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I. Introduction

In a previous paper [1], we examined the effects of laser radiation

on the surface states of a semiconductor. Within a one-dimensional

model, the optical cross section was calculated for the excitation of

electrons from the bulk valence band to various surface states. For

surface states with charge densities confined to the first few lattice

layers, a large cross section on the order of I or 2 A2 was discovered.

This indicated that a low-power laser (1-10 W/cm 2) could be used

effectively to transfer charge from the bulk of the crystal to the

surface region. Furthermore, this surface charge was shown to have a

significant influence on the interaction with a charged adspecies [2].

Consequently, we suggested that this effect could be used to enhance

the desorption or adsorption of charged or polar atoms and molecules.

In the above studies, we confined our efforts to examining wide-

band semiconductors. However, metals have a band structure that is

qualitatively similar to the energy levels of these semiconductors.

Consequently, we would expect that laser radiation could also be

used to transfer charge to metal surfaces and thus influence surface

dynamics.

In Section II we shall show that our one-dimensional model developed

for semiconductors can easily be extended to the case of metals. In

Section III we shall use time-dependent perturbation theory to examine

surface excitations. This theory involves electron-phonon coupling,

which will be evaluated in Section IV. In Section V the optical cross

sections at various laser frequencies for the metals will be presented.
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Finally, in Section VI we shall discuss the differences with our previous

works and suggest possible ways to enhance the laser-stimulated surface

dynamics in metals.

II. The Model

As with wide-band semiconductors, the valence electron wave functions

of a metal of infinite extent can be written as a sum of plane waves [3).

Consequently, if we model a metal as a truncated one-dimensional chain,

the bulk wave function, k(z) obtained via the nearly-free-electron

approximation will be functionally the same for a metal and a semiconductor:

2___ E k2

IOk(z) = 1+ {~ V] J{k(Z) + k V k-g(z)' 1

where for z < a/2

2( )  1 sink( ) + , (2A)

and for z > a/2

Ok(z) = 2 si/2 Ok e 2 (2B)

L is the length of the chain, a is the lattice constant, g is the

reciprocal lattice vector, k is the electron wave vector, and Vg

is the lattice interaction matrix. The phase factor and the

exponential constant are given elsewhere £4]. This wave function

has the corresponding energy



3

E ' 1[k2+(k-g)2] + k2 -(k-g)2]'+ 4E2}, (3)

where E is the band gap.

To obtain the wave function for the surface states, we assume

the wave vectors to be complex,

k = I + ic (4)2

but the energies to be real [5]. Consequently, some algebra [4]

leads to the surface wave functions

P(z) = C sin[(.q)(z- A) + e]e(z 2) (5A)

for z < a/2 and

a

* (z) = s sine e 'qK(z "2) (5B)

for z > a/2, where the normalization constant, the phase factor and

the exponential constant are found elsewhere [4]. The corresponding

energy is

1 2 _ 2-29 2 (6)

The dispersion relation, given by eqs. (3) and (6), is illustrated

in Fig. 1. As can be seen the band structure is similar to that of the

semiconductor previously calculated [1]. However, whereas in the semi-

conductor the lower band was populated to the top, in a metal the Fermi

energy, EFt lies somewhat below. For example, in the case of sodium the
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Fermi energy is 0.7 eV below the band edge and, thus, the surface states.

This immediately implies that our laser frequency must be higher in

metals than in semiconductors in order to excite electrons to the surface

states. To calculate this laser-induced transition rate between the

bulk states, eq. (1), and the surface states, eq. (5), we proceed as

previously by examining the coupling between these states via time-

dependent perturbation theory.

III. Perturbation Theory

If the metal is now exposed to laser radiation in order to excite

bulk states to surface states, it will be seen that the transitions that

conserve the real part of the crystal momentum are favored. This selection

rule was previously developed for semiconductors [1,4] and is still valid

for metals since our wavefunctions, eqs. (1) and (5), are essentially the

same. However, there are no occupied bulk states with real momentum at

or near g/2 which is the real momentum of the surface states [eq. (4)].

