we see that if F=10 per cm2, then a latch to generate the output signal xt and Its
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Table 1: One-out-of-F8 dcTo-e functions
RIRENCE R3 LATCHING o 8vledR,DRVE 3~ 

J  
DIFFERENTIIAL , Ilfor 8-valued ROMs

BALADTECTOR I Xand LDTD outputs

• REF. DEVIC

TIURFSHOLD 1 2 ' fl "x2 + Xl. ':*.-" Y BALANCE I [FTECTOR 2

11"( ~~~~RFF. DEVICE 2 = X 2'

(R2) 
f 2 = x 3  2

El I D_ SFRN'Y TIF"1"'l f4 x 4 
+  x 5

B A L A N C E i : r : ( : I m , I -- --f- --6 X

PFF" I)F"I(F r f5-L x6 + x
(RI) SYM F : ,,IVER ] O.:"RNI OtI f 7 + X

-- I QUATLRNARY-TO-RINARY f . +

ONCEI PE R IMN SELL CT f
OERHEAD LOTD ovrrpCrrs 7 x7"I R't T" ) W',Rlll INf 5F LFCT x3 ' 2 '1 1 '1 B0

IRCItOLO N N
' - TC5 RY RIM CELL 0 0 0 0 0

tCi.j12 !r LI F. I I I 1

Fig. 1: Quaternary to binary translator for 4-valued ROM with circuits for
reference voltage generation, threshold detection (LDTDs), and
binary signals BIB0 with B1 = x2 and B0 =73x

.

logical complement xt. Three of these latching attached to each and every digit line are identical
differential threshold detectors (or LDTDs for to the reference drivers and have the same device
short) from [4] re shown in Figure 1, and it is counts. Counting tile 2 enhancement mode devices
this LDTD circuit that we assume for use in the comprising the reference transistor (Rt) and the .
following discussion. Note that in general if r- series YBALANCE transistor inserted to correspond •
valued ROM cell circuits can be reliably to the coincident selection YCOLUMN-SELECT tran-

• constructed, then r-l reference voltages VRI VR2 sistor attached to each and every digit line, we

VR(rl) must be generated, and VS must be see that the reference circuit needed to generate
threshold detected against each VR, using r-l such V.t comprises a total of 5 devices configured as 3

, LDTD modules that generate the r-l pairs of binary enhancement mode plus 2 depletion mode devices, for
switching values xt and xt, for t=1,2,*'', (r-1). t=l,2,

" "
, .r-l). Each LDTD in [4] comprises II

We have included Figure 1 here to document our devices configured as 5 depletion mode and 6 en- ..
choice of subscript notation for both the reference hancement mode devices. NOR gates such as that -

voltages and the corresponding x t Logical values, appearing in the binary switching module are com-
as well as to show the location of the hinary ,)sed oI I depletion mode pull-up plus I enhance-

, switching circuits that replace the rightmost out- ment node device for each gate input. The quater-
put module in Figure 1, labeled "quater, ry-to- :iary circuit in Figure I thus requires a total o t -

" binary code translator module". (3+33+3)-39 devices per digit line (versus 43 for
*' This then is the third action to be performed, the configuration in Stark [31) to sense, threshold -

namely, the generation of the appropriate binary detect, and then translate to binary the contents S
output signals that provide 2k-to-binary code of the selected quaternary ROM cell, plus a once
translation for the k-bits per cell encided micro- per ROM constant overead of 15 devices in the
operations. The outputs of this switching circuit reference set.
module could also generate appropriate microoper- An r=4 one-out-of-four digit line decoder module

. ation control signals for r-valued direct encodings is shown in Figure 2. This module has as inputs

of the microoperations. These binary switching the ireshold detector outputs xt and xt (t-1,2,3)

modules have an input the xt's from the t=1,2,as-, shown In Figure I and produces as outputs the one-
(r-l) LDTDs and generate the desired logical out- -____

puts. The resulting decoder designs presented out-of-4 selection values f x-l1,fl'x 2+xif 2 'x3+x ,
below enhance and extend the utility of the multi- and f3 x3 . This two NOR gates module requires six

" valued ROMs, the VRt reference circuits, and the devices for implementation in the form of 2 deple-

" LDTDs. tion mode and 4 enhancement mode devices. The
Each reference driver from [31 & [4] comprises 3 total is then 42 devices per digit line, plus the

devices configured as 2 depletion mode devices and 15 devices in the reference circuit overhead.
I enhancement mode device. The sense drivers
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Table 2: Two digit line one-
Out-of-lb decoder. SENSE DRIVER 23

fS 2----%. PLIS .22
___________ THEE I-D'D,

0o ='Il' 01 01 13"12 21

i I = 1 2"01 19 02 I 5 13" 12 SENSE DRIVER 13

f C CC 91kCC C C PLUS CC
- -------- 2 = I1 03x02 10 uo3"02 13"12 1 T REL D,12

2f3 =i11"03 11 03 13"12 1

f XC CCf CC
4 11 01 12 12 01 ij ES RVR0

5 11"02"01 12 13 '02'01'13 THREE LOTOC 0

If C 1 R C3C0 12 f 1 R C 03xU2x1 DIGIT-LINES 0310

On, -' )u t5C f-t -4 decoder f I xl03 R112 15= "013 Fig. 3j: Multiple digit line
for IDT!3 outputs. threshold detection.

-0 -io--ut-of-ei,,lt decoder using seven Expressions for a one-out-of-32 decoder for
rt I '.*-c, %V and seCveCn LDTi~s that provide the three digit lines with r=4 cans be derived simi-
4t tl,,C, can he desig ned by specifying larly. One has the option of using only one LDTD
ItC -''I L CCUt'lut f-inctionCs f.(x 1 ,x?,x 3 ,x/ ,x 5 ,x 6, to generate x 2 l, but one is then restricted to the

X,,J'I,'*,7, shown tabulated tin Table 1. The first 32 valid combinations (out of the 128
2 '-viCts (eded to imp~lement thle f. a are 12 possible); this requires 232 devices to generate

ifti -i.zit odle CpIus fh depletin mode Aevices for the f j(Y 2 1,xl 1,x!2,xjlx 0 3 ,x0 2 jx 0 ) s plus 14
-ihr tal iCf H~. (<ontiLg the seven LI3TDs, the devices in the LDTI or x21 only for a total o
CVil -Ct" 98 d-i- pert itit litne pICC5 constant 246 devices. An alternative similar approach

i t EIIC li Roll if 3-1 device-, to generate the requiring an extra layer of decoding delay for
r' t. -! " .Itipobinary switching uses x2 1 and its complement to
iC-Ui,, a samnpling (Cf mutpt digit- control 64 enhancement mode devices on the fi out-

-. i' -- r- iCt r iiii - , skcCh as one-out-of-lb puts of a one-out-of-lb decoder connected to the
C '- t- !2 lo,'d-rir. Th( structur- of such lower order digit lines S1. so so as to switch f

Cjn-.:CICEre;Ciirioig seiisinig of three between fiand fi, 16 based on the value of x2 1 .
A. AC-I. 'l 'C i - sh io in Figure 3. This scheme which employs a form of bit steering

i ,t-ii,,It l ie sense driver is is shown in Figure 4, and requires a total of 214
(iC' i with the three, LI)Tls that devices for implementation, excluding the 15 devi--

Ix -)!2 N t=1,2,3 and ces in the reference sot.S
<K r.*whith at. avai lable hut not~ i; K . C--t-t- dertder weconideir ~ 2 S so

p-I'LiI )f 3and ign'ore S2'

C! r o te .,SENSE DR IVER ONE- OUT-OF-SXTEIN DECODEP

1 41'. -1, 1, CC 1d- CC 11,,* drCSOC i Eve a d ,(Illy ON , Ur 1C (136 Dc- Ce- -

C- I; I , 1V I+II=14 1 de vi Ces ) tCC IrC') C 0 id iCC

Clq -- l-i CC'ICCIt hin:arv switclhing. It

CssCCil- toC eli min-It, thle LDTIOs on S

Cr C' 1 -Cf the possileC four ROM- c'CI1 21 X21 0CI
a' C' rC d' CI rC-C-t I v Isah I k blatrs' s I gla I

:i l I ) ', C - crvat ivC' vid i ,noCre h gCs i

I 1"w,, Ct Cr Ct 10( C s I t n i .C I itst appt.-ca hl Cr''-.

S", CI CS -C <CC ' 'C(,, t C ICCi'-rate ElCC'

I.- Cti I -C iarCCCC' that vCi CErmlIO (laces - (

.' Cr S Ie (CCC - C.-,C-I . - o tcC 11(111-e

t CC tI ''CS IC 1 1R v~ratl ,iC oCf thCe tCCETC I -f 
1
x1l ' 2

X , f ,r - j, , - I ').I
A -c t -I f C) -. j1.,.s I-1 tlC tr l -Ct ICo CIC'C otiC'CC

1C(I'-CI,,Ci ~ C(CO Cnhan CmeCL rCCCdC' tran, isItr areti' C'CCId' -

*t,, impmnt LIhe If, NoCR 4ates t~. JedCC by thle f f 16C
,-'xC, r--si iCCs in Table- 2 tOEr LhCC IC -'j:C~-C 0 1 CI
CleC-iet . The toi-C-S diCIicC' 'CCCII t-Cr IChiS decCIder,

exC luinCIg thCe I d-vc's I-n the r,,I C'EC'O.C' get, is Fig. 4: -symmetric one-out-of-32 decoder for
Ellen 1+ 131+ 5+3 if'C) devices, three digit line "--valued R04 tlelds.
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The second approach to building a one-out-of-32 was found at node 15,441,643, which illustrates
decoder at r=4 directly decodes the 64 (out of 512 the utility of the lower bound digit dirension
possible) combinations of the nine xjt's (j=0,1,2 predictions available in the parameterized table
& t-1,2,3) to generate the 32 output functions derived and presented in [7]-[i0]. Had the branch
desired which are of the form fi(x 2 3,x22 ,x2 1,x1 3 , and bound algorithm [11] used the lower bound pre-
x'2,xlxO3,xo2,x01) We shall specify the diction of Dkb=

15 
to terminate the search at node .

d.srable functions among these 64 in terms of the 15,441,643 when the optimal solution was found, it S
decimal representation of the binary row in the could have avoided searching an additional 80,827
truth table on which each must take the value 1. nodes.
We do this in terms of the number of inputs Our implementation of the branch and bound .-

required on the NOR gate needed to generate the algorithm is still searching for an r-2 microoper-
corresponding fi. Eight choices lead to 3-input ation grouping pattern that improves upon the D=28
gates (namely, input combinations corresponding to grouping found by Jeng [7] and presented in [5];
rows 0, 7, 56, 63, 448, 455, 504, and 511). so we are forced to use this as the best known

Twenty-four choices require 4-input gates for binary grouping for purposes of comparison. •
implementation (namely, those at rows 1, 3, 8, 15, Multiple-valued MOS ROM and decoder device
24, 31, 57, 59, 64, 71, 120, 127, 192, 199, 248, counts for various encoding schemes are summarized
255, 449, 451, 456, 463, 472, 479, 505, and 507). in Table 4 for this MPP-11/40 example.
These choices provide a full one-out-of-32
decoding. We can choose fewer than twenty-four of V. Conclusions
these 4-input gate combinations to further reduce If speed of decoding is not a problem, then a
device counts if more than 16 but fewer than 32 two-bits per cell encoding of the best known D=28
decoder outputs are needed. A full 32 output bit binary microoperation grouping for the
decoding requires (8X4 + 24X5 + 3X36) = 260 devi- PDP-11/40 based example results in the lowest
ces excluding the 15 in reference set. overall MOS transistor device count (excluding

In the next section we consider how one might downstream binary decoders for the radix two
make use of these decoders using optimal and subop- encoded fields). A two-bits per cell encoding of
timal groupings of microoperations at radix r=4 and the original 43-bit binary ROM specification,
at r=8 for the DEC PDP-11/40 based control ROM while reducing device count (by 38%) over the
specification. straight 43-bit binary implementation still does

not achieve the savings available from suboptimal
IV. An Example with Comparisons D16 and optimal D=15 radix four direct encodings.

A D=15 digit optimal radix r=4 grouping of Hence, the finding of optimal and reduced subop- -

microoperations suitable for encoding and storage timal direct encodings of microoperations can pro-
in a 4-valued ROM is shown in Table 3. This 256 duce device count savings exceeding those
word, 75 microoperation control ROM specification available from a two-bits per cell approach.
for the MPP-11/40 is derived as a direct decoding The new decoders presented in section III pro-
of 43 of the 56 bits in the DEC PDP-11/40 control vide designers flexibility in the choice of either S
ROM specification as presented in [51. An optimal direct encoding or two-bits per cell encodings
radix 8 grouping of microoperations as well as the when reducing ROM word widths to save IC chip
earlier suboptimal radix 4 grouping for this same area. The techniques used to design them can be
example were presented in [51 but are reproduced applied straightforwardly to radix three circuits • -
in Table 3 for comparison. Over 15 and one half and one-out-of-3m decoders by reducing the number .-. -

million nodes in the branch and bound search tree of LDTDs on each digit line by one. Implemen-
were examined (indicated by CLB = 15,522,470) tation of reliable radix 8 (7, 6, & 5) ROM and
before the algorithm declared this D-15 digit decoder circuits, while appearing feasible in MOS -

solution as optimal at r=4. The solution shown technology, remain to be demonstrated.

Tab IS 2: KPP-11/40 optial and suboptimal microoperation groupings versus radix.

GROU r - 4; D - 15; Optmal GROU r - 8; D - 12 GRO0 r - 4; D - 16

CLK - 15.441.643 CLB - 23,040 CLB - 38,896
TOTAL NODES SEARCHED - 15,522,470 Optlal Suboptlmal

1 9 20 24 25 27 30 38 40 41 47 50 51 53 60 69 1 10 17 37 41 53 69 1 1 2 19 22 30 32 37 39 40 41 45 46 52 70 75
2 3 4 6 2 2 3 4 5 631 2 3 4 6
3 7 14 18 19 21 22 23 26 28 29 31 34 36 39 42 43 3 IS 21 57 66 61 68 74 3 26 38 49 55 63 64 65 66 67 68 69 71 72 73 74

45 46 48 49 52 55 56 63 66 68 70 71 74 75

4 32 44 61 4 19 24 28 32 44 48 61 4 5 10 14 20 23 24 34 42 44 48 50 51 53 56 61
5 10 13 15 5 13 15 16 25 35 45 56 5 13 15 16
6 33 37 72 6 14 22 29 33 50 51 58 6 33 57 58
7 12 57 67 7 7 12 46 52 60 70 71 7 12 17 28
8 17 54 73 8 9 26 27 54 63 72 73 8 7 29 54
9 5 8 35 9 8 23 38 43 47 49 55 9 8 35 47
1') 62 64 65 10 34 39 40 42 62 64 65 10 9 21 62

11 16 58 )9 II 30 36 59 75 II 36 59 60 4
12 1 2 II 12 It 20 12 I 27 31

13 1 8 25 43

25-.3 -
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Table 4: Device counts for control RM encoding sthems.

Radix used for
Grouping 8 4 4 4 2 2 2

Microoperations
ROM cell and Notes:Encoding Radix 8 4 4 4 2 2 4 4 (1) Optimal r-8 grouping and direct

r encoding with one-out-of-8 droding.
(2) Optimal r-4 grouping and direct

Word Width D 12 15 15 1b 28 43 14 23 encoding with 10 nne-out-of-4 decod-
era, I one-out-of-16 decoder, and I

ROM cell devices one-out-of-32 decoder (26u dev.).
excluding select (3) Same as (2) except using one 214
for rows and 3072 3840 3840 4096 7168 1100b 3584 5b8 device one-out-of-32 decoder.
colurins (4) Suboptimal r-4, D-16 grouping and

direct encoding with 10 one-out-of-4
Multiple-valued decoders and 3 one-out-of-16 decoders.

Decode Devices 1211 31 7e5 843 .. .. 561 (5) Beat known D-28 binary encoding from
Excluding 2nd 151.
layer binary (6) PDP-1i/40 actual implementation.
for 2-bit,/cl1 (7) Two-bits per cell encoding.

Total Device 4283 4o.71 4625 4939 7168 11008 4145 7.
CountII

Notes (1) (2) (3) (4) (5) (6) (5,) (t,75
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A QUATERNARY0 .

CELLULAR ARRAY COMPLEX NUMBER MULTIPLIER

Tich T. Dao

Introduction. In this form the real part of X is
represented in base-4, as is its

Knuth,,(-I has proposed an unconven- imaginary part. Since complex numbers
tional single component representation of' are given and delivered in base 2.
complex numbers whereby the radix is conversion back and forth between t he two
chosen to be purely imaginary (2j ) with bases is necessary. Fortunately, it is
the digit sot comprised of the first four simple to implement.
positive integers (0,1,2,3,). This is in
contrast with the conventional two Before considering arithmetic at the
components representation with binary word level, let us remind ourselves ab~lut

* radix whether in Cartesian or polar arithmetic at the digits level, digit
coordinates. As shown in a previous taking values in (0,1,2,3,).

* paper (2) this novel representation leads
to simple and interesting arithmetic in 1. Digit Sum.
the complex field. 2 c k c

c +X +y . :
k-i k ~k k + k 5  ck.) ()

In this paper we shallI examine the The sum (if two digits plus a1 cairrydesign of' a complex-number multiplier,prdcsaumndaegtv ctr korganized in a regular cellular array.prdcsaumndaegtv rv-k
Such a structure is highly desirable for to the two digit positions ck=(0.l )

VLSI implementation. Simi larly v x 4 ~ 2*j )2 (

parallel Molt iplier.
2. Dligi t Ilif ference:

Wlithout loss of generality assume that we
* are dealing wi th Gauss Integers whichIfwed inote1s :JIemtsa.

Means complex .mrb(r> with real integer
and imaginary irt -i only. An n digit in k I-()
Knuth's represen:t of' a comp lox number 0ky
X is written as: then the d i f ference is reduced to ai 5iul of'

n-2the minuend with the complement of' the

x I ak( 2 .j)k Subt rahend (G

k=-l x k-yk = x''~k+2j

whe re all:I a =(0,1.2,3) wi th an extra carry +- 1
2

* xcl~ :a I=(0.2) - lt+(2
.j

We can rewrite the above sum by 3. Digit product
grouping real elements separat ely from

* the imaginary elements; real ones Product of' two digits 'xk'%y pro duces a

coming on i from the even powr of 2,j and S LI 5;k l, oehrwt jvi ~ ir.
thte imaginary ones f rum the odd powers. t o t he dli git ;i two Pos it i ots WoveA-0

xk.\ I k. -c (9. )

*(n-2 )/2  n (- 21 o. 1 (i 23)
X a a2  a')) k-. ( ~l1

k.1 (0,12)
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To I rr Iv' at at ccI II Ia r ar'a v Negat ie carry from positi,.e Jder is fed
orgatlizat ion of at molt iplict' CoIsidet' to the corresponding negative adder and

i rst the luil I pai'a lie I t roe tore, the positive carry f rom the negative
adder is fed tou the corresponding adder.

(iiven t%( Words X and Y in In the schen ttic. thin line drawing
(Joate-rimaginary representat ion theirt relates to p sitive arithmetic and t he
prodouct s, de f ined as heavy 1 i tie draw ing to the negat i ve

n-2 k ri-2 ari thmet it-. When a) I posi t h e digi ts,
-~ .Ny x( 2 j) : (2.j (8) result is required then the last iteration

k=-l 1=% ill terminate in a sobtraction stage.

I The arrangement shown in Fig. I is akin
=~ ~ :j (: x( 1 )](2j) to an array of Cells with interleaved

1 k connect ions.

In this above form the pr'oduct isCl oa AryMltilir-Aomltu'
pe t rcdas i n at pencil-paper fashion.

one dirtiat~ poutim:ftemltili wt A more regular array for a complex
the rtal rodct:molt ipl icr plus accumulator can be

x1 j)kl 2~ 2j) k ~ derived by generalizing the Goi I d cellI
k k k 1 (9) for binary molt ipl icat ion.

2 ~ In binary arithmetic that. cell1 [21

he digit p~r duct X k. Y 'k1 C ck,e ( 2j) is defined by the fol lowing at the hit
l evelI:

o1 r:x.vk,1(2j)k - 2j)k+2 1)2) x+.%+a+b=(2 )
Ik k(1 kJ2) c2b

(f) where x,y~a~b are binary inputs

As-;-;ume fr the sake of' ill I st rat i on and C ,s are binary outputs.

aI I x I mu1 It i p 1 r (at ion. The d igi t IIOaeiai yaiheiw
arrangement i. shown in Fig. 1. Ear h woruld aer mgnr ri mticw
part ial produut gcncrate.s two ro0ws of stl ae

*di ti t s:t h u1pper1 ro)w repre~sen t s- the sum 2
digits and 1h(-lse row the carry digits +'ab=c(j)+s

*(().-1,-2). -hi Ited two positions toward where x,a,b are quaternary inputs and
he MISII,. c ,s are qjuaternary out puts.

Dli vi of ) tie, same we'i ght are l inted up ajb,c,s ciin also take negative values.
* :11 on g the s-ame ro iumn . They alre added in

t fi th a r r ,-sav, mode as,- in bi nary We def'ine by a+, a respec t i velIy
*n Io I 11Ica tion . Not i ce t hat d ig its are the positive and negative value of a

ateore tvcl positive, and nepral i e,
th~rf'r, woold be nat oral to separate By de f in it ion x.y=c (2j ) 2 +

them out inuto t% w) groups adding posit ive V\

digitse piiui paneaie ar an We can rewrite the above e(Luat ion as:
aIoddin netga t i )e digits pi')diing
pos-i t i ye rrv . 2 +2C x (2j ) +s Xy+a+b = (2j) )+S

BYv r( ferr inig to tie Table I .let uts
con,,i der the I i rs.,t part Iial sI : To) thIis For ease o f impl ementat ion we splI i t
we add the st cond pact i at I u roduc t prod- teinttsitops it i ye and nega t i ve

on~ ~ ~ ~ ~ ~ ~ ~ ~~~~h inteselpatia1sit ssegop, s thn the fuc in eutl o

at I I rows inI bet ween a re the i it ( rred i a te the, cellI wilIl be:
* sums. We proceed thle same way for thle + 2 +

s+ +a+I)
rema in irop partinal sums-. At the last x
part ial sum. we have to reduce the two +a - + - c= 2 ,-
rows of oppos itIe signs which represent, the xv

reutinto one sigl row of pos it iv We c'an realize the complex arithmet ic
digits. To implement the above cl ihtosprtdc-l eie

follliaton ow ned 'recilato respectively by the above equaltions.(partial product folwdby partial sum) Since c -generated by the same inputs x,
a row of ari thmet ic cell!s comprised each xv +2
of a digit product and a pair of two bits y which produce s hats a ( 2j )we ight
full adders, one for the positive digits, xy

theothr fr te ngatve igis. Fig1) higher it ('Sn only be added to a and b
the therforthe egaive igit. Fi jr f' the corresponding w('ight.
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Consider Fig. 2 which shows an array digits ripple adder is required.
buiIt. around the two Ie Is per rmtgte
opera tion X . Y + Z . Aga inr t he I igh t Then t.he two approaches have the Same
draw ing re fers to pos It ive (I ig it s complIex it' Y : 3 adders versus 45 adders.
ope rands: heavy drawl njr 1' 1(-r., t C The dli f ference resides in the propaga I ionI
nega tivye digits operands. Each 441 1 is de l ay . The Guild cell array per forms the
labelled by two digits x.y. D~epend i ng p roduct X , Y and the accumulation of' A

on~~~~ th1oaiyo h e ', the arith- and 13 simul tanously while in the standard
me(i)pc'rt lolert'rmeI is el thur: case accumulation of A and 13 is only done

when the product has been comp leted(.
Ac+s =(N .. m),odl+A+13

A similar binary parallel complex-
* lcs x* .(x .)md~+J t number multiplier and accumulator would-

WO4 also 114(41 at the edIge of the array few reqU i re 4 cop ies o f a 4 x 4 parallelc,
adde r telI IS w ith It t o Ii npIu t s, multiplier plus two c'opies (of* an 8 bits,- :3

* ~Si nce posit ive and negat i xe digits oeadadr

are added Separately thet irtormediate4 Since a '1 x 41 multiplier uses about
resuli t is g iven l4\ t wo seqti4'cs of' 16 f'ulI adders and the 3 operand adder uses
lp)s It i i'4' ancd nevt i I e digit s wh ich are alIsc) 16 'u I I adders , the total number of
aga in added't t4got her to prov ide the( f'inal full adders required woOuId be 96 o)'
reslt. It.-asa sequence ofI posit i %4'-(digi ts equivalently .18 (luaternary full adde'rs .

Each adder i s do f i itcd,, by There for'e, the di fle renc'c' in hardware
abci= S+4',. ( 2j )complexity betwe en binary and quate(rnary

withit I ,I 1). s= (,1,-3)approaches appears to be not Sign ific(art.
withall ,bs (( , .. 31This would be trueO if' qu~aternary ful

(-) O'±1 adde r isi imlmn 4. t wIt1 binary c omponent S.

TO LSs'Inti' t hat S is -, po i t i ve ini t he When the saeaddet' is implemented with -- 4

case, who reb\ mul t iva I ed logic ats described in previous i

t'') a-t,+c <-1x rs (2,I the pi Ctdir-' looks qii t(v
dIi 1'1*r4.nt . S nce4 Lte rat. io of (:lmpon('tl

we'4 rpilca t he S and t' by 10 thir 1' 4:oml 4x i tifOs bet ween aI qtaternary lu I 1
c ompI e1mon'tl adder de'si gnedi wi th i iary el feent~s and

Fir. :3I ist rates at nutnberical that des;igbec witih muilt iva luod is greater
q'xiimlle of' the produict oif two numbers: than 2, theref'ore Knuth 's quaterimaginary

(-1-i)(62jI- _22f2GG~i cellularI i I array' approach to the complex
<1:321>.<:1212> = <1021 133212> numbelr p~roduct and acctimttlat ion woutlId be

Aliso Fig. 1I shows that 0o4' can add highly recommended..'~
* ~to( thils prodc1t 1 )t( num4titlbe'r' [( lo exampl14

11-I- 11 ) s te11 1bat: Con4 I t,ion
(11 - lIj .(-6-22.j I- 1-i) (-33+262,j

or4: We' lit%'4' rl'vi4'w(l briefly the Knuth 's
<13i21>.--'2l2>#<l3l2l> -<1021921:;,> quat (rimagitliry ropr(osc'ntat ion oJ1 a

comp 1e x- numbers and cipropoised t wo alItern ate
The array actuallIy pe4rforms till' o)perat ion : itnplemonttat. ions.- orf a parallel molt ipl ier
x. y+A+11 (r o)114. Irodudt 44 fllowed'( by' twot and acculmlator, commonly used in Signal
:141411t i oil". liii' do t I i nI's a rkex 4t ra ca rry processing and in part ictilar ill F.F1.

* 4'4nn4'(' t i ons bet w44't1 ('(I I s when such1 anl Thle c4'l 1(41 ar array approach proved to be
* ope4raLtion is desi red. tmore' ('f4ieint and Mitch denser than tll'

bi nary e'quivcale(nt 1 11111 men tat io(n when
Let us- compare the standard X.Y1 mu It i al ned logic co4monents are u~sed.

paralIlel mulItiplier with the X .Y + A+B. .
lIn Fir. 1, at thel lef't tippf'r hand c'orner,
we. havl' tihe bu11ild ing bIlock wh ih is at
digit pro~duc4t assoiciateId wit lit aposit ive Rfrecs
d ig it adder and (I olega t i t of digi I adder. If Rerncs
we in'olrp~orate4 the suim logic part of'I til' - 1. p . E. Ktuth , 'All Imaginary Number '

dilgi t prodtuct ilnto the posi tive' addeir and system'', Coin. Ass. Comp. Mach .,..-
the carry lo~gic' into tihl nogative acder, Vol. :1, pp. 245-247, 1960.
wfould hlave two aIrithme'ti ci (IS ISsimni lar
t, those in Fig. 2. 2 2. 'r.T. Pao, : ''Knuth's Complex

Ar ithml' it' wi1t-h Qtuate'rnary Hiardwa reo
The n umbe r o)f' tholse' cl IlS in I ihe X. Y4 Plo(. of t.he 12t h I SMVI. , pp. 94-98,

multiplie.r is 26, while it, is :12 It]us 2 1982.
extra straight adders in till X.Y + A + It.

*However, to pvrf'orm the sames ope'ration0 3. H1.11. Guil 1hi, : ''Ftully Iterative Fast
as in the l atter c'ase, , an 'xtra row (of 10 Array f'or inary Mulip1lic(at io(n and
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Addition", Elect. Letters, Vol. 5,
pp. 263, June 1969.

-4. T.T. Dao @ Al., "Complex Number
Arithmetic with Odd-Valued Logic',
I.E.E.E. Trans. on Computers, Vol.
C. 29, No 7, pp.604-610, July 1980.

3 3 3 3

X 3 3 3 3

I" Prtial Product :.,d -

lo P.tI rile , u2 2 2 2

2 nd Partil Produ.ct 2 2 1
---------------------------------------- --------------

0 0 1.1 2 2

S I I loo: 2 2 2 1

TABLE 2 ar .1.S,.. 0 2 0 ~

3rd partial Prod.,nt4 2--------------------------------------------------------------- --
1 1 2 2 3 3 2 1

rd 1 2 2 0 2

0 0 01

-------------------------------------------

0 1 1 2 3 3 0 3 2 1

th PtialSo--4 1 1 2 0 2 1 0 1 2 1

FINAL RESULT- 1 3 2 0 2 1 0 1 2 1

P~uAPLL 4@ M.LTIPIER

FIGuRE 5 X-*A.B
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Did R . -lginlilil and Alraiam Krndel

Department of athemartics and ( mputer Science
The Florida State Univ rs it_ -
Tallahassee, Florida 32306

ABSTRACT

The fact that a fuzzy switching function may The d,-finition of i fuzzy algebra can be found
take on infinitely many values is a good reason to in several papers (,,8). It is a distributive
examine the relationship between fuzzy switching lattice with existence of unique identities under
functions and multi-valued (or multiple-valued or + and * (3). Unlike a Boolcan algebra, there does
man-val ued) switching functions. There are many not exist a complement x' for every x sIwh that
aspects of the two types of functions that can be x*x' =0 and x + X' = l.All that is known is that
compared. x*x' ' , and : + x' =2*

After presenting a brief introduction to both
multi-valued switching functions and fuzzy switch- The partic Jar fuzzy algebra We Will Use Will

ing functions, we will compare some of the features he defined by the system ([0,I,+,*,), where +,*.* and ' are interpreted as max, mai, and comp lement
of the two types of functions. We will then pro-

pose an algorithm which minimizes fuzzy functions, (x' 1 - x, for x in [0,1]), respectively. k' S
using techniques previously applied only to multi- wi Ise I convention of writing x*y as

valued switching functions. As in (4), a flz7.' switching function FSF)
will be defined as a function from V

0 
to V, where

V = [10,11, represented as a logic formula con-
structed from the logic operations, *, +, and

I. I NTRODI'CTIION as described above, anplied to fuzzy variables . ..
Sx t ... ,x n , and tile co,,stants 0 and 1. Fuzz " Ir , 5
A\lthough there has been much work done in thle generated by the n fuz,:y variables, ateit delin,1

field of fuzzy logic (1) and multi-valued logic (7) recursivelv as follows:'
to cover rite inadequacies of binary logic, little
has been done to show the relationship between the a) 0 and I are fuzzy Iorns.
two. This is surprising, considering the similar- b) A fuzzy varible x s a tuzzs term.

ities between fuzzy switching functions and multi- c) If A is a fuzzy form, then so i A'.

valued logic switching functions. d) If A std tn Iir zzy forms, then si
1 

ire A+:. --

The purpose of this paper is to establish a and Al. " O
relationship between the two types of switching
functions. Fol lowing are general descriptions of
fUZZy switching functions and multi-valued switch- We will represent I 1"s siig this hI init In
ing functions. The next chapter focuses o con-frms

parison of tie properties of tile two types ot Lhe multi-valued logics iI Iso known is.11u't l i,
functions. Finally, an algorithm for the minimiz- valied logics or mani-rliued Liyic f, ,li uss-! 1ii

ation of fuzzy functions is presented. fiis aIgor- this paper are the itindrrd seqielu <n" , W: is
itim is based on an algorithm used to minimize tietined in Rescher (7,. and th- Alln- i' rl-

multi-valued switching functions. gebra defined in I i. I,, tr uth rols ,1 " 1, .1,

lit con cplit of fuzzy sets, proposed by Zadelh f Ilows:

(9), has led to work with fuzzy switching frrnctions. 'O, _ -p/

Shle th, tilit ion of a fuzzy set follows. Let X = (x)

be a space ot objects. A fuzzy set A in X is a set /p'q/ i u!,,q

of ordered pairs A = ((x, ila(x))), x in X, where

,l(xi is tire grade of membership of x in A. For /p q = ri::.p .
simplicits, we assume that !a(x) is a real number
in the irterval 11, Witir I repr enting member- For the purposes this di:cussiin, inipli-ati: :id

I" , { . _ eqtriv rlnco are imitted. :iiic these, ioe li tl
s r ip inih represent ing non-membership in a fiuzzy .ru thlnc lic in titus fu.c s .r l--brP

iet . In t his paper, we wil I use the term fuzzy ' a " "".'-" ""

-.. v triable" for the tirm "membership grade" of a In the Al len-(;ivonc (A-i(, switclhing al,'brr, t i,'
v-ruilbl , il ar sot , that is, x wil I represent v.trialrles assumr one L) e ticA11s, diesrgnrtud -is

", ("- I V 2 ., v , where v 1 < V ,. 4 1 s .hat

0 195-623X/83/OOOO/0264$01.O0 ' 1983 IEEE
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we ca n ass ign t) Lto vj I to v- I rn- I to vm,. proposed by Marinios (5). Ile int roduces a way
Iheirefore, inpul~t lil outpt variables Laike oii to give FSF's a 'dlecision meclianisiii', so that ttic
valies from til I ii.Ihope rai is or trUth Valu o C0f thei- fUnictijonl dl he Used , as in htoolIea n
rule i Sare Lthe StIMe IS thI ose I o r t ice Luz zy alIgeb)ra: logic or MVI.. to make a decision abiout a part icuilar

eventI (lie noteS, for example, thet fact that a Fbi
x.+ v =m; Ix Ow;) I xyv-1niii (X,N) , has a Vol ue of, 5i5, ).; does notL mintl mIuch unleCss

Where x and v, ire c'it' e tit (It ((1j .1..rnl-I . U eV- there is some outcome ileit-ndent onl thatL f actL).

c-ralI propert it-S, it the A-h; algebr. suii'. ais idem- 'file concept lie proposes is a fuizzy f unct ion 12lass-
potencyL' and( cimmotat iv itv, are li sted ill (1). ificatijil. tlie cantiitons ringeLOf tuzzy' Vloe]s is

sobdivididt into at filti- n11'lher of c.lasses as -
(If the . 'i ible liinarv iI'lltiis inl thi, A-C olos

* ilgelri.tIii', '1urator We Will tise is tilt :%-h iter- lis: aI :'

Xta,b) 0 t it Lt,- vilie it X a iir fte viiile ofi C lass 2: a1, la 
1  

0
X - h) 1i- if aC theI vl I i I' I ti0 , X 1

whe cr c1 anId ii ar Ii-ii itt I I in- I) toi- a )

I lie l iteral descrilied iho..ve is, isedl to t oiTrn

jtG rodiiit t ermis . 1li-1 pri~li t termis ar, it-

iI, - -IkI ik i k'

m4tieiilImum of a1 cont,itt r i(r ill (t,l, in- I) I where I - ai .I 1 0i~.I. A nIt UZVvlueII or
ad a set of I iterils, Where. a variaible X, appears fitcio ca n.4b ::i.tdooeoftee la-

a t most onice. Ani oxampl u inl i 'i-valu Ted systeni is
2-x 0, -X , ) . [)s Wold ave ilt va ti 2is, dependinig op. which value it aIssumes ill tile

2I (. NAI.I. lis ii Ihaltev n region betWeenI a ittl I. lltroiili the use of this

* when X 0 iir I ;oidX I, or 3. It wol WO IclIass syst em , FS FIS call i uilIi Ze propert ies o f or-
I ~~~d iiarv log ic ( inc Iud itA mu Ilti-volI Tiedl logic) I he

11 1 tlie va I Tic' ( tIlerwi se. remaindie r of Mar intls' ii iir shiows how thlis c2 lass-

For t l Ie 1 )OuSCS Of minimization, I iterals of if icat ion approiach i t il) uAsed iii tIle antalysis anid
fiIiorm X ((,111-l ) can he elI imitautd. This is synthesis of FSI's. iii, uidiitg, tile use, if >Ii. iti

bcuse I it,-ril, of this fiorm eqlual rn-I for all creating fuzzy logic c ircuitS. Witlt MarineOs'
v, 1i Ot X~ii,) bdteret ire halve no effect onI the 12 lassif ic;t iOT Ssstel, PSI-s cati iesi iv tubkL tIi till
prioct ti nLil. For ',ie map tmin imizatiton associated xappLirattee iif >ISI Is.

will th AtIel-(,iVOIC e Wll akeUSUoIlowever, another probulem ir ises whett consider-
t te ( vinori I i Zed Ittgic Iliagram (Llt), d iesiribed by iug tile t ruth rules of t uzzv ilgebiras anid miii ti-

Mi hl kiIttv.11iied al1gebiras . It hlas, ii reide -veeni shown that

2..t LONAgI Sit OF liROPElRFIFS conljutnc t iton aind disjunIctionl are the Samet itt fuzzV
igeran fitlin tile staitulird SeiJluec . f1c proliet

uiticitt i I lv, theLre- is.a it f IcencI Citwi it Ilof itegit [ut is A Isoi tc saflie . there I W Uocver,
I ti//c klj lol itl Intl It I -VAlIied 01h iiigi. Ihe I)ASi -I I Il

-r! Oft I,- ~itI ,v I Owtuluntof 1 101Or ~tii M truth rules for impi icit ion or eqluivAi ci12- ill

* ci 0t i t .t lit t is l itll ! .tsi S 11. lit tII1 r It or1)011~ til s-l i l t li i~lO S . F r ie p r o e O

1 i0 1111, i, it mu,.._ I izu, lui,'i is , lili -riiu with tilt- th1is uhlI Suustlsiu)It, this problem is iot tiajor, siIce
l~~~~i~~~~id,~wi 01m i- ~ i t ic . l ,te Are tilt real IN' ( ICUictnell ~ WithI imp I u-at ioni or
tiiu t ii 'liithlp t tlt ii agicitsi. qutivaulet lit'lt this hageLr. I Vusti if tlluSt. TI ets

I i, I t t -rk-n t- i li cI- ivi-d, luowi'vCI, it I4 W ire lent ilit tti this papeitr, .4v could simplv die-
:- t, u r"it 'o til/d l~ti1 o z,% liic -I I 'li)'- i f e itt

1 
iizz\- rileI s t or implIi( cAt it, and etliVIvliincL.

I It'l I lu /,/ - I OJ i t I Ii- wi ti t ill- .itiiiuiit "I I bert' IS i1 idV;IttgC to this' .Sluut we COItId pat-
t rti o1 r al , - 1 l t vicitt tl,.it it1 item is ill ten thtese' aifsiter thet role-s 11t th12  pairt icilir

-i -I eu-iI tt s t; I T I til eI -st I ccl is L 0dirL I 11 I 1) It i-v I Iui sy te we wer c'~tii i I

It o is litteris Iti ti si- it artd h,. I uit i- 0wr
it/' Loj 110 til t~ti iii i iiin it tudh sed itt coitjtiitcriout Wit),01 Ale~le-

VivttAi switchinig a Igiliri. -l~ te a re uttalue\
I f iI Ii -ti- to t, e wotul I ik,-, ti littiI;I r It it"S biet weut the1 t WO, SUIii 1 Iill th -dfinli-

* I, O ll i v. ,ii Vi t Jill Ii t10, t I I)i I IL (t'%, -;~ t i otis I ir cotnjonct iott and dis iont Li ott. Also, man%
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still the same number of values in the same order. Proposition 3

the major difference is, once again, the fact If a literal of the form Xi(O, ) (Xi( ,l)) oc-
that the \-(; algebra was designed with a finite curs in a product term which contains no literal of
number of truth values in mind. It is difficult to the form X j( , ), then in the same function, there
use the unary operator X(a,b) to represent a FSF, is a literal of the form Xi(0,0) (Xi(l,l)) in a
because of the infinite number of values in FSF's. product term with constant 1. -
However, a way to overcome this problem, and in Proof: If a product term contains no X andact represent FSF's using the unary operator, is rof Ifapouttr oti s AX(, n

contains Xi(0, ) (Xi( , 1)) and has constant , thendemonstrated in the next chapter. there is input consisting of O's and l's, where - -

3. ylNlMl7AflON OF PSF'S U'SINC MVL TECHNIQUES xi = 0 (xi = 1), which gives the function a value
of at least . However, one of the properties of

because Of tile relation of FSF's to MVSF's, a FSF's shown in (8) is that a function takes on the
Becuseof he elaio ofPSIs t NVI's a value 0 or I with input from (0,1)n* Thus, with

minimization technique applied to MVSF's should be input from (0 ,)n, where xwi 0 (x. I) the fun-

effective on FS's. The techniques used by Allen 1

and (ivone (1) or Michalski (6) can in fact be ction must assume the value 1. This means that
adapted to fuzzy functions. Later in this chapter, there must be a product term with constant I con-

adaped o fzzyfuncion. Lterin tis haper, taining the literal Xi(0,0) (Xi(l,1)).
a minimization procedure using these techniques is
described. Before it is given, several points of Proposition 4
translation between fuzzy algebra and the A-G al- (a) In a product term with constant 1, and A-
gebra must be made, literal Xj(l,1) corresponds to a fuzzy literal xj.

lhe procedure is based on the result of Thum (b) In a product tern with constant 1, an A-G 0
(8) that there is a one-to-one correspondence be- literal Xj(0,0) corresponds to a fuzzy literal x.'.
tween FSF's and a subset of functions 3

f: (O,,,)n -(0,'2,1) that fulfill certain Proof: (a) If Xj(1,1) occurs in a product term

properties. This result means that we only have with constant I, then the product term is 1 when-

to consider ternary logic functions in the proc- ij
its literals must equal 1. Therefore, xj must be
one of the literals in the product term.

With the sufficiency of ternary logic establ- (b) if X.(O,O) occurs in a product term S
ished, several propositions concerning the A-C with constant 1, ihen the product term is 1 when-
algebra must be proven. These propositions deal ever xj = 0. For a oroduct term to equal 1, all of
with product terms in minimized form, and especi- its literals must eqaal 1. If x- 0, then " " "
ally with the use of th. unary operator xj' = 1, so xj' must be one of theliterals in the

X(a,b) ( X in (6)), which Allen and Givone product term.
call a literal. Proposition 5

Proposition I tn a product term, an A-G literal Xi(!2, ) cor- S

A-(, literals in product terms with constant I responds to a fuzzy phrase xixj'.

must be of the form ai , where ai = 0 or 1. Proof: If a product term contains Xi( , ), that
'root: [he c........inations intervals availabl in product term must be 0 for xi = 0 or 1, otherwise
Pr fle cu a s ,o interval (,a a ,1; abl'ind the interval for xi would include 1 or 0. The only

* ernary logic are (0,0) , (0,',), (j,.,A, (',, I )and1
(0I.. ( 1 ud be- way for the term to equal ! for xi = , and at the

Iau e a t lieral an we ot y vlue asame time equal 0 for xi = 1 or 0, is for xix i ' to
cause if a literal can take on every value avaiIa- be included in the product term.
ble, it can be eliminated from the product. Except
for (0,0) and (1,l), all intervals include ,. How- Proposition 6
ever, if a literal assumes the value ', the value
of the product term containing the literal can be In p con g ir f
no more than . Therefore, the only intervals av- form X.(.''.)

ailable for product term.; with constant I are (0,0) (a) an A-; literal Xj( ,1) corresponds to a fuzzy
and (1,1). literal xj.
Proposition 2 (b) an A-; literal Xj(0, ) corresponds to a fuzzy
Prop -t on2literal xj'

An A-G product term containing a literal of the Proof: (a) Because the product term contains

form Xi( , ) cannot contain literals of the form Xj-,), it must take a value of at least when
Xj(0,0) or Xj(l,). xj I . There are only three forms that xj can

Proof: Assume that a product term containing take in a fuzzy product term: it can appear on-
Xi(I ,-) also contains Xj(0,0) (Xi(1,1)). Since Xi  complemented (as xj), complemented (as xj'), or

assumes only the value , the product term must as the minimum of x. and x' (xx'). The last two
have the v, lue . If Xi had the value , the forms could not occur in tAe product term since S
value of the product term would not be affected, both contain xj': and when x. = 1, x. = 0, which

fihe interval of X) could be written as means the product term would ge J. Tierefore, xj
must occur alone in the product term.

X (0.1-2) (Xj (',I), which is minimized further than (b) Because the product term contains

x .(0,) (X(l,l)). Xj(O,'), it must take a value of at least when -
I xj = 0. L.ooking again at the three ways that x'

can occur in a fuzzy product term, Xj alone and
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x~xj' must be ruled out since both contain xj, and corresponding terms with constant 1. Therefore, we
w en xj = O, the product term would be 0. There- only consider those terms with literals Xi( , )
fore, xj' must occur alone in the product term. (Algorithm, Part C(3)). Proposition 2 proves that

With these propositions in mind, the algorithm only literals of the form Xi(O, ), Xj( ,1), and

for minimizing FSF's using MVL techniques can now Xk( , ) can occur in such product terms. Proposit-
be given. ions 5 and 6 show how these literals can be trans-lated into fuzzy literals (Algorithm, Part C(2)).

Algorithm: Since a minimized A-G function contains only pro-
duct terms with constants I and , all terms have

Part A: The values of the FSF must be deter- been translated back to fuzzy terms, so the algor-
mined for all input from (O, ,l)n. This can be ithm has produced a minimized FSF.
done in several ways. Perhaps the best way is as . . "
follows: To show how the algorithm works several exam-

" (1) For each product term, determine what in- ples will be presented:

put is necessary to give the product term a value Example 1: F
o' I. This means that each literal must have value 11I'x2 1 1' '2x2'
1. If the product term has value 1, the function First, we set up a table of values (we will use
will, too. Thus, give each of these conbinations the Generalized Logic Diagram (GLD) described in
value I (a map (1,6) can be used to keep track of (6)) for x1 ,x in (0, ,1) (see figure 1). Note
the values). that the first product term (x1 ) is 1 whenever

(2) After (1) has been done for each product x = 1, and the second product term (x'x2x2
'
) can

term, determine for each term what input would give never be I because it contains x2x ', which is less
value 0. For all other combinations (which are not than or equal to '. So we mark alt combinations
already marked as 1), the value is . where x, = 1 with a 1.

(3) After (2) has been done for each product
term, any remaining input combinations have value Next, note that the first product term is 0whenever
0. Once values have been determined for each input
combination, the function can be written in the
form used by Allen and Givone (1). X1

* Part B: Minimize the function using a tech- _

nique discussed in (1) (or (6)).

Part C: 0 0 0 i,
(1) For all product terms with con- -__

stant 1, convert all Xj(aj,aj) to:

xj, wherea
=
i

x.', where a. =0. -

(2) For all produc terms which contain 1 11' .-...-
one or more literals of the form Xi( , ), convert
all: X to x

X.( , ) toxil
0 1 x 2

Xj(0, ) to xj'

Xk( ,1) to xk.

(3) Disregard remaining terms. X1 + xl'X2X2

Proposition 7

The above algorithm will produce a minimized Figure 1
•FSF . • "'. .. - .

Proof: Part A, which represents a FSF in a ternary
form, has been shown to be correct on the basis of 1 = 0. We therefore mark all other combinations S
Thum's result (8). The result obtained from Part ot already marked) as . The second term is 0
B is a minimal function in A-G form. For Part C, when xI = I or x2 = 0 or 1. Mark all other combin-

first consider all product terms with constant . ations (not already marked) as The rest are

-. These terms form the minimal way for the function marked 0.
to equal 1. So all must be accounted for. Prop- Using the minimization technique discussed in
osition I limits the form of A-G literals in terms (1), the function can be minimized to F1
with constant I to Xi(ai,ai), where ai = 0 or 1. 1 • X1 (1,1) + • X1( ,1) + • X2 ( , ). The first
Proposition 4 shows how these are converted back product term is transformed into x1 . This is be-
to fuzzy literals (Algorithm, Part C(1)). cause the function has the value I whenever xi is

We next consider product terms with constant ; 1, and this means that xI must appear as a termhese must aser acoute rm s th a with no other literal affecting it with a smaller . ."- these must also be accounted for, unless they are vle h eodtr a edsadd ic J'-""'

accounted for by terms with constant 1. Proposit- value. The second term can be discarded, since a
"" ion 3 shows that terms with constant which do not map of the term x1 alone would show that the fun-ction is at least whenever xl is either or 1,contain literals of the form Xi( , ) are covered by which is what the second term implies. The last
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term :•- written as x2x2 ', as directed by Part C(2) Example 3a:
of the algorithm. The function can now be written
as F, x1 + xx ', which is minimized FSF equal F3(x ,x2,x3,x4) = xlx2x2'x3x4 ' + x 'x2x2'x3x4

'

to the original ?unction.
Example 2: 'X2X2'x3'x4 + x'x x + xxx2xx

) xx,+ I)+ + x 1+2x x'x 
, 'x 4 xx 2x 

+F2(xl'x2'x3 lX2 + 2'x3 This FSF cannot take on the value 1, because O

X X2X3  
x2x 2 ' is common to all five terms. Therefore, to
set up the GLD for this function (figure 3), we

determine where it equals by determining where
determine where the functor F2 ie to w e it does not equal 0. The first term does equal 0

function is equal to 1. The when x ,x , or x equals 0, or when x2 or x4 equal
first product term is 1 when both x, and x2 are 1 1. sofor all oher values of these literals, the
(it does not matter what x3 is equal to for this value of the product term is ! . This process is
product term). The second term cannot be equal to continued for each term.
I since it contains xlXl'. The third term is equal
to I when xi is 0, and X2 and x3 are both 1. To Minimizing the function by this diagram, we
determine where F2 = , we first determine where have F3 = • X1 (0,!.)X2 ( , )X3 (0, ) + . XI(' ,1)
each product term is 0. The first term is equal to X2(0 )X3 ( ,Il) + "X2 ,(, )X3(, )X4(0,'2). Part
0 when x, = 0 or x2 = 0. We mark all other locat-
ions on the GLD (not already marked) as . The C(1) and (3) of the algorithm do not apply here.
second term is 0 when xl = 0 or 1, or when x2 = 1, Part C(2) translates the function to
or when x3 = 0. The last term is 0 when xi = 1, F = x 'xx2'x + xX xx 'xx' thex= 0, or x3 = 0. After marking the appropriate 3 ' 2 3 x2 2 3 he4

locations !, we mark everything else as 0. minimized form of the function.

After minimization, we determine that F2 = Example 3b:
1.X1 (1,1)X2(1,l) + I.Xj(0,O)X 2 (I,l)X 3 (1,l) +

For comparison purposes, we will minimize F"
- X I(C'I ) X2( + 1 + X2(-,1)X23(-1) + using the technique described in (4) (figure 4).

• X1(2, )X3(,1). The first two terms translate This algorithm is based on the use of the fuzzy
in a FSF to xlx 2 + xl'x 2x3, as explained in Part iterative concensus, discussed in (4). We convert
C(1) of the algorithm. The third term is covered each fuzzy literal to its decimal equivalent,
by xlx 2 and can be discarded. Likewise, the four- after determining that no phrase of the function
th term is covered by xl'x 2x 3 or xlx 2, since one subsumes any other phrase. Table K is constructed
of these terms takes on a value of at least with one row for each phrase of F3 . The first row
whenever both x2 and x3 take on values of or i. of table K1 is created from the first two rows of
The last term becomes xlxl'x 3, by Part C(2) of the table K. Since the phrase represented by this row
algorithm. Therefore, F2 = xIX2 + xI'x2x 3 + is subsumed by the ;irst two phrases, they are re-
XlXl'X3, which is the minimized form of F2. moved from table K. The same is true for the

0 0 0 0 0

2 0 1. 2

1 0 0 0 2

2 2•

0 1 0 1 0 X

i _ -t - -- 7-,.

t o o o1(!

XlX 2 + XlX 1 'X 2 'XJ + X 1 'X2 K 3  -',i-,'
I

Figure 2 •

" ~~~268 .; '.:i;

* , .



x

1 0 0 0 0 0

2 2E CT

0 0 0 0 0 0 0 0 0 0

1 . 0 0 0 0F -

0 0 0 0 0 0 0- 0 j

1 0 2 1 0 I

+ X1 .X2 X2 'X30 X4' + X IX 2 X 2 ' X3 XL

Figure 3
F4 = lXj1 ,1)

second two rows of K and the second row of K1 , so X 3(010)X 4(1,1) + P-X I(0,0)X 2C010)X 4(0,0) + P*X I(II)
the se cond two rows of K are also removed. The X(0,0)X (1,l) + *x (o, 2)X (0 )x (M,) + -X ( .1)
phrase represented by the third row of K1 , created 2 4 1 2 41
from the last row of K and the first row of K1 , is X 2(0,'-) X 4(0-21) + '- *X I i,1)X 3 (0, )X4 (-2,1). Using
subsumed by the last phrase of F3, so the last row Part C(I) of the algorithm, the first three terms
is removed from K. The three rows of K1 , which tasaebc oxx' 4 +x' 2 x'+xx' 4

annt ceat an ne ros, nd hos phase do The fourth term, by Proposition 3, is covered by
not subsume one another, represent the function in tescn em ieie h it n it
minimized form, which is the same form computed in term seco er. Lbews the dadfif rth and st

Exampe 3a.respectively. Therefore, F4 is reduced to

Example 4: xlx 3 'x4 + xl'x 2 'x4'+ xlx 2 'x4 , which is the result
obtained by fuzzy minimization.

F4 x1,2x3,4 x lxl x2 x3 +x2x3x4x4 ExampleS

+ xx 3 x + x1 Ix ' 4 + xx 2 x F 5 (xl,x 2,x 3 ,x4) = xlxl'x2'x3'+ xlxl'x 3 x4 '+

The GLD for this function is created in the F(lxl3x)=xx'3x llxx
same manner as in the first three examples (figure F( 1 x, 3 x)=xx'3x ~Lxx
5). We will only note here that the function is I xlxj'x2 'x4'

only when one of the last three product terms is As it can be seen from figures 6 and 7, the
1; that is, whenever xt and x4 equal 1 and x3  GLD's for these FSF's are identical. Also, both
equals 0, or when x1,x2 , and x4 all equal 0, or F5 and F6 are already in minimized form. Figure 6 7

when x1 and x4 equal I and X2 equals 0. Minimiz- yields ' .Xj( ,!i)X 2 (0,',)X3 (0, )+ YX1 C I, )X3Q"I,I)
ation of this function yields X4 (0,'I) + YXCO- U4 O This translates

to the orginal F5. in a similar manner, figure 70
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76

F(xltx2, x3, )  10111001 + 01111001 + 011 01 .l

+ 01110101 + 10111010

F 3 (xIX2,X XO 4  2,3,2,1 + 1,3,2,1 + 1,3,2,1

+ 1,3,1,1 + 2,3,2,2 6

X1  X2  X3  X2".1 x x2  3 x4

2 3 2 1 x 0 3 2 -

K= 1 3 2 1 x 1 3 1 0

1 3 1 2 x 2 3 2 0

1 3 1 1 x 0

2 3 2 2 x

F3(Xl0X2,X30X 4 ) + ,3,2,1 + 1,3,1,0 + 2,3,2,0

F3 (x 1 ,X2 ,X3 ,X4 ) 4 00111001 + 01110100 + 10111000

F3 (X 9x,2 ,X3 ,X4 ) = x2 x2 'x3x4 ' + xl'x 2 x2 'x3 ' + xtx2X2' ,

3S

Figure 4

yields a function which translates back to the or- presented by Kandel and Francioni(4). The two al-
ginal F 6 * gorithms differ in several ways. For instance, in

Therefore, we have two minimized forms of a the latter algorithm, each term must be checked toTheereforebsweehave twoe tminimized formson of"a

FSF. We see that the proposed algorithm gives us see if it subsumes any other term in the function.

an alternative means of identifying equivalent mi- This is not done in the algorithm presented in this S
imized FSF's, since if they are equivalent, they paper. Also, in the algorithm in (4), each term
should have identical representations in a GLD. must be compared with every other term to see if

any new terms can be created; then we must deter-
4. CONCLUSION mine if any old terms can be discarded. This pro-

cess is iteratively repeated (possibly several
We have looked at some relationships between times) until the function is completely minimized.

fuzzy switching functions and multi-valued switch- In the algorithm in iis paper, each term is ex-
ing functions. Although their basic concepts are amined at most twicL; once to establish the l's in S
different, they have many similar properties. In the table, and once to establish the 's.
fact, since Marinos' fuzzy classification (5) al- Of course, the algorithm in this paper requires
lows us to partition the range of fuzzy values in- that all values of the function must be comted
to any number of discrete classes, we can say that from inpus o the whio comuti of:'"o" ~~~from inputs from (O,11,I)

n ,  
while no computation of i -[] l? 

'

a multi-valued switching function is actually just vae incsr ntelo h in4_ on tye offuzy swtchng fnctonvalues is necessary in the algorithm in (4).
one type of fuzzy switching function.

In examining the relationships between FSF's These are some qualities to be considered when
icoiand MVSF's, we found that FSF's can be minimizedis

using methods developed for MVSF's. An algorithm now needed is a comparison of the complexity of the
for such a minimization was presented in Chapter 3. fuzzy minimization techniques presented over the

past few years.
Several examples of fuzzy minimization using

this algorithm were presented in Chapter 3, along
with an example of fuzzy minimization using the
fuzzy iterative concensus, namely, the algorithm
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FUZ/.Y l}.;ASONING UNDEF, It I \ COMPWOSI'IIONAL WItUL, OF I NFEil.XC;,

'.Mizumoto

Department of Management Engineering
Osaka Flectro-Communication University

Neyagawa, Osaka 572, Japan

This paper indicates that most of fuzzy uses the max-min composition, the arithmetic N"h

translating rules for a fuzzy' conditional rule can infer very reasonable consequences
proposition 61f x is A then y is IVO with A when new compositions named "max-O composi-
and B being fuzzy concepts can infer very tion" and "max-A composition" are used in
reasonable consequences which fit our intui- the compositional rule of inference, where
tion with respect to several criteria such 0 is the operation of "bounded-product"
as modus ponens and modus tollens, if new which is dual to "bounded-sum" introduced by
compositions called "max-0 compositionC Zadeh /1/, and A is the operation of "drastic
and Omax-A composition' are used in the product" Tw(x,y) introduced by Dubois /6/.
compositional rule of inference, though, As the continuation of our study /5/,
as was pointed out previously, reasonable this paper investigates the inference results

* consequences can not always be obtained by all the translating rules proposed until
when using the max-mmn composition which now under the max-O composition and max-A
is used usually in the compositional rule composition, and shows that the majority of
of inference. , the translating rules can infer very reason-

able consequences which fit our intuition.

INTRODUCTION TRANSLATING RULES

In our daily life we often make such We shall first consider the following
an inference of the form: form of inference in which a fuzzy condi-

Ant 1: If x is A then y is B tional proposition is contained.

