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P il
N plhea Their Asymptotic Solutions
In qQue previous work (1}, a procedure was de-
veloped, based on algorithme’ for rational functiom Several derivations exist in the literature
frequency extrapolation end % -norm averaging to of partial differential equations which govern the
circumvent both the effects of noise, and errors way sound travels through B. For example, the
due to refracted curved paths, for solving the in- Helmholtz equation model is given by
verse lcatteriql problem in ultrssonic imaging.
‘ In this paper, we reverse the order of the ﬁntﬁ" v"’u + kzu - _szu (1.1)
two aslgorithms with fespect to [l}; that is, we'
first apply the % “sveraging procedure and then where
carry out the rational function procedure, extrap-
3 olating to infinite frequency. An adaptive method CZ
A for choosing the beut',__r,tional function expansion £(r) = °_ . 1, k -2 (1.2)
is also employed. 'We€ describe the underlying Py o
ideas of the procedure, and we illustrate examples
3 of reconstructions in the presence and absence of The Ricatti model,
3 Gaussian noise. These results are then compared
d with results of previous experiments. The result~ 2%.
: ing procedure works with a much smaller signal-to- vz., UL P VIPQTIE S Y- _sz (1.3)
‘8 noise ratio. An extension is suggested to image u.
speed of sound and density.
¥, ~ is obtained from (1.1) by applying the transform
4 u(r) = ui(r) exp (w) (1.4)
5 : 2 The Rytov model is obtained from (1.3) by dropping
iy i Supported by National Inetitute of Health Grant the term containing Yw * W,
No. 5R01-CA29728-02 and American Cancer Soci-
ety No. PD-110C. A differential equation governing the flow of
‘ sound through B may depend on other properties of

B, oucll as the density o(r) and the compressibil-
i : ity x(r). In general, such an equation may take

the form
1. Mathematical Basis for the Algorithms

3 : Au + F(r, o(r), x(r), u, k) = 0 (1.5) [}
f | 1.1 The Physical Problem
q ‘ Let us assume that sound at high frequency where A is a differential operastor.
] ‘ penetrates a body B immersed in fluid. We denote

: the spatial sound pressure and the corresponding The success of the asymptotic procedure de-

) sound source by u and ul, respectively. The ve- pends on our knowing an asymptotic expression for

! locity of sound in the fluid is given by c ., and some function #(u, k) which we can compute or

the velocity of sound in the body by 15 N messure for & range of values of k. Por example,

’ p-rciculnr_ pagh along which sound tr‘avelo from a #{(u, k) may have the ssymptotic expression
source point r, to a detector point r, is denoted
by L if it is & straight line path nn(f by P if it
is & curved path. #u, k) = a(k)Iv(lt. o) + ek, «, D)]

gTe FULE COPY

(1.6)
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where a(k) is a known function,
ek, <, o = 0(k°) a.n

a8 k *+ ®», and where 0 is a positive number. 1In
addition, it is desirable to know that &(u, k) is
an analytic function of k in some sector

{kec: |arg(k - k )l < d}. We can then compute
v(x, p) via the Phiele algorithm, even though

e(k, x, p) may not be emall over the range of
values of k on which we know ¢.

Now, if ¢ is known and can be evaluated for k
on a finite Entezvnl, such as
I= {k:k . "k =k ], then we can apply the
Thiele nTégrithn to"fle 2m + 1 values

yi=0,1, ..., 2m; (1.8)

J k.1, k, distinct,
J J

to sccurately estimate v(x,p). The Thiele algo-
rithm {2, 3, 4) involves wusing p’ defined in
(1.8), and then computing the numbers

k.
i j =0, 1, ..., 2m - 1

J
o

k -
Dj - el
1 pjol R
o

pj.pj”. k'oi-k' j=0, ., vvoy 2m - i
L LIPS RGPS i=2,3, ..., 2

-1 Tl " (1.9)

