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ABSTRACT

The dynamical response of a three-dimensional hydroelastic

model of the cochlea is studied for a pure tone forcing. The

basilar membrane is modeled as an inhomogenous, orthotropic

elastic plate and the fluid is assumed to be Newtonian. The

resulting mathematical problem is reduced using viscous boundary

layer theory and slender body approximations. This leads to a

nonlinear eigenvalue problem in the transverse cross-section.

The solutions for the case of a rectangular and semi-circular

cross-section are computed and comparison is made with

experiment. The role of the place principle in determining the

difference limen is presented and it is shown how the theory

agrees with the experimental measurements.
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INTRODUCTION

The theoretical and experimental basis for our under-

standing of the mechanical resolution of sound by the ear,

principally as takes place in the cochlea, is currently

undergoing an extensive reexamination. To understand why, it is

necessary to outline how the basic system functions. After the

signal is transmitted through the outer and middle ear it is

received by the cochlea through the movement of the stapes,

which is the last bone in the ossicular chain. This motion

causes the fluid inside the cochlea to move which, in turn,

stimulates waves to propagate down the basilar membrane

(Fig. 1). This membrane widens, as well as decreases in

thickness, so that the amplitude of the wave begins to grow and,

at the same time, the wavelength decreases. However, because of

damping, the wave eventually reaches a point on the membrane

after which it quickly decays to zero. The location and

absolute level of this maximum amplitude depends on the

frequency; the higher the frequency the closer the location is

to the stapes. The result of this dependence is a frequency map

on the basilar membrane. It is thought that this leads to the

mechanical resolution of the signal since there are sensory

cilia setting on the membrane which respond to its deflection

and transmit neural signals accordingly.

[The problem with this form of mechanical resolution is that
it does not seem to be sharp enough to explain the extremely

[ fine tuning that is observed in the neural signals leaving the

cochlea. This conclusion comes from experimental (Kiang et al,

I
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1965; Geisler et al, 1974; Russell and Sellick, 1978) as well as

theoretical (Zwislocki, 1965; Steele and Taber, 1979; Holmes,

1982) aAalysis of the system. It is for this reason that there

has been a search in the last few years for a "second filter" to

explain the fine tuning, but as of yet they have been

unsuccessful (Frommer, 1979; Zwislocki, 1980; Lighthill, 1981;

Khanna, 1983).

The problem is made more difficult by the current state of

the experimental evidence that is available. Until recently some

of the best results were obtained using Mossbauer measurements of

the basilar membrane's motion (Johnstone and Boyle, 1967; Rhode,

1971). The procedure involves opening the cochlea, placing a

radioactive source on the basilar membrane, and then measuring

the response over several hours. Unfortunately, it appears that

the radioactivity has a detrimental effect on the viability of

the cells in a relatively short time (Kliauga and Khanna, 1983),

and so, the results of these experiments are suspect. Moreover,

the cochlea has an intricate defense mechanism and is,

apparently, very sensitive to outside interference (Khanna and

Leonard, 1981 and 1983). This means that the available

experimental techniques used to date, including the laser

interferometric measurements of Khanna and Leonard (1982), are

probably only able to give a gross description of the normal

response and are not capable of measuring the very fine tuning,

if present, that is sought.

It is with this rather unsettling state of affairs that we

consider the three-dimensional hydroelastic model for the



cochlea that is outlined below. Even though a considerable

j amount of work has been done on it (Steele, 1976; Chadwick and

Cole, 1979; Steele and Taber, 1979; Holmes, 1980; Holmes, 1982)

ii it has never been completely solved and probably never will
1~ except by tour de force numerical methods. It is therefore

necessary to use certain approximations, such as boundary layer

theory, to reduce the problem to a more tractable size. Steele

(1974, 1976, 1980) has made significant contributions to the

resolution of this problem and they have been the basis for much

-~ of our own work. His approach involves a WKB type of

approximation of the solution, in which he specifies the shape

of the transverse displacement of the basilar membrane. With

this, energy methods and time averaged Lagrangians are used to

j find the eikonal and transport equations. Our approach, on the

-- other hand, uses perturbation expansions of the original dif-

ferential equations and systematic viscous boundary layer

theory. Chadwick (1980) and Holmes (1982) have studied the

fully three-dimensional problem in this way, but in doing so

I other assumptions such as high frequencies or a small mass

density for the basilar membrane are imposed. We intend in this

I. article to remove these restrictions and obtain the leading

[ order approximation to the full hydroelastic problem for a pure

tone forcing. As with any mathematical formulation of a complex

physical problem, various assumptions are made concerning the

structure and composition of the system, but they include most

5 of these earlier models.
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FORMULATION OF MODEL

We will assume the geometrical structure of the cochlea to

be such that it consists of an unrolled tapered tube containing

two fluid chambers. The partition separating these chambers

consists of a rigid portion (the bony shelf), a flexible portion

(the basilar membrane), and an aperture at the apical end (the

helicotrema). The variability of the geometry is arbitrary

except that we will assume the cochlear wall to be symmetric

through the partition, in this case, through the x,y plane. The

cochlear wall, along with the shelf, are rigid except at the

basal end where there are two openings (the oval and round

windows) that are covered by flexible membranes. The footplate

of the stapes is attached to the cochlea at the oval window.

