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I. INTRODUCTION

A line by line calculation is the most accurate and general means for

computing the atmospheric transmission of radiant energy. With the aid of a

modern computer and the recent convenient availability of tables of line para-

meters stored on magnetic tape, 1 such calculations can now be routinely

carried out.

For many applications, the quantity of interest is the mean value of the

transmittance over a band interval Av

"' fav T(v) dv (1)

The total numerical effort required to compute T using the line by line method

is quite large and any extensive calculation of mean transmittance values can

be quite time consuming, even on a fast computer.

Band model theory, on the other hand, provides a simple parameterized

formula for computing the mean band transmittance, which is much more effi-

cient than the line by line calculations. However, since it is based on

certain simplifying assumptions it must be tested for accuracy. Previous

studies2 comparing the statistical band model with line by line calculations

have shown a reasonable agreement between the two methods. This comparison,

however, was carried out for small to moderate optical path distances where

the transmittances were in the range T - > 0.1. Comparisons have not been

made in the very long path length regime where T < 0.1. In this report, we

present the results of such a comparison. The details are given in

Section 1I.

We will conclude from this comparison that the band model does not, in

general, give very good results in the regime where T- < 0.1. In fact, as

IL. S. Rothmon, Apl. t. 20, 791 (1981).2A. Goldman and T. Kyle, Appl. 2t. 7, 1167 (1968).

5
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will be seen, the transmittance can be in error by several orders of magnitude

and is shown to have the wrong asymptotic behavior as the optical path length

approaches infinity.

In Section II, we derive new parameterized formulas for computing the

mean band transmittance T(x). These formulas are accurate for all values of

optical distance x, including the limit as x approaches infinity. The results

of comparisons with both the precise line by line calculations and statistical

band model calculations will also be presented.

Section IV is a summary and discussion.
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II. COMPARISON OF STATISTICAL BAND MODEL AND LINE . INE TRANSMITTANCE

The line parameter data for these calculations were obtained from the Air

Force Geophysics Laboratory (AFGL) line atlas.1 This compilation provides

data for seven gas species: H2 0, Ca2 , 03, N2 0, CH4 , CO, and 02. The data
0given for each line include the line position Xi (cm-), the line strength S0

i 0 -

(cm-7/molecule - cm- 2 at 296*K), the line half-width y 0 (cm-I for air broaden-

ing at 296*K and I atm pressure), and the energy of the lower level of the

transition Ei (cm-l). The subscript i labels the line, while the superscript0 0 idct htteeqatte r
O on the strength S and the half-width yindicate that these quantities are

itaken directly from the atlas and are, therefore, appropriate for a pressure

of I atm and temperature of 296*K.

The line strength Si and the width parameter yi at any other temperature

and pressure are computed from S and y using the same formulas employed byan resreae opue fo i ±i

C. M. Randall in his general line by line computer program, INHOM. A discus-

sion of these formulas is given in Ref. 3.

All calculations have been carried out assuming a Lorentz pressure broad-

ened line shape function. The spectral absorption coefficient is given by

1 n± Si Yi
k(v) = 2 2 (2)

i (v - V Yi

The quantity n i is the density of the gas for which Si and yi characterize a

line. The units of ni used in this study are molecules/(cm2 - km), i.e., the

number of molecules in a column I km long and I cm2 in cross sectional area.

By including the density factor ni in the definition, k(v) has the convenient

dimension I/km. The transmittance at wave number v is given by

T(v, x) - exp (-k(v) x] (3)

3S. J. Young, Band Model Parameters for the 2.7-mm Bands of H20 and CO9 in the
100 to 3000°K Temperature Range, TR-0076(6970)-4, The Aerospace Corp.
(31 July 1975).

7
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where x is the distance measured in kilometers. The mean band transmittance

is then computed by averaging T(v,x) over the band interval Av [see Eq. (1)]

1

T(x)- -L f exp [-k(v) xjdv (4)
AV A

In the statistical band model with exponential-tailed inverse line

strength distribution,
4 the mean band transmittance is given by

3'4

i(x) - exp [+ kL (1 x ) (5)e e

where k, 6e, and y are the three band model parameters. The band model para-

meters can be expressed as certain averages of the line parameters over the

spectral interval AV. The parameter k is defined by the expression

L
1. ni s (6)

AV i S

where L is the number of lines in the interval Av. The parameter y is the

average line width

L

i-.

and 6 is a measure of the effective average distance between lines in AV
e

1ni Yi] (8)

e Iy Vi_1i

A. H20 LINE PARAMETERS

The model system used for the calculations in this report has the follow-

ing specifications: pressure, 1013 mbar; temperature, 300*K; concentration of

H20, 0.026; concentration of 02, 0.21. The wave number range in which the

calculations are carried out is 2800 to 3400 cm" I . (Only the H20 molecules

4W. Malkmus, J. Opt. Soc. Am. 57, 323 (1967).

