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e . - Abstract 1.2 Differential Equations andJ " Their Asymptotic Solutions

In Qtw previous work (1 ', a procedure was de-
veloped, based on algorithms/ fo)r rational function Several derivations exist in the literature
frequency extrapolation and -norm averaging to of partial differential equations which govern the
circumvent both the effects ot noise, and errors way sound travels through S. For example, the
due to refracted curved paths, for solving the in- Helmholtz equation model is given by
verse scatterine problem in ultrasonic imaging.
In this paper, 1 reverse the order of the first, 1  V2u * klu . -k2fu (1.1)

two algorithms withltespect to Ill; that is, we
first apply the [veraging procedure and then where

carry out the rational function procedure, extrap- 2
olating to infinite frequency. An adaptive method c

for choosing the bestjrtional function expansion r ... o - 1, k - (1.2)
is also employed. describe the underlying c 2(r) c
ideas of the procedure, and w illustrate examples
of reconstructions in the presence and absence of The Rictti model,
Gaussian noise. These results are then compared
with results of previous experiments. The result- 2Vui.

ing procedure worka vith a much smaller aignal-to- V. V .-k2f (j.3)
noise ratio. An extension is suggested to image ui
speed of sound and density.

N is obtained from (1.1) by applying the transform

I Supported by U.S. Army Research Contract No. u(r) - ui ep (w) (1.4)

DAAG 29 83 K 0012.

2 The Rytov model is obtained from (1.3) by dropping2 Supported by National Institute of Health Grant the term containing Vw • 9w.
No. 5ROl-CA29728-02 and American Cancer Soci-

ety No. PD-IIOC. A differential equation governing the flow of

sound through B may depend on other properties of
B, such as the density p(;) and the compressibil-
ity m(r). In general, such an equation may take
the form

1. Mathematical Basis for the Algorithms
Au * F(r, p(r), '(r), u, k) - 0 (1.5)

1.1 The Physical Problem

Let us assume that sound at high frequency where A is a differential operator.
penetrates a body B immersed in fluid. We denote
the spatial sound pressure and the corresponding The success of the asymptotic procedure de-
sound source by u and u

1
, respectively. The ve- panda on our knowing an asymptotic expression for

locity of sound in the fluid is liven by c , and some function *(u, k) which we can compute or

the velocity of sound in the body by (rl. A measure for a range of values of k. For example,
particular path along which sound travels from a #(u, k) may have the asymptotic expression
source point r to a detector point r is denoted
by L if it is a straight line path an by P if it
is a curved path. (N, k) a a(k)[v(, p) * (k, , p)] (1.6)
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where a(k) is a known function, 2i, (k) * (1.13)

k.,
c(k, x, p) - O(k " ) (1.7)

i.e., we have the approximation,
as k * , ad where a is a positive number. In
addition, it is desirable to know that *(u, k) is
an analytic function of k in sowe sector v(C,P) . (1.14)
lkcc: arg(k - k ) I < dl. We con then compute

v(K. p) via the htele algorithm, even though
E(k, K, p) may not be small over the range of For example, for the case of the Helmholtz
values of k on which we know *. model (1.1), we have

Now, if 4 is known and can be evaluated for k 
rd

on.a finite nte~val, such as *(u~k) : log 1  
" ____0-_onr~. a fiit f Al )ds 0(k0 )

I - {k:k n  k - k ), then we can apply the r P
Thiele aTAorithm too& 2m + I values k +

*(u,kj) 
(1.15)

j " 0, 1, ... , 2m; (1.8) in which v " t dT T-da, for the case of the
a(k.) lytov approximation we have

k cl, k. distinct.

to accurately estimate v(c,p). The Thiele algo- *(uk) 3--' 2 WkG) _- f f(;)ds + O(k-J), k * -
rithm (2, 3, 41 involves using PJ defined in rI L

(1.8), and then computing the numbers
0  (1.16)

k - k. where in (1.16), L is a straight line path join-
P, j 0, 1, ... 2- 1 ing r to r and v-ffds. The examples of this- + = -j pae exmosrfti

pj+l pn paperm are °based uponl using (1.14) and (1.16).

Right significant figure accuracy is attainable,
using ll(m - 5) or 13(m = 6) values for a 4 -m

j+1 k4  - k. j - 0,...... 2m - i (1W1M1) object with no of noise. However, the

i J - j . presence of noise diminishes this accuracy consid-
i2 -+ P i - 2, 3, 2.. erably, although it is possible to admit several

(1.9) powers of ten times as such noise via the use
of eI veraging.

