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“We consider the two-point boundary value problem for stiff systems of
ordinary differential equations. For systems that can be transformed to
essentially diagonally dominant form with appropriate smoothness conditions, a
priori estimates are obtained. Problems with turg*gg points can be treated
with this theory, and we discuss this in detajl. W€ give robust difference

f:pproxinations and present error estimates for these schemes. In particular
<Y

we give a detailed description of how to transform a general system to
essentially diagonally dominant form and then stretch the independent variable
so that the system will satisfy the correct smoothness conditions. Numerical

examples are presented for both linear and nonlinear problems. F\\\
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NUMERICAL METHODS FOR STIFF TWO-POINT BOUNDARY VALUE PROBLEMS

» *e *
Heinz~Otto Kreiss , N. K. Nichols , and David L. Brown

1. Introduction
In this paper we consider the two-point boundary value problem for a linear

system of n ordinary differential equations (ODEs)

%:4(:),, +F(z), Oszsc, (1.1)

subject to n linearly independent boundary conditions )
B,y(0) + Byy(c) =g . (1.2)
Here yT = (y, y®, - . - ™)) Y i3 a vector function with n components and B,,

B, and A(z) € C? ¥ are nxn matrices. We assume furthermore that the vector
F(z) e C?.

We are particularly interested in the case when the problem (1.1)-(1.2) can
be characterized as being stiff but not highly oscillatory. The “stiflness” of a
system of ordinary differential equations is dem;ed relative to a computational

grid on which the system is to be soived by means of e.g. a difference approximation:

By h, By s

P sy r—&_\ ’ ;ﬁ
— H+— - %
X0 % -1 X

We divide the r-axis into subintervals of variable length hj with gridpoints

1’1\\11 numerical computations were made on the Caltech Applied Mathcmatics
Department Fluid Dynamics VAX.

.Deparunent of Applied Mathematics, California Institute of Technology 217-50,
Pasadena, CA 91125,

L X ]
Department of Mathematics, University of Reading, England RG6-2AH.

T ¥ is a vector then y' denotes its transpose and ¥’ its adjoint. The vector norm is

defined by [y| =max|y!¥|. Similar notations hold for matrices, for example

{Al =sup {Ay |/ ly|. Furthermore for vector functions Jy(x)ly, -.t:l.n.x. ly(s)! denotes
y

¢ maxirnum norm.
A(z) € C! if the elements of A are j times continuously differentiable.

Sponsored by the United States Army under Contract No. DAAG29-80~C-0041.

Research partially supported by:
Office of Naval Research Contract No. NO0014-83-K~0422; and Air Force Office

of Scientific Research Contract No. AFOSR-82-0321. {
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v=1
%o =0,z,= 2 Ry, v=1,2,...N; zy = c and denote by u, = u(z,) vector func-
j=0

tions defined on the grid. Defining A = max R;. we say that the system (1.1) is

p—

stiff if A|A| >> 1. The case when it is possible to choose A such that A 4] « 1
everywhere has been treated many times before and it is not our aim to discuss

that situation here.

-

There are essentially two features of stiff boundary value problems that
makes their solution by numerical methods difficult. One is that the matrix 4
has large eigenvalues of both signs. The second is that there may be furning
points in the problem. The concept of a turning point is not particulariy well
defined in the literature; however for our purposes, we take it to mean a subin-
terval of 0 <z < ¢ over which an eigenvalue of A changes its order of magni-
tude: In general, if the eigenvalues of A vary over several orders of magnitude

as a function of z, there are difficulties.

It is typical that the solutions of stiff boundary value problems vary over
several different scales. Therefore, it is intuitively clear that in order to obtain
an accurate numerical solution to such problems the computational grid must
be constructed in such a way that the solution of the problem is everywhere
smooth with respect to the grid. Alternately, we can think of changing the origi-
nal problem by introducing a "stretched” variable ¥ = Z (z) such that the solu-

tions y(Z ) of the transformed problem
(=) %—: Ay +F

varies slowly with respect to a uniform grid A, = A. Since y(z) can change by
several orders of mgghitude we have to be careful about what we mean by "vary-

ing slowly”. We must first scale y correctly. We assume that this is achieved by

a positive scaling function ¢ € C*. The smoothness constant of this scaling
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function is defined by

A A .
K := Kies)p = sup, max|(d"p/ dz")/ ¢

Thus ¢ can grow like cf" or decay like e"i' . If, for example, 1'(‘ = 10, then we
can obtain a change of scale over a short interval.

Definition 1.1: A scaling function varies slowly for a's z < b with respect to
a uniform gridlength & it AK « 1.

We now consider ¥ and assume that we have chosen a slowly varying scaling
function ¢ such that y = ¢ . We can now think of §f as being of order O(1) and

therefore we define its smoothness constant K by

o= I vy v
R = R[.."’ : .S‘l:g“n‘lg‘d Yy /dz

This leads to

Definjtion 1.2: y varies slowly for a <2 < b with respect to a scaling func-

tion ¢ and a uniform mesh with meshsize A if

Kh <« 1, K= nax(X,K)

The definition above is useful for numerical purpuses only if we can deter-
mine the smoothness constant K without détniled knowledge of y(z). In the
next section we begin by considering scalar equations and show that X can be
determined in terms of the properties of the coefficients of the differential equa-
tion. In sections 3 and 4 these results are then generalized to systems of ODEs

which can be smoothly transformed to essentially diagonally dominant form.

For the problem (1.1),(1.2), the constant K can be determined in every

subinterval b; <2 < b, of 0z € c. If K does not change by orders of magni-

tude from subinterval to subinterval, then we can use a uniform meshsize h with

bedas ol o s
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M «1 everywhere on the whole interval. However, as we pointed out above, it
is typical in stiff problems that there are several different scales on which the
solution varies; for example there can be boundary and internal layers. These
variations manifest themselves in values of K which vary over several orders of
magnitude between subintervals. In sections 9 and 10 we discuss how to con-
struct the stretched variable Z (z) mentioned above s0 that the new smoothness
constant "is of the same order everywhere. This stretched variable leads

to a nonuniform mesbh in the old variable z.

In the remainder of the paper we discuss difference approximations for stiff
systems and give numerical examples. There are two basic classes of difference
approximations that can be used; these are centered schemes and onesided
schemes. Onesided schemes have the apparent disadvantage that the
differential equation must be transformed to an appropriate form before they
can be applied. However, centered schemes are not as reliable as onesided
schemes, and as we show in section 5, they cannot be expected to give accept-
able results in general unless the system has been transformed to the proper
blocked form. Even then, the combination of onesided and centered schemes
which we advocate in that section will perform better than a strictly centered
scheme, This is true basirally because the fundamental estimates for the
former more closely mimic those of the differential equation than do the esti-

mates for the centered schemes.

In sections 8 through 8 we discuss difference approximations in more detail.
Section 8 is concerned with difference approximations for scalar equations, and
sections 7 and 8 cover diagonally and essentially diagonally dominant systems.
In section 9 we describe how to transform a general system to essentially diago-
nally form. Finally, in sections 10 and 11 we give a detailed description of our

numerical procedures and present some numerical resuits.
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2. Analytic properties of scalar equations.

. In this section we consider scalar complex valued equations

&= a@ly + ().
v(0)=y,. O0<z<c Reac<0. (2.1)

We are interested in the case that a(z) is large but we are not interested in
the case that y(z) is highly oscillatory. Therefore we assume that there is a

constant p ~ 0(1) such that
la;(z)| < plagl a; =lma, ag = Rea <0. (2.2)

Later on we want to solve (2.1) by difference approximation on a grid with
| essentially uniform gridsize A. Because our difference approximat;ion will only
. depend on point values of a(z) and f{z) it is important that the behavior of
these point values represents well the behavior of the continuous functions. An
appropriate assumption is that there exist a natural number p > 0 and a con-

stant K, > 1 with K|A << 1 such that

el + 0" S s K U721+ 0780, < 1,

v=12..p. (2.9)

The number p, which will depend on the method we use, will be chosen later.