8



have absorption lines in this range; the 02 concentration is specified because

of its influence on the width parameters of the H20 lines.) The density n of

H20 molecules in this model system is

n - 6.36 x 1022 molecules (9)
- km

The spectral band interval is chosen to be Av - 20 cm 1 . A band will be

identified by its mean wave number. Thus, the 3040 ci -" band is the band that

extends from 3030 to 3050 cm'.

Figure 1 shows our initial comparison of line by line and band model

transmittances in the interval from 2800 to 3400 cm- l .  The optical path :1
length in this calculation is 30 km. A convenient measure of the band model

error is the logarithm of the ratio of the band model transmittance TB to the

mean line by line transmittance TL

E - Log 1( BT/L) (10)

This quantity is plotted in Fig. lb. For transmittances generally in the

range T > 0.1, we see that the band model does quite well. However, when

T < 0.1 the band model can be in error by several orders of magnitude. In

particular, the errors in the bands centered at 3040 and 3060 c1 are large

and opposite in direction. These two are taken as representative of low

transmittance bands and will be examined in detail in the remainder of this

report.

The band model and line by line transmittances in the 3040 and 3060 cm'

bands are plotted as a function of distance in Figs. 2a and 3a with the

corresponding error curves plotted in Figs. 2b and 3b. In the 3040 ca - 1 band,

the error is less than unity, decreases to a minimum, and then begins to

increase, whereas for the 3060 c-1 band the error increases monotonically.

In this report the unit of error is called an "order of magnitude." Thus,
E - 2 is a two order-of-magnitude error.

9
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These two examples are representative of the two basic shapes for error

curves. The reasons for these two basic shapes will be discussed in more

detail in Section 111-C.

B. H90 LINE PARAMETER DISTRIBUTIONS

The first question that must be answered concerns the line parameter

distributions. Are the line parameters actually distributed in reasonable

agreement with the assumptions of statistical band theory? In order to answer

this, we have plotted the distributions.

Figure 4 is a schematic plot of the lines in the two bands. The height
of each line is the dimensionless strength parameter ai a S IS where S is

the average strength for the band. In statistical band theory the lines are

assumed to be randomly positioned in the band, and the line strengths are

assumed to be distributed with a probability density given by the exponential-

tailed inverse function. 4 This distribution function is

P~)-S InR (exp -j~ -exp (15 m

Where R and S. are parameters, it is convenient to work with the dimensionless

strength parameter a - S/3 (where S is the average of the distribution). The

probability distribution for a is easily shown to be

G(O) - 3 P(N a) (12)

which evaluates to

a 1 [exp (-Aa) - exp (-RA)I (13)

C't) TR Jen (13)

where

A i !SM - 1 (14)
R In R

13
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This function is represented by the dashed curves in Fig. 5. In both

graphs, R - 106. The actual density distributions of S/s in the bands are

represented by the histograms in Fig. 5. The function and histograms, in each

case, appear to be in reasonable agreement, vindicating the use of the

exponential-tailed inverse distribution.

The line positions are assumed to be random. If this is the case, then

the spacing between lines has a probability density given by

P( exp (-a/!) (15)p6
where 3 is the average value for the spacing given by

- A..

6 - (16)

The comparisons of this theoretical distribution with the actual histograms

are shown in Fig. 6. Again the agreement seems reasonable.

In the band model, the line width is assumed to be a constant equal to

the average value 6. The actual distributions of widths in the 3040 and 3060

cd- 1 bands are plotted as histograms in Fig. 7. The dashed curve is a

Gaussian distribution function with the same average and variance as the

actual width distribution. It is obvious that the widths are not distributed

normally.

Finally, the absorption coefficient k(v), defined by Eq. (2), is plotted

for our two representative bands in Fig. 8.

C. COMPUTER GENERATED LINE PARAMETERS

Additional tests of the band model were done using a set of computer

generated line parameters instead of the experimental H20 parameters obtained

from the line atlas.

The computer generated line parameters are random samples drawn from

infinite parent populations which are defined by their probability distribu-

tion functions. The line strength population is defined by the exponential-

15
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tailed inverse distribution, the line wave number population is defined to

have a uniform distribution, and the line widths are all set equal to a con-

stant.

By using these computer generated line parameters we refine our analysis

of the band model error since we are now assured, as much as possible, that

the line parameter distributions are in agreement with the theoretical assump-

tions. In addition, we can study the effect of random fluctuations on the

error by generating mny sets of line parameters and calculating the error

curve for each.

A spectrum of 250 lines in the wave number range 0 to 50 cm-I were

generated. The mean transmittances were computed for the 20 cm- I wide band

extending from 15 to 35 cm-I. The wave numbers for the lines were computed

using the simple formula

Vi - 50 * Xi  
(17)

where the X, are random numbers distributed uniformly in the interval 0 to

1. This array of wave numbers was then rearranged so that they were in mono-

tonically increasing order with respect to the index i.

