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I. INTRODUCTION

A line by line calculation is the most accurate and general means for
computing the atmospheric transmission of radiant energy. With the aid of a
modern computer and the recent convenient availability of tables of line para-
meters stored on magnetic t:ape,1 such calculations can now be routinely
carried out.

For many applications, the quantity of interest is the mean value of the

transmittance over a band interval Av
- - 1
T =% IAv T(v) dv (1)

The total numerical effort required to compute T using the line by line method
is quite large and any extensive calculation of mean transmittance values can

be quite time consuming, even on a fast computer.

Band model theory, on the other hand, provides a simple parameterized
formmula for computing the mean band transmittance, which is much more effi-
cient than the 1line by line calculations. However, since it 1s based on
certain simplifying assumptions it must be tested for accuracy. Previous
studiesz comparing the statistical band model with line by line calculations
have shown a reasonable agreement between the two methods. This comparison,
however, was carried out for small to moderate optical path distances where
the transmittances were in the range T=>0.1. Comparisons have not been
made in the very long path length regime where T < 0.l1. 1In this report, we
present the results of such a comparison. The details are given in
Section II.

We will conclude from this comparison that the band model does not, in
general, give very good results in the regime where T = < 0.1. In fact, as

L. s. Rothmon, Appl. Ope. 20, 791 (1981).
2A. Goldman and T. Kyle, Appl, Opt. 7, 1167 (1968).




will be seen, the transmittance can be in error by several orders of magnitude
and 1s shown to have the wrong asymptotic behavior as the optical path length
approaches infinity,

In Section I1I, we derive new parameterized formulas for computing the
mean band transmittance T(x). These formulas are accurate for all values of
optical distance x, including the limit as x approaches infinity. The results
of comparisons with both the precise line by line calculations and statistical
band model calculations will also be presented.

Section IV 18 a summary and discussion.
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II. COMPARISON OF STATISTICAL BAND MODEL AND LINE . _INE TRANSMITTANCE

The line parameter data for these calculations were obtained from the Air
Force Geophysics Laboratory (AFGL) line atlas.l This compilation provides
data for seven gas species: H,0, CO,, O3, N0, CH,, CO, and 0. The data

given for each line include the line position A (cn'l), the line strength S0

i 1
(em™!/molecule - em™? at 296°K), the line half-width Yg (cw”! for air broaden-
ing at 296°K and 1 atm pressure), and the energy of the lower level of the
transition Ei (cm'l). The subscript 1 labels the line, while the superscript

O on the strength Sg

taken directly from the atlas and are, therefore, appropriate for a pressure

and the half-width Yg indicate that these quantities are

of 1 atm and temperature of 296°K.

The line strength S; and the width parameter Y; at any other temperature

2 and Yg using the same formulas employed by

C. M. Randall in his general line by line computer program, INHOM. A discus-

and pressure are computed from S

sion of these formulas is given in Ref. 3.

All calculations have been carried out assuming a Lorentz pressure broad-

ened line shape function. The spectral absorption coefficient is given by

n, S, v
(V) =< % 1 1.4

(2)
i (v - vi)2 -Y 2

i

The quantity n; 1s the density of the gas for which S; and Yy characterize a
line. The units of n; used in this study are molecules/(cm? - km), i.e., the
number of molecules in a column 1 km long and 1 cn? in cross sectional area.
By including the density factor ny; in the definition, k(v) has the convenient

dimension 1/km. The transmittance at wave number v is given by

T(v, x) = exp [-k(v) x] (3)

38. J. Young, Band Model Parameters for the 2.7-um Bands of H,0 and CO, in the

100 to 3000°K Temperature Range, TR-007/6(6970)-4, The Aerospace Corp.
(31 July 1975).




where x is the distance measured in kilometers. The mean band transmittance

is then computed by averaging T(v,X) over the band interval Av [see Eq. (1)]

T(x) 'Tt‘ {v exp [k(v) xldv %)

In the statistical band model with exponential-tailed inverse line

strength distribution,a the mean band transmittance is given by3’4

- k '
T(x) = exp [- 2L (14 —=x-1)] (5)
Y

where E, Ge’ and ; are the three band model parameters. The band model para-
meters can be expressed as certain averages of the line parameters over the

spectral interval Av. The parameter k is defined by the expression

- 1 L
k=— ¢ n, S (6)
av o) id

where L is the number of lines in the interval Av. The parameter ; is the

average line width

L
I vy (7N

and Ge is a measure of the effective average distance between lines in Ay

L
1 1 [ 1 2
¢ ky vy 1

A. H,0 LINE PARAMETERS

The model system used for the calculations in this report has the follow-
ing specifications: pressure, 1013 mbar; temperature, 300°K; concentration of
H,0, 0.026; concentration of 02, 0.21. The wave number range in which the
calculations are carried out is 2800 to 3400 cm '. (Only the H,0 molecules