To overcome this problem, the electrons can be excited not only with a

laser but also with the vibrational momentum of the crystal. Thus, photons

would supply the energy needed for the transition and phonons would supply

the needed crystal momentum. A suggested pathway for this combined

photon and phonon excitations is illustrated in Fig. 1

For the one-dimensional model, the electronic Schrodinger

equation is

i a (zt) = H(t) v(z,t) (7)at



5

where

H(t) = H0 + Hf e-'if + HPe-iwPt. (8)

H0 is the electronic Hamiltonian of the system in the ground state,

H f is the coupling of electrons to the laser field of frequency Wf,

and Hp is the coupling of the electrons to a phonon of frequency wp.

Our wave function is expanded in terms of the stationary states:

Y(z,t) - lk";nK> e-iEk't + j Ck k;nK-1> e'iEkt (9)

where k in the ket notation refers to the stationary electronic states,

eq. (1) and (5), and nK refers to the phonon number state with crystal

momentum K. The double prime refers to an electronic state below the

Fermi energy, and no prime labels a surface state.

If first-order perturbation theory is now applied, we obtain

i Ck(I) = <k;nK1HfIk";nK> e
i[Ek-Ek ' wf~t

+ <k;nK:1lHPlk"-nK> eiEEkEk' p (10)

However, the first term will vanish since the laser field is not

coupled to the phonons, and thus crystal momentum is not conserved.

The second term is also zero since one phonon term cannot supply

sufficient energy for the excitation. Consequently, higher-order

perturbation theory must be used [6].

_________________
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In second-order perturbation theory, the electron is first excited

to an intermediate state and then to the final state:

W Wf
Ik";n K >-LL) I k'; n K-I>  I k';n K-l>, (11)

where the initial state k below the Fermi energy is excited by

absorption of a phonon to intermediate state k' in the same band

and from there excited to the final surface state k by a photon.

This pathway is illustrated in Fig. 1. Another possible pathway

is

WA W

Ik ' Kk';nK> k;nK-1>. (12)

Here the first excitation is done by the photon, and the intermediate

state k' will lie in an upper conduction band. Because of the large

energy mismatch in each step, however, this pathway would contribute

only a small part to the transition rate. Consequently, only the

first pathway, eq. (11), is considered.

Second-order perturbation theory will now yield

F ~ Wfk' (kkk ,P F i(wkk,-U p- 1)f -kkLk , - f(13)

where

Hfkk = <k;nK-11HfIk';nK-l>, (14)

kk' K K
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HPk.= <k' ;nK- 1HPIk";nK>, (15)

and

wkk" = Ek - Ek"" (16)

We have only considered the conservative term and disregarded that due

to the sudden turning on of the perturbation [7]. Taking the modulus

squared of eq. (13) at large times, we obtain the transition rate from

state k"(

lim k 2 k H " 12
trn t = k k' kik"'p 6(wkk"-wp-wf) (17)

where 6(...) is the Dirac delta function. To proceed further and

calculate the total transition rate, we must first determine an

expression for Hp , as done below.

IV. Electron-Phonon Coupling

The total lattice potential, V(z), can be written as a sum of

ionic potentials

V(z) = v(z-z), (18)

where v(z-Zt) i the d eened potential caused by the lattice ion at

position Z£. I d single phonon is present we, can write
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Z Z+ U eiWPt  (19)

where Z is the ionic equilibrium position and UZ is the displacement

amplitude.