Although the assumptions made on the geometry are not

unreasonable, they do impose limitations on the theory. The

spiraling of the cochlea is neglected as it is believed to

effect the response at only the lowest frequencies and is

primarily for "packaging purposes "Also, the two chambers are

not exactly symmetric and there is a third chamber, the scala

media, which accounts for about 8% of the total volume. The

possible effect of this third chamber has been studied by

Adjemian (1981) and, although the results are incomplete, it

does not appear to have a significant effect on the mechanical

response of the system. It is, however, important for the

neural response because of the different cations that these

chambers contain.
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The fluid, called perilymph, that fills the two chambers is

similar in terms of its mechanical response to water (Money et

al, 1966; Rauch and Rauch, 1974). Consequently, it is

considered to be Newtonian. Compressibility is omitted, even

though the frequencies in the audible range can extend up to

15,000 Hz, as the overall length of the cochlea is only about

3.5 cm and the pressures at the stapes are relatively small

(Lighthill, 1981). The fluid in the scala media, called endo-

lymph, contains a relatively large concentration of proteins

(Schuknecht, 1970; Rauch and Rauch, 1974). These macromolecules

could very well have a significant effect on the response but

are neglected in our study. Also, the convective terms in the

Navier-Stokes equations are not included in our analysis. The

reason is that, after scaling the problem, one finds that these

nonlinear terms, relative to those obtained, are on the order of

the ratio of the stapes amplitude to the :ross-sectional width

of the cochlea. For normal sound pressures this ratio is

around 10-4 and so they do not contribute to the first term.

As for the basilar membrane, it is a composite material

made up of an orthogonal weave of fibers and interspersed with

ground substance (Iurato, 1967). From the studies of its

elastic properties it appears to respond mechanically as an

elastic plate (von Bekesy, 1960; Novoselova, 1975). Therefore,

because of its fiber network and its variable thickness we will

model it as an inhomogenous orthotropic elastic plate. It is

not necessary to specify its exact location and configuration in

the partition at this time as the analysis to follow applies to

essentially any shape basilar membrane.
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The remaining approximation concerns the relatively high

I frequencies in the auditory range (about 25 Hz or higher for the

human cochlea). The Reynolds number, which is based on the

width of the cross-section, is relatively large, and so,

boundary layer theory can be used for the fluid. The error in

this approximation is related to the curvature of the wall. In

the examples to be considered later there are corners, but since

they are isolated they do not interfere with the validity of the

boundary layer approximation (Holmes, 1981).

The pressure of the fluid is represented by p(x,y,z,t) and

the vertical displacement of the basilar membrane is n(x,y,t).

In what follows both the independent and dependent variables are

dimensionless, but, where necessary, an asterisk is used to

*. indicate their dimensional analogue. So, for example, the

-nondimensional spatial coordinates x,y,z are related to x*,y*,z*

as follows

x* = Lx , y* = By , z* = Bz

where B and L are the characteristic width and length of the

basilar memembrane respectively. As we are interested in the

response to a pure tone let

L p(x,y,z,t) = p(x,y,z)eit
m i and

n(x,y,t) 
= (x,y)ei t

wt re t - ,t* and 9 is the given driving frequency. Also note

I tha °

I
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p*(x*,y*,z*,t*) = pAs *LP2p(x'y'z't)

and

n*(x*,y*,t*) = (PAs*L) n(x,y,t)

where As* is the amplitude of the stapes, p is the fluid den-

sity, and Oc is the mass per unit area of the basilar membrane

at its center (x=1/2). The pressure, because of the symmetry,

is an odd function of z, and so, it is only necessary to con-

sider the fluid motion in the upper chamber (i).

From the above discussion we therefore have the following

equations of motion:

i) for the fluid

(E23x2 + ay2 + =z2)- 0 (la)

ii) for the basilar membrane

ay 2 (D2 y2 ) + c2[ay2 (vlD2 x 2) + ax 2 (vlD2 ay2 ) + 4axay(Dkaxay )j

+ E4 ax2 (Dlax2 ) - w2h = -2w2 -(x,y,0+). (Ib)

The parameters are

e = B and W

L

where PC represents a characteristic frequency of a beam in the

cross-section and is given by

2 = D2c*

Here D2c* is the bending rigidity in the y-direcLion at the cen-

ter of the basilar membrane. The functions D1 , D2 , and Dk are
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the respective bending and twisting rigidities normalized by

D2c*, and v is the Poisson ratio characterizing the decrease

in the y-direction during tension applied in the x-direction

(Lekhnitskii, 1968). Also, h(x,y) represents the thickness

of the basilar membrane after normalization by hc, which is the

thickness at the center.

The kinematic boundary condition for the pressure

(Appendix A), when 0<x<l, is

-a on the basilar membrane

(n-8an 2 ) = (2)

0 on the rigid wall

where n represents the unit outward normal. The 8 term repre-

sents the viscous boundary layer correction to the inviscid

boundary condition, where the constant 8 is given as

82 = v

a = pB
UC

and v is the kinematic viscosity of the fluid.

It is not necessary at the moment to specify the boundary

conditions for the plate, but we will assume that it is either

clamped or simply supported. Also, the boundary conditions at

the basal and apical ends, where x = 0,1, are discussed later.

It therefore remains to solve the above coupled system of

partial differential equations to be able to describe the

mechanical response to a pure tone.
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TWO-VARIABLE EXPANSION

For most mammalian cochlae the aspect ratio e is very

small. For example, for humans it is on the order of 10 - 3. We

can take advantage of this through the use of a slender body

approximation. For the case at hand, one finds that the

appropriate expansions are

p e-ik(x,c) [P 0 (x,y,z)+pl+...] (3a)

and

- e-ik(xc) [40(x,y)+Cl+... (3b)

where

k(x,c) = O(x)

Introducing these into (1), the 0(l) problem is found to be

(ay 2 +az 2 )Po = Ox 2 po (4a)

and

y 2 (D2ay20) - Ox2 3 y 2 (v l D24 0 )+VID2 ay 2 o+43y(Dkay4o) .