4. Malkmus, J. Opt. Soc. Am. 57, 323 (1967).
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have absorption lines in this range; the 0, concentration is specified because
of its influence on the width parameters of the H,0 lines.) The density n of
Hy0 molecules in this model system is

n=6.36 x 1022 molecules (9)
cm - km
The spectral band interval is chosen to be v = 20 cm~!. A band will be
identified by its mean wave number. Thus, the 3040 cm ! band 1s the band that
extends from 3030 to 3050 cm™l,

Figure 1 shows our 1initial comparison of line by line and band model
transmittances in the interval from 2800 to 3400 cm-l. The optical path
length in this calculation is 30 km. A convenient measure of the band model

error is the logarithm of the ratio of the band model transmittance TB to the
*

mean line by line transmittance TL

E= Loglo(TB/TL) (10)

This quantity 1is plotted in Fig. lb. For transmittances generally in the
range T> 0.1, we see that the band model does quite well. However, when
T < 0.1 the band model can be in error by several orders of magnitude. In
particular, the errors in the bands centered at 3040 and 3060 a! are large
and opposite in direction. These two are taken as representative of low
transmittance bands and will be examined in detail in the remainder of this
report,

The band model and line by line transmittances in the 3040 and 3060 cm~!
bands are plotted as a function of distance in Figs. 2a and 3a with the
corresponding error curves plotted in Figs. 2b and 3b. In the 3040 ! band,
the error is less than unity, decreases to a minimum, and then begins to

increase, whereas for the 3060 an~! band the error increases monotonically.

*In this report the unit of error is called an "order of magnitude.” Thus,
E= 2 {8 a two order-of-magnitude error.
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These two examples are representative of the two basic shapes for error
curves, The reasons for these two basic shapes will be discussed in more
detail in Section III-C.

B. H,0 LINE PARAMETER DISTRIBUTIONS

The first question that must be answered councerns the line parameter
distributiona. Are the line parameters actually distributed in reagsonable
agreement with the assumptions of statistical band theory? In order to answer
this, we have plotted the distributions.

Figure 4 is a schematic plot of the lines in the two bands. The height
of each line is the dimensionless strength parameter o, = 81/§ vhere S is
the average strength for the band. In statistical band theory the lines are
assumed to be randomly positioned in the band, and the line streangths are
agssumed to be distributed with a probability density given by the exponential-
tailed inverse function.® This distribution function is

1 =S RSy
P(s) .m [exp (g—) ~ exp (s—)] (11)
n o
Where R and S“l are parameters, it is convenient to work with the dimensionless
strength parameter o = S/S (where S is the average of the distribution). The
probability distribution for o is easily shown to be

G(o) = § P(S o) (12)
which evaluates to
6(0) = miray [exp (-A0) - exp (-RAd)] 13)
where
A=¥s =B (18)
13
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This function is represented by the dashed curves in Fig., 5. In both
graphs, R = 106. The actual density distributions of S/S in the bands are
represented by the histograms in Fig. 5. The function and histograms, in each
case, appear to be in reasonable agreement, vindicating the use of the
exponential-tailed inverse distribution.

The line positions are assumed to be random. If this 18 the case, then
the spacing between lines has a probability densij:y given by

P(§) = % exp (-8/3) a1s)
8 .
where § is the average value for the spacing given by

The comparisons of this theoretical distribution with the actual histograms

are shown in Fig. 6. Again the agreement seems reasonable.

In the band model, the line width 1s assumed to be a constant equal to
the average value 8. The actual distributions of widths in the 3040 and 3060
cm! bands are plotted as histograms in Fig. 7. The dashed curve is a
Gaussian distribution function with the same average and varliance as the
actual width distribution. It is obvious that the widths are not distributed
normally,

Finally, the absorption coefficient k(v), defined by Eq. (2), is plotted
for our two representative bands in Fig. 8.

C. COMPUTER GENERATED LINE PARAMETERS

Addi{tional tests of the band model were done using a set of computer
generated line parameters instead of the experimental H,0 parameters obtained
from the line atlas.

The computer generated line parameters are random samples drawn from
infinite parent populations which are defined by their probability distribu-~
tion functions. The line strength population i{s defined by the exponential-~

15
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tailed inverse distribution, the line wave number population is defined to
have a uniform distribution, and the line widths are all set equal to a con~

stant.

By using these computer generated line parameters we refine our analysis
of the band model error since we are now assured, as much as possible, that
the line parameter distributions are in agreement with the theoretical assump-
tions. In addition, we can study the effect of random fluctuations on the
error by generating many sets of line parameters and calculating the error
curve for each.