Ant 2: x is A' Ant 1: If x is A then y is B

Cons: y is 13' Ant 2: x is A' (1)

where A, A', B1, 13' are fuzzy concepts. In Cons: y is B'

order to make such an inference with fuzzy where x and y are the names of objects, and
concepts, Zadeh /1/ suggested an inference A, A', B and B' are fuzzy concepts represen- "-'-
rule called "compositional rule of inference" ted by fuzzy sets in universes of discourse
which infers B' of Cons from Ant 1 and Ant 2 U, U, V and V, respectively. This form of
by taking the max-min composition of fuzzy inference may be viewed as fuzzy modus ponens
set A' and the fuzzy relation which is trans- which reduces to the classical modus ponens
lated frcm the fuzzy conditional proposition when A' = A and [3' = B.
"If x is A then y is L3." In this connection, Moreover, the following form of infer-
he /1/, Mamdani /2/ and Mizumoto /3,4/ sug- ence is possible which contains a fuzzy con-
gested several translating rules for trans- ditional proposition.
lating the fuzzy proposition "If x is A then Ant : If x is A then y is B
y is B" into a fuzzy relation.AnI: fxisAteyis1

In /3,4/ we pointed out that the conse- Ant 2: y is B' (2)

quences inferred by Zadeh's and amdani's Cons: x is A'

translating rules do not always fit our intui- This inference can be considered as fuzzy
tion, and proposed some new translating rules modus tollens which reduces to the classical
which can get the consequences coinciding modus tollens when B' = not B and A' = not A.
with our intuition with respect to several The fuzzy proposition "If x is A then
criteria such as modus ponens and modus tol- y is B" of (1) and (2) represents a certain
lens. Moreover, we suggested in /4/ new relationship between A and B. From this
translating rules which are obtained by int- point of view, a number of translating rules
roducing implication rules of many-valued were proposed for translating the fuzzy pro-
logic systems, but these translating rules position "If x is A then y is B1" into a fuzzy
were found not to infer reasonable consequen- relation in U x V.
ces. Let A and 13 be fuzzy sets in U and V,

In /5/ we have shown that, althogh the respectively, and let x, U, n, - and % be
translating rule by Zadeh called "arithmetic cartesian product, union, intersection, comp-
rule" does not infer reasonable consequences lement and bounded-sum for fuzzy sets. Then
in the compositional rule of inference which the following fuzzy relations in U x V are
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obtained from the fuzzy proposition "If x is In the fuzzy modus ponens of (I), the
A then y is i". Hm (maximin rule) and Ila consequence 13' can be deduced from Ant 1 and
(arithmetic rule) were proposed by Zadeh /1/, Ant 2 by taking the max-min composition "o"
ic (min rule) by Mamdani /2/, and the other of the fuzzy set A' and the fuzzy relation
were by Mizumoto et al. /3,4/ by introducing obtained above (the compositional rule of
the implications of many-valued logic systems. inference). For example, we have for the

Rr = (Ax B) U (7A x V) translating rule flm of (3)

4!> PA(U)A W6 v)) v (1-YA(u)) (3) Bm' A' o fim (18)
A' o [(A x B) U (lA x V)]

Ri (7Ax V) 0 (U x B) The membership function of the fuzzy set Bm' .

1. ~ ~(4) in V is given as
Rc AxB IBm,(v) = Vf1JA,(U) A Yjm(U, V)j (19)

RcABu 0

SVA(AU)^ B(v (5) = V IJA,(U)A L(A(U) A B(V)) V (l .- A(u)) 0

u
Rs A x V# x PS Similarly, in the case of fuzzy modus

tollens of (2), the consequence A' is given... (6) by
VA(u)> P () Am' = Rm o B' (20)

-A U adAs simple examples, let A' = A in (18)
and 13' = not B in (20), then we can have

1 ... A) B,, such inference results /4/ as

YB(v)  ... y (u) > vs(v). (7) =m' A oRm4 u vm,(V) = 0.5V VB(v)
Am' = Rm o not B <*PAm,(u) = 05v (1-PA(u))

I, (A x V I U x B) C0 (7A x V U x 78) (8)
Similarly, for the arithmetic rule of (4)

44- C x ) h (7A x V U U x 7B) (9) 1 +
9 9 Ba' = A o Ha V FBa( v) 2

Rgs (A ; U x B) n )7A x V S 0 U x 7B) (10) I (u)
Aa' = Ha o not i3=IJAa,(U) = 2

%s =(A V U x B) I (7A x V s) U x 7B) (11)

These consequences B' and A' are found not
(7A , U) u )L X C) to be equal to 8 and not A, respectively.

In other words, these translating rules can*> 1.,u)€ ~ )(12)
not satisfy the modus ponens and modus tol-

lens which are quite reasonable demands in
the fuzzy conditional inference. Therefore,

, it seems that these rules are not suitable

*t A!v) "If x is A then y is B
.. ." x is A (modus ponens) (21)

y is B

-A V .j, U X C If x is A then y is B
•y is not B (modus tollens) (22)

, , _ , x is not A
(l 7-e - .. () methods for the fuzzy conditional inference.

( or -) .In the next section, however, we shall show

that not only these rules but also other
translating rules in (5)-(16) can satisfy

p. A, U x the modus ponens and modus tollens and infer
the consequences which fit our intuition, if,

UA (L.') 1 )(:)UM.() instead of the max-min composition usually
used in the compositional rule of inference,

we use two kinds of new compositions called

R A X V U ,(1 ,  
"max-O composition" and "max-A composition"
in the compositional rule of inference.

FUZZY CONDITIONAL INFEHENCE
UNDER NEW COMPOSITIONS

We shall first give the operations of

jf or v,- 1 "bounded-product" 0 and "drastic product"A
0 .. (* 1, in order to define new compositions of "max-
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) composition" and "max-A composition" to be f(x)
used in the compositional rule of inference. 0 V + X Ab) v - 1}
The more detailed properties of these opera-
tions are found in /6-8/. For any x, yLO,l] = oV(x+ x -1)A (x +b-l)]V(x -x) (32)

Bounded-Product: x d y = ( V(x + y 1.) (23) Case of .~l: When .. l, xdL-x 0 is obtained.
Thus, f(x) reduces to

Drastic Product: (x ... y= I f(x) =0V [(x'+x-I)A(x+b-l)1
X A Y = y ... x 1 (24)

0 ... x,y< I Fig.l(a) shows partly the expressions x( + x
- I and xat + b - 1 by using a parameter b.

Using these new operations we can easily When b is equal to, say, 0.2, f(x) is indi-
define new operations called max-G composi- cated by the broken line and thus bm' = V
tion "a" and max-A composition "a ' in the f(x) of (29) at b = 0.2 becomes 0.2 by taing
same way as (18) and (20). the maximum of this line. In the same way,

Bm' = A' 0 uRm (25) at b = 0.7, f(x) is shown by the dot-dash
SV V 0 V)line whose maximum value is 0.7. Thus we

41 Bm, (V) : PA,(u) I 1 m(U'V) have bin' = 0.7 at b = 0.7. In general, we

Am' = Urn 0 B' (26) can have bm' = b for any b, that is, bin' =

Similarly, under the max-A composition "&, b at x' = xd (t Z I), which leads to 1Bm,(v)

we have = H1 (v) at pA,(u) = PA(U) 0G (t A1) from (31).

13m' = A' * Rm (27) Namely, BmI' = at A' = A (4 1). Therefore,

P= m "Bm'(v) = V PA (u) A P ,tm( uV)} A t Rm= B ... , . (33)
U L= . "

Am' .A B' (28)9 .9-
The same ways are applicable to other .8 x'-b - I

translating rules Ra, 11c, ... , Io of (4)-(17). ".1

In the fuzzy modus ponens, we shall x x- I.
show what the consequences B' become under ./ - 5 .

new compositions "" and "aL" when A' is 4*x- . _ .

A' =A .2
A' = very A =A .I .
A' = more or less A = A ' 0 1- .5A' = not A =-IA . , lq.

(a) Case of t i) Case of . I
which are typical examples of A'. Fig. I f(x) of (32)

Similarly, in the fuzzy modus tollens
of (2), we show what the consequences A' is Case ofohl: f(x) is given by (32) and is
when B' is drawn in Fig.l(b). The expression x " -x (0(

B'~~~ =ntB1<1) has the maximum value 1~- ) (=MAX)

B' = not very B = -1B2  at x = - Figl.(b) indicates that bm' =
B' = not more or less B =-B05 MtAX at 0 _ bg AX, that is,

bm' = V f(x) l -(I

We shall begin with the fuzzy modus X
ponens in (1). It Is assumed in the discus- On the other hand, when MAX~ b~ 1, we ha ve
sion of the fuzzy modus ponens that VA(u)bi
takes all values in [0,1) according to ubm' b.
varying all over U, that is, HA is a function Hence,
onto 10,1). Clearly, from this assumption,
the fuzzy set A is a normal fuzzy set. b, = l - I) V b

We shall first discuss Nm and obtain the Nel) 0
consequence Bm' of (25) at A' = A which is
a general case of A, very A and more or less V.,m,(V) 1) V- _ B(v) at al. (34)
A. From the above assumption that PA is a
function onto [0,1], (25) can be rewritten as Therefore, the consequence Bi' = A. Rm under

bmn' = V { € 0 t(x b) V (1-.X)) (29) the max-9 composition "I" is given by

x
f(x) I it 0 ((xAb) V (l-x)] (30) 1) V B(v) ..

by letting PBm-(v) YB(v )  ... (35)

VA(u) = x, V (v)= b, V3m,(v) bm' 1(31)
From this result we can obtain the consequen-

From the definition of bounded-product ces Bm' at A' = A, very A (= A2 ) and more or
of (23), we have f(x) of (30) as less A (- A0 5) by lettingo(= 1, 2, 0.5.
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TrI Pe inference Results under !
0
ax-1 Compos;tion"DI Table li.erefy P.etultI; under ld.-HC L, oit infin

(Cate of Fuzzy 
1
'odus Ponens) s f.s z f!.. *d '. e,,,.n I

_o t n oA A
I~ Ai no AVP unknown 2 A 1 r

A1
Pa~'~ unknown. 2u no A<2 ~ A__

Ra Lo t A____..P . 7

OB "R I~ -_ _ _ i I !. 4 k

4a B B unkow 4'(c4 0. PA'0A

Rs B vr B more or less B Ankow nsot A n ot ____A_

Rag B nyB nmore orless B unnownt ltA(BA- 4 ~ - , un -

Rsg not A (ot ver n to e oIr ]e !: A A

Reg B B more or less B not B -4 - -
An Rot A nteoAr.,re ores A A

Rns BD er B more or less B not B Abs not A (1-AB ) noAunnr

ng oeo es o ot A Lo er no t more o r I ~n A U A

IRS B veyB more or less B unnotn B______
__________ A. n~ot A not erA)mr rls s '

B veyB more or less B unknown At A (-CA05us

P7 nTot A (l)'' out A A UJ not A

Ba Bnn~ ununknuoowwn____O~

Bm* A Itm =1 (6) ) O .. otherwise
1l =~ very A Bm1 ('36) loiThus,

13m' = more or less A Glim ba iV g( x)= V x~lV b=bo V b.
V p'A v) 38) x x

* ('36) indicates that a modus Teeoe ehv a ~ aa
* ponens is satisfied by the (1' / )
*me thod lim under the max-G Corn- L1qo JB ...

position "a". It is noted that Ila (-"'40)I.B .

Am does not satisfy the modus B .. Oa

ponens under the max-min co0m~o- X~ 1oWhich gives the inference results
sition "o". Ia at A' = A, very A, and more or

*We shall next Consider the Fig.2 g(x) of (39 less A as follows.
* inference result Hal 0 A I a

*under the max-^n composition "A"* al is Viven Ila' A A a = , (42)

( by U), A [s'Il more or ess A AH&

Nat VIVA% VAyau~tAlp (u) + 1 3 ))J more or less B3 (43)

ba rV.A ~( A ~ which also indicate the satisfactim, of the
* ba = VxA x modus ponens under the max-,A composition ""

Let p() he In the same way, we can obtain the con-
- ~. r, ~ +bT ~seq uences by o ther me thods tic, its, R o.

P( X) A~ (I. A - X ''b)('9 Tables 1-4 list the inference results by all
*then g(x) is shown by the solid line and the the translating rules (3)-(17) under the max-

black circle in Fig.2. Namely, 0r composition "a" and max-A composition "A".
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Table 3 Inference Results under Max-A Composition 4&' Ta(la 4 onferne ?es ts under- as -A COrpsitlon "

(Case of Fuzzy lodus Ponens) (Case of r.zy ?'odus Tollens;

very A more or leas A otnot B not Vey B not more or less ! B

om not A not A not A A U not ARAm B B Btnknoun. ..

Re not A not very A not A unknown
Re B B more or leae B unkmown

Rc 0 0 A
RR B Bh-- '

Rs B very B more or lee B winknown TI not A not very A not more or less A unknown

Rg not A not very A not more or less A unknown
Rg B B more or leas B unknown

Rag not A not very A not more or less A A
Rag B verY B more or less B not B-______

Rgg B B more or lees B not B Rgg not not very A not more or less A A

Rgs B B more or leas B not B Rge not A not very A not more or less A A •

Res B very B more or leee B not B Res not A not very A not more or less A A

Rb not A not A not A unknown
Rb B B B unknown

RA B B more or lees B wmknown R, not A not very A not more or less A unknown

R, B very B more or less B u nown R
A  

not A not very A not more or less A unknown

R notA not A not A unknown
RB B B B unknown _ _-.__ _ _

Re B B B BunotB R, ntA nono A nob Au not A A- , 0

R n  
unknown unknown unknown unknown RAI sAi i : UAn

In the form of fuzzy conditional infer- infer very reasonable consequences under the .

ences (1) and (2), it seems according to our max-e composition and max-A composition,
intuition that criteria between A' of Ant 2 though we cannot always get reasonable con-
and B, of Cons of the fuzzy modus ponens (1) sequences under the max-min composition as
ought to be satisfied as shown in the left shown in Table 5 /5/.
part of Table 5 (cf. /3,4/). Similarly,
criteria for the fuzzy modus tollens (2) are CONCLUSION
also shown in this table. The right part of We have shown that, when the max--
Table 5 indicates the satisfaction (0) or _o-
failure (X) of each criterion by each trans- composition And max-A composition are used

lating rule by the use of the inference in the compositional rule of inference, the . ..-

results given in Tables 1-4. In order to majority of fuzzy inference methods can pet
very reasonable consequences which coincide S

compare the inference results under the max- wt u nuto ihrsett eea
9 composition "a" and max-A composition "A" with our intuition with respect to several

with those under the ordinal max-min compo- criteria such as modus ponens and modus tol-
sition "o", the satisfaction of each crite- lens. It will be of interest to apply the
rion under the max-min composition is listed max-O composition and max-A composition to
nn ude te max-mm composition/isliste fuzzy inferences which are of the more com-
in the table (cf. /4/). lctdfrsuha

From Tables 1-5 it follows that all the plicated form such as
inference methods except Ho can satisfy so- If x is A1 then y is 1I else
called modus ponens (21) under the max-O com- if x is A then y is B2 else
position "a" and max-A composition "4" but 2
only the methods 11c, Hs, ... , Hss can satisfy if x is A then y is B
the modus ponens under the max-min composi- x is A'. nn
tion 'loll. The almost same holds for the y is B3'.
modus tollens of (22). Moreover, it is found These results will be presented in subsequent
that majority of the translating rules can

papers.
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Table 5 Satisfaction (0) or Failure (X) of Criterion for Each ?etniod under ''ax-rin o'
Man-O Corpos it ion "0" and Mue-A Coi'iio i t ioil "A"

K, 1 s a Ac AS ' Ro S ;,' Fg5 P.s P-' A A5 c~
nn ot OA '1ns 'C cos O& Cs )OS OA CA CA OIA CA 12. CA O. MA

A B X2 - X00 00C 000 00QC cooG Oc 3i C XL

l-veoA Vr;P XXX XXX XXX 0.00 XXX 000 XXX XXX -ca XXX XXX X Ft <~ X X

11-2 vLer A B X0O X00 OCO XXX 000 XXX 000 000 XXX XCC XC XXX X' X X X

mrore or -or or XXX XO XXX 000 000 000 000 000 0CC XXX X? 0. A"P 'As XIXX
less A les.s

n1- ore o r B XXC XXX 000 XXX XXX XXX XXX XXX XXX XO XXX XXX AXO XX '.X
1-2 less A

IVl nor A sohooron 000 000 XXX 000 000 XXX XXX XXX XXX 000 00" >2 C2 XXX C 0

IV-2 not A not B XXX XXX XXX XXX XXX 000 000 000 060 XXX XXX XXX XXX XXX XXX

no1.t B not A X00 X00 XXX 000 XO0 000 XO0 X0Oor 00G X00 XCO hOc C A XXX
(miodus tollens)-

V11 not very B not very A XXX XXO XXX 000 XO 000 XO XO 000 XXX AXO X~c XXX XXX XXX

V1-2 not very B oot A XXO XXX XXX XXX XXX XXX XXX XXX XXX XXO^ XXX XXX XXC BAG XXX

* IX-I n0t morn not more XXX XXX XXX 000 XO000 coXOc XO0 000 XXX X00 XCO XXX XXX XXX
or less B or less A

VII-2 no oe not A XO0 X00 XXX XXX UZX XXX XXX XXX XXX X0C XXX XXX X00 AGO XXX
or less B -

VIII-I B uncohow XXX 000 XXX 000 000 XXX XXX XXX XXX 000 000o 000 C " XXX

VIIX-2 B A XXX XXX 000 XXX XXX AGOC O 000 000 XXX XXX XXX XXX XXX X X
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S. TUDY OF IUZLY RELATIONS ANI HEIR1 INVFRSE PROBLEMP%

.Masaki Togai * and Paul 13 Wang

Depairtmtent of Electrical Enigineering
Duke iversitN

D~urhamt. NC 2770hr
USA

A fuuzzy inverse problem ssa, first proposed bN Sanchez 14]. lie
nve'tigated the problem ot find Q C A.1 knowing R C AN / and

.-Ibstract S' C X .% / such that

its paper consists of two main topics relating to the fuezN logic
,oning. fuzzy implication and its inverse problem. QoR - S

rsils the chairacteristic difference of various types of implica-
anction, vill be analyzed b'y introducing two new lie further showed a condtt of the solution bN giving the least upper

s ny Is the "joint'* relation and the 'condit ira I one. bound of the vol utiort. Tlashiro et al -;)s and Tsuk a itotol 6,71 followed
condk, a novel method to find upper and lower bounds of the Sancheis york. and proposed an algoriihnm ti"nd the lover bound of
of fuziy insirse problem is introduced. In addition to the con- the solution for the problem stated as followss v'isen a fuzzy relation

il man-min operaition. we propose a new operation. namely R on Ui v V and i-fui/s subset B of LI, find all the f'utiy subsets . 4 of
position. to solve the problem effectively. Theorems concern- I. such that B-4oR".
bounds and the composite mappings Of fu17Y sets are also In the second half of this paper we propose a new method to

d.search a lower and upper bound of the solution for the fuzz.v inverse

Introduction problemi. First, we propose a simple operation to find the solution of
the inverse problem, then, we prove that the proposed operation gives

his pa per consists if t woi topics intni aid s relIated tth ocpt henesayndufieni range of the solution.
logic and reasoning fuzi. implication and its inverse prob- uzvStanRevntPoris

etribi and Manidan [Il and xiumnoto et al [21 have proposed A fuzzy subset .A of a universe of discourse U is the set of
lu/z iplication functions in their papers. Some basic charac- ordered pairs defined by
difference of implication function obtained through fuzzy

an product from those obtained by other means has brought t10 .4 - ((u, . 4(u flu tL and A. ( t.111 (1)
ention while reviewing the papers mentioned above. It appears
e need exists to explain the dlifferences on at more united basis;
we propose here the "joint' and "conditional" fuzzy relations. A fuz/) subset .4 can be viewed as the union of* its coistituent ele-
ii rcorgnize that the concept of coinditional and joint possibilities ments with characteristic function 'r.On the basis. A rmay be
tatcd b llrsdel D]1 turns to be v.:ry helpful in understanding the reesndintefmsugtdb Ze [JS

issurning that the conditional fuiy relation is defined by the A - m,(u1 I/t
niplniattn function, the canonical extension of Baye's formula
tahility ther to fuzzy set theory will be made in this paper.
a1ririus wia to handle implication in fuzz logic have been pro- where the integral sign stands for the union of p4(l 1[-. If s t

bo mnans researchers (1.21. we feel it is necessary ton compare fnt ubrvfeeet ~.,u n1.i a ~atrat l
erisis~of teseimplcaton fnctonsrepresented in the form

rs ~.the jotin* relatiionail fu nct ins will be derived from the
it cmditionl functions or imnplica tion functiions Secondly, the A-~1 /ji+. i~ u~ pI ,I/u

teristics of these relational functions assoc~iated with types of
tion will also be investigatedl in depth.

he relations mentioned above are, in a sense, the mapping from
verse of discourse, say 1, , to another universe of discourse, say) or

fuzzy iirsy problem. (in the other hind. deils with a mapping
rse directioin. i cfrom I' to I r under the assumnption that the
ig friot U to V does exist N5

irreni I% r thl I In 1i,%y. itin n 07 N t I

623X /83/0000/0279$01.00 983 I1 EE
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Fuzzy Cartesian Product ..- Let A be a fuzzy subset of a Fuzzy Implications and Their Impact on Fuzzy Relations
universe of discourse U, and let B be a fuzzy subset of a possibly In this section we will present the basic definitions of conditional
different universe of discourse V. Then, the fuzzy Cartesian product fuzzy relations and joint fuzzy relations and hence demonstrate how a
of A and B. denoted by A x B symbolically, is defined by marginal membership function can be induced from the joint member-

ship function. Some insight concerning the interplay between these
two relations will be of some interest. As a result of our investigation.AxB - t A (') A JAB(v)/(u,v) (4) t0

- uI,) the justification of the use of the max-min operation for the composi-

tional rule of inference as defined by Zadeh 18) may be explained in a
more satisfactory manner. -7

In other words. A x B is a fuzzy set of ordered pairs (u.v). u t U. There are a number of ways that the conditional membership
v t V. with the grade of membership of (u.v) in AxB characterized by function can be constructed. We intend to summarize here the most
AL(u) A p8 (v). frequently encountered types of implications in fuzzy logic to demon-

Domain and Range --- Let R C U x V be a fuzzy relation. The strate their potential usefulness for future applications. The effect of
domain of R, denoted by dom(R), and the range of R, denoted by an implication to fuzzy relations will also be investigated accordingly. 9
ran(R), are defined respectively by Conditional Fuzzy Relation --- A relation from a subset A to

another subset B, designated by the fuzzy implication function, is a

"d-,00)(u) " V tJ(u.v); V"u U (5a) conditional relation and symbolically denoted as RA-. This relation
is characterized by a bivariate membership function:

RA-a - fv IR .,(v/u)/(u-V) (9) -and ",

where A C U, B C V, ut V, and vs V.

-. (v) V AR(uv); V v V. (5b) Joint Fuzzy Relation --- The joint fuzzy relation RA.8 CU x V
is defined by the membership function uR,,(u.v) satisfying

Subdomain and Subrange --- Let R C U x V be a fuzzy rela- R,(UV) P A(U) A MR.,_(v/u) (10)
tion. The subdomain of R. denoted by sdom(R). and the subrange of .'
R, denoted by sran(R), are defined by

where A C U, B C V, u iU, and v V. Similarly the joint fuzzy
relation RBA C V x U, the transposition of RA.B, is defined by the

UR~uv): 6a) membership function A5R5 (v,u) satisfying

Ia.BAv.u) - AsI(5v.u) - ju(v) A uR..(ulv). (11)

and

Marginal Membership Functions --- The marginal membership

,_-(R)(v) A AR(uv): Vv V. (6b) functions, analogous to the Zadehian definition of the domain and
range of R may be defined through the following operations: - :. .

Inversion or Transposition -- Let R C U x V be a fuzzy rela- PA(u) - V uRR(uv) (12a)

tion. The inverse or transpose of R. denoted by R-
1 or RT , is the

fuzzy relation on Vx U defined by
- V tRL(u'v), (12b)

MR(u.v) A- .(v'u) (7)

,a(v) - V .R (v.u) (13a)2 ~ ~~- ,,,,,(v.u).. 0 ....

- VM OIR (v.u). (13b)
Separability -- A relation R on UxV is said to be "separable" if

and only if there exist A C U and B C V such that R-AxB. where
Using the definition of transposition, and substituting (11) and (10)

A - Sup( uI uRv} - dom(R) (8a) into (12b) and (13b) respectively, the marginal membership functions
IUA(u) and $A(v) can then be expressed in the alternative forms as .
shown in the following:

... B - Sup( vI uRv) - ran(R). (8b)

)A (u) - v$RnI(u'v)

""" Noninteraction ... A and B are "noninteractive" under R-AxB
if and only if R is separable. This concept is analogous to the well V .SR..v '-)
known concept so called "independence" of random variables in proba- -
bility theory.
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him- v Me() A uR,.(u/V)) (14) (Type 3) AR(vlu) - A - ,A +

:::: ~~~_ul) (1ype 4)A(/) Ai- (u) + B() (26) :::::i:'

V(v) - V /AA(U) A UR,.(v/u)]. (15) (Type 4) . -R(V/U) (1 PA..- V (V) (27)

I ifuA(U) s(v) As M
Note that a fuzzy subset B will be induced from a fuzzy subset (Type 5) MR(V/u) - lua(v) if UA(U) > 0(U) (28)

A and the conditional fuzzy relation RA--.. On the other hand, a sub- "'
set A will be induced from a fuzzy subset B and the conditional rela-
tion R-A. Therefore, both (14) and (15) are the same as the max- The essential characteristics of each type of implication are sum- , o. .' *

S min operation as being used for the fuzzy compositional rule of infer- marized in Table 2.1. Types I and 5 share most of essential charac-
ence by Zadeh [81. teristics; Type 2. 3, and 4 share the similar characteristics mutually

but are distinctly different from the other cluster of Type I and 5.
Furthermore, substituting (10) and (11) into (I12a) and (13a) The joint relation obtained from the Type 5 conditional relation is the

respectively, AA (u) and uM(v) can be alternately given in the form exactly same as that of Type 1. The joint relations obtained from the

Type 2, 3, and 4 conditional relations are not exactly the same but
UA(U) - V[ ,A(u) A pR,.(V/u)J (16) very similar to that of Type I.

The analytical development made in this paper does confirm the
existence of the mathematical relations between joint and conditional

ua(v) - V.u8 (V) A %R,._(u/v)J. (17) fuzzy relations. It also support the rational and the utilitarian value of
the fuzzy compositional rule of inference as originally proposed by - 0
Zadeh [81. If antecedents. A's, the consequences, B's. are noninterac-
tive, then Type I implication, in particular, can be advantageously

From (12a), (13a), (16). and (17), the following two inequalities can used.
be obtained readily.

Fuzzy Relations and Some Inverse Operations
(V AR-.(V/U)} > U(u) - V' MR.,(UV), (18) Let us begin with some novel definitions which will be proved to - - - -

be useful later on.

Bounded Fuzzy Subset --- Let U be the universe of discourse; let
(V As -A(UV) I >1 M)- V RR.(U.V)- (19) A, Au. and AL be fuzzy subsets of U. Then. a bounded fuzzy subset, " " "

A. of U is a collection of fuzzy subsets

Some important characteristics of fuzzy relations can be esta- ( (A I vA C U and AL C A - At) (29)
blished. From ( 0) and (II), we have

MLR .(uV) 4 U,..(V/u) (20) where Au is called the "upper bound' of i; A. the "lower bound' of

'k ne bounded fuzzy subset A can be alternatively characterized .. - '
* Mo(Vu) 4 MSR.,(u/V). (21) by the interval of the membership functions of Au and AL as follows: .. -

as it should be. On the other hand, from (18) and (19), we have JU,(u) - [uA,(U)M..(U)] ;' us U, (30)

A(u) > uR,(uv) ;V e V (22)
A fuzzy subset is considered as a special case of the bounded .. .

fuzzy subset where the upper bound and the lower bound are identical:

BW(V) > tsR.,(Vu). ;V us U (23) that is, Au - AL. A bounded fuzzy subset is well illustrated by the
hatched region as shown in Figure 1.

Sufficient Bounded Fuzzy Subset -- Let U be the universe of

Note that a given raw in uR,,(u,v) consists of entries which are discourse. Assume that A and X represent bounded fuzzy subsets; At/.. ________
less than or equal to MU); a given column in ut,(v,u) consists of XL, and X, represent fuzzy subsets of U. Then. a sufficient bounded

give colmn i MR5 V~u)fuzzy subset of A is a bounded fuzzy subset
entries which are less than or equal to %,(v). These inequality rela-
tions between joint and conditional functions agree with those between
joint and conditional probabilities in probability theory. IX - v XCU, X 1 ,XXu, and Inf(A )QX. XuVSup(.))

There are a number of ways that the conditional membership
function can be constructed. We intend to summarize here the most (31)
frequently encountered types of implications in fuzzy logic with the
objective of demonstrating their potential usefulness in applications.

where Xu and XL are called an "upper sufficient bound* and a *lower
(Type 1) tUR(Vlu) - UA(U) A %I(v) (24) sufficient found" of A, respectively.

Necessary Bounded Fuzzy Subset ... Let U be the universe of
discourse. Let A and f be bounded fuzzy subsets: Y. Y 0 . and Yj are

(Type 2) p(V/u) (osA W A Ma(0) V (I P W) (25) fuzzy subsets of U. Then a necessary bounded fuzzy subset of A is a _71
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TypelI Type 2 Type 3 Type 4 Type 5

RA..-B Axil (AxB)U( 7AxU) 7ASB 7AUB A-B

RAI AXil (AxB)U( 7AxA) Ax(l-A+B) (AxB)U(Az,A) AxB

RA _D_.RT. Yes No No No No

RA-BA Yes No No No Yes

RAI-RA-11 Yes No No No No

* dom (R) -A Yes Yes Yes Yes Yes

* doM (RT )-A Yes No No No No

*Oran(RO.A)-B Yes Yes Yes Yes Yes

*Oran(RT)-B Yes No No No No

SAOR,-B Yes No No No Yes

: I A(u)<VuB(V),**: if sa(V)<VMA(U)

Table I Summary of Types of Implication0

* ~~bounded fuzzy subset 1 u~) I f5 4 U au

1 Y I YCU. Y, QY QYt. and Y1. Inf (A), Sup (A) Yt,) MA (U) W Al () - ijOAA(u)I if PA.U) < uA(U).

(32) Note that this fl-composition is not commutative and is a different
operation from the w-composition proposed by Tsukamoto et al. (61. .

f-composition --- Let A and B be fuzzy subsets of U. and
where Y', and Y1. arc called an 'upper necessary bou~nd" and a "lower u U. An fl-composition of A and B, denoted by A f) B, is defined.-
necessary bound' of A respectively. a

The sufficient bounds and necessary bounds are also illustrated in
-Figure 1. AAi),(U) -MA(U) Al u(U). (36)

Greatest Lower Bound and Least Upper Bound --- Let A and Ai
* ~be bounded fuzzy subsets in the universe of discourse V. Suppose Al' whr
* and HL, are upper bounds of i and h, respectively; A1 and BI,. lower
* bounds of j and g, respectively. A greatest lower bound. Lmax. and ARu(u). if AAWk ;0 A(U)

a least upper bound, Lib, are defined respectively as JAA(U) f iD(U) if a ., AA(U) < MA(U).

Lmax -fAA,(u) V uaB,(u)/u. (33)

Ai -composition --- Let A and B be fuzzy subsets of U, and

Umin - J,pA.(u) A jum.(Ou (34) Ae U. An -lcomposition of A and B, denoted by A fiB is defined
as

* where A U This relation is illustrated in Figure 2.
A (U) P AU) A' Ush), (37)

f1 -Composition --- Let A and B be fuzzy subsets on U. and AtIB

Au U. An fl -composition of A and B. denoted by A 0 B is a binary
*operation, and is uniquely defined as wher

ACAIB(U) -AA(U) W 098(k) (35) 1 , if MA (M) ;0A M)

A'A') jg~u -IMA,(U), 'if PA~U) < 0aa(u).

where

2M12

9---



gs.(u) - A [~(v) We saR.(v,u)), (42)

uY, where u c U and v fV.

u,-fuzzy Inference --- Let R C U x V be a fuzzy relation. For a

N ) given fuzzy subset 8 of V, we define A -B w R, the w-fuzzy infer-

54A (i) n [jsa(v) w D,-.(v.u)] (43)

where nl denotes the operation to find the interval between the least

upper bound, Umin (u), and the greatest lower bound, Linux(u). of
U J,(v) W ALR's-vU).

Figure I A bounded fuzzy subset.
An alternative definition, making the use of 4-operation and w- -

Jul operation, is presented as follows:

BU P(m) n A ,s(v) W~ #AR.(V,U) ---

L~~ [ , Lmax(u), Umin(u)] (44)

where

Lmax(u) -V (148(v) v sR-.vu)I

Figure 2 Greatest Lower and Least Upper Bounds.

Umin(u) A A, (v) g'. ~(VU)I.
*Note that both fl-composition and fL-composition are the special case

of f-copostio; te uper oun of£1-ompoitin i gien y ~ The relationship between the different types of fuzzy inference --

composition; the lower bound of fl-composition, by fl -composition. decidabecnbeessumd pthog teflowgeu-
The elaton cn b expesse astions in a concise manner

Sup (A fl B) -A 'R (38) 4.(~R)- wR ,( ~ V

In( fl)AiBInf(B wR') B oR'. (46)

o-fuzzy Inference --- Let R be a fuzzy relation on U x V, and A
be a fuzzy subset of U. For a given fuzzy subset B of V, we define Let us now point out some useful properties of the w- and ~
A -B o R-1, o-fuzzy inference or Zadehian fuzzy inference, by operation and their interplay with fundamental operators A and V.

These identities will allow use to derive some theorems in the next sec-

554(u) - V [,ua(v) A AR-(VIU)J. (40) tin. --

i-fuzzy Inference --- Let R C U x V be a fuzzy relation. For (-prto)Wt ~~ ol -prto sdfnda --
given fuzzy subset B of V. we define A - B Z R, the ia-fuzzy infer- .- '.,--

ence by f >; q

-AU V 498(V) W0 ;AR.(vU)i. (41)

o p (Iq otZq, if p t. (48)

where u C U and vs# V.

si-fuzzy Inference --- Let R C Ux V be a fuzzy relation. For a p q p q(9

given fuzzy subset B or V, we define A - 8 R, the s-fuzzy infer-
ence, by op ~ ~ )p q(50)
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o (p q) A q-p 'aq (51) A (dom(R) Q (A OR)Z R-' (67)

o (p V) 0 Zq ( p aq (o)~q 5)Theoem 3For agiven fuzzy subset A of Uand a fuzzy relation .

R in UxV we have

" p r(p Aq)-p A q q (or p) (53)

A;R Q-(AoR)wR-1 (68)

"(p A q) Z q p Zq (54) .:x
Theorem 4 For a given fuzzy subset B C V and a fuzzy relation

R C U xV, wehave
o (p (Zq) (Zq p (Zq (55)

B 0 ran (r) Q (B oR-1) oR. (69)

o (p 1) A q 1A q ;' 1. (56)

Theorem 5 For a given fuzzy subset B C V and a fuzzy relation

(w operation) With p ,q ,t [ 0,11, ;,-operation is defined as R C U x JV, we have

1I, ifp B Cl ran (R) Q (B R) o R. (70)

Theorem 6 For a given fuzzy subset B C V and a fuzzy relation

opA~u~qR 58 CU x V.we have

B r) ran (r) 2 (B R ) oR. (71)

o (p w q) A q-p Aq (59)

V ~Theorem 7 For a given fuzzy subset B C V and a fuzzy relation
0 pw(qV0)(pwq (or 4p w 0 (60) R CU xV, we have

o~p~h.q~p q ( )(Dq (6a (cR1)o R Q(B oR-') oR. (72)

o p w (p A q) -1(62) Theorem 8 For a given fuzzy subset B of V and a fuzzy relation

R in U x V. we have

o (p A q) w q-pwq (63) (Ba R1) oR 9 (B oR-') oR. (73)

o (pVq This is obvious from the definition of o- and o-ojperations.

o (p us ) A q 3Np A q v'i. (65) From definitions, we have some important propertiea;

(A it dom (R)) Q (A nl dom (R)) Q A. (74)
In this section, some esaential theoretical results will be presented

in the form of eleven theorems. The proofs will be found in (91.

For the further inveatigation, let i4 and i be bounded fuzzy sub- A Q A ws R Q (A n1 sdom (R)). (75)
sets, and let A and B be fuzzy subsets of i and B, respectively.

Theorem I For a given fuzzy aubset A C U and a fuzzy relation Theorem 9 For a given fuzzy subset A C U and a fuzzy relation
R C U x V. we haveRCUxVwehv

A Odom (R) Q(A oR) oR-1 (66) A oR (A r)dom (R)) oR. (76)

Theorem 2 For a given fuzzy subset A C U and a fuzzy relation
R RCUxV, we ave

* 284

..-.. *. - -- .. .- , 'S.' %N -.. s*.*-N

.. . . .. . . .. . . .. . . .. . . .

.~t .. V aV *~'~*N



Note that Theorem 9 indicates that 1A 1 dom(R)J and A produce (61 Tsukamoto, Y. and Terano, T., (1977). "Failure Diagnouis by
the same mults through o-inference. In words, theorem 9 indicates Using Fuzzy Logic,' Proc. IEEE Conf. on Decision and Con-
that (A A don (R)( is a necessary and a sufficient lower bound of A; trol, pp. 1390-1394. New Orleans, Lu.
that is, (A f) dom (R)) is the lower bound of A. [ . 17) uz oi ae nLraiwc(7) Tskamoto, Y., (1979). Fuzzy Logic Based on Lukasiewtcz '.-..,

Theorem 10 For a given fuzzy subset A of U and a fuzzy rela- Logic and Its Applications to Diagnosis and Control, Ph.D.
tion R on U x V, we have Dissertation, Tokyo Institute of Technology.

[8 Zaden, L. A., (1973). 'Outline of a New Approach to the
A o R Q (A w R) o R. (77) Analysis of Complex Systems and Decision Processes,* IEEE

Trans. on Sys., Man, and Cybern.. Vol. SMC-3. No. 1, pp. 28- - -

Theorem I For a given fuzzy subset B C V and a fuzzy rela- [91 Togai, Masaki, (1982). Principles and Applications of Fuzzy
tion R C U x V, we have Inference: A New Approach to Decision-Making Processes in * o.

Ill-Defined System. Ph.D. Dissertation, Duke University.

(B n ran(R)) o R - ' - Bo R '. (78)

Thus B 0 ran(R) is a sufficient lower bound of B. . -

Conclusion
Topics associated with the fuzzy relational function, which has

great application in solving engineering problems, have been investi-
gated in the course of this work.

The concept of conditional, joint, and marginal fuzzy relations
has been introduced, extended, and put into right perspective. Now,
the existence of their mutual relationship can be explained in the more
satisfactory manner. In addition, these mutual relationship can be --..
established through explicit mathematical expression in a consistent
and more unified manner. This study has revealed some intrinsic pro-
perties of the Zadehian inference from a different perspective. The
rationale of this inference, hence, has picked up stronger supportive -' , -"

evidence.
Furthermore, the precise condition for a fuzzy subset A to satisfy

the relation A a RA-.. - B (modus ponens) has been established.
A clear meaning of so-called "interactiveness" - a concept which

may be analogous to the *dependence* in probability theory * sens
desirable at this fpoint; however, this work would be for further inquiry.

In the last second half of this paper, a novel method to search
the upper and lower bounds for a solution to the fuzzy inverse problem
ha been proposed. It has been proven that the proposed method, i.e.,
fl-composition, is more flexible than the technique currently available.
The major advantage of the proposed method lies in the fact that it
can establish the so-called 'sufficient bound* and "necessary bound' as
well. Although various methods for establishing bounds for inverse ....
problem does exist, this study has provided a quite powerful approach
to search bounds. . .
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REGULAR TERNARY LOGIC FUNCTIONS
--- TERNARY LOGIC FUNCTIONS SUITABLE FOR TREATING AMBIGUITY ---

:Masao Mukaidono

Faculty of Engineering, Meiji University

1-1-1 Hligashi-mita, Tama-ku, Kawasaki-shi, JAPAN 214

Abstract be studied in this paper, are suitable for treating
A special group of ternary functions, called ambiguity. In Section 2, we shall introduce regu-

regular ternary logic functions, are defined. These lar ternary logic functions from three different

functions are useful in switching theory, program- standpoints and show that they are all the same
ming languages, algorithm theory and many other definitions. A representation of regular ternary .
fields, if we are concerned with the indefinite logic functions is discussed in Section 3, and
state in such fields. This paper describes the their axioms and functional completeness are ex-
fundamental properties and representations of the plained in Section 4. Finally, in Section 5, the
regular ternary logic functions, canonical form, which is determined uniquely for

-JK any given regular ternary logic function, is stud-
ied.

1. Introduction ..
Logics and algorithms are generally based on 2. Regular Ternary Logic Functions

the two-valued principle, that is, true or false, A ternary function is defned as follows,
or yes or no. However, in some cases, we experience using the symbol 1/2 as the third truth value in
a state in which it is impossible or unnecessary to contrast to 0 ( false) and 1 (true) : Letting V={O,
decide true or false. For example, each value of a toI 0 ( alse an rue tn g dfie
signal in a logic circuit, which takes 0 or 1 in a 1/2, 1), a n-variable ternary function F is defined
steady state, changes from 0 to I or from 1 to 0 in to be a mapping from Vn to V:
a transient state; that is, it is impossible to de- n
cide whether the value is 0 or 1. The initial F: Vn  V.

Here, we will interpret the truth value 1/2 asstates of sequential circuits is another example, uncertain 0 or lI", that is, "ambiguous". Then,where it is difficult to know whether the value is 0
or I in many cases. Furthermore, it may be said we can define the truth tables of the logic con-
that an algorithm does not stop for a given data, or nectives AND(-), OR(+) and NOT(-) as in Table 1.
that some data are not applicable to the algorithem. Also, let us consider the ternary functions defined
In the cases mentioned above, we may use ternary by the following condition: _
logic ( three-valued logic), instead of binary logic (Cl) the ternary functions which can be represent-

two-valued logic), in which the third truth value ed by well-formed logic formulas consisting
is introduced to represent an ambiguous state apart of variables xl,.",x n, constants 0, 1/2, 1
from true and false.

On the other hand, ternary functions have been
studied for some time from the standpoint of their
functional completeness or representation. When
applying ternary functions to various fields of en- A 0 •
gineering, we seldom use all the ternary functions; 0 1/2 1 0 1/2 1
instead, we employ only some subsets, which have
special properties or meanings. In fact, Mukaidono 0 0 0 0 0 0 1/2 1
[1980] has introduced some special subsets of ter- 1/2 0 1/2 1/2 1/2 1/2 1/2 1

L nary functions, called regular, normal and uniform, .'.'°'-i-'
L respectively, which have important and useful prop- 1 0 1/2 1 1 1 1 1

erties.
The present paper discusses in detail a special AND: A.B OR: A+B

group of ternary functions, called regular ternary
logic functions and introduced firstly in Mukaidono
[19801, which are significant if the third truth 0 1/2 1 Table 1: Truth tables of
value is considered to represent an ambiguous state. ternary AND, OR
That is, regular ternary logic functions, which will 1 1/2 0 and NOT.

NOT: X
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and logic connectives AND(-), OR(+) and NOT n-variable ternary functions, where Kleene's
() defined in Table 1. Hereafter, we call a original definition ( Kleene[1952]) of regularity
ternary function satisfying the above condi- for a truth table Is as follows: The truth table
tion Cl a ternary function representable by a never takes 0 or 1 as an entry in the "1/2 row
logic formula. ( or column)" unless this entry 0 or I occurs uni-

[Note 1] The truth tables of Table 1 are called formaly throughout its entire column ( or row,

Kleene's ternary logic system ( Kleene[1952J). respectively).
The same truth tables as Table 1 were used in- N ti ce
dependently by Goto[1949] to analyze indefinite condition,
behaviors of relay circuits. (03) Monotonocity for ambiguity: if A'<<A, then• ---':':'' "

Here, let us define a partial ordered relation F(A')<<F(A), .".

"<" concerning ambiguity on V=[0,1/2,1} and Vn as is called an A-ternary logic function. It is known .
follows: (Mukaidono[1978b]) that A-ternary logic functions

can be applied to design fail-safe logic circuits by
letting 1/2 correspond to a failure state.

In the relation <<, 0 and I are not canparable [Note 3] A ternary function F which satisfies the
with each other. The relation can be extended among condition C3 and, also, the condition of normal-

Vn as follows: For two elements A=(al,..*,an) and ity ( Mukaidono[1980]), that is, if AcBn={O,l}n,

A =(a---.,a n of V, A '«A if and only if a <<athen F(A)eB, is called a B-ternary logic function
Aforall-.-vaue of .If A'A thean A'y is s<a toMukaidono[1972]) and is applied to detecting
for all values of i. If A'<<A, then A' is said to hazards ( Yoeli and Rinon[1964], Mukaidono[1978])
be less ambiguous than or equal to A. and fail-safe logic ( Mukaidono[19691).

[Example 1] Suppose AI=(0,1/2,1/2), A2 =(1,1/2,0) Thus far, three different conditions Cl, C2 and

and A3 f=(1/2,1/2,1/2); then AI<<A 3, A2<<A3, where A1  C3 have been defined for ternary functions. In the

and A2 are not comparable with each other following, we will prove that these three conditions
are equivalent to each other.

As a condition for a ternary function F to be [Theorem 1] F is a regular ternary logic function .6

significant when the truth value 1/2 is assumed to if and only if F is a A-ternary logic function.
represent an ambiguous state, it will be postulated (Proof) Let us suppose that if F(A)EB, then F(A)=
that if the value of F(A) is definite, that is, 0 or F(A') for every A' such as A'<<A. If F(A)=l/2, then
1, then, F(A') takes an equal value for every ele- it is evident Lhat F(A')<<F(A)=l/2 holds for every
ment A' which is less ambiguous than or equal to A; A'. If F(A)cB, then F(A')<<F(A) holds for every A'
that is, such as A'<<A by the supposition. That is, it isS(C2) Regularity: if F(A)EB={,l}; then, F(A')=F(A) always valid that if A'<<A, then F(A')<<F(A). Con-

for vegaryA'u iA } hversely, let us suppose that if A'<<A, then F(A')<<
F(A). If F(A)eB, then F(A')<<F(A) implies F(A')cB.

[Definition 2] A ternary function F is called a (Q.E.D.)
regular ternary logic function if and only if F [Theorem 21 If F is a ternary function representable
satisfies the regularity condition C2..'-:... by a logic formula, then F is a regular ternary logic

[Example 2] Let the two-variable ternary functions function.
FI and F2 be given by Table 2. Then, F1 is a regu- (Proof) It will be shown by induction concerning

the number of logic connectives. It is evident thatlartenay ogc fncio wil F2 i nt.Infat, the constants 0, 1/2 and 1, and each variable Xl,... ,

(1,1)<<(l/2,1), but F2 (,ll)IO=F2(c/2,1). x satisfy the condition C2. Suppose that all ter-
n

[Note 2] The condition of regularity C2 defined nary functions representable by logic formulas, in
above is an extension of Kleene's definition to which the number of logic connectives is smaller

than or equal to n, satisfy the condition C2. Next,
let us suppose that F is a ternary function repre-
sentable by a logic formula in which the number of
logic connectives is n+l. Hereafter, for simplicity,. .-

X 12X 1/1we will identify a logic formula with the ternary
X 0 0 function represented by the formula. F is one of

FFadF +F 1~satisfies the condition C2
O 1 1/2 0 0 1/2 1/2 1 1' FIF 2 and 1+2 .  1

1/2 1 1/2 1/2 1/2 1/2 1/2 1 because of the fact that FI(A')<<F1 (A) is equal to

1 1 12 1/2 1 0 0 1 FI(A')<<1 (A). Suppose that A'<A and (FIF 2)(A')

Rn(F * F )(A). Then, this fact leads to one of
FI- Regular ternary F2- Non-regular ternary (i) (FI.F2)(A)-O and (FI'F2)(A')00 , (2) (FI.F2)(A)-f %% .

logic function logic function 1 and (F*F2 )(A')#. Either case does not hold as
Table 2: Example 2. shown below. If (F *F )(A)=0, then F (A)fO or F (A)

1 2 1 2
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"0. By the assumption of deduction, we can obtain (2) A'%A=O iff a(A')=O,
that F(A')=0 or F2 (A')=O, that is (FIF 2 )(A')=0. (3) A'AA and A'f A# iff a(A')=l/2,

(4) A'«A 1ff 13(A')=O,
This contradicts the assumption. It is similar in ()A'A= f 8A=l
the case of (2). Therefore, F1*F2 satisfies the (6) A'f<A and A'(A' iff ,(A')=1/2.

condition C2. Next, suppose that A'<A and (Fl+F 2) (Proof) Let A=(a1,..,an) and all .

(A')g((FI+F2 )(A). In a similar manner, we can show where a (j=l,"',k) is 0 or 1 and other elements of

that F1+F2 satisfies the condition C2, because A are 1/2. For an element A'=(al,... ,an), a(A')-l

(FI+F2 )(A)O and (FI+F2 )(A)=l lead to a contradic- if and only if the value of xaij is I for all j's

ij
tion. From the above, it has been shown that all (l<=J~k)• This means that if aij is 0 or i, then":'['''i-

ternary functions representable by logic formulas a'a=a that is, A'<A. Therefore, (1) is justi-
satisfy the condition C2. (Q.E.D.) aij- ij'

fled. Similarly, a(A')=O if and only if there is at 9
The converse of Theorem 2, that is, every reg- least one j such that a j=aj , that is, A'fNA=O.

ular ternary logic function can be represented by Thus, we arrive at (2). Also, (3) is derived di-
a logic formula, will be shown in the next section. rectly from (1) and (2). In a similar manner, we

can show (4), (5) and (6). (Q.E.D.)
3. Reprentation of Regular Ternary Logic Function

- [Theorem 31 Let F be a regular ternary logic func- 
literal is a variable xi or xl, the negation tion and A be an element of Vn. Then, S

of x. A conjunction of one ol more literals is (1) if F(A)=l, then F(A')=l for every A' such that

called a simple phrase if it does not contain a A'thA, hn(A=.oe"yAsc'a

literal and its negation, x simultaneously for (2) if F(A)=O, then F(A')=O for every A' such thati xiA'<<A,

at least one variable xi, and is called a comple- (3) if F(A)=l/2, then F(A')=l/2 for every A' such
that A<<A'.

mentary phrase otherwise. A disjunction of one or
more literals is called a simple clause if it does (Proof) These are evident from the condition of

regularity (C2) and monotonicity for ambiguity (C3). Snot contain a literal and its negation, x i +Xi, sim- (Q.E.D.)
ultaneously for at least one variable xi, and is

Let F be an n-variable regular ternary logiccalled a complementary clause otherwise. In the -lal l
above definitions, it is assumed that any repeated function. Then, F (1), F (0) and F (1/2) repre-
literals are removed. sent the subsets of Vn mapped to 1, 0 and 1/2, and
[Note 4] As evident from Table i, x.x =0 and are called the 1-set, O-set and 1/2-set, respec-

x+x=l when x=/2 do not hold in Kleene's system. & tively. Theorem 3 indicates that F-I(1), F-I(0) and
Therefore, we can not ignore conjunctions and - d tothe .
disjunctions containing a literal and its nega- F (1/2) are partial ordered sets 1 in regard t- ) h-.

tion simultaneously. relation << and that the sets F (1) and F (0)
are determined uniquely by their maximal elements ....

[Definition 3] Let A=(a ...'a ) be an element of-l.. :..
Sl n while F (1/2) is determined uniquely by its minimal

Vn . Then, A and a simple phrase 1 . x n n elements ( Figure 1). Here, of course, F ()V

simple clause Ox l+--.+xa n) correspond to each -() -( )n
I n F_ (0)VJF_ (1/2)=Vn holds. In Figure 1, the symbol ~ -other if the following conditions hold: If a =0,

then xix i  i=xl); if ai.l, then x i=x '.-.

x and if ai=l/ 2 , then there is no variable x in (1/2,...,1/2.

[Example 3] Let Aff(l,i/2,0). Then,_the simple
phrase a corresponding to A is a=xlx 3 , and the "

simple clause a corresponding to A is B= 1 +x3 . F- (1/2)

[Definition 4] Let A=(a l,.. .,a) and A's(a,..... a) :1/2-set

be any two elements of Vn. Then, it is said that A
and A' are disjoint to each other and written as
A(NA'0O if there is i in {l,-..,n} such that ai is

0Oor Iand ,a.

[Lemma 11 Let A be any element of Vn and a,O be the F(1): 1-set F-(0): 0-set
corresponding simple phrase and simple clause, re-
spectively. Then, %
(1) A'<A iff a(A')=1,

Fifure 1: Vn.F- (1)VF (O)uFI (1/2).
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0 indicates the maximal elements of the 1-set, the A.(B.C)-(A.B).C,

symbol A the maximal elements of the O-set, and (3) the absorption laws A+(A.B)-A, A-(A+B)=A, . .
the symbol X the minimal elements of the 1/2-set. (4) the distributive laws A'(B+C)-(A.B)+(A.C),

A+(B.C)-(A+B) •(A+C),

[Theorem 4) Any regular ternary logic function F (5) the idempotent laws A+AfA, A.A=A,
can be represented by the logic formula (6) De Morgan's laws TK'Ty=A.B, i- ,

1 / 0 (7) the double negation law X-A,
".~ ~ (8) the least element O+AfA, 0"A=0, .:'"- '

where F is the disjunction of simple phrases corre- (9:hthe greatest element l+A=l, 1AA,

sponding to all the maximal elements of the 1-set of (10) Kleene's laws (A.A)+B+=B+B, A..(B+_)=A.A,

F and where F
0 

is the conjunction of simple clauses (11) center 1/2=1/2,

corresponding to all the maximal elements of 
the except

0-set of F. 
""complementary laws ""A+A=l, AA.

(Proof) Let A' be any element of Vn and F(A')=l. The equalities (l)--(10) except (11) are equiv-

Then, there is a maximal element A in 1-set of F alent to axioms of Kleene algebra or fuzzy algebra

such that A'<<A. Hence, there is a simple phrase n and have been studied in detail in Mukaidonotl98o "

corresponding to A in F , where u(A')=1 ( Lemma i(i) The element satisfying (11) is called a center. The
1 1 0 regular ternary logic functions satisfy the axioms

). Therefore, F (A')=l, that is, (F +(1/2)-F )(A of Kleene ( or fuzzy) algebra with a center.
=1. Next, suppose F(A')-1/2. Then, A' does not

belong to either the 1-set or the O-set of F. Hence, Next, we will examine these regular ternary --

there is no simple phrase in F and no simple logic functions from a standpoint of functional S

c completeness. The set of logic connectives {0, 1/2,clause in F
0 

corresponding to A such that A'<<A. As i,,.--(weondrcnsatasOvral """"""

1 0 1,1-,, 1 we consider constants as 0-variable
a result, FI(A')#l and F(A' WO ( Lemma 1(i) and (4) logic connectives) cannot represent all ternary

F 0 FWA)#0 means that F
0
(A')1 or F

0
(A')=l/2. Thus, functions; that is, it is not functionally complete

1 0 for ternary functions, but, as mentioned above, it

we can show that (F +(1/2)'FO)(A')=1/2. Finally, is functionally complete in a strong sense ( Mukaid-

suppose F(A')fO. Then, there is a simple0 clause ono[1980]) for regular ternary logic functions. That

corresponding to A such that A'<<A in F . There- is, any regular ternary logic function can be repre- , •0- sented by {0,i/2,1,+,',-} ; and conversely, a ter-

fore, F (A')=O holds ( Lemma 1(4)). On the other snr fudcbyon"represented'"yand1conversely, ae
hand, A'eA= is valid for every element A of the nary function represented by {0,1/2,l,+,-,- is
1-set of F bacause A' belongs to the 0-set. That is, always regular.

is justified by Lemma 1(2). From the above, Let us define ternary NOR( t) and NAND(+) as.- " I(A'=O i jusifie byLer~a i(). Fom te abve, in Table 3. i;i i[i '

we have (FI+(l/2).FO)(A')=O. (Q.E.D.) [Theorem 5] The set of logic connectives (0,1/2,t)

As we have seen, the three conditions Cl, C2 is functionally complete for regular ternary logic

and C3 described in the preceeding section are equiv- functions. s

alent to each other.0 It is apparent from the above (Proof) It is shown by A=AA, 1=0, A+B=A.B and

proof that F and F are determined uniquely ( ig-(Q.E.D.)

norIng the order of phrases or clauses) for any [Theorem 6] The set of logic connectives (0,1/2,+}

given regular ternary logic function F. Therefore, is functionally complete for regular ternary logic

the logic formula described in Theorem 4 can be used functions.

as a canonical form of regular ternary logic func- (Proof) It is shown by A-A+A, 1=0, A+B=A+B and

tions. In Section 5, we will consider another ca- A'B-A+B. (Q.E.D.)
'*[" nonical form called the canonical disjunctive form. [Note 51 The following problem arises: if a non-.--''--""

, [Example 4] Let us represent F 1 of Table 2 in Exam- regular ternary logic function is added to the

ple 2 by a logic, formula based on the above theorem. set of regular ternary logic functions, is the

The set of maximal elements of the 1-set is [(0,1/2)}
and that of the O-set is ((1,0)1. Therefore, we
have Fl-1 i + (1/2)-( +X2 ), _

4. Axioms and Functional Completeness of Regular 01/2 1 0 1/2 1

Ternary Logic Functions 0 1 1/2 0 0 1 1 1

Any regular ternary logic function can be re- 1 1/2./2

presented by a Jogic formula conposed of constants 11/2 1/2.../21 I 11 E
0, 1/2 and 1, and logic connectives AND(-), OR(+) 1 0 0 01 1 1/2 0
and NOT(- ) defined by Table 1. As an algebraic -

system, the set of regular ternary logic functions NOR: AB NAND: AB
safisfies the following equalities which also hold

in Boolean algebra: Table 3: Truth tables of ternary NOR and NAND. .*.

(1) the commutative laws A+B-B+A, A.B=B.A, -.

(2) the associative laws A+(B+C)=(A+B)+C,
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new set always functionally complete for ternary 3' into disjunctions of product terms in which all
function ? That is, are regular ternary logic variables exist, respectively. A simple phrase and
functions maximal ? The answer is negative. In complementary phrase in which all variables exist
fact, one-variable ternary functions u-1  ,u of are called a minterm and complementary minterm, re-
Table 4 are non-regular, and even if one o em spectively.
is added to the family of regular ternary logic Consequently, any regular ternary logic func-
functions, they are not functionally complete tion can always be expanded into the disjunction of 0

for ternary functions. But it can be proved that the following three types of product terms:
if any non-regular one-variable ternary function a . ----- smpeprs,-
except those of Table 4 is added to the set of xij kregular ternary logic functions, then they are type 2: (1/2).a'=(1/2)x1l ..... xan ---a' is a min-

functionally complete for ternary functions, term
I a I-a I-

* type 3: B=x"1 ..... xnnx ii ..... x .k "ik ----

x 0 1/2 1 complementary minterm,
where ai is 0 or 1.

Next, let us examine the relations of each type
u2 (x) 1/2 0 0 of product term. Here, for two product term y and
u- W...2 0 1/2 y', if all literals of y exist in y' as well, then
u3 x) 1/2 0 1/2 it is written as yty'. In this case, y+l'=y is
u4 (x) 1/2 1 1/2 true; that is, y' is absorbed by y in accordance

u W 1/2 - - with the absorption law.

u6 (x) 1 1 1/2 [Definition 5] Let A=(a, ...,an) be an element of__"_ ,6 _ n
V . Then, the element A corresponds to a product

Table 4: Non-regular one-variable term of type 2 or type 3 if the following relations

ternary functions, holds:a
if ai=O, then xIi=x i,

if a.=l, then xai=x

a -5. Canonical Form of Rcgular Ternary Logic Functions if ai=1/2, then x i=xix i .