+ (Ex 4 Dl - w2 h). 0 = -2w 2 p 0 (x,y,0 + ) . (4b)

As for the kinematic boundary condition (2), note that the

boundary of the upper chamber can be parameterized as

y = y(s,x), z = z(s,x) where 0<s<l represents the

cross-sectional variation and 0<x<l the longitudinal. Thus

the normal derivative in (2) expands as follows

n =  + c 2b(xs)[ x .-1 b(x,s)a ] + O(E 4 ) ,
n n X 2nT
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where nT is the unit outward normal in the transverse

cross-plane (x fixed) and

b(x,s)=-nT "n+ y ,  •

With this and (2) we have that

I on BM

(an -8On 2)-0 =o (5)
T T P 0 on rigid wall

To be definite we will now assume that the plate is simply

supported, and so,

;0= ay20 = 0 for y = G+(x),G_(x) . (6)

The boundary y = G+(x) represents the portion attached to the

spiral lamina and y = G_(x) is the portion attached to the

spiral ligament. It should be emphasized that clamped

conditions, or a combination of simply supported and clamped

boundary conditions could also be used.

The 0(l) problem is now essentially complete. From it, it

is only possible to determine uniquely 0x2 along with the y,z-

dependence of C0 and Po" It does not resolve the x-dependence

of these variables and to do this one needs to consider the O(c)

problem. The details are outlined in Appendix B, and they

basically involve integrating this higher order problem over the

cross section. To simplify the expression we will consider the

case of when the bending and twisting rigidities are independent

of y, and are only functions of x. The result is that po and

*6
.~-. ",
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;0 have to be such that

G+

-- {2edx f f p O2 dydz + ao xG_ [D x 2C 2+D3(C ) 2 jdyI
dx x 0. l3 0 0 y

(7)
= -0ex f an (bP 0

2 )
av T

where

D 3 (x) = vlD 2 + 2Dk

To complete the problem we now need to consider the

boundary conditions at x = 0 and at x = 1. At the basal end we

have, using a boundary layer approximation as in (2), that

- n on oval window( x C x 2 p = ' ( 8 )( 0 on rigid portion,

where n(y,z) represents the known displacement of the stapes

footplate. To use this with the two-variable expansion (3) it

is necessary to introduce an edge layer, with coordinate

x = x/e, and match the expansions in this region with (3). One

finds that for the two expansions to match to the first order,

mass must be conserved, and so, at x = 0 we require

ex(l-i8ex) Ifo dydz = iff-n dydz (9)

rw

and

k(O,c) = 0 • (10)

This omits the contribution of the basilar membrane which,

because of its tapered geometry, is assumed to be negligible

compared to the movement of the fluid in this region. Of

special interest is the case of when _n 1, so that at x = 0

21.
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we require

ffOdydz = iAw (1--0dydz ex(,l-ioex ) ,

where Aw represents the (normalized) area of the round window.

It would appear from (7) that there is only one constant of

integration. However, there are at least two in the general

solution since there are two values of k(x,e) that are obtained

from the square root of ex 2 . In fact, the general solution

consists of the superposition of the eigenfunctions obtained

from (4). It is therefore necessary to introduce an edge layer

at x = 1. However, by assuming the continuity of the pressure,

and since it is an odd function of z, it follows that at the

apical end

p0 (l,y,z) = 0 (12)

With this last boundary condition the problem for the first

term approximation in (3) is essentially complete. It is

centered around the unusual eigenvalue problem given in (4), ox2

is the eigenvalue and '0, co are the corresponding eigen-

functions. The problem is a nonlinear function of the

eigenvalue ex2 through the longitudnal bending and twisting

rigidity terms in the equation for the basilar membrane as well

as through the coupling with the fluid. It is also complex

valued because of the viscous contribution in the kinematic

boundary condition.

For use in the possible eigenfunction expansions to come

from this problem, as well as for numerical approximations, it

I
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is of interest to know the integral theorems. The simplest is

obtained by integrating (4) over the cross-section, from which

one finds that

G+
ex2(1fpo dydz - of P0) = af ;0 dy

y 37 G_

More important is the Rayleigh quotient, which is obtained by

multiplying by Po and ;0 then integrating to obtain

Ox2(ff~o2 dydz - 8f '02) = - 1f[(O )2+(o )2 ]dydz (13)
at y z

G+

+ f2.2 G_ [D2( 0y )2 + 2D 30 x2(C0 )2 + ay1;02) (VlD

2w2 G..yy 3x y 3y( )y(V12)

+ (DIO x
4 -w2h ) r.0

2 ]dy

This is, in effect, a relationship involving the kinematic and

potential energies of the system with the viscous dissipation.

- = ' . ... • ,L,,.m; - ,.>. mm ,"am :,- - - --
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SMALL 0 APPROXIMATION

Even though boundary layer theory was used to obtain (2)

j and (8), the fact that 0 is small was not considered in the two-

variable expansions discussed in the last section. If we impose

this on our eigenvalue problem there is a small, but important,

simplification in the boundary conditions. To do this one finds

that for small 0

Ox - k0(x) + kl(x) + ... (14a)

P0 - P0 (x,Y,z) + OPl + .. (14b)

and

40- n 0(x,y) + Onl + ... (14c)

Introducing these into (4) the following eigenvalue problem is

obtained

(y 2+az 2 )po = k 0
2 p0  , (15a)

ay2 (D2 ay 2 no) - k0 2 [a y 2 (vlD 2 nO) + vlD2ay 2 no + 4ay(Dkyno)]

+ (k0
4 D1 - w2h)n 0 = -2w 2p0 (x,y,0

+ ) , (15b)

where

I I-an0on BM
3nTPO =o (15c)

0 on rigid wall.