The line width was set equal to a constant value,

-M 0.075 (18)

This constant is approximately the same as the average line width in the two

H20 bands considered previously (see Fig. 7).

The procedure for generating line strengths is more involved. The

relation between the random variable X which is uniformly distributed in the

range 0 to 1, and the relative line strength distribution given by Eq. (13) is

X - f G(C') do' - H(O) (19)
0

20
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Then inverting this equation and using a, S-i/ we obtain

.-- 1Si M H (x ) (20)

where the X, are random numbers, which are independent of the random numbers

used to generate the wave numbers, and H is the inverse function of H. The

functions H and Ir1 must be computed numerically. The line strengths computed

this way will have an exponential-tailed inverse distribution with an average

value I. (Although 9 is the average value for the parent population, the

average line strength of the finite random sample that we will compute will

deviate from this value.)

A different set of line parameters will be generated each time this

process is carried out, since different random numbers are used in each run.

Repeating the calculation many times will generate an ensemble of line para-

meter sets. (Each set is a random sample drawn from the same parent popula-

tion.) Line by line and band model calculations were carried out using these

computer generated line parameters. The results of a typical calculation are

shown in Figs. 9 through 13. These calculations were then repeated 20 times,

using different random sample line parameters in each calculation. The 20

error curves are all plotted on the same graph in Fig. 14.

The error seems to be composed of two parts, a random fluctuating

component and systematic component. The random component dominates at inter-

mediate distances and shows no bias, i.e., it is just as likely positive or

negative. The systematic component dominates at large distances and increases

without limit as the distance increases. This just means that, in this limit,

the band model always predicts larger transmittances than the line by line

calculation. Such behavior is easily understood by examining the asymptotic

behavior of the band model and line by line transmittances. The asymptotic

form for the band transmittance, obtained from Eq. (5), is

"T(x) + ep[-2 (-]Lk x)1/2 ]  (21)
6e

21
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The line by line band transmittance is given by Eq. (4). It is obvious

that when x is very large only the values of k(v) in the vicinity of the

minimum value kmin will contribute to the integral. The integral can be

evaluated by the steepest descent method to obtain the asymptotic formula

2, 1/2
T (-) exp(-k x) (22)

kx min

where k" is the second derivative of k(v) evaluated at the minimum. The

asymptotic form of the error E is then derived from Eq. (10),

E + 0.434 [kmin x] (23)

The essentially linear increase at large distances is evident in all the error

curve's plotted in Fig. 14.

The random component of the error will be discussed in Section III-C.
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III. NEW TRANSMITTANCE APPROXIMATIONS

The basic result of statistical band model theory is the formula, Eq.

(5), for computing the mean band transmittance. This formula has three

adjustable band model parameters, which are determined either by fitting to

experimental data or by calculating directly from line parameter data using

Eqs. (6) through (8). The failure of this method for moderate to long optical

path distances has been demonstrated in the previous section. In this section

we derive alternative parameterized formulas for computing '(x) which are

accurate for all values of the optical path length.

Rewrite the integral in Eq. (4) as a simple numerical quadrature

N
T(x) __r expf-k(vi)xJ 6v (24)

where N is the number of quadrature points, 6v is the spacing between points,

and Av is the bandwidth. Since Av -Nav, this can also be written

N(x) 1 r exp[-k(v ) x] (25)
i-i

N must be large enough to ensure adequate accuracy. (For the calculations in

the previous section we used N-1000.) The numerical ordering of the terms in

the sum does not metter.* Thus the array k(vI) of discrete k values can be

rearranged in monotonically increasing order. The points were originally

spaced 6v - Av/N units apart. The rearranged points are spaced ap - 1/N units

apart in the unit interval 0 < p 1. It is useful to regard these points as

defining a monotonically increasing continuous function of p in this

interval. (One could define this function, for example, by connecting the

The basic idea of reordering k values is quite old. Application of the
method and references to its previous use are given in Ref. 5.

5A. Arking and K. Grossman, J. Atmos. Sci. 29, 937 (1972).

27



points with straight line segments.) We call this function k(p) the "mono-

tonic absorption function." The formula for the transmittance can be

expressed in terms of k(p)