In this section, we shall introduce a canonical [Example 5] (0,0,1) _corresponds to a product term
form for regular ternary logic functions, which is of type 2, (1/2)--X.x 2 -x3, and (0,1/2,1) corresponds

- "different from that of Theorem 4. We shall also
discuss on the methods to obtain such a canonical to that of type 3 x -x .Product terms of

' 1 .2. 2 3 nform. Any logic formula representing a regular type 2 correspond to elements -f B , and product

ternary logic function F can be expanded into a dis- terms of type 3 to those of Vn -B , where B n=0,1} n.-
junctive form [Lemma 2] Ler a be a product term of type 1, a' be

"= "'" m, that of type 2 or type 3, and A and A' be elements ". -
where y.(f=l,.,,m) is a product term, because the corresponding to a and a', respectively. Then, - ",(1) if a(A')=I, then m'

. distributive, absorption, De Morgan's, idempotent (1) i .A'<<- "a" "

and other laws stand valid as stated in the preced- (2) o'(A)=1/2 if and only if A'tA.

ing section. Here, each product term is one of (Proof) It is shown by the definitions of type 1,ing sco. eeehpdtype 2, type 3 and Definition 5. (Q.E.D.)
,e following three types: [Definition 6] If a regular ternary logic function -

type 1: ---------- a,
type 2': --- (1/2) -a, F is represented by a logic formula

type 3': ---------- , 1 ~m
where a is a simple phrase and 6 is a complementary then it is said that F is in the canonical disjunc-
phrase as described in Section 3. If a product term tive form, where y.(il,'.,m) is one of type 1, -. '.--
(1/2)'8 (8 is a complementary phrase) exists, then type 2 or type 3 and yi yj for all i,j (i~j).
we can omit 1/2 and it is equal to type 3' because -7 A r t l" f t can
x x <1/2 stands always true, If a variabie x [Theorem 7] Any regular ternary logic function can 

" he represented uniquely ( ignoring the order of the
not exist in a product term (1/2).a of type 2', then product terms) by the canonical disjunctive form.
the following relation holds: (Proof) Let us suppose F=y1+''+y and F",. = -- " -- 1 i s an F "-" '-''S(1/2) a=(1/2) (x +wx ) u (I/2) -x +(I/2)'-

(l/2-" " 2 "( i 1 =( " " i "( " +y' are two different canonical disjunctive forms
t'." as x +X,>I/2 is always valid. In a similar manner,... . . . .'"'''

as xi of a regular ternary logic function F. ( It is evi-

if a variable x does not exist in a complementary dent from the above discussion that there is at
phrase 6 of typi 3', then least one canonical disjunctive form for F). Now, S

f(xi4-5l)=l"xt+B-i we can suppose that a product term y exists in F1

holds, since there is a factor x ... in B for a but not in F2 without loss of generality. First,
SJ

variable x. where x .x. l/2<x. +i always holds. From assume I is a product term of type 1, that is, a

the above, we can expand a of type 2' and 8 of type simple phrase. If A is an element corresponding to

290

%--
"'.-'-. "-.-'.- -.-"-"-/-."-..'-.'-..".'-.- -:-.. ". "'.--- "-i.-...........................................................-..,.,'-'...•...........i....-.....-.... ..



* ... . '.

y, then F(A)-I because f(A)=I. Then, it should be This paper has concentrated on the canonical
F(A)=F2(A)I Therefore, there is a product term disjunctive form, but the canonical conjunctive form
1 2 ( . r ecan also be treated in a simili, fashion.

* y' of type 1 corresponding to A' such that A<<A' in
F2 ( Lemma I(1)), where, by the assumption, y'T', 6. Conclusion

that is, AiOA' holds. Here, y'(A')=l leads to F (A')
2 We have defined regular ternary logic functions

=I which is equal to F1(A')=1. Therefore, in a sim- as a significant and useful family of ternary func-

ilar m e t e artions and have discussed the fundamental properties4" ilar manner, there is a product term y" of type 1 o hs ucin. I atclr ehv osd
." corresponding to A" such that A'<<A" in F I  Then, of these functions. In particular, we have consid--"

n tered their representations and canonical forms.

y can be omitted by y" because A<<A" and AOA", that Recently, Yamamoto[1980] has introduced three-valued
is, y ry". Hence, this is contradictory to the as- majority functions as a family of significant terna-
sumtion that F is the canonical disjunctive form. ry logic functions. The three-valued majority func- _
Secondly, assume y is a product term of type 2 or tions are a special example of regular ternary logic

type 3. Letting A be an element corresponding to y, functions described in this paper.

y(A)=I/2 leads to F (A)=1/2, because if we assume Acknowledgements

that F (A)1, then the following contradiction a-1toThe author would like to thank honorary Prof.
rises: there should exist a simple phrase y' such M. Coto of Meiji University for his continued en-
that y'(A)=l in F, and y is omitted by y' ( Lemma couragement. He also wish to thank Prof. J. Berman
2(1)). Hence, F(A)=1/2 holds. This means that of the University of Illinois at Chicago Circle and

A2 Mr. Y. Ohiwa for advising to refine this paper.

there is a product term y' of type 2 or type 3 cor-
responding to A' such that A'<<A ( Lemma 2(2)) or References
that there is a simple phrase corresponding to A' I
such that AtqA'W ( Lemma 1(2)). Here, the latter Kleene, S.C.11952], Introduction to Metamathematics,
does not hold, since if so, then F (A')=F (A')=l North-Holland Pub.,pp.332--340.

2 1 Goto,M.[1949],Application of logical mathematics to
dictates that there is a simple phrase y" corre- the theory of relay networks, Jour. lEE Japan, -
sponding to A" such that A'<A" in FI and y is ab- Vol.69. S

* sorbed by y". Therefore, only the former stands Mukaidono,M.[1969],On the mathematical structure of

valid, where, by the assumption, y4y', that is, C-type fail-safe logic, Trans. IECE Japan, 52-C,

- A#A'. Similarly, from y'(A')=l/2, we can show that Mukaidono,1.21972],On the -ternary logical function
there is a product term y" of type 2 or type 3 cor-
responding to A" such that A"<<A' in F. Then, y -- A ternary logic considering ambiguity, Systems-

-1 Computers.Controls, 3, No.3, 27--36.
is absorbed by y" because A"<<A and A"IA. This is Mukaidono,M.f1978],The B-ternary logic and its appl-

* contradictory to the assumption that F is a canon- ications to the detection of hazards in combina- -."'" tional switching circuits, Proceedings of 8-th
ical disjunctive form. Therefore, any product term tc iued o
which exists in F also exists in F From the ISMVL, 269--275.

12' Mukaidono,1.[19801,Some kinds of functional com-
S" above, we have shown that the canonical disjunctive pleteness of ternary logic functions, Proceedings

form of F is determined uniquely. (Q.E.D.) of lO-th ISMVL, 81--87.

Mukaidono,M.[1981], A set of independent and com-
The following is an algorithm to obtain the plete axioms for a fuzzy algebra ( Kleene algebra

canonical disjunctive form of any given regular ter- ), Proceedings of ll-th ISMVL, 27--34.
nary logic function: Mukaidono,M.[1982], New canonical forms and their

. (1) expand the given logic formula into a disjunc- applications to enumerating fuzzy switching func-
tive form ( a disjunction of product terms), tions, Proceedings of 12-th 1SMVL, 275--279.

(2) expand product terms of type 2' and type 3' into Mukaidono,M.(1978b], A special kinds of ternary
the disjunctions of product terms of type 2 and logic functions and their applications to fail
type 3, respectively, safe logic circuits, preprint.

(3) based on the absorption law, omit, if any, prod- Yamamoto,Y. and S. Fujita[1980], Three-valued major- S
ct terms which are included by other product ity functions, Trans. IECE Japan, VoI.J63-D,No.6.

" terms, Yoeli,M. and S.Rinon[!964], Application of ternary
* (4) the logic formula obtained finally is a canoni- algebra to the static hazards, J. ACM, 11, 1. ."

cal disjunctive form.

" . [Example 6] The canonical disjunctive form of the
regular ternary logic function of Example 4 is ob-
tained as follows:

* F 1=X+(12)-R 
1+(1/2)x ii._,."=K +(1/2).K .'x2+( 1/2).Kl. R2+(1/2).xl X'2 -,: .':

11 2 (l . 1.x
- +(l/2). x '"x

1 2.~ " X+(1/2),x 'x2.
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Faculty of Engineering, Tokushima University, Tokushima, 770 Japan
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ABSTRACT of ST-AN codes. Every cyclic ST-AN code is an
Ideal in the finite ring of the absolute-minimum

Cyclic AN codes play important roles for residue class modulo 3n-l. A new type of modular
detecting and correcting errors in digital systems distance* between two integers is defined in that
consisting of arithmetic processors and data ring. The error-correcting capability of various
transmission channels. This paper describes a new cyclic ST-AN codes are evaluated in the distance. SO
class of ternary cyclic AN codes for the digital
systems using the symmetric-ternary numbers. In 2. SUMMARY of ST-AN CODES
this class, every code with code length n is an
IdeaZ in the finite ring of the absolute-minimum An arithmetic AN code is a set of products
residue class modulo 3n-1 ., A new concept of AN's, where N is an integer to be coded and A
modular distance is introduced for these codes. (code generator) is a constant positive integer.
Many formulas to calculate the actual minimum When every AN (code number or code word) is
distance are presented. A good number of multi- expressed in ST representation (1), -

ple-error correcting codes are effectively
constructed. AN = an-l3n-I + - + a1 3 + a0

= (an-l " a, a0)ST, (ai tl,0,l},
1. INTRODUCTION i-0,1, -,n-l), (1)

Binary arithmetic AN codes are useful for where 1 stands for -1, the code is called an ST-AN
error-detecting and error-correcting in digital code. If the code generator A and radix 3 are not
systems consisting of arithmetic processors and relatively prime, the lowest order digits in every
data trnsmission channels [1]. An arithmetic AN code number will always be zeros. This is un-
code with cyclic nature is called a cyclic AN desirable, because these digits do not contribute
code. A class of binary cyclic AN codes with to error control. Therefore, A and 3 should be
multiple-error correcting capability were first relatively prime, that is,

proposed by D. Mandelbaum [2]. Formulas to
calculate the minimum distance of the larger class (A, 3) = 1. (2)
of these codes were given by N. T. Tsao-Wu (3] and 5
R. T. Chien et al. [4]. The theory of cyclic AN ST arithmetic weight, shortly ST weight, of an . -
codes has been extended to non-binary ones [5,61. integer N=(am I ... a1 a0)ST is defined by
This paper proposes a new class of ternary cyclic
AN codes. m-I-

For a ternary number N, WST(N) = Jail. (3)
i=0

n-l
N = Z:ai3i, The ST weight of every code number AN (or every S

i=O integer) is easiliy obtained from the number of
nonzero digits in its ST representation (1),

there are two important number representations; because the absolute value Jail is equal to either
modulo-3 (M3) representation using 0, 1 and 2 as 0 or 1, but not 2.
each coefficient ni and symmetric-ternary (ST) Suppose that, in consequence of failure or .-

representation using -1, 0 and +1 as each ai .  noise in the system, an error occurs at only one
Ternary arithmetic operations using the ST digit ai of a code word AN and then AN turns into
representation can be performed without consider- an erroneous word R. Then, two types of errors
ing distinction between signs of numbers. This are considered as follows:
makes the ternary arithmetic systems clear and
efficient considerably [7]. ST arithmetic AN * The ordinary concept of modular distance was
codes,which were proposed by the authors, are first proposed by T. R. N. Rao et al. [11]. This
considered to be useful for such systems (8,9]. is defined as a distance between two integers in

In this paper, cyclic ST-AN codes are defined the non-negative minimum residue class modulo
, as a subclass of ST-AN codes after a brief summary 3n-l..
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as fo lows:
(1) 1-error the difference between AN and R (i) A positive integer B such that (3,B)=I is

3 , (as shown in Fig. l(a)). chosen for the number of code words.

(2) 2-error ; the difference between AN and R (ii) If 3 belongs to the exponent e modulo B, .
=2x3i, (as shown in Fig. 1(b)). that is, e-E(3,B), there exists a positive

In the ordinary AN codes, weight 1 is given to integer A satisfying
both 1-error and 2-error. This means that every 0
error at one digit is treated as the same in the A = (3

e - 1)/B (6)
weight. In certain types of arithmetic processors
and data transmission channels [9], the probabili- Then, an ST-AN code with code length nie is
ty that 2-error occurs is remarkably less than the generated by A in (6). This code is a cyclic ST-AN
probability that 1-error does. In this case, ST code by Theorem 1. -
weight is a more natural metric than the ordinary An absolute-minimum complete-residue system
one. modulo AB (=3n-l);

RAB = (o,1.+2 .... ±( B -1),A-B (7)ai  a l ai  0, a l " '" °

7 ' forms a commutative ring under addition and multi-
"". "1" "1" ./ 1" plication modulo AB. The cyclic ST-AN code is a

/ subset of RAB, which consists of multiples of A.
"0" "0" "0" < "0" For any two code words AN1 and AN2 ,

1 *1 0S. 1. "1" (AN 1 ± AN2) mod AB 
= 

A[(N 1 ± N2 ) mod B]*.

(a) 1-error (b 2-error This means that the sum of the code words (or the

difference between them) is also another code word.
Fig. 1 Types of the errors occuring at a digit In this sence, cyclic ST-AN code is a linear code.

aI in AN=(anI ... ai ... a, ao)ST. It can be shown that cyclic ST-AN code is an Ideal
---- : A carry into the upper digit IA of RAB generated by A.
ai+l, which is a kind of apparent The structure of a cyclic ST-AN code IA with .
propagation of these errors.) code length n=e is explained through the decom-

position of the absolute-minimum complete-residue
3. CYCLIC ST-AN CODES and 77EIR CONSTRUCTIGN system modulo B, i. e., RB. The following

discussion is analogous to that of ordinary cyclic
[Definition 1] An ST-AN code is a cyclic ST-AN AN codes [3,5]. A cyclic ST-AN code can be

code, if and only if, for any code number; decomposed as follows:

AN = (an_1 an-2 ... a1 a0)ST, IA = .-.ZAd 'G(B/dj), (G(B/B)=G(1)=Q10, (8) -
djjB J

an ST numbe,';
where d. (lid iB) is an exact divisor of B and G(B

(an_2 ... a1 a0 anl)ST /dj) is an absolute-minimum reduced-residue system

modulo B/dj. Then, G(B/dj) forms a commutative
obtained by shifting cyclically the digits of AN group under multiplication. Every term Adj.G(B/
to the left once is also a code number. dj) is called a subcode. Each subcode has as many

code words as lf(B/di), i. e., the order of G(B/dj), - ...
For any code number AN of an ST-AN code, a where I is Euler's runction.

number obtained by shifting cyclically the digits In every G(B/dj), the subset;
of AN to the left once is expressed in (4).

H
1
(B/dj) - {3 k mod B/dj k=0,l .. ej-1),

'-(an-..2  a1 a0 anl)ST = 3AN - an-l(3n-l (4) (ej=E(3,B/dj)) (9)

If 3n-I is divisible by A, this number is also a forms a subgroup of G(Bd j) under multiplication.
multiple of A, that is, another code word. If 3no Consider subsets formeA as follows: The first
1 is not divisible by A, this number can not be a subset is the subgroup Hl(B/dj) with the identity.
code word. Therefore, the following theorem is The second subset H'2 (B/dj) is a set which the first
obtained, element is any element b2 of G(B/dj) not appear-

ing in the first subset and the rest elements are
[Theorem 11 An ST-AN code with code length n obtained by multiplying each subgroup element by

is a cyclic ST-AN code if and only if the code the first element b2. So that each element is
generator A divides 3n-l. given by ib2x(3k mod B/dj)] mod B/dj - b2 3k mod B/

dj. Similarly a therd, fourth and fifth subset
The above theorem means that there exists a are formed and each is formed with a previously

positive integer B satisfying the following unused group element until all the group elements
equation: appear somewhere. As the results, G(B/dj) can be

partitioned into mutually exclusive cosets;

3 n - I = AB (5) * For any two integers a and m>O, the absolute-

minimum residue modulo m is denoted "a mod m"
Therefore, a cyclic ST-AN code can be constructed throughout this paper. 5
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+ A2 {± 13,±5 ,±7,±9

HI(B/dj) = {b1 3k mod B/dj k=O,l,.. ej-11• + A4-{±l,±2,±3,±4,±5}
(10) + AII'(±l} + A22{1} + {}.

A subcode corresponding to G(B/dj) is moreover Then, for instance, a subcode A2.G(22) is de-
partitioned into one or more component codes in composed into two component codes A2.Hl(22) and
(1i). A2.H

2
(22), because v2=Y(22)/E(3,22)l0/5. The

subgroup H
1
(22) and the other coset H2(22) are

v shown in Table 1. The ST weight of the component

Adj•G(B/dj)= Adj.H(B/dj), code A2-H
2
(22) is given by (14). Consequently,

Z-1
(vj=f(B/dj)/ej) (11) WST(A

2
) = 10/5 x 3 = 6 (=WsT(-A2)).

Every component code consists of code words which In fact, both leading code words of these

are cyclic shifts of a code word belonging to it. component codes are expressed in

* The component code is called to be strictly
- cyclic. Evidently, every code word of a component A2 = 2684 = (00111 

0 01 1
)sT

" code has exactly the same ST weight. Code word and

* Adjb 1 of a component code Adj.HI(B/dj) is called -A2 -2684 = (00111 0011i)ST.

the leading code word and the ST weight is called

ST weight of the component code.
When a code word AN of IA is expressed in ST Table I The subgroup and another coset in G(22)

representation (1), a digit ai is given by the

following equation [10]. k 0 1 2 3 4

ai = -(B mod 3)[(Nx3n
-
i mod B) mod 3], 3k mod 22 1 3 9 5 -7 ;H(22)

-3k mod 22 -1 -3 -9 -5 7 1i .2(22)-11(22)

Suppose that code word AN is the leading code

word of Ady-H(B/dj). Then, Nfdjb and dj is an 4. S DISMNCE and ERR-CORREIM .
exact divisor of B. Equation (12) is consequently CAPABILTY of CYCLI ST-AOIN .,

expressed in the following equation;

ai = -(B mod 3)[dj(bZ3n-i mod B/dj) mod 3] [Definition 2] Modular ST distance DMsT(NM)
-(B mod 3)(dj mod 3 )[(bz3n-i mod B/d1 ) between any pair of integers in RAB is defined as

mod 31. 13)
DMsT(N,X) = .W (( - N o B.(5

The term b13n-i mod B/d, in (13) is an element of ST((N M) mod AB). (15)

the coset HI(B/dj). When the integer i of this By using the properties of ST weight [8,91 and

term changes from 0 to n-i, the value of this term the above definition, it can be shown that the

takes all elements of this coset exactly at n/ej following theorem is true [10]. Modular ST

times. Since (3,B)=l, B mod 3 I 0. So that dj distance is simply called MST distance, hereafter.

mod 3 N 0 because di is an exact divisor of B.

Therefore, the digit ai in (13) is nonzero, i. e., [Theorem 31 MST distance is a metric function
1 or I, unless [(bZ3n-i mod B/dj) mod 3] is equal satisfying the following relations.

to zero. From the definition of ST weight, the ST

weight of the component code is given by the DMST(NM) a 0 (positive definite)

following theorem:
DMST(N,M) = DMST(M,N) (symmetry) (16)

(Theorem 2] ST weight of a component code Adj
•  ,

Ht(B/dj), that is, WST(Adjbl) is given by the DMST(NM) 4 DMST(NL) + DMST(L,M)

following formula: (triangle inequality)

WST(AdjbZ) = n/ej x (the number of those (Definition 3] Tht minimum of all the

element of' H(B/dj) which are not distances between every pair of code words of a

multiples of 3], (14) cyclic ST-AN code is called the minimum MST
distance dm of the code.

where n(=el) is the code length.
As a cyclic ST-AN code is a linear code, the

Example 1. A cyclic ST-AN code 1A with 44 code addition or the subtraction modulo AB of every

words (g=44=22xll); pair of code words results in another code word. .

code length n - E(3,44) - 10 Namely, the MST distance between every two code

code generator A - 1342 (from (6)) words is equal to ST weight of another code word.

Since B has 6 divisors 1,2,4,11,22 and 44, IA is Therefore, the minimum MST distance of a cyclic

decomposed into 6 subcodes as follows; ST-AN code is equal to the minimum ST weight of
the code.

IA - AG(44)+A2.G(22)+A4G(II)+AllG(4) Soppose that an ST number E is erroneously

+A22.G(2)+(O) added to the code word AN in consequence of

- A.(±l,±3,±5,!7,±9,±13,±15,±17,±19,±21) failure or noise in the system. Then, if ST S
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weight of E is d this error is called a d-fold n/ej x [a half of the number of elements which
error. The relation between the minimum MST are not multiples of 3 in G(B/dj)].
distance of a cyclic ST-AN code and error- The following formulas to calculate the minimum
correcting capability is described in Theorem 4 MST distance can be obtained on the basis of these
and Corollary 4.1. These proofs are omitted points. They are derived from number theory.
because these can be derived by using the triangle Since these processes are pretty long, an example 0
inequality in (16), as easily as the case in of the fundamental derivation will be given in
parity check codes. Appendix. The other formulas can be obtained by

[Theorem 41 A cyclic ST-AN code can detect all applying the simmilar way to the case of Appendix.
errors of d-fold or less if and only if the i. B-p, 2p, 4p . .-. .. '.

minimum MST distance dm satisfies dm k d+l. And i-l. p; a prime having 3 as a primitive root %
a cyclic ST-AN code can correct all errors of t- n
fold or less if and only if dm 1 2t+l.

[Corollary 4.1] A cyclic ST-AN code can d [2/3(p-1), (pa= (mod 3))

correct all errors of t-fold or less and can 2m
detect all errors of d-fold or less if and only if
dm t+d+l, where t j d. (b) B=2p; n=p-l, A=(3n-l)/(2p) .-

12/3-(p-1), (p-l (rood 3)) "--.'•
5. CALCULATION of MINIMUM MST DISTANCE dm = .- _ p"(o-)

A basic way of generating a cyclic ST-AN code f
2
/3x(p-

2
), (pi- (mod 3)) .

has been given in 3. The error-correcting (c) Bf4p, 41(p-1); n=p-1, A=(3n-1)/(4p)
capability is measured by using of the minimum MST
distance as mentioned in 4. If the capability of dm = 

2
/3x(p

2
), (pi-I (mod 3))

the code is unknown the code is useless. The i-2. p; a prime having -3, but not 3, as a
minimum MST distance can be effectively calculated primitive root
by the following three steps procedure. n

1. Decomposition of B, the number of code (
words, as shown in Example 1. dm = i/3x(p+l), (pE-l (mod 3))

2. Calculation of ST weight of every compo-B n"
nent code by using Theorem 2. W) B=2p; nf(p-l)/2, Af(3n-l)/(2p)

3. Determination of the minimum among these dm = i/3x(p-2), (p--i (mod 3))
weights. (c') B=4p; n=p-l, A=(3n-l)/(4p)

Many formulas to calculate the minimum MST (See Example 1.)
distances of cyclic ST-AN codes having the -(e ame as d i
following forms of B will be given. In these dm = (the same as dm in (c))
forms, both p and q are prime numbers not less ii. B=p", 2pa, 4pm, (aL2)
than 5 and have various constraints. il-I. pa; a power of a prime having 3 as a

i. p, 2p, 4p primitive rootii. pUA 2p" ,  
4p t

,  
(a.12) '7 '

iii. pa 2pa, (yp3) (a~(d) B=pa; n=pa-l(p-l), A=(3n-l)/p- -

iv. pq. 2pq (2/3-p-l(p-l), (pil (mod 3))

v. paq, 2paq, (aA2) dm =1
vi. paq6, 2paq6, (aBa2) 2/3xpo-

2
(p+l)(p-2), (p -i (mod 3)) 0

Every subcode of the cyclic ST-AN codes
, mentioned here consists of one component code or (e) B=2p

0
; nfpa-l(p-l), A=(3n-l)/(2p)

two in terms of the constraints. If a subcode
consists of a single component code is called to =,i 3-a-l(p.l), (p"" (mod 3))

be self-complementary. Then, lf(B/dj)/e.=l From dm 2/3 ×pa-l(p-2), (p -l (mod 3))
* (11), /,(B/dj) = 11(B~dj) because 3 is t~ie ()B4)1 jpl;-'lpIA(n,/4

primitive root modulo B/dj. Therefore, if a code B p
word AN belongs to the component code, -AN also dm = 2/3xpa-l(p- 2), (pB-I (mod 3)) 5
belongs to the same component code. On the other
hand, if a subcode consists of two component codes 11-2. pa; a power of a prime having -3, but not

and each AN and -AN belongs to another component 3, as a primitive root

code, as shown in A2.G(22) of Example 1. the (d') B-pa; n=pa-l(p-l)/2, A=(3n-l)/pa . • .
component codes are called to be mutually = l (p-l (mod 3))
complementary. In these cases, every code word .' -
belonging to the subcode has the same weight. (e') B=2pa; n-p-l(p-l)/2, A=(3n-1)/(2pa)"•'" -
There fore,

* ST weight of a self-complementary component code dm = 1/3 ×p0-l(p- 2), (p3-I (mod 3))
."Adj. (7(B/dil)  : (f') B-f4pcl; n-p -l(p-I), A-f(3n-,)/(4pcL)  

.[' .

* n/e| x [the number of elements which are not d, -'(the'sam
multiples of 3 in (aB/dj)] me as dm in (f))

and iii . B=2-t, (Y33)

ST weight of mutually complementary component (g) B2y; n"2y
2
, A-(3n-l)I(2)

codes ±Adj.Ii(B/dj) dm B2Y; 1/8-2y) /2
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iv. B-pq, 2pq l/3xpa-lq6-
2
(p-)(q+l)(q-2), (pz-q~i or

iv-1. p, q; primes having 3 as each primitive | pzq--l, q<(p-l)/2)
root, dm = l/3xpa

2
qB-l(p+l)(p-2)(q-l), (p--q--l or

41(p-1) or 41(q-1), d pqn-l, q>2p+l)(p-1, q-l)-2. Ll/3xpa-IqO-l[(p-1)(q-l)-4], (p-q--l,".":"'...

i,: (h) B-pq; n-(p-)(q-)/2, A-(3n-)/(pq) (p-)/2<q<2p+l) - - ,

m l/3[(p-l)(q-l)-4j, (p-q-l (mod 3)) 
(m) B=2paq8; n=pa-lq6-l(p-l)(q-l)/2,

" dA=(3n1l)/(2paqB)
1/3"(p-l)(q-1), (the other cases) I/3pa-IB-l(l)( 2 ) (p -qrl or

(I) B=2pq; n=(p-l)(q-l)/2, A=(3n-l)/(2pq) dm = p q-l, p<q)

1/3x(p-l)(q-2), (p--q-1 or l /3xp-lq-l(p-2)(q-l), (p-q--l, p>q or

dm = p-qE-l (mod 3), p>q) p-q-l)

I1/3x(p-2)(q-l), (pH-ql-l or vi-2. pa; a power of a prime having 3 as a0
p-q--l (mod 3), p<q) primitive root,

iv-2. p; a prime having 3 as a primitive root, q ; a power of a prime having -3, but not

q; a prime having -3, but not 3, 3,

(p-1, q-l)=2.

(h') B=pq; (all the same as in (h)) (V) B=paqo; (all the same as in (1)) -

(') B=2pq; n=(p-1)(q-l)/2, A=(3nl)/(2pq) (m') B=2paqa; (all the same as in (m))

I/3x(p-l)(q-2), (p -q-l or Table 2 Minimum MST distance of cyclic ST-AN codes
dm = p q1-l (mod 3), p>q) (0; minimum B satisfying each type of conditions)

(l/3×(p-2)(q-l), (piq--l (mod 3). p<q)

V. B=pag, 2pg, (az2) B (B) Z(3,3)-. £C-3,B) 
T
ype d"5. 4-4 4 (0()'r4

v-i. pa, q; a power of a prime and a prime 7 B 6 3 (al 4

2S) I 2having 3 as primitive roots, 1 4 3 2 (b' 2b
41(p-1) or 41(q-1), 2 1 a!0 1- 4

13 12 3 2(p..pa-l, q-l)=2. 13 6 6 3 (b) 4
1 6 4 4 lb) 4.(J) B=paq; n=pa-l(p-1)(q-1)/2, A-(3n-1)/(paq) 17 6 a) 2 (

19 1: 16 9( 1

l/3xpa-l(p-1)(q-l), (p'l (mod 3)) 22 10 10 (" 3222 10 5 10 W '" 3

23 22 11 22 ('dm = l/3xp-2(p+l)(p-2)(q-1), (p'-2-i or 23 20 20 20 d 12"

p-=-,2~~)26 12 3 6 1
S/p~qO-l, 2p+lcq) 25 12 6 3 2 ,_-_.

9, (p-q- , 2p+l>q) z 2 z 2 25 Z8 W 220
( ) (pq4 i,2pI 31 30 30 is Wo) 20

32 1, I S ) 4 .
(k) B=2paq; n=p

1 
(p-l) (q-l)/2, 34 16 16 1 (b 10

35 24 12 12 (K)" a

A=(3n-l)I(2p'q) 3 7 3 6 1 1
40 16 4 4 2

l/3xm-l(p-i)(q-2), (p-q-l or 4 20 1 a 2

4--l p q 4 20 1 0 10 ()
p~ -i pq)46 22 11 22 bli3xp-l(p-2)(q-l), (p-q--l, p<q or 47 46 23 46 Ia' 16

p--q4-9) 59 42 42 21 d 28
20 20 20 e 10

52 24 6 6 2
v-2. p

0
; a power of a prime having 3 as a 53 52 52 52 (a) 16

primitive root, S5 40 20 20 Wh) 12

q ; a prime having -3, but not 3, 64 32 1. 16 (
(p -1p(0-, q-l)2. 70 24 12 12 () 6

100 40 20 20 M0)" 10

(j) B=paq; (all the same as in (j)) 110 40 20 20 1' " 10

175 12 60 4 (' 6
(k') B-2plq ; (all the same as in (k)) 3010 6 0 ()*3350 120 6. 60 {k "

v-3. pa; a power of a prime having -3, but not s29 506 253 S06 W)' 16.

3 as a primitive root, 539 420 210 2.0 (1')' 140

q ; a prime having 3, 10S9 S06 253 S06 W4')' 161

(pcl..pa-, q-l)2, 107 420 210 210 t')' 126
1225 0 : 40 420 :( 21 '1

(j") B-paq; (all the same as in (2)) 2116 1012 306 506 (1')'322
2450 140 420 420 (1 '210 -

(k') B=2paq; (all the same as in (k)) 264S 2024 1012 1012 (*'' 644

vi a~2~ at1)5290 2024 1012 1012 (6k" 1-306
-vi. B-pa"q

8 , 2p"n (a, W ) 5, 0, tt o I''0 : --

vi-l. pa, q; powers of primes having 3 as
primitive roots,

41(p-1) or 4 1(q-l), Minimum MST distance dm of a code with compo-
(p (p,1-1, q -qR-1)=2 site number B not satisfying the conditions

(1) - (p mentioned above can be found by a computer program

A =O npaq/(p (qo ) performing the basic process to find d, (Step 1 -
A=(3n-1)/(paqB)
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Fig. 2 Plot of dm for cyclic ST-AN codes

satisfying the conditions i - vi on B APPENDIX

6. CONCLUSION A derivation of formulas to calculate the
A new class of ternary cyclic AN codes and a minimumMST distance in the case of i-I (a)

. new type of modular arithmetic distance were Since 3 is a primitive root modulo p and p is a

introduced in this paper. This class is consid- prime number,
ered to be useful for error control in ternary E(3,p) = T(p) = p-l.
digital systems consisting of symmetric-ternary
arithmetic processors and ternary data transmis- Therefore, the code length n - p-l and the code

sion channels. generator A = (3Pl1-)/p from (6). Moreover,
Symmetric-ternary arithmetic operations can be G(p) = H1

performed without considering distinction between ( 
k  

o k , p'(p)
signs of numbers. These operations are much = (3 mod p I k , . . ,p-2)

simpler and clearer than the ordinary ternary ones .k.....
in which a negative number is represented as the By Theorem 2, ST weight of the component code A.
complement to 3n or 3nl. This makes the H1(p) is equal to the number of those elements of

derivation of these formulas for dm effective in G(p)-Hl(p) which are not multiples of 3. When p-l
many cases mentioned in 5. (mod 3), (p-l)/2 is also a multiple of 3. All of

Many formulas to calculate the actual minimum the elements which are not multiples of 3 are as
MST distances of cyclic ST-AN codes were presented follows;

under various conditions on prime factors of B. (±l,±2, ±4,±5, ... ,±[(p-l)/
2
-
2
],±[(p-l)/

2
-1j}.

Cyclic ST-AN codes satisfying these conditions
have multiple-error correcting capability. The Then, the number of these elements is given by

decoding problem will be studied in subsequent 2x(2/3)x(p-l)/22/3x(p-l). When p=-1 (mod 3),

works. (p+l)/2 is a multiple of 3. Since all the elements
which are not multiples of 3 are as follows;

REFERENCES {l,±2, ±4,±5, ... ±[(p+I)/2-2],±[(p+l)/2-l]).
the number of these elements is 

2
x(

2
/
3
)x(p+l)/

2
-

[] Peterson, W. W. and Weldon Jr., E. J., "Error 2/3x(p+l).
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.::2CN? A UNIFIED APPROACH TO COMPOSITE MVL WITH MONOTONIC SUBFUNCT1ON

Cz ) atsuroh Nakamichi and Hideo Itoh

Department of Electronic Engineering, Faculty of Engineering

Chiba University, Yayoi-cho, Chiba 260, Japan

ABSTRACT monotonic subfunctions are discussed. These
*properties also give suggestions for designing of
The concept of composite multiple-valued logic testable digital systems [11-151.

(CMVL) is introduced. The CMVL has subfunctions in
the subsets of logical values. The subfunctions, II. DEFINITION AND CLASSIFICATION OF CNVL -

especially monotonic ones play role to make the 1 a
system testable ; fault detectable and diagonosable. (1) CMVL and subfunctions

The CMVL contains C-type fail safe logic and A- (a) Definition and notations
type which have one monotonically increasing sub- The MVL can have some non-constant subfunctions
function, and also contains some new logics, D-type in the domain of subsets of multiple logical values.
with two monotonic ones, J-type with three monoto- These HVL's are defined as follows
nic ones etc..

Classification and properties of these functions Definition 1U

and systems are discussed using the concept of CMVL, Let the function of r valued n variable combi- - S
and the properties give suggestions for design national circuit be
strategies of two valued or binary and multiple
valued or higher radix testable logical systems. f L -L , L I{v ,v 2 , ---v ,---vr'

v21'v22,---v2,,---v2q,

I. INTRODUCTION VilVi2,---vij,---vit ,

An advantage or merit of multiple-valued logc Vm ,V,---V ,---V .
(MVL) is that it has three or more radix. The high--mlIm2 .'.mu'-..
er radix should bring about higher information p + q --- + t--- + u = r
processing capability per unit gate and also higher
transmission density of information per line. To where L is the whole set of v, or v which repre-
utilize and realize these features, the basic and sent a logical value. -''i"

application oriented studies of MlVL have been done
[1-4]• The function f is defined as a composite multi-

Another merit originated in higher radix or ple valued logic (CMVL) or CMVL function , if f has

multiple logical values is that MVL can have useful following subfunctions g1 or both g, and h.: .-

two valued and, in general, multiple valued special
n

subfunctions in the subset of logical values. gi: P~-.-L L .(v v
Taking notice of these subfunctions, one can intro- I

duce new classes of special functions which are h Ln--+Lj, LIV , (3)

connected with new applications [5-16].

Typical works of this area are found in the where L and L are subsets of logical values, and
studies of fail safe logical systems. Their
features are based on the monotonic properties (4], V,--v are logical values in the Li ,

which also bring about testability ; fault detect-
ability and diagnosability (5-12]. Non-fail safe are the ones in the subsets
but testable systems and their elements are also lJv2, ij

studied [12-15], and they are classified using L1 ,L2 ,--Lt ,--Lm  respectively.
ordered graph [14]. Another approach, the higher
radix technique, for testable system are proposed
[16]. By exchanging the partial or all input or output

In this paper, a unified approach to CMVL with variables to the other definite ones, if the
monotonic subfunctions is presented. These CMVL's function satisfies the relation (2), or relations
contain C-type and A-type 3 valued logic and D-type, (2) and (3) , the function f can be treated as the
J-type MVL. The relations among these functions and equivalent CHWL.
the special properties which are attributed to the
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If some functions in the function group h. ; monotonically increasing for the same logical valuehl,h 2 ,---hj---, are the same or the same class or set of values, the CMVL circuits constructed
of functions, the group of function hj can be with the elements, and with any structure and any
expressed as follows : function with respect to the logical values of

hs:L n,. L Ls-{{S1},{S ,- ,--{Sm}}%L (4) functional complete subset, have the same monoton-
or L 1  ically increasing subfunction.

:L Lp){{L ,{L2 },--{Li},--{Lm}}= L (5) Proof: It is derived from definition 2 and
hp P p, P mproperty of monotonically increasing function [15].

where Ls and Lp are sets of sets, {S}{ 1for Poet .---...

every i , and SI, Li must satisfy equation (2). Any function of the part of the network which is

In other word, equation (4),(5) show that the composed of the gates(elements) with functional
logical operations for the combinations of each complete and monotonically increasing subfunctions, . 9
logical value in differant {S i or {Li } are equal has the same monotonically increasing subfunctions.
or in the same class. If the gical operations are This property of network simplify the fault

" the same, the {Si or {Li } in equation (4) or (5) detection[17-19].-

can be treated as aequivalent single value with (c) Family of elements and ordered grph
respect to the logical operations. (see Appendix) Minimum unit of network is logical gate or

element , and the elements having functional com- --...

(b) Classification by subfunctions [151 plete and monotonically increasing subfunctions are

The CM L is classified by the nuber and classes also a system with the same subfunctions.
of the subfunctions, g.1 and h. , and their proper- i ii

ties. Some examples of composite three valued logic The 3 valued elements which can be these system,%(abreviated to CTVL) are shown as follows: and others are classified using ordered graph in
(1) Number of logical values subset Fig. 1 [14].

Example 1 Three valued logic with logical values Family I C--type A-type -type -0,l,and R can have a set in the folluwing combi- .s 0
nations of logical values; A ~ 44 ~4~ ~44

{l[,0}, {{R},{1,O}} Note:In reference[15] and .
""{0,R}, {{l},[0,R}} others, R is expressed by R(R

{R,1b, {{0},{R,1}I symbol ¢. - ._______ ____

" jj)et o° subfunctions and related notations "" ""
The CTVL can have a set of subfunctions, 2i

valued functional complete [4] and monotonic [4] (2 3 =8* ) S
ones etc..
Example 2 A CTVL s following set of 2 valued and

.- equivalent 2 valued subfunctions [15]: Faiy1 - tp -type_ H-type_ '.'-_-_-_-_

{0[MI] :{R,{lOln----,{l,{1,OI} (6) 0e
whereg [FC] denotes the functional completeness
and h fMI] in equation (6) denotes the monotonica-

m fly i~creasing fOr R, and the R is placed first ingl° h [ D ] : { O n - -- l O }  
; :tE { }. Another example is show as follows: set o l

hor h-[ND]2 {R,In---- ,(R,l} (7) • " -.

". 3 or h3[AD] tO[,R~n ----. [0,R} A:ANDNAND~.. "__"', __-"_-"where gi or hi[AD] express the AND function wl th :ORNOR-

resec h toI neuto 6 eoe the firsttloical vauGnS pca

(j)2 CMVL systems and logical elements fnt o0
(a) Definition and construction rule f .

Definition 2 Family III ___ ""__The CMVL system is defined as the system (a set Fiy7V p • "-

of logical gates) with functional completeness andalso (useful) subfunctons, or as combinational {0 A}circuits or networks which are onsRu so as to S -
have the subfunctions. e A

The CMVL system with monotonic subfunctions are

(a eiito n onstructduigflo i on rule 7- -'-- -

The CMVL system with monotonic subfunctions are F. 1 _ss ico of s e'____

f constructed with the set of CL logical gates with F ai
alnotonic subfunctions in the same subset of logi- logical elements