The viscous correction k1 (x) in (14a) is found from the solva-

bility condition for the 0(0) problem, which for the pressure is

(ay2+az2 -ko2)pl - 2k0klp 0 •

4
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Multiplying this by P0, integrating over the cross-section and

then using Green's theorem one finds that

k0 f P02

kl(X) = G . 116
G+

2ffp 0
2dydz + L_ I 2 2 Dn 2 ]dy
0 w2 G_. 3 +ky 0  1 0

As in (7), it has been assumed in deriving (16) that the bending

and twisting rigidities are only functions of x. It is also of

interest to note that this result can be obtained from the

Rayleigh quotient by substituting (14) into (13). In any case,

the complete first order approximation of the solution is then

found by satisfying (7) along with the boundary conditions (6),

(11), and (12).
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SOLUTION OF NONLINEAR EIGENVALUE PROBLEM

Now that the original system of partial differential

equations has been reduced using slender body and boundary layer

theory it remains to solve the nonlinear eigenvalue problem

(15). Once this is done it is a simple matter to find kl and

satisfy the associated boundary conditions. To solve (15) one

f can use numerical methods, modal expansions , or Green's

functions. Each has its advantages as well as its restrictions.

We will illustrate the solution of the problem using the last

two methods. The approach is similar for both methods since,

for a given geometry, the eigenvalue problem is reduced to an

integro-differential equation for n0 (x,y) and k0 (x). After this,

Fourier expansions are used to reduce the problem to a set of

algebraic equations that have k02 as the eigenvalue and the

Fourier coefficients as the eigenfunction. To facilitate the

presentation we now assume that the plate is homogenous, so

D2 = h = 1, and Dl, D3 are constants. However, both the width

of the basilar membrane and the transverse cross section of the

cochlea are still arbitrary functions of x.

Modal Expansions

For this case we assume that the cross-section is

. arectangular (Fig. 2). By separating variables in (15) one finds

that

. p0 (X,y,z) - j Pcosh.M(H-z)lcos-my , (17)

![ m=O

where

Y m_ , m2 z 2 + k02

-m "-H

An~dLA_4 I
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H W W .WHHx)

FIG. 2. Transverse cross-section used for modal
expansion solution of eigenvalue problem.

and

PM xmsinhXmH j G_. lcsmd

for

1m m=0
{2H

Substituting this into (15b) one obtains the following integro-
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differential equation for k0
2 and nI

(ay4-2D3ko
2ay2+Dlko 4-w2)n0 = G+ L(x,y;s)n0 ds (18)| G_

where

I L(x,y;s) = m=o am (x)coSymy.cos Sm =O t

~and
ndam 

2a 2 Cm

a= Xmtanh mH

To solve this we expand no in modes as follows

n0 (x,y) = b cosa n[y- G+G-)] (19)

where

a= i(2n-1)n=G+-G_

This satisfies the simply supported boundary conditions (6), and

for it to satisfy (18) one finds that the bn's and k0
2 have to

be such that

(a 4+2D k02 a 2+D k04-w2 )b = 2 nambnKnKm

1 3 0 1 1 0 G+-G_ m=0 n=1 nbmn

where G+
Kmn = J cosy Y.cOSn[y- G dy

n G_ m n

We can write this set of equations in matrix form as

Mb = , (20)

[where M is a nonlinear function of the eigenvalue k0 2.
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To find the solution it is necessary to know how many modes

are needed for the pressure (17) and basilar membrane (19) to

obtain a reasonable approximation. If the basilar membrane is

in the center of the partition so that

G+(x) = -G_(x) = G(x) , (21)

then numerical studies show that the first mode for the basilar

membrane and the first five modes for the pressure are

sufficient. However, if the basilar membrane is not centered,

or if the problem is asymmetric in y for any reason (e.g.,

because of asymmetric boundary conditions) then it is necessary

to use several modes for the basilar membrane.

For the case of a centered basilar membrane, the

characteristic equation obtained with a one mode approximation

in (19) is

(k 2+2D3wrk02+Dlk0 4 -W 2 )G ==a K 2 (22)

r +2 3 rk0 + 1 0  m- ml

where

( 2 (23)
r

and

2iarcosymG if m 2  * wr

KmI = r-YM 2

G if Ym2 = wr

This problem is similar to the one obtained by Steele and Taber

(1979) using the method of averaged Lagrangians.
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I
Green's Function

For this approach we will take a semi-circular

cross-section and a centered basilar membrane (Fig. 3). The

* Green's function G(x,y,z;y',z') satisfies

(ay, 2 +az 2 -kO 2 )G = 6(y'-y)6(z'-z)

where

anT G = 0 along y' . (24)
T

From this and (15a) it follows that

G
P0 (x,y,z) = 2af G(x,y,z;y',O)no(x,y')dy' (25)

-G

To find G recall that the fundamental solution of (15a) is

the modified Bessel function K0 , and so,

G(xyz;y',z')=- 0 (1k0 J'(y-y') 2+(z-z') 2 ) + g(x,y,z;y',z')

where the function g satisfies (15a) and is such that G

satisfies (24). Therefore,

g(x,y,z;y',z') K0 '(k0 R)I0 (k0 r)I0 (k0 r')
10'(k 0 R)

7 + 2 [ Kn'(kOR)In(kOr)In(kOr') cos(ne)
n=1 In'(kOR)

where r = Vy-+ , r' = V(y,)2+(z,) 2  , and 0 is the angle

[i between (y',z') and (y,z) with respect to the origin.
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-R N) G W) G(x) R(x)

FIG. 3. Transverse cross-section used for Green's
function solution of eigenvalue problem.