A spectrum of 250 lines in the wave number range 0 to 50 el were
generated. The mean transmittances were computed for the 20 co ! wide band
extending from 15 to 35 cm-l. The wave numbers for the lines were computed

using the simple formula

vy = 50 . Xi (17)

where the X, are random numbers distributed uniformly in the interval 0 to
1. This array of wave numbers was then rearranged so that they were in mono-

tonically increasing order with respect to the index 1.

The line width was set equal to a constant value,
51 = 0.075 (18)

This constant is approximately the same as the average line width in the two
Hy0 bands considered previously (see Fig. 7).

The procedure for generating line strengths 1is more involved. The
relation between the random variable X which is uniformly distributed in the
range O to 1, and the relative line strength distribution given by Eq. (13) is

o
X=[ G(g') dg' = H(c) (19)
0




Then inverting this equation and using o, = Sil§ we obtain

s, =S (x) (20)
where the Xi are random numbers, which are independent of the random numbers
ugsed to generate the wave numbers, and B! is the inverse function of H. The
functions H and ! must be computed numerically. The line strengths computed
this way will have an exponential-tailed inverse distribution with an average
value S. (Although § is the average value for the parent population, the
average line strength of the finite random sample that we will compute will
deviate from this value.)

A different set of line parameters will be generated each time this
process is carried out, since different random numbers are used in each runm.
Repeating the calculation many times will generate an ensemble of line para-
meter sets. (Each set is a random sample drawn from the same parent popula-
tion.) Line by line and band model calculations were carried out using these
computer generated line parameters. The results of a typical calculation are
shown in Figs. 9 through 13. These calculations were then repeated 20 times,
using different random sample line parameters in each calculation. The 20

error curves are all plotted on the same graph in Fig. 14,

The error seems to be compogsed of two parts, a random fluctuating
component and systematic component. The random component dominates at inter—
mediate distances and shows no bias, f.e., it is just as likely positive or
negative. The systematic component dominates at large distances and increases
without 1limit as the distance increases. This just means that, in this limit,
the band model always predicts larger transmittances than the line by 1line
calculation, Such behavior is easily understood by examining the asymptotic
behavior of the band model and line by line transmittances. The asymptotic
form for the band transmittance, obtained from Eq. (5), is

T(x) » expl-2 (36—E x1/2)

1)
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The line by line band transmittance is given by Eq. (4). It is obvious
that when x 1is very large only the values of k(v) in the vicinity of the
minimum value kp;, will contribute to the integral, The integral can be
evaluated by the steepest descent method to obtain the asymptotic forwula

2y 1/2

T» GE)  exp(-k ,  x) (22)

where k" 1s the second derivative of k(y) evaluated at the minimum. The

asymptotic form of the error E is then derived from Eq. (10),
E » 0,434 [kllin x] (23)

The essentially linear increase at large distances 1is evident in all the error

curves plotted in Fig. l4.

The random component of the error will be discussed in Section III-C.
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III. NEW TRANSMITTANCE APPROXIMATIONS

The basic result of statistical band model theory is the formula, Eq.
(5), for computing the mean band transmittance. This formula has three
adjustable band model parameters, which are determined either by fitting to
experimental data or by calculating directly from line parameter data using
Eqs. (6) through (8)., The failure of this method for moderate to long optical
path distances has been demonstrated in the previous section. In this section
we derive alternative parameterized formulas for computing T(x) which are

accurate for all values of the optical path length.

Rewrite the integral in Eq. (4) as a simple numerical quadrature

N
T(x) -l I expf-k(v, )x] 8v (24)
Av i

i=]
where N is the mumber of quadrature points, 6v is the spacing between points,
and Av i3 the bandwidth. Since Av = N§v, this can also be written

T(x) 'Tlv' 2 exp[-k(vi) x] (25)
i=]

N must be large enough to ensure adequate accuracy. (For the calculations in
the previous section we used N=1000,) The numerical ordering of the terms in
the sum does not matter.” Thus the array k(vi) of discrete k values can be
rearranged in monotonically increasing order, The points were originally
spaced §v = Av/N units apart. The rearranged points are spaced & = 1/N units
apart in the unit interval 0 { p { 1. It is useful to regard these points as
defining a monotonically increasing continuous function of p 1in this
interval. (One could define this function, for example, by connecting the

i'l'he basf{c idea of reordering k values is quite old. Application of the
method and references to its previous use are given in Ref, 5.
A. Arking and K. Grossman, J. Atmos. Sci. 29, 937 (1972).
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points with straight line segments.) We call this function k(p) the "mono-
tonic absorption function.” The formula for the transmittance can be
expressed in terms of k(p)

l .
T(x) = foexp[-k(p) x] dp (26)
or, in discrete form
- 1 N
T(x) - I exp(-k(pi)x] (27)
i=]