" cal values. * ( ) :number of elements in each familyhif the subfunctions of the gates (elements) are

~~~. . . . . .. . . ................. .... ... .... . . . . ........ ... °.. .- °--
..-. .. " . ."..........-..... .. .-. . • . .- .. .".o..-=-,---= , '=.= .%%"Theorem" ." ""' "" " ' 6 0

montoi subuncin in the- sam subseto logi Fi . -Classification of some ternary



Definition 3 [141 From theorem 1 and equation (11) the elements
Ordered graphis a graphical representation of which can construct the A-type and C-type systems

*logical element function f, and it is specified as are introduced.
follows: They are shown in Table 1.

i) node : The input value xi iR marked in node
circle, and output value yi can be marked outside Table 1 C-type and A-type elementF (NAND)
the node with short line to it. The yj is specified
by the output for all xi inputs as follows: C-type A-type

yi , f(xi, xil,---xi) . f(xi) (8)
(ii) line : The line between nodes marked with xi Truth Table OrderedGraph Truth Table OrderedGraph
and xj, shows the relation of order or advantage - _______:::_

between xi and xj for determining the output when 0 i R 1 0 0 1 R 1 0
xi and xj applied together. i9 -

(iii) directed line : If the line directs to the 0 1 1 R 0 1 1 1
node xj from xi , xi is sensitizing 

(line) value4] 
i ' R

and xJ is non-sensitizing one i.e. advantageous one, 1 1 0 R 1 1 0 0
then the output becomes as follows: R R

f(xixj) = f (xj) =yj (9) R R R R 1 0 R
(iv) no line : if there exist no line between nodes, R R
xi and xj, the above output for xi and xj changes
as follows:foxiows: y(The functions of NOR gate can be understood byf(xi,xj) -Yk =f(xk) (0) dividing to subfunctions and combining them.

where Yk, Xk are another output and input value dtinng

different from yi, yj and xi , xj. (example of this Pro rtcase wll beshownin Tale 2)Propert 2.'-

(case will be shown in Table 2) The systems have following properties which

Example 3 come from the AND or OR subfunctions:

(1) 2 valued logics C : f (I,0,R)=h p{R},{I,O}}-R (12)
The AND,NAND,OR and NOR functions are represent- A (f (l,0,R)=h {{R},1.{,0}-[,O}-b(l or 0)

ed by ordered graph as shown in Fig.2.
O.'.Q\I .:fjXO ('v.....tj\ /\..\ where f(l,O.R) denotes a function of variables, 1,0,

and R, hp{(R},{l,O}} an equivalent 2 valued sub-

(a) AND (c) NAND (e)AND,NAND function of variables {R} and (1,0).
Utilizing these properties, in a tree like net-

0work, we can have functional independent universal

(b) OR (d) NOR (f)OR,NOR (g)AND,NAND n+l test as follows [12,151

v v : two different logical values OR ,NOR C : bb---b, Rb---b, bRb---b, -, bb--bR 
Fig.2 Examples of ordered graph A : RR---R, bR---R, RbR---R, ---, RR---Rb

(11) 3 valued logics It is known ,hat we can have a tree like network

Some 3 valued elements under the condition for any function go or equivalent tree like ones
f(R) e 3 value elements wition by providing observing or controlling points in tne*(R re shown in Fig. l. The elements with fun-, eovretpts[0. ' '"

tionai complete and monotonically increasing for R reconvergent paths (20).

are C-type ,A-type, -type and J-type in family 1, (ii) The C-type has fail safe property, but the A-

so they can be a CTVL system. The J-type and all type has not . The difference also comes from the
types of family 11,l1l and IV except D-type can not difference of each element or system subfunctions

have definite output value for f(O,i,R), so the in- which are shown in Table 1 or in the following
put number must be restricted to 2. relations;

The logical operations of A, C, D,and J-type are C : f(R,O)-f(R,R)fR f(R,I)-f(R,R)-R
also shown in Table 1-3. A : f(R,O)=f(l,O)0f(l,l) f(R,l)=f(l,l)0f(O.1)

II. TESTABLE CTVL SYSTEMS AND SPECIAL FUNCTION (2) )-type and J-type CTVL functions (

(I)CTVL with 2 valued functional completenes (a) D-type and related ones

The C-type 19J and A-type (123 systems are de- A CTVL function which is not functional complete
fined as a special class of CTVL with monotonically but has two monotonic subfunctions is introduced.
increasing subfunctions. Definition 5 (153

Definition 4.-."
D t The D-type function is defined as a CTVL func-

The C-type and A-type systems are defined one of tion with following two subfunctions h2 and h3 :
the special CTVL with following set of subfunctions h2[OR] : {R,1)n__ {R,1)
go and hp ( 14) 1R.1.

go[FCJ : {1,0n_______. (1,0 h3 OR] : (R,Oln--.R,O} ( ..

hp[OR or AND) :{[R}, [I,0}}n --- {{R},{I,0}} I)/:.,,..
If the function h2, h3 are all AND functions,

the CTVL is also defined as E-type.
Eximle 4 [13-151 _
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Example 5 [14,151 Property 4
The 3-type has following propertiesThe CTVL circuit with above subfunctions is The -tye has following propert y.

realized using the elements shown in Table 2. (1) The J-type has following cyclic property.
'f(l,0)=gl(l,0)=0 [f(l,0)fgl(l,0)=l".1

Table 2 D-type and E-type elements I I
7B-type E-type -f(R,l)=g2(R,l)=l J2'f(R,l)=g2(R,l)=R (17) 0

Truh Table Truth 1f(0'R)=gj(0'R)=R f(0,R)f=g3 (0,R)=O
Th Table OTale OrderedGraph

-- (ii) All stuck at 1,0 and R faults of the network

O a 0 1 R 1 composed of the elements shown in Table 3 are
1 detectable with the test set I 8 andR [13,15].

0 0R R 0QO0R 0
0 - IV. SOME TESTABLE CMVL SYSTEMS

(1) Testable CMVL systems with 2 redundant logical
IRRR R 01 values

R (a) D-type CMVL systems
The D-type systems with D-type CTVL subfunction

are proposed.
Definition 7 [15]

Property 3 [15] The D-type system is defined as a CHVL system
The D-type function has following properties: with a D-type CTVL and r-2 valued functional com-

(i) Function value is 1 (0) if and only if the pleteness as follows:
vector of variables is 0 C 0 ) as follows: go[FC] : Lo -_.tL °  L{vlv

f ( 1 ) h2( ) = 1 = I,,-- h [D ] :{{Lo},{R },{R 2 }}nf{Lt},{Rl},{R2}}1
8

fh 3 ( 0 )= 0 0= 0,0,---0 (15) p 1i 2}
f ( 1,% # 0 ) = R where g2[D] is the D-type CTVL subfunction which

This property can be called "double degeneration has following two OR subfunctions for L0 specified -

(ii) All stuck at 0,1 and R faults, single and in equation (19).

multiple, in the circuits constructed with D-type hsl[OR] :{{L 0},{RlIi-n {{Lo,{RI}}

elements are detectable with only 2 universal test n (19)
and 0 [15,16]. hs 2 [OR] :{{Lo},{Rl)i 0}{{to},{R2 }} (9

These functions are derived by exchanging the
(b) J-type CTVL function with 3 AND or OR sub- variable 1 by RI, 0 by R2 and R by Lo in equation

functions (14).
The J-type CTVL function is defined as follows: Example 7 -- r-

efinition The D-type 4 valued system (2 valued functional
completeness) can be constructed with the element .i .

The J-type function is defined as a CTVL function shown in Table 4.
with following three subfunctions g1 ,g2 ,and g 3  .'"".

specified in equation (16) : Table 4 D-type CMVL ( valued) element

gl [AND or OR] : l,0------{l,0} (16) Truth Table Ordered Graph Note

g2 [AND or OR] : {R,__n-------__R,___(16)_ _

g3 [AND or OR] :{,Rn-- 0,R} 0 1 1 RI 2  R R b : 1 or 0

where g1,g2, and g are all AND (OR) functions, and 0 0 Rsubclassified by
they are subdivided to Jl-type with AND , J2-type .
with OR subfunctions. 1 f(RI,R).

Example 6 [13-151 R b b Rb (1 M RI) f(O ,RI)
The J-type function is realized in the circuits 1(1 ,R2 ) f(O R2

composed of the 2 input gates specified by Table 3. R b b b R

Table 3 i-type CTVL elements

J1-type i-type
2 Property 5

Truth Table OrderedGraph Truth Table OrderedGraph All stuck at definite logical value (vl,v2---Rl,
I RR2) faults are detected by applying the dual uni-

O 1 R 1 0 1 versal tests i and R2. If the outptt is R1 for P1 ,0 1 0 1 "''''''''

and R2 for R2 the system is fault free, if the
0 0 0 R 0 0 1 1 output is in Lo, the system is fault.

This result corresponds to a proposal of
1 1 1 1' 1 1 R reference [16].

RR1RR R 0 R1 R (b)J-type CMVL systems with CTVL qubfunction '. ---
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Definition 8 (13,151 type is easily realizable [21,23]. The A-type is
The J-type system is defined as the CMVL system also realized with simple circuit (2-4 gates) [12],

with following subfunctions: D-type has attractive property, but necessary num-

n - Lb L ber of gates increases (10 or more). The J-type has90 FC] Lo LVl'V2'r ---Vr2 2 0 ) interesting property and it has applicability for

h ]3 {(Lo},{RI},{R2 }n----,{{Lo},{RI},{R 2 }} special use, because it is realizable as a logic of

where, hp[J] is the J-type CTVL subfunction which three phase pulse signals [13]. 0
has following AND or OR subfunctions. Another problem is in multiplexityof fault modes

of elements. Some of them may be not easily detect-
g4 [AND or OR] : [R2 ,Rl}-------{R2 ,R1 } able and these modes depend on the elements circuit

configurations 115,26]. For overcoming these prob- -.
lems, function transform or control strategies are

hs2 [AND or OR] {Lo},{R 2 ))-- {Lo},{R 2 }) proposed, but the fault coverage problem between

These functions correspond to the ones in normal operation state and controlled detectable

equation (14) exchanging the variable 1 by R2, 0 state, is remained (24,25]. 9
by R1 and R by LO  V. CONCLUSIONV. CONCLUSIONS

e-type valued system which has 2 valued A unified classification, construction methods

functional completeness can be constructed with the and properties of CMVL systems with monotonic sub-
elements specified in Table 5. functions have been presented.

The concept of composite or hybrid logical func-

Table 5 J-type CMVL (4 valued) element tion acquires a significance when the system is '.
multiple-valued iogic, because the MVL can have

Truth Table Ordered Graph Note special and useful 2 valued and 3 valued subfunc-

- R- I I Rtions, but the subfunctions of 2 valued system are
0 1 Ria 2  2R R b I or 0 degenerated to the constants. These fact can be an

origin of the important and interesting features of
1 0 b R2  subdivided by MVL.

0 1 0b R MVLin some CMVL discussed in this paper, the D-type
1 0 0 b and i-type are especially interesting. They have

two or three monotonic subfunctions, AND or OR, and
R1 b b R1 R {,0 f(O,Rl)= 1 or 0 all stuck at constant faults are detectable with

I two or three universal (function independent) tests.

RR R {1,0} They are probably most testable ones in all MVL.
t2  R2  These CMVL with useful subfunctions will give a

suggestion to a testable design of digital systems

Property 6 and other applications. "
All stuck at v v ---v R and R single and There remain following problems:. -

multiple faults are 1 R) Studies on the CVL's which have other special
u are tected by applying the triple ) u o ewi a h c

universal test V,2 1 , and* 2 . If the output is in subfunctions other than the monotonic ones.
Lo for inputV, R1 for i  and R2 forl2, the system 2) Overcoming the gate implementation problems
Is good, if otherwise the system is fault, which are common difficulties and obstacles in the

applications of MVL.
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dU.* _.bR (,.' IK S I:. CONDI. ,ATIG AL MiD .)Q: .IAL 21oCUITS

by Janusz Aaiski and Jerzy Tyszer

.,ec-ional Com-uter "enter, Technical 1Universi ty
of kozna6, Poznafi, Poland

Abwtract wide spectrun of circuit elements.

A met.oa is descriued for Lazard a- All the abovementioned methods do not

na~ysis wit. tue ;:aximum possible number investigate the number of s'-ikes that may
of spikes in combinational and sequential occur during a hazardous transition. In
circuits with .AhJ gates and flip-flops. sequential circuits the hazard anal.v'is
This ;aper studies the conditions of ore- based on the hazard status flag may lead
ation and propagation of hazards. Tne in- to pessimistic results, especially in the
fluence of hazards of inputs on steady- case of counters and shift re-isters. "he
state of the outputs of a flip-flop with approach introducing the maximum possi:)in
synchronous and asynchronous trirgering is numner of spikes durin- hazardous transi-
co-,siae,-ed. iartial results are given in tion better estimates the ranqe of hazard
A4 ili iabet, wnere we assume all lines to influence in sequential circuits.

* be G or 1. F~inal, complete CCesults are
riven i. All al i o letwuere some lines "The hazard analysis with the maximum

number of s-,iKes in combinational circuits
. nay se a, i.e. in uoknown state. , was introduced by Zisapel et al. [7]. -his

Introduction approach uses the extended sum of product
representation of a combinational circuit

The problem of hazard analysis has introduced by Unger (61. The method is
been extensively studied in literature, functional in nature and can not be easily
Several methods of hazard analysis have implemented in logic simulator.
been proposed for variety of applications.On ppiaiu s h esn - azr-The approach presented in this paper ] .[[
One application is the desig]n ,f hazard- is rather structural than functional and
free combinational circuits. Most of theea ly Vpes ar lm te o ariulr may be easily implemented in a ]orlc table -'--'
early papers are limited to particular driven simulator with selective trace. The
classes of hazards such as naz.rds of a method is modular since we do not assume
single input variable, static hazards 131 that an input variable changes only once
or dynamic hazards 161. Uhayse and Davio durinq a sinrle transition.
-"I introduced separate criteria for t
static, dynamic and sequential hazards
usinr Boolean differential calculus. Uni- Basic notions and assumptions
flied al.proac:. to combinational hazards was In this aper we consider circuits
presented by seister Ill. The approach is composed of ""ND gates and f-Iip-flols con-
based on a pure delay model of combina- nected without feedback. .,or the analysis
tional circuits and defines a unatness of steady states and hazards in senuenti I
criterion for the appearence of static and circuits we introduce the notion of 'en-
dynamic hazards. eral flip-flop. It satisfies the followi,:n

Breuer and Harrison [21 introduced a conditions:
method of hazard analysis based on hazard 1.Asynchronous inputs, denoted respective-
status flajs. Phe hazard status of a line ly by and R, set the flu-flop on 1
can be: nazard free (hf), hazard present or 0,
(hp) or hazard status unknown (hsu) . .'he ?.Synchronous inputs, denoted by D and V,
problem of creation of hazards, creation set the flip-flop on 1 or , if asynr.ro-
of hazard free requirements and propaga- nous input., are not, active,
tion of hazard status flags was considered 3. 31)ck inut T may b- regarded aa edge )r
for several circuit element types and for level trir:ervd.
the limited number of stimuli, e.-. the
conditions for creation of a hazard are Tn order to avoid the dua.ity of consider-
formulated as a collection of input stimu- ation, , ;e :mhit t7,t dirt-ct set S and"'
li. Thus, the approach as not general may reset it input i!, s are active when low
lead to difficulties when applied to a and S is 'imi-it. It de s no. lead to
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loss of -enerality. Aimilary we assume XO I, if S and S end with 0,
tlat A{,z}, where z denote write signal. ab = a bha .' ab L1, otherwise.

*The problem of circuit delays is not cothr i s se.
studied extensively. It is assumed that d = , if a Comprises 1,
basic eiements introduce unbounded but fi- a LO, otherwise.
nite delays. Phe cha%,ges of the inputs of
a circuit may but need not take place sim- Lemma 1: The maximum number of changes at "
ultaneously. We do not restrict the number the output w of the .IA'1D gate with inputs
of changes on any line, even if it is an a and b isinput. I Ox xO0 ~~'[ ]]~* inut.c d= d(c a + cb ~ dO

Jefinition 1: A line of a circuit contains w d a - d ab ab,

a hazard if the number of changes between where c a and cb denote the number of

two steady states during a transition is changes in the sequences Sa and S. ". i

The proof of this lemma can be found in!4].
Since a hazard occurs between two

steady-state iine vaiues we shall usually Hazard analysis for known line values
reuresent the value of a line as a triple

In this section we shall consider the
SasaL , -,here S denotes the state of a system C4 for hazard analysis in combina-line a vefore a transition, S+ denotes the tional circuits and the system S4 for haz-a ard analysis in flip-flops. For this case
state of a line a after the transition and we qssume that S-,S E{0,1}. The value of S
L is the maximum number of spikes during a la a line a can be briefly denoted as DaLa
the transition. In the systems C4 and S4 where Da' {,1,1,11}
we assume that Sa, S+ e{OI} for any line a

a a ' Theorem 1: The extended value of the out-
a of a circuit. In the systems C11 and Sl put w of the NAND gate with input values
the set of steady states is extended and DaLa and DbLb is DwLw . Dw  is given by

S {,,x, af{O1'x''xX,} where x,x Table I and Lw is determined by Table iI. 0
and xx represent line values not yet spec- 1 1
ified to be either 0 or 1. -Lw d d-d.bU.+Lb 1

A transition of a line is the transi- >+ L = d (L + L
ent process which is initiated by the w +b a b

vaiue S a and ends when the line reaches V Lw d(La +Lb)++

the value S. Examples of the extended de- +1 Lw  L + Lb + IW

scription of a line value and correspond- +L
ing transitions are shown in Fig.1. + Lw .La b+.-

S- S+ L Steady states Transitions Table I Table 1I

Db D 00 01 10 11 DD 00 01 10 11 . ...

0 0 2 00 11 11 11 11 00 > 1 > >+ >.

01 11 10 11 10 01 V + +1 +.

10 11 11 01 01 10 + +1 + +

1 0 3 --- I_.F L 11 10 01 0 1+ 0

Figure 1 Proof: Table I is due to Boolean algebra

£ransition of a line may be described when applied to initial and final steady- . . -

as a sequence Sa of 0 and I, where the state of transition. The number of spikes . .
is limited by the number of changes ac-

first and last element correspond to the cording to L =C /2. Since each spike is
steady-state values. Let us define three a aO x  x d composed of two changes and additionally

abvariables dOX dab and da as follows: for D a = 01,10 there is one more change

and Sbegin with 0 introduced by steady-states the relation
Ox if Sa Sb between the number of changes and the num-
ab .0, otherwise. ber of spikes for various steady states is

as it is shown in Table III. Based on Lem-
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ma 1 and fable III the maximum numoer of A 6 , fA, if A .31
changes for- all elements in Table II car x, :f A :3.
be determined as for element (1,1): Let T denotes write co:di-

=d1 d (21 + 2Lb_1 i)= da 1d 2(L aL -1) .A
11 a b a b a b tions from syrchronous inputs, where T

and the maximum number of spikes is E{r7,Z}, RT. T'a aenote hazard flas on in- -

L1 = 1/2 = dla d 1 (L a + Lb-1) put T and asynchronous inputs respective- 0
This calculation has to be performed for ly, 1TO RA{O,1} and 3A +
all elements in Table II. Q.E.D. Definition 4: Let 0 and I be an initial

Corollary: a/ coordinates(2,31and(3,2) de- state of a fiip-'lop output and a state

scribe the conditions for creation of haz- of a flip-flop output, if the aoynchron- ".
ard, b/ coordinates(2,2),(3,5),(4,4),(2,4) ous inputs are not active and the clock
(3,4) ,(4,j) and (4,3) describe uncondi- input is active. The vaioe of z(QI) is

tional propagation of a hazard from both given in Table V. 0
inputs a and b, c/ coordinates 11,1-4) de-
scribe conditional propagatio:i of a hazard Table III Table V
under the condition L >O, d/ coordinates o c T 000 I
(1-4,1) describe con i tional propagation a a 10 -1
of a hazard under the condition L > 0. 00 2Loa o Q Qt X

In the analysis of a flip-flop the 01 2 Lo+1--- following sequence of this analysis is as- I

sumed: 10 2 La+1 z - x
1. The calculation of output states from [ L__

asynchronous inputs. F1 T I
2. The calculation of output states from for T-type flip-ftop

synchronous inputs, if step 1 does not
definitely determine the state of out- ,Aelations between synchronous inputs
put. and their influence on the steady state of

ge introduce a 'unction ff, which de- a flip-flop are described by function S.
termines steady-state values of a flip- Definition 5: The steady-state of a flip-
flop ou* put. flop output as a function S of their syn-
Definition 2 : Let ff be a function chronous inputs and hazard status flag is

ff" "-+ --- S defined by Table VI.• ff : S S S S, - 4 S To, S S+
3 a 1L U Q Q TbeV

defined by Table IV, where z describes in-
fluence of synchronous inputs on steady-R ..KJ K [ 00 00 11 11 00 11 1 "'• "
state of an output, S describes relation 3K1
between synchronous inputs. 0 SSSS So l S Sx-

Table IV 1 SX SX SX SoX SoX

R S 0 1 0 1Table VI similary like in the case of
00 11 10 01 00 function ff, is not closed on the set A4.

In all cases where one of synchronous in-
01 11 ix 01 Oz(0,X) puts changes its steady-state the output

of a flip-flop is unknown.
* 10 11 10 Sl SO :iow we shall determine the maximum

- 11 11 lz(1,xI Sol S~z)S ,S) possible number of spikes on the output11 11 _______ so _______ of a flip-flop. Let us untroduce follow-
ing symbols: 0

;Lote that the steady-state of an out- d s  f1, if Sa contains a state different

put may be affected by synchronous inputs a 1 from's,

if S ==1. However only in the case S.S
11 this influence is uniquely deter- = , ohrse. s A -,S I nqel etr - = { thrw s. .' " ""

mined. Otherwise simultaneous changes on 0, otherwise.

synchronous and asynchronous inputs lead r A

to sequential hazard, i.e. unknown state D , t S ^ O SQ , ds ,
of an output. This is why the output has L, otherwise.
been extended by the symbol x.

Definition 3: Let A and B be states. The The transition process of a flip-flop
operation x is defined as follows: will be regarded as a sequence of its

i0
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states grouped in three phases: AI, A path in the graph between two vertices.

delimited by four states: , B, B, S+ The maximum possible .umber of changes onLthe output is equal to the maximum length
/iig.2/. It is assumed that with each of the path in the graph. If the initial
point in eig.2 there are connected 6 mo- vertex is (100) or (001), all changes on
mentary values: SR,J,K,T,Q. Two neigh- input S are observed on the output. In
bouring points may differ at one position this case d =1, D=O and I = 0. When

_N All starting from vertex (110) or (011) ,
changes on input S are observed on the

- B B+ S condition that input R changes its tate
Q 1 a

Figure 2 dR = 1 , I = 0, then cQ=cS -D+D+I

-c In the other case only single changeat least. In aome cases a phase is even = 10
the whole transition may be reduced to is observed C , if vertex (110) is thea in-
one single point. itial vertex. In this car;e D=1 and c a

S and S+ rereset the initial and (CS - 1 + O)0 + 1 = 1. If the transition
Q Q stares tre i11ti, the - 10 is oh-

final steady-state. During phase the starts from (111), the change CR
condition 6,R = 1 is fulfilled by coinci- served and additionally it enables changes
dence of non active steady or momentary of 3 to affect the output. Here we have
states in a transition. In phase AI and I = 1. Tf d 1= 1, tenc (c 0 + 1)
AII the case S,a = 1 may occur but it is 1 + 0 = c + 1, if d =0 /no change on R/

not necessary. then c = 0.

Theorem 2: The maximum number of soikes L Q.E.D.
observed on the output of a flip-fiop is Q It may be shown in the graph 4 thaj,

a Syn 0 0 the maximum number of output changes c,.'
LQ L(cQ +Q Sd R)/2J caused by asynchronous inputs with the in-

where ca D + Vd+ D is the maxi- terference of synchronous inputs is ca' =

mum possible numer of changes on the out- ca +A where the variable A is defined

put caused by asynchronous inputs, csyn by Table VII. The rows in the table corre-
Q spond to the odd and even number of output

is the maximum possible number of changes changes caused by synchronous inputs. For
on the output causeo by synchronous inputs.

Table V11
* i Proof: The transition process of' a flip- -" 

'
-

flop may be represented as a directed The BB'
graph /Fig.3/, where vertices are de- number -Q 00 01 10 11
scribed by triples )3,R,Q), S,R,Qe0,1} of changes-
and edges represent changes. The nature

odd 1 - 1 -

SS(JK , . even 0 0 0 -2

'C
01

C
10  

"01 'O10
S  

10
S S'5C R CR

110 01 100 ill given sequences SS and SR the values of B
S+RQ
C and B can be calculated from the graph by

Q - +
A;- ' 10 C 0 1  checking whether BQB Q reaches the values

"C1 ' R 00,01 or 10 and 11 [41. . -

SsjK) The sequence of output state caused
by synchronous input will be denoted as

Figure 5 S(JK). For given sequences SS, SR  and

of the graph is that every transition from SS(JK) variable T will be defined as fol-
one vertex to another is eqrivalent to lows:
changes observed on the output /solid 1, if the first element of is("K)"is
lines/ or unobserved /dashed lines/. The z = different from B,
transition Process bezween the initial ,
steady-state (Ss,SR,S) and final steady- L' otherwise.
stte ,+ 3+ + m Note that if one of asynchronous in-state (SS, RS QI may be considered as a
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Table VIIII
D 
a 00 ox 01 X0 xx XX, xi xi 10 1x 11

+ 4.11 I

01 + 1 1 i x 1 0 1 x 1

10 4.+1 4.1 1X1 xi Xl X1 xi X1 X1
+ +

xx + + + + + x XIx XXi Xl X xx

~X v + +1 +.1 +1XX~ l X 1

Xi V + +1 4.1 + +1 XXX xi 1 1 x xi
+ +1

11l + + +1 + +1 +.1 X IXx X1

10 V +1 .+1 + + 4.1 4.1 4.+ 1 01 01

+~ 4. o

11 +. + 4. + + 4. + 4.
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puts remains in non active state there are switching circuits which says that: a haz-
changes on the other asynchronous input ard in c ombinational ci-cuit may set a
and t=1, then all changes are observed on flip-flop to an unknown value. 3ome lines
an output if synchronous inputs are active. may be set to an unknown value during

10 01 10 01 power-up or initialization. When a circuit
Let s=c S -cS  arid r=c R -cR  and ,aT de- is initially power-up, the initial state .--. ---
note active state or, clock input. It may of flip-flops is unpredictable.
be shown [41, that the number of chan es In the alphabet All used in this sec-

case on an output caused by the interfer- tion we introduce 'he value x which de-
one'ol' t ienotes unknown state. Symbol xx denotesence of changes on one of the asynchronous that before and after a transition theinputs and the clock input is value of a line is unknown but the same;

caSe= T+(T-ds d -dr dsH d +d xxx denotes that it is not known whether
w S e the unknown value after a transition is 0

whe 1reC] . 1 0 the same as before a transition; xx de-
T=min ( caT, dS dR+C Rl (j) +c1 d1d sJK)) notes that the value is unknown but oppo-
Now we define an operation m-- over vari- site.
ables cj and cK: in this section we consider system

ininfcjc.+l, if ;-=S--0 and Cl for hazard analysis in combinational
K i K= circuits composed of 'NAN'D rates and system

B is different from the 311 for circuits with flip-flops. Line
min(jcJCK state after the first states take values from the alphabet All;

criange on inputs J and K, All = { ,O,Ox,Ol,xO,xx,xxX,xR,x1,0,1x,11}.
min(c ,cK1, otherwise. Theorem 3: The extended value of the out-

The maximum number of changes observed on put w of a :AiD gate with input values
the output of a flip-flo: generated by Da L and DbLb is DwLw . Dw and Lw is given
synchronous inputs for the edge-triggering by Table VIII. D is given in table above

wcesyn and level-triggering clsyn flip-flop the main diagonal, Lw is determined below

is respectively: the main diagonal in the same table.

ceSYn= minCmTii(c. ,caT-T) ++c 11SeJK Proof: The upper part of Table VIII, above
+(caT,+A+caSe T)eM 1the main diagonal is due to the belaviour

(ca, +c TejK of a NAND gate 'n three-valued logic. Theasl T- n lower part describing the maximum number
cl Syn= Fi(c,c + +cT I11 d , of spikes is by Theorem 1, because x de-notes unknown steady state 0 or 1. It is

* where
casl 1 d1 1 1c 101 0 evident that elements in intersections of

=( d JK .CR Sd I rows and columns 1,3,9 and 11 in Table
-1 R VIII correspond to intersections of rows

-drd -dsdi and columns 1,2,3 and A in Table 1I. Inall remaining cases where symbol x is en-

11 l, if it is ,possible to take value countered, we have to check value 0 and 1 ..
e J=K=l at. the same time. and choose the case which leads to the

JK 0, otherwise, greater number of spikes. If we denote the
* ote tat the second compone.t of the number of spikes on the output of a gate
cesyn by 11 DaLaDbLb ), then for instance for row
* c /describing T-tyne flip-flop/ is a 2 we have:

special case of the first part. Since mir 1DOXLLb)=maxfOOLaDbL ) 1(01LaDbL))

Ccj,cK=caT, then min(caT,,caT-T + ase ' a"sxeatDb b aat b bl a b b

= caa-:T)+c s  
. uI (OlLa, DbLb).T .t Full mapping is given in Table IX.

*milary for cls each change of
Table IX

data on synchronous input is observed on "
an output if the clock input is in active TableVl 1 2 13 41 5 $6 17 8 1 9 110 11 -

state. Therefore the analysis of changes Tble l I 1 2 2 3 4 2.3 2.3 2 3 3 4
in this flip-flop may be performed in an
edge-triggering flip-flop with the assump- 0
tion that the number of clock changes is Single element in Table VIII corresponds
sufficiently great, e.g. ca=e, to 1,2 or 4 elements in "able II. Then the

function is selected, which gives theHazard analyis for unknown values greater number of spikes according to the
The main defficiency of the systemS4 order:

is that it is not closed to the set A4. >+ + +I
This is because of well known property of •
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Tobte X_____ ___

~00 OX 01 X0 XX 1110 iX i

00 11 iX 10 Xl xx xxx xx X0 01 ox on

ox 11 iX ix Xi xz (X, X) XX XXX XXX 01 ox oz (0. X)

01 11 ix 11 Xi Xz (X,.X) XXX XXX XXX 01 r;X OZ flX)

01 OX 00
X0i ll x 10 X1 XXx ~xx x(X x0 i XX X xn

01 ox oz~oX)
xx 11 iX ix xi xz(X.x) xx x Xx XX Xi X xz(X,X)

01 ox 12,~ - -

xx ii ix ix xi XX XX xx XX Xi XX~ Xz(X,x)

01 OX OZ(0,X)
X! i1 ix ix Xi XXX xxx xxx x XX i Xl X X x,X)

01 ox oz(o,X)
Xl 11 iX iX xi XXX xxx XXX XXI Xi XXX Xz(X,X)-

- - - 01 nx 00
10 11 11 10 Xl 1 X XXX XXX XO Xl, XX X0

11 ix iX 10 11 IX 10

- - - 01 OX Op{o) -
lxi1i iX lx X1 XXX XX XXX U xx X Xl XX xx XX

_______ 11ix ix 11 11 lx 11

- - - 01, ox Oz(O~S

ii 11 lz 1,X lz lix Xi xz(X,X) XX X XZ(X,X) XZ(X,X) Xl XX Xz(xS)

11 lz(i,X) lz(iX) lz (1,)(,X) i~lX) 2A (1,X) lz iS)

SQ
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.• .0 - ° -.

- - The table received in this way is equiv-
alent to Table VIII. CD: ~~Q.E.D. 010 61I .. ."-'-

Similary we extend system S4 to Sl 
.1

to describe steady states and hazards in 1000 02 0
All alphabet. 1- 02T13 0

Definition u: Let ff be a function 01-0 S R
.- ~ff :Sb xS S x '- Q 00-1.- 1- 1t•.-.,.-

f + f S, X SS SQ -SQSQ

defined by Table X.
.. The operation * will be newly defined

in alphabet All. Figure 4

Definition 7t Let A and B be states in al- .Coc. ...
phabet All. The operation * is defined as Conclusions
follows This paper describes an algebraic

A, if A=B and A,Bjx, method for hazard analysis with the maxi-
A m 3 = x, if AjB, mum number of spikes. Basic primitives in 7

-- this paper are IIA::D gates and flip-flops.x, if' A=B=x. The method can be ensily programmed for - - -

, s a resuilt of unknown states in al- automatic processing. It is especiallycon-
phabet All the alphabet of write condi- venient for simulation analysis of digital
tions has been extended from{ ,z} to {z, circuits and it may be easily implemented

x xin a table-driven simulator with selective
z, 1, where z denotes a possible write trace. The existence of a hazard is not
signal. The operator z is extended as it only detected but also the maximum number
is shown in Table XI. of spikes is calculated. ?he results are

more accurate when dealing with such cir-
Toble X1 cuits like ripple counters or registers.

-" T 00 10 - 1 .
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ABSTRACT ---- This paper is a survey of circuit, truth and falsehood of a proposi-

the works done in Chongqing University on tics, etc.. But it is inconvenitnt to de-

Four-Valued Logic which is useful for de- scribe the dynamic behavior which exists

scribing the dynamic behaviors of logical obviously in the real world, for example,

objects. The mathematical Basis of Four- the condensation and evaporation of water,

Valued Logic has been stated. The deduction the fall and rise of a voltage pulse, the

method ---- Star Algorithm has been introduced, transition from state 'I' to state '0' and

Three kinds of applications based on dif- the transition in the reverse order, etc..

ferent explainations of the component have In order to denote these transitional sta-

been dealt with, such as the fault detec- tea we introduce two additional statesD D

tion of the combinational and the sequential to the static states 1 and 0. Therefore we

circuits, the hazardous test generation as can extend two-valued logic to four-valued

well as the transition logic. This paper is logic, which is useful for the description

only an outline and the detai s should be of the dynamic phenomena and contains the

F-:referred to the original paper *See (11 , static logic as its special case.

K-12), (3). (4), (51, (6). In section I of this paper we state the

mathematical basis of four-valued logic B4

and introduce Star Algorithm, the deduction

INTROUCIffQ~ technique of this four components. Then we

Two-valued logic is well known to every- apply this theory to three different areas -

one for it provides an efficient inplement based upon different explainations of the

for studying the static behaviors of the real meanings of these four elements. Sec-

objective phenomena. For example, these two tion II is the test generatin for fault de-

values Ill and '0' can be used to represent tection in combinational and sequential

the vapor state and the liquid state of circuits. Section III is the hazardous test

water, high and low voltage levels in logic generation for combinational circuit. Sec-
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tion IV is the transition logic which is the The Boolean expression of n variables is

generalization of the classical proposition defined below

3 logic. And in Section V we give a summary (1) o and 1 are Boo0lean expressions.0

and list out some open problems. (2) The variables x,x 2, ...,txn are expres- *.-

sions.

(3) The Expression formed by using the ope--

MATHEMAIAL BAI rations ".,+,'finite times is also0

1.1 Four-VluedI Boolan Almebra a Boolean expression.

Dflainition 1.1. Let B2 be the Boolean al- (4) Only those expressions satisfying (1),

(2), (3) are expressions.-
1P gebra containing only two elements "1I' and

"0" and having three logical operations Dfnto

+,""over them, then the direct product Two Boo0lean expressions of n variables

B2  B2 is still a Boolean algebra denoted F(xltx 2,...,xn), G(xlx 2 ....,xn) are equivalent

by B4 - denoted by F(xl,...,xn "-(xi,...,xn), if and6

Thus if xIYE B4 1 then x=(ala 2 ), y=(b1 ,b2 ) only if one of them can be derived from the

with a,a 2,blb 2 EB 2 , and R=(R 1 ', 2 )1 x-y other by using the Boo0lean identities finite

-(a1 .b1 ,a2.b2 ), x+y=(al+b1 ,a2+b2). These times.

operations ",' ,-"in B4 satisfy all the Thoe 1.1

fundamental formulas of Boolean algebra. If F~xlp--.,Xn) -'G(xi,...,xn) iff F(xl,..., .--

* x=(ai,a2), then a1 and a2 are called the xn)Gx,.,n o l i' nB hr

front and rea components of vector x. is any Boolean algebra including B2 and B4

The elements in B4 are exactly Deiito -1A.4

9 (0, 0), D =(0, 1), D(1, 0), 1 (1, 1). Let F(x1 ,.. . ,xn) be a Boolean expression,

and the operation tables are shown in Table when the values of all xi's are taken from

B4, then y=F(xl, ... ,xn) defines a mapping

X X + 9 1 D D9I D D n

9 1 1 D ing to the expression F(xi,...,xn).

1 9 1 II 1 9I1.D The Set Mappings B4-*B4
D D D D IDI D 0D D

D Let F(xi,...tx n) be any mapping B -B 4

V and ( Fn) be the set of all these mappings.-
Table 1.1 The operation table of B 4  Bn ,,B4  then {Fn}cnan 4 functions,

ifl~ ~2~A~~ amng thm onl 22nfunctions are Boolean. .-

Each Fn can be uniquely represented by a

PDaLJ.itlon 1t. 2
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table, a normalized vector form or the cano- .orrollary

nical form using minimum terms. The set IFn) For any 3oolean function F in 3'4 if we

forms a Boolean algebra 1Jj , it contains all exchanj;e all the compontents "" and "-

the 22n Boolean functions, which can be re- of the input viriables, thenthe formulas for 0

presented by Boolean expressions, as its F* and are exchanged.

sub-Boolean-algebra. Here, the vector form Lir.ce ioolean function is formed by . ,

is defined by , using; Theorem 1.2 iteratively we

1.5 can derive the formula. of FO , F1, F*, F

If we associate a variable in B4 with for any Boolean function F.

four state variables x
O , x1 , x, * in B2 Let N=(IS,... ,n, (P,Q) be a partition

(here superscripts cannot be misunderstood of N, (xp, xQ) be a partition of {xi,...,xn),

as exponentials due to the idempotent law of r be a 3oclean vector in the subspace B2
IPM.

Boolean algebra, subscripts are reserved for Then for any Boolean function F(xl , . . . ,xn)

numbering variables in 34) such tht =F(X), we have

x=0 in B4  iff x 01,x lx =x =0 in B2  Theore (Exansion)

x:1 in B iff xl=x1 ,x 0=x = 0 in P? F= (Xp')F(1,XQ) .F(r, X)

x=D in B 4  iff x 1,xI = x = 0 in 12  
. ..P.N EB 1

1 '

* -* 0= *- "x=D in Rq jff x =l,x =X X 0 in B2  F )(XI,)F(Tr,XQ).F (w,X>)then we call x , x I  . _t *i P Nir Bz I P -

a , x, x* the components

of the vector X in 64 . Obviously we hive Where P is taken over all the subset of N,

x x0 .0+x IT+x.D+i 7 Yrruns over all the doolean vector space of

which is cailled the v orm of x in 34 dimension IPI , Wis the complement of 3?

1.4 Star A taken coordinate by coordinate, (xp ) is

the product of those variables with supersc-Given a Boolean function F(xl, ...,vXn), we

ripts "'and -.
are going to derive the formulni for its com-

ponents F0 , F1, F, F Ex 1.1e For the Boolean function F de-

Theorem 1.2 fined by the circuit shown in Fig 1.1, de-

For the basic Boolean functions 7, x.y, rive the formula for F*.

x+y we have (1) Using Theorem 1.2

(.f)°=x , 1 =x° ,  (7)*=It*, (-F *=x* • ".. -

(x.y)0: 0 + 0+ *l) 1 1 X1"F "
(x.y) X y +x y (x.y) =x y F . •

0 001 1*--'(x+y) =x y (*X+y x y y -yl , +.

(x+y ) x y 0+x x y 7+ ) = .y +x y O .+ , .... - •
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Lii-x 0+xl iJ =xo+x'

F =(x4+X )(-f4Y 5) Property 2

.-- 1~If X bi2 then Lx- =1, Cx=iJ =x;

x

X4 ( x3 x Jx 3 -'''') 4 4 x4 x41x3 x3 3Suppose F(x1 ... ,x) is a Bloolean func-
+i * 1+-1 + NBx

4 ( 3x 4x 3 4 + 3 4) tion, then

Form (1.1), we have xlx 4 =x*x4 =-I = -i4x=0.*

Thus F =x + 5 4 x4x Property 4

=X(xxY(xx) ~x(X t2  The multiplication can be shown by the

=X x'1 X 2 +(.x 1 x+X X*+X*X*)X* symmetric Table 1.2

+xj (xxl+xx+x*x 'O X1 Xx zo L Ji

Fo 1 x ,=0xx1 1 ,*we haveI

* 1Ni 1 NN X1 0 X1

F =*~

0 0 x.

(2) Using Expansion Theorem 1.3 z 0 00

F= x1 +x1 +xlx 2 =x1 X2  L 0 x1  N 0 L

F(x1 , 1)=x 1, F(1,x2 )=x2  2[ 0 X1  0 X1 x j:

PqF(x,O)=F(0,x 2 ):F(0,0)=F(0,1)=F(1,0)=0I O 0 0x

*F(1,1)=l. jJ x0  0 X* 0 X* 0 X0 j

F ( x 2 ,r..vx 2 + X 1 2  2 Table 1.2

+X 2F(x , 1)p x,)+ x2 FX,0Fx 1 Property 5

F(0,2 1)F(1,O)+xlXF(,0)F1l'1) (X+Y+z* *- -I ,- - z-l

1X x2 +x2 xl+xlx2  Property 6

the same as formula (1.3). If equality

~ Af~ B.X ~holds, then also holds

If XE13 40 then lecx=~,x~*.j and in which the components ""and "~t"

cal j the f.ront and rea components and "J"are exchanged respectively. (e.g.

of x respectively. see Prcperty I).

Property I The advantage of using front and rear
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components is that formulas (1.11) and STATIC TEST GNERATION f2]

(1.12) contain only n terms while the cor- In a logic circuit. Let us associfite to

responding formulas using (1.i) and (1.4) each wire w a variable x=(a,b) in B4 , whe,.e

nshould contain 2 terms. Besides, in virtue a (b) is the value of w in B2 when the cir-

of (1.9) the evaluation of these components cuit is normal (faulty). x*=1 (i=i or x=D

of a Boolean function F in B4 is simply ( ) means the wire w is affected by a fault - .

the evaluation of F in B2 with respect to in the circuit under the given input values,

th( corresponding component of the input otherwise x is not affected and then takes

variables, the value in 3 For the output function F,

The introducing of the front and rear F*=1 or F*=1 means that the difference of

components needs four additional states for the normal and faulty effects has been

erch v'ria-.ble, and thus needs more space to sensitized to the output, hence the corre-

store them. But these four aidditicnal states sponding fault can be detected. Here we il-

are e,<sentially the compinations of the com- lustrate it by examples and ignore the

pordents 0,1,*.-*. If these eight states are theorems.

fine coded, for example, if we use four bits Example 1.2

to record the components of a variable x,i.B In the circuit shown in Fig. 2.1, find

xO=x(1 0 0 0) out the complete test set for the stuck-at-

x1 =x(O 1 0 0) 0 fault at x 5

x *x(O 0 1 0)

Si=x(O 0o 0 )

then [=x +x*=x(O 1 0 0)+x(O 0 1 0)=x(0110),

and xi =x(O 1 01), j=(I 001), xJ=(0010). ,. I
The operations can be executed parallely

without increasing the time complexity,e.g.

x.x =x(C110).x(0101)=x(OIOO)=x
I  The fault propogites through x7 , xR to F,

so x5  x8 FB 4 ndx,2x,,x, 9 ..

The application of Four-Valued Logic will s x7 x 8 t FEd 4 and x1,x 2 ,xx 4 9x6 ,x9

depend upon the meaning which we shall as- 2 i2 • Using Star-Algorithm

sign to the front and rear components of a F,:(x 6 +x 7 +xax 0 )':(x 6 x7 xax 9)

variable. Here three kinds of applications

are shown in the following sections. for x 6 :x 9 0 snd . 6 : 6 , - 9

from property 2 in section 1.D
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FzX+ x (i + j xL+ x4 x 3 X4) dotted line, be cut off, then Fig. 2. he-

+ (x+xs)(i1 + 2 )1 X)CX x)comes the model of the same sequential. cir-
+ x+5 I*+2cuit in one time frame, say T; PTand q h e--. -

From (1.4), (x1 +x5) 51 come pseudo-input and pseudo-output of th,

From (1.9) !(xijx5 -ix +' x-x4i2L T-th time frame respectively.

FX 5 X 1( ,,)(x 3 i +xx( 1 X)(i.~ 5

From (1.10), 0 xC

x9' ( x 4+ =X 5 L4+ )5 =x 5

F X% (x x,)~X +X 25 1 3+74+54

= (xlxf 2 L+xlx4) .T J
'> Fig. 2.2

This means the faulty difference at x- can

be sensitized to the output F in the same ouppose the fault d:s-a-1 occurs, te

there are three paths for propogating value
sence (i-e.D) under the input condition:

* 1D from d to y, namelyS
X x5+ 2 74 +i1 i4=.

Sice the fniuit is x :s-a-C, the test must 1d---y L2: --- ; *dfy
these variables d,g,h,i,f,yfB4 ' while 9,b,c,

make x D =1 . Thus the complete test set for

s-a-C is

(1) Taking Li as the main sensitizing path,
T=( i+x 5 ) (RX +X X +Xx)= 1 '24

1 3 4 14 1 15 4there are four inversions along L,9 a'o aD

From (11)and (1.12) the output of a at d can cause a D9 at y. We expand T

gate has value D 1ff at least one input x.-
1 Y,(kTfT) kLt:Tf )IT T

has value D9 while the other inputs x i may or 'i ' - ' i'
may not have value D. In this case we call =d b db-

dT TT j:~ -bT-O
gjte mi sensitizing branch. From (1.*11 ) Ths easw cnno proge 9tr h

and (1.12), we can take each x. in turn as this path.

main sensitizing branch. (2) There aire three inversior.s along 1,2 1 FO

Similarly Star Algorithm can be applied wendexad T

to the test generation for the multipe fault Y f )()dT zd T)h.iidlibT-0

in co-binational circuit, h .nce can also be b c u e a h a - u o n , w. a e J i
ctpplied to that of sequential circuit. hcuea h a-u on ,w ie

~ ±.~(5) There nre two ir~verz3ions along L., we
* ~Fig. 2.2 is an asynchronous sequential exad T

circuit. If the feedback line, shown by the
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0

Y,= fTk,= dTb,) LIEdb(T:T(LiL be applied to the dynamic study of the lotgic

-~ Circuit.

=d bT(T~~d)(T+d_ = Tb cTPTHere our attention is focused on the hnz-

*That means vilue T can be driven to y. irice ' cs idtednrJ ts ,e~rto.0

*d:sq-a-1, the ttsit shouid make d T=0, thus Tewvfrso h ttc0nzr
Tet~ Th wbeom of th ttc0n rd

T T dTT TT sTT-PT (denoted by #00), the stati 1-hazar (011)

the Pseudo-input p,. is the pscudo-output q the dynamic Ften-down hazard (OD), the dv-

in the T-1 th frame namic step-up hazard (*D) are shown in Fig.

*q -' TT _( d hl+cT- ) ~ .. If we orly use four-vnlued logic, they

-(b~ Ld~1+T~1KdT1+c~1)belong to the sets 0, 1, D), T) respectively

:b~l~ld~+~~l d~l~~l)as shown in the figure. In order to identify

=bT CT T+p ( 'd l+r a ha za rd # s, s4ES and 0,= 1 we r eed

to expand the correspondin.- iomponent Fs,

If we take the first term PT bT 1c,Vwnich (sES), of the output function F of the comn-

isinepnen o hepsuo-nptptaa binational circuit by fEtar Algorithm and ig-

*we h'lve one nore the other three. Then we check each

Test P~~cT'P a TTCTT-1T-1T-1term of F3, whether it causes the output to

Let T-1=1 be treu first time frame, ti.en one issue the corre3ponding hazard or not. To

*test sequen ,u cbt;ained is verify this we should deal with six-valiued-

T es t~a b c a b c2  logic and eight-valued logic, see [33 .After

* ~which detects, the s~ingle fault d:s-a-1 no thtw ca dide llheersoFSno

matter what initial state the circuit is.The two parts, the hazard part Fsh and the haz-

other solutions are included in the second ard-free part FSh

- ~~term of j T-1 'which depends upon PT-1 nenceFSFhF E(0 1,,..*

* upon. the inputs in the time frames before
A B LOGIC VALUE

* ~ ~ U1 HAZARD0 ST G?,NFRATION (3) 2. - ~--#1

* ~~Let us interpret the front and rear v, -3.-D v vt
lues of a variable in 34 respectively as the .f- A I'

* voltage levels of a wire before and after a

* certain moment, then J and D become the fall 3.

**(baep-down) and rise (step-up) of a rectflngu- When a logic fault g occurs, the output

lar pulse. Therefore four-valued logic can function becomes G, we can find similarly
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GS=Gsh+Gsh s E{O, 1,~* The first term y x comes from the term

If the normal circuit is hazard-free FlhG Ih, that means the input x=1, y=D is a

while the faulty circuit is hazardous, or test which causes the notmal circuit to pro-

if the normal is hazardous while the faulty duce a static 1-hazard wkiile the faulty cir-

is hazard-free, then we can distinquish the cuit is 1-hazard free. We call this test a

faulty from the normal. So the complete 1 -haza-d test.

hazLardous test set of the fault g is 7xample

- sh'sh+Fshcsh). Consider a circuit with high redundancy

shown in Fig. 5.5. Many single stuck faults

in it are statically undetectable, but all

'r hecicut hwninFi. .2 te of them can be detected by 1-hazard tests.
normril function F~xy+y, we havethsfc ishon nTal 5.

Fig 3. 5

Fl = X+ Y*+ -* X F 1k - +*Y Y Leo Sir-gle Mictk failt detected

~~~~~y~~~ 2~ 3 4y 54X 6X + 7+ 8 9______________________
Y F rX y+yx Stic I I I 1 0 1

Tests

F =Xy F - I I I

0, 0 0 0 0a0 00 0
For the fault b:s-a-1 the faulty output -' 0

* function G~x-ty, otc0 1

G h. G O yy b

C; .n *.. + ~ G = ++% YX+_~ Table 7.1

rh 0  
B.~ ft~y using the hazardous test we obtained

-- , ~ X y-~ y
* ft ftsome results:

(1) If the existence of a given redundant

The complete hazardous test set is wire R in the circuit C is to eliminate the

T TH F (sh Gsh+FshG sh) logic hazard, then the statically undetec-
g SOS

=y*x+y*x+x*y*+i~y* table fault at R is hazardously detectable.

(2) In a non-redundant combinational circuit,
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• 0
every intragate bridging fault is either where F and G are expressions, then the gen-

st:itically or hazardously detectable. eralized expressions are the formulas for

general propositions. Definition 1.5 and
IV TRANSITION LOGIC 14] 1:.-

Theorem 1.1 for equivalence still nolds, es-

In the classical two-valued logic, the pesiallyif F(x1 ...,x ) =G(xl,...,xn) for all

truth value of each proposition x is taken x E j3 then F(x, .... Xn)-G(Xl...,Xn) and

from B2={O, 1) . Usually these two values therefore F(xl,...,x n) =G(x I .... ,x n ) for all S

are used to represent two static ctatcs of xi J64- Namely the proposition calculus in
an object in the real world. Now if the va- the classical logic can be generalized to

lue of x is taken from B i.e. beside the the transition logic without any change.

stable statos "0" and "1", we have two ad- •If we know the equality

ditional states: D=(I,0) the transitional F(x I  .... x , n)=G(xlo,...,x n )

state from "1" to "0", and D=(0,1) the tran- for all x , Bxholds for all xiE B2 , then we can extend it.

sitional state from "0" to "1", then this
to B4 . In fact, we can add two additional

four-valued logic can be used to describe states D=(1, 0), 3=(O, 1) to e<ch variable

(though roughly) the transitional phenomena and let =(1,1) 0=(OO), i.e., let all

or the dynamic behavior of the object in the xiE B4 . Then for each logic operation 0 in F

real world. For example, if x represents
and G, we extend its meaning by

water, x=O represents x in the liquid state ((n,b)O(c,d)=(aOb,c~d). "

and x=1 in the vpor state; these are stable Since B4 : q 2 *p,we assert that this equa-
statence T13e =::( 0)*) ween aser tha thi equa- .

state. Ten x:D(1,0) means x is in the lity also holds ifter the extension to B4 •. 3...

condensation st'ite and x=)=(O, 1) means x is ° • . .4.1.

in the evaporation state; these are transi- Let the propositions P, Q and R be defined

tional states. The generalization of the in 02 as the following

classical logic to the transition logic is

essential, it seems to be a leap in the pro- p state of the l iq u i d  vapor

cess of cognition from the static field into substance is

the dynamic field. container
continerlow high

4.1 ootn and Predicatetemperature is

Calculus R: pressure in low high

In the d0'inition 1.2 we add two more the container is

operations -' and "4" such that It is easy to verify that P=(,7 holds in

FvG= F + G, FZG = FG + 3 d. *ow let us extend the definitions to .
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7 • ... . ..

0 i D

P: state of the substance is liquid vapor evaporation condensation

Q: temperat. of the container is low high increasing decreasing

R: pressure in the container is low high increasing decreasing •

.. • '

The extended operation P=0a in 64 is shown Theorem 4.1 Let S be a set of clauses,

in Table 4.1 then S is always true (or non-satisfiable) -

P=QR R: 0 1 D on 134 iff S is always true (or satisfiable)

Q:O 0 0 0 0 on 2

1 1 0 D D A.2 Loical Inference

D D 0 0 D From Theorem 1.1, the rules for logical

D D 0 D 0 inference on B can be generalized to B

Table 4.1 Le_ 1 The formula G is a logical con-

It is also reasonable, for example, if we sequence of formula F in B4 iff G is a

use Star Algorithm logical consequence of F in B2

*a 2 Given a set S of clauses, then
R- - . '.. +Q".

a clause C is a logical prime consequence

That means there are only three possibili- of S in 34 iff C is a logical prime con-

ties to cause this substance evaporated sequence of S in 2  ...

Q=D and R=O; i.e. keeping low pressure and Let S be a set of clauses, R(S) be the

inseasing the temperature. resolution of S, i.e. the set consisting of

Q=1 and R=D; i.e. keeping high temperature the resolution formulas of all the clauses ---

and decreasing the pressure. of S and the clause pairs of S. The n-th re-

Q=D and R=D; i.e. incressing the tempera- solution Rn(S) of S is defined by

ture and decreasing the pressure. R0 (s)=s and Rn(S)=R(Rn-(S)).

Since B4 has more states than B2 , what the T .2 (The C of R •

former reflects seems richer and more fro-

found than the latter.

If a clause C is a logical prime conse-

Similarly let
quence of clause set S, then there is a n)O

(vx)F( x)=n D F(x)
such that CERn(S).

(3x)F(x)=xE- F(x)
In B if G is a logical consequence of F,

2
Where D is the domain of x, we can geverali- then G)F. The following shows that this

ze the predicate calculus to B4
4  relation also holds in B4 , though B 4 is semi-

0
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ordered. us how the external causes (x 's, the faulty

Defiiion 4-1 signals) propogate through the network and

Elements a bEB 4 have the relation b oa produce an effect to the output. It seems

iff a.b=a. better to add some state variables to de-

Obviously a a; if b a, c b, then ca. scribe the internal cause (faults in the cir-

IMUJ a -4.- cuit) and obtain a more complete cause-ef-"' "

If formula F*G in 34 , then F >G in B4 fect relation.

Lema 4.4 For the second interpretation in III, an-

Let C, and C2 be two clauses in B4, R(CiC'2 )  other potential applic' tion of 34 is the

is any resolution formula of C1 and C2 ,then analysis and synthesis of the sequential -ir-

R(CiC 2 )  CI. 2  cuit. Here to solve the Boolean equation in

Theor A-1 34 is a difficult problem, because there are

Let S be a set of clause CIC 2 ,...,Cm ,  proper zero divisors D ani D in 34 (for

Cn be any clause in the set Rn(S). Then for D*=O).

every n >0, we have For the transition logic, 34 is but a

Cn  fle i  qualitative description. our goal is to

find certain kind of quantitative descrip-

tion which is more precise than B4.

C However, our four-valued logic is at the

In this paper, we just figure out our four- infant stage, what has been done seems too

. valued logic and three kinds of its applica- less than what we have to do in the future.

* tions. This four-valued logic B4 differs

from the classical four-valued logic L4 by REFERNCES
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Mx, A MIX-VALUED ALGEBRA

Michael Sinutko Jr. James H. Pugsley

0 Department of Defense Electrical Engineering Dept.
Post Office Box 1747 University of Maryland
Washington, D.C. 20013 College Park, Maryland 20742 .. :. -.

Phone: (202)694-3361 Phone: (301)454-6862

Abstract For experienced logic designers, the
cc AND, OR, and NOT Mx-operators are 2-valued
A combinatorial "mix-valuedo algebra, Boolean operators when applied to binary

denoted by 'Mx,O operates on variables variables over the same set. Also, the . .
representing multivalued signals and buses proposed symbolism and design procedure •
of any width (including width = 1). A bus resemble those of 2-valued Boolean algebra.
of signals is represented as a single mul-
tivalued variable. All variables in Mx can Each Mx-gate g (function realizor)
range over values and sets of values and
a-e not required to range over the same a) accepts inputs and generates outputs

The function set proposed for Mx from its own independent "reference
r-ludes relational, set theoretic, and set," denoted by rg (a reference set may

existential operators. The usual two- be ordered or not, as needed)
valued Boolean algebra is a subalgebra of
Mx when all variables are binary and from b) accepts and generates a "null variable" V

the same set of values, denoted by 0.

Only combinatorial memoryless topics A reference set specifies all I/O (input
are discussed, but sequential and memory and/or output) elements recognized by a " . -
circuits composed of Mx operations are Mx-gate (10,1 is a 2-valued Boolean gate
known. "reference set"). Mx-gates having differ-

ing reference sets can interact. A null
Mx is useful for compact technology- variable (0) has zero cardinality and

independent representation of digital sys- ranges over the heterogeneous set of value- S
tems during the design process.- less members

9
. (The member instance of the

null variable 0 is a member of every set.)
"Null" hereafter means null variable unless

1.0 Introduction stated otherwise.

Mx is a technology-independent mix- A 0-bearing input is interpreted in -'

valued algebra
9 

for describing and design- one of two ways at Mx-gate inputs depending .ing diialba irut*itcontebyon the gate type: a) it has vanished, need- .i...i
igdigital circuits* interconnected by

combinations of multivalued signals and ing no consideration in the gate output
buses of any mix of widths including determination; or b) it appears to have no
width = 1. A p-wide input or output bus of vauepTha"xisenial M-opra-r
"q-valued signals is treated as a single implement (b) by waiting for a non-0 on

multivalued variable ranging over up to qP all, noe neratlon of the inputs
elements. Variables in Mx can range over before generating an output.**
dissimilar, heterogeneous sets. Mx never requires more equations than

2-valued Boolean algebra to describe a
All functions in Mx must conform to binary circuit with busing because Mx-

the structure given in Section 2.1, but are equations are written for a whole bus at a -" .
otherwise arbitrary. Ten such Mx-functions time; not for each bus signal component.
are proposed and described. Other conform- Using Mx generally results in a very com-
ing functions can be used, but properties
such as functional completeness are the
responsibility of their designer. ** The "waiting" behavior is similar to

that found prior to the "firing" of Petri

net "transitions.
I  
"Transitions" are unde-

fined for input values not within the
• We pronounce Mx as "mix." "Circuit" or operator value-universe. Mx operations are
"network" means combinatorial circuit or defined under such a condition.
network.

U.S. Government work. Not protected by 328
U.S. copyright.

° ".'.,-. •'.
. .•. .. ... -. .

. . . . . . . . . . . . . .0 . . . . . . .... • • ..... . ...o••--.°,". , "%• % ." . .- ". ."."•'-""-"." "

%.. . . . . . .'.. . .- -".... . . . .. ".. .- ".•.. . .
• • ., %



* - - - '4- -4-. - r=-- - - --..

pact set of equations which fully describe tions "i," respectively. Note that
the intended behavior of the network. The although xieX, xiCr is used because gen-
compactness becomes dramatic with the in- erally, xi can be a set which is a membercreset uhic is abmemberof X, and a subset but not a member of rg.

A Mx-logic design needs no redesign to xi can be both a member of X and rg. g
change realizations; only a new translation 0
of the logic design into hardware. Stan-
dard implementation circuits for the Mx-
gates in various technologies may evolve to vxiex3:xr , only one of:-
fill this need. g

fl iff cl are met,
The reader is invited to preview the

application Sections 2.3 and 2.4 for sam- f2 iff c2 are met,
ples of Mx's operability. #(X) a

2.0 Formal Definition of Mx
fn iff cn are met.

Mx is defined as the pair (S,F)
wherein

the null variable (0) otherwise,
S is a totally ordered set, the union of t n

the sets I, O, and R., and further where "#" is an arbitrary gate operation, X
decomposed such that no member of S is a is the input set, X = {xlx 2,... ,xm, and
set, where fj Q rg for je~l,2,...,n}. "VxieX3:xirg"

I = {X1,X2, } is the set of all input is an input filter operation.
I ''" ite- End of Definition-

sets Xm where Xm = {xl,x 2 ,... ,xn}, a set -

of input variables, for arbitrary m and Let xiCX be variables in an input set
n, X, ieCi,2,3, ...1. Define as an "alien" any

O = {zlz 2,.. . is the set of all output input instance not a subset of rg (i.e., an

variables zmF (xi e X) 0 rg). If one or more aliens are
present, the GFS's input filter causes the
gate to yield a null. In the presence of a

Rg = {RglRg2,...} is the set of all sets non-alien-bearing input, the GFS requires
of reference sets and Rgm the output to be one of a set of user-

gi' devised conditional functions or a null.
frglrg2l. ... rgn } for arbitrary i, m, TheFuntio Se

and n, and 2.2 The Proposed Function Set

Reasons for using a given 2-valued
F is a set of functions from I to 0. Boolean operation vary. For example,

- End of Definition- "x AND y" can mean greatest lower bound, S
product, min, intersection, existential

*Reference sets, set "I" and set "0" (r etnia2 tuhosilanty
are formally independent of each other, but (or, sentential 2 ) truth or simultaneity,

and maybe others. Similar statements can
to date, meaningful applications of F have be made for OR and NOT. The followingonly involved I and 0 sets which intersect table lists some such interpretations on a
Rg. 2-valued Boolean AND operation over 10,11.

Similar tables can be produced for OR andA j6 can render its sending NOT.

and receiving Mx-operators tem- NOT.
porarily non-associative and AND product min intersect existential
non-distributive; it implies an x y (x,y) (x,y) (x,y) (x,y) truth simultaneity
into map. Thus F is condition-
ally associative and distribu- 0 0 0 0 0 0 0 0
tive. 01 0 0 0 0 0 0

10 0 0 0 0 0 01 1 1 1 1 1 1 1 -9 .

2.1 The Mx "General Function Structure" These ambiguities in 2-valued Boolean
(GFS) operator use suggest three function classes

-AND, OR, and NOT - which are basic to
The following definition is in the Mx the logic design procedure discussed in

GFS, to which all functions in F must con- Section 2.3.
form. "fi" and "ci" are function and condi-
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The proposed set of Mx-functions is F Ca,c}, Ca,d), (b,c), {b,d), {c,d}, {a,b,c),
a (AND(X), OR(X), NOT(X), UNION(X), {a,b,d}, {b,c,d}, {a,c,d), and {a,b,c,d).
INTERSECT(X), COMPLEMENT(X), ANDe(X), The full set is then U = {a,b,c,d,{a,b),
ORe(X), NOTe(X), EXIST(X)). F addresses {a,c),(a,d),{b,cl,(b,d},Ic,d,(a,b,c),
relational, set-theoretic, and existential {a,b,d},Cb,c,dl,{a,c,d),(a,b,c,d)).
domains. (The latter is concerned with the - End of Example 2.2-1- - .
presence, or existence, of elements instead
of their manipulation.) F members are Atomizer Function If S = SlS2,.
further assigned to the three function ... ,Sm}, A(S) denotes the "atomizer"
classes as shown in the following table. Sm,()doete"oir

function on S. If U is S's full set,

Mx-gate generic identity class "-" is set difference, and e is an ele-
ment (= irreducible set member = atom),

AND MIN, algebraic AND AND let u Q U 3: {U - ul contains no ele- -
OR MAX, algebraic OR OR ments and eeu. Then, A(S) S A:S - u

NOT INVERT, algebraic COMPLEMENT NOT is one-one.

INTERSECT set-theoretic AND AND
UNION set-theoretic OR OR Example 2.2-2
COMPLEMENT set-theoretic NOT NOT Let S = {l,3,{6,7,8},{),2,{4,{5,
ANDe existential AND AND 9H),01 where in this example, 0 denotes
ORe existential OR OR only the null value

9
. Then A(S) = {1,

NOTe existential NOT NOT 3,6,7,8,0,2,4,5,9,0} = 11,3,6,7,8,2,4,
EXIST existential acknowledgement AND 5,9,01. If SCu, A(S) = S, where u is

from the atomizer function definition.
To understand some of the proposed - End of Example 2.2-2-

Mx-gates first requires the following de-
finitions for "full set" (converse of the If X is a set containing the null set
empty set), and the "atomizer function" as a member, note that A(X) defines the
(which decomposes a heterogeneous set so null value given the null set operand.
that no member of the resultant set is a
set). The ten definitions for Mx operations, S

beginning at the bottom of this page, con-
Full Set - A set denoted by U and com- form to the GFS. In those Definitions, X =
posed of {xl,x 2 ..... xn) is the input set to a Mx- -.

a) all members of a given countable set gate and xieX.

b) all subsets of that countable set The NOT(X) definition needs a totally
excluding all its single member sub- ordered r g whose least member behaves like - .
sets. a zero. Its next higher member must behave

Example 2.2-1 like a one, the next higher must behave

Assume the universe is the set (a, like a two, etc.
9

b,c,d). Then (a) of the full set defini-
tion contributes the elements a, b, c, and "-" is set subtraction in the
d to the full set, (b) contributes (a,b), COMPLEMENT definition.

1 2n i i g~union({A(Xl)},{A(x2 )},...,(A(Xn)1) if VxieX, xi~rg "..j

UNIOU(X a

otherwise min(A(X)) if VxieX, xiQr
AND(X) igor otherwise

intersection({A(x1 ) },{A(x 2) 1,...,A(xn) oei

i - union(A(x) },{A(x 2 ) ,... ,fA(x n) .* ( g InT (X
cLRKM8T(X) a if Vxi1X, xrn

otherwise I g - 5

( O otherwise
max(rg) - A(X) if VxieX, xiQr -

g ' g rax(A(X)) if vxieX, xigr ... ,-.

0 otherwise 0 otherwise

330

--.. :- -



X if Xl X 0X 12=1 1 . and x Qrg

12 i12 1 0,x 3 = 4 -... x2 0 n

f i~Vxiex, x.i r , and x. 0#

One(X a AMIDe(X W
In iIn 00 n-l = n-2 .. ~oOtherwise

= 
1n+l x 1n+2 = , and In rrg

r 9if x x.x 2=

0 otherwise NOre(X i( ax(rg) if VxieX, xrr and x. 0 0 otherwise
KIST(X a

0 otherwise
Pf

EXIST(X) is also written as "Ee(X)" to {,F+,A,V,&,*,3), 0*0= 0 (null
identify its class. idempotency).

b) When * e {.,+,A,V,&,*), X*0 - x*=
2.2.1 Properties of the Proposed Function x, and 06 is an identity variable. But

Set Mx uses ( +,,, V, &e when * e t, 02 x*O = X* # x Wx'
03 'as algebraic "connectives" correspond- is undefined).

ing to (AND,OR,NOT,NOT,INTERSECT,UNION,
COMPLEMENT,ANDe,ORe,NOTe,Ee), respectively. c) When * e {~",(x*)* = (x*0)*O = *
(Note the two "NOT"s in the latter set. =x (unary closure). When * E ,
The apostrophe-type connective is used only +,-,V,"I and x ranges over values
when all variables are 2-valued and range only, (x*)* ax** - x. When * e-
over the same set.) {.+~'AV"&*,x ranges over .--

values only, and xEO, (x*)* =x** .-

The execution precedence for Mx- x. When * e f#,3), x** # x .Exam-

expressions is: ple: When rg = f0,1,2,3,4) and x=-

1)Teuulexecution ordering applies for ~ x+3=, x * 3 3 ~1)Th uua1^ 3, x#O 00 (0,1,2,3,41 (i.e.,
parenthetic statements in Mx- x ) 3 ~ 4(~. 2
expressions. X).

2) Within each parenthetic statement, the 3) V(x,y,z) Q rg, x*(y*z) = (x*y)*z where*
operation precedence is, ordered left-
to-right: e I-+AV &3 (associativity).-
(By this ordering, x'y # x y and x'y

may :e 4) V~i r9 1for~ a given MI-gate of

Following are some F properties which fuc i * wher * e m * Om, l * V,"

MX9.subsriped nllsrepresent inputs each
of w ich is currently null.)

1) V(,c,y) Q rg for a given MI-gate of func- 5)Weex00adrgino asnl-
tion * where * e 1.,+,~,ArVs",&#*, mebrst9eosre

x*y - y*x (x'y as a non-unary membe set we observeV: =(xx

operation is undefined). x x =0 xx v " ('"

2) V(x) Q rg9 for a given MI-gate of func--9
tion *, then: 2.2.2 Completeness in Mx Completeness

for the Mx GFS and for the F members is.

a) Where * e [.,+,A#V,&), x*x I x conditional9. Existing definitions of com-
(idempotency). But when * e 1"pleteness (e.g., 6,8) cannot be applied
*,0 ,3y )x*x # x (xx is undefined), directly to F because they do not treat
Special case: when x =0 and *einput alphabets and universes of operation
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as independent from the operators. Defini- i mean possibly strong, moderate, or weak
tions of completeness appropriate to Mx completeness, and incomplete, respectively.
follow. "Moderate" completeness accompanies
the notions of strong and weak complete- AND i
ness. 4  

OR iNOT w, conditionally s or m
Strong Completeness - Fj 9 F in Mx is INTERSECT i

UNION i S
"strong complete" over a set S of two COMPLEMENT s or m

*- or more values iff the minimum count ANDe i
- of iterations of networks (including ORe i

the initial one) composed of members NOTe s or m
of Fj required to cover S is not less EXIST

than the cardinality of S.

Moderate Completeness - Fj G F in Mx 2.2.3 Gate Symbol Graphics for the .
is "moderate complete" over a set S Proposed Function Set Symbols for

having two or more values iff the AND, OR, and NOT gates are the usual
minimum count of iterations of net- shapes. The remaining symbols are varia-
works (including the initial one) tions on these.
composed of Fj members required for Yi

the union of their outputs to be Y=xlx 2... Xn y=xl+x 2 +'''+Xn
identical to S is less than the car- xi Xi
dinality of S. Y y

Citizen - Any input instance which is x2 x2
a subset of rg. "Citizen" is the
antonym of "alien."

Weak Completeness - Fj G F in Mx is Xn Xn

"weak complete" with respect to a set
S where ISI 2 iff some citizen(s) of yXl/X 2 /... y=xlkX 2 /... Vx n
or alien(s) to the Fj members is(are) xl xl ".

needed at any input(s) at any itera- y 1y
tion of the networks in the strong or
moderate complete definitions, ex- x2
cluding the initial iteration, in .x

order to make Fj otherwise strong or INTERSECT UNION
moderate complete.

Xn xn

Fj Q F in Mx is moderate complete if
also strong complete. The converse may not y=Xl&x 2&...&Xn y=xl*x 2e... xn -be true. A strong or moderate complete Fj xl xl .

is weak complete iff all input instances to i
its members also belong to S. If F. is
weak or moderate complete, it cannot be x2  x2
made stronger without replacing and/or
including one or more functions. Any . -
strong or moderate complete simple basis

4

requires the inclusion of at least one x
monadic function, or an n-adic function
which gives a defined output with all its
inputs connected together, to service
single-output networks.* y=x x2 ... xn y=x1"x 2 ".."x n

In the following list of predeter- y-y

mined 9 F member completeness, s, m, w, and x2  x2

NOT COMPLEMENT
• A monadic operation is defined as an x x
operation requiring one input (argument). n n
An n-ary operation is defined as an m-adic
operation having n inputs, where m~n.
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Y=xlX 20 ."xn3 .x m= n= p = q= r = s= t= u=

Xi X1 -'2 n a b ab a+b a~b b
^ 

a"b b" aAb aVb
y y 0 0 0 0 0 1 0 0

S 1 0 1 10,11 0 0 0 0 {o,1x2  1 0 0 1 {0,11 1 0 1 0 {0,11
11 1 1 0 0 1 0 1 1

E XIST 06 0 0 1 0 1 (0,11 0 0n 10 1 1 0 0 0 (0,11 1 1
0x0n  0 0 0 1 1 1 1 0 0
01 1 0 0 0 0 1 1

When only 2-valued variables exist and 0 0 0 0 0 (0,11 {0,11 0 0
over the same set of values, "" is unary; 0 2 0 0 0 6 0 0 0 0
"'" may be used instead. "'" is undefined 1 2 0 0 0 0 0 0 0 0
for non-unary applications of NOT. 02 00 0 00 0 0

2.2.4 Mx Gate Evaluations This section v = w= x = y = z =
gives examples of Mx-gate behavior. A a b a~b bO a&b a b a b

treatment of set I/O is included. Vari-
ables shown sub- and superscripted with 0 0 0 0 0 0 1
radix and bus signal cardinality, respec- 0 1 0 0 (0,11 0 1
tively, specify bus realizations. 1 0 0 0 (0,11 0 1

1 1 0 06 1 0 1
Example 2.2.4-1 0 0 0 (0,11 0 0 1

Assume a e (0,0,1 and b E [0,0,1,21. 1 0 0 (0,11 0 1 1
Note that the input buses are not used to 0 0 0 0 0 0 1

their capacities. The input sets are obvi- 0 1 0 0 0 1 1
ous from the figure. Assume all gate 0 0 (0,11) 0,11 0 0 1
reference sets to be rg = (0,11 with 0<1. 0 2 0 0 0 0

12 0 0 0 0 01~~~ 2 •

Null outputs require physical
representation (e.g., a D.C. potential) in

1 practice even though 0 E (no value, empty

3  set, no answer/output, .•. . "

If inputs are restricted to be (0,11,

2  d 1 the outputs of the COMPLEMENT and NOT Mx- _ S
P2 3 gates are identical.

2 For ae{0,11, be{0,11, and outputs t
and u in the truth tables, if the null and

1 4 s 2 set outputs are changed to 0 and 1 respec-

4  2 tively, then the operations of AND and

INTERSECT, and OR and UNION are indistin-
guishable.

u2 The truth tables show by exhaustion
I Dg - ti that AND, OR, and NOT Mx-gates, under 0,1

inputs and (0,11 reference sets, yield
results identical to 2-valued Boolean AND, ..

OR, and NOT.
v w - End of Example 2.2.4-1

Methods exist for representing and

physically handling set I/O.
9 

One possi-
m4y 1  bility for outputs is to detect unique setx 4 m Y3 instances within the Mx-gate, then deliver

a set identifier to the external circuitry.

For example, the symbol "5" can be assigned

n z to a set such as 10,1,21. A transmitted _.
2 set identifier (e.g., "5") can be inter-

preted by receiving Mx-gates as desired.

Application of the proposed Mx-function This set identifier method can be used

Definitions yields the following truth to "create" elements not in a transmitting
tables. Note that all gates yield a null gate's reference set. For example, if rg =

when an alien input is present.

WS
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{1,2,31, then outputs of 4 = {1,2,31, 5 = Procedure 2.3-1 does not promise a
11,2), 6 = 12,3), 7 = (1,31 can be "creat- 2-level AND-OR solution. Especially in
ed" at its gate's output, steps 3 through S3, much room for

interpretation and style exists, which is
why the Procedure is called "First-Order."

2.3 A Way to Design Using Mx The following simple example uses Procedure

2.3-1. More substantial examples exist.
9

The following design procedure approx-

imates the truth-table methods familiar to Example 2.3-1
users of 2-valued Boolean algebra.

Procedure 2.3-1 - First-Order Logic Design 5
Using Mx P2

Mx
1) Build a truth table for the problem q4 network z2

having columns for its inputs fol-
lowed by columns for its outputs.

2) Fill each row with an I/O instance so r2
that all possible I/O conditions are
covered.

Specification: Transmit to output z
3) For each non-0 input instance, deter- the value from set {a,b,c} common to buses S

mine (if any) a NOT class gate and p, q, and r.
reference set to yield it.

The bus carrying signal p has a physi-
4) For each non-0 output, determine an cal capacity of 25 = 32 values, an example

AND class gate and reference set to use of the notations. Output z is physi-
yield it. If satisfactory gate and cally 4-valued: one for each member of
reference set pairs are all found, go {a,b,c} and one assigned to 0. (The
to step 5. Otherwise, insert a blank super/subscripts have no algebraic signifi-
column before the output columns. cance and make the broad arrow bus symbol

a) For each non-0 output, determine unnecessary.)
an AND class gate and reference
set pair and test input (install Steps 1 and 2 of Procedure 2.3-1 yield
in the new column) to yield it. the following truth table.
If satisfactory input and gate and p q r z
reference set pair combinations
cannot all be found, keep the best a a a a
ones, insert another blank column b b b b
before the previous one, then go c c c c
to step 4a. Otherwise, for each otherwise 0
test input given the original
inputs, determine an AND class Applying step 3, no "inversions" exist
gate and reference set pair to (e.g., a~c ^ ) for any input instance, so no
yield it. NOT class gates are needed.

5) For each output column and pair or Applying step 4, three non-0 outputs
other test tuples of rows having exist, so three AND class gates are needed.
non-0 outputs, determine a solving Any of an AND, INTERSECT, or ANDe gate
cascade of OR class gate and refer- yields the value common to their inputs.
ence set pairs. If satisfactory gate (Two OR class gates, the OR and UNION, also
and reference set pairs are all do this.) Arbitrarily select three
found, go to step 6. Otherwise, INTERSECT gates.
append a blank column to the truth
table. Value "a" is required at the output of

the INTERSECT gate assigned to the row
a) Similar to step 4a, solve for the where all inputs are equal to "a"; other-

test inputs but using OR class wise, 0 is. Assigning rgl={a} to the gate
gates. Failing, keep the best accomplishes this. Similarly assign
test sets, insert another blank accompli ths Simiarl aSig
column before the previous one, rg2={b} and rg3={c) to the INTERSECT gates
then go to step 5a. for the rows where z-b and z=c, respective-

ly.

6) Draw the circuit and/or write the
equations accordingly. By step 5, since no more than one AND

class gate output will be non-0 at any
- End of Procedure 2.3-1- time, any single 3-input OR class gate will
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suffice. (Three AND class gates, the AND, 2.4 A Way To Turn Mx Designs Into Hardware
INTERSECT, and ANDe would also serve as
well.) UNION is arbitrarily chosen. Hardware directly realizing the gates "

of F would be useful.* Two-valued Boolean
Only the values a, b, or c can appear algebra enjoys that position in small scale

at the inputs of the chosen UNION gate. ICs (integrated circuits). Some means for
Hence, it can have any reference set rgz realizing Mx-designs have been reported.9 .

provided that {a,b,ci is a subset of it. But one more method, table-lookup,** isArbitrarily choose rg=Ja,b,c}, simple yet exploits VLSICs (very large
scale ICs) for modest size reference sets

and input value cardinalities. Table-
Step 6 yields the following circuit, lookup, applied to the single-gate solution

corresponding to the expression, z (PA of Example 2.3-1 follows.
qAr) V (pAqAr) V (pAqAr).