With this it therefore follows that no satisfies the integro-

differential equation

G

(a y4 -2D3ko
2 y 2+Dlko 4 -iJ2 )no = -2awi2 fG K(x,Y;S) nods (26)

where

K(x,y;s) K 1 KolyS + g(Xy,O;s,O)
2w 0(I 0 ~-I

It is possible to simplify this by using the approximation

F-
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k0 R>>l, which is the case of interest in the examples to be

discussed later. Using the usual approximations for Bessel

functions of large argument and the identity

(1 n ()1 in 2 2_ 1/2,
I0 (w) = I n n(S)I n(o)e . where w = (S +o2-2So cos *)

the eigenvalue problem becomes

G
(a 4-2D 3k 0

2 ay2+D k 0
4 -w 2 ) T0 = 20,w2 f-G f(ys)n 0ds. (27)

where

-21Ik o R~o Io
f(s) = Ko(lkosI) + re oIo(kosl) (28)

We have also assumed that the plate is centered (21).

For the first mode approximation of no, one finds that the

characteristic equation for k0
2 is

Wr 2+2D3wrko
2 +Dlko4-w 2 = w2G(x)F(K0,Kl) , (29)

where

1
F(0,I) 8J LK 0 ( 0s)+e e-0I ( K0 s)J[(I-s)cosws+Isinirsjds1 " 0 0 0 0 i

(30)

for c0 (x) = 21koIG(x) and Kl(X) = R(x)/G(x). It remains to

solve this equation for k0 , but it is of interest to note that

the effect of the outer boundary is contained entirely in the

exponential term in (30) through the ratio of the half width

of the basilar membrane to the cross-sectional radius.
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NUMERICAL RESULTS

To illustrate the quantative nature of the solution let

B = 0.05 cm, L = 3.5 cm, v 0.008 cm/sec, and p = 1.0 gm/cm 3 .

Also, P=hcpc and

3
* E2hc

12(l-2)

where E2 = 4X106 dyn/cm 2 , hc = 3.8 X 10- 3 cm, and a = 1/2. The

boundary of the basilar membrane is given as

G(x) = _1(5x+l) 0<x<l
12

and the cross-sectional area is assumed to have a constant value

of 0.01 cm 2 , which determines H and R in Figs. 2 and 3. Although

we have not attempted to be absolutely realistic, these values

are representative of those found for the human cochlea (Holmes,

1980).

Before discussing the full solution we first consider the

effect of the bending and twisting rigidities of the plate, as

well as the shape of the cross-section, on the eigenvalue k0 2.

In Fig. 4 the values obtained using (22) are shown for the case

of an isotropic plate, where D1 = D3 = 1, and a strongly ortho-

tropic plate, with D1 = D3 = 0, for a driving frequency of

1800 Hz. Also shown are the values obtained for a

semi-circular cross-section for the strongly orthotropic plate.

In this figure, as well as in all that follow, eight pressure

modes are used in (17) and (22). From this result one can see

that the effect of an orthotropic plate is not significant near
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the basal end, x = 0, as the wavenumber is still relatively

small. However, as the wavelength decreases, so x increases,

the longitudinal bending terms have a substantial effect on the

eigenvalue. In other words, the smaller the wavelength the more

important the longitudinal coupling is in the basilar membrane.

This difference also changes the damping in the sense that the

smaller the eigenvalue the less the viscous dissipation of the

wave (16). As for a rectangular and circular cross-section,

the curves in the figure are indistinguishable. Equation (29)

was used to calculate the semi-circular geometry, but only for

k0>l, as was assumed in the derivation.

There have been a number of studies on the elastic

properties of the basilar membrane which, unfortunately, usually

involve relatively large amplitude deformations (von Bekesy,

1960; Voldrich, 1978). However, it appears that the longitud-

inal coupling is relatively weak, and so, in the next examples

it is assumed that the basilar membrane is strongly orthotropic,

which means that D1 = D3 = 0. In this case it is a simple

matter to prove that k0
2 is real since, from (13), one finds

that

k0
2 jHf Ip0I 2 dydz = -ffMvp 0 12 dydz + 02 jGG_ Inyy 12 dy

0 T T ~ 2w2 G_ y

In the examples discussed here there is only one positive

eigenvalue, which leads to left and right traveling waves in

(3). When the viscous correction is included, i.e., kl,

these waves are damped. For the parameter values given

above, when the frequency is above about 600 Hz, it is not
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necessary to include the left running wave as the apical

boundary condition is effectively satisfied by the one

traveling to the right. In the examples presented below the

I "reflected wave, that is, the one moving towards the stapes,

is not included.

With the assumption that the reflected wave is negligible

the solution, as given by (3), is relatively easy to find. To

do so it is also assumed that the problem is symmetric about the

z-axis, so that it is sufficient to only use the first mode in

(19). In this case the displacement of the basilar membrane is

i[t-w/a-k(x,c)]
n*(x,y,t) - As*.A(x)e cos(wy/2G) (31)

where

x
k(x,e) = 1f [ko(s)+O0k l (s)]ds

A(x)A 0  J k(S)ds (32)

k0 (x) fJ pozdydz

A0 = ik wko 0 0) f p0 10,yz)
2dydz0 4G(0)

0 = 6/- , Aw = Aw*/B 2  is the (dimensionless) area of the

oval window, and As* is the amplitude of the stapes. The func-

tion k0 (x) is determined from (22) for a rectangular cross-

sectional geometry and from (29) for a semi-circular cross-

section. After this, p0 (x,y,z) is found from either (17) or

(25) and kl(x) is determined from (16). It is of interest to

j Inote that (31) is equivalent, in terms of its functional form, to

i[I
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the solutions obtained by Steele (1980) and by Lighthill (1983).

However, their procedure to calculate the coefficients is,

apparently, different so it is unclear how their solutions

compare with ours.