Some of these numbers can be used in a truncated
continued fraction expansion of a rational func-
tion which interpolates the data pJ. That ie,

this rational function R(k) is given by the con-
tinued fraction

R S %) s Sl . L |
[ (4

o o * TS )
21 P2 = % %2m ~ P2m-2
.10
and satisfies
R(kj) - pg, 3 =0, 1, ..., 2w (1.11)

It ies easy to see that the rational function
(1.10) aleo has the form

LN ] o-1
P,k ¢+ c.k + ... %

) o« 22 = aaw
k +dl k * ...06.

where p2_ is the last entry computed in the table
(1.9), @nd where c¢; and d; (i = 1, 2, ..., m) are
the same constants. Hence, in addition to (1.11),
R(k) also satisfies the relation,

e A 2

lim R(k) = o2 (1.13)
Kow 2m

i.e., we have the spproximstion,
vic,0) = a;'. (1.14)

For example, for the case of the Helmholtz
model (1.1), we have

r
- d - -
4(u,k) Eli—k log uk(r) .- [ 1+ £(r)ds + O(k o).
r P

s " ]

(1.15%)

in which v -I YT+ T ds, for the case of the
Rytov approximation we have

r
- d - d
#(u,k) E%T v () = J #D)ds + 0(x%), k + =
r L

¢ (1.16)

where in (1.16), L is a straight line path join-
ing r_tor, end v = [ f ds. The examples of this
plper' are YDased upon  using (1.14) and (1.16).
Bight significent figure accuracy is attainable,
using 11(m = 5) or 13(m = 6) values for a 4 mmn
(FWHM) object with no of wnoise. However, the
presence of noise diminishes this accuracy consid-
erably, although it is possible to sdmit several
povers of ten times &8s much noise via the use
of ll aversging.

If the influence of noisy dats is not unduly
destructive, we can use the above procedure to
recover two functions f(x,p) and g(x,p) provided
that a(k) and 8§ > 0 is known, and 0> 0 in the ex-
pression,

ool = s {E(x, 0 + K S[gle,0) + 0(17%)])
(1.17)

In this case, we can recover f(«,p) by sampling

u,k)
v -irl-,—. b (1.18)

Once f(x,p) has been determined via (1.14), we can
apply the Thiele algoritha to

vtk | ore,0) (1.19)
to get g(x,p).

2, "l Averaging

In (1), &, averaging wae carried out after
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application of the Thiele algorithm. We have
since found that we can tolerste considerably more
noise in the data by applying t averaging before
application of the Thiele nl;ori}h-.

Since the data are complex numbers, actual
R averaging is too difficult numerically. 1Imn-
sfead, we carry out an £ average on both the real
and imaginary parts of g’he dats separately. The
process is very simple, and works as follows.

Civen & set of regl aumders {..}'.‘_ , we want
to find a real number ¢ which minimizes the sum

S(e) = g l'i - cl (2.1)

im]
The solution is

c = a. (2.2)

where a. is one of the values of {.,}'.‘_ . Note
thar for evep M, j wmay have two solution values,
For odd H‘ c” is the median, hence, the problem of
finding c¢” reduces to finding the minimum of the
values

s(l.) - g a. - a. (2.3)
L 51 la - 4

with respect to j.
3. An Adaptive Festure

The wmethod of L averaging provides g
convenient procedure fml adaptively choosing the
number of terms in the rational function R(k),
Por noisy data or for slowly changing o) with
respect to kj, & better R(k) is obtained®by a
rationsl funct’ion with a swall number of terms.

In our test examples which follow, the method
of ¢ averaging was also applied to the odd rows
(i =0, 2, 4, ...) of the entries in the.p table,
For example, if all of the values of o) in (1.8)
are the same, there is no point in continuing,
since this value is then slso the limit as k + «
of R(k). Due to round-off error, the criterion
actually used was to construct the p) entries of
a particular row "2i”, find the & " asverage, c,
with respect to j as described above, and then
termjnate the computstions A whenever the number
of o) (i fixed) such that 'pJ - cl § was greater
then’ the nusber of o; such that |°i -¢c| > 8 for
some small §.