We can use (2.3) to estimate the local variation of a(z) and f(z). Letting - -

@ =(f +sgnf) 'df/dz and y = gsgnf we can write

d e
8L = y(2)1 (=) + ¥(z)
Liatrd t‘"u-{i ‘;“/-' )
’ . ]
i.e. availanility Codes !
Aveil and/or :
nist | I.eclal 2
J vt i‘ e | | ’
. ’ d e _,(
I(Z)=fc'l v(n)dn + ¢ 7(0) ‘ﬂ- ‘ j -
° .
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or
1(z) = «™7(0) + zgo(s)
where by (2.3) ‘
l9()] < ki igalz)l = K™,
Therefore for |[Kyz| <1

[£(z) =7(0)| < |«® =1 |£(0)| + |z]lgel < |Kuz|(1 + O(I Kyz )| £ (0} + 1).

A similar estimate holds for a(z). Thus we have

Lemma 2.1: For all z, with K, |z, —zo| < 1

la(z,) = a(z,)| = | Ki(z) = zo)|(1 + O(| Ky(z, — zo)|)) | a(z,)].
17 (=) = 1(=,)| s | Ki(zy = 20) | (1 + O(| Ky (=) = 20)])) (17 (z,)] +1).

If the expressions (2.3) are not bounded then we cannot expect that the

solution of (2.1) varies slowly. As an example, consider the differential equation
gl‘.zl_= _2__1: ty+eXd y(0)=0 O0sz=<1.
Here ¢ > 0 is a small constant ( for example ¢ = 108 ). Now

(la(z)| + 1)"'|da(z)/dz| = |(z + 2¢)7'

becomes arbitrarily large for £ + 0. For zVZz > 1 the solution is to first approxi-

mation given by

X
T+

v:

and varies slowly. However, for 0 € z < const. Ve it changes rapidly. To see this

we introduce a new variable ¥ = z/ V¢ and obtain
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-7- b
dy/dE = ~(F + M)y +1, y(0)=0

i.e. y(z) varies slowly as a function of # but not as a function of z. This can also

be seen from the graph of y(z). - ;
!
§
ote™¥l ‘
; ote¥)
g 21
The conditions (2.2), (2.3) still do not guarantee that the solutions of the
differential equation change slowly. Consider, for example,
dy/dz = -7y, y(0)=1 0<e«1l.
All the above conditions are satisfled. However the solution is given by
y(z)=e*’*
which forms a boundary layer and decays rapidly [.om 1 to zero. This possibility -

can be avoided if we assume also that a(0) is not too large, i.e. there is a con-

stant K; > 1 with Kpgh <« 1 such that ;
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lap(0)| < K. is. |a(0)] = (p + 1)K, (2.4)

Observe that the conditions (2.3), (2.4) do not prevent a(x) from becoming large
because (2.3) allows a rather rapid exponential growth of a(z) away from the
boundary. Numerically this corresponds to the requirement that we use an

exponentially stretched mesh to represent boundary layers in the solution.

The above conditions are not sufficient to guarantee that the solution y(z)
stays bounded. Therefore we assume  explicitly that the equation has been

properly scaled such that

Hy{z)o. = 1. (2.5)

The following lemma says that (2.5) implies the condition
I£17(la] + 1) < constant.
Lemma 2.2: Assume that ¢ 22/ K,. Then there is a constant C3 which

depends only on K, such that
VS o = Gl . (2:52)

Proof. Without restriction we can assume that fyllo. = 1. Let zgy be a
puint with

I (zo)

Iaiz,ﬂ +1

=1,

>

Itfjc -=z,| = 1/ K. we consider (2.1) for z 2 z, and introduce new variables

~ (’ _30) g - ‘ﬂ(z.)' + 1
TS I U A T S T
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dy/dZ = (1 + |a(z,)|)'a(z)§ + 1 (z)/ 11 (z,)!.

By lemma 2.1

Y——

a(z) - a(z,) |
la(z)| + 1 |

a(z,) '
la(ze)| + 1|

a(z)|
'u(zo)l +1

<1+ 0(lKi(z - 2,)]).

and ]Lﬁ:—l))ra 1-0(|Ky(z -—z,)|). Therefore

Vo= Lo)e i yeyr [ 28 _ge

1+ |a(z,)]
implies
19 12,5, 2 17 (z1)] 2 (21 ~ 2o)(1 = O(| K2, ~ 20)|) -
(z1 = zo)(1 + O(| Ko(z, ~ 20} DT U5, s,

Thus for |z, -z, | = 8/ K. § > 0 sufficiently small,

~ - la(zo)l +1 ]
"y "‘n-’l - T,-Gf.—)‘—-llyll,.,lz -ér

Since the last inequality holds for any z,. the inequality of the iemma holds in
this case with C3=2K,/68. It |[c - z,| < 1/ K, then by considering (2.1) for
z < z, instead, we obtain the desired inequality in a similar way. This proves the

lemma.

We shall now prove that under the conditions of (2.2)-(2.5) there is a con-

stant C such that the solution y(z) of (2.1) satisfles

ld¥y/dz*lec s C. v=12..p.
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This is easiest to show when |a{z)| is small for all z: We have

Lemma 2.3: Assume that (2.5a) holds, that conditions (2.2)-(2.5) are
satisfled and that

Q—

lag(z)llo: < Kz

Then there is a constant C which depends only on K, Kp, p such that (2.8) holds.

Proof: (2.2) implies
fa(z)lloc = (o + 1)K
Therefore by (2.3)
|ld¥a/dz¥]oc < K ((p + 1)Ka+1) v =12...p
By (2.5a) and (2.3)
7 (z)lloc < Cs(llalloe +1) ie [[d¥f/dzV{oc < const., v=12..p.

Using the differential equation, (2.8) follows.

We assume now that

“R(z) < -1, (2.7)

i.e. we allow |agp | to become arbitrarily large. We will use

Lemma 2.4: The solution of (2.1) with az(z) = Rea < 0 satisfles the esti-

mates

sg(€)d¢
@) sz max 7] +e* " Iy, (2.8a)
.".lp(t)‘(
ly(z)| < max |f(n)/ap(z)] +e® ly (0)1. (2.8b)
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Proof: The solution of (2.1) can be written down explicitly: |
3 . 3 t
= [atoa _of a(6)d¢ |

y(z) = ]0' e”  flndn+e y(0).

The first estimate follows from the inequality

E A )

3
o(O)a¢ J aptorde
[ ]

|<e <1

Furthermore

z [ ap(ode NG
Iy(’)'s{”"R If(ldn +1e®  |ly(0)] <

s } ap(é)d¢ } ap(éla¢
[ eatme® s apm)dn [+ T jy(0)] =

L]
z
q S oteee J srterae
—e" d7n| - max /a +e? 0
{dn n |£ (n)/ ag(n)] ly(0)}
which gives us (2.8b).
Using lemma 2.4 we can obtain

Lemma 2.5: Consider (2.1) and assume that the condition (2.2) is satisfled.

Then there is a constant C; which depends only on p such that

|d¥y(z)/ dz¥| < (2.9a)

v—1 _ djﬂ dj . 4 dy (0
C;[’Z-:o fla l—_—,d.ﬂ: los | _l-ldzi los + lla l_L.ldzv los + l—ﬂ-)-ld:v v =0,12..p.

It turthermore (2.3), (2.5a), and (2.7) hold, then there is a constant C; which

depends only on K, and p such that

m:ik,.«".,n B
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diy(0
%—L’ ] (2.90)

Proof: For v = 0 the first two estimates follow from (2.2) ¥nd lemma 2.4

ld'y(z)/dzv| < Ca[“ll Hos + 1 +’f3
L 3]

since
I 7agl = 1f/allasagl s (1+p)1f/al.

Now let u = dy/ dz. Diflerentiating (2.1) gives us

%:mi-(%-)yi- % (2.10)

Thus by lemma 2.4
ldusdzllo, < llag'dasdz o,y los + lag'df 7dzllo, + |dy/dz ] 0.
Now

lag'da/dz g < (1 +p)la~'da/dz o,
lag'df / dzllox < (1 + p)la'df 7 dz o, < (1 + p)] 11{;—’,'—‘410, | 2.

and if |a| = 1 we have also that
la='da/dzflg, <2(((la] t 1) 'dasdz |,

and

uﬂL'a"_ll-"o"‘znT._L__"o.. +1 ’

al +1

and so (2.9a,b) follow for v = 1 from (2.2), (2.3), (2.5a) and (2.7).