1

-(x) f exp[-k(p) x] dp (26)
0

or, in discrete form

N

T(x) Z E exp(-k(pi)xJ (27)
i-l

The function k(p) is shown for the 3040 and 3060 cm- 1 bands of 120 in

Fig. 15. These should be compared to Fig. 8 where the absorption coefficients

are shown plotted as k(v) in their natural order. It is obvious that the

k(v) functions cannot be approximated by any simple analytic function. The

monotonic functions k(p) however may be amenable to simple analytic approxima-

tions. Both of the graphs of k(p), shown in semi-log plots in Fig. 15, appear

to be roughly linear. Therefore the first approximation we will try is just a

simple exponential function

k(p) - k exp(bp) (28)
0

A. TWO-PARAMETER APPROXIMATION

In the previous section it was shown that the long range behavior

of T(x) is dominated by kmin. Since we want the long range behavior to be

correct, we define -- kmn = k(0). At the other extreme, the very short

range behavior of T(x) is determined by the average value of k. This is

easily proven. For very small values of x, the exponential in Eq. (26) can be

replaced by the first two terms of its power series expansion, thus

Y(x) aI- k> x (29)
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1(x) - J exp(-k(p) x] dp (26)
0

or, in discrete form

N

T(x) = . Z exp(-k(pi)x] (27)
i-1

The function k(p) is shown for the 3040 and 3060 cm- bands of H2 0 in

Fig. 15. These should be compared to Fig. 8 where the absorption coefficients
are shown plotted as k(v) in their natural order. It is obvious that the

k(v) functions cannot be approximated by any simple analytic function. The

monotonic functions k(p) however may be amenable to simple analytic approxima-

tions. Both of the graphs of k(p), shown in semi-log plots in Fig. 15, appear

to be roughly linear. Therefore the first approximation we will try is just a

simple exponential function

k(p) m k0 exp(bp) (28)

A. TWO-PARAMETER APPROXIMATION

In the previous section it was shown that the long range behavior

of T(x) is dominated by kmin .  Since we want the long range behavior to be
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range behavior of T(x) is determined by the average value of k. This is

easily proven. For very small values of x, the exponential in Eq. (26) can be

replaced by the first two terms of its power series expansion, thus

Y(x) I- <k> x (29)
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where

<W -f k(p) dp (30)
0

is the average value of k.

The parameter b in Eq. (28) is chosen so that the average value of the

exponential approximation is equal to <W.. Thus, we obtain

I

<k - k0 f exp(bp) dp (31)

or

b
<k> e-1 (32)
k0  b

which can be solved numerically for b. Using these values for the parameters

kc and b, the exponential approximation to k(p) is plotted as the dashed

straight lines in Fig. 15. The approximate transmittance is then computed by

substituting the function k(p) given by Eq. (28) into Eq. (26) and integrating

the resulting expression. The integral can be evaluated analytically.

To accomplish this, the variable of integration in Eq. (26) is changed

from p to k

k1
Y(x) - hk expkxl f(k) dk (33)

0

where the function f(k) is

f(k) dp(k) (34)
dk

and

kI - k0 exp(b) (35)

[The meaning of the function f(k) will be discussed in more detail later.]
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Equation (28) is easily inverted to obtain

I

p(k) - ln(k/kO) (36)

and therefore, using Eq. (34)

f(k) (37)
bk

Substituting this expression into Eq. (33) gives

!

T(x) [EI (k0 x) - El (kI x)j (38)

where E1(x) is the exponential-integral function defined 
by6

E x) - ! dt (39)

Xt
x

Very efficient methods are available for the numerical evaluation of the

exponential integral function.6 The function, Eq. (38), has three parameters

ko, ki, and b. However only two are independent. Using Eq. (35) we express b

in terms of k0 and k, obtaining our final two-parameter expression for (x)

x n(k1/ko) [E (kox) - E (k X)j (40)

This function was evaluated numerically and the approximate mean

transmittance curves are shown plotted in Figs. 16a and 17a along with the

precise line by line results for comparison. Below these graphs in Figs. 16b

and 17b are the error curves for the two-parameter approximation and also, for

comparison, the error curves for the band model transmittances (see Figs. 2b

and 3b).

6 M. Abramowitz and I. Stegun, Handbook of Mathematical Functions,

Dover, New York (1965)
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The range of integration in Eq. (26) for the variable of integration p is

0 < p < 1. For large values of the distance x, the contribution from the

upper portion of this integration range is very small. In order to demon-

strate this quantitatively, we have computed the upper limit of integration

required to compute 90% of the value of T(x) for various fixed values of x.

These upper integration limits are shown as tick marks in Fig. 15 and are

labeled with the appropriate value of distance x in kilometers. We see that

even for fairly small distances, the upper portion of the integration range

does not make much contribution. This would suggest that any analytic fit to

k(p) should be weighted to have the least error in the lower part of the p

range. The present procedure for calculating the slope parameter b overempha-

sizes the large k values. From Fig. 15 we see that a better fit would be

obtained in the lower portion of the k(p) curve if the slope parameter b were

less.