The function k(p) 1s shown for the 3040 and 3060 ! bands of Hy0 in
Fig. 15. These should be compared to Fig. 8 where the absorption coefficients
are shown plotted as k(v) in their natural order. It is obvious that the
k(v) functions cannot be approximated by any simple analytic function. The
monotonic functions k(p) however may be amenable to simple analytic approxima-
tions. Both of the graphs of k(p), shown in semi-log plots in Fig. 15, appear
to be roughly linear. Therefore the first approximation we will try is just a

simple exponential function
k(p) = ko exp(bp) (28)

A. TWO-PARAMETER APPROXIMATION

In the previous section it was shown that the long range behavior
of T(x) 1s dominated by Kyype Since we want the long range behavior to be
correct, we define ko = kpin " k(0)., At the other extreme, the very short
range behavior of T(x) 1s determined by the average value of k. This is
easily proven. For very small values of x, the exponential in Eq. (26) can be

replaced by the first two terms of its power series expansion, thus

T(x) = 1 - <k> x (29)
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where
1
<k> = [ k(p) dp (30)
0
is the average value of k.

The parameter b in Eq. (28) is chosen so that the average value of the
exponential approximation is equal to <k>. Thus, we obtain

1
<> = ko [ exp(bp) dp (31)
0
or
b
;& - & - 1 (32)
0

which can be solved numerically for b. Using these values for the parameters
kg and b, the exponmential approximation to k(p) 1s plotted as the dashed
straight lines in Fig. 15. The approximate transmittance is then computed by
substituting the function k(p) given by Eq. (28) into Eq. (26) and integrating

the resulting expression. The integral can be evaluated analytically.

To accomplish this, the variable of integration in Eq. (26) is changed
from p to k

T(x) = f:; explkx] £(k) dk (33)
where the function £(k) is
£ = 22lk) (34)
and
kl - ko exp(b) (35)

[The meaning of the function f£f(k) will be discussed in more detail later.]
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Equation (28) is easily inverted to obtain

1
p(k) i ln(k/ko) (36)
and therefore, using Eq. (34)
£(k) =+ (37)
bk

Substituting this expression into Eq. (33) gives

= 1
T(x) g-[E1 (k0 x) - E1 (k1 x)] .(38)
where El(x) is the exponential-integral function defined by6
-« e‘t
El(x) = fdet (39)

Very efficient methods are available for the numerical evaluation of the
exponential integral function.® The function, Eq. (38), has three parameters
kg, k;, and b. However only two are independent. Using Eq. (35) we express b

in terms of kj and k; obtaining our final two-parameter expression for T(x)

1

-'i‘.(x) . —
ln(kl/ko)

[E| (kyx) = E (k;x)] (40)

1

This function was evaluated numerically and the approximate mean
transmittance curves are shown plotted in Figs. l6a and 17a along with the
precise line by line resules for comparison. Below these graphs in Figs. 16b
and 17b are the error curves for the two-parameter approximation and also, for
comparison, the error curves for the band model transmittances (see Figs. 2b
and 3b).

6

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions,
Dover, New York (1965)
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The range of integration in Eq. (26) for the variable of integration p is
0 < p £ l. For large values of the distance x, the contribution from the
upper portion of this integration range is very small. In order to demon-
strate this quantitatively, we have computed the upper limit of integration
required to compute 90% of the value of T(x) for various fixed values of x.
These upper integration limits are shown as tick marks in Fig. 15 and are
labeled with the appropriate value of distance x in kilometers. We see that
even for fairly small distances, the upper portion of the integration range
does not make much contribution. This would suggest that any analytic fit to
k(p) should be weighted to have the least error in the lower part of the p
range. The present procedure for calculating the slope parameter b overempha-
slizes the large k values, From Fig. 15 we see that a better fit would be
obtained in the lower portion of the k(p) curve if the slope parameter b were

less.