Using a Taylor series, we obtain

V(z) = V0(z) + evi(zZ )Ue e1pt, (20)

0
vhere v'(z-Z ) is the gradient of the screened potential evaluated at

equilibrium. V 0(z) is the equilibrium potential that is contained in

0
H [eq. (8)]. The second term is due to the electron-phonon couplinq,

and thus

Hk, k= <k k-lv'(z-Zt)Uzlk";nk>. (21)

It is convenient to express the displacement in terms of the phonon

annihilation, a(K), and creation at (K), operators [8]:

I

[2NM W 2 [eiKZZa(K) + e iKZa(K)], (22)

where M is the mass of the lattice atoms and N is the total number of

these atoms. Using eq. (22) in eq. (21), we obtain

1

HP, = [2NI wp] ?eiKZZRKI/2<k'Iv'(z- 0)IkI>. (23)

k V
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To evaluate the integral in this expression, we note that the bulk

stationary states in a metal can be roughly approximated by a plane

wave:

k> - eikz (24)

Consequently, eq. (23) becomes

H, = .i(NM)-1/2 (k'-k")v(k'-k") n1/2 (25)[2wp 1/2 "k'-k" K,k'-k"

where v(k'-k") is the Fourier transform of v(z) and 6 K,kk . is the

Kronecker delta function. Eq. (25) constitutes the electron-phonon

coupling in our transition, which will now be combined with the field

coupling to yield the optical cross section below.

V. Cross Sections

Using eq. (25), we can readily simplify eq. (17) to give

CkC*
lim kN-k - ft t=Nt (wk V - f)

Hf2' 2n-i) ~' k 2 kg~ nk

, HkkI(k'k"v(k -k") ' k'k (26)

* 2

To find the total transition rate, T, we must sum over all possible initial,

k", final, k, and phonon, K, states:

T =k kt k (27)
k khK t

a
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To simplify the transition rate, we make use of our previously

determined field coupling [1,4]:

- -2I<Kzk'I 2

((2I) f 2(k'- I) UT 0 (28)
137 wf 1 - e

where I is the intensity of the laser and the subscript zero implies

integration over the first unit cell. Furthermore, since only the

imaginery part of the surface state wave vector changes [see eq. 4],

we have replaced the index k with K.

Defining the optical cross section by

a T (29)

and using eqs. (26), (27) and (28), we obtain

I = 2v2(K)nK 2 (1)(K), (30)
K 2M( g/2,g/2-K- p)

where o(1)(K) has the same functional form as the cross section previously

obtained from first-order perturbation theory [1,4]. The phonon wave

vector, K, and the complex part of the surface wave vector, K, are

related by the resonance condition

Lf + p =E -Eg/2-K* (31)

The first-order cross section term multiplied by the field fre-

quency is plotted in Fig. 2 using parameters characterized of sodium [9].

-I .'- - -.. m--T - m -- - S -. .. ____
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The zero near the center of the plot is due to the branch point in

the energy, eq. (6), at which there is no surface state. The cross

section diverges at the high-energy side, because at this point one

should be considering absorption coefficients for transitions between

bulk bands. It should also be notes that wfo(K)(K) is independent

of field frequency.

In view of eq. (30), all phonon effects can be grouped into a

scaling factor:

K2v2(K)nK

S(K) K K (32)
2Mp (Wg/2,g/2-K - wp)

The phonon states in this one-dimensional system are given by the

dispersion relation [31

Wp = Wmax sin(), (33)

where wmax is the maximum frequency of the acoustic phonons. The

population of the phonon states is assumed to be thermal and thus

given by the Bose-Einstein statistics,

n K I e i (34)

where a is the Boltzmann factor. Using eqs. (33) and (34) in eq. (32)

along with the potential v(K) given by Appapillari and Williams [10],

we have obtained the scaling factor for sodium at room temperature

and show our results in Fig. 3. The exponential shape of the curve

hoo
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is due to the domination of the population term, eq. (34), in the

scaling expression. This curve is also independent of any laser

present or any initial or final states. It depends only on the

phonon wave vector K.

If we now wished to obtain the total cross section, eq. (30)

would be written in the form

N JS(K)c 1 )(K). (35)
K

However, it is not clear over which states the sum should be performed.