A new procedure, which gives more weight to the lower k values, was tried

for fitting the analytic function, Eq. (28), to k(p). The parameter k0 is

still defined to be the minimum, ko - k(0). However, instead of computing the

average value of k as in Eq. (30), we now compute the average value of the

natural log of k

1
< £n(k) > f in 0 k(p)] dp (41)

The parameter b is determined by requiring that the average value of the

natural log of the exponential approximation, Eq. (28), is equal to < ±n(k) >

I

< xn(k) >- f in [k 0 exp(bp)] dp (42)
0

This is easy to solve and we obtain

b- 2 L<n(k)> - ±n(k0)i (43)

The new value for the parameter k1 is then computed by substituting this value

of b into Eq. (35) and the transmittance is computed using Eq. (40).
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This new analytic approximation to k(p) is shown plotted as the dashed

straight line in Fig. 18. The slope of the line has been reduced from that of

Fig. 15 and a better fit to k(p) is obtained in the lower range of the

curve. In Figs. 19 and 20, which show the transmittances and error curves for

our two example bands, the error has been reduced from that shown in Figs. 16

and 17. Thus, the second method for computing b, which gives more weight to

the lower k values, is slightly superior. It has a very simple graphical

interpretation in the semi-log plots shown in Fig. 18. The area under the

straight line approximation is equal to the area under the line by line

k(p). (Unless otherwise stated, in any future reference to the two-parameter

method, the parameters are computed by the < tn(k) > method.)

B. THREE-PARAMETER APPROXIMATION

Any further significant improvement in accuracy can only be accomplished

by increasing the flexibility of the analytic function used to approximate

k(p). We have done this by dividing the integration range into two parts, 0 <

p < 1/2 and 1/2 < p _ 1, and approximating k(p) in each of these regions by an

exponential function

k~p _ 0exp[b~pJ, 0 < p 4 1/2 (4k(p) k (44)

1k/2 exp[b 2 (p-1/2)], 1/2 4 p 4 1

The function is required to be continuous which implies

k1/2 " k0 exp[b 1 /21 (45)

The maximum value of this function is

k! M k 1 /2 exp[b 2 /21 (46)

The inverse function to Eq. (44) is

bI n(k/k0) k 0 < k < k 1/2

p(k) M 1 (47)

I )n(k/k k k < k ,

and therefore from Eq. (34)
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b~k k o k 4 k 1/2
f(k) (48)

Ik

bkk1 2  k k

Note that f(k) is discontinuous at k = k1 /2.

The minimum value of the analytic approximation is k0 . Just as in the

previous cases, this is defined to be equal to the true minimum value kmin of

k(p),

ko Mk k(O) (49)

The parameters b, and b 2 are defined similarly to the previous case. If we

calculate the average values of £nlk(p)J in each half region

1/2
< Xn(k) >, - f tn[k(p)j dp (50)

0

I

< tn(k) >2 f 1 n[k(p)] dp (51)
~1/2

and equate these to the values obtained when the analytic approximation, Eq.

(44), is substituted for k(p) in Eqs. (50) and (51),

bI  4 [2 <tn(k) >1 - tn(k0)] (52)

and

b 4[2 < tin(k) >2 - tn(k2)I (53)
-2 2 1/2

The value of k in Eq. (53) is computed using Eq. (45). With all the para-

meters defined, the analytic approximation, Eq. (44), is evaluated and plotted

in Fig. 21. This should be compared with the previous two-parameter approxi-

mation in Fig. 18.
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The transmittance is obtained by substituting the expression for f(k)

given by Eq. (48) into Eq. (33) and evaluating the integrals. The result is

Y(x) IL[E (k x) - E(k b) 1 1/2 1/['E (k x) - E (k X)I1 (54)
1 2

Using Eqs. (45) and (46) we can express b, and b2 in terms of k0 , kl/ 2 , and

k1 . The final form for our three-parameter formula is

T(x) 2u(k 1 /21ko) [E1 (k0 x) - EI(k 1 /2 x)J

+ n(k1 /k /2) [E (k1 /2 x) - E (k1 x)J (55)

Transmittances computed using this approximation are shown plotted in

Figs. 22 and 23 along with the error curves. As can be seen, this three-

parameter approximation is excellent over the entire range of distances.

In the discussion presented so far, the two-parameter and three-parameter

approximations have been presented as approximations to line by line calcula-

tions. Obviously, they can also be used as a convenient fit to experimental

transmittance data.

C. k-DISTRIBUTION FUNCTION

The function f(k) is defined by Eq. (34). In differential form it is

dp - f(k) dk (56)

Integrating this expression gives

k2

- P2 -p 1 - k f(k) dk (57)

The quantity Ap is the fraction of the spectral interval for which k is in the

range k, < k < k2. If k is considered to be a random variable, then f(k) is

the probability density distribution of k and Ap is the probability that a
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randomly chosen k will be in the interval k1 I k< k2 . For this reason the

function f(k) has been called by Arking and Grossman 5 the k-distribution

function,

Given the k-distribution function f(k), the mean transmittance is given

by Eq. (33). In this expression the lower and upper integration limits have

been expressed as the finite values k0 and kI. This is in conformity with our

expectations for real spectra where ko > 0 and kI < w. It will be useful now

to extend these values to their ultimate limits and write

T(x) - f exp[k x] f(k) dk (58)
0

[This more general formula is true even for real spectra, since we only need

to define f(k) - 0 outside the range ko.<k <kl .1

Domoto 7  recognized that this relation defines f(x) as the Laplace

transform of f(k) and, conversely, f(k) is the inverse Laplace transform of

T(x). He applied this procedure to the statistical band model where T(x)

is given by Eq. (5). The inverse transform he obtained is

3 1/2

f(k) [- I exp[a(2  k- k (59)
k k

where a -7/6 e . This distribution is defined on the entire interval 0 < k
< W.