The estimates for higher derivatives are obtained by repeated

differentiation of (2.1). This proves the lemma.
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Ve can now prove the main result of this section

Theorem 2.1: Assume that C = 2/ K, and that the conditions (2.2)-(2.5)
hold. Then there is a constant C which depends only on K, Kp. p euch that (2.8)
is valid.

Proof: Lemma 2.2 tells us that (2.5a) holds. Now divide the interval
0 < r < ¢ into as few subintervals c, € z < c,,, as possible such that at least one

of the two conditions
lag(z)| < Ko, ap(z) < -1

holds in the whole subinterval. If Jap]| < Kp is valid then we can estimate the

derivatives by lemma 2.3. If ag < -1 then we can obtain the estimate using lem-

mas 2.2 and 2.5 if we have a bound for i: |diy(c,)/dzi|. The interval
§=0

0 =cy <z <c; is included in the case |ap| < Kp. so we are only concerned with
the remaining intermediate points ¢,, 7 = 1,2,.... For these points we obtain this
bound from the estimate for the previous subinterval c,_, < z < c,. This proves
the theorem.

Finally, we can eliminate the condition (2.5), i.e. the assumption that we

have scaled the solution beforehand. If |y lloc > 1 then§ = y/ |y o, satisfies
dj/dz =c(z)f + 7. J =717/ 1lyloc. (2.10)
Now
171+ 1) a" ) 7dzlloe s N(17 1 + 1)7'd"f /7 d=¥]q,

implies that (2.10) satisfies all our conditions. Thus

Nd*y 7 dz*lloe < C.
ie |dVy/dz'| oec = Clylloe for ly loe > 1.

(2.11)

S A0 man i L
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Combining (2.6) and (2.11) gives us

Theorem 2.2: It the conditions (2.?)-(2.4) are satisfled, then we obtain the

estimate —

Hd*y/dz¥lloe = Clyllos + 1). v=12...p. (2.12)

Remark: It AC << 1 then y(z) is slowly varying with’'respect to the scaling

function p = |yllgc.. We can obtain a much more precise result by using

¢= V“/ F+1)/(Jal®+1) as a scaling function. To explain this we assume

thata >> 1, f > 1anduse ¢ = |f/a|. Then

liL;Els 17771+ la/a| ~2K

and § = y/ ¢ satisfies

U'=(@-¢/9)f +a, ie |J|=|as(a-p)l~1
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3. Disgonally dominant systems.

We consider now systems of differential equations. A reasonable assumption
for such systems is that the coeflicients change slowly, i.e. that they satisfy con-
ditions of the same type as we described for scalar equations. Unfortunately,
this assumption is not sufficient to guarantee that th_e solutions of the systems

also vary slowly. Consider, for example, the system

e A

v(-1)=a v(l)=g (3.1)

In a neighborhood of z = 0 the functions z%, ¢~!, ¢¥z satisfy the conditions (2.3)
with K, = 1. However, the solution is not smooth. In component form (3.1) is

given by
u'=z%, ev'=u-¢cliz
ie.
ev” = xf ~ k.

A graph of the solution is given in fig. 3.1.

There is however a class of problems that behave like scalar equations and

we shall describe this class now.

Definition 3.1: The matrix function

a(z) ay(z) - aym(z)

ag(z) - - agm(z)
Alz)=| ... ... e

Bmi(Z) 0 Gum(Z)

is diagonally dominated if

R




-16~

T il "
(e¥)

Fg. 3.1

a)

Reay <0 i =12,..7r.
Reay >0 d<=r+l,....m

$) There is a constant é > 0 independent of z such that
ﬁlavl < (1 ~6)|Reay|, i=12..m
I

7) There is a constant p ~ 0(1) such that

|Imag | < p|Reay|. & =1.2...m,

If A is diagonally dominated then it is appropriate to write the system (1.1)

in the form : h

%=A(I+B)v+i'. 0Oszsc (3.2) 3

where




A

- BF

[3Y T
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with
N = diag (ay).a2. ' * * .ap), AT = 'ﬁﬂg(ﬂrﬂ.rn-ﬂna.rn- C O )

Such a system is said to be in diagonally dominant form. Corresponding to (2.3)
and (2.4) we rmake

Assumption 3.1: There is a constant K, such that .

ad v
IS sk 15 o <K v=12.p.

Assumption 3.2

v
Iy <Ry v = L2

Remark: Corresponding to the previous section we can replace assumption

3.2 with
v{¢)
1(|rols 01 EE,, <k,

We shall always assume that |a;| > 1 and therefore assumption 3.2 means that
we have already scaled the equation properly.

Assumption 3.3: There is a constant Xj such that
W)= ke )| ke

We shall show that under these conditions the solutions of the system (3.2)
change slowly. We start again with a couple of lemmata:

Lemma 3.1: Assume that A(z) is diagonailly dominated. Then the solutions

of (3.1) satisfy the estimate
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Iu(2)) < Hia+ 4 Flo, + ()

'.l ..”
R L TR L e (3.4)

Here we have used the notation

yi(z) = (@M, - gy, yH(z) = (yir*n, .. - Yy
a/(z) = ,l:u"‘nrll!eq(z)l. all(z) = _min_|Reay(z)] .

Proof: We consider first the case y/(0) = y”(c) = 0. Let M denote the space

of all continuous functons g with g/(0) = g”(c) = 0. The differential equation

Lys= %-Mﬁ‘

has a unique solution in M given by

Let L, denote the operator defined by

Ly=(A-Ay. yel

Then we can write the differential equation (3.2) in the form

U - 15"y = '

In the same way as in lemma 2.2 it follows that




s
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HLe's (=)l oc = 211(A + A°) ' F(2) g,

Furthermore

15 lay oo < 20(A + A*) yy lloe s (2 - 8}y loe

and the estimate (3.3) follows for the case that y/(0) = yZ(c) = 0.

Now we consider the case where f = 0 and y/(0), y”(c) are arbitrary. We

let y be the solution of (3.2) and write

4(0) .{ N(od¢
y=v+Dy,. ¥ = H(c)

. D=

» .
JNloee
0 e’

Then v satisfles
v'=Av +(A-ADy,, vI(0)=v(c)=0
By (3.3) we obtain

Hv(z)loe = 67 H2(A + A") HA - Aol Dloe - lvel =

jayl
-1, -t(q -
< 6 m?xLZ':"Re ] Yol €871 = 6) |y, .
Thus
ly(z)] <6711 = 8) lyol + lyal = 671w . (3.5)

To show that in addition to being bounded, y(xz) decreases exponentially away

from the boundary, we consider the solution of (3.2) with

' J =0, y/(0)=yl yi(c)=0

Lety = e?®)z  p(z) = -g—fu’(t)dt. Then z(z) satisfies the equation
°

e




=20~

e(z) = (A() + $al(2)Ds(2).
Using (3.5) we obtain
l2(2)1 < 2yl
Therefore .

ly(z)| s ePB)|g(z)| = 26-1aP®)|y]|.

The corresponding result holds for y(0) = 0, y¥(c) = y{. Thus we have proved

the complete estimate (3.3).

In the same way as for the scalar equation we can now use the last lemma

to discuss the smoothness of the solutions of (3.2).

Lemma 3.2: Consider the system (3.2). Assume that A(z) is diagonally

dominated and that the conditions of assumption 3.1 are satisfied. Then there is
a constant C,; which depends only on K. p. and 4 such that

i :_;llv.u,., < c,[f_}oll A"d%,z-"o.c]* ,f_;[lgd_;uil_{,.o ¥ %ul '

Proof: The proof resembles the proof of lemma 2.5 closely. For v = 0 Lhe

estimate is given by lemma 3.1. Let u = dy/ dz and differentiate (3.2). Then
du _ F=. 4, (d4
o Aiz)u + P, F= =t [E:—]y (3.8)

~
Using the estimate for y we obtain an estimate for 7 ‘' and lemma 3.1 gives us

the estimate for u. This process can be continued and the lemma is proved.