Assume the single-gate solution in
rgl= {Example 2.3-1, a 3-input INTERSECT gate, is

- to be built in a 2-valued technology as
q indicated by the Example's first diagram.
r Then, since input r is a 3-wide bus and the

remaining two buses are wider, inputs p and
r g2= {bJ q can be reduced to 3-wide buses also.

Assume that the values a, b, and c are
z represented by the symbols 2, 5, and 7,

respectively, in binary arithmetic nota-
r = {a,b,c} tion. The value range of interest must

rg c} include the alphabet {2,5,71. With that as
the only constraint, arbitrarily choose
pC{0-71, qe{O-7}, and re0-7}.

Two methods of constructing table-
lookup hardware use PLAs (programmable log-
ic arrays) or memories. We arbitrarily

One is tempted to apply idempotency to select an EPROM (erasable, programmable
the expression for z, hoping to reduce it read-only memory).
to z = p/\qAr. Such an application of
idempotency is generally invalid, since Since the solution circuit has three
each gate has a different reference set. 3-wide bus inputs, an EPROM having at least
However, a single 3-input INTERSECT gate nine (3+3+3) address bits are needed. The
with rg = {a,b,c} allows z = pAqAr, output requires at least three bits for

reducing the previous circuit to the fol- non-null representation. Adopting a con-
lowing equivalent. vention where a null output is signified by

the most significant bit being a binary one
r. iab,c) requires that the output be increased to at

p least four bits. This implementation re-
q- __ - z quires two more output bits than suggested
r in Example 2.3-1 because that version as-

sumed the minimal physical configuration.
That is, for an n-valued output, no more

Had any AND-class gate other than than 1og2n signal lines are needed in a
INTERSECT been chosen, a single-gate solu- bus. g ned
tion would not have been possible. All
other gates would produce undesired outputs
given rg = {a,b,cl, and no other reference Since nine address bits and four out-

set would have sufficed. put bits are required, an EPROM with 512
4-bit words (a "2K" EPROM) is needed; well
within state-of-the-art technology. (Speed

Intuition suggested using a different is not considered in this implementation.)
reference set to arrive at the single-gate Tb' refore, an EPROM programmed as shown in
equivalent. Procedure 2.3-1 yielded a the following truth tables can directly
correct result, but not one having minimum realize the single gate solution to Example
Mx-gate count. Noticing earlier that the 2.3-1. (A generalization of this EPROM
truth table describes set-theoretic inter- method can serve in other Mx-networks as a
section under {a,b,c,) would have led
directly to z pAq/\r, an application of
the definition of INTERSECT. * A patent has been initiated.

" "- End of Example 2.3-1- ** Idea suggested by Dr. Richard K. Kunze,
Dept. of Defense, 24 August 5
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standard realization of an INTERSECT gate. Introduction to Logic, Academic Press,
This is known as a "standard cell" ap- 1972, p. 9.

proach. 
3

pah)3. FRANK, Edward H., and SPROULL, Robert
address output F., "Testing and Debugging Custom
in deci- in bi- Integrated Circuits," Computing
mal no- nary Surveys, Vol. 13, No. 4, December 1981,

p q r z tation notation pp. 425-451.

7 7 7 7 511 0111 4. MUKHOPADHYAY, Amar, "Complete Sets of
5 5 5 5 365 0101 Logic Primitives," Recent Developments
2 2 2 2 146 0010 in Switching Theory, Edited by Amar
other 0 other lxxx Mukhopadhyay, Academic Press, 1971, pp.

1-26.
3.0 Concl~sions

5. PETERSON, Ivars, "Can You Count on Your
A technology-independent, heterogene- Computer?," Science News, 31 July 1982,

ous, mix-valued logic design algebra denot- Vol. 122, No.5, pp. 72-75.
ed by "Mx" was discussed. As an algebra
intended for use mainly by logic design 6. RESCHER, Nicholas, Many-valued Loqic,
practitioners instead of only researchers, McGraw-Hill Book Company, 1969.
Mx is atypical. It has been applied where
I/O consists of values and/or sets of 7. RINE, David C., Editor, Computer S
values and/or variables. Function I/O Science and Multiple-Valued Logic,
appears attractive for preserving numeric Theory and Applications, North-Holland,

representation accuracy.
5 As examples, a) 1977.

The natural numbp-, e, may be operated on
as a token, saving numeric representation 8. ROSENBERG, Ivo G., "completeness proper-
until the last moment, and b) Division, ties of multiple-valued logic alge-
even though not in the proposed Mx-function bras," ibid., pp. 144-186.

set, may be carried through a network - a
fraction such as 1i/3 may be symbolized then 9. SINUTKO, Michael Jr., "A Mix-Valued
decimally represented at the last moment, Algebra for Combinatorial Digital Logic
reducing losses in precision due to recur- Design," Ph.D. Dissertation, University
sive operations. of Maryland, College Park, Maryland,

1982.

The behavior of Mx-gates depends upon
their reference sets (which may be dif- S
ferent among the Mx-gates) and input alpha-
bets (which may be different among the
inputs) for algebraic properties. Refer-
ence sets can be varied with time or other
parameters. Real-time changes to the na-
ture of an entire hardware circuit may
thereby be possible. Many algebraic pro-
perties of Mx remain to be explored.

Mx-gate-level minimization methods are
as yet unexplored. Their availability
could be useful to realization methods like
the one discussed in Section 2.4.

Completeness, associativity, and dis-
tributivity in the proposed Mx function set
are all conditional. Yet by Example 2.3-1

and others 9, Mx has been shown to be useful
in the design of logic circuits having 2-
or multi-valued signals and their buses.
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A MINIMIZATION METHOD FOR ENGINEERING ESTIMATION

Dr. Suchitra Dhar
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Sunnyvale, CA 94086

ABSTRACT H is the mxn measurement matrix and v is the m-
dimensional distortion on the measurement.

This paper obtains a convergence-criterion for
optimal estimation by constructing a mathematical The problem of filtering is to find recursively the

theory of ordering, based upon topological and best estimator xt such that the variance of
algebraic concepts. This theory provides the (xt -t  is minimized. Estimation theory has a S
model for minimizing the variance of error
associated with the estimators of a true state, vast literature. See, for example, references [I],

Thus it is a supplement to the classical Kalman t2j and E31. The following is a brief description

filtering approach. The theory is first des- of filtering.

cribed in mathematical terms, as an ordering There is a true physical state, e.g., the true
structure consisting of these entities: a non- position and velocity of a satellite in orbit. We
empty set of estimators, a binary relation of want to estimate chat true state as accurately as .
comparison between estimators, and a closed possible. In order to do so, the following model
binary operation that composes the estimators is assumed. Thr ,tate xt is a random variable that
in some prescribed fashion. A triple consist- ting f thse etitis i an rderng sructre, changes dynamically according to the above matrix
ing of these entities is an ordering structure, differential equation. The state itself is dis-
if and only if the axioms of weak order, asso- tre yniew stemti htdtrie
ciativity, monotonocity, and Archimedean turbed by noise w. G is the matrix that determines

property are satisfied. A weak representation how the noise is distributed.
theorem is stated regarding the existence of an It is assumed in classical Kalman filtering theory
order-preserving real-valued function on the that the measurements z are given as linear com-
set of estimators. A stronger version of that binations of the elements of the state-vector Htxt
theorem, constructing an actual function for a

special case, is demonstrated. The Archimedean plus some measurement noise vt. Noises cause the

convergence of estimators that is different measurement error.
from any numeric computation of variance, is The sense of approximation of the true state is
mathematically involved in the Representation taken to be the least-squares criterion. That is,
Theorem. The algorithm can be implemented by the variance of x t- t is minimized. The solutions
using recent Artificial intelligence techniques. of these equations can be implemented efficiently
Keywords: Algebra, axioms, relations in the computer. This is done recursively, that

is, from the estimate of the previous times, by up-
dating the estimate from the previous time to the

1. OBJECTIVE present time. [1) L2) [3)
This research aims to shed light on the engineer-
ing estimation theory, known as Kalman filtering, 3. THE BASIC CONCEPT
by a self-sufficient theory. This new approach OF MINIMIZATION OF THE PRESENT MODEL
is based on qualitative ordering, i.e., on ob-
taining a binary relation, derived from mathe- The concept of minimization is to choose the best
matical properties, estimator of a true state, among several candi-

dates, ,9,z, by comparing them two at a time with
2. BASIC FILTERING a representation of qualitative ordering between

Filtering is done with the model described by the them. So the conventional minimization of error-
following enuations. variance is transformed into a relational form of

ordering of any two estimators. The ordering of 0
xt= F t-lt-1 + Gt-1wt-I (I) two variables regarding their variances is now con-

sidered.
*t zH x + v (2)

t t L  4. FORMULATION OF THE THEORY
where x is the n-dimensional state-vector, F is
the nxn state transition matrix, G is the nxp 4.1. Elements
noise matrix, w is the p-dimensional noise vec- The theo-y is formulated in terms of the set A,
tor, z is the m-dimensional measurement vector.
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consisting of pairs of estimators and their Differentiating J and setting the result to zero
weights. There are three primitives--a nonempty yields
set A, a binary relation of comparison >-on A, HTHx=HTz (7)
and a closed binary operation o that maps AxA into
A. The interpretation is that A is a set of en- The second derivative of J, with respect to x, is
tities that exhibit the attribute in question positive semidefinite; and thus the equation (7)

(in our case, variance). holds if and only does, indeed, define a minimum. When H TH possesses S
if exhibits, in some prescribed qualitative way, an inverse, the least squares estimate is
at least as much of the attribute a does, and T-T
x o y is an entity in A that is obtained by com- X (H H)IHz (8)
posing and y is some specific way. For the sake The above least-squares derivation is based on the
of notational convenience, from now on we shall assumption that all measurements z are of equal
use x and y for the estimators 2 and . quality. If, in fact, it is known that it is rea-

4.2. Definitions sonable to apply different weights to the various -
measurements comprising z, the least squares esti-

Let A be a nonempty set of estimators, a binary mator should be appropriately modified. If the
relation, on A, and o a closed binary operation on ith measurement zi has a relative weight of Wi , it
AxA. The triple <A, >, o> is an extensive i
structure iff the following four axioms are satis- is reasonable to construct a diagonal matrix W with

fied for all elements in A. W , W 2 ' n on the diagonal. In that case, the

(1) Weak order: <A,>, is a weak order. That is, least squares estimate is
__ is a reflexive, transitive and connected x=(HTWH)IHTwz (9)
relation.

(2) ;-sociativity: a o (b o c)r..#(a o b) o c. For the special case under consideration, weights
(3) M~otonocity: a b iff a o cb o c iff are taken to be inverse of the variance GT2, esti-

o a>./c o b, for some c in A. mators are scalar, o (the closed binary operation
(4) Arcnimedean: If a> b, then for any c,d in on A) is interpreted as weighted average of estima-

A, there exists a positive integer n such tors, and the binary relation > is interpreted as
that na o c ,.nb o d, where na is defined in- minimizing the variance of error associated with
ductively as : la=a, (n+l)a = na o a. each estimator. S

5. EXAMPLE OF ORDERING BY AXIOMS Given the above interpretation, the following cal-

A special case of estimator-weights pairs, where culations show how the closed operation yields a. - -

the weight is interpreted as the inverse of the new estimator.

variance (Gf2) of the scalar estimator, is pre- H V

sented next in order to show that the qualitative z=  I
axioms of the definition in Sec.4.2 can be veri- + (10)fied. 21 1 (.0

5.1. Weighted Least Squares Estimate 2
As shown in Sec.2, filtering is a form of recursive vi is N(O, 2)
least squares estimate. This section briefly ex- v2 is N(O, 

2 )

plains that least squares method, yielding the con- -T T
cept of weights. x3 =(H WH)-IH W

The linear least squares problem involves using a in -"'I - - 5set of measurements z, which are linearly related =I 1l l W 0 -
to the unknown quantities x by the expression

whrz=Hx + v (3) 0. W2 1 0
where v is a vector of measurement noise. The goal IW w F ]is to find an estimate of the unknown, denoted by =(W1 + W2)- W W2]
x,y or z. Given the vector difference z-Hx, we x .- '. .
wish to find the x that minimizes tne sum of the l21
squares of the elements of z-Hx. The vector inner =Wx +W2 x2 W W 2
product generates the sum of the squares of a vec- x +
tor. Thus, the scalar cost function J is mini- W1 

+ W2  W1 
+ W 2  1 WI 

+ W 2  2

mized where 2 W 1 2 W2 2

J=-Hx) (zH 2 + 2 +I~ WX 1  W2Minimization of a scalar, with respect to a vector, T W di nh o n
is obtained when The W3 is derived in the following way:

0 (5) W3  2 +( W 2
and the Hessian of ,j is positive semidefinite '3 ( W 2  

(..W)W

2 1 2 (6) ......

'.[°" 

, 

"(6)

339

%S
"] '. .. " - .. .

o~.............. . .. •...... ,.. -. --.... . ......... . .- ,. . ..



W +W (12) and (b,Wb) o (cW c ) also yields the weight W +W

W W+W2 c b c
+ 2 so, (a,Wa) >.(b,Wb) iff (aWa) o (c,Wc )(W1+W2 ) (W1 +W2 ) >(bWb) o (c,Wc ) (17)

Hence, a third element of the set A, where the This is shown to hold by the fact that

elements are estimator-weight pairs, is derived by W + Wb + Wc iff Wa>Wb (18)
the concatenation of two other elements in the fol- + Wc -.'.'- -'
lowing way: This certainly (and trivially) holds for real -.low ng wa : W l. + W~2 2 numbers.-" "-.- ,
(x1,W1) o (x2W292 ) 

=  W + W 2  W +W (13) (4) Archimedean. Before we verify this property,

let us adopt some conventions. . ,
5.2. Verification of the Axioms Let (a, Wa) (bWb) mean that a is better than b. 9

Using the special case of estimator-weight pairs , In this case, 2of a (6 2 of b. That is, L -..< L--
the following elementary calculations show that the 'Wa W b
axioms are verified in that case. Since these quantities are always positive, one

(1) Weak order. This property is trivially veri- can take reciprocals.
fied in the case of estimator-weights pairs, since W > W
weightsare real numbers, and all real numbers can a >, b
be weakly ordered, i.e., they are reflexive, tran- Therefore,
sitive, and connected. (aWa b  a  b (19)

(2) Associativity. The following elementary cal- ( a (W = W
culations with the estimator-weight pairs will show The above is our hypothesis.
that both sides are qualitatively equivalent, i.e., According to the formulation of the Archimedean
t-- holds. Let us adopt the convention that the property, there is no hypothesis about (c,W ) and
estimators be called a,b,c---and their respective c
weights be called Wa ,WbWc, etc. Then the Associ- (d,Wd) except that they are also estimator-weight

ativity axiom takes the following form: pairs. The conclusion that we want to draw is
that there exists an n such that

(a,Wa) o ((b,Wb) o (C,Wc)) n(aWa) o (C,Wc) n(b,Wb) o (d,Wd) (20)

,-,((a,W a ) o (b,Wb)) o (cWc) (14) By elementary calculations, it can be shown that

n(a,W a (an W ) (21)
First, we note the results of concatenation on the a
left-hand side. / So, (a,n Wa) o (C,Wc) >, (b,n Wb ) o (dWd) (22)

_bb + Wcc Now we concatenate the left-hand side of equation S
(b,Wb) o (c, C) = W b+Wc ,Wb + WC (22).

W b+ W Wfn(W ) a + W c
(a,Wa) o b c , Wb + = n(W) ) + W (23)a\ + n(W a ) + W .C-..-

Wbcca c
(Waa + Wbb +Wcc Wa + Wb + W (15) and also the right-hand side,

\ Wa+Wb+W c (n(Wb) b + Wd d (24) "S

Next, we check the results on the other side to see 
n (Wb ) + Wd n(Wb)+Wd"

if they are equivalent. Next we have to prove that there exists an n such
/Wa that the weight of the left-hand side is quantita-
Waa + Wbb) tively greater than the weight of the right-hand

(a,Wa) o (bWb) Wa +Wb Wa + Wb side, given the hypothesis Wa >Wb. a + "->

Wa+Wb The only facts about numbers that we need to prove
Wa b , Wa + Wb) 0 (c,Wc) this is that the real numbers form an Archimedean
Wa+W b  system, and the weights are real numbers. So, the

Waa + Wbb + Wc Archimedean property of weighted estimation is a .- -

a Wc , W + W  + W  (16) direct (and trivial) consequence of the Archimede-

* W b_ c a ucb an property of real numbers.

Therefore, associativity holds. 6. CONSEQUENCES OF THE AXIOMS
(3) Monotonocity. It is noted from sec.5.1 that 6.1. Representation Theorem .0
when two elements of the set A are concatenated,
their weights are added. In the terms of estima- A somewhat weak assertion is made by the following
tor-weight pairs, montonocity is verified by not- representation theorem, which follows from the

ing that axioms in general. Several versions of this theo- - .

W + c W rem can be found in Krantz, Luce, Suppes, Tversky
(a,Wa) o (c,Wc) W a + Wc , 43. The following is a formulation: <A, .. ,o> --

\W + W is an extensive structure iff there exists a real-
a cvalued function R on A R:A-41R) such that for
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all xy in A techniques.

3) If the pairs satisfy the axioms, they yield a ' .(i)x yiff (x) ,R(y)•"winner", the optimal estimator, after comparing

(ii)R(x o y)= R(x) + R(y). the pairs two at a time. Note that this comparison
does not require prior knowledge of the ordering

That is, R is a homomorphism from(A, ,o> onto an betweenany two estimators. Assume that the order-
ordered additivesemigroup of reals in which is ing holds one particular way, and the satisfaction
the preimage of / . of the axioms will show whether that particular

The Archimedean property has been formulated in way is correct or not.
terms of multiple-valued logic (Katz [5jL6]), 4) Once the optimal estimator is determined, check
while we use general topology and algebra. The for convergence.
current paper is a thoroughly revised version of
Dhar '71. 8. POSSIBLE OBJECTION TO THE ALGORITHM

6.2. Stronger Cunsequence of the Axioms One immediately anticipated objection to this algo-
rithm is that a closed extensive structure gener-

The Representation Theorem, as stated above, is ates an infinite number of elements. That can be
trivial in the particular case of weights of scalar countered by selecting estimators according to
estimators. We have achieved more than what the some of their properties derived from the Kalman
theorem states--we have explicitly constructed the filtering procedure itself. More about this pro-
real-valued function R, where R is the weight of cess will be expounded in the later development of
the estimator. Note that the ve-Tfication of the this work.
axioms have shown that the verified axioms imply •
the existence and construction of the R, and not 9. A VARIATION ON THE ALGORITHM
vice versa. We noted that the above algorithm does not depend

6.3. Archimedean Convergence on the ordering to be known prior to embarking on
the process. The ordering is determined by the

The general version of the Archimedean convergence, LISP-processing of qualitative properties. This
found in C41, is applicable in this case too. A determination and convergence are two primary out-
rough sketch of the concept of convergence is as comes of the algorithm. But the algorithm can be
follows: Select any x in A, as the unit. For any used, with some variation, for other purposes too.
other y in A, and for any positive integer n, the For example, take the case where one is in erested
Archimedean axiom guarantees that there is an in- in estimating the scalar random variable x , given
teger, for which mx>, ny. Let mn be the least in- x (with zero mean). In this case, clearly, the

teger for which this is true. As n is selected to best non-linear estimator under any criterion will
be larger and larger, the approximation gets closer be '2. One may still want to know the nature of a
and closer, and, if the limit exists, we define linear least-squares estimator.
R(y) = lim mn /n

/ 3Ex x

7. ALGORITHM ( Ex2 + Ex2  (25)

The following is an algorithm for obtaining the Ex" 2
desired results: wherev Q x 2 : Ex
1) Take pairs of estimator-weights (assumed to be Ex
yielded by previous calculations) as elements of , ( =O(x +3 (26) .. .
the set A. Note that the weight of an estimator S

does not have to be inverse variance; it can be This can be proved by using 1) orthogonality
interpreted in many other ways, such as standard (x2(2)) .L x (27)
deviation.
Another way of considering weights is to under- and 2) unbiassedness
stand that the same random variable can be mini- E (X2) = Ex2  (29)
mized by linear or nonlinear estimators, thus
yielding different concepts of weights. For exam- So, one knows the prior ordering in this case: x
ple, a linear estimator (of, say, a quadratic ran- is super o x. One may still run the above al- S

dom variable) is a linear function of observations. gorithm, in order to figure out by the representa-
The errors that are estimated by such an estimator tion, how much the measure of one is better than
are penalized linearly; the weights are the same that oTthther. But, one can easily run into
whether the error is large or small. On the other difficulty. The connectedness property of the weak
hand, if the same random variable is estimated by a order axiom demands that any two elements of the
nonlinear estimator which is a nonlinear function set A can be ordered. If only ne ordering between
of observations, then small errors are weighted two given elements of the set are known, then how
differently than large errors. Such considerations is one to order, say, x4 and x8 , which may also be
lead to the formation of different optimization members of the same set? One way of avoiding this
criteria. More about this will be discussed in difficulty is to introduce a new step in the algo-
sec. 9. rithm, namely, to perform some calculations on the

2) Whatever the interpretation of weight is, each estimators to bring them as close to the initial
of the qualitative axioms i s verified by using ordering as possible, so that the winner that is
LISP-based program ani Artificial Intelligence

'-$0
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known from the beginning, (x) can still be
ordered with any others, and thus make all other
orderings known.

10. RELATION TO MULTIPLE-VALUED LOGIC

We noted in sec. 6.1 that the Archimedean property -
has been formulated by Katz [5.[61, in terms of
multiple-valued logic. Since the step 2) of the
algorithm presented in sec. 7 is the computerized
verification of axioms, an extension of such a
program will also enable one to obtain the conse-
quences related to multiple-valued logic.
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cr~j THE OPTIMI1ZATION OF GHC OVER GF(p)

by Ping Dong

Department of Information Engineering
Northwest Telecommunication Engineering Institute

li'an, People's Riepublic of China

Abstract processing the spectral coefficients obtained from
4 these trans forms. For the reason of simplicity, let

This paper deals with the obtaining and opti- us start with p=2 , i.e. the case of the Boolean
mization of the Generalized Reed-Muller Canonical functions.
form (GI.E) of p-valued logical functions. The basic
ideas involved are the linear transforms of logical Linear Transform over GF(2) and Its Fast Algorithm
functions over GF(p) and the processing of the
spectra thus obtained.The basic concern is with the In the 2' dimension linear space over GF(2),a
convenience of the calculation rather than the ana- linear transform matrix can be defined as follows:
lyticity of the process, so that they can be easily
implemented using a digital computer. riO

G, 11 1 0 ; ,= GjX Gn n-2,3,... (2)

Introduction
where "X(" is Kronecker product which is defined as:

let f(x,0,xlg... ,xn..) be a p-valued logical
function with n argumen a, where xje[O,1,...,p-lj A XB -(aiB)
and p be a prime. It can be regarded as an element
of ring F~o'#-,nl over GF(p), i.e. Therefore, Eq.(2) can be rewritten as:

-wn- n-1 0
-;otl ...x-) s(w)kw t... j Gol; GnI [G n-1,2,... (3

whee (od ~) 1)It is easy to see that : (n >_ 1) is a trian-
wees(w)rE(O,1J, ikx+k pk(GF(p) and wk the k'th gular matrix with diagonal elements "1l". Therefore .

*element of w in p-ary number expansion(k-O,...,n-1). Gn is nonsingular. In addition, because

For a definite set of pkoEq.(i) is ~que for
every p-valued function f(x 0 , 1 .. ,,,. 1  ,anl i GIG.
called the Generalized Reed-Rller Canonical form11 11 01
(GIC) offxx ... ,x 1) and the Reed-Muller Ca-

*nonical formT~C fOr'n2. therefore 01 G1. Suppose Gl Gk, then we have

*These form of logical functions find impor- (GkO'0fGko0
tant applications in the analysis and synthesis of Gk.,Gk+l= l i i
logical ff~~j~n the error detection of logic- 1G GkJGk Gk
&I a etwork Here two problems are involved:

1) Given a p-valued logical function (usually ['2k 0 1j
its truth table), how to find its GHC expansion co- G 1 I ' 2k.1
efficients s(w); 1o 0~ 1k

2) The coefficients s(w) would be differentGk)2
for different set Of pk(k.O, ...,n-1). Thus, for the9
given function f(x0 ,x11 ...,x ), how to find the where 1

2 k and I k+l are identity matrices of order
optimized set Of Pk (the Op-imized polarity for
p-2), so that the expansion is optimal under given 2 k and 2k1respectively. So we see that

Teetopobeen discussed in ~ -
0~

previous pbiaon 11"J tepeetppr A conclusion can be drawn from the above that for
they are studied by using the linear transform and any n 'X1, GgI GAO.
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For apy given vector F in the 2n dimension For any logical function f(x 0 ,x 1 ,...xn_..) of

*linear space over GF(2), a linear transform pair can n ruetw can properly arrange its values to

be dfind asfolows for a ectr in2 ndimnsio liearspace of F(2)

Fq(4 the (4) where kn 1 ~ x

*Hereafter we shall call S in q4)tescra
vector of F under the linear transform Gn

Now we note that the expression f(x) in ...
From Eq.(2), we at once get a fast recurrence (6') is just the 144C expansion Eq.(l) of (,.'

algorithm of this linear transform. xn-.1 ) for p- 2  An0h iertanfr aro

(4) enables US to find rapidly the RM4 expansion
Algorithm A: coefficients for any given logical function.0

2n-1 point transform
LF(or S) ______________ S(or F) The Otimization Procedure

2lpoint tra-sform n
We know that for any p E 0,i,...,2n-1) and

for any logical functio f 9hereafter we shall
2n dimension algorithm flow graph use f(x) instead of f(x ,..x ) for the reason

of simplicity), we always haven-l

where .j..denotes modulo-2 addition. f(x) =f(xD Op 0 4p 0 ) (7)

In addition to this, it is well known that for where "(P" means diadic addition.
a matrix obtained from Froa~ecker product, a fast
algorithm always existsL 'I k. By the decomposition The optimization can be achieved by the fol-
of G9an alternative fast algorithm can be oh- lowing two steps:
tamned. 1) Find a optimal polarity vector p , such

that the expansion of f(xep,) is optimal Rner gi-
Algorithm A': yen criterion;

SOWx - f(x); 2) Polarize the arguments of f(x) according
to p0 . Since for the k'th component of p0

aijt2~ ai(2t) 0 ai_1(2t+i); ~ ~ if p ' 0 thnxk-* X = NO P~k

s(w) - a n(w) ifkk 1  te k x kk

*where i -1,
2 ,..:,n; t . 0,1,...,2-1-1.; k - 0,1....,n-1.

*xw This polarization of arguments will be equivalent

Now we are going to derive the analytic form to diadic addition of p0 and x, and by F4.(7, we .-

of Eq. (4) Firstly we note that for the w'th ele- obtain the optimal R4C expansion of f(x). -

ment of S in Eq. (43, we have '
Firstly we consider the case IpI -1. Without

f 1 n-1loss of generality, we let pk - 1 and p1 - 0(1.4k).
0, 1'..w2-1 - .. fx We note that for any a,b( 0,i)

n (mod 2) (6) a1  a - ~i -
w-0,1,...,2 -_1 l, b-i 1 8@6, b-i

where wx -ww 1'...vw"' 2) a
0 1 n-i' b -bb

m

* and

ri1 , forzxk 0 Therefore

K o 0k 1 k- k kI n-i

Similarly, for the x'th element of F we have - LOXI.w-(w$ )xKwx~l
0 i k-i k k k+1 n-i

A~x) -~ s(w)xV (mod 2) (61)-

*'w-.W _x x 0,i...2

here the definition of Xw is similar to that of wx. -w wkw
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So that, by Eq. (6) we have Optimization Procedure
for Some Special Classes of Boolean Functions

_-1 2 n-1
s (w) f f(xep)wv -x f(x)wxP (mod 2) Here the basic thought is to reduce the search-
SL ~ ing range of the oitimal polarity vector pO. We now

2n-l choose the optimal criterion to be the m-inimum of
f(x)(wzk(wep)x) (mod 2) the R4C expansion terms.

2n- 3 2 n - Linear Functions and Complements of Linear Functions
" f(x}' .Yo f(x)(wep)1  (mod 2)
x=O A logical function is said to be a linear func-

tion (or the complement of a linear function), if
- s(w)EDSC w p) (8) and only if there exist numbers ci eO, 11; i .O,

Wk3 ...,n-1, such that

We note that s(uep) is only a diadic transla- n-i
tion of s(w) and that ipi =1. Also we note that in f(x) - Tcixi (mod 2, (9)
Lo, 2n ) wk takes 0 or 1 alternatively with a length i-O

2 n- l -k We divide interval LO, 2 n) into 2k+
l subin- (or f(x) = I n-i

. e iv (r ~x -1 b cx (mod 2) )(9')
tervals with the same length 2 n

- l which are de- i-O
noted by I I I2, k+l- Look at the subinterval
I . If 1 is oad, then wk-O over this subinterval, Obviously for a linear function f(x), E.-(9)
tierefore wk 1. By Eq. (8) itself is one of the optimal jOC expansion. It is

easy to verify that the complement of any even num-
sp(w ) = I Elw93(wOP)I ber of the arguments which appear in Eq.(9) (i.e.

p wEh s~ 1  swe P1 wE 1  ci ; 0) is an optimal polarization. For the same

" 5 i reason, the complement of any odd number of the ar-L guments in Eq.(9') is an optimal polarization for a

complement of linear function.
If 1 is even, then wk - I over this subinterval, S

therefore Uk = 0. So that Partially Self-dual and Pataliy Anti-self-dualFunctions"

sP(') WE I I ) 'M 11 A Boolean function is said to be partially self-

dual (or nartially anti-self-dual) if and only if
Now we obtain a basic algorithm for finding sp(w) there exists XoE(O,...,2n-I , such that

from s(w) when IP -1: -1:
f(x)- f(, (10)

Algorithm B: When the k'th bit of p is 1 and the (or f(x) : f(x XOC ) ) (10')
others are 0 (k 0 1 ,...,n-l), divide the interval
L0, 2n ) of w into 2 + 1 e'qual sections which are de- And x0 here is called a self-duality point (anti- - - -
noted respectively by Ii,12,...,12k+l. To obtain self-duality f4 nt) for f(x).
s (w) from s(w), we need only to add each section KarpuvskyL pointed out that the set of all
with even subscript to its previous section with anti-self-duality points for any Boolean function
odd subscript. is an Abelian group, and the number of such points

(the order of the group) is a power of 2. We can
For any given p, let jplj = 1, p' = a pl. By prove that (see Appendix) the union of the all

I±4.(8) we have anti-self-duality point set B and the all self-dua-
lity point ret A is an Abelian broup, so that its

Sp(w) = sp,(w) ? iksp,(w D pi) order is also a power of 2.

Therefore, once we obtain the RMC coefficients of We note that if we take a polarity vector Pa
polarity p, the 14C coefficients of polarity p' from the set A of anti-self-duality points, the WMC
with Ip' ( pl = 1 can be easily obtained by algo- coefficients are invariant (because in this case, S
rithm B. Now we have the following optimization we have f(x) - f(x T pa)) , and if we take a polari-
procedure: ty vector pb from the set B of self-duality points,

since f(x & pb) -I f(x) and by Eq.(2), the spec-
1). For the given function F, compute its F&4C co- trum for a constant 1 is 8(w) ((w) = 1 for w - 0

efficients S by algorithm A or A'- and 8(w) = 0 for w # 0). By the linearity of the
2). Arrange polarity vectors 1 to 2 n- in Gray transform, we have: If Pb is a self-duaiity point

code, and find 4C coefficients for all the polarity of f(x), then we have its spectrum
vectors by algorithm B;

3. According to the given criterion (criteria), s (w) = 5(w) D s(w)
find out the optimal coefficients from all those pb
obtained from 2). The correspondin6 expansion of i.e. the first element of s (w) is a complement of
f(x ® pO) can be written out according to Eq.(6'), () d e ri ia S ff h
and at the same time we get p?; s(w) and the others invariant. So, if f(x) has

4). Polarize the arguments In the obtained expan- self-duality(anti-self-duality) points, we have the
sion according to PO, and this gives us the optimal following optimization procedure:
MUC expansion of f(x).
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1) Decompose the group P of all polarity vec- to point out that all the three classes of func-
tore into a direct sum of two subgroups H and V tions discussed irL this section as well as their
with V - ACB(This can always be done for the Abeli- self-duality(or anti-self-duality) points and sym-
an group P with operator e ): metric points cap be easily determined by means of

Walsh transform.L12,14]

PH V ....

2) Select polarity vectors from H and find Generalization to the n-valued Logical Functions
the optimal one which gives the minimum weight of
S. Denote this polarity vector by pO*; The linear transform matrix over GF(p) can be

defined as follows:
* 3) If s o() - 0, then B will be the

P°P 1 0 0 0
set of optimal polarity vectors. Otherwise poT A 1 2
will be the set of optimal polarity vectors and G [ 20 21 22 ... 2 P

-

spo*(O ) be set to 0. p ..................IfsV( - 2
m , 

the above procedure will reduce 
!
(
p-

1) (p
1)1 (P-i) 2  

... (P-i)P-
1

the amount of operation to 1/20 of the original and

procedure. An extreme condition is when m - n, this G1  Gp; Gn- G XG n-2,3,... (12)
is the case of linear functions. P pn

i where "X" means Kronecker product of matrices. •
It can be proved that if the weight jjf I of

the given function is an odd number, then no self- It is easy to verify that the inverse of G is
duality(or anti-self-duality) point will exist (ex- P

cept x - 0). It is easy to see that jjfl be odd if r 1 0 0 ... 0
and only if s(2 n-1 ) - 1. In this case, if we use I 0 -l

p-2  
-2p-

2 
... -(p-l)

p-2

U(x) 0 f(x) instead of f(x) and note that the cor- --. .p-.responding spectrum will become 1 4) s(w), then the G -1................

above procedure is still applicable. p 0 -i 2 ... -(
'-I -1 -1 ..-

Partially Symmetric Functions
By the properties of the Kronecker product of

A Boolean function is said to be partially matrices, we know that
symmetric if and only if there exist xi and xj(i,j -1 -1 ..
0 O,...,n-l), such that for any set of xOxl...xn_ 1  Gn 

- 
G pX Gn-l n - 2,3,... (13)

f(...xi...xj.,.) - f(...xj...xi...) (11) The linear transform pair can be defined as -

If the above relation is true for every pair rF = GnS
of xi and xj, then f(x) is symmetric. 1  

(14)

When a function is partially symmetric with n

respect to xi and xj, we need only consider the If we choose F to be the truth table of the p-
combination 00, 01, 11 or 00, 10, 11 of xi and xj. valued logical function f(x), the S will be the "
The function will remain unchanged when we substi- corresponding generalized Reed-.,ller expansion co- -
tute 1,0 for 0,1 into xixi. So that we neEd only efficients of f(x). By using the decomposition of
to find out (2+1)2n-2 spectra instead of 2 . Gener- the matrix generated by Kronecker productLll, we
ally speaking, if f(x) is symmetric with resp

ec
t to have the following fast algorithm

k arguments, we need only to find out (k+1)2n-
spectra. When k - n(i.e. f(x) is symmetric), we Algorithm C:
need to find out n+l MC's, this agrees with the
result in [133. ao(x) - f(x)

We note that when the k symmetric arguments ajpt+sp
n- l

) = Z ska~il(tp4k) (mod p) (15)
are removed, previous optimization procedure is k-O
still valid for the left n-k arguments. The optimi- s(w) - an(w)
zation procedure for partially symmetric functions where n
is as follows: w x - Ol...,pn-l; i - 1,2,...,; .-

I) Arrange the polarity vectors corresponding S - O ... p-l; t , p"-.
to the left n-k arguments in Gray code; T

2) Let one of the k arguments be I and the The g1k in Eq.(l5) is the seth row and k'th -
others be 0; two of those be- and the others be 0; column element of Gp or Gp respectively correspond-
...etc., each time we get 2 n spectra. Find out inp to the forward or inverse tranform.
the spectrum which has minimum weight, and this will i t he aro n s rso
be the desired MC expansion coefficients. In order that the translation of the arguments

be converted into the processing of the spectrum,
At the end of this section, it is necessary a translation transform can be defined. Since the
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translation of the arguments is equivalent to the then f(x) is said to be a 4uasi-self -dual function
permutation of F, let n - 1 and the permutation ma- with a quasi-self-duality point a.
trix be P, then

It is easy to verify that for p >
2 

the follow-
s= GIlFF. in& relation still exists

Suppose Sp could be obtained from S by a linear 1 - 8(w) 6
transform, i.e.

Therefore, for the quasi-self-duality point p of a
S p - 4G 1 F GI PF 16) quasi-self-dual function f(x) we have

If Eq.(16) holds for any F, we have Sp(w) - p0 8(w) S s(w)

-1 GiP Ln addition, we can prove that the set of all -

quasi-self-duality points is an Abelian group(with •
therefore respect to p-ary addition), and the order of this

group is a power of p. In the same way as in p.
2
,

G1PGI (17) this offers some convenience for finding the opti-
mal GMC. The details are somewhat the same as those

When n >I, it can be proved that thze transform ma- of p-
2
. The identification of the 4uasi-self-dual

trix correspunding to the translation of the k'th function and the determination of its 4uasi-self-
argument is points can be achieved by means of Chrestenson

transiorm. 0
S - kxQ I n-k-l (18)

p p
Conclusion

where Q is the transform matrix for n = 1; I is
pk In this paper we give out some procedures for

an identity matrix of order p k; "X" is Kronecker finding the optimal GMC expansions for p-valued
product. logical functions(p >2). The spectrum of a logical

It can be proved that even the orders of the function under our transform is just its GMC expan- •
three matrices ir, Eq.(18) are different, the matrix sion coefficients. The optimal GMC is obtained by
4k can still be decomposcd. The algorithm based on processing these spectra. For p-

2
, the amount of

this decomposition is as follows: operation for optimization is (2 n-i)2n
-I 

mod 2 addi-
tions for a function of n arguments, and this can

Algorithm D: be reduced a great dealfor some special classes of

k functions. At the same time, the methods here avoid
1) If k 0 n-i, then a(tspk*l)s(tpn-k-l+s) completely the manipulation of character, and the

t-O,i,...,pk+-1i; sO l ...,pn-k-l-l Boolean diffrence of a function. So that they can
be easily realized by using of a computer. The li-

If k =n-i, then a1 (t) =5(t) mitation that p is a prime is only out of the con-

t O,l,...,pn-i venience of the computation. Theoretically it is

P-i valid for any finite field. All procedures here
2) a2 (t~spn-i) 4skal(tptk) (mod p) (19) have been tested using an Apple II micro-computer.

k-O Some examples are given in Appendix.t-OI,...,p
n - 

-i{ s.0, ,...,p-I

3) If k*O, then Sp(t+spn- - a2 (tp k+s)
n-k k Acknowledt.ements

if k=O, then s (t) = a (t) The author wishes to express his thank to
p 2 Professor Changxin Fan for his valuable sugestions.
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Appendix(mod 3).

I. For a Boolean function f(x), let A denote the
set of all self-duality points, B the set of all
anti-self-duality points and V -Aki B.

For any v1, 2 V
1) If vj,v 2EA, then for any X ,,., 1

f (x 0vi 6)v 2 ) = f (x G)v1) f~

i.e.v V E 2 B, so that v1 ®B V E
2)I vE, 1 B, then for any E01.,2_

f (x 0V a)V2 ) f f(x(D v1 ) .f(x)

i.e. v 9 v CA, so that v1 (D VFV;
3) If v1,92EB, then for any xe(O,i ,.*.,2 _1~

f(x 0V (DV2 ) - f (x (Dv) = f (x)

1~e v D v EB, so that v1 (D V EV.

Sumarize all the three points above, it can be
seen that V is closed for the operation CD. Obvious-
ly V is a subset of X- (0,1.... ,2 n..l1 , and the
latter is a finite group for(D. So V is a subgroup
of X, and its order is a power of 2.

11. Examples of optimization.

Example 1:
Let n .,p=2 and F - (10001110). By Eq.(5)

we find that S -(11110110). The procedure for find-
ing the optimal coefficients and optimal polarity is
as follows:

14-
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RELATIONS AMOlNG SYSTEM DIAG(OSIS

IMODELS WITH THREE-VALUED TEST OUTCOMES

Jon T. Butler*

Department of Electrical Engineering
and Computer Science

Northwestern University

Evanston, IL 60201

ABSTRACT test results take on a third value, 2, corres-

Three models of multiprocessing systems are ponding to a missing test result.
compared on the tasis of the accuracy of the diag- S
nosis of faulty processors. One model is the con- In this paper, a three-valued system is
ventional system with binary-valued test outcomes considered in which 0 and 1 represent pass and
(pass and fail). The other models have three- fail, as before, while the third value, 0', denotes
valued test outcomes, where the third value is an incorrect pass outcome. Such outcomes occur
either a missing or an incorrect test result. it when a fault-free processor tests an intermittently
is shown that, in general multiprocessing systems, faulty processor that happens to be fault-free at
there is a hierarchy among the three models with the time the test is applied. As with test results
respect to diagnosability. However, in systems produced by faulty processors and missing test re- •
where no two processors test each other, the models sults, O' results complicate the diagnosis. In
are on par, and established criteria for diagno- fact, the presence of such results is especially
sability in binary systems can be used in both of troublesome. It is shown, for example, that sys-
the three-valued systems. tems exist in which an accurate diagnosis can pro-

ceed if some number, 7, of the test results are
missing, while the presence of T incorrect results,
on the other hand, does = allow an accurate diag- - -

I. I TRODUCTION. nosi s. 0

Fault tolerance in a multiprocessing system This paper focuses on the relationship between
can be achieved by allowing processors to test each the two three-valued systems. A set of systems
other. Such a system can be modeled as a directed which can tolerate the same number of incorrect as
graph, where nodes represent processors and arcs missing test results is shown. Further, a rela-
represent tests. This representation, introduced by tionship between the two three-valued systems and
Preparata, Metze, and Chien [1] in 1967, has re- conventional binary systems is developed.
ceived considerable attention. Hakimi and Amin [2]
derived a complete characterizaton of the tests
(arcs) needed to guarantee the unique identifica- II. BACKGRO[]D.
tion of a minimum number of faulty nodes. Mallela
and Masson [3,1] extended th, model to include A system is a directed graph where the set of
intermittent, as well as permanent failures. Other nodes u0, uI1 ... ,u I represents processors and

" studies have focused on an alternative form of test the arcs represent tests between processors. In
invalidation [5], various diagnosis strategies particular, u. tests u if there exists a directed
[6,7,8,9,10], and a model in which test outcomes arc from u. t o u . T e test outcome is 0 or I if
are generated from a comparison of job results the test result s pass or fail, respectively, and
[11]. is 2 if the test outcome is mssi.ng.

In most studies, it is assumed that the test If a processor is permanently faulty, it will
outcomes are binary-valued, with 0 and 1 repre- fail all tests of it by fault-free processors and
senting pass and fail, respectively. Recently, the will produce either a 0 or 1 result for all tests
model has been extended to accommodate test out- it applies to other processors. An intermittently
comes which are not available due to incomplete faulty processor ui may, on the other hand, pass a
testing or to faulty transmission [12]. T:iat is, test by a fault-free processor, since the test may

have been applied when u. was fault-free. Such a
*Research supported in part by a National Research test result will be denoted as an incorrect pass
Council Senior Postdoctoral Assoniateship and in and represented as 0'. It should be noted that
part by National Science Foundation Grant during diagnosis, a 0' is seen as a 0. Further, an
ECS-8203276. intermittently faulty processor will produce
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either a 0 or 1 test result for all processors it III. RELATIONSHIP BETWEEN DIAGNOSABILITY OF GEERAL
tests. SYSTEMS.

As an example, consider Fig. 1, which shows a In this section, we are interested in deter-
three-processor system for two cases, mining the relation between the various measures of

system diagnosis. For example, we are interested
. a single permanently faulty processor (Fig. in how a system's tolerance to incorrect test re-

la) and suits determines its tolerance to missing results.
2. a single intermittently faulty processor From the previous section, we can write,

(Fig. 1b). . . .. .

Observation 1: There exists a system (S) which
For e. case, a possible a set of test outcomes is t' -diagnosable but not t'6,--diagnosable,

for t T 2 1.
0 Fault-free

Fal-e This result indicates that incorrect information is
Intermittently Faulty more debilitating than the same amount of missing

information. In effect, incorrect pass test re-
Permanently Faulty sults introduc-' a degree of ambiguity not reali-

Uo a tests b Uo 0zable by the same n,.mber of missing test results.

I From the convers point o^ view, we have

a b Theorem 1: If S is t'6-diagnosable, then S is

0 o /i-diagnosable, for t',r > 1.

.roof: See Appendix I.0 0
Thus, from Theorem 1, it follows that if t' inter-

u 2Ul mittently and permanently faulty processors can be
2 01 U2 0 uniquely identified in the presence of T or fewer 0

a1  (b) incorrect pass test results, then t' or fewer per-
Figure . A System SIWhich is 11-Diagnosable manently faulty processors can be uniquely identi-

But Not 16,1-iagnosable. fied in the presence of T or fewer missing test

results.
is shown. In both examples, the faulty processor
fails a test by one fault-free processor and passes Consider the relation between t' T-, t',-- -"
the other. 3rd t-diagnosability. From [12], we have the

: i lowing.
A system is t'6T-diagnosable if all faulty

processors can be uniquely identified provided Observation 2 [12]: There exists a system (Sthere are t' or fewer faulty processors and T or which is t' =,-diagnosable but not (t'+= -'"i" '

fewer missing test results. For example, the sys- diagnosable, For some t',- > 1.
tem of Fig. 1 is 1 1-diagnosable as follows. If
there were nQ missing results, 1. the single faulty This observation follows from the fact that any '
processor would produce fail test outcomes fsr the arrangement of two permanently faulty processors in
two tests applied to it and 2. the two fault-free system SI of Fig. 1 can produce the set of test
processors would pass the tests applied to each outcomes in which all test results are 1. Because
other. No other pair of processors will produce a of symmetry, it is impossible to determine the
pair of pass test outcomes. Since the four tests faulty processors from the set of test outcomes.
covered by these two conditions are distinct, even However, from [12] the converse relation holds,
if one result is missing, there is still enough in-
formation to specify the faulty processor uniquely. Theorem 2 [12]: If S is t-diagnosable, then S is

A system is t'6 -diagsable if all faulty t'6T-diagnosable, where t' + t.

processors can be uniquely identified providing In the hierarchy of the types of diagnosability,
there are t' or fewer faulty processors and T or t'yT-diagnosability represents the "weakest" form.
fewer incorrect test results. Note that the system That is, from Theorem 1, t'6j-diagnosability
of Fig. 1 is not 1 6,1-diagnosable as follows. Fig. implies t' -diagnosability, while the converse is
?b shows that u is intermittently faulty, and the not true ('bservation 1). From the above result,
test by u I is an incorrect pass, 0. However, in (t'+T)-diagnosability implies t'4--diagnosability,
the diagnosis, neither the faulty condition of u0 while the converse is also not true (Observation S
nor the prime on the pass test of u 0 by u is seen. 2). It is of interest, therefore, to consider the
If we assume at most one processor is &aulty, we relationship between t- and t'6,-diagnosability.

will be unable to determine whether it is u0 or u2. We have,

When = 0, t'/1- and t'6 ,T-diagnusability are Observation 3: There exists a system (S ) which

identical. This special ca.se will Ie referred to a-; is t-diagnosable but not t' -diagriosable,
t-diagnosabi i ty. where t' + T= L.

0::
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To see this, consider the system S shown in Fig. Observation 4: There exists a system (S which

2. S consists of a system D(9) plus two addi- is t'6,-diagnosable but not (t'+t)-diagnosable,
tional nodes, u9 and u10. 4 4 ( 9 ), shown as a for some t',T 21.

Fig. 3 shows S , a complete digraph on n = 5 nodes.

S is not 3-;iagnosable, since it violates the .
lU c~ndition n 2 2t + 1 shown in [1) to be necessary

U
0

U, U 0

F r 0rAyt-h

U4 U
U U

Figure 2.NA SystemS2 Which is 4-Diagnosable But u, uNt36, -Diagnosable.2

circle, is kno, i to be 4-diagnosable [1]. It is Figure 3. A System S Which is 1 6?-Diagnosable•
claiired that S2 is also 4-diagnosable. With at But Not 3-Dagnosable.

most , faulty processors, there are three cases.
for an n processor system to be t-diagnosable. - 4

1. Both u. and u are fault-free. Thus, However, S is 1/2-diagnosable as follows. If all
all faulty processors must be in D4(9). test outcomes ( y fault-free processors were
Since there are 4 or fewcr faulty processors correct, then a single faulty processor would fail
and D4 (9) is 4-diagnosable, they can be all four tests applied to it, while all other
uniquely identified. (fault-free) processors would fail at most one

test. If there are at most two test outcomes of
2. One of u and u 10 is faulty. If there tests of the faulty processors which are incorrect
are 3 faulty processors in D4(9), they can be passes, then the faulty processor fails at least
uniquely identified. Farther, at least one two tests and can, thus, be identified. This con- S
of u9 and u 10 is tested by a known fault- firms Observation 4. Because of the large number
free processor. If it is faulty, we are of tests per processor, even if several are incor-
done, since, by assumption, there are 4 or rect passes, sufficiently many valid test results
fewer faulty processors. If it is fault- remain to determine which processor is faulty.
free, its test of the other processor will
determine that the latter is faulty. If In the hierarchy mentioned earlier t'6,T- and
there are 2 or fewer faulty processors in (t'+T)-diagnosability are on par. We can make no - --

D4(9), then both u^ and u10 are tested by general statement about implication of the two
known fault-free processors, and we are done. properties one way or the other. The results of

this section are summarized in Fig. 4. The circles
3. Both u and u10 are faulty. Thus, there correspond to the three types of diagnosability,
can be no %ore than two faulty processors in while the arrows represent implication.
D4 (9) and, so both u and u10 are tested by
known fault-free pro4ssors. tT-diagnosability (t'+i)-diagnosabiIity

We now show that S^ is not 3 ,1-diagnosable. Con-
sider the case where both u and u are faulty and
one of u9 and u 1 is intermfttentlyfaulty. Let the
set of test outcomes of these two processors be as
shown in Fig. 2. If u is the faulty processor,
the result of the test gy u0 of u is an incorrect
pass (outcomes outside the paranth~ses); otherwise,
the result of the test by u1 of u is an incorrect
pass (outcomes inside the paralniheses). Thus,
there are three faulty processors and one incorrect
pass. Since it is impossible to determine which of
u9 or u10 is faulty, S is not 36,1-diagnosable. 2

This proves Observation .

With respect to the converse, we have, Figure 4. Summary of Results For General Systems.
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IV. RELATIONSHIP BEiWEE DIAGNOSABILITY IN STSTEI t/T-diagnosability (t+)-diagnosability

HERE NO TWO PROC SSORS TEST EACH OTHER. O' . .

Hakimi and Amin [2) have shown that systems
with permanently faulty processors and no missing
test outcomes in which no two processors test each
other have a t-diagnosability which is exactly pre- 0
scribed by two simple conditions. In this section,
we show that such systems have a special property
with respect to the three types of diagnosability.
For example, with respect to t' T - and (t'+x)-
diagnosability, we have,

2'
T 

diagnosabil ty
Theorem 3 [12): Let S be a system in which no two t2-dig " ' "

processors test each other. S is t'6T-diag-
nosable iff S is (t'+T)-diagnosable. Figure 5. Summary of Results For Systems in Which

No Two Processors Test Each Other.

Recall from Observation 2 that, in general systems,
there exists a system which is t' r -diagnosable,
but not (t'+T)-diagnosable. From the above result, V. CtIILUDING REMARKS.
this implies that, in such systems, there is at
least one pair of processors which test each other. This paper has considered three types of diag-

nosabi li ty

Consider now t'6T- and (t'+ T)-diagnosable
systems. We have, 1. (t'+ T)-diagnosability corresponding to

permanently faulty processors with binary
Theorem 4: Let S be a system in which no two test outcomes; 0 (pass) and 1 (fail),

processors test each other. S is t' 6-diag-

nosable iff S is (t'+T)-diagnosable. 2. t'gr-diagnosability corresponding to per-
manently faulty processors with three-valued

Proof: See Appendix II. test outcomes; 0 (pass), 1 (pass), and 2
(missing), and

Analogous to t' T-diagnosability, the only
examples of systems wich are t' f4-diagnosable but 3. t' ,r-diagnosability corresponding to per-
not (t'+ T)-diagnosable are found in the set of manent-ly and intermittently faulty processors
systems where there exists a pair of processors with three-valued test outcomes; 0 (pass), I

which test each other. (fail), and 0' (incorrect pass).

The relation between t' T- and t'6,T-diag- It is shown that for a general multiprocessing
nosability for systems in which no two processors system S, if S is either t'6,?- or (t' T)-diag-
test each other can be seen immediately from nosable, it is also t' r-diagnosable. In general,
Theorems 3 and 4. no further statements oT this type can be made.

Theorem 5: Let S be a system in which no two However, in a system S where no two processors

processors test each other. S is t'x-diag- test each other, if S possesses one of the three
nosable iff S is t'6,T-diagnosable, types of diagnosability, it possesses them all. As

there are no simple tests for t' T- and t' ,T-diag-
Theorem 3 establishes the fact that the set of nosability, tests for (t'+T)-diagnosability can be
systems in which no two processors test each other, used in systems where no two processors test each
the subset which is t' T-diagnosable is exactly the other.

subset which is t' 6 , -d agnosable. It follows from
this result and Observation 2 that, over all sys-
tems, those which are t'6T-diagnosable, but not REFERNCS

t'6,T-diagnosable contain at least one pair of
processors which test each other. [I] F. P. Preparata, G. Metze, and R. T. Chien,

"On the connection assignment problem of diagno-
The results of this section are summarized in sable systems, TIE Transactions on mCnjitrA,•

the diagram of Fig. 5. The double headed arrows C-16, pp. 848-859, December 1967.

represents the iff of each theorem. The sig-
nificance of this result is that a test for one [2] S. L. Hakimi and A. T. Amin, "Characteriza- %
type of diagnosability is a test for the other two tion of the connection assignment of diagnosable
types. In particular, since a simple test T for systems," IEE Transactions on Cmputers, C-23,

(t'+r)-diagnosability exists for systems in which pp. 86-88, January 1974.
no two processors test each other [2], T can also
be used to test for t'r.6T and t' -diagnosability. [3] S. Mallela and G. M. Masson, "Diagnosable

(T is 1. n 2 2t + 1 and 2. all processors are systems for intermittent faults," IEE Tran-

tested by at least t other processors for t - n on p mlitg, C-27, pp. 560-566, June

t' + T.) 1976. 0
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Theorem 4: Let S be a system in which no two 0
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tradeoffs in universal diagnosis algorithms," =IEE sable iff S is (t'+T)-diagnosable. 6
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pp. 268-271, June 1980. by showing that no all processors in S are

tested by t' + T other processors, and so from
[9] M. Adham and A. D. Friedman, "Digital system [1], S is not (t'+T)-diagnosable, as assumed.

fault diagnosis," Jour. Desfl Automaion al
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systems diagnosis," Proc. Qf = 1= LIe

nation]l ymJpgsuj, a1f on Mult&-3l.a,.ue- Logic, pp.

85-89, May 1981. 0

V 3
0

A PPEDIX I - PROOF OF THEOREM 1

Theorem 1: If S is t'6 ,T-diagnosable, then S is

t'6T-diagnosable, for t',. 1. Figure 6. A System Which is (t'+T)-Diagnosable
But Not t'6T-Diagnosable.

Proof: On the contrary, assume there is a system t

S which is t' T- but not t'r-diagnosable. Here FP 1 V U V and FP V U V Let
Since S is not T-diagnosable, there are two V b e number of test4 2pp to
fault patterns, and FP , each with t' or processors in V. An upper bound on in(V U V

fewer faulty processors that produce the same can be expressed as

set q of test outcomes in which there are T or

fewer 2's. We show that there is a set q2 of in(V2 U V3 ) T + + IV2 U V31 IV I +

test outcomes with T or fewer 0' outcomes of 
(1) 

tests of faulty processors by fault-free pro- IV2 + V 3(IV 2 U V 31-1)12, -

cessors produced by FP1 and FP2 . Thus, S is 2 3.2 .--

not t' 6T-di-. nosable, as assumed. where T1( r) and t2 ( t) are the number of incor-

rect pass outcomes of tests applied to V2 and

is identical to ql except that all 2's V3 , respectively. 1 + t represents the max-

are replaced by O's or 0"
t s. Although some of imum number of tests whicA can be applied by

these tests may be by fault-free processors on processors in V IV U V I IV I represents the

faulty processors, there will be no more than maximum number of tes w Ach can be applied by
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*processors in V. IV U V. I(IV~ U V 1-1)V2
represents the maximum number~ of tests I pplied

*by processors in V U V , there being no two
processors which test eacA other. Consider two

* cases.

ra -1: IV U V 1I 2. Dividing both sides of (1)
by IV2 U V3 1 'ields

I' (V lv21V1+I VI I
in_____ 2 31J + 1v 2 4 2

IV2 U V3 I V2 I V 1 2

Since IV 2 U V3 I >2 and IV2 U V I .K IV I +lVi,1
we have, 32 3 2 + 3

U V ) T+I Cr I +)+(rI +V1
________3 1 V3 I+VI 4 ( 2 +1V21I ) -4

IV 2 U V3I 2

W t + T) -1/2. (2)

Because the average number of tests per
processor in V U V , as expressed on the left
side of (2) is iess Lhan t' + T, at least one is
tested by fewer than t' + T processors. Thus, S
is not (t'+T)-diagnosable.

~aa 2: V2 U V I =1. Assume that IV2  1
*and IV 1 0. We lave,

* 3

L(V 2 ) < r + IVI -1

and there are two fault patterns, one with IV1
*faulty processors and one with IV 4 + 1 faulty
*processors which produce the same set of test
*outcomes. Thus, S is not Ct '+ T)-diagno sable,

where t' + T= IV I + 1 + T

(only if) One can show easily that in a t .T
diagnosable system each processor is tested by
at least t' + T other processors. This
completes the proof, since such a system is
(t'+ T)-diagnosable when no two processors test
each other (2].

Q.E.D.

355



ON sYsTIN DIAGNSIS WI'Tl NULTIVAI,LJD TEgr O 1HTC(M.S

A. Sen Gupta A. Son
Qaantitative G Information Science Department Computer Science Unit

Western Illinois University and Indian Statistical Institute .., .
Macomb, Illinois 61455 Calcutta, India

Abstract as a syndrome. .