The phase ph(x) of the wave in (31) is given as

x
ph(x) = - 1 j [k(s)+0k(s)jds . (33)

2 0 000

The phase velocity v*(x) is therefore

v*(x) = - BO. (34)
k 0 ( x) +a 0kl (x)

The function A(x) in (32) is the amplitude of the wave on

the basilar membrane. To see how it depends on x note, from Fig.

4, that k0 increases significantly with x. For large k0 one can

approximate the eigenvalue problem (29) with

Dk04 + 2D3wrk 2 + Wr2 - 2 = 2aw 2  (35)
1 0 +2 rW 0  rw (hi _

Also, tor large k0 in (16)

kl - k02 (36)

and, from (17),

/kup 2dy d 2r)k 0  (37)

If Dl=D3-0 then

. _ .' _ . .
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k 2Qw 2  (38)

r

whereas, if Dl=D 3
2*0 then

k 0 = D )l/3 + O(Wr -W (39)

This means that for the strongly orthotropic case (38), k0

becomes infinite as x increases, that is, as wr = (2

approaches w. This represents the position of the transverse

beam, in the basilar membrane, with a fundamental frequency

corresponding to the given driving frequency. For an ortho-

tropic case as in (39), k0 has no singularity and simply

increases continuously with x. The singular nature of the

strongly orthotropic case results in a nonuniform expansion in

(14). However, from (32) and (36), the solution decays exponen-

tially as it enters this region. In fact, the place principal

arises from the balance in (32) between the increase in the

coefficient, as given in (37), and the exponential decay coming

from (36) and (38). As the wave propagates down the basilar

membrane the phase velocity decreases, and goes to zero as it

approaches the singular point. This is reminiscent of the

behavior associated with critical layer absorption as discussed

by Lighthill (1981). It is also of interest to note that the

large wavenumbers, as determined from (35), are altogether

independent of the shape of the cross section. At the same time,

the resonant point (38) would not exist without the fluid or

without the mass of the basilar membrane.

: .._ _ -. L - ., .- - --- , " ,-....- -- .- . _.. - - , .,..
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In Fig. 5 the amplitude and phase of the wave propagating down

the center of the basilar membrane (y=O) is shown for three driving

frequencies (Appendix C). One can see that the amplitude at 600 Hz

is not negligible at x = 1, which shows that it is necessary to

include the reflected wave for lower frequencies. Also, the ampli-

tude for all three frequencies is not zero at x = 0, which is the

result of not including the contribution of the edge layer. If

this were done there would only be a minor change in the

curves, except for the very high frequencies which have a

maximum near to this region. In any case, the amplitude curves

show the usual shift towards the basal end as the frequency

increases. Also, the amplitude increases from 75 at 600 Hz to

220 at 6000 Hz. In other words, the maximum amplitude of the

basilar membrane is from 115 to 225 times the amplitude of the

stapes for frequencies between 1000 and 10,000 Hz, which is con-

sistent with the measurements of Rhode (1971) and Khanna and

Leonard (1981). It is also interesting to note that in situ the

amplitude of the stapes decreases, for a given sound pressure,

as the frequency increases, which would tend to counteract this

growth.

Tuning and phase curves are shown in Fig. 6, which represent

the amplitude of the wave at a fixed location as a function of

frequency. The points x = 0.82, 0.45, 0.20 are chosen as they

represent the positions of the maximum amplitudes in Fig. 5.

Overall, the curves show a relatively sharp tuning. Whether or

Ii~~ Al
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not they are physiologically realistic is unclear but they are

significantly sharper than those obtained by von Bekesy (1960).

However, they are not as sharp as would be implied from thei
neural tuning curves.

The phase velocities of the waves in Figs. 5 and 6 are

shown in Fig. 7, along with von Bekesy's (1960) measurements.

In Fig. 7a it is seen that the wave slows down as it propagates

down the basilar membrane, and significantly so once it begins

to approach the point of maximum amplitude. The values found

from the theory are smaller than those obtained by von Bekesy,

which he states (pg 458) "are representative of all the measure-

ments" made on cochlear models and cadevar specimens. From Fig.

7b, at a fixed spatial location, the phase velocity has a rela-

tive constant value until the frequency begins to approach the

frequency of largest amplitude for this point. When this occurs

the phase velocity decreases very rapidly as the frequency

increases.

It is rather easy to determine the position xM of the max-

imum amplitude as a function of frequency. The result is shown

in Fig. 8, which also includes the measurements of Crowe, et al.

(1934) on the spatial localization based on pathological

condition, as well as von Bekesy's (1960) measurements on cada-

vers. It appears that in this aspect the theory agrees well

with experiment.

The last result concerns the difference limen (DL), or

just-noticeable-differences, obtained from the theory. These

represent the minimum change in the driving frequency for there

[
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to be a perceivable difference to an observer. It should be

kept in mind in the discussion that such psyc',joacoustic

measurements are subject to rather significant individual

differences as well as influenced by such things as resonances

of the ear canal (Henning, 1966). In accordance with the place

principle of hearing, we assume that the perceived change in

frequency is due to the shift of the maximum amplitude of the

wave on the basilar membrane. The question is how far does it

have to shift? The answer is related to the stimulation of the

hair cells. There are approximately 3500 rows of such cells

along the membrane, and we assume that the maximum point has to

shift at least the distance of one row before it is possible to

recognize a difference. The resulting difference limen curve is

shown in Fig. 9 along with the experimental results of Wier, et

al (1977), Nordmark (1968) and Shower and Biddulph (1931).