A new procedure, which gives more weight to the lower k values, was tried
for fitting the analytic function, Eq. (28), to k(p). The parameter ko is
still defined to be the minimum, k; = k(0). However, instead of computing the
average value of k as in Eq. (30), we now compute the average value of the
natural log of k

1
< gu(k) > = IO 2n [k(p)] dp (41)

The parameter b 18 determined by requiring that the average value of the
natural log of the exponential approximation, Eq. (28), is equal to < gn(k) >

1
<an(k) > = f gn [k, exp(bp)] dp (42)
0
This is easy to solve and we obtain
b= 2 [<gn(k)> - zn(ko)l (43)

The new value for the parameter k) 1s then computed by substituting this value

of b into Eq. (35) and the transmittance is computed using Eq. (40).
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This new analytic approximation to k(p) is shown plotted as the dashed
straight line in Fig. 18. The slope of the line has been reduced from that of
Fig. 15 and a better fit to k(p) is obtained in the lower range of the
curve. In Figs. 19 and 20, which show the transmittances and error curves for
our two example bands, the error has been reduced from that shown in Figs. 16
and 17. Thus, the second method for computing b, which gives more weight to
the lower k values, is slightly superior. It has a very simple graphical
interpretation in the semi~log plots shown in Fig. 18. The area under the
straight line approximation 1is equal to the area under the line by line
k(p). (Unless otherwise stated, in any future reference to the two-parameter

method, the parameters are computed by the < %n(k) > method.)

B. THREE~PARAMETER APPROXIMATION

Any further significant improvement in accuracy can only be accomplished
by increasing the flexibility of the analytic function used tc approximate
k(p). We have done this by dividing the integration range into two parts, 0 <
p £1/2 and 1/2 { p { 1, and approximating k(p) in each of these regions by an
exponential function

kO exp[blp], 0<p«<l/2
k(p) = (44)
k1/2 exlez(p-l/Z)l, 1/2 < p<gl
The function is required to be continuous which implies
k72 = kg explb,; /2] (43)

The maximum value of this function is

k explbz/Zl (46)

1" %12
The inverse function to Eq. (44) is

1
BI ln(k/ko) ko < k < k”2
p(k) = (47)
1
5 in(k/kl) k1/2 < k ¢ kl

2

and therefore from Eq. (34)
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1
bk kg ¢ k< ky )
£(k) = (48)
]
b,k kijg sk <k

Note that f(k) is discontinuous at k = k1/2‘

The minimum value of the analytic approximation 1is kge Just as in the
previous cases, this is defined to be equal to the true minimum value kj,, of
k(p),

ko = kmin = k(0) (49)

The parameters b, and b, are defined similarly to the previous case. If we

calculate the average values of gn|k(p)] in each half region

1/2

<o) > = [ enlk(p)] dp (50)
0
1

<an(k) >, = [ gnlk(p)] dp (51)
1/2

and equate these to the values obtained when the analytic approximation, Eq.
(44), 1is substituted for k(p) in Eqs. (50) and (51),

by =4 (2 <gn(k) >y T 1n(k0)] (52)

and

b, = 4[2 < gn(k) >, = anlk, ,)] (53)

1/2
The value of k), in Eq. (53) is computed using Eq. (45). With all the para-
meters defined, the analytic approximation, Eq. (44), is evaluated and plotted
in Fig. 21. This should be compared with the previous two-parameter approxi-
mation in Fig. 18.
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The transmittance 1is obtained by substituting the expression for f£(k)
given by Eq. (48) into Eq. (33) and evaluating the integrals. The result is

= 1 - 1 -
T(x) = EI [EI(kO x) El(kI/Z x)] + 3; [El(kL/Z x) - E (k, x)] (54)

Using Eqs. (45) and (46) we can express b; and b, in terms of kg, kl/Z' and

k). The final form for our three-parameter formula is

1
1/2

T(x) =

7 Tk, /) (E)(ky x) = E (k; /5 x)]

, 1
4 MFET(} N

3 [E, (k x) - El(kl x)] (55)

1'71/2

1/2

Transmittances computed using this approximation are shown plotted in
Figs. 22 and 23 along with the error curves. As can be seen, this three-

parameter approximation is excellent over the entire range of distances.

In the discussion presented so far, the two-parameter and three-parameter
approximations have been presented as approximations to line by line calcula-
tions. Obviously, they can also be used as a convenient fit to experimental

transmittance data.

C. k-DISTRIBUTION FUNCTION

The function f(k) is defined by Eq. (34). In differential form it is
dp = £(k) dk (56)

Integrating this expression gives

. k
: bp = p, = p, = fkl f(k) dk (57)

The quantity Ap is the fraction of the spectral interval for which k is in the

range k; < k < kyp. If k 18 considered to be a random variable, then f(k) is
the probability density distribution of k and Ap is the probability that a
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randomly chosen k will be in the interval k; < k < k,. For this reason the
function f(k) has been called by Arking and Grossman® the k-distribution

function,

Given the k—~distribution function f(k), the mean transmittance is given
by Eq. (33). 1In this expression the lower and upper integration limits have
been expressed as the finite values k; and k). This is in conformity with our
expectations for real spectra where kg > 0 and k,  w. It will be useful now
to extend these values to their ultimate limits and write

T(x) = [ explk x] £(k) dk (58)
]

[This more general formula is true even for real spectra, since we only need
to define f(k) = O outside the range kj < k <k;.]