The problem of diagnosis of systems when the he problem of diagnosability of a system

test outcomes are nultivalued was considered earli- arises because of the fact that the same syndrome

er'., However, a too strong sufficient condition may be produced by two distinct fault situations,

was specified there for the diagnosability of such i.e., for two distinct sets of faulty components.

a system, which was shown not to be a necessary A system is said to be t/x - diagnosable, if from

one. Necessary and suiticient conditions for the the syndrome, the faulty components can be uniquely

diagnosability of a system under multivalued test identified, provided not more than t components 4

outcomes have been presented in this paper which is are faulty and not more than x test outcomes are
missing. It has been shown' that if a system isapplicable to any arbitrary system. (t+x) - diagnosable as defined in 1W model;', it is

t/x - diagnosable. However, this is too strong a
sufficient condition and is not a necessary con-

Introduction dition also. I

Considerable research has been reported in Hlowever, if some of the components of the 6
the literature about the diagnosability of a self- system may fail intermittently, a faulty component
diagnosable system. However, most of these relate may pass test from a fault-free testing component,
to testing the diagnosability of a system when the possibly because the faulty component is intermit-
test outcomes are binary. Butleri presented some tently faulty and was working in a fault-free
properties of system in connection to its diagnos- manner when the testing was carried out. A three -.

ability in case of three valued test outcomes, valued model for such a situation has been pre-
Under the assumiption that no two components of the sented3 , where the test outcomes are 0, 1, and 01
given system test each other, necessary and suffic- where 0 and I outcomes are produced under the same
ient condition for the diagnosability of the system condition as in a permanent fault situation and 01
was derivedi. A too strong sufficient condition is the test outcome when an intermittently failing
for diagnosability of a system was derived there' component passes a test from a fault-free component.
which was shown to be not a necessary one. For diagnosis purpose, of course, 01 behaves just

like a 0. In this three-valued model, a system is
In this paper, we present a necessary and defined to be t[x] - diagnosable if the faulty

sufficient condition to be satisfied by any arbi- components can be uniquely identified from a given - S
trary self-diagnosable system in order that it be syndrome provided not more than t components are
diagnosable in presence of three-valued test out- faulty and there are no more than x outcomes each
comes. We assume the system to be represented by of which is 0'. In other words, a system is tix]
the PMC model2 and each of the test outcomes is diagnosable if no pair of sets of faulty components
either of the three values 0, 1, and 2. The out- produce syndromes which are identical when each 0'
come 0 represents the tested component to pass the is replaced by a 0. Testing the t~x] - diagnos-.-
test from the testing component, the outcome I ability of a system, presented earlier', concerns
represents it fails and 2 represents the informa- only with the situation when no two components of 0
tion of pass or fail is missing. Thus, in case, the system test each other.
when all the faults of the components of the system
are of permanent nature, the outcome I means if the In this paper, we present methods for testing
testing component is fault-free, the tested compon- the t/x - diagnosability and tix] - diagnosability
ent is faulty, 0 means if the testing component is of any arbitrary system.
fault-free, the tested component is also fault-free;
but no inference can be drawn about the tested com-
ponent if the testing component itself is faulty Testing for t/x - diagmosability
and in this case, the outcome may be either of 0
or 1, irrespective of the nature of the tested let S represent the set of components of a
component. The test outcome 2 can occur for any system. For any S CS, if the fault situation is
testing process irrespective of the nature of the s
testing and tested components, when this information such that all the components in Sl are faulty and

for pass or fail is somehow not available. Hence- those in S - I are fault-free, usually a number
forth we will refer a complete sel of test outcome
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0
of syndromes may exist corresponding to this fault which the tested components belongs to (S1 - S,) U
situation. If for two subsets Si, 2 , there S- ) and the testing component belongs to

exists a syndrome which is a possible syndrome in S - S1 - S cannot have missing values. Let w
the two fault situations given by the sets of
faulty components as S1 and S2 respectively, then c S - S1 - S2 and v (S1  S U (S2  ) be .

the two sets S1 and S2 are referred as indistin- such that the test outcome when . tests v is not S

guishable faulty sets. Thus, in order that a system 2. If it is 0, then if v E S1 - S,, then SI can-

may be t/x - diagnosable, i.e., the faulty compon- not be the faulty set of components, otherwise, if
ents can be uniquely identified from the syndrome, v S2 - S then S2 cannot be the faulty set of
provided not more than t components are faulty, we components. If it is 1, then if S1 - S,, then
must have for every pair of sets S1, SicS, such that, f se...omonnsotewie

1Sl], Is2 1 < t, S1 and S2 must be distinguishable S 1 must be the faulty set of components, otherwise,faul y s ts.if V E S 2  - S 1 ,  then S2 must be the faulty set of

faulty sets. 2 1
components. Thus, from this test outcome, we can

For any two subsets S1, S2 of S, we define a identify between SI and S which is the faulty set

function as T(S 1 ,S 2 ) as follows. In any syndrome, of components, i.e., S1 and S2 are distinguishable.

T(S1,S2 ) gives the numnber of test outcomes, in each From Lema 1, we can find out the necessary

of which the tested component belongs to S2 and and sufficient conditions for the diagnosability
of a system. Since, none of the faulty sets can

the testing component belongs to S 1  Obviously, contain more than t components and the system is

for a given S1, S2, T(S1,S2) depends only on the t/x - diagnosable when every pair of sets of pos-
sible faulty components is distinguishable, we

testing feature of the components of the system and have the following theorem.
not on any syndrome.

Theorem 1: A system is t/x - diagnosable, if and
Lenma 1: If no more than x outcomes are missing, only if, for every S, s 2 CS, where S is the set of S
thentwo sets of components S1 and S2 are distin- of the system, T(S - - -

2components oftesse, ( l-S2' (S 1 S2guishable faulty sets if and only if T(S - S1 - 52, U (S - > x, whenever S. , 1$21 t, where

(S1 - 2 ) U (S2 - SO) > x. JXJ represents cardinality of the set X.

Proof: Necessity: Let us assune that the condi-
TEioi is niot satisfied. Let T(S - S Hofwever, given any arbitrary system, in order

e1  - S2, (S1 -2) to test for its t/x - diagnosability, we need not
U (S2 - S1)) = m < x. Consider a syndrome as have to consider every pair S1, S., such that

follows. 1S$11 S2  < t and S1, $2 cS. We shall show that
(a) An outcome 2 for each component of (S - 2) U consideration of every pair .l' S such that
(S- S1) tested by components from S - S - S2 .2

(b) An outcome 1 for each component of S2 tested 1 - 2
1 

= t, will be sufficient. Before we
-2 prove this result, we present the following lemma

by components of SI - S2 and for each component of (which gives a necessary condition for t/x - diag- -

S tested by components from S2 - S1 and for each nosability) which we will need in our proof.

component of SIn S2 tested by components from Lemma 2: If a system is t/x - diagnosable, then

S - S - S. every component of the system must be tested by
at least t+x other components.

(c) An outcome 0 for each component of S - S

tested by components from S - S2 and for each con- Proof: Let us assume on the contrary. Let v be
pea component and let S0 be the set of components S

ponent of S - S tested by components from S - S1, testing v, such that 1S0 1 < t + x. Form Sa, S.
except for the outcomes given by (a) above. a '= SO, aSb
(d) The remaining outcomes are arbitrary. such that an

and I S aI < t. Then let S 1  = S a tU {v) an d S 2  S a . -::: "'"i l
For such a syndrome, no more than x outcomes a T a. 

are having missing values and it may be observed Then, (S1 - S2) U (S2 - SO = {v, and T(S - S1 -

that such a syndrome may be produced when the set $2 (S - < - S < x and 1SlJ, 2 t
of faulty components is either S or S2  Thus, S1  and hence, by Theorem I, the system is not t/x -

and S2 are indistinguishable faulty sets. diagnosable.

Sufficiency: If T(S - S- $ 1 - $ U (S2 - Lemma 3: If for every SI, $2, such that 1S11 = t
Sufcec:I ( 1( )U(2and S1 , S C S, T(S -S 1  S" (S l - $2 U

S1)) x, then all the test outcomes in each of 2  5 2
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(S2 - S1I)> x, then, for every Sa, Sb, such that faulty components and all syndromes to be compat-
Is1, 1SbI < t and Sbc S, T(S - - ible with permanent fault situation (ie., can be
a - aa Sb' produced by some permanent fault situation). The

(Sa -
5b) U (Sb - Sa) x. identification of the faulty components from thesyndrome when the number of 0' outcomes does not

Proof: We will have to consider three cases, exceed some quantity x and the number of faulty . .
components does not exceed some quantity t will be S

Case 1: SaCSb . Consider any v ,L Sb - S. Since discussed in this section. For diagnosis purpose,
v is tested by at least t+x components of which however, 01 behaves exactly as 0, i.e., when the
maximum t-I components may belong to there are faulty components are identified from the syndrome

Sb the outcomes are either pass (0) or fail (1).
at least x+l components in S - Sb which test v.

Now, because S S In order that the faulty components can be
aC Sb S - Sa - Sb = S- Sb and uniquely identified from the syndrome, when some

(S Sb) U(Sb - Sa) = Sb - Sa and v c Sb - Sa, of the faulty components may fail intermittently, 5
T(S - Sa - Sb' (Sa - Sb U (Sb - Sa)) > x + i.e., some of the test outcomes may he 01, there

should not exist two distinct subsets S1 and S, ofHence Theorem I is satisfied for all Sa, Sb S such that when S1 and S2 are the sets of faultv

whenever SacSb, JSbI < t and Lema 2 is satisfied.
components, there exist two syndromes produced by

Case II. S Sb and 1a1 < JSbI. Let Scc - a  them respectively which are identical when in each
s at USb - 5a syndrome each 0' is replaced by a 0 and the number

such that ISc USal = ISbI. Form S 5a = Sc U Sa .  of 0' in each syndrome does not exceed x. We will

Let SdcS -S' - Sb, such that Id + Sb refer a pair of sets (S1 , S2 ), such that SI, S,2a dl ' .~I t

Form S =S a U Sd and Sbt = Sb U Sd . Then each S and ISI1, lS2l < t, as an indistinguishable pair,

of Sal and Sbl has t elements and (Sa - b  U if each produces a syndrome, wiich are identical
al as each 01 is replaced by a 0. lence, a system

(Sb - S,)-' (Sal - Sbl U (Sbl - Sal) and S - Sa - is t[x] - diagnosable if every pair (S,, S,) as

Sb: S - Sal - Sb1 But T(S - Sal - Sbl' (Sal - above is a distinguishable pair with no more than -•Sbi) U Sbl - Sal)> x as Ial = = t, x outcomes as 0' in each of them.

hence T(S - Sa Sb' (Sa - Sb) U (Sb - Sa)) x Lemma 4: (SIl S,) is a distinguishable pair, if

holds good. and only if, either of the following condition,; is
satisfied.

Case Ill. ISal = ISbI. Using the same argument (i) T(S - s- S, - S,) x
as in Case II and using Sa instead of S', we will ) I
have T(S - Sa (ii) T(I- 1 - S -

Sa  Sba (Sa - S U (Sb - Sa) Proof: Neces : Suppose neither of the two
According to Lenma 3, we should check whether conditions is satisfied. Let S he the smallest 7. - -. -

the condition given by Theorem 1 is satisfied only suc t-.

for all S1, S2 such that IS11 = lS2= t, in order subset of such that T(S - S -$ S S,)

that the system is t/x - diagnosable. Combining T(S - S1 - $2, Sa), i.e., S, contains all those
Lemma 3 and Theorem I we can specify the necessary components of S S, hich are tested by compon-
and sufficient condition for a system to be t/x -

diagnosable as follows. ents from S - S - S Similarly, let b e the
smallest subset of S, S,, >ich that T(S - S1 .

Theorem 2: A system is t/x - diagnosable if and
only if, for all Sl, S2, such that ISI = ]2' = t 2, S2 - 1)  - 2  . ,t L\
and S1, S2 CS S- Sa and Sb ; 2 S - .Consider a syndrome as

follows:
T(S - S - 2, (S - S ) U (S2 S)) x. (a) An outcome 01 for each compnent of S tested

by components from S - S_
(b) An outcome I for each cofponent of S ax tested

- Testing for t[x]_- diagnosability by components from S - S1 - 5,, and for each

If some of the components of a system may fa il component of SI tested hy cnmponents from S, - S
intermittently, the diagnosis of the faulty com- and for each cormnent of S, tested by components -

ponents becomes quite complicated because an
intermittently failing component may pass a test from S S'.
from a fault-free component. The diagnosis of Ic) An outcome 0 for each component of S - S,
faulty components from the syndrome in presence
of intermittent failures was studied' ' assuming tested by compnents from S - S, and for each
an upper bound on the number of intermittently component of S - S1 tested by components from

. . . .. . . . .. . . . . . . .".. . . . . . .

. . ..-.. -

."" ~ ~~~......... . . ..... .... . . . . - . . .. • .. -.- ,. • . ... • % "%

• -'''''' .- •> - . "-.-.° 2 - ?- . , . ..' -- .- .-.- % '..' .. .''- . ". "- .* .-- *.'-.-'.* ". -. - . ". ' . . ,--"



S S1, except for the outcomes given by (a) above. Sl - 2= M, S? - S 1 = 0 and T(S - S-

d) The rem~aining outcomes are arbitrary. SI - $2 - x. Thus Lemma 5 follows.

Consider another syndrome contructed exactly in the Lemma 6: If for every S1 , S, such that S1 =

same manner as in the four steps above using Sb in Is21 = t, and S1, S2 C S, either of the conditions

place of Sa and Sbx in place of Sx and the arbi- of Theorem 3 is satisfied, then for all

trary outcomes given by step (d) are identical, such that ISa b < t and Sa, SbC 5, either of
As neither of the two conditions are satisfied, a - a, Sbc
both the two syndromes will have less than x 0 the conditions of Theorem 3 is satisfied.
The two syndromes are identical when in each
syndrome each 01 is replaced by a 0 and these two Proof: We will have to consider three cases.
syndromes are possible syndromes when Sl and S2 Case I: SaC Sb. Proof is similar to that of Case

are respectively the sets of faulty components. I
Ilk'nce, (SI, S,) is an indistinguishable pair. I o f Ienin 3. 1n this case, S a - Sb  and

arguing exactly as in Case I of Leima 3, it can beSufficiency: If condition ii) is satisfied, there shown that T(S - S - S., S& - 5)Y x + 1, i.e.,
exists at least sow , , Sl - S,, such that the a n u a

- at least one of the conditions of Theorem 3 is
outcome of , tested by some component from S - S1 - satisfied by Sa, Sb

S, is not 01. When Si is the set of faulty corn- Cse LI: S and < lSb. In this case 

ponents, this outcome mu.st be I in all the syn- also arguing exactly as in Case 11 of lemma 3, it
dromes, none of which is identical to the syndromes may be observed that,
produced hen S, is the set of faulty components, -

as under tlt fault condition, this outcome would Sal -bl = a - Sb and Sb - Sa Sb1 - Sal•

have been ) in all the syndromes. Hence, S1 and where S a, Sbl are forned as it was done there.

S, is a distinguishable pair. Using the identical Moreover, S - Sa - Sb - S - Sal - Sbl and a1I = -

argament and interchanging the roles of S and S,, 5Ibl = t. Thus, if either of the conditions of
it may be observed that S and S, is a distinguish- Theorem 3 is satisfied with Sal. 5 blI it will be

able pair whenever the condition (ii) is satisfied, satisfied for S Sb also.
This completes the proof.
From lenina 4, we can formulate the necessary and Case III: iSai = I b5. Using the same argument
sufficient conditions for tlx] - diagnosability as in Case II and using S instead of Sa1, we will
,,f a system as follows. a a.

have either of the conditions of Theorem 3 satis-
Itheorem 3: A system is tix] diagnosable, if and fied for S, also.
nly -v-IT- for all S S, such that S1I1 lS,1 t a'"-b"also.

ind S, Sc S, either of the following conditions Combining the re:;ults of lemma 6 and Theorem -
4, we can specify the necessary and sufficient

i-. t isfied. conditions for t fxl - diagnosability as follows.

i)il VS S -S_ S -S,) xl -2, 2l  Theorem 4: A system is tix] - diagnosable if and
i S - S1  for all S1 , , such that 11 = SI = t

, 1-1 rlary: If a system is tixi - diagnosable, it and S, Sc S, either of the following conditions
i- t x- diagno sable, is t

isatisfied.
However, given any system, we need not test (i) T(S - S $2S S - S) x

th' ',A1idity of Theorem 3 to test for tlx] - diag- 12 I •
n,0ibilitv for All S, S 2, such that, IS1], 5 (ii) TUS - Sl - S , S2 - S1 )  x.

t. It can be ;hown that testing the validity of
the condit n , in Theorin 3 for all S1, S, such Discussion
ti. it :1 '3 t will be sufficient for the ~ N-cessary and sufficient conditions for the

!xl di:Ignosability of a system diagrosability of a system with multivalued test
outcomes have been presented in this paper. Ailt i -

It 5: It" system tx] - diagnosable, then valued test outcomes arise because of either
I--, :-: , t of the system must be tested by at missing values of test result or because of inter-

t tx other components. mittent failure of components. Earlier results
in connection with this problem concern with

,! proof i very s liiir to that of / system,; in which no two components test each other.
-kfcring to the proof of loerina 2, it may be A general solut ion of the problem for any arbitrary

, r ,d that , for SI, and S, defined there" system has been presented in this paper.
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A METHOD OF TEST GENERATION

FOR VERIFICATION OF WIRING CORRECTNESS

Krzysztof Bucholc

Technical University of Poznan, Regional - '

Computer Center, 60-965 Poznan, Poland

Abstract The test obtained in this way is

The paper presents a method of test highly redundant. Minimization can essen-

generation for any multiterminal wiring tially reduce the volume of required stor-
network, such as printed circuit board, age and test execution time.
computer backpanel wiring etc. The method 0
is based on the minimization of the test Test minimization - introduction
generated by examining the correct network Let us denote the number of terminals
with computer-controlled tester. Three- in the network by n , the number of clus-

valued algebra was used. In comparison
with more straightforward algorithm based ters by q and the number of single
on the adjacency matrix, lower space com- terminals by p . Testing for shorts re-
plexity has been achieved - O(n) rather quires1'2

than O(n). 2 Ts=q(q-1) /2

lntroduction tests. 2
Testing for opens requires

In comparison with subassembly testing, T n-q
wiring testing is based on a very simple o
class of fault types. It involves shorts tests.
and opens. The total number of tests is

If we call the set of terminals con-
nected together a cluster, then the wiring T=T +Toq(q-1)/2+n-q
testing can be defined as a process which Tqq-)2n
determines the presence of connection be- The non-minimized test setconsists of
tween any pair of terminals in a cluster
and the absence of shorts between any pair G-n(n-1)/2
of terminals from two different clusters.
The number of terminals in computer back- elementary tests. The number of redundant
panel wiring network implies the import- elementary tests is equal to
ance of the problem. For the same reason R=G-T=n(n-3)/?-q(q-3)/2
low time and space complexity of test
generation and testing algorithms is very Except for the network consisting of
important. single terminals q<n and R>O

The test for a wiring network can be
presented in form of a sequence of Example 1
triplets (p,k,v) where p,k are labels of Let us consider the network shown
the terminals and value of v indicates in Fig. 1.
presence or absence of connection between
p and k in correct network - and 0,
respectively.

A convenient way to obtain the test 1 3
is to generate it automatically from the 0 0
correct network. The most straightforward •
algorithm is as follows: Each pair of ter-
minals Is checked for connection. Labels Fig. 1. Considered network
of the terminals and the result of this
elementary test are stored. The sequence Tests (1,4,1), (4,6,1), (2,5,1) check
of all nn-1)/2 triplets is the required connection between pairs of terminals
test. which must be connected. Tests (1,2,0),

0195-623X/83/0000/0361$01.00 1983 IEEE
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(1,3,0), (1,7,0), (2,3,0), (2,7,0), The generation of a minimal test set
(3,7,0) check the absence of connection is performed in two stages. At the begin-
between terminals from two different clus- ning all possible two-terminal tests are
ters (cluster may consist of only one ter- executed. Results are stored. Simulta-
minal). The 9 elementary tests, out of neously the set of terminals is split into
21 possible, constitute the minimal test three subsets - single terminals, marked -
for this network. terminals and ordinary terminals (ter- S

minals which belong to the cluster con-
Very often single terminals i.e. clus- slsting of at least two terminals and are

ters consisting of only one terminal are not marked). To each terminal is assigned
of no practical importance and may be not a variable which value indicates the state
included in the test. It leads to a fur- of the terminal (the group to which the
ther minimisation. terminal belongs). The codifying is as
Testing for shorts in this case requires follows:

T'= (q-p)(q-p-1)0/2 tests. - ordinary terminal in a multiter-
tests.minal cluster,

Testing for opens requires 1 - single terminal,

T'=To=n-q tests. 2 - marked terminal.

The total number of tests is In the second stage the test is minimised.

Tt(q-p)(q-p-1)/2+n-q Definition 1. Operation P •

and the number of redundant tests Let us denote the set of all ter-
minals by K, and the set of test results

R=G-T n(n-3)/2-q(q-5)/2-p(p+1)/2+pq by V; V = (0,I) , where 1 means connec-
tion, 0 absence of connection. With every

Example 2 terminal there is associated a variable

For the network shown in Fig. 1 four denoted s(k), where kfK, which takes

elementary tests (I,',), (1,4,1), values 0, 1 or 2.

(4,6,1), (2,9,1) suffice, when single We shall define the operation P as
terminals are excluded, a mapping

Example 3 ( v, 8 (P) # (q))--o (s (p), (q))

The number of tests before mini- where v*V, p,qoK, and

mization G and after minimization T and s(p)= 8(P) if v=O
the percentage of redundant tests, for a
few backpanel networks, are listed in Table 1. s(p)= f1(s(p),s(q)) if v=1 S

s(q)= s(q) if v=O
Table 1

s(q)= f2 (s(p),s(q)) if v=1

Functions f and f2 of three-valued vari-
ables are d fined in Table 2 and Table 3
respectively.

3927 1853 1157 7708701 243934 96.8
4125 2527 1208 8505750 8708129 89.8 3 2e

924 825 765 426426 1770 99.6 x1  x2  f 1 (xlx 2) x1  x2  f2 (xl ,x 2 )

The method of test minimization 0 0 0 0 0 0

To detect shorts it is sufficient to 0 1 0 0 1 1
check connection between selected ter-
minals - one from each cluster. Similarly 0 2 0 0 2 2
to detect opens between terminals which 1 0 1 1 0 0
belong to the same cluster c-i tests, out
of c(c-1) /2 possible, suffice, where c is 1 1 2 1 1 0
the number of terminals in the cluster. 1 2 0 1 2 2

Let us choose one terminal from each 2 0 2 2 0 0 0
cluster, except for single terminals, and
mark it. To detect all opens in the clus- 2 1 2 2 1 0
ter it is sufficient to execute tests com- 2 2 2 2 2 0
prising the marked terminal. There are c-1
such tests. To detect shorts between multi-
terminal clusters, checking connection be-
tween marked terminals is sufficient.

1(,2
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Algorithm 1. Determining the state of At the stage of minimization, some
terminal tests are selected to obtain the minimal

1. Assign to every terminal state 1. set of tests. Let us denote this set by M.

2. To every pairof terminals apply P oper- A
ation. Algorithm 2. Test minimization

1. Take the first stored test. .
Theorem 1 2. If test result v equals to 0 and states

After accomplishing algorithm 1, the state of considered pair of terminals are

of each single terminal is equal to 1. equal to 1 or 2, then include the test
in M. If v=1, the state of one terminalProof is 2 and the state of the other ter-

For a single terminal, result of every minal is 0, then include the test in M.
elementary test is 0 - no connection. For In all other cases do not include the
v=O P operation does not change states of test in M.
terminals. As at the beginning all ter- 3. If not end of file, take the next test
minals received state 1, after accomplish- and go to 2.
ing of algorithm 1 the state of single If single terminals are not to be
terminal remains equal to 1. tested, only tests in which both terminals

are in state 2 are taken when v=O.
Theorem 2

After accomplishing algorithm 1, exactly These rules are also presented in an- 6
one terminal in every multiterminal cluster other form in tables 4 and 5. Table 4 re-
has state 2, states of other terminals in fers to the case when single terminals are
this cluster are O. to be tested. Tests which belong to the

minimal set of tests are designated with
Proof "+". Combinations which do not appear in

First we shall prove that in every practice are marked "N". Table 5 is used
multiterminal cluster there exists at least when single terminals are not tested.
one terminal which state is 2.

Let us consider one cluster. In the Table 4 Table 5
beginning the states of all terminals are 1.
The first P operation applied to this v a p a q v a p a q
cluster creates states 2 and 0 /by DeV1/
Once created state 2 cannot cease to exist
- there is no such P operation, that if 0 0 0 0 0 0
v=1 and at least one argument is 2, the 0 0 1 0 0 1
resulting states both differ from 2.

0 0 2 0 0 2
Now we shall prove that there is ex-

actly one such terminal. Let us asume that 0 1 0 0 1 0
there are two such terminals. It implies 0 1 1 + 0 1 1
that neither of them has been in state 0
at any stage of algorithm 1 execution. 0 1 2 + 0 1 2
/This comes straight from Def. 1 - there is 0 2 0 0 2 O 
no operation which changes state 0 into
another state./ This leads to the con- 0 2 1 + 0 2 1
clusion that P operation has not been ap- 0 2 2 + 0 2 2 +
plied to the considered pair of terminals
- if v=1 there is no such P operation that 1 0 0 1 0 0
states of both terminals after the oper- 1 0 1 N 1 0 1 N
ation differ from 0. This contradicts our
assumption that P is applied to every pair 1 0 2 + 1 0 2 + 0
of terminals. 1 1 0 N 1 1 0 N

Finally we shall prove that none of
the terminals is in state 1. Let us as- 1 1 1 N 1 1 1 N
sume that there is a terminal which state 1 1 2 N 1 1 2 N
is 1. The state of terminal after P oper-
ation remains equal to 1 if and only if 1 2 0 + 1 2 0 +
the state of the other terminal is 0 /see 1 2 1 N 1 2 1 N
tables 2 and 3/. As the P operation is ap-
plied to every pair of the terminals, our 1 2 2 N 1 2 2 N
assumption implies that the states of all
terminals, except for the terminal under The whole process of test generation
consideration, are equal to 0. It contra- is illustrated in Example 4.
dicta the previous conclusion that there
is at least one terminal which state is
equal to 2.

.~ ~~ .°•.. . .
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Example 4 RAM is required, what leads to the space

Let us consider the network shown in complexity of O(n 2).
Fig. 1. We shall trace the whole process In both cases large sequential access
of test generation. In the beginning the memory is required. The volume of required
states of all terminals are 1 /see Table 6/ storage is much smaller if at the first
In the first stage, for each pair of ter- stage test results are not stored. In this
minals we execute elementary test and ap- case, at the second stage all the elemen-
ply P operation. Test results are shown in tary tests must be executed once more.
Table 6. If the test result is 1 /presence
of connection/ the operation P can change References

*the states of considered pair of terminals.
In this case the states of all terminals 1. Kautz W.H., Testing for Faults in Wir-
are shown in Table 6. ing Networks, IEEE Trans. on Comput.,

In the second stage we minimise the C-?3,4, pp. 358-363.
test. If single terminals are to be tested 2. Bucholc K., RaJski J., Testing algo-
we select tests according to Table 4, rithms for large wiring networks,
otherwise we use Table 5. Final results Proc. of 3rd Intern. Conf. on Fault-
are as follows: Tolerant Systems and Diagnostics

Test set comprising single terminals: FTSD-80, Katowice 1980, pp. 91-96.
(1,2,0), (1,3,0), (1,4,1), (1,6,1), 3. Aho A.V., Hopcroft J.E., Ullman J.D.,(1,7,0 , (2,3,0), (2,5,1), (2,7,0), The Design and Analysis of Computer S
(3,7,0) . Algorithms, Addison Wesley, Reading

Test set if single terminals are not Mass., 1974.

to be tested: (1,2,0), (1,4,1), (1,6,1),
(2,5,1)

Table 6

Test Terminal state

p q v 1 2 3 4 5 6 7

1 1 1 1 1 11 2 0
1 3 0
1 4 1 2 1 1 0 1 1 1
1 5 0
1 6 1 2 1 1 0 1 0 1
1 7 0
2 3 0
2 4 0
2 5 1 2 2 1 o0oo0

S2 6 0

2 7 0
3 4 0
3 5 0
36 0
3 7 0
4 5 0

i4 6 14 70
5 6 0

•5 7 0
6 70

2 2 1 0 0 0 1

i Conclusions
B A method of test P eneration for veri-

fication of wiring correctness has been
described. The algorithm requires 2 bits
of random access memory pe5 terminal. It

,gives the space complexity O(n). For
• more etraightforward algorithm, based on
r the adjacency matrix, n(n-1) /2 bits of
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. . AUTOMATED DESIGN OF COMBINATION AL N ,YWORKS UND SPECIFIC
CONSTRAINTS: A TIIEOREIM PROVING APPROACII

Waido C Kabat
Northwestern Universityt

"" .? Evanston, Illinois 60201

ABSTRACT ped, Section 2 2 presents the theorem proving approach to

An automated theorem proving system is seen as a the problem
viable addition to the set of traditional design automation
tools. The automated design of combinational network for
an arbitrary switching function can be performed using Rapidly evolving technologies (e.g CMOS, NVOS, Bi-
theorem proving techniques. Additional constraints such as
modularity, design under the requirements of a particular polar etc ) require that the design tools can either
technology, and the fault tolerant logic design can be im-
posed upon the design. effectively accommodate new technology design rules or
Jndez Terms - Logic design, automated theorem proving,
multi-valued logic, design automation. have some measure of technology independence Ultimate-

ly, the rule generation process should be formalized to

1. INTRODUCTION bridge different and changing technologies such that the

design integrity be improved and manual rule generation el-
The modern logic design is a task of high complexity

iminated. Section 2.3 shows that the use of a theorem prov-
and inevitably involves the automation of the design pro- i

ing system in the design process offers some answers to

cess. The use of a theorem proving system may be a valu-
these issues. The. 11L technology is used as an example to il-

able addition to traditional automation tools, The method
lustrate the approach Both, an accommodation of new

for an automated synthesis of combinational logic that was
design rules and a technology independence may be possi-

presented in [13,14], is based entirely on theorem proving -
ble. Moreover, the presented approach consists of a totally 0

techniques, and can be used to perform design in any
mta dym nu g ny s aair general solution for an arbitrary switching function that isiii multi-valued system (including binary) using an arbitrary,.",.".

to be implementeid in 1
2

L.
functionally set of connectives. What was not shown, howev-

er, is that the method easily extends to the design under a The internal redundancy with complementary logic

variety of constraints. For instance, constrains such as is one of the standard VLSI techmques employed to achieve - .

modularity, design under requirements of a particular tech- f fault tolerant characteristic of the systcn [24]. An exten-

nology, and the consideration of the fault tolerant design via sion of this, essentially, binary technique to an arbitrary,

internal redundancy with complementary logic, can be im- multi-valued case, is presented in Section 2.4 using theorem

posed. proving techniques.

As building blocks grow more complex and highly All experiments that are presented in this paper

functional [10,17,22,27]. and high level logic primitives are were performed on the general purpose, first-order logic,

used to simplify both circuit modeling and test generation resolution base theorem proving system [18,251. Finally, it

[3,41, the formalism of modular design needs to be develo- in assumed that the reader understands basic concepts of

T ndi work was srpported in part by the National Science Foundation theorem proving

wder Grant MCS 79- 189AW and in pert by the Applied Mathematical
Sciences Research Program of the Office of Energy Research ,' the U.S.
Department of Energy under Contract -31-109-Eng-38.

H. AUMATEID DEIGN UNDR SPECIFIC COI4bRAINT.
*"The meor pert of this work was performed while the author was with the

flhinis .~of T'echniology.

In [13,141 we presented an approach to automation
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of the design of combinational logic. The heuristic method [15] that there is mathematical relationship between the
demodulation simplification process and the rules for

that was shown consists of a theorem proving implementa- simplifying switching expressions

tion of a systematic, uniform procedure for the synthesis of The last step results in the final circuit synthesis, or the
derivation of an empty clause The "best" clause is

an arbitrary switching function Any multLi-valued (including selected based on its weight attribute Intuitively, the ...'-".
lightest clatter is the one which resulted from a massive

binary) function can be synthesized in a top-down fashion application of simplifiers and, indeed, is selected for
further synthesis. The synthesis algorithm, described in . -

using the functional blocks of the designer's choice Brief [30], provides for the recovering of a circuit structure
from the tra-e of the proof from the empty clause to the

description of the method is included here to make the input target clause.

presentation self-contained Demodulation [31.] is a primary theorem proving

technique which performs the steps of the method It is
2.1 The Method for Automated Synthesis of Combinational

used in two capacities as simplification and as canonicaliza-Logic.

tion. Ilyperresolution is used as a chief inference rule be- •

The method is based on the axiomatization of the cause it can produce powerful inferences in a single step

logic design environment, that is the logic system, the logic The general strategy is that of Set-of-Support 'b,32 ] which

connectives, and the rules for obtaining an acceptable solu- restricts the inferences to those which are relevant to the

tion [29,30] The steps of the method are input of the func- synthesis of the function. Furthermore, it is coupled with

Lion truth table or tables corresponding to all permutations demodulation to reduce the number of clauses that the

of input variables, derivation of a canonical circuit structure theorem prover retains during its search for a proof

using desired building blocks, simplification of the obtained
It is seldom a case that just a simple logic structure

circuit structure using the properties of the blocks and final
is being sought in the design. Additional constraints, such --

circuit synthesis. Figure 1 illustrates the process of an au-~as modularity, testability, maintainability, technology

tomated synthesis of the logic circuit on the example of one

- . f22Trnr utpirdependence, fault tolerance, and others, are often imposedtrit of 2x2 Ternary Multiplier: "i" "

upon the design. For the design to be stable, small

In step 1 a function is presented to the theorem prover modifications or system function must result in small
as a target clause which is a one to one mapping from a
function truth table to the clause form Note that the modifications of the design. For the design procedure to be
function T(VXO,XI,X2) represents a collection of entries
from the truth table corresponding to the range of the stable, small molifications of the design specification should
ternary variable V, and functions MULT and TRITO denote
the multiplier and the least significant trit of the pro- result in small nmodifications or no modifications of the pro-

S. ' duct, respectively. Optionally, if the "best" logic circuit
is of concern, remaining input target clauses cedure. It is important that the imposition of additional con-
corresponding to all permutations of input variables of
the function can be generated. straints on the design should leave the method for logic syn-

Step 2 results in the derivation of a canonical circuit thesis stable. Modular design, technology dependent design,
structure for the function in question. The circuit struc-
ture is called canonical because it represents the canon- and consideration of the fault tolerant logic design are
ical form of a switching function, and is derived using a
building block of the designer's choice, example dual 4- further discussed in the following sections
input multiplexer as shown in Figure 1

The simplification of the target clause representing a Z2 Modular design.
canonical circuit structure occurs in step 3.
Simplification is performed by rudimentary simplifiers,
that is, demodulators corresponding to the basic pro- Recent projections [17,22,27] indicate that future . .'.-
perties of a chosen building block, As a result the fully

" simplified target clause is generated. It can be shown building blocks will definitely be more complex and highly
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functional. It is also conceivable that high level primitive on the logic system in which the multiplexer is to perform

logic elements are to simplify both circuit modeling and Lest Variations occur, for example, in the types of control inputs

generation [3,4] Taking the above into consideration, one available (double-rail or single rail), and in the interconnec-

must find a formalism different than, for instance, that of tions between terminals and other multiplexers The most

Boolean and Post algebras Although powerful and well general form of the YUX is defined by the triple

developed, algebraic descriptions become of less benefit as f' = (XV,OUT), where X =Xj... X,. j is a set of R-valued -

the level of abstraction of the system design increases. At MUX inputs, V V ,..., VmnI is a set of P-valued control in-

the logic design level, the formalisms should appear as puts, and OUT= 0, I....Uj is an P-valued MLX output.

structures and rules rather than mathematical constructs Furthermore, any control signal and any input are bound by

[28]. The set of well defined structures and rules for inter- Vj c ?O, 1,. Uj and X, c ?0, I....U, V, - l/,RF,UUTj, respective-

connecting them helps to establish systematic procedures ly. Thus, any legitimate constant, a double rail control var-

for logic design A well defined structure can be a building able, V, a residue function. IF, or an output of another

block or a module which the designer selected, and the multiplexer are accepted as inputs. The residue function is

structure interconnection rules can be rules of module in- a trivial function, such as an arithmetic plus The relation

terconnections. Dependent upon no particular technology, between Radix and Unit is: U = R-i. A pictorial representa-

a module, or a set of modules, which is functionally com- tion of the Q is shown in Figure 2 b).

plete is used in the course of a flexible, disciplined and
To show how the multiplexer module and its inter-

correct design process.
connection rules are implemented using theorem proving

The method for the synthesis of combinational logic techniques, let us consider the standard 4-input binary mul-

that was described in [.3,14] is based on the properties of a tiplexer The formal definition and corresponding graphical . .

predefined building block The building blocks used were symbol are shown in Figure 3 a). The decomposition axiom

the general multLi-valued T-gate and the multi-valued multi- Figure 3 b), not only reflects the structure of the MUX, it

plexer, Figure 2 a) and b), respectively The multiplexer is a also embeds additional information by means of functions

standard component in commercial digital design and is and function variables which are used. Whenever used, the

used further to illustrate our approach. Since we are con- axiom (formula) is interpreted and its interpretation carries

cerned with the formalism of modular design for an arbi- a structure and an assignment of values to functions and

trary rn-variable, R-ary switching function, the "rm-ary function variables of the formula. The structure of the MUX

Rm-input R-ary" multiplexer will be used as a module in as a logic device is reflected in the structure of the formula

the design. The explanation of this terminology follows. As written, Figure 3 b), the formula for the MUX has four in-

Also, if one is to be bound by the requirement of a specific puts, XO,XI,X2,X3, the selection part, SEI,VI,), connected

technology, the multiplexer is a known building block which to the device M"I, and the MtjX(SFEl.().) as an output The

can be implemented to perform in different logic systems. MIUX structure consisting of the inputs, selection part and

J2L technology is a good example here, and is discussed in output is constructible which is stated by the predicate .

the next section CKT(MUX(SEIO,) The MUX decomposition axiom is written

in the clause form and represents the following implication.
Different types of multiplexers can be defined based

36sx

0

.o,. . .. .

V.. ,* * . . - -.. °. .°- .. ,



CKT(SP:L(Vl,V2))rCKT(Xo)nCK''(xI)rsCK'(X2) Therefore the simplification is performed according to the

* CKT(MUX(SEL(V1,V2),XO.X1,X2,X3)), rules of module interconnections A fully simplified target

To say it differently, given the elements of the MUX, the con- clause is decomposed using the decomposition clause for

struction of the MUX itself is imminent the module, Figure 3 a). again adhering to the rules for

module interconnections.
To be a part of a logic network, the MUX must con-

* form to its specification, for instance, permitted input and In the example of the Seven-Segment Display binary

output signals are 0 and I The adherence to the function [I], Figure 4 a), the target clause representing a

specification is enforced by the assignment of values to canonical circuit. structure, shown in Figure 4 b), is demodu-

functions and function variables of the MtJX formula. The Xi lated to the clause in Figure 4 c) As can be seen, no rule for

variable denotes the situation in which any well defined in- the scope of input variables, control variables, or rules for

put can be accepted. The Vj variable (an argument of SEL) module interconnections were violated. Another example is

and the output MUX(SELO) have their scopes determined that of the ternary 9-input multiplexer, as defined in

by the assignment of the formula as well. An assignment Figure 5 a-c), and used in the design of the logic circuit for a

changes from the imtial one as stated in the input target 2x2 Ternary Multiplier, Figure 6 a). The target clause

clause, through the intermediate ones corresponding to the representing a canonical circuit for the 2x2 Ternary Multi-

transformations of the target clause, to the final assignment plier as shown in Figure 6 b), is demodulated to the clause 0

as determined in the fully simplified clause. Transforma- in Figure 6 c). Modular logic circuits for the Seven-Segment

tions that occur in the course of a proof are caused by sub- Display and for the 2x2 Ternary Multiplier functions that

sequent resolutions and demodulation on any intermediate were obtained by the theorem prover, are shown in

target clause Any change in the assignment that might Figures 4 d) and 6 d), respectively.

result during a resolution, for instance, caused by
It can be seen that using the formalism of a modular . . -

unification, conforms to the MUX specification. Both as
design, an arbitrary m-variable, R-ary function can be syn- -" -

simplification and canonicalization, demodulation causes a
thesized.

well defined, finite transformation of any given clause; and

by choosing a specific set of demodulators, one has full con- 2.3 Design under Technology Requirements.

trol over possible changes made to the assignment. For the
So, we htve just completed the synthesis of a func-

, 4-Input binary MUX, this set of demodulators-simplifiers is
shown in Figure"3 c).tion given a required building block, and we would like to
sw iknow if it can be implemented under requirements of a par-

Module interconnections are taken care of in the fol- ticular technology. T. begin with, one must decide on the

lowing way. The input target clause represents a one to one selection of technology, The choice is influenced by the

mapping from the furction truth table to the clause form It current availability of multi-valued circuits that were

ts transformed into the structure which represents a canon- developed for this technology. Multi-valued circuits

lcal logic circuit for the function, usin, the dual 4-input developed over the last decade can be grouped into three

MUX A canonical logic circuit is a legal interconnection of major classes 18.26]: the Bipolar current mode circuits

*..'. modules which is simplified using properties of the module which comprise (
2
L and ECL quaternary logic, the unipolar ...
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voltage mode circuits including NMOS and MIESF''T ternary [8], one can easily see why this is of great interest to the

logic, and the charge-coupled quaternary logic. By far the logic designer

first class is best understood. It adopts many techniques of
Our method for the design of 12/, cembinational logic

the current mode of signal processing and is general as well
consists of a two phase process

as flexible, for it stenis from the synthesis of threshold log-

ic. It is not limited to any specific radix, but for practical 1) Function synthesis using a given building block

reasons, only binary, ternary, and quaternary logic circuits 2) End ophimization at the unary block level •

have been designed so far. The second class is practically

confined to ternary logic, while the third one, although ird- The first phase is performed using techniques of the

tially successful, is not economically viable as yet Therefore method for aulomated synthesis of combinational logic

we will use as an example I2L technology [14,15], and in Ue end, corresponds to the cascading of 111,

building blocks The second one performs the local optimi-
Until now, the most comprehensive approach to the

zation of the logic remnants from the first phase
design of multi-valued I2L logic circuits was due to Mcllus-

key [19,20,211 It is conceded there that the algebraic sys- I
2
L technology can be briefly characterized as fol-

tem geared to 1
2

L technology, and the set of operators lows [6,7]: i) operation in current mode with a fixed number _

which are implied by the system and selected based on a of current levels with each current level representing a logic

judicious study of already designed circuits, are responsible level, ii) replication of current signals by means of a

for the efficient designs of multi-valued combinational logic current-mirror as shown in Figure 7 a) with implied conver-

that have been obtained. The design procedure relies on sion of the source current in the base into the sink current

the modified Karnaugh map, Q-Vap, and thr universal quad in the collector, and with a limit on the number of replicat-

gate. A slightly modified version of this approach was imple- ed copies of four, iii) linear summation provided by connect-

mented on the automated theorem proving system [29]. ing together leads carrying current mode signals,

FIgure 7 b), iv) an easy way of integration of constant
While the Karnaugh map approach of McCluskey can cUrrent sources into the gate structure by means of thres- .

be seen to be of historical significance, the theorem proving c" st uh

holding, v) the presence of a switch, a transistor operating
approach looks more promising when weighted against the

in normal mode and providing an infinite sink, if a positive
complexity of today's systems. This is especially so given

source is applied to its base, Figure 7 c), vi) availability of a"-..•

the recent interest in nonstandard logic. Due to the obser- s,
complement gate performing the operation of multi-valued '"""

vation made by VLSI designers on the role of circuit minimi-
negation, Figure 7 d). As will be seen from the following dig- 0

zation in large binary logic designs [11l, multi-valued logic .F- -

cussion, we adhere to the requirements of 1
2
L technology

building blocks may be seen to provide a means to limit the
while both phases of the method are being carried out

scope over which circuit minimization must range. Such
Meantime, as ItL technology continues to develop, these " ''

blocks of locally optimized, general purpose logic could
further developments can be incorporated into our ap-

reduce the interconnection burden. Since, on the ,verage,
preach. < '

707. of the chip area is consumed by wiring, while the rem-

Inder is occupied by active devices and by passive isolation First phase: Puactton SynihevLss.% Uig Guen 1
2
L YviLiding
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Block CL 12L T X,Y1,Y2.Y3,'r(Z.VOV ,V2,.v3)))
-12 L X -12L(Y1) -12L(Y2) -121,(Y3) -12L(T(Z,VO,V1 ,V2,V3));

CL 12L T X,Yl,Y2,T(Z.VO,V1,V2,V3),Y3)) -

Four steps of the method for the synthesis of combi- -12L X -12L(Y1) -12L(Y2) -12L(Y3) -I2L(T(Z,VOV1,V2,V3));
CL 12L T X,Y1,TiZVO.V1,V2,V3),Y2,Y3))

national logic as described in [14,15] are to be executed -12L X -I2L(YI) -I2L(Y2) -12L(Y3) -12L(T(Z,VO,V1,V2,V3)),
CL 12L T X,T(Z,O,VI ,V2,V3),Y1,Y2,Y3))

during this phase The 1
2

L multiplexer is a basic building -12L X -12L(YI) -12L(Y2) -12L(Y3) -12L(T(Z,V0.VI,V2,V3));

block used in the process of logic synthesis. We also intro- That is to say, the decomposition will proceed if and only if

duce a minor modification in the final step to ensure that the term To contains at least another term To within itself

the decomposition stops at the unary building block (vec- The corresponding logic structure is a two level one, with

tor) level, to be described in the sequel. the bottom level being the unary block level as the decom-

position comes to an end.
The axiom

Let us consider the example of a Quaternary Full
CL -12L(X) -12L(VO) -12L(VI) -12L(V2) -12L(V3)

12L(T(X,VO.V1,V2,V3)); Adder, Figure 10. The final clause obtained in the first

where: phase will be the following:
12L - predicate,
T - quaternary T-gate function,
X - control variable, CL I2L(T(D0,C1,C2,C3,C0)) I2L T(DOC2,C3,CC1))
Vi - placeholder for another T-gate, constant, etc. 12L(T(D0,C3,C0,C1,C2)) 12LT DC0,C0,COCI12L(T(D0,C0,C0,CI ,C1I) 12L T D0C0,. CI,CI)) ;

represents the four-valued 1
2

L multiplexer, or a T-gate, as w
whe re:

presented in [61, Figure 8 As a propositional formula it car- DO - control variable,
Cl constant i.

ries an induced interpretation, that is, it has a structure
The literals of this clause denote the composite unary func-

and an assignment. The structure of the formula....-

tions. Needless to say, it one stops the synthesis at this
corresponds to the structure of an 1

2
L quaternary multi-

point, the unary functions would default to be implemented .
plexer in that the X is a control variable and the Vi's are in-

using quaternary multiplexers, Figure 15 a). Otherwise, lo-
put variables, and the ties between them are such that only

cal optimization is performed as the second phase.
one Vi is selected depending upon the value of X. It is also

assumed that the additional 1
2

L Lechnology considerations Second phase: En~d Optimization at Unary Block Level.

are taken care of, such as, a current limit of approximately SHaving simplification carried out using the proper- . -. -

four on the number of collectors that a transistor can have, H. .. -u h

ties of a given building block, it is worthwhile to optimize the
reflected in the circuit for the five-valued MUX, although the

"unsynthesizable" composite functions. This is particularly -"- .
corresponding axiom is not that much different frcm the

true for functions which cannot be realized with a small .. -
four-valued one, Figure 9. Furthermore, the X as well as the aamount of logic or for functions for which the simplification 0
Vi's are only source type signals because of the way the mul- does not yield a simple logic structure. As a result, the end . .--i ..

tplexer clause is used in the course of a proof. The assign- .. 
..s.gt u-a.h

optimization is advocated to produce savings on the number
ment of values to X and Vi's will force this to happen.

of components, such as transistors, switches, collectors.

Since the multiplexer decomposition is to stop at the etc., without saurifying the regularity of the overall imple-

unary block level, the actual decomposition clause must mentation. -" .'

have the following form:
The end optimization phase is implemented based on - .
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the axiomatizatLion of the I1. connectwies ,is described in and 12l,(tlett(YO.Y *Y2.t2)) itrals. and the one PuLput vvc-

[30] Once the building blocks, here the rnIulti-vdlued P5/ tor. the 121,(UIH(/fl.. ./2, Z.3)) lii ral 'he l)ll*'"rene is a

gates. are in place and the sit of 11, primiitives; are avail!- one-input, one-output type of gate, and thus it , -l pt.s an

able, the optimization phase can start input vector. he 121,(U;iti YO.Y*,Y2.Y3)) lit crt. and pro-

duces an output vector the l21,(tl~lt(/,O./:.12/3)) ht-ral .- -.-
To begin with, one needs to choose the set of gates

Since the process of coniniinieation must nIv it the gate
Following McCluskey' claim of "gaLe-technology" suitability

[pecifications, adherence to this specification e, enforc-ed by[21], the PIUS. INhibit and DtFFerence connect ives were

means of a table lookup for allowable input and output sig-
selected McCluskey correctly notes that any unary func-

nals, via EQU literals ihe table lookup is performed when
Lion can always be realized without using the MAX connec-

ever the axiom is used, and the resolvent clause represents
tive [21] In fact. the realization with ll,tS is preferred,

the permitted gate output provided the unification on the
since it uses fewer collectors As a result, the PLUS. IN~libit

output literal and the gate specifications hitcrals c:ould have•

and DIfFerence are the only connectives we use The follow-

occurred Successful unification is recognized when no EQt
Ing subsection contains material on the axiomatizaLion of

literals are present in the resolvent clause
the jS,, gates that was presented in [30]J

LRzicon of J21, pimitives It is a typical design practice to
Aitomatization of I2, connectives: The input -output charac-

have the set of primitive elements always available when

teristic of every gate is represented by the matrices of

c'-signing complex ones In our case the lexicon of primitive
equalities, as shown in Figure 11. which are nothing more

P'L components consists of all of McCluskey s strong thres-
than mappings from the function truth tables which a par-

hold and delta hiterals [2' ] conveniently generited hy the
ticular gate implements to its clause form l1 should be not-

circuit in Figure 13 The set of deniodulators corresponding ...
ed that two types of signals are being used source signals t

to these primitives is shown in Figure !4 Note tha t the varn-

denoted by a constants Ci, and sink type signals denoted by
able X can assume any value for any allowable source type

a constants Ni Furthermore, the PIUS gate accepts only
of signal As soon as the newly generated clause contains a

source and outputs sink type signals, the INIibit's output. X,
literal which matches any one of the primitives, it is deno-

is shorted to the ground when the input current C' is
dulated to a harmless function, NTII(A), to denote the fact

greater than zero, and the DIFFerence expre..ses the -
that this primitive has just been used at this stage of a

conversion of signals from sink to source where the sink sig- 
. .

design A demhdilator's number indicates which primitive
nal is a mirror of the input source Undefined values for

was used
some input combinations are intentionally left out so that a

gate can not produce an output if these inputs occurred To continue with the example of a Quaternary Full S

Adder, we show the circuits for the composite unary func-
The gate behavior in the design environment is for-

tions of the Sum and the Carry Outputs of these circuits
mally defined by the axioms in Figure 12 The I'l.tJS and IN-

are Inputs to the multiplexer cascade obtained in the prev-
Hibit are each a two-input, one-output type of gate, and, ous phase Figure 15 ab) displays the ,2j, implementation of """""""

therefore, they communicate with the outside world by • p

a quaternary full adder obtained by the theorem prover As
means of the two input vectors, the 121,(tJBl(XOXl.X2.X3)) •, ."-

a further example, consider the three variable ternary func- ". -
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tion [16), Figure 16 a), and the one stage of a quaternary ing implementalion of this technique generates logic cir-

" ALU [12], Figure 17 a-e). Corresponding IPL circuits gen- cuits for the functional and complementary combinational

erated by the theorem prover are shown in Figure 16 b) and logic for an arbitrary switching function at the same time

Figure 17 f-g) Basically, four steps of the method for the synthesis of com-

binational logic are used. The chief modification involves the
As can be seen, the method consists of a totally gen-

step for the function input
eral solution for an arbitrary function that is to be imple-

mented in 1
2

L technology The synthesis of a unary function Let us use a three variable ternary function, Fig-

is reduced to a trivial case and involves only the end optimi- ure 18, as an example Note that the notion of duplication is

zation phase. Clear advantage of this method is the expressed by siniply repeating the function table within the

hierarchical design which can be easily modified to accom- encapsulating function EX (example function). Since the

modate changes in f
2

L technology and functionality We be- complementary circuit is to compute the same function

lieve that logic design in different technologies can be per- value for the sarne combination of input variables and yet S

formed in a similar fashion using the method. However, the input variables are provided in the complementary

compared with other methods for the design of 12, circuits form, the corresponding function truth table needs to be

[6,9], our method does not generate optimal solutions prepared. The set of demodulators to perform this task for

the sample function is shown in Figure 19. Demodulation isZ.4 Fault Tolerant Logic Design. S

triggered by hyperresolution, I1ST BACKWARD, and results in

In this section we conside" a theorem proving imple- a clause containing two forms of the same function, the

mentation of a specific technique for logic design, namely, functional and its complement. Starting from this point, the

the use of internal redundancy with "complementary logic" rest of the synthesis process continues as before. The gen-

which is used in the design of fault-tolerant systems eration of all table permutations, if any. the derivation of a S

[2,23,24]. Our objective is to design a fault tolerant combi- canonical circuit. structure, the simplification and the final

national network for the given function, synthesis steps are performed simultaneously on the func- .

tional and complementary forms of the targLt clause. As a " -

With the advent of VISI it has become clear that the .- '-
result, the functional and complementary logic circuits are

practice of externally duplicating logic and comparing it is -
generated. Figure 20 shows the corresponding logic .ircuit

neither practical nor useful [24]. The use of internal redun-
for the sample function. As another example, consider the

dancy is much preferred Duplication with complementary
ternary full adder function. Corresponding functional and

logic shows that identical failure states can be avoided and
complementary logic circuits generated by the theorem

the design made less susceptible to bridging faults. The two
prover are shown in Figure 21.

outputs of the functional and complementary circuits are

later compared for correctness of operation It is important
IM. SUMMARY AND CONCLUSIONS.

to note, that for the general case of a multi-valued system

the notion of complementary logic actually refers to the log- We have described how additional constraints, such

ic circuit for which all control variables are negated, yet the as modularity, technology dependence and fault tolerant S

circuit performs the original operation. The theorem prov- lbglc design can be imposed upon the design of the combi-

3 .
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national network for an arbitrary switching function. The The author is grateful to Dr. Brian '. Smith, Dr larry
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12 ' A0)
070 0)

T -GATE OUT=T(X.11,12,.-IR)

UR XM-7')

X where:

a) R -radix

12 n 0 'Si'w 0) ... sicv0 0)

MUX OUT=MUX(SELS,S 2 -. m).l2...R)

3IS .. 'S where:

1J.Sj.OUT 1.U

R -radix

b)

Figure 2 Building blocks:
a) General T-gate block,
b) General MUX block.
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0= (X.OUT)

X~j~.Xl)C2.C~jXj E j,l,Vl,-V,RF.OUT1

XD
X1 --30-OUT=MXC5ELCV-, /2) ,XO,Xl.X2.X3)

VI V2

a)

CL -CKT(SEL(VlV2)) -C CT(Xo) -ClKT(\l) -CKT(\2) -CKT(X3)

where; CKT - predicate; denotes that a circuit is constructible,

MUX - IUX function; denotes NLX logic device,
SEL - SEL function; denotes selection part of MUX,

Vi - control variable,
Xj - input variable.

b)

F'igure 3 Dual 4-input binary multiplexer: M1odule example

(continues, next page):

a) Formasl definition and pictorial representation,

b) Axiom representation,
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CL EQCJAL(HUX(SEL(V1 ,V2) ,X,X,X,X) ,X);
CL EQUAL(KUX(SEL(Vl,V2) ,X,X,X,DX) ,X);
CL EQUALCNUX(SEL(V1 ,V2) ,XX,DX,X) .X);
CL EQUAL(HUX(SEL(Vl,V2),X,DX,X,X),X);
CL EQUAL(IUX(SEL(Vl,V2) ,DX,X,X,X) ,X);
CL EQUAL(NUX(SELCVI,V2),CO,CI,CO,Cl),V2);
CL EQUAL(MUX(SEL(Vl,V2) ,CO,Cl,CO,DX) ,V2);
CL EQUAL(MUX(SELCV1,V2) ,CO,Cl,DX,Cl),V2);
CL EQUAL(MUX(SEL(Vl,V2) ,CO,DX,C0,Cl) ,V2);
CL EQUAL(MUX(SEL(Vl,V2) ,DX,Cl,CO,Cl) ,V2);
CL EQUAL(MUX(SEL(Vl,V2),CO,Cl,DX,DX),V2);
CL EQUAL(JiUX(SEL(Vl,V2) ,CO,DX,DX C1) ,V2);
CL EQUAL(MUX(SEL(Vl,V2) ,D:(,DX,C0,C1) ,VZ);
CL EQUAL(MUX(SELCVl,V2),Cl.CO,Cl,CO),BAR(V2));
CL EQUAL(MUX(SEL(Vl,V2) ,Cl,CO,Cl,DX) ,BAR(V2));
CL EQUALCIUX(SEL(V1,V2),Cl,CO,DX,CO),BAR(V2)); -
CL EQUAL(HUX(SELCVl,V2) ,Cl,DX,CI,CO) ,BAR(V2));
CL EQUAL(MUX(SEL(VI,V2),DX,CO,Cl,CO),BAR(V2));
CL EQUAL(NUXCSEL(Vl,V2) ,Cl,CO,DX,DX),BAR(V2));
CL EQUAL(MUX(SEL(V1,V2) ,C1,DX,DX,CO) ,BAR(V2));
CL EQUAL(MUX(SEL(Vl,V2),DX,DX,Cl.CO),BAR(V2));
CL EQUAL(MUX(SEL(Vl,V2) ,CO,CO,Cl,Cl) ,Vl);
CL EQUALCNUX(SEL(V1,V2),CO,CO,Cl,DX),Vl);
CL EQUAL(NUX(SEL(V1,V2) ,CO,CO,DX,Cl) ,Vl);
CL EqUAL(MUXCSEL(Vl,V2) ,CO,DX,C1,Cl) ,Vl),
CL EQUAL(bIUXCSELCVl,V2),DX,CO,Cl,Cl),Vl);
CL EQUAL(NUX(SEL(VI,V2) ,CO,CO,DX,DX) ,Vl);
CL EQUAL(MUX(SEL(Vl,V2),DX,DX,Cl,Cl),Vl);
CL EQUAL(MUX(SEL(Vl,V2),CO,DX,Cl,DX),Vl);
CL EQUAL(MUX(SEL(Vl,V2),DX,C0,DX,CI),Vl);
CL EQUALCMUX(SELCVl,V2),CI,Cl,CO,CO),BAR(Vl));
CL EQUAL(iUX(SEL(V1,V2),Cl,Cl,CO,DX),BAR(Vl));
CL EQUAL(MUX(SEL(Vl,V2) ,Cl,C1,DX,CO) ,BAR(Vl));
CL EQUAL(MUX(SEL(Vl,V2),Cl,DX,CO,CO),BAR(Vl));
CL EQUAL(MUX(SEL(Vl,V2),DX,Cl,CO,CO),BAR(Vl));
CL EQUAL(MUX(SEL(V1,V2) ,C1,C1,DX,DX) ,BAR(Vl));
CL EQUAL(MUXCSELCVI,V2) ,DX,DX,CO,CO) ,BAR(VI));
CL EQUAL(MUX(SEL(Vl,V2) ,Cl,DX,CO,DX) ,BAR(Vl));
CL EQUAL(MUX(SEL(Vl,V2),DX,Cl,DX,Co),BAR(Vl)); ..
CL EQUAL(IIUX(SEL(Vl,V2),CO,Cl,Cl,CO),PLUS(Vl,V2));
CL EQUAL(MUX(SEL(Vl,V2) ,CO,Cl,Cl,DX),PLUSCVl,V2));
CL EQUAL(MUX(SEL(VI,V2),CO,Cl,DX,CO),PLS(Vl,V2));
CL EQUAL(MUX(SEL(Vl,V2) ,CO,DX,C1,CO) ,PLUS(VI ,V2));
CL EQUAL(NIUX(SEL(VI,V2),DX,Cl,CI,CO),PLUSCVl,V2));
CL EQUAL(NUX(SEL(Vl,V2),CO,DX,DX,CO),PLUSCVl,V2));

c) where: DX - don't care function,
BAR -multi-valued negation.