Also included is the curve one would obtain if the shift

required is three rows. All-in-all the agreement between theory

and experiment is very good. It implies that the system is

responsive to very small shifts in the frequency, and the

spatial difference is approximately constant between 1000 and

10,000 Hz. The theoretical curves in the figure can be written

as

log (DL) = 0.023/V + b0  , (40)

where b0 = -1.08, -0.778, -0.602, -0.477 for shifts of one,

two,three, four hair cell rows, respectively. Interestingly,

the linear relation (40) has been obtained from empirical

curve fits by Wier, et al and also by Nelson, et al (1983).

now1
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The latter show that the slope in (40) is relatively constant as

the stimulus sensation level (SL) incL~eases, whereas the intercept

b0 decreases. For SL's between 10 and 80 dB the slope for the

data of Nelson, et al, is 0.0214, for Wier, et al, it is 0.0238,

and for Harris (1952) it is 0.0235. Clearly, all three slopes

are very close to our value of 0.023. As for the decrease of bo

as the SL increases, this would imply from the theory that a

smaller spatial shift is necessary to discern a difference in

frequency for a higher SL. This is consistent with the fact

that the amplitude on the basilar membrane also increases

with the SL, which, in turn, means an increase in the neural

signal from the hair cell.
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SUMMARY

Using slender body and boundary layer theory we have

reduced the three-dimensional hydroelastic model for the cochlea

to a nonlinear eigenvalue problem in the transverse

cross-section. This problem comes from the strong coupling

between the basilar membrane and fluid, and does not exclude any

of the effects of the plate, such as the inertia. The subse-

quent response of the basilar membrane to a pure tone of

sufficiently high frequency is a right running wave that begins

to grow in amplitude. However, the wavelength decreases and so,

due to the viscosity of the fluid, the wave eventually reaches

a spatial location after which it quickly decays to zero. For

lower frequencies the reflected wave is not negligible

particularly in the region near the helicotrema, and has to be

included in the solution. This wave would be even more

important if there was no damping, as the response to a pure

tone would be simply a standing wave and one would obtain

resonances corresponding to the eigenvalues of the system

(Holmes, 1979).

As outlined at the beginning, there are a number of

assumptions made to formulate the model. However, from the

resulting analysis, it has been shown to describe a good deal of

the qualitative behavior known to occur in the cochlea.

Nevertheless, there are a number of interesting extensions of

the analysis which could be undertaken. For example, the

maximum amplitude on the basilar membrane at, say, 1800 Hz is

about 160 times larger than the amplitude of the stapes. This
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raises the question as to whether it is necessary to consider a

nonlinear hydroelastic theory in the neighborhood of this point

to account for these relatively large amplitudes. Also, there

has been a question as to where the damping in the system is.

We have only considered the dissipation due to the viscosity

of the fluid, but there surely is damping in the basilar

membrane and its associated structures. This is particularly

true for the short waves which are present on the basilar

membrane on the apical side of the maximum amplitude. It is

not clear exactly how this damping manifests itself but most

of the standard viscoelastic theories can be included in our

analysis without increasingly the difficulty significantly.
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APPENDIX A

Derivation of Boundary Condition for the Pressure

The perilymphatic fluid in the upper chamber is assumed to

be Newtonian. The equations of motion come from the linearized

Navier-Stokes equations and the incompressibility condition

which, in scaled coordinates, are

(i-6 2 V2 )v -Vp , (Ala)

4

Vv = 0 . (Alb)

To facilitate the presentation we have let c = 1 in (1). Also,

the time periodic solution is being considered here.

It follows immediately from (Al) that p satisfies (la).

As for the boundary condition, it is assumed that there is a

prescribed normal velocity component as in (2). To give it
4

explicitly let x0 be a point on the boundary surface S, which is
+

assumed to be regular in a neighborhood of x0 . It is then
4

possible to introduce local cartesian coordinates at x0 of the

form

4 + + + +

x - x0 = sle I + s2e 2 + nen

4 + +

where en represents the unit outward normal to S at x0 , and eI,

e2 are in the tangent plane to S at x0 . Note en, eI, e2 are

independent of the three spatial coordinates. The velocity v

can now be written as

V Vs + Vnen
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where vn and v. are the normal and tangential components of v,

respectively. The gradient operator can be similarly factored

as

V = V + es n an

+

With this, the boundary condition at x0 is

+ + +

v(x0 ) = -inen . (A2)

The fluid motion in the inviscid region is found from (Al)

by letting 6 + 0 with x fixed in the fluid. The appropriate

expansions in this case are

+ + +

v v0 (sl,s 2 ,n) + 
6vl + ...

and

p - P0 (sl,s2,n) + 6pl +

From these and (Al) one obtains the following inviscid problems

+ +
0(i): iv0 = -Vp0  0(6): ivl = -9pl

+ +

V-v0 = 0 V-v I = 0

As is usual, it is impossible to satisfy (A2) with this

inviscid approximation, and so, it is necessary to consider the

viscous boundary layer on S. With the boundary layer coordinate

n n/6, the expansions for this region are

+ + +

V - V0 (sl,s2,n) + 6V1 + ... (A3)
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and

P P 0 (sls 2 1 n) + 6P1 + .. .(A4)

Introducing these into (Al) one finds that the first terms in

these expansions satisfy

Pa0V nO 0

ann

Solving these and matching the solutions with the first terms

for the inviscid region

PO p0(s1,52,0) r

Vn -in(sl,52)

and

+ V' n

V50 = vs0 (sl1 s21 0)(l-e' l

In matching these solutions it is assumed that the fluid lies in

the region n<0.