Some of these numbers can be used in a truncated

continued fraction expansion of a rational func- If the influence of noisy data is not unduly
tion which interpolates the data p

J
. That is, destructive, we can use the above procedure to

0this rational function R(k) is given by the con- recover two functions f(K,,P) and g(c,p) provided

tinued fraction that a(k) and 8 > 0 is known, and 0 > 0 in the ex-
press ion,

R o) D i0'  i* oo  
" kO2 1  4(u'k) -a(k)ff(mc'p) *iC-t[g(w 'p) *~ -O]

o o 0 0 0 0i_

1 ) 2- 0m(1.17)

(1.10)

In this case, we can recover f(mo) by sampling
and satisfies

V~ ~ ~ ~ .#uk(118)
R~kl j ." 0. , . ..2U 0].;1)45

3 0

Once f(c,P) has been determined via (1.14), we can
It is easy to see that the rational function apply the Thiele algorithm to
(1.10) also has the form

-U-1 k - f(.,p)] (1.19)
p 2 k * c k + ... 4c L

1() m (1.12)

k dl 
-  

.. ds to get g(mp).

where o is the last entry computed in the table
(1.9), and where ci and d i (i - 1, 2, ... , a) are 2. 1I Averaging
the me constants. Bence, in addition to (1.11),

R(k) also satisfies the relation, In (1), g1 averaging ws carried out after

: .-. .. I ":'' r " I 1 i - -" - --I



application of the Thiele algorithm. ie have
since found that we can tolerate considerably more
noise in the data by applying I averaging before

application of the Thiele algorihm.

Since the data are complex numbers, actual
* averaging is too difficult numerically. In-

slad, we carry out an t average on both the real
and imaginary parts of the data separately. The
process is very simple, and works as follows.

Given a set of rel nembers wi, we want
to find a real number c which minimizes the sum

S(c) - ai -cl (2.1)

The solution is

c - a. (2.2)

Fig. 1. Digitized image of test objects on a 41 x
M A1 grid with each pixel having dimensions

where a- is one of the values of al. . Note of .3125 = x .3125 -. The FWIII for
that for eveg M, j may have two solution values. each of the Gaussian distributions is 1.0
For odd H: c is the median, hence, the problem of me and their centers are located at y -
finding c reduces to finding the minimum of the 3.75, 0.0, -2.5, and -4.375 sm. The
values bright line through the centers of these

uobjects indicates the location of the
S " Jai -ajl (2.3) date points for the intensity profile

i i I which is plotted on the right side.

with respect to j. where b was chosen so that the full width at half
maximum of each object was I me (which is 1.67

3. An Adaptive Feature wavelengths at the central frequency of 2.5 lz
vich the speed of sound c o " 1500 m/is) and the

The method of & averaging provides a points r. were chosen at x - 0 and y - 3.75, 0.0,

convenient procedure fo adaptively choosing the -2.5, aA - , respectively. All of the
number of terms in the rational function .R(k). digitized images which we ahall present for this
For noisy data or for slowly changing pJ with test case will use a 41 x 41 grid with each pixel

respect to k-, a better R(k) is obtained
0 by having dimensions .3125 -e x .3125 us and with a

rational func ion with a mall number of terms, profile of the brightened central line plotted to
the right of the image.

In our test examples which follow, the method
of I averaging was also applied to the odd rove The gytov model was used to generate the
(i ,1 0, 2, 4, ...) of the entries in the-P table, forward scattering from these test objects. The
For example, if all of the values of pI in (1.8) line intgrals of f(*) can then be obtained from

are the same, there is no point in continuing, the asymptotic limit an k * -of (1.16); namely,
since this value is then also the limit as k * *

of 1(k). Due to round-off error, the criterion
actually used was to construct the pJ. entries of li - d (4.2)

a particular row "2i", find the I verage, c, k e7 k L

with respect to j as described above, and then
terminate the computations .whenevgr the number where L is the straight line path from the source
of o) (i fixed) such that 10 - c 6 was grester to our detector position. We use the Thiele pro-

than the number of P such that' - cI > 6 for cedure described in (1.6) to (1.14) to evaluate
noe small 6. this asymptotic limit from an odd number of fre-

quencies (usually 9 *qui-spaced frequencies from 1
4. Numerical guperiments to 4 MO).

We have tested the application of these meth- These straight line integrals of f(r) were
ode with a series of computer simulations on the calculated for a number (typically 55) of detector

example illustrated in Fig. I. This test case points spaced .3125 me apart along a line oriented

consisted of four objects with a distribution perpendicular to the direction of incident plane
given by *.2 wave and located 8 cm from the x-y origin. Then,

-bi by taking data froL multiple views (generally 30
f() " (4.1) view spaced 6 apart) and using ART, a well-known

X-ray, computerised tomography algorithm, we were

MI_
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able to reconstruct the distribution of f(). As
we have shown in our previous paper (11, quite
good reconstructions of f() can be obtained pro-
vided we have very little noise in our data. An
illustration of a reconstruction of f(r) from
reference [I using random noise vith a .1 percent
standard deviation is given in Pig. 2. This re

Pig. 3. Reconstruction of the test objects from
data with I percent noise using the I -

norm procedure after applying the Thiele
algorithm, "a in the previous figure (but
here the averaging was done with 54 re-
peats of noisy data using 9 equally
spaced frequencies).