We can now prove the main resuit of this section.
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Theorem 3.1: Consider the diagonally dominant system (3.2) and assume

that assumptions 3.1-3.3 hold. Then there is a constant C which depends only on

K. R\ p. and 6 such that

dV
. < C{Il'y los + 1]. v=1,2...p. (3.7)
Proaof: By lernma 3.2 and assumption 3.2

gl )

j=0
By assumptions 3.2 and 3.3 and since 4 is diagonally dominated,

llf:—;%'ﬂo.c < CI[VRI +

2 lagl 2K, |FW < KR, i=12..r

=

holds at z = 0. Therefore the differential equations gives us

I%QLI < 2K;|y(0)] + KoK,

Correspondingly we get forz = ¢

l”ﬁ,‘f’

s 2K|yl(c) 1 KR,

Thus by lemma 3.2 we can estimate [|dy/ dz |[o,. The estimates for higer deriva-

tives are obtained as before by differentiation. -

It AT(0), A’(c) are not O(1) then we introduce an exponential stretching

such that they are bounded in the stretched variables, Let

@, = max|ay(0)| > 1

and introduce new variables by




¢
s Teme
z =o' [o(e. (o) = e

where g will be defined below. Then the system (1.1) becomes

%L: a'p(@)ay + a'p(E)F(z).

Let ¥, = K, 'loga, and choose

, for 0sn<¥, - K¥ tor 0% <%,
9(n) = for n=2%, te. p(Z)=  for 532,

X
e

g

-1)/aK, for 0<% <¥, l
+z,-%, for T >%, vz =(1-ai')/ K,

Now treat the neighborhood of z = ¢ correspondingly. Then A/(0), A(c) are

bounded and assumptions 3.1 and 3.2 hold for p = 1 with X, R ) replaced by 2K,

2K,. Thus the estimate of theorem 3.1 is valid for p = 1. In particular || %]:{:_"' .

(where z;=c¢ |1 ag'|/K), and ag= %2'“1) is already boundcd in the
unstretched variable because for z; < z < z; no stretching occured.

To obtain estimates for higher derivatives we could replace g(n) by a
smoother function. However, this is not necessary. Apply tl':e stretching to the
differential equation (3.8) for u = dy/dz. The we get a bound for du/dZ. On
any of the subintervals 0<Z <z, z,<z <z Z;<z <c differentiation com-
mutes with stretching and therefore we can estimate the derivatives on every

subinterval in terms of [y los + 1. In particular we have for the subinterval

away from the boundaries:

e T . TIN5

o d A YSANPPAPUR S, S e e

gy




=23~

Theorem 3.2: Assume that assumptions 3.1 and 3.2 hold and that ¢ > 2/ K.

Then there is a constant C which depends only on X, R,. K2 p and 6 such that

dv
1S3 K-k, < Cllwloe + 1
d.'r: 1 1

P L D )
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4. Essentially diagonally dominant systems.

The class of diagonally dominant systems is not broad enough to include
many interesting problems. Therefore, in this section we generalize our results
to systems which are essentially diagonally dominant or which can be

transformed smoothly to systems of that type.

Definition 4.1 A matrix

n Gz 0 Gy
Gz, @22 " Ggn
{ . 0 @

is called essentially diagonally dominated if there is a constant K, with K,h « 1

such that A can be partitioned into the form

ay, 0O -~ O
A 0 a 0 0
1 A2 22
A:Ezl AZZ]' A”'—'A(l-"' B). A: L, - . . ,
0 C o O

where 4,, is diagonally dominated and
"A_lA;z" 0.c < Ko~ “ AZJ “ Oc = Ko' .7 = 1'2

We consider now systems (1.1)

abfoidll -l s

where A is essentially diagonally dominated. Such a system is said to be in
essentially diagonally dominant form. We are interested in the case that

h|A, | > 1. We make

Assumption 4.1:
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3 HA'dYA/ dz¥|l, ¢ < Ky [AT'dYAp/ dz¥lloe < K.

“de/ dz"ll O.c < K). “dvAzj/ dz"H 0.c < Kl' j = 1.2: ve= 1.2.....P .

Lo

Assumption 4.2:

{ A/ dz¥loe < Ry Nd"H/dz")oe s Ky v=0.12..p.

Assumption 4.3:

|AT(0)| < Ko, |A7(c)| < K.

We want to show that the estimate of theorem 3.1 is still valid.

vy

Theorem 4.1: There is a constant ' which depends only on K|, R, K, p and

é such that

1d¥y 7 dz*lloe < (1Y lloc +1). ¥ = {Z] ) (4.2)

Proof: We have by (4.1) and assumptions (4.1) and (4.2) that

-
e ¢

ldw/dz o < K1y loe + Ky

Write the equations for ¥ in the form

TR TSI TR

dy/dz =AW+ G +G
where G, = Ajzw. Now,

IA"'dG,/dz)lg. < K, ldw/dz g, + Kilwloe «

s0 in the same way as the proof of theorem 3.1 we obtain

Idy/ dz o  const. (1Y loc + 1)
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This proves the theorem for p =1. For higher derivatives it [follows by

differentiation of the differential equations.

1t the assumption 4.3 is not satisfled then we obtain from theerem 3.2 that

the derivatives are still bounded in the interior of 0 < z £ ¢. Thus we have

Theorem 4.2: Assume that in the neighborhood |z,-z| <8, f=2/K, of
every point z, with 1/ X, <z, <c - 1/ K, we can write'the system (1.1) in the

form (4.1) such that assumptions 4.1 and 4.2 hold. Then we obtain

Havy 7 dz*ll v xpo-1sx, S C1Y lloe + 1). (4.3)

Remarks: It is important to note that the dimension, m, of the large block
need not be a constant on the entire interval 0 £ z < c. As the assumptions of
the theorem state, it is only necessary that we be able to block the system into
the form (4.1) in the neighborhood of every point in the interior of the interval.
Thus the theorem applies to problems with "turning points”, since by this we
mean a problem in which one of the eigenvalues of the large block 4,; locally

changes size by an order of magnitude.

Observe also that the estimate (4.3) is invariant with respect to smooth

transformations, i.e. we can replace y locally by '?/' = S(z)y where

nsus.—ﬂ.:.w + “S—‘“s.-p.s.ﬁ-ps Ko,

“de/ dz"ll 8,-8.3,+8 <K, v=12,..p, (4'4)

and an estimate of the type (4.3) is still valid. Therefore we can relax the condi-
tions of theorem 4.2. Instead of assuming that A has the form (4.1) we need only
assume that in the neighborhood of every point there is a transformation S,

satisfying (4.4), such that SAS™! is of the form (4.1) and satisfies the conditions

of theorem 4.2.
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We shall now derive estimates for essentially diagonally dominant systems.
We consider 4,, to be the large part and A, A2, Age the O(1) part of the system
(a.1).

y—

It is well known that the solutions of the system

e

I-=Aggw+r, 0<z<c’

satisfy an estimate

Hwllos < Ks(lw(0)! +clFlloe) Ky sexplllAsellos c). (4.5)

Note that since we do not assume that the eigenvalues x of Agp satisfy Rex < 0,
this bound for Ky is realistic and so the estimate (4.5) is useful only if ¢ is

sufficiently small.

We can now estimate the solutions of (4.1) in terms of G, H and y/(0),

v7(0), w(0). Lemma 3.1 and (4.5) give us

lylloe =267 11(A+ A") Apelloe Hwhoe + Dy,

Jwloc < Ksc lAailloe v lloc + D2,

where Dy =267((A + A")'Glloc + [¥7(0)| + lyT(c)I). and
Dz = K\(|w(0)| + ¢ Hloc). Therefore we have

Lemma 4.1 Assume that
267'cKsl (A + A")Arglloe NAmllos <1 -6 8°>0,
then

' Myloe =Dy + 25 (A +A") 'Ayllg. De.
(4.8)

d'ﬂwﬁo,c < Dg + Ky “AEl"O.u D,.
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It ¢ is not small then we can derive global estimates in the following way.
We divide the interval 0 € 2z € ¢ into subintervals ¢; € z € ¢y, 1 =0,1.2,....¢q-1,
Ce =0. cqy =c. cgy,—c¢ sufficiently small. On every subinterval we write
Y=yYp + Yy W = wp + wy where yp, wp denote the solution of the differential

equation with boundary conditions

yh(ci) = yH(eeer) = wp(ey) = 0. ' (4.7)

and yy. wy is the solution of the homogeneous differential equation with
yh(e) = yi(e). yhllecn) = ¥y (cier), wrleq) = wle). (¢.8)