% PLUS -arithmetic plus.

Figure 3 Dual 4-input binary multiplexor: Module example
(continued): c) Full set of simplifiers.
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D1D2D3D4 abcd f g

0 00 0 1 11 1 11 0
0 0 01 01 10 00 0
0 0 10 1 1 0 110 1

0100 01 111001 1..
0 10 1 10 11 01 1
0 11 0 00 1 111 1
0 11 1 11 10 00 0
1 0 00 11 11 11 1
1 0 01 11 10 01 1

CKT(DISP(MUX(SEL(D4,D2),MUXCSEL(D3,D1) ,C1,Cl,C1,DX),
MUX(SEL(D3,Dl),C0,DX,C0,DX),MUX(SELD3,D),C,C,C,DX),fluxCSEL(D3,
D1),Cl,DXC1,DX)),MUX(SEL(D4,D2),I1U(SEL(D3,D1),Cl,C1,Cl,DX),
NU(SEL(D3,D1),Cl,DX,C0,DX),HUX(SEL(D3,D1),Cl,Cl,Cl,DX),NUX(SEL(D3,
DI),CODX,C1,DX)),NUX(SELCD4,D2),H4UXCSEL(D3,DI),C1,C1,CODX),
MUX(SEL(D3,D1) ,C1,DX,C1,DX) .MUX(SEL(D3,D1) ,C1,C1,C1,DX) ,MUX(SEL(D3,
DI),Cl,DX,C1,DX)),MUX(SEL(D4,D2),NUX(SEL(D3,Dl),Cl,C1,C,DX),
IIUX(SEL(D3,Dl),CO,DX,C1,DX),!IUX(SEL(D3,Dl) ,CO,CO,Cl,DX),HUX(SEL(D3,
Dl),C1,DX,CO,DX)),MUXCSEL(D4,D2),MUXCSEL(D3,Dl),Cl,Cl,C1,DX),
MUX(SEL(D3,Dl),C0,DXC1,DX),MUX(SEL(D3,D),C,C,C,DX)flUX(SEL(D3,
Dl) ,CO,DX,CO,DX)) ,MUX(SEL(D4,D2) ,IUX(SEL(D3,D1) ,C1,C1,CO,DX).
MUX(SEL(D3,Dl),Cl,DX,C1,DX),MUXCSEL(D3,Dl),C0,C1,C0,DX),MUUX(SELD3, O

D1),C1,DX,C0,DX)),NUX(SELD4,D2),IIUXCSEL(D3,Dl),CO,Cl,C1,DX),
MUX(SEL(D3,D1),C.DX,C,DX),MUtX(SEL(D3,D1),C0,C1,C,DX',lUX(SEL(D3,
Dl),Cl, DX.,CO ,DX))));

b)

CKT(DISP(MUX(SEL(D4,D2) ,C1,C0.PLUS(D3,D1) ,C1) ,MUX(SEL(D4,
D2),C1,BARCD3),Cl,D3),MUX(SELCD4,D2),BAR(D3),C1,CIC1),HUX(SEL(D4
02) ,CI ,D3,D3,BAR(D3)) ,MUX(SEL(D4,D2) ,C1,D3,CO,CO) ,ZHUX(SEL(D4,D2),
BAR(D3),C1,Dl,BAR(D3)),MUXCSEL(D4,D)2).PLUSCD3,D1),C1,PLUS(D3,D), .-

Demodulators used:

EQUAL(fUX(SEL(VO,V1),CO,C1,C1,DX),PLUS(VO,V1));
EQUAL(MUX(SEL(VO,V1) ,C1 ,DX,CO,DX) ,DAR(VO));
EQUAL(HUX(SEL(VO,V1) ,C1,C1,CO,DX) ,BAR(VO));
EQUAL(MUX(SEL(VO.Vl),CO,DX,C1,DX) ,VO);
EQUhL(MUX(SEL(VO,V1) ,COCO,C1,DX) ,VO);
EQUAL(MUX(SELCVO,V1)c,C,lCO,DX) ,Vl);
EQUAL(MUX(SELCVOV1) ,V2,DX,V2,DX) ,V2);
EQUAL(MUX(SELCVO,V1),V2,V2,V2,DX),V2);

Figure 4 Seven-Segment Display binary function:
a) Truth table,
b) Target clause representing canonical circuit,
c) Fully simplified target clause,
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fa OLVOUT

X = XOXl.).X.X4.X.XBX7.XSIXi c jOl.2.VL-VLRF.OUTI

V. IV1.VZI OUT.V1 qE 10.1.21

X'4 UT=UUX(SEL(V1 .V2).XOXIX2,)3.X4.X5.(6,XT.X8)

a) v

CL -CKT(SEL(Vl,V2)) -CXT(XO) -CKT(Xl) -CKT(X2)
-CKT(X3) -CKT(X4) -CKr(X5) -CRT(X6) *CKT(X7) -CKT(X8)
Crr(HM(SEL(VlV2) ,XOXI,X2,X3,X4,XS,X6,X7,XS));

b)

EQUAL(MUX(SEL(V1,V2),X,X,X,X,X,XX.X,X) ,X);
EQUAL(IIUX(SEL(V1,V2),CO,CO.CO,Cl.CI,Cl,C2,C2,C2) ,Vl);
EQUAL(MUX(SEL(VI,V2),CO,Cl,C2,CO,Cl.C2,CO,Cl,C2),V2);
EQUAL(MUX(SEL(V1,V2) ,C2,C2,C2,CI,CI,Cl.CO,CO,CO) ,BAR(Vl));
EQUAL(MUX(SEL(Vl,V2),C2,CI,CO,C2.C1,CO,C2,Cl.CO),BAR(V2));
EQUAL(MUX(SEL(Vl,V2) ,CO,C1,C2,C1,C2,CO,C2,CO,C1),

PLUS(Vl,V2));

Figure 5 Dual 9-input ternary multiplexer: Module example:
a) Formal definition and pictorial representation,
b) Axiom representation, -

c) Subset of simplifiers.
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D3D4
0 1 2

DODi 0 1 2 0 1 2 0 1 2

0 o 0000 0000 0000 0000 0000 0000 0000 0000 0000
0 1 0000 0001 0002 0010 0011 0012 0020 0021 0022
0 2 0000 0002 0011 0020 0022 0101 0110 0112 0121

-- 1 0 0000 0010 0020 0100 0110 0120 0200 0210 0220
1 1 0000 0011 0022 0110 0121 0202 0220 1001 1012
1 2 0000 0012 0101 0120 0202 0221 1010 1022 1111
2 0 0000 0020 0110 0200 0220 1010 1100 1120 1210
2 1 0000 0021 0112 0210 1001 1022 1120 1211 2002
2 2 0000 0022 0121 0220 1012 1111 1210 2002 2101

a)9

CKT(MULT(TRIT3Ct[UX(SEL(D0,Dl) ,MUX(SEL(D2,D3) ,CO,CO,CO,CO,
CO,CO,CO,CO,CO) ,MUX(SEL(D2,D3) ,CO,C0,CO,CO,CO,CO,CO,CO,CO). .

!UX(SEL(D2,D3) ,CO,CO,CO,CO,CO,CO,CO,CO,CO) ,MLX(SEL(D2,D3),CO,CO,CO,
CO,CO,CO,COCO,CO),MUX(SEL(D2,D3),CO,CO,CO.CO,CO,CO,CO,C1,C1),
MUX(SEL(D2,D3) ,CO,CO,CO,CO,CO,CO,CI,Cl,Cl) ,MUX(SELCD2,D3) ,COCO,CO,
CO,C0,C1,Cl,C1,Cl) ,MUX(SELCD2,D3) ,CO,CO,CO,CO,Cl,C1.CI,C1,C2),
HUXCSEL(D2,D3),C0,C0,C0,C0,C1,C1,ClC2,C2))) ,TRITZ(HUX(SEL(DO.01),
MUX(SELCD2,D3),CO,CO,CO,CO,CO,CO,CO,CO,CO),NtUX(SEL(D2,D3) ,CO,CO,CO,
CO,CO,CO,CO,CO,CO),MUX(SEL(D2,D3),CO,COCO,CO,CO,C1.Cl,CI,CI),
MUX(SEL(D2,D3),C0,C0,C0,C1,Cl,Cl,C2,C2,C2),H1UX(SEL(D2,D3),CO,CO,CO,
Cl,Cl,C2,C2,CO,CO),MUX(SEL(D2,D3),CO,CO,C1,C1,C2,C2,CO,CO,C 1),
MIUX(SEL(D2,D3) ,CO,CO,C1,C2,C2,CO,C1,C1,C2) ,NIX(SELCD2,D3) ,CO,CO,C1,
C2,CO,CO,C1,C2,CO),?IUX(SEL(D2,D3) ,CO,CO,Cl,C2,CO,C1,C2,CO,Cl))),
TRIT1CI4UX(SELCDO,D1) ,MUX(SEL(D2,D3) ,CO,CO,CO,CO,COCO,CO,CO,CO),
?UX(SEL(D2,D3) ,CO,CO,CO,C1,C1,ClC2,C2,C2) ,MUtX(SEL(D2,D3) ,CO,CO,C1.
C2,C2,CO,C1,C1,C2) ,!UX(SEL(fl2,D3) ,C0,C1,C2,C0,C1,C2,C0,Cl.Cl),
MUX(SEL(D2,D3),CO,C1,C2,C1,C2,CO,C2,CO,Cl) ,IUX(SEL(D2,D3) ,CO,C1,CO,

C2,CO,C2,C1,C2,C1),MUX(SEL(D2,D3),CO,C2,C1,CO,C2,Cl,CO,C2,CI),
?fUX(SEL(D2,D3),CO,C2,C1,C1,CO,C2,C2,C1,CO) , UX(SEL(D2,D3),CO,C2,C2,
C2,C1,Cl,C1,C0,C0))),TRITCMUX(SEL00,D),M~UX(SEL(D2,D3),CO,CO,CO,
CO,Co,CO,CO,CO,CO) ,MUX(SEL(D2,D3) ,CO,C1,C2,CO,C1,C2,CO,C1,C2),
MUX(SEL(D2,D3),CO,C2,C1,CO,C2,C1,CO,C2,CI) ,MUX(SEL(D2,D3),CO,CO,CO.
CO,CO,CO,CO,CO,CO) ,HUX(SEL(DZ,D3),CO,Cl,C2,CO,C2,C2,CO,ClC2),
MUX(SEL(D2,D3),CO,C2,Cl,CO,C2,C1,C0,C2,Cl),I1UX(SEL(D2,D3),CO,CO,CO,
CO,CO,CO,CO,CO,CO),MUX(SEL(D2,D3),CO,CI,C2,CO,CI,C2,CO,C1,C2),
MUX(SEL(D2,D3) ,CO,C2,C1,CO,C2,C1,CO,C2,Cl)))));

b)
CKT(MULT(TRIT3(MtJX(SELCDO,D1),CO,CO,CO,CO,KUX(SEL(D2,D3),
CO,CO,CO,CO,CO,CO,CO,C1,C1) ,MU(SEL(D2,D3) ,CO,COCO,CO,CO,CO,C1,Cl.
C1),MUXCSELCD2,D3),CO,CO,CO,CO,CO,C1,C1,C1,C1),NUX(SEL(D

2 ,D3),CO, 1

CO,CO,CO,C1,C1,Cl,C1,C2),MUX(SEL(D2,03),CO,CO,CO,CO,CI,CI,CI,C2, a.

C2))),TRIT2CMUX(SEL(D0,Dl),CO,CO,Mt3X(SEL(D2,D3),C0,C0,C0,C0,COCl,
Cl,Cl,Cl),D2,MUX(SEL(D2,D3),CO,C0,CO,C1,Cl,C2,C2,CO,CO),MUX(SEL(D

2 ,

D3XCO,CO,C,C,C2,C2,CO,CO,C1),MIUCSEL(D2,D3),CO,CO,C1,C2,C2,CO,
C1,C1 ,C2) ,MUX(SEL(D2 ,D3) ,CO ,CO,C1 ,C2 ,CO ,CO ,Cl,C2 ,CO) ,MUX(SEL(D2,
D3) ,CO,CO,C1,C2,CO,C1,C2,CO,Cl))) ,TRIT1(MUX(SEL(D0,D1) ,CO,D2,

MUX(SEL(D2,D3) ,CO,CO,C1,C2,C2,CO,C1,Cl,C2),D3,PLUS(D2,D3),
M4UX(SEL(D2,D3),CO,Cl,CO,C2,CO,C2,C1,C2,C1) ,MtXCSEL(D2,D3) ,CO,C2,Cl.
CO,C2,C1,CO,C2,C1),I4U(SEL(D2,D3),CO,C2,C1,CbCO,C2,C2,C1,CO),
MUX(SEL(D2,D3) ,CO,C2,C2,C2,C1,C1,C1,CO ,CO))) ,TRIT0( IUX(SELCD0,Dl).
CO ,D3 ,MUX(SEL(D2,D3) ,CO ,C2,C1 ,CO ,C2 ,C1 ,CO ,C2,C1) ,CO ,D3 ,MUX(SEL(D2,
D3),CO,C2,C1,CO,C2,C1,CO,C2,C1),CO,D3,MSXCSELCD2,03),CO,C2,CI,CO,
C2,C1,CO,C2,Cl)))));

% Demodulators used:
EQUAL(MUX(SEL(VO,Vl) ,CO,Cl,C2,C1,C2,CO ,C2 ,CO,C1) ,PLUS(VO ,V1));
EQUAL(MUX(SEL(VO,V1),CO,C1,C2,CO,C1,C2,CO,C1,C

2 ),Vl);

EQUAL(MUX(SEL(VO,V1) ,CO,CO,CO,C1,Cl,C1,C2,C2,C2) ,VO); -*

c) EQUAL(HUX(SELCVO,Vl),V2,V2,V2,V2,V2,V2,V2,V2,V2),V2);

Figure 6 2x Ternary Multiplier function: (continues, next page):
a) Truth table,
b) Target clause representing canonical circuit,
c) Fully simplified target clause,
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CL -12L(X) -12L(VO) -12L(VI) -12L(V2) -12L(V3) -12L(V4)

12L(T(X,VOVl,V2,V3,V4));

p2
Figure 9 1 2 L five-valued T-gate and corresponding axiom.

0102 0102
0 1 2 3 0 1 2 3

DO 0123 0123 0123 0123 D0 0123 0123 0123 0123

0 0123 1230 2301 3012 0 0000 0001 0011 0111
1 1230 2301 3012 0123 1 0001 0011 0111 1111
d dddd dddd dddd dddd d dddd dddd dddd dddd
d dddd dddd dddd dddd d dddd dddd dddd dddd

where: d - don't care condition.4 a)

CL -CKT(ADD(SUM(T(DO,
TCD1,T(D2,CO,C1,C2) ,T(D2,CI,C2,CO) ,T(D2,C2,CO,Cl)),
T(D1,T(D2,C1,C2,CO),T(D2,C2,CO,Cl),T(D2,CO,Cl,C2)),
T(Dl,T(D2,DX,DX,DX),T(D2,DX,DX,DX),T(D2,DX,DX,DX)))),
CARRY(T(DO,
T(Dl,TCD2,CO,CO,CO),T(D2,CO,CO,Cl),T(D2,CO,Cl,Cl)), 7
T(DI,T(D2 ,CO ,CO ,CI) ,T(2 ,CO ,C1,Cl) ,T(D2 ,CI.C1 .Cl))
T(D1,T(D2,0X,DX,0X) ,T(02,DX,DX,DX) ,T(D2,DX,DX,DX))))));

where: CKT - predicate,
ADD - encapsulating function; Quaternary Full Adder,
SUM, CARRY - Sum and Carry outputs of the Adder,

.j.Di - control variable,
Ci - constant i, (table entry),
DX -don't care function.

b)

Figure 10 Quaternary Full Adder:
a) Truth table, b) Input target clause.
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CL EQU(PLUS(CO,CO),NO); CL EQUCPLUS(CO,Cl),Nl);
CL EQU(PWUS(CO,C2),N2); CL EQU(PLUS(CO,C3),N3);
CL EQU(PLUS(Cl,CO),Nl); CL EQU(PLUS(Cl,Cl),N2);
CL EQUCPLUS(C1,C2),N3); CL EQU(PLCJS(Cl,C3),N3);
CL EQU(PWUS(C2,CO),N2); CL EQU(PLUS(C2,Cl),N3);
CL EQU(PLUS(C2,C2),N3); CL EQU(PLtJS(C2,C3),N3);
CL EQU(PLUS(C3,CO),N3); CL EQU(PLUS(C3,Cl),N3);
CL EQUCPLUS(C3.C2),N3); CL EQU(PLUS(C3,C3),N3);

a)

CL EQU(INH(X,CO),X);
CL EQUCINH(X,Cl),CO);
CL EQU(INHCX,C2),CO);
CL EQU(INH(X,C3) ,CO);

b)

CL EQU(DIFPCCO,X),CO); CL EQU(DIFF(X,NO),X);
CL EQU(DIFP(Cl,Nl),CO); CL EQU(DIIFF(CI,N2),CO);
CL EQUCDIFF(Cl,N2),CO); CL EQU(DIFF(Cl,N3),CO);
CL EQU(DIFFCC2,Nl),Cl); CL EQU(DIFF(C2,N2),CO);
CL EQU(DIFP(C2,N3),CO); CL EQU(DIFF(C3,Nl),C2);

ILCL EQU(DIFT(C3,N2),Cl); CL EQU(DIFF(C3,N3),CO);

c)2
Figure 11 Gate specification axioms for quaternary I L

connectives;
a) PLUS gate,
b) IN~ibit gate,
c) DIFFerence gate.

CL -EQrJ(PLUS(XO,YO) ,ZO) -EQU(PLCJS(Xl,Yl) ,Zl)
-EQUCPLUSCX2,Y2) ,Z2) -EQU(PLUS(X3,Y3) ,Z3)
I2L(UBBCXO,Xl,X2,X3)) I2LCUBB(YO,Yl,Y2,Y3))
-I2L(UBB(ZO,Zl,Z2,Z3));

CL -EQUCINH(XO,YO),ZO) -EQU(I.NH(XI,Yl),Zl)
*EQU(INHCX2,Y2),Z2) -EQU(INH(X3,Y3),Z3)
12L(JBB(XO,XlXZ,X3)) r2L(UBB(YO,Yl,Y2,Y3))

-12L(UBB(ZO,Zl,Z2,Z3));
a)

CL *EQU(DIFF(X,YO),ZO) *EQU(DIFF(X,YI),Zl)
-EQU(DIFF(X,Y2),Z2) -EQU(DIFF(X,Y3),Z3)
12L(UBB(YO,Yl ,Y2,Y3))
-12L(UBB(ZO,Zl,Z2,Z3));

b) where: UBB - Unary Building Block; quaternary vector.
2Figure 12 Behavioral axioms for quaternary I L conniectives:

a) PLUS and INHibit gates,
b) DIFFerenc, gate.
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C. Q

wcu

-- am.

CLEQA(UD COX,,XNHC))

CL EQUAL(UBB(X,X,X,O),NTH(A));
CL EQUAL(UBB(X,Co,CO.C),NTH());
CL EQUAL(UBB(COX,CO,C),NTH(A));
CL EQUAL(UIB(CO.C,X,CO,NTH(A));
CL EQUALCUBB(CO,CO,CO,O) ,NTH(A));
CL EQUAL(UBB(CCO,X,XC),NTHA));
CL EQUAL(UUBBC,, X,CO),NT{());

CL EQUALCUBBCCO,X,X) ,NTH(A));
CL EQLUAL(UBB(X,XC,CO).NTI(A));
CL EQUAL(UBB(CO,X,XCOX) ,NTH(A));

CL EQUAL(UBD(XCOXCO) ,NTH(A));

Figure 14 Demodulators corresponding to I 2L primitives.
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0 1 2
D0 012 012 012

-- - -CKT(EXCT(DO,
0 102 211 102 T(DI,T(02,C1,CO,C2),T(02(C2,Cl,Cl),T(D2,C1,CO,C2)),
1 020 120 210 T(Dl,T(D2,CO,C2,CO),TCD2,C1.C2,CO),T(D2,C2,Cl,CO)),
2 100 012 102 TDC2C,0C)Tf2C,1C)~2ClC,2))

where: EX -example function.

a)

IC i % a

at ~ ~

to

b)

Figure 16 Example of three variable ternary function:
a) Truth table and input target clause,0

b) 12 L logic circuit.
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%D1D2 0102
0 1 2 3 0 1 2 3

DO 0123 0123 0123 0123 DO 0123 0123 0123 0123

0 0123 1230 2301 3012 0 0000 0001 0011 0111
1 1230 2301 3012 0123 1 0001 0011 0111 1111
d dddd dddd dddd dddd d dddd dddd dddd dddd

d dddd dddd dddd dddd d dddd dddd dddd dddd

a) SUM(D0,Dl,D2) CARRY(D0,Dl,D2)

D1 D1 El
DO001 23 DO001 23 E001 2 3

0 0 123 00 0 00 00 0 11
1 1 1 33 1 0 1 01 1 2 23 3
2 2 323 20 0 22 20 01 1

3 3 33 3 3 0 1 23 3 2 23 3

b) OR(D0,Dl) c) AND(DO,Dl) d) SHIFT(EO,El)

CL -CKT(ALU(ADD(SUJ!(T(D0,
T(Dl,T(D2,CO,Cl,C2,C3) ,T(D2,C1,C2,C3,CO),

T(D2,C2,C3,CO,C1) ,T(D2,C3,CO,C1,C2)),
TCD1,T(DZ,C1,C2,C3,CO) ,T(D2,C2,C3,CO,C1).

T(D2,C3,CO,C1,C2) ,T(D2,CO,C1,C2,C3)),
T(D1,T(D2,DX,DX,DX,DX) ,T(D2,DX,DX,DX,DX),

T(D2,DX,DX,DX,DX) ,T(D2,DX,DX,DX,DX)),
T(D1,T(D2,DX,DX,DX,DX) ,T(D2,DX,DX,DX,DX),

T(D2,DX,DX,DX,DX) ,T(D2,DX,DX,DX,DX)))), 0
CARRY(T(DO,
T(D1,T(D2,CO,CO,CO,CO) ,T(D2,CO,CO,CO,Cl),

T(D2,CO,CO,C1,CI) ,T(D2,CO,C1,C1,C1)),
T(Dl,T(D2,CO,CO,CO,Cl) ,T(D2,CO,CO,C1,C1).

T(D2,CO.C1,C1,C1),TCD2,C1,Cl,CI.Cl)),
T(D1,TC02,DX,DX,DX,DX) ,T(D2,DXDX,DX,DX).

T(D2,DX,DX,DX,DX) ,T(D2,DX,DX,DX,DX)),
T(D1,T(D2,DX,DX,DX,DX),T(D2,DX,DX,DXDX), .

T(D2,DX,DX,DX,DX) ,TCD2,DX,DX.DX,DX))))),
OR(T (DO ,T(Dl, CO ,C1,C2 ,C3),T(Dl,CI,C1, C3 ,C3)

T(D1,C2,C3,C2,C3),T(01,C3,C3,C3,C3))),
AND(T(DO,T(D1,CO,CO,CO,CO),T(D1,CO,C1,CO,Cl),

T(D1,CO,CO.C2,C2),TCD1,CO,Cl,C2,C3))),
SHIFT(T(EO,TCEl,CO,CO,CI,C1) ,T(El,C2,C2,C3,C3),

e) T(El,CO,CO,Cl,C1),TCE1,C2,C2,C3,C3)))));

Figure 17 One Stage Quaternary ALU and its I L logic
circuits (continues, next page):
a) Quaternary Full ADD operation,
b) Quaternary OR operator, c) Quaternary AND operator,
d) Quaternary Left & Right SHIFT operator,
e) Input target clause,

7S
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Da0

f)

In U

2

f) I L MUX cascade for One Stage Quaternary ALU,

g) End-optimized I L circuits for Sum, Carry,
OR, AND and SHIFT unary functions.
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DID2 -Dl-D2
0 1 2 0 1 2

DO 012 012 012 -DO 012 012 012

0 000 O1l 012 0 222 111 000
1 000 111 112 1 211 ill 000
2 000 111 222 2 210 110 000

a) b)

CL -CKT(EX(FUNC (T(DO,
T(Dl,T(D2,CO,CO ,CO) ,T(D2 ,CO ,CC1) ,T(D2 ,CO,Cl,C2)),
T(D1 ,T(D2,CO ,CO ,CO) ,T(D2 ,C1,C ,Cl) ,T(D2,C1 ,C1 ,C2)),
T(DI,T(D2,COCO,CO),T(D2,CI,CI,CI) ,T(02,CZ,C2,C2)))),
CMPL(T(DO,
T(Dl,T(D2,CO,CO,CO),T(D2,CO,C1,C1) ,T(D2,CO,C1,C2)),
T(Dl,T(D2,CO,CO,CO),T(D2,C1,C1,C1) ,T(D2,C1.Cl,C2)),
T(D1,T(D2,CO,CO,CO),T(D2,Cl,Cl,Cl),T(D2,C2,C2,C2))))));

Figure 18 Sample ternary function:6
a,b) functional and "complementary" truth table, .

c) Input target clause with redundant logic.

CL EQUAL(BAR(BAR(X)) ,X);
CL EQUAL(SLICEC(Al,XP,T(VO,X,Y,Z)),T(BAR(VO),Z,Y,X));
CL EQUAL(SLICEC(A2,XP,T(VO,X,Y,Z)),

T(BARCVO),SLICECCAl,P3,Z),SLICEC(A1,P2,Y),SLICECCA,PIX)));
CL EQUAL(COMPL3(T(VO,X,Y,Z)),

T(BARCVO) ,SLICEC(A2,P3,Z),SLICEC(A2,P2,Y),SLICEC(A2,P1,X)));

LIST GOAL; .'

CL CIT(ADD(FVNC(X,Y),CMPL(X,Y)));

LIST BACKWARD;
CL -CKT(ADD(FUNC(X,Y) ,CMPL(X,Y)))

CKT(ADD(FUNC(X,Y) ,CMPL(COKPL3(X) ,COKPL3(Y))));

Figure 19 Demodulators for generation of "complementary" .

truth table.
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DI.

LDI 

-DO

D1

0D2 0 1 10 Dt2 0

D2 -D2

11 112 2 11 11 0

where:

hre EXF -output of functional logic circuit,

EXc output of complementary logic circuit,

-Di -3-Di (negated input variable).

Figure 20 Functional and "complementary" logic circuits for
the sample function in Figure 18.
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ON

Dl

Z £0 1 00a1 0 110

Do .00.

I DI

where: SF. CF outputs of functional logic circuits,

SC CC- outputs of complementary logic circuits,

-Di - 3-Di (negated ternary input variable).

Figure 21 Functional and "complementary" logic circuits for
Ternary Full Adder.
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Table 1; Statistics of theorem proving experiments on the automated design.

.Time requirements [m. sec. tenthso-sec]
2. Memory requirements K bytes]
3. Number of unifications
4. Clauses Ratio [ (clauses kept) / (clauses generated))

Primary techniques: hyperresolution and demodulation.

Function Statistics

1. Seven-Segment 1. 00.07.18
Display Function 2. 828
(module level design) 3. 8705
______ _ 4. 4 0 69
II. 2x2 Ternary Multiplier 1. 00.12.77
(module level design) 2. 1352

3.15123
4 839

Ill. Sample Ternary Function 1. 00.01.14
(transistor level design) 2. 792

3. 1226
4.,646_____________ .:4

IV. One Stage Quaternary 1. 00.34.16
Quaternary ALU) 2. 800
(transistor level design) 3. 1692

4_148

V. Ternary Full Adder 1. 00.19.25
(internally redundant 2. 788
circuit) 3. 192777

4. .925

Cnnent:_
The number of unifications is a measurement which depends upon no particular

machine nor a theorem proving system.

Furwtions ref erence as:

1. In the "2.2 Modular design" section,
U. In the "2.2 Modular Design' section.
Ill. In the "2.3 Design under Technology Requirements" section,

IV. In the "2.4 Fault Tolerant Logic Design" section,
V. In the "2.4 Fault Tolerant Logic Design" section.
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*L q - ' SYNTHESIS OF MULTIPLE-VALUED LOGIC FUNCTIONS

" q BASED ON A MODULAR DESIGN APPROACH*
B

S 0 Kwang-la Fang Anthony S. Wojcik

-°
ell Laboratories Illinois Institute of Technolog

Naperville, Illinois Chicago, Illinois

ABSTRACT first presented in (3], (4]. A general
approach to the modular design of

As multiple-valued logic technology multiple-valued logic functions using a
advanced rapidly, it is desirable to library of modules was presented by the
develop more cost-effective designs that authors in [5]. In this approach, a
effectively make use of modular design decomposition technique was considered in , .
techniques. A decomposition approach to terms cf available components. The
the modular design of multiple-valued logic function is decomposed into subfunctions
functions was presented previously by the which are implemented by a predefined
authors. Based on this approach, available set of components. This approach
systematic procedures are developed with incorporates the concept of systematically
simplification techniques which reduce the routing subfunctions to a single output.
number of modules required in the design. The components may consist of a set of
The first step involves the process of building blocks or a single universal logic -
partitioning functions into classes. Then, module.
the representative building blocks for each
function class are implemented using T- It is desirable to use as few
gates as the basic component. Design components as possible from the library.
procedures are developed, so that all the The techniques for minimizing the number of
functions in each class can be implemented components used from a predefined library
directly by the representative building was not shown in [5]. In this paper,
block techniques are presented to reduce the
b -number of components required in this

decomposition approach. Examples are given
INTRODUCTION to illustrate the approach.

Most traditional logic design
techniques are based on approaches that THE MODULAR DESIGN APPROACH
generate designs in a one gate at a time
manner. However, in modern logic design, The design approach presented in [5]
the basic units of design are more emphasizes modularity. After a complex
complicated than single gates. Certain function of an arbitrary number of
logic modules are available as standard variables is decomposed into subfunctions
products that are more cost effective than composed of a small number of variables,

... using discrete gates l1l, [2]. The savings the design of the small subfunctions can be
from using standardized components very handled effectively. The entire two-
often more than offset the inefficiency of variable, three-valued function space can S
adapting these components to specific be partitioned into six classes. Based on
applications. In modern logic design, most these six classes of functions, a set of
design techniques emphasize modularity, building blocks designed with T-gates was ...

developed, Figure 1. Each structure ...

In multiple-valued logic, however, implements all the functions in that class,
" very few studies of modular design and in some cases, may require that the

techniques have have been presented. A control variables for the T-gates be
theoretical study on the synthesis of functions of one or two variables. In such L
multiple-valued logic functions based on cases, the "control functions" are also
T-gate Universal Logic modules (LLM's) was implemented by these building blocks.

aThese building blocks are then used to
implement the original complex function.

, This work was supported, in part, by The following definitions are given
the National Science Foundation under which will be useful in our discussion.
Grant MCS-79-01689AO1. w
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Ie

a three-valued, three-variable function
with four two-variable subfunctions a, b, c
and d. In this partition matrix, column 0,
1, and 2 are trivial columns, and are also
unique columns. Column 3 and 4 are
identical columns, column 5 and 6, and
column 7 and 8 are compatible columns. .

F TI,, oUM. FUNCTION CASS ompa tible, x3 bidn blc ipu
V:-. 0 +x 0 01 02 10 11 12 20 21 22

o 1 0 a a a b c 0 2

assinmen ca b ietc to th 2vle

2 1 2 a c c d b 2 0is.called the

[ ~FUNCTION CLASSl 3 FUNCTION CLASS 4 -o.

Table 1. A 3-valued 3-variabl Functioner

Definition 7: A first level control

function is a control function for the
DTsfirst level (or output) T-gate in the

-" building block; and a second level control--.

function is a control function for theE."UNCT.ONS
Ssecond level T-gates in the building block.

* De"inition"2 Two~lrl l Irowcluns inDefinition : If two rows/columns are

* partition matrix arecompatibeif ot vaable, fntose paii od ints

assignment can be identical to the "values"
Figure 1. Buildin Blockssing T-gates to of one row/column, which is called the
inc o cImplement the ix Classes of primary compatible row/column; the other
representing-thesfunctions ae one is called the secondary compatibleie ctibs row/column.

Definition 1: Two rows/columns in:"J partition matrix are identical iff both THE DESIGN OF THREE-VALUED,_...-"""

"::." have the same "value" at all locations. TWO-VARIABLE FUONCTIONS /' '']

Defimatrion is aTiia rows/columnsi ini a to ewhich a l arbitar three-valued two-0

partition matrix are compatible iff both variable functions are partitioned into six

contain the same "values. classes, and all the functions in each
class can be implemented by the

Definition 5: Aow/olunia p ar n representative building block with or

aeiito the-vle tw-vribl function with

identical or compatible if the without control functions, the design of a-

i e t b i nlrows/columns in the partition matrix function is easy as long as the function

icallrepresenting these subfunctions are class can be identified and the control .. '.'.-.
identical or compatible function is implemented. row/colmn-is"

Definition 4: A row/column in a partition The procedure to determine the class

* matrix is a trivial row/column if it is a to which an arbitrary three-valued two

constant, is equal to a variable, or variable function belongs is the same

consists of only one subfunction, method used to rtition the functions a
-described in 5]. Essentially, the

[,Definition 5: A row/column in a partition approach is to group all the functions with
• matrix is unique iff it is not compatible the same number of identical/compatible ::::'''

° oi wih any oher rowcolumnrows/columns into one class. For example, .:".''
a three-valued two-variable function with ...

.+Definition 6: A control function that is two . compatible rows/columns in its ...

:'"is called a "structure X" control function. Similarly, a function with two compatible
rows/columns and a trivial row/column is a

" For example, a control function that function in class 3.
"':" is implemented by a building block 2 in
":%Figure I is caled a "structure 2" control The second part, namely, the

function. The function given in Table I is identification and implementation of

.-3"-..:
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control functions is given in the following compatible row/column is assigned to
procedures. the same subfunction in a secondary

compatible row/column.
P -ocedure 2. Identification of the
existence of control functions. 5. A partition matrix for the control

function is defined, and the function
1. A "structure 1" control function can be implemented by building block

exists at the first level if a 2 or 4 with input values assigned as
function in class 2 does not have its given in the partition matrix.
non-trivial row/column in the third
row/column, or a function in class 3, 6. For the "structure 2" control
4 or 5 does not have its unique function, if its partition matrix has
row/column in the first row/column, a non-trivial row/column not in the -

third row/column, a "structure 1"
2. For a function in class 3 or 5 with control function is required as the

two compatible rows/columns which are input to its first level T-gate.
not identical, a structure 2 control
function exists at the second level. End Procedure 2.

3. For a function in class 1 with three A general procedure is now given for
compatible rows/columns which are not the design of three-valued, two-variable "-
identical, a structure 4 control functions.
function exists.

Procedure 3. The design of three-valued,
End Procedure 2. two-variable functions.

The design of a "structure 1" control 1. Identify the function class to which
" function is trivial. Building blocks 3, 4 an arbitrary function belongs.

and 5 have the unique row/column in the
partition matrix implemented at the "0" 2. Select the corresponding building .0,
leg, and building block 2 has its non- block for the function class - -.

* trivial row/column in the partition matrix identified.
implemented at the "2" leg. For fu ictions
in classes 3, 4 or 5 with the unique 3. Subfunction assignment to the inputs
row/column not at the first row/column, and of the building block is made.
the functions in class 2 with the non-
trivial row/column not at the third 4. If there exists a "structure 1"
row/column, the values of the control control function at the first level
variable can be used in such a way so that for building block 2, 3, 4 or 5,
the unique row/column is routed to the "0" assign the control function output to --
leg. the first level T-gate control
P ed ocvariable.

and "structure 4" control functions. 5. If there exists a structure 2 control -

function for building block 3 or 5,1. Identify the control function. A assign the control function output to
"structure 4" control function only the second level T-gate(s) control
exists in class 1 for functions with variable(s).
three compatible rows/columns, and a
"structure 2" control function exists 6. If there exists a structure 4 control
in class 3 or 5 for functions with function for building block 1, assign
two compatible rows/columns, the control function output to the

T-gate control variable.

2. Select the primary compatible

row/column such that, if numbers are End Procedure 3.
assigned to the rows/columns in the
partition matrix in ascending order, These procedures show that the design
the row/column with the smaller of a complex function can be performed in a
number is the primary compatible systematic manner. We now discuss .
row/column, techniques to minimize the number of

building blocks required in the final
3. Assign values 0, 1 and 2 to the design.

primary compatible and unique
row/column from left to right, or top
to bottom, in the partition matrix. VARIABLE SUBSTITUTION

4. Assign values 0, 1 and 2 to the variable substitution is the process
secondary compatible rows/columns so of identifying, and substituting for,
that the same value for a primary function values in a partition matrix with 0
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a variable that specifies the same value. x2, x3
In many cases, variable substitution ,2"--3
increases the number of identical or x1 00 01 02 10 11 12 20 21 22
compatible subfunctions, thus resulting in
a better design that uses fewer modules. -

This technique can also be applied directly 0 0 0 0 0 1 0 0 1 0I to the classic decomposition approach (6
in the search for a partition matrix for 1 1 1 0 1 1 1 0 1 2
the function that has the decomposition
property under consideration. 2 2 1 0 1 1 1 0 1 2 .-

Theorem .2: A function value in the
partition matrix ban be substituted for Table 2. F(xl,x2,x3) Before Variable

I with a variable iff the variable specifies Substitution
the same value as the function value to be
substituted for.

x2, x3 /""

The procedure that identifies and :,:
forms identical subfunctions in a partition X1 00 01 02 10 11 12 20 21 22
matrix is now given. "

Procedure 4: Variable substitution to 0 0 0 0 0 1 0 0 1 0
obtain identical subfunctions. -

1 X1 1 0 1 1 1 0 1 2
1. Represent the function, f(X), X =

{xlx2,...,xnl, in a partition matrix 2 X1 1 0 1 1 1 0 1 2
where Xs = txl,x2,...,xsl and Xn-s
txs+l,xs+2,....xn}.

-'Table 3. F(xl,x2,x3) After Variable
2. Let Xs be the set of subfunction Substitution

variables.

3. Let Vji be the function value of
subfunction j at the ith position, Using the modular design approach
where 0 <= j <= r**(n-s) and 0 < i discussed in (5], variables x2 and x3 will
<= r**s, where r is the function be selected as the subfunction variables,
radix. and two different subfunctions, g(x2,x3)

and h(x2,x3), become the function values of
4. Let Vji(x') be the value of variable F'(xl). The new unary function F'(xl) and

x" at the ith position, where x' the two subfunctions g(xl,x2) and h(x2,x3)
Xn-s. are given in Table 4. Note that in Table

4, subfunction h(x2,x3) has two trivial
5. Let i = 0. rows, in which one is a unary function of

x3. This can be identified by simply
6. If i > r**s, subfunctions j and k are modifying Procedure 4 such that at step 6,

identical, stop the process. instead of comparing subfunctions, we will
Otherwise, for two subfunctions j and compare subfunctions with either Xs or Xn-
k, if Vji = Vki, increment i and s. Because subfunction h(x2,x3) is a
repeat, else goto next step. simple two-variable function, the

identification of trivial rows or columns
7. If Vji = Vji(x') AND Vki = Vki(x'), can also be done visually. The final

let Vji = Vki x'; increment i and design of function F(x2,x2,x3) is shown in
goto previous step; else subfunction Figure 2, which is implemented by using
j and k cannot be identical to a four building blocks as described in Figure 0
variable substitution. Stop. 1.

End Procedure 4.
SHARABLE SUBFUNCTION

Example 12: Table 2 is a three-valued,
three-variable function with three distinct Sharing of logic devices to implement
rows. Assume that the function is to be a function is an important goal when it is
decomposed into two-variable subfunctions, desirable to use the fewest number of
with x2 and x3 as the subfunction devices in a design. The logic device can
variables. By following the steps in be a complex building block or a basic
Procedure 4, we can substitute for the logic component. We shall first address
values 1 and 2 of the first column in the the issue of the sharing of building blocks
second and third rows with the variable xl. to minimize the number of building blocks ... .'.'.-
A new partition matrix with two identical needed in the design. The sharing of basic
rows is shown in Table 3. logic components will then be discussed.
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and H(xl,x2), the truth table for bothfunctions is shown in Table 6.

0 1 2

x2 x2

g h h xl 0 1 2 xl 0 1 2

o u v o 1 2
x3 x3

3x31 0 1 0 1 c b a

x2 0 1 2 x2 0 1 2 2'w'" u2'a'b"2 v v u 2 a b c .:: -'

* 0 0 0 0 0 xl 0G(xl,x2) H(xl,x2)
* 1 0 1 0 1 1 1 1

• 2"0"1 0 2 0 1 2Table 5. Two Functions with Sharable
Control Function

g(X2,x3) h(x2,x3) The number of distinct rows in the .

Table 4. The New Unary Function and truth table is 3, which is less than orTwo Subfunctions equal to the function radix, so a
"structure 2" control function can be %

VP shared among G(xl,x2) and H(xl,x2). The
design of functions G and H can easily be
accomplished with a shared second level
structure 2 control function by following 9 0
Procedure 3 in the previous section. The
values 0, 1 and 2 are first assigned to the
primary compatible rows and to the unique
rows in the truth table, and then the
corresponding values are assigned to the
secondary compatible rows. The partition
matrix for the control function is given in . .

Table 7, and the final design of G(xl,x2) -
-- -and H(xl,x2) is depicted in Figure 3. Note

that in Figure 3, unary functions are
assigned in both function H(xl,x2) and the

X2 control function shared by functions G and
H. Again, these unary functions can be

210 xl x2 G H

0 0 u -

0 01a x. Z 1.- 0o1 v

Figure 2. The Design of Function 0 2 v -

F(xl,a2,x3) 10 -

I1 b

The following example illustrates the
process of identifying and implementing the 1 2 a
sharable control function minimization
strategy. 2 0 w a

Example 2: Two functions, G(xl,x2) and 2 1 v b
H(xl,x2) are given in Table 5. G(xi,x2) is
a member of class 5 with its second row as 2 2 u c
the unique row, and H(xl,x2) is a member of "'""'"....-
class 3 with its first row as the unique
row. With the substitution of "don't Table 6. Truth Table of Functions
cares" in the unique rows in both G(xl,x2) O(xl,x2) and H(xl,z2)

401

%. . .. . .. .. .

%y-.. .;.-.-...-



x2 three-valued T-gate is considered as the
component to be used in the design. By

X1 0 1 2 permuting the variables, this function can
be described in three different partition
matrices as shown in Table 8. Since the

0 0 1 2 T-gate can be considered as an one-variable
module, the same modular design approach 0

1 0 1 2 can be applied by substituting for the
columns in the matrices with one-variable

2 2 1 0 subfunctions. The three, two-variable
functions that result after the
substitutions are made are given in Table

Table 7. The Sharable Control 9. The five one-variable functions that
Function of G and H result are shown in Table 10.

x2, X3

X1 00 01 02 10 11 12 20 2122

_1
on r,.0 0 00 0 10 0 10

0 1 1 1 11 01 2
2 2 10 1 11 01 2

102

x1, x3

-x200 1 01

x2 0001 101 2 02122 2-1

03 00 01 02 10 11 12 20 21 22

Coto ucin0 0 0 0 1 1 0 2 1 0 '"-"'

1 0101 1 11 11 1
, , , , , xl, :2 .'.:

-, 2 - 2,, .. ..-
:3 O0001 02 10 11 12 20 2122

Figure 3. The Design of G(xl,x2) and ________'_______'.___

II(xI,x2) with a Shared

Control .unction 0 0 0 0 1 1 0 2 1 0 ..

identified by Procedure 4 with the simple 1 0 1 1 1 1 1 1 1 1
modifications in step 6 as mentioned 2 0 0 0 0 1 2 0 1 2
before; or they can be visually identified 2.00.00-12-01.
from the partition matrices as shown in "
Tables 5 and 7. Table 8. Ternary Function F(xl,x2,x3)

Let us now analyze the sharing of
basic logic components without the Note that subfunctions d(x2) and e(x3) . -
restriction of using the building blocks, have variable xl as a function value
The sharing of basic logic components is a indicating that a variable substitution was
general optimization technique in logic performed in the partition matrices in
design, and we shall consider the three- Table 8 to reduce the number of
valued T-gate as the component in the subfunctions. In fact, we have reduced the
design. It is interesting to point out number of subfunctions from 3 to 2 in
that the T-gate component can be considered v(x.x3), and from 3 to 1 in w(xl,x2).
to be a one-variable module; and because it Because w(xl,x2) in Table 9 which is
is functionally complete, it is also a derived from the last partition matrix in
universal module. Table 8, requires the minimum number of

subfunctions, (only one subfunction e(x3)
Example 3t The same function F(xl,x2,x3) in is needed), we select the new two-variable
Example I is used in this example, and the function w(xl,x2). Similarly, we select x2
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x3

x2 0 1 2

0 xl a 0 .

1 a 1 a

2 0 1 b

u(x2,x3)

x3 x2 0 2

X1 0 1 2 X1 0 1 2

0 0 c 0 0 0 e e

1 d 1 x2 1 e 1 x3

2 d 1 x2 2 e 1 x3
_ __________________u ' 0 -'

v(xl,x3) w(xt,x2) Figure 4. Optimal Logic Circuit
for F(xl,x2,x3)

Table 9. The New Two-variable Functions
of F(xl,x2,x3) be four one-variable building blocks.

Although the design goals are different in
Figures 2 and 4, the general modular design

xl xl x2 approach presented in (5] is independent of
the components selected and can be directly

0 1 2 0 1 2 0 1 2 applied with respect to the logic
components to be used in the design. It is
interesting to point out that the example

0 1 1 0 2 2 0 1 1 we have chosen, F(xl,x2,x3), is taken from
[7]. The design method presented by Kabat
and Wojcik is an automated technique based

a(xl) b(x1) c(x2) entirely on a theorem proving approach to
design. The final design of this three-

:2 13 variable function in Figure 4 is identical
to the design in [7], an optimal logic

0 1 2 0 1 2 circuit for F(xl,x2,x3).

We have considered the sharing of
Xl 1 0 Xl 1 0 two-variable building blocks and the

sharing of basic logic components. It is
important to note that the element to be

d(z2) e(x3) shared is determined by the components used
in the design. For example, the sharing of

Table 10. Five Unary Functions T-gates is not applicable in the first
Substituted in Table 9 example because the design is restricted to

a predefined component library. That is,
the component within a building block

as the variable for subfunction from cannot be shared among building blocks.w(xl,x2). The final design is shown in However, if we consider the design by usingFigure 4. the T-gate as the building block, then theFigure+ 4. the T t as he_ buldn blck the th
sharing of a T-gate can be considered, as

Comparing Figures 2 and 4, one shown in the second example.
observes that the solution in Figure 2
requires two more T-gates then Figure 4.
However, Figure 2 indicates that SELECTION OF CONTROL VARIABLES
F(xl,x2,x3) is implemented with four
building blocks from the components library Another important consideration in
defined in Figure 1, while Figure 4 reducing the number of modules needed in a
indicates that F(xl,x2,x3) is implemented logic design is the selection of control
by four T-gates which can be considered to variables at each level of the tree
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structure of the design. In [3], this.'
problem was discussed and defined as "the
proper order of the expansion", which is a
technique of finding the most imcomplete a-
tree structure. The modular design .12
approach in [5] has a similar
characteristic, namely, to decompose the .
function into subfunctions such that the
fewest number of subfunctions is selected.
In this section, we will discuss a direct
application of this technique at the lowest
level, namely, the implementation of the
subfunctions. 012 .'0"."•2

If we have decided to decompose the t t t
function into two-variable subfunctions
which will then be implemented by building
blocks from a components library as shown
in Figure 1, the selection of which
variable to be used as the first level
control variable results in different b
building blocks being selected. For £ £ £ £ L "
example, consider a three-valued, two- . ...... .. -'I-.'-1
variable function A(xl,x2) which has
subfunction a, b, c and d as its function Figure 5. The Design of A(xl,x2) with xl as
values as shown in Table 11. This function the First Level Control Variable
can be considered to be a function in class t FsL lo l rb
5, that is, there exist two compatible
rows. It can also be considered as a -
function in class 6, namely, there is no A

trivial or compatible columns. However, it t
is obvious that the selection of a building
block I is a better choice than a building A"
block 6. Not only is building block 5 a
simpler component, but also the
interconnections with the lower level
subfunctions, a, b, c and d are much more -
simplified than if a building block 6 is
selected. Figures 5 and 6 show the U Fo'72:
difference of the designs based on building
blocks 5 and 6, respectively. 012

x2 t ft t. ttt

X1 G 1 2

0 c d a

I a b c

2 a b c
Figure 6. The Design of A(xl,x2) with x2 as

Table 11. Subfunction A(zlx2) the First Level Control Variable

COMPREHENSIVE EXAMPLE
It is clear that the design in Figure

5 is a better solution. Therefore, for Let us now consider a five-variable
each two-variable function to be function as an example to illustrate the
implemented by a building block from the general design approach in [51 and the
library, the variable with the largest optimization techniques discussed in this
number of trivial or identical subfunctions paper. This example, taken from [8], is a
should be selected as the first level function which can be decomposed into a
control variable. form called a multiple complex disjunctive

decomposition.
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Table 12 shows a three-valued, five- function is shown in Figure 7, which shows
variable function. The building blocks in all three levels of subfunctions with their
Figure I are assumed to be the components shared control functions.
used to implement the function. As shown
in [5), this function can be decomposed
into two-variable subfunctions recursively
until the function is expressed as a one-
variable function k(x5), Table 13, which
incorporates two subfunctions g(x3,x4) and x5
h(x3,x4). The subfunctions g and h are
shown in Table 14. These, in turn, consist
of five subfunctions a, b, c, d and e of
variables xl and x2, as shown in Table 15.

In this example, k(x5) is a single g h 9
variable function, and it is obvious that
it can be easily implemented by building
block 1. Because both subfunctions g and h
have two compatible columns with the unique Table 13. Final Representation of
column as the first column, they can be f(x1,x2,x3,x4,x5)
implemented by using two building block 5s
with a second level structure 2 control
function. With the substitution of a .
"don't care" in the unique rows in both g
and h, the truth table of both subfunctions
is shown in Table 16. The number of
distinct rows in the truth table is 2, so a
structure 2 control function which is x3 x3
defined in Table 17, can be shared between " '
g and h. X4 0 1 2 z4 0 1 2

The lowest level design is the
implementation of the subfunctions a, b, c,
d and e. Again, since all these five 1 b b a 1 d d 0
subfunctions have three compatible columns,
they can be implemented by using five 2b0
building block Is -ith a "structure 4" 2 c a b 2 e 0 d
control function. Similarly, the number of - "
distinct rows of their truth tables is 3,
so a "structure 4" control function can be g(x3,x4) h(x3,x4)
shared among all five subfunctions. The
truth table for all five subfunctions is
given in Table 18. The partition matrix
for the control function is given in Table
19. The final design of this five-variable

x5,x4,x3

0 000111222 000111222 000111222
x2,xl 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

00 100001110 011110201 100001110
G1 122221012 000000200 122221012
02 2 0 0 0 0 2 1 2 0 0 2 2 2 2 0 0 0 2 2 0 0 0 0 2 1 2 0

10 2 0 0 0 0 2 1 2 0 02222 0 0 2 2 0 0 0 0 2 1 2 0
11 100001110 011110201 100001110 
12 122221012 000000200 122221012

20 1 2 2 2 2 1 0 1 2 0 0 0 0 0 0 2 0 0 1 2 2 2 2 1 0 1 2
21 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 2 0 1 1 0 0 0 0 1 1 1 0
22 2 0 0 0 0 2 1 2 0 02222 0 0 2 0 0 0 0 2 1 2 0

Table 12. f(xl,x2,x3,x4,xS)
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x2 x2 x4

X1 0 1 2 ZI 0 1 2 x3 0 1 2

0 1 21 0 002 0 0 1 2

I 1I1 1 2 00 1 0 1 2

2 21 2 2 02 0 2 0 2 1

*.a(xl~x2) b(z1,x2) Table 17. The Sharable Control
Function of g and h

z2 x2

11 0 1 2 ZI 0 1 2
___ ______ ___x2 x1 a b c d e

0 11 0 0 12 0
0 0 10 11 2

1 0 11 ± 0 11
0 1 12 00 2

2 10 1 2 20 2
0___ _ __02 20 12 0

c(xl,x2) d(zl,x2) 1 0 2 0 1 2 0

x2 1 1 1 0 1 1 2

X1 01 2
1 2 12 0 02

0 2 02 2 0 1 200 2

1 2 2 2 20 1

2 0 20 2 2 20 12 0-

e(xl,x2) Table 18. Truth Table of Subtunction
a, b, c, d and e

Table 15. Subfunctions of f(zl,x2,x3,z4,x5) .-

0 x4 g h x

x2 0 1 2

01 --0 0 1 2

0 2 - -1 
2 0 1

1 0 b d 2 1 0 20

1 1 b d Table 19. Control Function for

12 0a, b, c, d and e

2 0 b d

2 1 a 0

2 2 b d

*Table 16. Truth Table of Subfunctions
g(xl,x2) and h(xl,x2)
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SYNTHESIS ALGORITHM FOR MINIMAL COMPONENTS IN T-ULM NETWORKS
CZPowsjrj Klinkhachorn & Robert Swartwout-

Department of Electrical Engineering
West Virginia University

Morgantown, W.V., U.S.A. 26506

(ranging from 2 through 5).
4. Don't care conditions were acceptable as

C * Abstract functional values for F(X).
5. The function was to be specified in the form

An algorithm has been developed and programmed of a table or a map.
in Pascal to design T-ULM networks for MVL systems 6. The solution would be considered optimal in

* with up to 6 r-valued inputs (r from 2 to 5). The terms of the total component count (sum of thres--
algorithm is based on a special form of T-ULM holds and switches).0

*formed from threshold detectors and switches. The 2.0 Historical Summary
* objective of the algorithm is to minimize the

total number of components (thresholds and During the past decade, several algebraic
* switches) and also the total number of T-UJ.'s. approaches to form a theory of r-valued switching

Techniques are presented that make optimal use of systems have appeared. These r-valued algebras..
don't care conditions in the functional specifi- are the basis of multi-valued logic (MVL) switching
cation- theory. An early paper by Allen and Givone [1]

used binary valued literal gates and the use of S
thresholds. Another by Vranenic [20] introduced

1.0 Introduction cyclic gates and the use of analog techniques in
MVL implementations. Very recently, McCluskey [141

It appears that there is a need to develop a introduced a method for designing multi-input, MVL
design technique for multi-valued logic systems III, circuits. Pomper [16] showed an efficient
which is simple and yields practical though not method for finding the representation of an MVL
necessarily absolutely minimal circuits. Several function which is applicable to both traditional
authors have indicated that such a design tech- min/max operators, as well as the IL sum/product
nique has been developed, based on Universal operators.
Iterative tree structures or the Tree-Ty-pe univer- Two types of MVL elements based on multi-
sal logicl module (T-ULNI's) [6,9,17,211. This threshold gates have been investigated. The multi-
design approach can be applied to all switching threshold radix-R MT(R) gate [5] was described by
functions, both combinational and sequential. Druzeta and shows potential for use in some appli-
Singh [17] described a multi-valued logic design cations. Ishizuka [9,10] developed a synthesis
technique using T-ULM's in a tree structure. method for multi-valued multi-threshold networks
However, there was no attempt to optimize the net- using III. circuits. Applications of multi-thres-
work. Higuchi [6,7,81, Kameyama [11,12] and hold logic have also been shown by Current [3,4].
Wojciechowski [21] have each used T-ULM a in a The simpler concept in designing MVL networks
tree structure and have showed synthesis methods based on the use of T-gates was shown to be
to minimize the number of T-gates. However, it is attractive and practical [7]. Higuchi and Kame-
the intent of this research effort to develop a yams [6,7,11,12] developed a synthesis method for
synthesis method that will minimize the component MVL networks based on tree-type universal logic
count within a specific form of T-ULJM as well as modules or T-ULM's. Singh [17] showed the use of
the number of T-gates. This method will also universal iterative tree structures in designing-
allow the use of don't care states in the func- combinational and sequential MVL circuits.
tional specification. Wojciechowski [21] and Kabat [13] used a Theorem

1.1 Statement of the Problem Prover technique to design T-gate networks.
The overall objective of this research effort 2.1 Mathematical Properties

*was to develop a synthesis procedure to optimize a Consider an r-valued system where all elements
multi-valued logic network when using a new T-gate are members of the set R = [0,1,2,.r-l]. Let
circuit design. The research effort was subject there be n input variables, all members of the
to the following conditions: input set X = [xl,x2,.xn]. Then a function of
1. The synthesis procedure, based on the pro- the inputs would be F(xl,x2,.. ,xn) where f,xi& R.

posed circuit, was to be algorithmic. Definition 1. An individual T-gate with one
2. The algorithm should be programmed in Pascal control input is defined in Equation I and is

so as to execute in a reasonable amount of time, shown in Figure 1. This gate would realize the
3. The program should accept up to 6 input function f(s).

variables and generate solutions for a radix value

408
0195-623X/83/0000/0408PI.oo 0)1983 IEEE

% r% % .0

... ....... ..... ......



pf t T T-Gole . Trls (-"
Pr-I -- T-ULM =' ""
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where f(s) ,pj ,sg R. F,... a. Ih1g..I L.01'. ".A. .~
*and where Tout =pi when s=

Singh has shown [17[ that a function of n input objective was to reduce the number of T-LJLM's invariables can be realized using a tree structure the logic networks. The first method is -er
asTheow 1i liure 2. effective and yields a minimum solution. But
Theorem 1. Let X ten a inge p ut v. pr l e fo Butler [2 showed that only a small percentage of
n u se, ant X then i X. An a f th all functions can be realized using this method.
Sfnul setans Xca b exprean arit function The second method attempts to minimize the
variables can be e ed in te function by using the elimination of trivial

form [17]: F ete o inimize The nr o T s using
F(X) = T(P(X');Xc) T(p~j(X');Xc) (2) TUVs omnmz the propert of triiagfncio s, thude ing o
where each pj(X') a (X',Xc=j) the poert y of y i l fnc tion .t r t

Kameyaua [61 showed that for any arbitrary logic the input variables in each level of the tree has
tin variables, the maximum number of to be evaluated. igure 3 shows the functional

function ofuie n s(*nl)(- table and the tree structure of a T-gate network0

The T-gate of Figure I can he made to perform which is to be minimized by eliminating trivial
almost an operation by proper selection of the pi functions. As will be shown later, the algorithm
values s ari esulthepesed is are usllo g presented here will facilitate additional minimiza-vefs.) As aTesut, te unis asal y'c 2 or tion in the number of T-gates and the components

reere- oasUgaeuivrallgc oulso used to produce those T-gates.

Definition 2. A generalized form of the T-1le 3.1 Reduced Component Count in T-Gate Logic
shown in Figure I is one in which the output is Definition 3. Let the threshold detector and
determined by k control variables of the control switch shown in Figure 4 be the primitive compo-
vector C =(clc2,...ck). The number of unique nents in a TT-gate circuit. The threshold detector
states for the vector C is r** k. Let the scalar and switch have the following characteristics:
S be the one to one mapping of C, that is, Threshold detector:
C - S Yc'(- S I (r**k)). Also let P If input > reference, then output:=True
[pOpl,. .pr- t. P is called the vector of residue else output:=False
functions. The output of the T-UU l is then Switch: If control=True, then output:=input

Uout =U(P;C) = p(pOpl.cprhk-;C) else output:=floating state
•out pj when C '- S = j. Any I-input T-gate can be built from the primi-

Axiom 1. If all elements of P are the same, i.e. tive components as defined in Definition 3. A
pO=pl=d .. pj= ... =p, then U(P;C)=p for all values base-4 T-gate circuit diagram is shown in Figure .
of C. Theorem 3. For any r-valued logic function, the
Theorem 2. Consider an extension of Theorem 1. maximum number of thresholds and switches required
Let the vector X be the set of n variables (xl,
x2 ,.. r.xn), and Xc, a subvector of X, where X'eXc
=0 and X' U Xc = X. Then

U(pO(X),. . ,pj(X)=..,pr*k-l;Xc) else T
U(pO(XXcS-.nn),.. ,pj(X Xc<_->),. , 81 T ct

3.0 Synthesis of MVL Functions with T-Gate Logic a i

Theorem 2 illustrates how many logic functions T . any r lT T Ti
of several variables can be realized with T-UINI's a9 .2 a S
in P. tree structure. However, as the number of I

variables of a function becomes large, the numberaa * a
of T-UL s necessary to realize the function a & T T
increases exponentially in a canonical expression.