Fig. 2. Reconstruction of the test objects from
10 sets of 9 frequencies (uniformly
spaced from 1-4 lOla) with .1 percent
random noise using the! -nor after
applying the Thiele algorithi. Reprinted
with permission from reference I (Sten-
get, F., et I., Proc. of Conf. on Wave
Notion held at the University of Toronto,
JuT-,1983, North Holland).

construction was obtained by using 10 distinct
sets of 9 frequencies from 1-4 MHz and applying
the 2 -norm averaging to the results of the Thiele

algorithm. However, the procedure of applying
the 2 averaging after the Thiele procedure soon

fails to produce acceptable results as we intro-
duce increasingly larger mounts of noise, since
the Thiele algorithm magnifies the noise. Par
example, Fig. 3 gives a reconstruction on data
with 1.0 percent random noise using this method
with 54 averages of each Thiele result. The ob-
jects are just barely recognizable and the peak Pig. 4. Reccnstruction of the test objects from
values are low in magnitude by more than a factor data with 1 percent noise using our new
of 2x. I averaging and the adaptive feature

dicribed in sections 2 and 3. As in
Our nov procedures described in sections 2 Pig. 3, the 9 averaging was obtained on

and 3 can readily handle noise of I or 2 percent. 54 repeats on 9 equally spaced frequen-
Figure 4 shows a reconstruction of our test case ties from 1-4 MRS.
from data with I percent random noise using our
new procedure with 54 averages. Although all of dure is as this reconstruction was obtained from
the objects are quite well resolved in Pig. 4, we data with I percent noise using only 10 values in
discovered that by using a constraint condition in our I averaging. Using our previous method, we
our reconstruction algorithm (based upon the fact ware 6t able to obtain recognizable images from
that f(r) was known to be of one sign), we were only 10 A averages of data with I percent noise.
able to even further improve the resolution, as I

shown in Pig. 5 (notice the narrower line profiles We also examined two other interesting ques-
and how much closer the troughs are to zero). tions. The first question concerned the applica-
Figure 6 shows how much more robust our new procte- bility of using only the (2vk(r)/ik) toem in

f4e5*



The final qestion concerned the effect of
our stopping criteria. our tests showed that
while the stopping procedure described in section
3 was quite helpful, it was not essential for ob-
taining a useable image. For simple. fig. 7

Fig. 5. Reconstruction of the test objects from
data wsith I percent noise obtained in the
some manner as Fig. 4., but using a con-
straint condition in ART based upon know-
ing that the distribution was of one
sign.

Fig. 7. Reconstruction of the teat objects from
data with 1 percent noise. As for Fig.
3, we used the new 9 averaging procedure
on 54 sets of noisy 'data before applying
the Thiele algorithm, but here the stop-
ping criteria was omitted in the Thiele
procedure. Degradation from the results
in Fig. 4 where the stopping criteria was
used is apparent.

shows a reconstruction under the sams basic situa-
tion as Fig. 4 (i.e., 9 frequencies using I aver-
aging 54 times before applying the Thiele Iproce-
dure), but without the stopping procedure. Wihile
the resolution in 7 is much less than Fig. 4, one
can still clearly distinguish all four objects.

S. Conclusions

In a previous paper, we described the basic
idea of transforming the ultrasound inverse scat-
tering problem (with its attendant need to treat

Fig.6. econtrutio of he estobjets rom diffraction effects in the measured scattering
Fig.6. acoatrutio ofthetest*jets rom data) to an equivalent X-ray CT-like problem (with

data with 1 percent noise using our new so diffraction effects in the new transformed
procedure (as in Fig. 5). but doing the data) by the use of frequency extrapolation 13).
1 averaging over only 10 sets of data. The basic idea of our method is to remove diffrac-
(hor this reconstruction, a constraint tion effects by generating a transformed projec-
condition wos also incorporated into the tion of the object at infinite acoustic frequen-
ART algorithm which took advantage of the ciao [3). Our early attempts to apply the method
knowledge that f(r) was of one sign.) set with limited success because of extreme sensi-

tivity to noise in the data. Applying I averag-
(1.16) at a single wave number k as a first order ing to many sets of frequency extrapolatel projec-
approximation to the asymptotic limit. Ws learned tions helped improve noise tolerance, but probably
that for the test object of fig. I (P11M a 2 m), not enough for practical applications with real
this first term gives a completely unacceptable data Ill. Our latest algorithm using I averaging
approximation eVon without my moiss. We could (median filtering) on the data beforJ frequency
not even distinguish the locations of the objects extrapolation combined with an adaptive frequency
if we used only this term, extrapolation method provided even further im-

provements. Images have been made from simulated
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