By lemma 4.1 y#(c,). yf(ci,+1). and wp(cy,,) are bounded and are uniquely deter-
mined by (4.7). Also, remembering that the differential equations are linear, we

can write

yil(c,) = P, yllein) = P, wyle) = B

Here P, PI, and P are linear relations with bounded coeflicients in y!(c,).

y(cqs1) and w(c;). Thus in every subinterval we obtain n linear relations
y(c) = PY + yHle:). y'(cinr) = P!+ ybleinr). wleen) = P+ wp(cin)

for the variables y(c;). y(ci+1). w(c;), and w(cqs,;). There are n(g +1) unknowns
y(cs). w(c;) and g subintervals. The missing relations are obtained from the
boundary conditions for the original probiem. Thus the y{(c;). w(c;) can be
obtained as the solution of a linear system of equations. Whether we obtain rea-

sonable bounds for the original problem (1.1), (1.2) depends on the condition

number of that linear system.
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6. The choice of difference methods

In this section we shall discuss our choice of difference methods. Perhaps

the simplest stiff problem is given by

qo—

4

e

=-y+s(z). y(0)=y, (5.1)

where 0 < £ << 1 is a very small positive constant and f ('z) is a smooth function
with derivatives which are O(1). The solution y = ys + yp consists of a smooth

part
ys(z) = £(z) + O(e), (5.2)
which can be obtained by an asymptotic expansion, and a boundary layer part
¥s = ¢ ™* (% - ys(O), (5.3)

ﬁ ’ ( ) )

Thus the solution is smooth except in a boundary layer near z = 0 where it

changes rapidly.

Now consider a uniform grid z, = vh, v = 0,1,2,...; 0 <h « 1. There are two
standard Lypes of difference approximations. One type is centered schemes of

which the trapezoidal rule is an example:

Uy ~ U, = YUy + U, Jomt Sy -
e — = 5 + D) . U T Y, (5.5)

The other type is one-sided schemes, such as the implicit Euler method:

-y
"""tﬂ;r_!': Uy + Luetr Y T Y- (5.8)
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The solutions u, = ug, + ug,. v, = vg, + vg, of (5.5) and (5.8) respectively, con-

sist again of a smooth part
ug =f,+ 0(e). wv,=wvs,+0(c)
and a boundary layer part

1 - Hh/c!._

uDv=‘v(yo -'-"3-)- K= 1+%(h/t) H

(5.7)

1

vpy = T (Ve ~Vse) T= Tvhre

where «*, TV are solutions of the corresponding homogeneous difference equa-
tions. Ifh <« ¢ then & ~ T ~ @ /¢ and therefore &* ~ 7 ~ g *¥ ° i.e. the solutions
of the difference schemes approximate the solution of the differential equation

well. However, we are interested in the case that ¢ « A. In this case
k~-1, JT] ~0. (5.7a)

Thus u, is in general highly oscillatory everywhere and does not approximate
y(z) well at all. In contrast, {v, — y(z,)! is small away from the boundary layer.

The advantage of one-sided methods in this situation is clear.

Onesided schemes have a major drawback, however, when they are to be

used for solving systems of equations. For the equation
By e zv s,
the appropriate onesided scheme is the ezplicit Euler method,

v -V . T\
t—-_--—"”'l L4 zu,+ [, ie v, =Ty, +(1+ ;l_) Yo un= Y, . (58)

because we start the integration at z =c¢ and calculate the solution for

T N S e

s
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decreasing values of v. This construction of onesided schemes can be general-

ized to systems of the form

—

-1 0 0 ) y’
%—: 0 A Oly+By+F y=ly"l (5.9)
] 0 0 A, ]

s »
K

where

|hd, | < 1, |hB] «< 1, |hayl » 1,

and the eigenvalues x{4.,), x(4,,) of A_, . 4,, respectively satisty the inequali- i

ties
—hRe IC(A..1) > 1. hRe K(Aq.)) > 1.
An approximation to (5.9) on a nonuniform mesh is

1 I '
u -u
e 4—1(-"«»1)“5” + G{«u'

hV
% ulyy —u) 74 i i 11
y —;——= %(Aq (zp)‘ll-u + Ao(zw-))uvn) + %(Gv + Goa ) (5' 10)
s [ 4 :
m m
ull, -y
LT el + G,
v

where

G, = B(z,)u, + F.. ’ : ﬂ

i.e. we use implicit or explicit Euler for the variables corresponding to "large"
eigenvalues of negative or positive sign, respectively, and we use the trapezoidal
rule for the variables corresponding to "small" eigenvalues. If the system (1.1)

is not already of the form (5.9), however, we must transform it to that form k

before we can tell which combination of these methods to use. Since this
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transformation can be expected to be somewhat difficult to implement numeri-
cally, the question arises as to whether centered schemes can still be success-
fully employead for stiff problems, since they do not require a priori knowledge of
such a transformation before they can be written down. The answer is that in
many cases, centered schemes can be used together with appropriately chosen
nonuniform maeshes. Consider agaih the trapezoidal rule (5.5). Instead of using
a uniform mesh we now use a nonuniform mesh made up of two uniform meshes

with meshwidths A « z and h respectively.

—

h h
4 )
LU +

LLARARA LI

[

In the boundary layer 0z <%, £ = 0(z|loge|) we use A and return to A for
z > Z. In this case the boundary layer part of the solution is given by

3-./.(!/0 -us,) z,sZ

VB E (=10 5y, ~us,) z,>E

It is clear that by choosing # sufficiently large we can make |ug, —yp(z,)!
small everywhere. For systems we proceed correspondingly. We use a fine grid ‘
in the neighborhood of z = 0,c and a coarse grid in the interior. On this coupled

grid we approximate (1.1) by

Bt TR o A + AR+ B+ Fou). (5.11)

Weiss and Ascher have considered the use of methods of this type in [2].[8]. The
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collocation methods they discuss can be considered as generalizations of (5.11)

and of the Box scheme, given by

g

u -y z, + 2z z,+2
== RA(T D +upa) ¢ () (5.12)
v

A code based on those methods is discussed in [1]. For general systems (1.1)
where the matrix 4(z) is Hermetian or the equation is already in “almost” block

form,

1
c—A" A
V=t AVt T

where
RUAG | + |Ar] + |Ae]l + 142,] + |Ae]) «< 1,

centered schemes can be expected to behave properly provided that the boun-
dary layers are properly resolved as discussed above. However, if the system
has not been blocked beforehand, or if there are turning points present in the
problem, then in general we cannot expect good results from centered schemes.
The osciliatory nature of these schemes (see (5.7a)) in regions of the mesh
where h|A| > 1 makes reasonable error estimates difficult to obtain for gen-

eral problems. This is perhaps best illustrated with the following examples.

Consider the system

2o
d v 1 z® 1 v
v 1 v
r-E- 0 0

with boundary conditions

o b G
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Plot of y(x)

eps = 0,1000E-04 Function no, 3
variable # | TRAP RULE

min = -0,1438E+00 max = 0.2000€+0!
no. of neshpoints = 144

Figure 5.1
y(-1)=1 y(1)=2 w(-1)=0.

For £ << 1 the solution to this problem consists of boundary layers in the vari-
bles y and w near 2 = t1 which connect to the constant states y~0,w~0in

the region away from the boundaries. It is easy to verify, in fact that
y(z) = e~(B+1/¢ 4 pg(a+1)/e 4 O(g)

is the leading order representation for y. Since there is no non-smooth behavior

in the interior of the interval, it might seem reasonable that this solution could

§
|
z
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be computed numerically using a centered scheme and a nonuniform mesh to
resolve the boundary layers. Figure 5.1, which shows the resuits of approximat-

ing (5.13) with £ = 107® using the Trapezoidal rule, dramatically demonstrates
that this conclusion is incorrect. In this figure, only the approximation to y{(z)

is shown. The horizontal lines at the top and bottom of theé plot in-
dicate the locations of the mesh points used in the computation. For
scale purposes the values of "ymin" and "ymax" in the legend accompanying
each plot indicate the locations of these lines. The behavior of the com-

puted solution near the center of the interval is clearly unacceptable. |

One might suspect that the behavior near z = 0 is due to the potential turn-

ing point behavior of this problem in that region. The equations for ¥ and v lead !

to the equation

ey"—zy' - Yy =0 (5.14)

e -

for y(z). It is easy to verify that there is a potential for nonsmooth behavior in
a neighborhood of size O(Ve) near z = 0. In figure 5.2, the mesh has been
refined accordingly near £ = 0. In this figure both ¥y and w are shown. Note
that while y now appears smooth, w still exhibits an unacceptable error near
z = 0. Figure 5.3 shows a plot of the approximation to w computed using the
Box scheme (5.12). The behavior near z = 0 is different but still unacceptable in

this case.