The k-distributions f(k) for the two and three parameter models are given

by Eqs. (37) and (48), respectively. The exact k-distribution can be computed

numerically from a line by line calculation. These functions are plotted in

Figs. 24 and 25. Figure 24 compares a band model, line by line and the two-

parameter model. Figure 25 is the same, but plots f(k) for the three-

parameter model instead of the two-parameter model. Note that the three-

parameter f(k) is discontinuous.

7G. Domoto, J. Quant. Spectrosc. Radiat. Transfer 14, 935 (1974).
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The cumulative distribution function is obtained by integrating the

probability density function
8

k
p - f f(k') dk' - F(k) (60)

kmin

The inverse of this cumulative probability function is the function we have

previously defined as the "monotonic absorption function" k(p). Thus

k(p) - F (p) (61)

This procedure provides a means of computing the monotonic absorption function

k(p) for the statistical band model. Both steps of the proceaure must be done

numerically: first a numerical integration of f(k) to obtain F(k) and then a

numerical interpolation to obtain F-1(p). The results are plotted in Fig. 26.

The exact results are also plotted for comparison. This graph should be com-

pared with Figs. 15, 18, and 21, where k(p) for the two- and three-parameter

models are plotted.

The functions f(x) and k(p) are transforms of each other. One can be

computed from the other. The function k(p) is calculated from f(x) by the

procedure just outlined and Y(x) is calculated from k(p) by Eq. (26). The

behavior of f(x) for large values of x is determined, for the most part, by

the values of k(p) in the interval near p - 0. This is illustrated in Fig. 15

where the upper limit of integration used in Eq. (26) to calculate 90% of the

final value of f(x) is plotted for various values of x. In the limit as

x + m, f(x) is determined by the single point at p - 0, k(O) - kmin [see Eq.

(22)]. Thus, in order to compute Y(x) accurately for large optical path

lengths, it is necessary to have an accurate approximation of the function

k(p) at and near p - 0.

8S. L. Meyer, Data Analysis for Scientists and Engineers, Wiley, New York
(1975) p. 20, 103.
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The two- and three-parameter approximations we have proposed take advan-

tage of the relatively simple form of the function k(p) by approximating

ln[k(p)] by one or two straight line segments. These approximations are

constrained to be equal to kmin at p - 0. This ensures that our approximation

will have the correct long range behavior.

The statistical band model, on the other hand, is basically limited in

accuracy for large values of x because the information contained in the band

model parameters k, y, and 6e is not sufficient to determine kmin .  More

generally it is not sufficient to determine k(p) in the interval near p - 0.

The best that can be done with this information is to determine a distribution

of k (p) functions which are compatible with the parameters. (The subscripta

a labels the functions in this distribution.) The functions k (p) determinea
a family of mean transmittance functions Y (x). These in turn determine aa

family of error curves E (x), which will look very much like the family of

error curves shown in Fig. 14.*

If the only information we are given about a band is the statistical band

model parameters, then each of the error curves E (x) is equally probable.a

The error curve that applies in any particular case can be thought of as just

a random selection from this family of curves.

Before leaving this section, it is interesting to examine the functions

k(p) plotted in Fig. 26 in more detail. For convenience, the band model func-

tion will be written kB(p) and the line by line function will be written as

kL(p). The general behavior of kB(p) is that it turns sharply downward near

p - 0 and approaches the value kB(0) - 0, which is always less than kmi n =

kL(O). This is a manifestation of the incorrect asymptotic form of the band

model transmittance function given by Eq. (21).

The family of error curves shown in Fig. 15 is not exactly the same as those
described here. In Fig. 15 the parent populations were fixed, whereas in the
case decribed here the band model parameters k, y, and 6 e are held constant.
After the calculations for this report were complete, we discovered a simple
method to generate line parameters that have fixed band model parameters.
However, we believe that the family of error curves shown in Fig. 15 is at
least a good qualitative and also a semiquantitative picture of the behavior
that would result when the band model parameters are held fixed.

49



In the region 0 < p < P2 where P2 - 0.5, the relationship between kB(p)

and kL(p) will generally be one of two types. Either kB(p) < kL(p) as in the

lower graph of Fig. 26 or kB(p) and kL(p) will intersect at some small value

p, with kB(p) > kL(p) in the region Pl -< p - P2 as in the upper graph of Fig.