4. Numerical Experiments

We have tested the spplication of these meth-
ode with e eeries of computer simulations on the
example illustreted in Pig. 1. This teet case
consisted of four objects with a distridbution
given by

£(e) = e ] 4.1)

Pig. 1. Digitized image of test objects on a 41 x
41 grid vith each pixel heving dimensions
of .3125 wm x .3125 mm. The FWHM for
each of the Gaussian distridutions is 1.0
ms and their centers are located st y =
3.75, 0.0, -2.5, and -4.375 w=m. The
bright line through the centers of these
objects indicates the location of the
dsts points for the intemsity profile
which is plotted on the right side.

where b was chosen so that the full width at half
maximum of esch object was 1 wm (which is 1.67
wavelengths at the centrs! frequency of 2.5 MHz
wich the speed of sound ¢, = 1300 a/s) and the
points r. were chosen at x = 0 and y = 3,75, 0.0,
~2.5, nﬁ -4.375 mm, respectively. All of the
digitized images which we shall present for this
test case will use & 41 x 41 grid with each pixel
heving disensions .3125 mm x .3125 mm and wvith a
profile of the brightened central line plotted to
the right of the image.

The Rytov model was used to generate the
forvard scattering from these test objects. The
line intgrals of f(;) can then be obtained from
the asymptotic limit as k + ® of (1.16); namely,

lindo v () = [ £(D) ¢ (4.2)
koo L

where L is the straight line path from the source
to our detector position. We use the Thiele pro-
cedure described in (1.8) to (1.14) to evaluate
this assymptotic limit from an odd number of fre-

quencies (usually 9 equi-spaced frequencies from 1
to & MHz).

These straight line integrals of £(5) were
eslculated for & number (typically 55) of detector
pointe spaced .3125 mm spart along a line oriented
perpendicular to the direction of incident plane
wave and located 8 ca from the x-y origin. Then,
by taking data frou multiple views (generaslly 30
views spaced &° spart) and using ART, & well-known
X-ray, computeriged towmography algorithm, we were




sble to reconstruct the distribution of £(f). As
we have shown in our previous paper (1], quite
good reconstructions of f(r) can be obtained pro-
vided we have very little noise in our dlt’l. An
illustration of a reconstruction of f(r) from

reference [1]) using random noise with a .1 percent
is given in Pig. 2,

standard deviation This re

Pig. 2. Reconstruction of the teat objects from
10 sets of 9 frequencies (uniformwly
spaced from 1-4 MHz) with .1 percent
random noise wuesing the 't -norm after
applying the Thiele cl;orithvln. Reprinted
with permission from reference 1 (Sten~
ger, F., et al., Proc. of Conf. on Wave

Motion held st the University of Toromto,
July, 1983, North Nolland).

construction was obtained by wusing 10 distinct
sets of 9 frequencies from 1-4 MHz and aspplying
the L -norm averaging to the results of the Thiele
algoritha. However, the procedure of applying
the 2 averaging asfter the Thiele procedure soon
fails to produce acceptable results as we intro-
duce increasingly larger amounts of noise, since
the Thiele algorithm wmagnifies the mnoise. For
example, Fig. 3 gives & reconstruction on dats
with 1.0 percent random noise using this wmethod
with 54 averages of esch Thiele result. The ob-
jects are just barely recognizable and the peak
values are low in magnitude by more than a factor
of 2x.

Our new procedures described in sections 2
and 3 can resdily handle noise of 1 or 2 percent.
Pigure 4 shows a reconstruction of our test cese
from data with 1 percent random noise using our
new procedure with 54 averages. Although all of
the objects are quite well resolved in Fig. 4, wve
discovered that by using a constrasint condition in
our ncgnuructitm algorittm (bssed upon the fact
that £(r) was koown to be of one gign), we were
sbie to even further improve the resolution, as
shown in Pig. 5 (pmotice the narrower line protfiles
and hov much closer the troughs are to sero).
Yigure 6 shows how much more rodbust our nev proce -~

Pig. 3. Recoostruction of the test objects from
dats with 1 percent noise using the ¢ -
aorm procedure after applying the Thiele
algoritham, as in the previous figure (but
here the asveraging was done with 54 re-
peats of noisy data using 9 equally
spaced frequencies).