It is possible to eliminate erroneous behavior of the type exhibited in
figures 5.2 and 5.3 by using adaptive refinement of the computational mesh.
However, the solution will only become smooth in the neighborhood of z = 0

once the meshwidths there satisfy h = O(¢). We consider this to be an unaccept-
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able restriction since in general turning point behavior occurs on larger scales

than O(e) and hence would require less refinement.

Finally in figure 5.4 we show the results of a computation using the combi-

nation of onesided and centered schemes that we advocate and discuss in the

following sections. One-sided schemes have the advantage over centered
schemes Lhat in regions where A |A| > 1, they mimic the ‘damping behavior of
the differential equations. This means that local errors are damped out quiclly
by one-sided schemes. In contrast, when using centered schemes, errors tend
to be nonlocal due to the oscillatory behavior of the methods. As can be seen
from the examples above, this can result in significant errors when solving sys-

tems of equations.

Because of the difficulties of this type that can arise when using centered
schemes, we have chosen instead to use schemes of the type (5.10). Although it
might seemn that this involves more work that if we were to employ centered
schemes, this extra work is in fact necessary if we wish to guarantee that our

methods be robust. As we have shown, the "cheaper"” centered methods can fail

on problems of any generality.
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Plot of v(x)

eps = 0,1000E-05 Functinn no, 3
variable # 1 TRAP RULE

rmin = -0,2818E+00 ymax = 0,2000£+01
no. of meshpoints = 103 .

Plot of w(x)

eps = 0,1000E~05 Function no. 3
variable ¥ 2 TRAP RULE

min = -0,1000E+01 max = 0,8572E-01
no. of meshpoints = 242

Flaae 5.2
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Figure 5.3

Plot of wix)

eps = 0,1000E-05 Function no. 3
variable § 2 BOX SCHEME

min = -0,1000E+0% max = 0,2804E-0)
no. of meshpaints = 242
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] Figure 5.4
Plot of wix)
eps = 0,1000E-05 Function no. 3
variable ¥ 2 ONE-SIDED SCHEME
min = =0,9470E+00 ymax = 0.6348E-01 ;

no. of meshpoints = 91




-40-

] 6. Difference approximations for scalar equations

In this section we start the discussion of our diflerence approximations. We

divide the z-axis into subintervals of variable length h; with gridpoints z, = 0,
v=1

z, = Eh,. v=12..,N, zy =c. and denote by u, = u(z,) functions defined on
=0

the grid. We approximate (2.1) by methods of the form

u -1
——=dayu, + (1= d)aytye +duf o+ (1-d)f v (8.1)
[ 4
Us = Yo

¥We shall concentrate on two different methods: the Implicit Euler method and
the Trapezoidal rule { d, = 0 and d, =) respectively ).

We assume that the conditions (2.2)-(2.5) are satisfied. Then it follows from
the results of section 2 that the solution of the differential equation is smooth
and we can obtain error estimates by standard truncation error analysis. For

this we need stability estimates which we shall derive now.

Lemma 8.1: Let v,2>0, 8, =0 be positive constants and consider a grid

function v, satisfying

1 7By -
|vyal < T+7. vl + Teo v=012,...
orfor0sy,<1
1 = Yv 27vpv -
lvpnt = T oy v,| + Try V° 0.1.2....

Then

jv, |s°‘max B; + Lﬂf,]lv.l
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withr; = 1/7(1 + 95) . 7y = (1 — 7 )7 (1 + 9;) tor the first and second case respec-
tively.

Proof: is by induction on v, it being trivially true for v = 0. For arbitrary v,
both inequalities state that [v,4 | < T,lv,| + (1 = 7,)8,. with 0< 7, < 1. Hence,

using the induction hypothesis,

-

'uv01| < 7,(max§, + lvg |n'rj) +(1- )8y
Jev fev

= r,maxf; + (1 = 7,)8 + lve | ] 75 < maxgy + v, | 17
j<v jev jav

Jov
Let us first consider the case that
Rea < -1 (8.2)
The implicit Euler method (d, = 0) can be written in the form

U, + hyfver =
1-hay 1-ha,n

u, theavH fv#l (6.3)
1-ha,, 1-ha,,, Rea,,, '

Uy =

Using lemma 8.1 with , = |k,Rea,,,| we obtain therefore

I | 1
fu,| < MaX | Rea; + ,Iilll—;;j—lual- (6.4)

We can now use (6.4) to obtain an error estimate. Assume that p = 2. Then y(z)

has two bounded derivatives and

(e_s)gy_ﬂh;?!_"_.: Yt + on + Tony
v

o RS T8 ptoedid oSt -




-42-

|7yl < %h..';l;.x ‘Iv"(f)l.

Thus the error e, = y, ~- u, satisfies

—

T
ﬁl‘ﬁ. (8.8)

This error estimate is satisfactory if |A;Rea,| > 1 because in that case it follows

<
ley| max

that |e,| = O(h?). However if |h;Rea | < 1, then the method is not accurate

enough for our purposes.

We consider now the trapezoidal rule (d, = ¥):

1+ %h-vav hyg v
u = ©, + , = + . 8.7
el 1-— %h-vavn v 1 - ’g"vavu Fvea %(fu fvﬂ) (6.7)

To estimate |(1 + ¥%h,a,)/ (1 - ¥h,a,.,)| we have to distinguish among a number

of cases.

1) There is a constant ¢ < 2 such that |A Rea,| <o, |h Rea,,,| <o for all

v. In this case

1+ %h,a, = 1+¥%ha, 1
1-Yha,, 1-Y%ha, 1-h,6

where

16,1 =%

ey = @y !N‘y‘ h,a, da,/dz|

1- mvav I 1-Y%ha, a, ls ki

is uniformly bounded. Let h,a, =b +ic, b, c real, |c| <p|b|. Then

: 2 L 2y ————e
1+}5h,a,=_\/1+b+yc +o)=\/1-27,s1-7, ©.8)
1 -Y%houa, 1-b + Lc?+b? 1+2y, 1+,




%lh Bea,| 27, = l . |> 2 |h Rea,|.

|1+1.(c +b2)| 4+ (L +p%

Thus —
1*}91-;0« |‘1—7u' 1 |=1"§v (89)
l—mvuvﬂ| 1+7v‘1'hvevl _1+?v
where ¥, 8y, +%h,6,. Also
hugver = h,Rea, ., Fv+1
1~ ,g'vavﬂ 1- mvuvﬂ R‘eavﬂ '
Therefore we obtain from lemma 6.1 for sufficiently small Xk,
WSy + 15-0) | =2,
ju,l sT max Fea, ;-o i+5 J (8.10)

where

h,Rea,,, 1-%,
I' =max
v 2‘7’;« 1-Yhay.,

<{(1+ {-03(1 +p%)) + 0(h).

The last estimate gives us again an error estimate. Assume that p > 3. Then the
solution of the differential equation has three bounded derivatives and by Taylor

expansion we obtain

Y
-—‘»—;"V_-_- ”(alﬁlyvﬂ + avyv) + WVH + fv) + %(rvﬂ + rv)

>

where

1 2 "
¥l(ryy + 7)) = ", ng:,illy ®1.
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+

le,! < Pmu'Ml. (8.11)
l‘j‘vl Rea, |

2) There is a constant o, > 2 such that for all v, 2< th Rea,| <0,

2< |hRea,,,| <0, This case can be reduced to the previous one by writing

(8.7) in the form

-1 1+bvu _9v0-l 1
l-hvev 1-0, v Qv 1 -c,

Uy =

where

b, = Og"vav)-lv Cy = (”‘Vavﬂ)-‘-

Thus the same results as earlier hold, i.e. as long as |h Rea,| stays bounded we

obtain satisfactory error estimates.