26. For the first case, we can predict from Eq. (26) that TB(x) > T L(x) and

thus the error ratio will be greater than 1. This behavior is illustrated in

Fig. 3b.

In the second case, the behavior is more complicated. Fer moderate
values of x the result will be T x) < TCx). However, as x increases, the

effective range of integration in Eq. (26) decreases. At some point it will

fall entirely within the interval 0 < p < p1 where kB(p) < kL(p). When this

occurs we obtain TB(x) > TL(x). Thus the functions TL(X) and TB(x) eventually

cross and the error ratio varies from less than 1 to greater than 1. The

beginning of this behavior is illustrated in Fig. 2b which presumably would

follow the scenario just outlined if x were extended beyond 100 km. The error

curves shown in Fig. 14 illustrate both types of behavior.

D. MONTE CARLO METHOD

The term "Monte Carlo" usually refers to a computational procedure in

which a large (or infinite) distribution of values of some quantity or

parameter is replaced by a manageably small, unbiased random sample of the

distribution. For example, a physical quantity may be the average value of

some distribution. The Monte Carlo approximation is computed by generating a

random sample of the distribution and then averaging the random sample. In

the present case, the Monte Carlo method is a practical procedure for calcu-

lating the parameters for the two- and three-parameter approximations from an

unbiased random sample of the k-distribution.

The k-distribution is the continuously infinite collection (or

population) of k values that are defined by the function k(v) in the band

interval Av without regard to their order. An unbiased random sample of this

infinite population of k values can be generated by randomly selecting M wave
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numbers v i ( 1, M) from the band interval and then calculating k(v ) using

Eq. (2). The random wave numbers are computed from random numbers Xi in the

interval 0 to I by the formula

Vi - (VU - VL) X, i - 1, M (62)

where vU and VL are the upper and lower boundaries of the band.

The least value of k in this random sample is a good approximation to

kmin and is set equal to the parameter k0 for both the two- and three-

parameter approximations.

The average value of in(k) for the M values of k in the random sample is

the Monte Carlo approximation to the quantity <in(k)> defined by Eq. (41).

The parameter kI for the two-parameter approximation is then calculated by

combining Eqs. (35) and (43) to obtain

=1

kI - exp[2 <£n(k)>] (63)
1 k0

For the three-parameter model we must compute Monte Carlo approximations

for the quantities <in(k)> 1 and <in(k)> 2 defined by Eqs. (50) and (51),

respectively. The quantity k(p-i/2) is the median value of k which we

designate kmed .  This is the value of k such that half the elements of the

distribution exceed it in value and half are less in value. The

quantity <n(k)>I is the average value on En(k) for k < kmed and <tn(k)>2 is

the average value of £n(k) for k > kmed Thus in the Monte Carlo

approximation we divide the random sample of M elements into two groups, each

with M/2 elements'such that any k value in the first group is less than any k

value in the second group. (In order to avoid any ambiguities in this

procedure, we always choose M to be an even integer.) The average value

of £n(k) in the first group is an approximation to <tn(k)> 1 and the average

value of in(k) in the second group approximates <in(k)>2. The parameters k1/2

and kI for the three-parameter model are then computed by combining Eqs. (45),

(46), (52), and (53) to obtain

1

k - exp[4<tn(k)>1J (64)
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ka =kL exp[4<n(k)>2J (65)

In Figs. 27 and 28 we show the results obtained by this method using the

three-parameter approximation and a random sample of M - 50 values of k.

These results are almost as good as the results obtained previously using 1000

points but rcquired about 1/20 the computational effort. The Monte Carlo

procedure is thus an efficient method for carrying out (approximate) line by

line calculations.

I

F

52

I '- " " " ..... ... '" '" 0 .



10 +0

lo- 6

-810

0.01 0.1 1 10 100
(a) KILOMETERS

2-

c -

0.01 0.1 1 10 100
(b) KILOMETERS

Fig. 27. Comparison of Line by Line i~ an 50PitMneCroC 50)

Transmittances for 3040 cm- and. Error LoglQ(T 50/TL).

53



10

S10 7

10- 5 7MONTE CARLO

10

0.01 0.1 1 10 100
(a) KILOMETERS

2

0

0.01 0.1 1.0 10 100
(b) KILOMETERS

Fig. 28. Comparison of Line by Line (TL) and 50jpint Monte
Carlo (T Transmittances for 3060 cm'Band. Error

Logi T50).

54



IV. SUMMARY AND DISCUSSION

In this report, we have investigated the reliability of the statistical

band model by comparing the model with precise line by line calculations, and

we have also derived two new nonstatistical band model approximations.

The first part of the study, which is an evaluation of the statistical

band model, is contained mainly in Section II with some additional discussion

in III-C. The study was carried out on a system of H2 0 absorbers in the wave

number range 2800 to 3400 cm- 1. Tests were also made using sets of computer

generated line parameters. The results of these calculations were presented

graphically.