Domoto7 recognized that this relation defines T(x) as the Laplace |
transform of f(k) and, conversely, f(k) is the inverse Laplace transform of .
T(x). He applied this procedure to the statistical band model where T(x)
is given by Eq. (5). The inverse transform he obtained is

. 3172 )
: 1 a ,k k k
f(k) = E [; (-E) ] exp[a(Z - :k - E)] (59)

where a = ;76e. This distribution is defined on the entire interval 0 < k
=,

The k-distributions f(k) for the two and three parameter models are given
by Eqs. (37) and (48), respectively. The exact k-distribution can be computed
numerically from a line by line calculation. These functions are plotted in

£ Figs. 24 and 25. Figure 24 compares a band model, line by line and the two~
parameter model. Figure 25 1s the same, but plots £(k) for the three—
parameter model instead of the two-~parameter model. Note that the three-

parameter f(k) is discontinuous.

7. Domoto, J. Quant. Spectrosc. Radiat. Transfer 14, 935 (1974).
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The cumulative distribution function 1s obtained by integrating the

probability density function8

k
p= [  £(k') dk' = F(k) (60)

min

The inverse of this cumulative probability function is the function we have

previously defined as the "monotonic absorption function” k(p). Thus
-1
k(p) = F (p) (61)

This procedure provides a means of computing the monotonic absorption function
k(p) for the statistical band model. Both steps of the proceaure must be done
numerically: first a numerical integration of f(k) to obtain F(k) and then a
numerical interpolation to obtain F-l(p). The results are plotted in Fig. 26.
The exact results are also plotted for comparisdn. This graph should be com-
pared with Figs. 15, 18, and 21, where k(p) for the two- and three-parameter

models are plotted.

The functions T(x) and k(p) are transforms of each other. One can be
computed from the other. The function k(p) is calculated from T(x) by the
procedure just outlined and T(x) is calculated from k(p) by Eq. (26). The
behavior of T(x) for large values of x is determined, for the most part, by
the values of k(p) in the interval near p = O. This is 1llustrated in Fig. 15
where the upper limit of integration used in Eq. (26) to calculate 90% of the
final value of T(x) is plotted for various values of x. In the limit as
X + ®, T(x) is determined by the single point at p = 0, k(0) = Kpin [see Eq.
(22)]. Thus, in order to compute T(x) accurately for large optical path
lengths, it 18 necessary to have an accurate approximation of the function

k(p) at and near p = O.

8S. L. Meyer, Data Analysis for Scientists and Engineers, Wiley, New York

(1975) p. 20, 103.
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Compare this also with Figs. 15, 18,
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The two—- and three-parameter approximations we have proposed take advan—
tage of the relatively simple form of the function k(p) by approximating
In{k(p)] by one or two straight line segments., These approximations are
constrained to be equal to kmin at p = 0, This ensures that our approximation
will have the correct long range behavior.

The statistical band model, on the other hand, is basically limited in
accuracy for large values of x because the information contained in the band
model parameters k, y, and 5e is not sufficient to determine k,, . More
generally it is not sufficient to determine k(p) in the interval near p = O.
The best that can be done with this information is to determine a distribution
of ka(P) functions which are compatible with the parameters. (The subscript

a labels the functions in this distribution.) The functions ka(p) determine
a family of mean transmittance functions T;(x). These in turn determine a
family of error curves Ea(x), which will look very much like the family of

error curves shown in Fig. 14.*

If the only information we are given about a band is the statistical band
model parameters, then each of the error curves Ea(x) is equally probable.
The error curve that applies in any particular case can be thought of as just

a random selection from this famlily of curves.

Before leaving this section, it is interesting to examine the functions
k(p) plotted in Fig. 26 in more detail. For convenience, the band model func-
tion will be written ky(p) and the line by line function will be written as
kL(p). The general behavior of kB(p) is that it turns sharply downward near
p= 0 and approaches the value kB(O) = 0, which is always less than kmin =
kL(O). This 1is a manifestation of the incorrect asymptotic form of the band
model transmittance function given by Eq. (21).

*The family of error curves shown in Fig. 15 is not exactly the same as those
described here, In Fig. 15 the parent populations were fixed, whereas in the
case decribed here the band model parameters k, Y, and 6o are held constant,
After the calculations for this report were complete, we discovered a simple
method to generate line parameters that have fixed band model parameters.
However, we believe that the family of error curves shown in Fig. 15 is at
least a good qualitative and also a semiquantitative picture of the behavior
that would result when the band model parameters are held fixed.
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In the region 0  p { pj where p; ~ 0.5, the relationship between kp(p)
and k;(p) will generally be one of two types. Either kB(p) < ki (p) as in the
lower graph of Fig. 26 or k.B(p) and k;(p) will intersect at some small value
p; with kB(p) > ky(p) in the region p; < p < p, as in the upper graph of Fig.