3) |h,Rea,| can become arbitrarily large. In this case

(1+¥%r,a)/ (1 -Y%ha,n)~ -a/au,
and the exponential damping is lost. The solution of the homogeneous equation

a
Vyey = ==, (8.11)
Ay

can grow. We have

-u N
= (-H N,
N

Thus if ay is very large compared with ay, then vy is very large compared with
vy. This shows that even for a scalar equation the trapezoidal rule need not be

stable.
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The above error estimates suggest that we should use a combination of the
trapezoidal rule and the implicit Euler method. The simplest way to do that
would be to choose the coeflicients d, in (8.1) in the following way:

0 it |ha,l>1
=1y it |ha,lsl. (8.12)

However we would like to prevent the situation that we n;it.ch too often from one
method to the other as a function of v. Therefore the h, are only allowed to vary
slowly and we replace (68.12) by

1) d, is chosen by (8.12)

2) For v2> 1 we use

0 if |hal>¥%
If d,., =0 choose d, = %

otherwise

{” it (A, 52 (8.13)

If dy- =} choose 0 otherwise

Assume now that we have calculated the solution of (6.1) on some mesh
fh,}. Then we can divide the interval 0<z <c¢ into subintervals
¢; € x < ¢y, where ¢( are meshpoints, i = 0,1, - .g-1, ¢, =0, ¢y =¢.
such that on every subinterval we have used either the trapezoidal rule or
the implicit Euler method. On every subinterval we can write down an error
estimate. These local error estimates can be used to obtain global error
estimates. Consider an interval ¢; < z < c¢,, and let y(g‘) and u(c,) denote
the solutions at z = ¢; of the diflerential equation and diflerence approxi-
mation respectively. Let up be the solution of the difterence approximation
with initial data up(cy) = y(c;) and let uy be the solution of the homogene-
ous difference equation with ugy(c;) = u(c;) - up(cy). Thus u = up + uy.

Our previous results tell us that
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3
up(cie1) = y(ceer) + & £ = O(hE).
Also
3 . &
ugylcier) = Nugley) = M(uleq) —ylcy)) ¢
where |A\;| < 1. Thus the error ¢ = y — u satisfles the relatipn
e (cie1) = y(coer) = ulcin) = yleger) —uplea) = uply-,y) (8.14) 1
= Ne(cg) + 2. r
Observing that ¢ {0) = O we obtain a linear system of equatioas
Ag =2
where
1 o - ... 0 e(c,) g,
- 1 0 -~ 0 e{cs) 22
L T S O O 24
0 e e _;"_’ 1 (01—1) Eq-1

The vector ¢ represents the local error. The global error is obtained by
inverting A. In this particular case all |\;| < 1 and the condition number is
bounded by q.

To stress the interplay between local and global error we remove the

restriction that Rea < —1. We allow Rea to become arbitrarily large and

positive. We assume, however, that y(z) = 0(1) and slowly varying.

Corresponding to (6.12) we choose the d, as follows:

‘ 0 it |ha, >1 Rea, <O,
' d,={ % it |ha, <1, (8.15)
-1 it |h,a,| >1, Rea,>0.

N |

-
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(In the same way as above, we would in practice modify (8.17) such that the

d, do not change too often).

As before we divide the interval 0sz <c¢ into' subintervals
€ S z < cy4, such that the parameters d, are constant on these subinter-
vals, Also, if d,=)% then we subdivide ¢; £z <¢,, into subintervals

Cy S Z < C( 44, Where one of the following conditions Holds:
! Rea < -1, |Rea| <1, Reaz1.

Without. restriction we can assume that the orginal ¢, are chosen such that
no subdivision is necessary. As earlier we obtain a relation of the type
(6.14) for every interval ¢; < £ < ¢y,, with Rea £ —1. The same is true for
intervals with |Rea | = 1. This follows from well-known error estimates for
nonstiff diferential equations. If Rea > 1 then we use y(c,,,) as initial data
and integrate the differential equation in the direction of decreasing x.

Correspondingly we solve the difference approximation in the direction of

decreasing v. This does not change the behavior of the trapezoidal rule but

the explicit Euler method d, = 1

(uv+1 - uv)/ hy=au, +f,
can be written as

Uyt Iy
l+ha, 1+h,a,

Uu, =

and is the same as the implicit Euler method for decreasing values of v.

Thus we can apply our previous results and obtain
e(cq) = Myelcier) + 8¢ &g = O(R?)

_[ Ny This shows that the local behavior of the difference approximation is
4




satisfactory also in the general case. However, it is well known that the ini-
tial value problem for (2.1) is not well posed if Rea becomes arbitrarily
large and positive. In this case the linear system of equationg for the global

error is not well conditioned. Observe that the A; can be computed and

PSS U 50 S ST

therefore also the condition number of 4 is available.
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7. Difference approximations for diagonally dominant systems

In this section we consider systems of the type (3.2) and assume that all the

conditions of section 3 are satisfled. We write the differential equations in the

form

=M+ GG, (1)

where
Gly)=(A-Ny +F.
We approximate (7.1) by

uv‘,l - 'u.,

Fy = DvA(zv)uv +(I - DV)A(zvﬂ)uvH +D,F,+ (I ~ Dv)Fv+l (7.2)
v

= DAz e, + (I = DINzy e Uy + D,G(u,) + (I = D,)G(u,,,)

Here D, is chosen by (8.17), i.e.

" o - 0
o 49 o ]
Dy=j... ... ... ...} (7.3)
0 dv(")

0 if [h,ay(z,)| > 1 Reay <0
a0 =( % it |hag(z,)] <1, .
1 if Jh,ay(z,)! > 1, Reay >0 -

In actual computations we modify (7.3) in the same way as earlier. For simpli-

city we assume that the ¢, = d{) do not depend on v. Associated with the full
system (7.2) is the diagonal system

1),” - Uv

h = DMz v, + (1 = DNz e )vyey + Ho (7.4)

[

\ AL . R o 2 Y
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By (6.4)and (6.10) we can find a constant I ~ 2 + p? such that
v, S 2TI(A+ ATY I H |y + (V] + [vff] (7.5)

where we have used the notation

= max .
l91s = max|g,|

Inslead of assuming that A is diagonally dominated we make a slightly

stronger assumption:

Assumption ?7.1: There is a constant 6 with 0 < § < 1 such that
1A+ A)HA = A)lia s B(6/T).
Renark: 1t we were only to use

© 0 if Reay <0
@ =11 it Reay >0 (7.8)

then (8.4) would tell us that ' = 1 and so assumption 7.1 is equivalent toassum-

ing that 4 is diagonally dominated.
In the same way as lemma 3.1 we can now prove

Lenma 7.1: If assumption 7.1 is valid then the solutions of (7.2) satsfy the

estimate
ol = EH{1+ AYHDF, + (1~ DI I + 1l + ufll). 1)

Renark: In the same way as for the continuous problem one could estimate

how theinfluence of |u/| and |uf/| decreases away from the boundaries.

Lermma 7.1 gives us immediately an error estimate:

- D Mg e e
‘ LA I
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Theorem 7.1: Assume that y(z) is a smooth and bounded solution of the

differential equation. Then

ly —ulls < const.(h® + |uf -yl + lulff —yf)).
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8. Difference approximations for essentially diagonally dominant systems In
this section we consider difference approximations for the system (4.1) with

boundary conditions (1.2). They are of the form

Uy — U,
5= DAz u, + (I = DYA[Z )iy + DyGy + (I = D) Gurr (B11)
v

v -v :
vo;t = WAz YU, + AgZ i WVyer) + WE, + Euyy) (8.2)
14

with boundary conditions

nfbafe) <o

Here G=A;v + F, E = Ajyu + H and D, is defined by (7.3). We assume again
that D, = D does not depend on v. By assumption |Agsh | << 1 and it is therefore

well-known that the solutiors of (B.2) satisfy the estimate

lola < Rellvgl + ¢ ENa). R~ exp(lAzlocc).

Lemma 7.1 tells us that if assumption 7.1 holds then the solutions of (8.1) satisfy
the estimate (7.7) with F replaced by G. Using the assumptions 4.1 and 4.2 we

obtain the analog of lemma 1.1:

Lemnua 8.1: If ¢ is sufficiently small then there is a constant K3 such that
(ulla + Tulp) s Ks(IFily + DAL + {udl + [ull] + v, ])

Here K4 depends only on K|, R, andp.