Now, from (Al),(A3)t(A4)

a = -iV n
an

and

Avn1 a-v so5
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So, solving and matching with the outer solution

P1 = nanPO(s1,s2,O) + P1(s1,s2,0)

and

Vnl = Vs';sO(sl,s 2 pO)[n+(1-e-i n)IT-]

a nvn0(s1,s2,0)ln+(1-e/l n)V11

From this, for the inviscid expansion to match with the one for

the boundary layer, vn must be such that

vn(sl,s2,O) - -in + 6anvnO(sl,s2,O) +

Putting our results together then

P(sl1 s21 n) -P0(s1,52,0)

+ 64 nanP0(s1,s2,O) + p1(s1,s2,0)] + *. (A5)

and

anP(s1,s2,O) = ivn(s1,s2,O)

- 1~+ $an 2 Po(s1,2,o) + 0(62)

- f +8a 2P1,,O + 0(62).

Therefore,

an-$an 2 )p - on S.

Also, from (A5) we obtain the pressure on the basilar membrane

used in (16).
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As is clear from the derivation, these expressions are

valid up to 0(62). Moreover, we have used a tangent plane
+

approximation of the surface near x0 . Given the local nature of

the boundary layer this is sufficient but, if a global analysis

is desired, nne can use orthogonal curvilinear coordinates as

presented by Howarth (1959).

I:
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APPENDIX B

Solvability Condition

To derive the solvability condition (7), which gives the

slow modulation of the wave, we assume here that Dl, D2 , Dk are

constants. In this case the O(e) problem obtained from

substituting (3) into (1) is

(ay 2+3z2-x2)pl = -i(OxxP0+20xaxP , (BI)

P(Cl) - iDl(40x 3axCO+6Ox 2Oxx;O) + 2iD3ay 2 (2exax O+Oxxo)

= -2w2pl(x,y,O) , (B2)

where P(*) represents the differential operator applied to 0

in the 0(1) problem (4b). The boundary condition from (2) is

(anT-8n 2)-l + iex[bp0-8(2b+P0) FO T0 (B3)n P~nTo

and the simply supported boundary conditions for the plate give,

for y = G+(x) , I

= ay2; 1 - 2ioxGxD3ay;o = 0 . (B4)

Now multiplying (BI) by Po and integrating over the

cross-section

II o(V2-ex2>Fldydz = -iff ax(exO 2)dydz

- -id fj 0xPo2dydz - ie G b02
dx x0x

Ew,"
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However, using Green's theorem

fi P O(V2-Ox2 )Fidydz = f (-P03nT P - PlnTPo

-i-ox f [bpo 2-0a (b- 0
2 )] + pf (q 0 Opl)dy

where we have also used (B3) and (5). Combining this with the

previous result

d Jf expo2dydz + se x f a (bp02 )
dx 3T I ~

f [G;. (c )4 (;1 )+2iDl3X(OX
3 c 2 )

2w2 G- 0d

fA [D E 3 c 2+D rG ( C) 2]jdy
.2 dx G-.. 1x 0 3 xy 0

where (B4) has been used to obtain the last equality. From this

one immediately obtains (7).
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APPENDIX C

Solution for a Rectangular Cross-Section

The displacement of a simply supported, homogenous,

orthotropic, and centered basilar membrane, as determined by the

right running wave, is

S itkcx,e) w/2jc s () C I
n*(x,y,t) - A A(x)e Cos , (Cl)

2G

where

x
k(x,£) = 1j [k0 (s)+0 0 k (s)Jds (C2)£ 0

_ I a 0f k (s~ ds
A(x) = A3  e 0k, (C3)

(k0 (x)ff p0  dydz

A =1Awk0(0) Vk 0(0)ffp 0 (0,y,z)
2 dydz (C4)

0 4G(0)

The parameters are (Figs. 1,2)

= ,, =pB

L 0 4irfB 2

and

w= 2wf )IV

Here f is the driving frequency (in Hz), As* is the amplitude of

the stapes, and Aw = (Aw*/B2 ) is the dimensionless area of the

oval window.
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For the case of a rectangular cross-section, the eigenvalue

k0 (x) is found by solving the equation

4 2 2 2 1 2
D k + 2D wk +w w a1 LK
1 0 3 r0+G m=0 Mml

where

2

a cm
m AmtanhAmH

A = 1k02 + y 2 ym mr
in 0 in i

if m=O
2H

I if in*0

and

S2 cr cos ymG if ym2 r

Kml= Wr-Y m

G if Ym2 = wr

In these expressions, D1 and D2 are constants but G and H are

functions of x (as determined by the geometry).

Once k0 is found, the function kl(n) in (C2) and (C3) is

found from (16). To do this note, from (17), that

P0 (x,Y,z) = coshAm(H-z)cosYmY (C5)
m=O
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where

-acmKml
PM= m sinh.mH

Thus,

2= 2= n= ~ n nk (l+cosh .H) + (-.1) n p LklI(x )  k k(x )  m=0 P m m=0 n=0 mn

H 7 -m2(H +-I- sinh2HX ) + 2a(Dlk02 + D3w r )G
m=O PM 2 Am m W2(

where

sinh(Xn+Xm)H + sinh( n-xm)H if n:m

An+Am An-Am

Lmn =

H + 1 sinh2X H if n=m
2 An n

The denominator of the coefficient of the exponential in

(C3) can be calculated from the relation

f p0 2 dydz = 1 H p2(1 + 1 sinh2x H)
2 m=0 M 2Xm  m

This, at the same time, determines the constant A0 in (C4).

The displacement of the basilar membrane is completely

determined from the above formulas. As for the fluid pressure

p*(x,y,z,t) - As*(42f2)A(x)eit-k(x, E)-/2]p 0 (x,y,z)

where p0 (x,y,z) is given in (C5). From this one can calculate

the velocity v*(x,y,z,t) of the fluid, away from the immediate
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vicinity of the cochlear wall with the relation

i V

2 7r
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