3 26, For the first case, we can predict from Eq. (26) that TB(x) > -'fL(x) and
thus the error ratio will be greater than 1. This behavior is i1llustrated in
Fig. 3b.

In the second case, the behavior is more complicated. Fcr moderate
values of x the result will be "fB(x) < '-fL(x), However, as x increases, the
effective range of integration in Eq. (26) decreases. At some point it will
fall entirely within the interval 0 < p < p; where kB(p) < kL(p). When this
occurs we obtain TB(x) > TL(x). Thus the functions ?L(x) and ?B(x) eventually
cross and the error ratio varies from less than 1 to greater than 1. The
: beginning of this behavior 1is illustrated in Fig, 2b which presumably would
¢ follow the scenario just outlined if x were extended beyond 100 km., The error

ik i 4%

curves shown in Fig. 14 1llustrate both types of behavior.

D. MONTE CARLO METROQOD

The term "Monte Carlo” usually refers to a computational procedure in
which a large (or infinite) distribution of values of some quantity or
parameter 18 replaced by a manageably small, unbiased random sample of the
distribution. For example, a physical quantity may be the average value of
gsome distribution. The Monte Carlo approximation is computed by generating a

b random sample of the distribution and then averaging the random sample. 1In
b ¢ ’ the present case, the Monte Carlo method is a practical procedure for calcu-
_' lating the parameters for the two- and three~parameter approximations from an

unbiased random sample of the k-distribution.

The k-distribution 1is the continuously 1infinite collection (or
population) of k values that are defined by the function k(v) in the band
interval Av without regard to their order. An unbiased random sample of this

infinite population of k values can be generated by randomly selecting M wave
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numbers vy (1 =1, M) from the band interval and then calculating k(vi) using
Eq. (2). The random wave numbers are computed from random numbers Xy in the
interval 0 to 1 by the formula

\)i = (\)U - \)L) xi’ i= l’ M (62)
are the upper and lower boundaries of the band.

where v and y

U L
The least value of k in this random sample is a good approximation to
kpinp and 1is set equal to the parameter kg for both the two- and three-

parameter approximations.

The average value of gn(k) for the M values of k in the random sample is
the Monte Carlo approximation to the quantity <gn(k)> defined by Eq. (4l).
The parameter k; for the two-parameter approximation is then calculated by
combining Eqs. (35) and (43) to obtain

K, = Tl‘-(; expl2 <gn(k)>] (63)

For the three-parameter model we must compute Monte Carlo approximations
for the quantities <zn(k)>1 and <zn(k)>2 defined by Eqs. (50) and (51),
respectively. The quantity k(p=1/2) is the median value of k which we
designate k;. 4. This is the value of k such that half the elements of the
distribution exceed it in value and half are 1less in value. The
quantity <zn(k)>1 is the average value on gn(k) for k < k, ., and <g,n(k)>2 is
the average value of gn(k) for k > kmed' Thus in the Monte Carlo
approximation we divide the random sample of M elements into two groups, each
with M/2 elements such that any k value in the first group is less than any k
value in the second group. (In order to avoid any ambiguities in this
procedure, we always choose M to be an even integer.) The average value
of gn(k) in the first group is an approximation to <2,n(k)>1 and the average
value of gn(k) in the second group approximates <zn(k)>2. The parameters kl/Z
and k; for the three-parameter model are then computed by combining Eqs. (45),
(46), (52), and (53) to obtain

k

2 " {— expl4<gn(k)>, ] (64)
0
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and

1
kLt %

exp[4<zn(k)>2] (65)
1/2

In Figs. 27 and 28 we show the results obtained by this method using the
three-parameter approximation and a random sample of M = 50 values of k.
These results are almost as good as the results obtained previously using 1000
points but recquired about 1/20 the computational effort. The Monte Carlo
procedure is thus an efficient method for carrying out (approximate) line by

line calculations.
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IV. SUMMARY AND DISCUSSION

In this report, we have investigated the reliability of the statistical
band model by comparing the model with precise line by line calculations, and

we have also derived two new nonstatistical band model approximations.

The first part of the study, which is an evaluation of the statistical
band model, is contained mainly in Section II with some additional discussion
in III-C. The study was carried out on a system of Hy)0 absorbers in the wave
number range 2800 to 3400 em™l. Tests were also made using sets of computer
generated line parameters. The results of these calculations were presented

graphically.