-' Higuchi and Kaineymma [6,11,12] proposed algorithms
to synthesize a network of T-ULbr 's through (1) the
use of functional decomposition and (2) the iden- FI'r 9. Fwtetlenel table Od %,e. eit,'ma...t,*
tification of trivial residue functions. Their o Kefei n W hlwe%1m 5
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to construct a T-gate circuit are (r-l) and 2(r-l) tion. This type of assignment will save at least
respectively, one T-gate.

Proof: Since there are r discrete levels of Theorem 6. If every residue value of a 1-input
signal to be differentiated, it is obvious that r-valued function is a don't care, then using
there are (r-l) gaps between these levels. Axioms 3 or 4, the T-gate can be eliminated. If
Therefore, the maximum number of thresholds the T-gate tree structure has more than one level,
required is equal to (r-l). The number of one threshold element and 2 switches in the logic •
switches needed is twice that number, that is level beyond this one are also saved.
2(r-l). Proof: If one selects all don't care values equal
Theorem 4. An arbitrary function of n variables, to the same constant or equal to the appropriate
each r-valued, can be completely realized by a value of the input variable, then a T-gate can be
r-uL, network with a maximum of(r**n)-l thres- completely eliminated. However, if this 1-input
holds and 4(r**n)) switches. r-valued function is a subtree of a T-gate network

Proof: Higuchi [6] showed that a maximum of and one assumes that the value of the don't care,
(r**n)-l/(r-1) T-ULM's are needed to form any terms are equal to the value of an adjacent sub-0
arbitrary function of n variables. From Theorem 3, tree, then from Theorem 5 it can be shown that
each T-gate requires (r-l) thresholds and 2(r-l) not only this I-input r-value function can be
switches. Therefore, a maximum of (r**n)-l eliminated, but also it can save one more thres-
thresholds and 2((r**n)-l) switches are required hold and 2 switches for a T-gate in the next level
to express an n variable, r-valued function, of this subtree. An example of assigning don't
Axiom 2. Any 1-input r-valued function can be care terms is shown in Figure 6.
realized from a single T-ULM with a maximum of 3.3 Synthesis Procedure
(r-1) thresholds and 2(r-1) switches. The method used in this synthesis of T-gate net-
Axiom 3. A 1-input r-valued function can be works is based on the canonical expansion of the
completely eliminated if the value of the func- f o c g if n
tion is equal to a constant. function, which is a generalization of Shannon's
Axiom 4. A 1-input r-valued function can be expansion theorem for Boolean functions.rAx ed-- 4. Ahe inut varible fntion canue ofDefinition 4. Let F(x) be an n-variable r-valued
replaced by the input variable if the value of the function and let the set of n variables be divided
residues corresponds to the distinct radix values into two disjoint subsets V (n-I variables) and
of the variable. xi (1 variable).•
Theorem S. The number of thresholds and switches xi(.aral)
used in a 1-input r-valued T-gate can be reduced Applying definition 4 to an n-variable r-valued .',.- Ifunction, construct an n-level tree network fromby one and two respectively if two adjacent values the subtrees or residue functions. Each subtree
of the function are the same. Obviously, if two

* adacet vauesof he fncton re te smerepresents the subfunction of F(X). Each subtreea d j a c e n t v a lu e s o f t h e f u n c t i o n a r e t h e s am e , c n b x a s i e y c n t u t d t r u h r p a e
then there is no need to detect another level, can be exhaustively constructed through repeated
Therefore, the number of thresholds and switches application of definition 4 until X' contains only

can be reduced by 1 and 2 respectively. PO S
3.2 Don't Care Assignment 1 t .

If one considers an incompletely specified. TD I T1
function, it is obvious that Theorem 5 and Axioms
3 and 4 can be applied to reduce the number of PI .- " ..
thresholds and switches.
Axiom S. If the value of a don't care term is -Tout
set equal to the value of one of the adjacent
terms of the 1-input r-valued function, the number
of thresholds and switches required is reduced. p2 SW ,-
Each such don't care assignment will save one
threshold and two switches. TD 3
Axiom 6. Whenever possible, the value of a don't -3 E 11:3
care term should be assigned a value that will p3 - .
cause the 1-input function to be a trivial func-

Ti owtolt

THRESHOLD T "-"'-b"-"'-

DETECTOR rI - - - - - -- '

SWITCH ,,,".." '

o-U- I .. w-d ""O..-.
Y-GAE wW -1 tet.
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1-variable. If the output level of the T-gate next level. Examples of this technique are shown
network is called the first level, then each sub- in Figures 6 and 8.
tree will generate level, 2,3,.., n. The first 6. Evaluate the total number of thresholds and
level will contain r subtrees and each subtree will switches used in level n of all the subtrees.
have n-l levels. Figure 7 shows the example of 7. Save the total number of switches and thres-
decomposing a 4-variable, 3-valued function into holds used for all levels in this particular
subtrees of the T-gate network, assignment of the control variables in the tree, ,

. Theorem 7. An n-variable r-valued function including the ordering of the control variable.
requires at least (r**(n-l))n! iterative loops to 8. Permute the control variable for each sub- .-.

" be checked in order to determine the minimum solu- tree and repeat steps 3, 4, 5, and 6.
- tion in the T-gate network. 9. Compare the number of thresholds and switches

Proof: Since there are n-levels in the T-gate used by each permutation of the control variable of
network, then at each level all T-gates have r- the subtrees. Select the order for each subtree
values and therefore r**(n-l) loops must be tested, that yields a minimum number of components used.
However, for an n-variable function, there are n! 10. Repeat steps I to 9 with another xi.
possible orders of variables in the n-levels of the 11. Select the best solution after all of the xi
tree. As a result, a total of (r**(n-l))n! tests have been exhaustively tested.
are required.
A desirable design is one in which a minimum 3.5 T-Gate Network Examples

To illustrate the synthesis method of Algorithmnumber of components are used. This implies a 1, we present the design of two T-gate networks:minimum number of components within the Tr-gates as Examp le 1.-...

well as fewest gates. It is the opinion of the E a 1.

authors that a reduction in the number of thres- Con er a 3-valued 2-variable function des-

holds and switches required will also simplify cribed by the map below. The numbered steps refer

the interconnect problems on a chip. In fabricat- to the steps in Algorithm 1.
ing the chip, all T-gates may be fabricated iden- Xl\X2 0 1 2
tically, but each will have its own unique connec- 01
tion pattern. 1 0- -
3.4 Synthesis Algorithm I I
The following algorithm accomplishes the expli- 1. Select Xl to be the control variable of the

cit enumeration technique that is used to obtain f t v o h r he e trfirst level of the tree in the T-gate network.i
the solution for a function to be realized with 2. Since there are only 2-variables, X2 becomesa T-gate network. . S n et e e ae ol 2-ai b e ,)2 ec es. "
AlTgate net. Sytethe control variable of the second level. TheAlgorithm I. Synthesize a Fan-out Free Network sutresof".ae"ontrcedasfolos

Tor F(X)=F(xl,..,xn). subtrees of XI are constructed as follows:

1. Select any xi to be the control variable for a) pO(X2) = T(D, 2, 1; XI=0),

the first level of the tree in the T-gate net- b) pl(X2) = T(D, 0, 1; Xl=l), and

work. c) p2(X2) = T(D, 0, 2; XI=2).
2. For each residue value of the given xi, 3. Go to step 4, since X1 contains only one

construct a subtree where xj (j=l,2 ..,n;j<>t) level, i.e. X2.
is the control variable of the next level. 4. Since each subtree contains a don't care
3. Repeat step 2 exhaustively until the nth- term, Theorem 6 and Axioms S and 6 can be appliedto the functions of a, b, and c shown in step 3.

level is reached, i.e. X' contains only one
variable. Each xi is to be used only once for Th result ar: -
each subtree. d) pO(X2) = T(2, 2, 1; Xl=0), and
4. Assign any don't care terms by applying e) pI(X2) = T(0, 0, 2; XI=l), and

Theorem 6 and axioms 5 and 6 to each 1-input func- f) p2(X2) = T(O, 0, 2; Xl=2).
S. The thresholds required in fabricating the

pO(X2), pl(X2), and p2(X2) are 1, 1, 1 respectively.S. Examine all subfunctions to determine if ''-
6. Since each subtree is different in value,their value will cause further minimization at the there can be no further minimization of the first '--'. .

Ll . 3.,,s level. This design requires 2 thresholds for the
"- T-gate in level 1. "

Thl. abt,- e., be .1 lnedIF C-,)-fCb)

ft..
r- -4T -- A - - -

,-GTET--- T __1 - " -

WWd 2 -1W..
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7. The total number of thresholds used for this subfunctions can be eliminated. The use of this
assignment (XI = first level, and X2 = second technique may, or may not, permit a reduction in
level) is 5 units, the next level of the tree.
8. Since X2 is the only subtree of XI, skip to 4io

step 10. 4.0 Conclusions and Recommendations

9. Skipped. The proposed algorithm has been programmed in 0
10. Repeat steps 1-9 with X2 as the first level. Pascal for the VAX 11/780. Only minimal attempts

By following the same process as shown above, it were made to optimize the coding of this program. .
can be shown that The execution time of this program for various
a) pO(Xl) = T(D, D, D; X2=0), r-valued functions of n variables was tested.
b) pl(Xl) = T(2, 0, 0; X2=l), and Based on this execution time and results pro-
c) p2(Xl) = T(l, 1, 2; X2=2). jected from Theorem 7, the estimated execution
After assigning values to the don't care terms, time table of this synthesis program is shown in -

d) pO(Xl) = T(2, 0, 0; X2=O), Figure 12. This execution time is for a fan-out-
e) pl(Xl) = T(2, 0, 0; X2=l), and free network whose input function was completely
f) p2(Xl) = T(I, 1, 2; X2=2). specified. If an incompletely specified function
Since d = e, either d or e can be eliminated is being synthesized, the addition of approxi- . .

(we eliminate d), the thresholds required for e mately 10% of the average execution time is
and f are i, 1 respectively. Since two adiacent required. For the non-fan-out-free network, it
subtrees of X2 are the same (d=e), only 1 thres- was found that the average execution time was up ".'
hold is required to fabricate the T-gate in level to 40% longer than the time for a fan-out-free ...
1. Therefore, the total number of thresholds network. S
for this assignment (X2=first level, and XI= From the execution time table in Figure 12, one
second level) is 3 units. There are only 2! can observe that the execution time grows rapidly
possible orders of variables to be arranged; there- once the base or the number of input variables is
fore, the enumerative search has been completed. increased. This is true since the number of com-
11. The best solution is the assignment of X2 parisons required is (r**(n-1))n!, as stated in

first level and Xl = second level, which requires Theorem 7. This synthesis algorithm is based on
" thresholds. Figure 9 shows two different tree an explicit enumeration technique. Yet, many of
.tructures that would realize the functional the multi-valued synthesis procedures behave in ,
specifications of Example 1. the same manner, i.e. they take longer when the

Fxample base or the number of input variables is increased.
Coni the 3-valued 3-variable fuction shown At present, there are only a few synthesis methods

in the map below. for multi-valued functions that have been imple-
mented on a computer [15,18,191. Because these

x3xO x3=l x3=2 synthesis methods are used to minimize the number
x0 0 1 2 0 1 2of logic gates, not T-gates, no attempt will be

2--2-00made to compare the execution times.
2- -- -0-t -i- -- -0- One of the most interesting challenges to this2 -!--'1 synthesis procedure is the efficient handling of

The use of Algorithm 1 will produce the realiza- problems with more than six input variables or a
tion shown in Figure 10. A complete discussion of base larger than five. As either of these
tishexal igiven as A cpate of a User's quantities increases, the memory required for anC t h i s e x a m p le i s g iv e n a s a p a r t o f a U s e r 's a g r t m s c s t i n r a e n r o s y
Guide which is obtainable by writing to the algorithm such as this increases enormously.
authors. .

3.6 Synthesis of Non-Fan-Out Free Networks a
In Algorithm 1, the minimization has involved T

only the identification of trivial residual func-
tions and adjacent residual functions. Several '-.
authors [13,14,21] have shown that it is possible T T

to further minimize a network if the T-gates have W"
no fan-out restrictions. Consider
Figure 11. If subtrees "a"l and "C" TT
are exactly the same, and if there is
no fan-out restriction, then either * I...2
subtree "a" or "c" can be eliminated. _..od 5 ko- . .h. d t ,*

Algorithm 1 includes provisions for Or
*the synthesis of non-fan-out-free T

T-gate networks. Only step 6 as given r .
above needs to be slightly modified, .

i.e. examine all the subfunctions ..

instead of just adjacent subfunctions.

As stated, if adjacent subfunctions 
- -

are equal, one of the subfunctions can 4 T ... .-..

be eliminated and the thresholds and ..
switches of the next level can be ,..-4 3 to.Id. *.d 0 W_
reduced. If two non-adjacent sub-
functions are equal, one of the Fleff. is. 7-t mt. ?W -WWI. a. ,row . T_ . t,.. f,. IE. ,I. .
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Although both of the authors are primarily Higuchi, T., Synthesis of Multiple-valued Logic
interested in computer hardware, some future Networks Based on Tree-type Universal Logic Module,
effort will be expended in this software area. IEEE Trans. Comp., Vol. C-26, December 1977,
The authors have found incompletely specified pp. 1297-1302. (Correspondence)

functions to be quite comnon in binary systems. 12. Kameyama, M., and Iliguchi, T., Synthesis of
If the same is true in MVL systems, then the in- Optimal T-gate Networks in Multiple-valued Logic,
cIusion of techniques for optimal choice for don't Proc., 9th ISMVL, Bath, England, May 1979, pp.
care conditions in this algorithm will be very 190-195.
valuable. 13. Kabat, W. C., and Wojcik, A. S., On the Design " -
One of the motivations for developing an algo- of 4-valued Digital Systems, Proc., 1980 ISMVL,

rithm to minimize the component count was the May 1980, pp. 153-170
assumption that fewer components would ease the 14. McCluskey, E. J., Logic Design of Multivalued
interconnect problem on IC chips. This is an IIL Logic Circuits, IEEE Trans. Comp., Vol. C-28,
unproven assumption and future work on this pro- August 1979, pp. 546-599.
ject will address the question. 15. Moraga, C., Extensions on Multiple-Valued •
One other incomplete aspect of this research Threshold Logic, Proc., 9th ISMVL, Bath, England,

effort is the evaluation of the mode of variable May 1979.
representation that will be most advantageous. 16. Pomper, G., and Armstrong, J. R., Representa-
The apparent impracticality of IIL circuits for tion of Multivalued Functions Using the Direct
MVL has diverted our attention to voltage mode Cover Method, IEEE Trans. Comp., Vol. C-30, No. 9,
circuits. However, we do not have any evidence to September 1981, pp. 674-679.
use in the selection at this time. One of the 17. Singh, A. D., Armstrong, I. R., and Gray, F.
first circuits that will be attempted is the carry- G., Combinational and Sequential Multi-valued
look-ahead adder for MVL systems. Logic Design Uising Universal Iterative Tree StruIc-
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0' ' A FUZZY RELATIONAL INFERENCE LANGUAGE FOR EXPERT SYSTEMS

J. F. Baldwin

Engineering Mathematics Department0University of Bristol
.ngland.

Abstract required to give future students a broad education

in all aspects of Information Technology and still

A fuzzy relational inference language, F.R.I.L., retain a fundamental science and technology educa-
is discussed in relation to its application for tion.
designing intelligent knowledge bases and expert In this paper we present a new computer language

systems. It is a high level query language with F.R.I.L. which can be thought of as a high levelautomatic reasoning and is based upon fuzzy set and language for designing automatic inferential know-
language forres deinn auoai ineeta.nw

relation theories. ledge base systems. It stands for Fuzzy Relational

Inference Language and is based upon the mathematics
of relations and incorporates the ability to repre-
sent both fuzzy and probabilistic uncertainties.
The human brain might be thought of as an extremely

An expert system is basically a computer soft- complex knowledge base comprising a network of facts S
wae xert system isic banelascalman copuert - and rules from which new facts can be inferred. In

ware system which can emulate a human expert in addition various learning strategies can update this
storing knowledge about some given subject, makeexperience. This particular modell-
inferences based on logical deduction, answer queries ing concept is relevant to scientific, technological,
and make decisions. It should also show some form medical, political and economic fields and even to
of accountability by being able to present to the dal, litsel decons felds an lyin to

user an argument to justify its choice of answer or daily life itself. Decisions are made by analysing

decision. This can take the form of dialogue with pre-selected facts and rules. This analysis takes
oc account of various forms of uncertainty and conflic- -the uscr. There are many open questions associated ting goals and necessarily includes fuzzy reasoning

with the design of such systems. How should know- w ing thera analticl e irahy
ledge be represented, what is meant by inference, dein process. the lanae of ir an be
how wuuld the various forms of uncertainty (fuzzy, d . The language of F.R.I.L. can be

probabilistic etc) be processed and represented, how used to model such processes.

can such systems be made efficient, what computa- F.R.I.L. has an inherent parallelism which will
tional model would best exploit future computer allow future computer architectures to be fully
architectures especially parallel processing systems exploited. Its internal automatic inference mech- AD
are only a few of the many questions that we could anism is not of a search or resolution type associ-
ask. ated with logic inference systems but is more

analagous to Gaussian Elimination for solving
algebraic equations using relational algebra opera-

V.L.S.I. systems provides cheap computer power - tions. An implementation of F.R.I.L. is available
both processors and memories - , networks, peripherals the Honeywell computer at Bristol University. Itetc.~~~o Sofwar Honeywel comust attc Brito Unvesiy Itefl n..'.'.'-
etc. Software design must catch up to take full is written in MAC-LISP but future implementations in
advantage of these advances. The design of intelli- other languages will be written.
gent knowedge bases and expert systems will be one
such advance. It requires the bringing together of The design of F.R.I.L. includes many ideas in
researchers from such fields as artificial intelli- papers on fuzzy logic and automated inference by
gence, computer science, systems theory, operations Baldwin (1,2,3,4,5,6), fuzzy systems by Zadeh (11,12,
research, decision theory, control theory, linguis- 13,14) with special reference to the paper on PRUF
tics, etc. Each of these fields has something to (15) and Test Score Semantics (16). It has also been
offer to improve both the fundamental design theory influenced by the work on Codd's Relational Data
and practical applications of expert systems. Logic Bases - Ullman (9) and Logic Programming - Kawalski O
theorem proving, natural language processing, (10).
relational data bases, Baysian decision theory, S da oF L nb ud lw
search, decision support systems, cluster analysis, d oe d Baldwin (8).
theory of fuzzy sets, learning theory, simulation and Zhou (7) and Baldwin (8).

and many more general areas of research drawn from
these various fields will all influence the design
of expert systems. Work in this area must be inter-

disciplinary and a new educational programme is
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The Language of F.R.I.L. which is passed back to the multiple cummand
processor. 1his processor determines what to

Knowledge representation for the language do next and if nothing more is to be done, it
F.R.I.L. is in the form of Base Relations, Virtual passes the solution to be printed for the user
Relations, Set Theoretic Relations and Functions.
These are illustrated in the examples which follow. DOES(.. ) queries, a notation borrowed from micro--
Base relations are tables of facts in which each prolog and contain variables which are bound totuple (row of table) satisfies the relation to some attributes. This binding is intuitively obvious

degree X which takes values in the interval (0,1) and will not be discussed in this paper. Details
and represents a fuzzy truth value. Each column is will be available in the Users Guide to F.R.I.L.

associated with an attribute which can take values
from an associated domain. A relation can also be Example I
defined as a re-write rule containing other rela-
tions and constructs of F.R.I.L. Such a relation Knowledge Base:-
is said to be a virtual relation. The logic con-
nectives NOT, AND, OR and their fuzzy logic equi- LIKES NAME NAM E X TALL HT X
valents can be used in defining virtual relations. -

A set-theoretic relation is defined by a p:ocedure JIM IRENE I I-TYPE 5-9 0
which takes as input a given tuple of values and JOHN JANE 0.7 5-10 0.6
returns a truth value in the interval (0,1). For JOHN MARY 0.6 5-11 0.8
example GREATER(x,y) takes two numerical values x HARRY JILL 0.4 6-0 1
and y and returns 1 if x >y else 0. A function is JILL TOM 0.2 7-0 1
similar except that it does not have to return a IRENE JIM 0.9 7-o I
truth value. For example CARD(x) takes a relation JANE JOHN 0.8
name x and returns the sum of the X values of that I I.

relation. Set-theoretic relations and functions are Domain(NAME) = {character-string>};
written in the host language. The more common ones Domain(HT) = (4-0,7-0).
are provided by the system but the user can define N.B. An I-type relation allows for linear interpol-
his own. ation for values between any two values of a given

The system also contains a POINTER construct, attribute in the relation. The tuple (5-9,110) is
computation control constructs such as CONCURRENT, included so that interpolated X values in the range
SEQUENCE, REPEAT, CONTROL, an I/O construct MESSAGE 5-9 to 5.10 can be used.
and various commands for modifying the knowledge PERSONS NAME HT WT X HEAVY T .
base. These will be illustrated and explained in
the examples below. JIM 6-1 12-0 1 I-TYPE 10-9 0.1

The user acquires information from the system JOHN 5-9 11-9 1 11-0 0.2
as follows: IRENE 5-5 10-0 1 11-6 0.4 .
I. The user askes questions through the query JANE 5-6 9-6 1 11-9 0.7

language provided by the system. A general MARY 5-3 8-5 1 12-0 0.8
query can consist of a sequence of queries and JILL 5-7 9-2 1 13-01 1.0
actions. TOM 6-0 13-5 1 14-0 1.O

2. The user input is passed to the multiple command - -- 
"

processor which separates multiple queries into
single command queries and I/O and is respon- N.B. In the case of PERSONS, the X column would not
sible for modifying the knowledge base. normally be included since all X values are 1. ,

3. Single command queries are passed to the single Domain(WT) = (8-0,15-0)

command processor called the base relation FRIENDS(x,y)4---LIKES(x,y) AND LIKES(y,x)

problem generator which translates the query in- N.B. FRIENDS is a virtual relation and this state-

to a problem specification containing base rel- ment can be interpreted as 'x and y are friends means
lations, set-theoretic relations and functions that x likes y and y likes x'. Variables x,y are

latinssettheoeti reatins ad fnctons local to this definition.
only. This translation involves using the re-
write rules of the virtual retlations to re- POSS ATH(x)-PERSONS(x,y, ) AND TALL(y) •

write virtual relations into base relations. HASOODFRIENDS(x)4--FRIENDS(x,y) AND POSS ATH(y).
The translation is done in such a way as to
Thprovde raplemo rductin te fr te a t N.B. The interpretation of these statements makesprovide a problem reduction tree for the noti . .-"sr l t o s r on e n d
stage of processing. This problem reduction sense as far as the base relations are concerned,

tree breaks down the query into sub-queries if even though their realism are open to question. The
binding of variables should be obvious from thesenecessary and indicates how the solutions ofthe sub-queries are to be combined examples. The underline sign " " that appears as a

4. The uber areto be cind prelation argument stands for an anonymous attribute
4. The problem reduction tree is then passed to variable which does not relate to the definition -

the Phase I processor which determines a strategy under consideration, ""

of solution for each sub-query in terms of

elementary operations on relations such as Consider the query:- Who likes a tall person?
'join', 'projection', 'cross-product', 'differ- In F.R.I.L. this query is written as
ence', 'select', etc. If the relations are WHICH(x LIKES(x,y) AND PERSONS(y,z ) AND TALL(z))
fuzzy then the fuzzy equivalents of these ele- and returns a relation with one attribute NAME.
mentary operations are used. Phase I combines
all sub-query solutions into a final solution The problem generator for this example returns

-% %
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the reduction tree The sub-problems for this query can therefore
REL(x) be represented as

LIKES(x,y) PERSONS(y,z,_) TALL(z) 1. To solve for REL(x,y) use
(RELI(x) AND PERSONS(x, ,y))

for which the leaves are base relations. 2. To solve for RELl(x) use (REL2(x,yl) AND REL3(y2))

The Phase I process eliminates variables one at 3. To solve for REL2(x,yl) use

a time to produce a succession of reduction trees (LIKESxyl) AND LIKES(yl,x)) 
until the required solution is obtained. For this 4. To solve for REL3(y2) use
example RI(yz) Proj yXzPERSONS(y,z,_) is formed to (PERSONSyl,y2,_) AND TALLy2))

produce the new reduction tree The Phase I procedure is now used in a similar way
REL(x) to the last example to give the solution

I ,REL NAME WT 1 X
LIKES(x,y) RL(y,z) TALL(z) •

where RI is the same relation as PERSONS with the IRENE o-o 0.9
WT column removed.

It should be understood that F.R.I.L. allows 'OR'
Next the variable z is eliminated using connectives and more complex connectives can be used

I. R2(y,z) = R(y,z) '- TALL(z) where % stands for and not simply the 'AND' connective used in this
join. paper.

2. R3(y) = PROJ R2(y,z)
y

to produce the new derivation tree Definition of Pointer S
REL(x)

POINTER (<name>,z) sets up a pointer called z
LIKES(x,y) R (y) which points to the first row of a one attribute
where R2 and R3 are given by relation called <nane>. Immediately on reading this

command, the problem generator sets up the pointer

R2 NAME HTAME X and finds any z in the query it is processing to
this pointer. Any z in the query in the position of

JIM 6-- J IM IM 1 a relation name will be changed to the value z is S
TON 6-0 1 TOM 1pointing to. Any z in the position of an attribute

value of a relation R is changed to =<value> where
The variable y is then eliminated using <value>is that value z is pointing to. The = sig-

nifies that only those rows of the relation R for
1. R4(xy) = LIKES(x,y) % R3(y) which the corresponding attribute value is <value>

x are considered. It therefore acts as a selection.

to produce the new derivation tree REL(x) = R5(x) The use of = avoids having to have a special nota-
where tion for variable and constants. After the query is

R5 NAME X processed, the pointer is moved to the next row and
R4 NAME NA X R5 Nthe query repeated. After completion of a query,

L TM 02 J the position of the pointer is checked to see ifiJILL TM 02JL

IRENE JIM 0.9 IRENE 0.9 there are any more rows. If there are not the query
process ends. The answers to each of the queries
processed during this self-iteration are cancatin-

so that R5 gives the solution to the query. ated into the same relation. New headings are
introduced if attribute names change during the

Example 2 iteration

Knowledge Base (as for last example). Several pointers can be included in the same .-. '-
query or virtual relation definition. These can

Query: Name those people with their weights who point to the same or different relations. Only one "..- .'-

have a good friend, i.e. pointer at a time is moved during the iteration but

WHICH((x,y) HASGOODFRIEND(x) AND PERSONS(x,_,y)). all possible pointer positions are used.

In order to produce the reduction tree, the The X values in rows of <name> are used to

problem generator scans the query from left to right modify I values associated with the relation z(
to produce the first level of the tree which is and R(z) but this modification will not be discussed

here, since for all examples below only non-fuzzy %

HAS_(;OOD FRIEND(x) PERSONS(x,_ ,y) relations are spointed at.

Since PERSONS is a base relation, this node is not A generalisation of the above notation is - -

expanded. The relation HAS COD FRIENDS is a virtual POINTER(<name>,(x,y,z)) where <name> is a relation - .
relation, so th.> is further expanded by forming a with three attributes. Here (x,y,z) is the pointer "
sub-query and 6e-iving the derivation tree for this with x pointing to first, y to second and z to third
sub-query. This is shown in Figure 1. For a good column of <name>. During iteration the pointer .'.

understanding of this method, careful consideration (x,y,z) is moved as a whole.
must be given to the concepts of variable renaming On te-oherhan
and variable binding.other handPOINTER(<name>,x) and POINTER(x,y) defines a pointer
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WHICHC(x,y) HASGOODFRIENDS(x) AND PERSONS(x,_,y))

REL'x,y)

HAS GOOD FRIENDS(x) PERSONS(x,_,y)

renaming

WHICH(x FRIENDS(x,yl) AND POSS ATH(yl))

FRLENDS(x,yl) P055_ATH(yl)

Srenaming renaming

1FHICH((x,yl) LIKES(x,yl) AND LIKES(yl,x)) WHICH~yI PERSONS(yi,y2,_) AND TALL(y2))

REL2(x,yl) F L 3(y2)

,IKES~x,yl) LIKES(yi,x) PERSONS~ly, TL(y2)

Figure I

x pointing at a row of relation <name> and a pointer POPULAR COURSE(x)-POINTER(WHICII(w COURSE(w))x) AND
y pointing at a relation called by the value pointed VERY TRUE(=DIVIDE(CARD(WHICII(y,x) STUDENT ON COURSE
to by X.

*In the case of (y,x)),CARD(W1UICH(y DEPT OF CDURSE(z,x) AND

*POINTER(<name>,x) AND POINTER(<name>,y) x and y STUDENT OF_DEPT(y,z)))))
are both pointers to the same relation <name>. They
are moved independently during iteration. COURSEW)- POINTER(DEPT,z) AND z(x)

* Queries of the form STUDENTWx)- STUDENT ON COURSE OFDEPT(x,y,z)
*WHICH((x,y) POINTER(<name>,x) AND x(y)) can b e DPRMN~) ET

asked. In other words pointer values can be part of DPRHN~)-ETx
the solution. NUN OF STUDENTSONCOURSE(n,z)~-POINTEU (WHICH(x

COURSE(x)), z) AND WHERE(n=CARD(z))
Example 3

COURSE OF DEPT(x,z) - POlNTER(DEPT,z) AND z(x)
* DEPT(NAME) ELEC(COURSES) MATHS(COURSES) COMPUTER--

(COURSES) lo.PROCCSTUDENTS) NETWORKS(STUDENTS) NUM OF STUDENTS IN DEPT(n,z)'-PONTER(DEPT,z) AND
*ELECTONICS(STUDENTS) LOGIC(STUDENTS) ANALYSIS 14HERE(n-CARD(WHICH(x STUDENT OF DEPT(x,z))))

* (STUDENTS) TO;'OLOCY(STUDENTS) INFTH. (STUDENTS)
LANGS(STUDENTS) HARDWARE(STUDENTS) N.D. uARD(R) returns the cardinality of N, i.e. sum

TRUE T.V. X VERY T.V. X o aus

*I-TYPE 0 0 [-TYPE 0. 0Qure-
1 1 1 1WHICH(x COUNSEWx) returns a list of courses that can

be studied.
DEPTOF-OURE~x~)- OINER(EPT~) AD xy) HICH(x STUDENTWx) returns a list of students.
DEPOFCOUSEx~y-PONTE(DPT~) AD xy)WHICH((x,y,z) STUDENTONCOURSEOFDFP'T(y~x,z)) gives

STUDENT ONCOURSEOFDEPT(x,y,z)~- POINTER(DEPT,z) a netr fcusswt tdnstkn

AND POINTER(z,y) AND y(x) them and associated departments.*

STUDENTON COURSE(x,y)-STUDENTONCOURSEOF D)EPT 1WHICH(x DEPARTMENTWx) returns a list of all depart-
rnents.

(x~~)WHilCH((y,x) STUDENTONCOURSEOFDEPT(x,y,l.lEC))

(xDNTO-EP~~) zSUEN NCy)EOFDP gives a list of courses and students on them of(XZ,0
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the ELEC department. cross a river from the left bank to the right bank.
WHICH(y STUDENT OF DEPT(=L.BARR,y)) returns the A boat is available which will Ecld two people and

department whTch L.BARR belongs to. which can be navigated by any combination of mission-
aries and cannibals involving one or two people. If

WHICH(y STUDENTON COURSE(=R.YAGR,y)) gives all tihe missionaries on either bank of the river are
courses which R.YAGER takes. outnumbered at any time by cannibals, the cannibals

WHICH(n NUM OF STUDENTS ON COURSE(n,=NETWORKS)) will eat the missionaries. When a boat is moored at
gives number of students on Networks course, a bank it is counted as part of the bank for these

For the query- which courses have exactly 2 students 
purposes.

use For this example, we use commands%

WHICH(x NUMOFSTUDENTSONCOURSE(=2,x)) UPDATE <relation name> = WHICH( ....) .. -
UPDATE CHANGES <relation name> = WHICH(...)

For the query - do all the Electrical students take
the systems course - use which updates tile knowledge base. The UPDATE comm-
DOES(POPULAR COURSE(= SYSIEMS)) and has already been discussed. The UFDATE-CHANGES

D U REis similar except only new or changed rows of WHICH
The DOES(R) query return the MAX X value of R. (....) are added to the relation <relation name>.

The details of changed rows depend on keys and will* ~For the query - give popularity of all the courses - ntb ute icse ee nti xml e

usenot e further discussed here. In this example new
rows are added as a result of the WHICH( .... ) asso-

DOES(POPULAR COURSE(x)) cated with the UPDATE-CHANGES. This builds up the
rows of a relation and this is how for this example S

Example of Probability Computation the solution is obtained.

Let the state be given by (number of mission-
Consider the Markov Chain aries on LEFT Bank, number of cannibals on LEFT Bank,

Bank with Boat))
STATE NAMEW TRANSITION FROM TO X=PROB Bn ihBa)

-Such possible states are in relation NODE. A
xl xl xl 1/3 state can be expanded to produce new possible states
x2 xl x2 1/3 and these are added to NODE. When (O,O,R) is •
x3 xl x3 1/3 reached the expansion phase called forward phase

x2 xl 2/3 ends and a backward phase then picks out the paths
x2 x2 0 of the solution. A path is one node connecting

PRESENT STATE NAME1 XPROB x2 x3 1/3 another node in a certain direction. The backward
L x3 xl 1/2 phase starts in state (O,O,R) as seen by NODEF and

xl 1/2 x3 x2 1/2 states are added to NODEF by tracing backwards to
x2 1/2 x3 x3 0 the starting state (3,3,L). The paths are recorded

_____ - in the relation SOLUTION.

NEWSTATE(x)-POINTER(STATE,x) AND DOES The initial relations PATH and SOLUTION are

(MODE (ADD _MLT) AND empty.
-- ICH~z PEN A )NTo obtain the solution or decision at any stage,

WHICICH(z PRESENT_STATE(s) AND TRANSITION(z,x))) look up present state in first three columns of
SOLUTION and take corresponding (NM, NC) as the

N.B. In this definition DDE(ADDMULT) changes the number of missionaries and cannibals respectively to ]
MAX operator of PROJECTION to an ADDITIONin boat for next journey The last three columns
operator and the MIN operator of JOIN to a pu iOT Or nce tjuey ste rslatn trom ns
PRODUCT operator. This allows the X values, in of SOLUTION indicates the state resulting from the
this example, to be probabilities rather than next journey.

possibilities. Forward Phase:-

To obtain 100 iterations of the Markov Chain NODE N C B BOAT BANK BANK NUN NM NC.
state probability distribution one uses

REPEAT lOOIMESSAGE "Newtate is" 3 3 LL R1 0

WHICH(x PRESENT STATE(x)); 1 1
UPDATE PRESENT .STATE = WHICH(x NEW STATE(x))) PATH N C lB NNM IMIl I.2

In this command, MESSAGE prints to screen the mess- 2

age given and answer to query. UPDATE changes the 1L 1" 0..

base relation PRESENT STATE with values from the
query following it. LEGAL(XI,X2)=((Xl,X2)]((xl=O)V(XI=X2)V(Xl=3))A

A Search Example (OrXlr3)A(O<X243))

We illustrate how F.R.I.L. can be used to solve MINIPLUS(x,z,y)--x+y if z=L; x-y if z-R

SEARCH problems - a simple problem is considercd but NOT EQUAL(a,b,c,Xl,X2,X3)=((a,b,c,Xl,X2,X3)I-"
the same approach can be used in general and modified ((Xl=a(X2=bA(X3 same as C)))
to obtain more efficient solution methods.

Three missionaries and three cannibals seek to
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TRANSITION(M,C,B,x,y,XI,X2,X3)--NUM(x,y) AND Conculsion

LEGAL(Xl,X2) AND BOAT(X3,B) AND NODE(a,b,c) The fuzzy relational inference language F.R.I.L.

AND NOT_EQUAL(a,b,c,XI,X2,X3) AND WHERE has been introduced and its use for designing appli-
cations in the general field of knowledge engineer- .

(XI=MINIPLUS(M,X3,x)) AND WHERE ing illustrated. In particular, it can be used for .

(X2=MINIPLUs(C,X3,y)) expert syscem designs and it has the advantage of

FIRST_PIASE( )-WHICH(( )POINTER(NODE,(M C B)) AND the ability to process fuzzy information.

CONTROL(MESSAGE"" =WHICH((x,y,z) NODE(x,y,z) References

AND WHERE(x=O) AND WHERE(y=O) AND WHERE(z=R)); Baldwin, J.F. (1979) A new approach to .. _.

SEQUENCE( approximate reasoning using a Fuzzy j..
UPDATELogic. Fuzzy Sets and Systems, 309-325.

UPDATE TEMP=WHICH((l,C,B,x,y,Xl,X2,X3) Baldwin, J.F. (1979) Fuzzy Logic and Fuzzy - _

TRANSITION(M,C,B,x,y,xI,X2,X3)); Reasoning. Int. J. Plan-Mach. Stud., 11,
465-480.

UPDATE CHANGES NODE=WHICH((XI,X2,X3) Baldwin, J.F. (1979). Fuzzy Logic and its
TEMP(FI,C,B,x,y,xiX2,X3)); Applications to Fuzzy Reasoning. In Gupta (E,.),

Advances in Fuzzy Set Theory and its

UPDATE CHANGES PATH=WHICH((M,C,B,x,y,XI,X2,X3) Applications, North Holland Pub. Co. 93-115.
Baldwin, J.F. (1981) A Theory of Fuzzy Logic. In

TEMP(V,'CB'x'y'R'X2'X3))))) E. Mamdani & B. Gaines (Ed.) Fuzzy Reasoning

N.B. UPDATE creates TEMP the first time since it is and its Applications, Academic Press pp.13
3
-1

4
8

not present in knowledge base. CONTROL executes Baldwin, J.F. (1981) An Automated Fuzzy Knowledge

each command in turn until the first command is com- Base. In R. Yager (Fd.) Fuzzy Systems,
pleted for which there is none NULL return from the Pergamon Press.
WHICH(.. .) and it then exists. SEQUENCE simply Baldwin, J.F. & Pilsworth, B.W. (1981) An Infer-
executes each command of the sequence. The CONTROL ential Fuzzy Logic Knowledge Base. Proc. Work-

then acts as an IF THEN-ELSE statement, shop on Logic Programming for Intelligent
Systems, R.M.S. Queen Mary, Longbeach, Calif.

Backward Phase:- Baldwin, J.F. & Zhou, S.Q. (1982) A Fuzzy Relat-

NODEF N C[ BI SOLUTION IM IC B NM I N C B ional Inference Language. (To appear)
Baldwin, J.F. (1983) Proc. I.F.A.C. Fuzzy Infor-

0 R mation Knowledge Representation & Decision -

Analysis, Marseille. (To appear).
BACKPHASE( )--WHICH(( ) POINTER(NODEF,(l,C,B)) AND Ullman, J.D. (1980) Principles of Database Systems, -

CONTROL(MESSAGE"" =WHICH((xyz)NODEF(xyz) Pitman.
Kowalski, R. (1979) Logic for Problem Solving,

AND WHERE(x=3) AND WHERE(y=3) AND WHERE(z=L)); North Holland Pub. Co.

SEQUENCE ( Zadeh, L. (1965) Fuzzy Sets, Inf. & Control, 8, ;'.*- -

338-365.
UPDATE TEMP=WtlICH((XI,X2,X3,x,y,fl,C,B) Zadeh, L. (1973) Outline of a New Approach to the

PATH(XI,X2,X3,x,y,M,C,B)); Analysis of Complex Systems and Decision
Processes, IEEE Trans. Syst., Man & Cybern., 3

UPDATE CHANGES NODEF=WHICH((XI,X2,X3) 28-44.
TEMP(Xl,X2,X3,x,y,M,C,B)); Zadeh, L. (1975) Calculus of Fuzzy Restrictions.

In Zadeh, Fu & Simura (Ed.) Fuzzy Sets and
UPDATECHANGES SOLUTION=WHICH((Xl,X2,X3,x,y,,B) their Applications to Cognitive and Decision

Processes. Academic Press. l
i

i i  l
TEMP(XI,X2,X3,x,y,fM,C,B))))) Poess cdmcPes

Zadeh, L. (1978) Fuzzy Sets as a Basis for a Theory .
Solution to the M/C problem obtained using of Possibility, Fuzzy Sets and Systems, 1, 3-28.

SEQUENCE(WHICH(( ) FIRSTPHASEC ) ); Zadeh, L. (1981) PRUF - A Meaning Representation- )Language for Natural Languages. In E. Mamdani -
WHICH(( ) BACKPHASE( ) )). & B. Gaines (Ed.), Fuzzy Reasoning and its

N.B. It must be emplasised that it is the pointer Applications, Academic Press.

(M,C,B) that cuases the solution to evolve and the Zadeh, L. (1981) Test-score Semantics for Natural

relations PATH, NODE, solution and NODEF to build up. Language and Meaning Represnetation via PRUF,

Not all solutions will be found since at any stage Technical note, 247, S.R.I. International.

of the iteration a node resulting from expansion
which is already in NODE will not be entered or its S

corresponding entry in PATH.
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Go. THE SYNTHESIS OF TERNARY FUNCTIONS UNDER FIXED POLARITIES AND TERNARY I L CIRCUITS

X. Chen and X. Wu

0 Department of Physics, University of Hangzhou, Hangzhou,

0 Peoples' Republic of China
Abstract IT]: transform matrix from B] to F1

IT) : transform matrix from F] to B]
This paper discusses the expansion of multiple- [T : Kronecker product

("• value functions based upon modulo-algebra and n-I
Kroneker product. A transform algorithm of the ([Ai]: - (An-I] .... 0 (A I [A 0
expansion coefficients of various polarities, and i-I !
their minimisation are proposed. Ternary function 

1
Pk? : transform matrix of expansion coefficients

realizations using 1
2
L technology are finally con- k' when x * x 5 k-

sidered. [AI]: transform matrix of expansion coefficients

when x * (U + l)x
[P].[T: product of matrices over GF(3)List of Symbols

n: number of independent variables Introduction
x1 ,i - 0 to n-l,xi E (0,1,2): independent input

variables Several modulo-algebra expansions of multiple-
, f(x.l....,xlx 0 ), abbreviated to f(x): function of valued functions have been proposed I]-[31.

the xi input variables, f(x) c [0,1,2) Lately the modulo-algebra expansion of multiple-
xi + xi: arithmetic sum of xi and xi valued functions over Galois field with q numbers,
x ( x,: mod-3 addition of xi and xj where q is a prime number or a power of a prime
xi .xj: mod-3 multiplication of xi and xj number, has been investigated 14]. We will discuss

! -I 0 to n-l: various polarities of variable xi the transform between F1 and the Reed-Muller expan-
i:= x, E 1 sion coefficient column matrix B], and also among S
i:- xi e 2 various B(K)] under different polarities in section

_B 2 by means of the Kronecker product. Minimalx:complement operation on variable xi, '..''.-- i.opmn oetnovmodulo-algebra expansion for ternary functions ."-

_B B - xi if B ;o xi  under fixed polarities is further considered.i;;';, ~xi "10 otherwise, :Z:;II
A x: minimum of xi and xj According to the modulo-algebra expansion, a
V xj: maximum of xi and xj Universal-logic-module Uf can be introduced (5],

xi x mxmmoxiadwhere

xi V xj: complement of maximum of xi and xj, Uf(a,,y,x) - a D x 4 ) x
2  

().
"- -- B B -( i V x ) If B x, V xj"""-

i  J itO othefrwise It has been shown that any ternary function may be
".Uf(,,,x): Universal-logic-module for ternary realized by the use of only this kind of module.

functions, based upon Reed-Muller expansion, Here in section 3 it will be shown that such a
i.e. modulo-algebra expansion Universal-logic-module Uf(a,6,y,x) can be composed

Uh(C,n,x): basic Universal-logic-module for ter- of two basic Universal-logic-modules Uh(t,n,x), -

nary functions, based upon modulo-algebra ex- where Uh(&,n,x) - C D n x.
,.-. ~pansion Uh({,fl,X) - 0 n) x ""F]: colun vector whose entries are the 3 values The realization of multiple-valued functions usingcoum f exto a wran e inticresn r de r ofe y 1

2
L circuits can be found published [61,[7]. In

-'Z of f(x), arranged In increasing order of y.

n-I section 4 a number of further 1
2
L circuits realiz-

y . I xi3
1  ing ternary functions are presented.

i-O
LB(K)I: coefficient column vector based upon

modulo-algebra expansion under the polarity iodulo under fixed polarities-Vlued

kn I Ln-1 ...kl,tlk k0L0 , where K,L are the
decimal expressions of knl,. .klko, An- It is well known that a single-variable ternary

114is respectively function can be written as: :.

f(x) b e bx D b x
2

- ,
0 12." . .-
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Define F) as a column vector of a function f, as and I T.F (12)
previously defined. Define BI as the Reed-Muller
coefficient column vector for f based upon modulo-
algebra expansion. Define iTI as transform matrix where
from BI to Fl.

100 000 000 
For a single variable, we have: 1 1 1 0 0 0 0 0 0

1 2 1 000 000
F fff It (2) T 2 100 100 100 %

01 2 (I 2 [T] 0I[T- I I 1 1 1 1 (13)

where f0 of 'f correspond to f(O).f(l),f(2) and 1 2 1 1 2 1 1 2 1
0 2 0 0 200 100 f

f(O) - boo 1 1 1 222 111
1 2 1 2 1 2 1 1

f(l) b 0 100 000 000
f(2) bb 2b 0 Gb 021 000 000 -
BI b 0b b t  

(4) 222 000 000 

0 012 0~ 2 -0 -1 0 000 10 0
T T000 111 2

0T]- [T]-I [TI - 000 012 021

00 01 02 200 200 200

F) ITI.BI - T 0 T 1 T I2 b (5) 0 1 2 0 1 2 0 1 2
1I 21 1 1 1 1 1

T20 21 22 (14)_ j _ j( 1 4 ) . . .:

Substituting equatton (3) into (2), and comparing Similarly for n-variable ternary functions, the -
the result with (5), the transform matrix may be following equations may be derived:
obtained:

[ 00]f( 'Inj..x xx 0 .e (xi~ (15)

[TI- (6) n
F) - ITI B] (16)

S - B] . i[T]
I  

n F] (17)

The inverse transform IT] is termed transform
matrix from F] to 8]: Recalling that the Reed-Muller expansion of a bin-

ary function may be derived under different polar-

B] -[T] F] (7) ities of the input variables, the concept of var- .. -
able -polarity can be introduced in the multiple- -

Similarly, iT] can be determined as follows. valued function case as well [8.91. Consider the

generalized modulo-algebra expansion of an
1 0 0n-variable ternary function:

IT] 2 j (8) n(-n-i." l'10
)  

(1lti[)]."]"

-, 0 10.[2 2X- 2. :.::..
= b e) bl 1 (D b2X2 0)

Note, both iTI and IT]
- 1 

here are over a single 0 1 0 2 0

variable. For a two-variable ternary function, we $9 b n *Z.,222 (18)
e3 1 n-1 0 have:;

fx, b a) b x D b x
2  

b x E) b x x where 1 is defined as the polarity-expression of
1xo2 ) 1 0 3x 1 4 X X x, where it takes a different output value for each

x
2 ( b x

2 $ b x
2
x e) b x

2
x
2  

(9) possible input value, i.e. there is no loss of
5 1 Ci b I 1 0 b I 0 information. In ternary system each variable may

In accordance with the Kronecker product and its take six possible polarities, including the var-
properties, the above equation may be simplified able value itself. They are shown in Table 1.
to:

In the above table the entries in the left column
f(x1 ,x0) - [(lx x

2
) G (lxox

2 )I.B], (10) are corresponding modulo-algebra expansions of var-
11.00ious polarity-expressions of variable xi. Note

where denotes the Kronecker product. It may that the last three entries are mod-3 products of
be proved that there are the following relations: the corresponding above entries and constant two.

"2 Thus a generalized equation can be obtained:

' l - TI . 81 ( 1) i  - l ) .( x I  ( k ) (1 9 ) ,
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0 1 2 If we define

FI 2k k

lPxj 12 1 I (25)

if 21 Pk 0 L 1
2xi and

2 2x± 2 10
1 k k2

1 2x, 1 02 -

Table 1 The polarities of a ternary variable xi 1Pk1  0 1 2k (6

0,,2ad 01Substituting (24) into (22) and comparing with

Therefore there are (3)fl - 6n possible n-variable (20), we obtain:
ternary modulo-algebra expansions. It is said to B(K)3be the unmodified form when: klB

A - 0,k - 0Similarly the reverse transform is as follows:

-.- The above transform (19) can be divided into two B)- Pl .B( l

ateps. The first transform is termed the k- For a n-variable ternary system, 3n different
transform, in which we consider I - 0. The second modulo-algebra expansion coefficient vectors ( j
transform is termed the A-transform. Now let us can be derived if each variable 1ci - xi (5 ki

*consider the k-transform. Take a single-variable takes every possible value, where K is decimal
function as an example. number of ternary k.-l ... k1  , K -~ ... n

SupposeThe following equation may be obtained by using a

f~x)- bk) @ b~k.~ ~b~k.~2Kronecker product and the equation (25):
0 1 2

-(lXO.1.(b(k)b(k)b(k)It (20) gKj*c r~ ](7
o i 2 i-o kij

Consider the k-transform It is obvious that the complexity of the various
modulo-algebra expansion coefficient vectors ( l

x k, k - 0,1,2 (21) of a function varies with K. The more zero-coeff-

* Ifb~O is xprsse by 1, ~e~~ ~ ), he* icients in B(K)], i.e. the fewer the necessary
tandrd orm k 0 be taied. product-terms in the modulo-algebra expansion, the

the tadad or ( -0 a be6band simpler the function form.

f~~ 0  e x b2  b l2] (22) Consider two-variable ternary function expressed

2 Iby Fig.l. From the K-map its column vector is
b

- F] - 0 2 0 2 1 0 0 2 Olt

From (21)we obtain;:X
002

k]I z 1 2~ Fig.l Example 2-variable
LI1J0 ternary function

(1112) -(lxx2). 0 1 2k(23)

[0 0 1  The unmodified expansion coefficient vector can be
- - obtained from the equations (12) and (14):

B -0 1 112 1 12 lt9
and

- Therefore its modulo-algebra expansion is as

1 2k k2follows: '.

(lxx2 ) -( 2) 1(4) f(Xx 0  X 20 x* ~~~ 0  xx ,
YI 0 S 2 x 5 2x~ x~x 9D( 4
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When the eight other possible polarities are con- Although the number of non-zero coefficients remains
sidered, it Is found that there are the least non- unchanged, the number of coefficients with value 2
zero coefficients when k 1. 2, k 0 1, i.e. K -7. varies with different L. The fewer the number of

1 0 these coefficients, the simpler is the corresponding
The corresponding expansion coefficient vector can modulo-algebra expansion of a function. Therefore
be derived from the equations (25) and (27): the optimum procedure can be stated as follows.

' r Firstly search for the optimal K value under the
Ill 1l 1 2liii K-transform so that the number of non-zero coeffic- 0

BC7)1 (1 [P1)BIints is minimised. Then determine the optimal L
I PD 2 4D I 11 Bf.8 value under L-transform so that the number of coeff-110 ~ II icients being two is minimum. It may be seen that

10 0 1J 0 0 1 only 3n + 2n searches are necessary for anyLn-variable ternary function, against 6 1 exhaustive -

searches. Consider the above ExampleL 1, we can
1 2 1 1 2 1 1 2 1 0 0 find the ,number of coefficients is being two is

minimuml when L - 1, i.e. 0, 1- 0 , to 1. The
0 011 0 11 0 11 1 21 0

corresponding coefficient vector is:
*0 1 0 1 0 1 1 0 LB(KI . 1B(7)1 . 0 1 0 0 0 0 0 0 Il

0 00 1 21 2 12 1 0
The corresponding modulo-algebra expansion is:

f(x1, 0  k- (2o (' .(2;r) 2

0 0 0 0 0 1 0 0 2 1 0 Note that in this case the non-zero coefficients

0 000 0 00 1 21 1 0of all products are of unity value.

000 0000 1 1 2 0 Universal-Logic-Modules

0 0 0 0 0 0 0 1 1Hurst end Tolcmen have disclosed a Universal-logic-

module based on modulo-algebra for a ternary system

- , Its corresponding modulo-algebra expansion there- (1
*fore Is as follows:

Uf(*.O,y,x) -a O x 19 yx2  (31)

* ~ x, 0) 0 1i 0 ~2 This may be decomposed into smaller cells:

After choosing the optimum K, further consider the Uf(M.Oy,x) - 04D x 19yx 2 
- a~x(O9yx) - Q Q Uhx

determination of optimum L. where L is the decimal
* expression of binary In-1 -to , ci (0,l1) Similarly. Here Uh(EI1,x) - * nx (32)

we may obtain transforms corresponding to a re- It is obvious that a Uf(u&$,ypx) can be realized by
placeme nt of (i 9 ( 1).x. For a single-variable two Uh cells as shown in Fig.2. Therefore Uh forms
ternary function, we find: a complete set. The advantages using Uh are a -

(K) it £ (K) simpler algebraic expression and flexibility in
S I- (II.a Iemployment. After examining all twenty-seven

1(K) M l K (28) single variable ternary functions, it can be shown
B 1(I Bu I Jthat in addition to constants 0, 1 and 2 and vari-

* I able x Itself, nine of them may be realized by only
where one Uh. They are:

1 0 0f (x -X
2 . (0,x) f (K) - 1 x x2 . (x,x)

I if* IF 0 1+1 0 (29) f(x W 2x, (0.2) f 1 (X) I (D x2 , (1,x)

0 0 f 12(x) -l1ox, (1,1) f 15(x) 1 1 * 2x. (1,2)

*It can be seen that the 1-transform does not change f ()-2*x,(,) f ()-2~x 21
*the number of non-zero coefficients, since all dia- 19 f2I(x

gOnai elements are non-zero and the others are zero ------ f (x) -2~ 2x, (2,2)in (j. for n-variable ternary function, we derive 2

L (K)(K I

QK (30)2 1----------------Implementation of
1---------- Uf using two Uh modules-
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The values in brackets express the corresponding

input patternb. Note five of nine are merely -

polarities variation of variable x. They are [ / - __.

f 12(x) I - lx, -i f 21(x) - 2 E)x, - ', f 6(x) -2x,1221 I

f2 () 2 2x 27 f (x) -1 ( 2x, 2T.

,'* Thus the various polarities of variable x can be (""
realized using a single Uh.

Realization of ternary logic using -- , ,
1'2L circuits 0" .0..\0 Z

10L1ui 
0aihusi 

n 
010 0 0 00

addition, and mod-3 multiplication [10]. They may 01
Te bedce oeadtion in mouoaler ar mod- a .J~be reduced to addition, multiplication and mod-3
limit. Here we consider the realization of some"."ternary logic circuits. G ) -I• .

Fig.4 Mod-3 adder realisation
Polarity-transform circuits (a) circuit, (b) legend. (c) K-maps

Figs.3(a)-(f) give various polarity-transform circ-
uits. Fig.3(a) is a complement circuit; Fig.3(b) is
a circuit for multiplication by two. Fig.3(c)-(f) multiplicand are expressed by using the same phys-
show how other polarity-transform circuits may be ical measure, say electrical current, then the
obtained in terms of appropriate serial connection multiplier becomes a pure number without any phys- . .
of the above two circuits. The function of Figs. ical meaning. However, up to now any simple
3(e) and (f) is the same, but the circuit of (e) effective control of amplification in terms of

P. is simpler. current has not been found. In a binary system, S

this difficulty is avoided because the operation
"' of multiplication and the minimum of two variables

Mod-3 addition 0,1 is the same.

Mod-3 adder is shown in Fig.4. It can be seen We extend this interpretation into the ternary
that the upper branch creates arithmetic addition, system. Fig. 5(a) illustrates that the multi-
the lower branch being a mod-3 limiter. plication of two variables can be divided into two

operations. The central K-map of Fig.5(a) denotes -
" minimum of variables, i.e. x A y. Since x A Y -

Mod-3 multiplication Rv- , this may be implemented as shown in Fig.5(b). -.

The 1W K-map expresses (x+y), i.e.
' The difficulty of realizing multiplication of two

variables consists in the physical interpretation -+ --2, if x + y 2
- of multiplicand and multiplier. If product and 7(x+y)

0 otherwise

"0- - Fig.5(b) gives the total realization. The uper
• ".-.=, ,--part implements x A y; the centre realizes (x+y),

WI and the lower is the mod-3 limiter. The functions
3 of various points A- D are expressed in the . .

corresponding K-maps shown in Fig.5(d).

- 00Arithmetic circ'Jits

,bl On the bases of mod-3 addition and mod-3 multi-

plication, full-adder and full-multiplier with
:. tW-'isi)iLAiio ci) -~ 1 carry may be designed. Flgs.6(a) and (b) show

their 1
2
L circuits respectively, where C is carry

.C) Cdi input and C' is carry output.

) ~~~h circuit-. •...

This may be realized by the cascade of a mod-3

multiplierand a mod-3 adder, as shown in Fig.7.
"op

Fig.3 1
2
L polarity-transform circuits
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a a 0 0 a 0
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0

0 1 2 0 XN '0 1 Z 0 0124
O0 4 [4~ 2 000 0 L0I

2 0j~ z1 1j~ 0 202r_

PIS.5 Mod-3 multiplier realisation Fig.6 Full-adder and full-multiplier realisations •

(a) adder, (b) multiplier

Conclusions

The modulo-algebra expansion of a ternary function Fig.7 Basic universal-
has been discussed In terms of modulo-algebra and l logic-module Uh
Kronecker product. Because of the six possible ' ,k ,

polarities of a ternary variable the minimization - - -
of ternary functions is more complicated than that L -- -------
of the corresponding binary case. A minimization
procedure has been suggested. Since the mod-3 4. Green, D.H. and Taylor, I.S., "Modular repres-
multiplier costs are high, the first step is a entation of multiple-valued logic systems".
search for the optimum K to make the number of non- Proc.IEE, 121, 1974 pp.40 9-418 ..
Ze ro expansion coefficients minimum. On the basis
of this new function, we then find the optimum L 5. Tokmen, V.H. and Hurst, S.L., "A consideration .
corresponding to the minimum number of product of Universal-logic-module for ternary synthesis.

terms which have coefficients of two, Such a based upon Reed-Muller coefficients", Proc. 9th
searching process can be implemented by using a tnt. Symp. MVL, 1979, pp'248-2 56.

omp.6. o, T.T., McCluskey, E. and Russell. L-K.,

A basic Universal-logic-module, two of which are "Multi-valued integrated injection logic",

capable of realizing any single-variable ternary IEEE Trans., C-26, 1977, pp.1233-1241.
function, has also been considered. A number of 7. McCluskey, E.J., "Logic design of multi-valued -
12L circuits realizing various ternary functions 12L logic circuits", IEEE Trans., C-28, 1979,
have been proposed. pp.546- 559.
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