If one sums over over all possible phonon states, for instance, surface states

near the band edge would be included. Since these states have a great

deal of bulk character, they are of little interest in surface dynamics

but they would dominate the total cross section. Furthermore, to

understand how charge is transfered to the surface, it is more instructive

to look at the "cross sections", a , for individual surface states:
K

S(K)G (1)(K), (36)
K

where again K and K are related by eq. (31). Again, using parameters
for sodium, a is plotted in Fig. 4 for a variety of laser frequencies

from the infrared (0.925 eV) to the ultraviolet (4.213 eV). Laser

frequencies which are less than the difference between the band edge

and the Fermi energy, A, are too small to excite surface states. On

the other hand, if the laser frequency is greater than EF + A + E,

the photons will be too large to excite surface states. Results

for other laser frequencies can readily be obtained by combining
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values of O(1)(K), Fig. 2, and S(K), Fig. 3, under the appropriate

resonance condition, eq. (31).

VI. Discussion

The second-order cross section, Fig. 4, is readily comparable with

the cross sections previously obtained for a semiconductor [1). However,

whereas the scale for the semiconductor cross section was in A the

results for surface excitations in metals are smaller by a factor of

10- . This means that a larger laser power (10-100 KW/cm , in contrast

to 1-10 W/cm 2) would be needed in the metal to achieve a similar surface

excitation.

In silicon, the laser frequency needed to achieve surface excitation

is between 0.0 eV and 1.2 eV. In sodium the frequency is between 0.7 eV

and 4.4 eV. Hence, the metal requires a much higher frequency for surface

excitation, but offers a broader range of frequencies from which to choose.

Furthermore, in a semiconductor one could be selective in the surface

state excited: one laser frequency would only excite one surface state.

However, in a metal, any given laser frequency would excite a number of

surface states, and the total cross section would be a sum of these

excitations, eq. (30). Certain groups of surface states nonetheless

would be more favored than others in a metal for a given laser

frequency (see Fig. 4).

Since our goal is to increase surface charge in order to effect

surface dynamics, as in the semiconductor, the main surface states of

interest lie near the center of the gap, roughly between 0.4 E and

0.6 E . This confines the surface charge to the first 5 or 6 layers

gI
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of the lattice. Because one laser frequency in a metal excites

several surface states, this would tend to enhance the surface charge

more than in a semiconductor where only one state is excited. The

surface charge could be further increased by heating the surface and

thus increasing the supply of phonons [see eq. (32)].

In the foregoing discussion, the laser was used to excite the

electrons while the phonons were thermally excited. A more detailed

model of surface excitation should consider the possible coupling of

the same laser or a different laser to the surface phonons. Such

phonon excitations would increase the optical cross section and

would improve the selectivity of the electronic excitation. Further-

more, the presence of adspecies on the surface can alter both the

electron and phonon dispersion relation. Such alterations could

enhance the surface charge excitation. Finally, the effects of higher

dimensionality must be considered for a more realistic description of

the laser surface excitation. These and other problems associated with

laser-stimulated surface dynamics are the subject of continuing research.
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Figure Captions

Fig. 1. Dispersion relation for a metal and an excitation pathway to

the surface states. The vertical arrow represents a photon of frequency

w; the horizontal arrow, a phonon of momentum K. UC is an upper conduc-

tion band. The dot-dash line is the projection of the surface states on
the (E versus real k)-plane.

Fig. 2. Laser field frequency multiplied by the first-order cross section

in units of 1-2 ha 2 versus the energy of the surface state measured from

the band edge.

Fig. 3. Phonon scaling factor versus the phonon wave vector.

Fig. 4. Cross sections for surface state K in units of pm2 versus

the energy of the iurface state measured from the band edge. Curve

(1) has - a + -2 (0.925 eV); (2) =f + Eg (1.150 eV); (3)E-+E'f+2A 2 - 9

Wf f 2 q E (2.569 eV); (4) wf aEF + A (3.988 eV); and (5)

Wf = EF + + 4
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