Figures 5 and 6 show that the distribution of H20 line strengths and line

spacings are in reasonable agreement with the theoretical assumptions made in

the statistical band model. The line by line and band model transmittances

are compared in Figs. 1, 2, 3, 13, and 14. It is concluded from these (and

others not presented here) that the statistical band model is fairly reliable

in the short optical path length regime in which T(x) > 0.1, but for long

paths where T(x) < 0.1, the transmittances can be in serious error by orders

of magnitude. This error has a random component that dominates at intermedi-

ate distances and a systematic component that dominates at very long dis-

tances.

The random error arises because the information contained in the band

model parameters is not sufficient to define a unique k-distribution, but

rather is compatible with an entire ensemble of k-distributions from which one

has been randomly selected.

The systematic error arises because of certain simplifying assumptions

made in the derivation of the band model transmittance. All values of the

strength parameter and all values of line spacing from 0 to - were allowed.

As a result, the k-distribution extends from 0 to - whereas any real distribu-

tion has finite limits, kmin > 0 and kma x < f. The unphysical k values in the

range 0 to kmin result in an erroneous asymptotic behavior for the band model
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transmittance that is consistently too large. This systematic component of

the error is easily computed from the asymptotic formulas and is given in Eq.

(23).

The second part of this report is concerned with the derivation and

testing of two new nonstatistical band model approximations. They are

referred to simply as the two-parameter and three-parameter approximations.

The formulas for these two approximations are given by Eqs. (40) and (55).

They are compared with the exaOt results and with the statistical band model

in Figs. 19, 20, 22, and 23. We conclude that the two-parameter model is

sometimes slightly inferior to the statistical band model for short optical

paths but is always much superior for long paths. The three-parameter model

is uniformly excellent for all path lengths.

The present study was a preliminary investigation and was limited in its

scope. A more complete study should repeat most of the calculations in this

report over a broader range of conditions including much higher and lower

temperatures and pressures, for other portions of the H20 line system, and for

several other molecules, especially CO2 . Also other line profiles should be

studied.

Several other topics that could be included in a new study would be a

study of the temperature and pressure dependence of the model parameters k0 ,

kl/2, and kj; a generalization of our new approximations to systems with non-

uniform temperatures and pressures; and the development of practical numerical

techniques for fitting both the two- and three-parameter formulas to experi-

mental transmittance data.
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LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting exper-

imental and theoretical investigations necessary for the evaluation and applica-

tion of scientific advances to new military space systems. Versatility and

flexibility have been developed to a high degree by the laboratory personnel in

dealing with the many problems encountered in the nation's rapidly developing

space systems. Expertise in the latest scientific developments Is vital to the

accomplishment of tasks related to these problems. The laboratories that con-

tribute to this research are:

Aerophysics Laboratory: Launch vehicle and reentry aerodynamics and heat
transfer, propulsion chemistry and fluid mechanics, structural mechanics, flight

dynamics; high-temperature thermomechanics, gas kinetics and radiation; research
in environmental chemistry and contamination; cw and pulsed chemical laser
development including chemical kinetics, spectroscopy, optical resonators and
beam pointing, atmospheric propagation, laser effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions, atmo-
spheric optics, light scattering, state-specific chemical reactions and radia-

tion transport in rocket plumes, applied laser spectroscopy, laser chemistry,
battery electrochemistry, space vacuum and radiation effects on materials, lu-

brication and surface phenomena, thermionic emission, photosensitive materials
and detectors, atomic frequency standards, and bioenvironmental research and
monitoring.

Electronics Research Laboratory: Microelectronics, GaAs low-noise and
power devices, semiconductor lasers, electromagnetic and optical propagation

phenomena, quantum electronics, laser communications, lidar, and electro-optics;
communication sciences, applied electronics, semiconductor crystal and device
physics, radiometric imaging; millimeter-wave and microwave technology.

Information Sciences Research Office: Program verification, program trans-

lation, performance-sensitive system design, distributed architectures for
C spaceborne computers, fault-tolerant computer systems, artificial intelligence,

and microelectronics applications.

Materials Sciences Laboratory: Development of new materials: metal matrix
composites, polymers, and new forms of carbon; component failure analysis and
reliability; fracture mechanics and stress corrosion; evaluation of materials in

space environment; materials performance in space transportation systems; anal-
vais of systems vulnerability and survivability in enemy-induced environments.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radiation
from the atmosphere, density and composition of the upper atmosphere, aurorae
and airglow; magnetospheric physics, cosmic rays, generation and propagation of
plasma waves in the magnetosphere; solar physics, infrared astronomy; the
effects of nuclear explosions, magnetic storms, and solar activity on the

earth's atmosphere, ionosphere, and magnetosphere; the effects of optical.

electromagnetic, and particulate radiations in space on space systems.
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