Pig. &. Reconstruction of the test odbjects from
data with 1 percent noise using our new
& averaging and the adaptive feature
dl-cribcd in sections 2 and 3. As in
Pig. 3, the L averaging was obtained on
5S4 repeats on 9 equaily spaced frequen-
cies from 1-4 MHs.

dure is es this reconstruction was obtained from
data with 1 percent nvoise using only 10 values in
our £ aeveraging. Usiag our previous method, we
were t able to obtain recognizadble images from
only 10 .l averages of data vith 1 percent moise,

Ve aleo exemined two other interesting ques-
tions. The firet question concerned the applica-
bility of wsing only the [2«(;)/1&) tera in




" e
N~

Pig. 5. Reconstruction of the test objects from
dats with 1 percent moise obtained in the
same wmanner as Pig. 4., but using a coo-
straint condition in ART based upon know-
ing that the distribution was of one
eign.

Pig. 6. Reconstruction of the test obpjects from
dats with 1 percent noise using our new
procedure (as in Fig. 5), but doing the
L averaging over only 10 sete of dsts.
(Por this reconstruction, a conetraint
condition wae 8lso incorporated into the
ART algorithm which took advantage of the
knowledge that f(r) vas of one sign.)

(1.16) st a single wave number k as a first order
approximation to the asymptotic limit. We learned
that for the test object of Fig. 1 (FVHM = 2 mm),
this first ters gives a completely unacceptable
spprozimation even without eny moise. We could
oot even distinguish the locations of the ebjects
if we used only this term.

The final question concerned the effect of
our stopping criterias, Our tests showed that
while the stopping procedure described in section
3 was quite helpful, it was not essential for ob-
taining a useable image. For example, Pig. ?

Fig. 7. Reconstruction of the test objects from
dats with 1 percent noise. As for Fig.
3, we used the new L averaging procedure
on 54 sets of noisy data before applying
the Thiele slgorithm, but here the stop-
ping criteria was omitted in the Thiele
procedure. Degradation from the results
in Fig. 4 where the stopping criteria was
used is apparent.

shows a reconstruction under the same basic situa-
tion as Fig. 4 (i.e., 9 frequencies using £ aver-
aging 54 times defore applying the Thiele “proce-
dure), but without the stopping procedure. While
the resolution in 7 is wuch less than Fig. 4, omne
can still clearly distinguish sll four objects.

5. Conclusions

In a previous paper, we described the basic
idea of transforming the ultrasound inverse scat-
tering problem (with its attendant need to treat
diffraction effects in the wmeasured scattering
data) to sn equivalent X-ray CT-like problem (with
no diffraction effects in the new transformed
date) by the use of frequency extrapolation [3].
The basic idea of our method is to remove diffrac-
tion effects by generating a transformed projec-
tion of the object at infinite acoustic frequen-
cies [3]. Our esrly asttempts to apply the method
met with limited success because of extreme sensi-
tivity to noise in the data. Applying L averag-
ing to wmeny sets of frequency oxtnpol.te& projec-
tions helped improve noise tolerance, dbut probadly
oot enough for practical applications with resl
data [1]. Our letest algorithm using £ everaging
(median filtering) on the data before frequency
extrapolation combined with an adeptive frequency
extrapolation wmethod provided even further iwm-
provements. lmages have been made from simylated




data with 1 percent noise with ss few as 10 sets
of data combined by t averaging. Such dats could
be obtgined with exil‘tin; tomographic scanners at
frequencies below 4 MHz. Thus, our newest algo-
rithe should now be tested with real scattering
data to study its usefulness in ultresound dif-
fraction tomographic imaging. We also have shown
in this paper how to reconstruct two material
properties with differing dependencies on k. This
suggeats that our sethod might allow reconstruc-
tion of density in addition to aepeed of sound;
however, this has not been verified.
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We describe the underlying ideas of the procedure, and we illustrate examples
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