Figures 5 and 6 show that the distribution of H,0 line strengths and line
spacings are in reasonable agreement with the theoretical assumptions made in
the statistical band model. The line by line and band model transmittances
are compared in Pigs. 1, 2, 3, 13, and l4. It is concluded from these (and
others not presented here) that the statistical band model is fairly reliable
in the short optical path length regime im which T(x) > 0.1, but for long
paths where T(x) < 0.1, the transmittances can be in serious error by orders
of magnitude. This error has a random component that dominates at intermedi-
ate distances and a systematic component that dominates at very long dis-

tances.

The random error arises because the information contained in the band
model parameters 1s not sufficient to define a unique k-=distribution, but
rather is compatible with an entire ensemble of k-distributions from which one
has been randomly selected.

The systematic error arises because of certain simplifying assumptions
made in the derivation of the band model transmittance. All values of the
strength parameter and all values of line spacing from O to » were allowed.
As a result, the k-distribution extends from O to = whereas any real distribu-
tion has finite limits, kmin > 0 and kmax { @, The unphysical k values in the

range 0 to kmin result in an erroneous asymptotic behavior for the band model
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transmittance that is consistently too large. This systematic component of
the error is easily computed from the asymptotic formulas and is given in Eq.
(23).

The second part of this report is concerned with the derivation and
testing of two new nonstatistical band model approximations. They are
referred to simply as the two-parameter and three-parameter approximations.
The formulas for these two approximations are given by Egqs. (40) and (55).
They are compared with the exac* results and with the statistical band model
in Figs. 19, 20, 22, and 23. We conclude that the two-parameter model is
sometimes slightly inferior to the statistical band model for short optical
paths but is always much superior for long paths. The three-parameter model
is uniformly excellent for all path lengths.

The present study was a preliminary investigation and was limited in its
scope. A more complete study should repeat most of the calculations in this
report over a broader range of conditions including much higher and lower
temperatures and pressures, for other portions of the Hy0 line system, and for
several other molecules, especially COy. Also other line profiles should be
studied.

Several other topics that could be included in a new study would be a
study of the temperature and pressure dependence of the model parameters ko,
kl/2' and kl; a generalization of our new approximations to systems with non—
uniform temperatures and pressures; and the development of practical numerical
techniques for fitting both the two- and three-parameter formulas to experi-

mental transmittance data.
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LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting exper-
imental and theoretical investigations necessary for the evaluation and applica-
tion of scientific advances to new military space systems. Versatility and
flexibility have been developed to a high degree by the laboratory personnel in
dealing with the many problems encountered in the nation's rapidly developing
space systems. Expertise in the latest scientific develcpments is vital to the
accomplishment of tasks related to these problems. The laboratories that con-
tribute to this research are:

Aerophysics Laboratory: Launch vehicle and reentry aserodynsmics and heat
transfer, propulsion chemistry and fluid wechanics, structural wechanics, flight
dynamics; high-temperature thermomechanics, gas kinetics and radiation; research
in environmental chemistry and contamination; cw and pulsed chemical laser

development including chemical kinetics, spectroscopy, optical resonators and
beam pointing, atmospheric propagation, laser effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions, atmo-
spheric optics, light scattering, state-specific chemical reactions and radia-
tion transport {n rocket plumes, applied laser spectroscopy, laser chemistry,
battery electrochemistry, epace vacuum and radiation effects on materials, lu-
brication and surface phenomena, thermionic emission, photosensitive materials
and detectors, atomic frequency standards, and bioenvironmental research and
monitoring.

Electronics Research Llaboratory: Microelectronics, GaAs low-noise and
power devices, semiconductor lasers, electromagnetic and optical propagation
phenomena, quantum electroaics, laser communications, lidar, and electro~optics;
communication sciences, applied electronics, semiconductor crystal and device
physics, radiometric imaging; millimeter-wave and microwave technology.

Information Sciences Research Office: Program verification, program trans-
lation, performance~sensitive system design, distributed architectures for
spaceborne computers, fault-tolerant computer systems, artificial tntelligence,
and microelectronics applications.

Materfials Sciences Laboratory: Development of new materfals: wmetal matrix
composites, polymers, and new forms of carbon; cowmponent failure analysis and
reliability; fracture mechanics and stress corrosion; evaluation of materials in
space environment; materials performance in space transportation systems; anal-
vsis of systems vulnerability and survivability {n enemy-induced environments.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radiation
from the atmosphere, density and composition of the upper atmosphere, aurorae
and airglov; magnetospheric physics, cosmic rays, generation and propagation of
plasma waves {n the magnetosphere; solar physics, infrared astronomy; the
effects of nuclear explosions, wmagnetic storms, and solar activity on the
earth's atmosphere, ijonosphere, and magnetosphere; the effects of optical,
electromagnetic, and particulate radistions in space on space systeums.