We assume again that the solution of the differential equations is slowly

varying and bounded. Lemma 8.1 leads then immediately to the error estimate

fy —uliy + e —vlly
sconst.(h.z+ |y,’—-u{| + lyﬂ-um + fwo "Uof)-

(8.3)
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This estimate gives us an error estimate for our problem provided that the
interval 0 < z < ¢ is sufficiently small. Since again this cannot be expected to
be the case, we can obtain global error estimates in the same way as for the
scalar equation by dividing the interval up into subintervals. We divide 0 sz s ¢

into subintervals ¢; € z < ¢4, 1 = 0,1,2,...,g —1 with the following properties:
1) D is constant on every subinterval.
2) ci41 — ¢4 is sufficiently small such that the estimate of lemma 8.1 holds.
3) The solution of the differential equation is bounded and slowly varying.

Let y(z) be the solution of the differential equation. We write again
u =up +uy, v =vp +vuy where (up,vp)T is the solution of the difference

approximation with

up(cd = yle). wflecr) = y"(ecar). vpled) = wic) (8.4)
and (uy,vy)T is the solution of the homogeneous diflerence equation with

uh(ed) = e/(er). uffeen) = e, vale) = & (e (8.5)

Here e =u -y, € =v — w denotes the error. Using the estimate (8.3) we

obtain from (8.4)
uf(ei) = y"(ey) + ell,
up(ciar) = y'(eir) + el (8.8)
vfl(ci) = wlein) + .

Recalling that the difference equations are linear we can write

'“'”(C\’) = LY, UL(CuI) =L, vp(cia) = L (8.7)

Here L, L!, L are linear expressions in e/(c;). e?(c;,,) and & (c;) whose

coeflicients can be estimated by K3 The equations (8.8) and (B.7) give us n

linear equations
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ell(c;) - LY = ¢[\,
el(cin) =L = ¢/,

€ (cie) - L= R
for every subinterval ¢; < z < c(,,. There are q intervals and n{g +1) variables
e(c;). € (c;). Therefore, using the boundary conditions we obtain a linear system

of n(q +1) equations in n(g +1) variables. Again, global error estimates depend

on the condition number of this system.

Remark: In section 4 we reduced the solutions of the differential equations
to the solution of a corresponding linear system of equations. The two linear
systems of equations obtained in that section and in this one need not be close,
because we have not resolved the potential boundary layers near z = ¢¢,c¢,, with
an appropriate mesh. Thus in general the fundamental solutions of the homo-
geneous differential and difference equations respectively are not necessarily
close. However, if the diagonal elements of A,, satisfy |[Reayh,| >> 1 then one

can show using asymptotic expansions that the corresponding relations are, in

fact, close.
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9. Normal form [or the differential equation

We will now discuss how the general system (1.1) can be transformed to
essentially diagor:ally dominant form. In this section we give a theoretical
presentation of this procedure. The practical implementation of the transfor-
mation differs somewhat from the discussion in this section; those differences

are discussed in section 10.

The procedure can be outlined as follows: We assume that away from a
finite number of turning point regions the system is well-behaved. Then the
transformation to essentially diagonally dominant form is eflected in each subin-
terval of 0 < z < ¢ through similarity transformations which put the matrix A(z)
into an appropriate "blocked"” form, and a stretching of the independent variable
z such that relative to the basic meshsize h, smoothness requirements similar
to assumptions 3.1-3.2 and (2.2) are enforced. The results of section 4 then
guarantee that we will get the appropriate error estimates when the difference

approximation is applied.

First we calculate the eigenvalues x{z) of A(z) and divide them into sets
M) containing eigenvalues which are of the same order of magnitude. This is
done in the following way: Let K, 6 > 0 with 0 < KA «< 1 be constants. Then

« € M9 if either |x] < K or there exists a’® € M(® such that

el - 11| <8 (1l + %D, (9.1)

By choosing & sufficiently small we can guarantee that all x € M(® satisty
{kh| « 1. If all eigenvalues belong to M(? then the construction is complete.
Otherwise let xy, £z, * - - ,&p denote the eigenvalues not contained in M and let

leg) = | min lx,|. Then the set M) is formed recursively by taking «, € M(",
vep

k € M if (Rex;)(Rex) 2 0 and there is a’% € M(" such that (9.1) holds. Further

sets are constructed correspondingly. We allow the number of sets MY) to

R Lo > - - Fsicne 3737 R
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depend on z, i.e. as a function of z, sets can split up and recombine. Therefore
the block-structure can be a function of z as well. We assume, however, that we
can divide the interval O0<z <c into a finite number of subintervals
¢, € T < ¢q,, such that on every subinterval the block structure is constant. We

will refer to such subintervals as "blocking subintervals’.

The next step is to determine a transformation S(z ) such that

(z) ] Ce 0

- 0 0

A = sEm@sa = | e 0
0 e 0 Ab(’)

is in block-diagonal form. Here the eigenvalues of every A,(z) are exactly the
eigenvalues contained in MU) (counted according to their multiplicity). We must
make a couple of assumptions about the blocks 4 (z). For the matrix 4,(z) we

require that

hA(z)| « 1. (8.2)

We know that the eigenvalues of 4,(z) satisfy |«xh| << 1. Therefore (9.3) says
that if we were to transform A,(z) to upper triangular form by a unitary
transformation, the off-diagonal elements ay; would also satisfy [ﬂ-uhl <« 1. The
following shows that this is a reasonable assumption: Consider the differential

equation
W= vt @A)y

7/ €|,
where A= o |isa constant matrix and

_ |cosz sinz
U(z) = |_ginz cosz
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is a unitary matrix, y # 0 and 0 < ¢ « 1. The matrix A is in upper triangular

Lt form but the off-diagonal element is not small. If we change variables to

¥ = Uy, then the system becoines

a—

0 L4+
i T I

The eigenvalues of A are givenbyx =+ V—(y/e + and thus the solution of the

equation with variable coeflicients has nothing to do with the solution of
&V /dz = AD. ';

For the other blocks we assume correspondingly that

|®;'4;] = 0(1), where E; = . =1 ai, {8.3)
3 Ay iy “Z:l:m‘t n Lal

with n; the order and pX af’) the trace of 4;. If these conditions are not satisfled

then we choose the basic meshsize small enough so that A IA,I < 1 for all

A; that violate the assumption.

We are not interested in highly oscillatory problems, because they have to
be treated differently ( see Scheid [5]). Thus we make the assumption that the
eigenvalues x of A(z) satisfy

|Imk) < p |Rex) + C, (9.4)

where p ~ O(1) and 0 < C;h << 1 are threshold constants. Observe, however,

that (9.4) allows highly oscillatofy solutions provided that the meshsize is

sufficiently small.

We now describe the construction of S{z) in detail. We start with the inter-

; val 0<z <c;. At z =0 we construct a unitary transformation U/{0) such that

—— e . mm—— e P
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U*(0)A(0) U(0) is an ugper triangular matrix in which the eigenvalues appear in

the correct order, i.e.

A Apooy Ao
U*(©A(0)U() = Ao A
0 0 A,

This can be done witha slightly modified version of the usual QR method. We

then determine

1 Sr.r—l Sr.o

30) = ! S
0 0 I

such that
A, o ... 0
0 - 0 O
A0 = s@a@s@ = 7 0 Ol s = v

0 -+ 0 4

has the desired block farm. Now consider the transformed matrix

A(z) = X(0) + B(z), B(0)=0,

Brr Br.r—l t Bro

Br-1y Br-1e-1 ' Broypo
B(z) = S~Y(0)(a(z) - A(0))S(0) = . ..
B,, -

By assumption the eigenvalues of each block are well separated from the eigen-

values of all other blodks. Therefore in the neighborhood of x = 0 we can con-
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struct an §(z) such that

(z) 0 . 0
A(z) O
5-Y(z)A(z)S(z) = Ce | s@)=803(=).
0 v 0 4(x)
o |
: To discuss this transformation in detail we neel a couple of lemmata.
Lemma 8.1: Let A,,, Ax E be pxp, gxg and pxg matrices respectively.
Assume that the eigenvalues A\;,i = 1,2,....,p of 4,, are disjoint from the eigen-
values u; j = 1,2,....,q of Azz. Then the matrix equation
Aux - XAgz =k
has a unique solution and there is a constant C which depends only on p, q. |Al.
|B| and n"u’n IA¢ = 4] such that
iXxisClE|. (9.5)
4 Proof: Without restriction we can assume lhat 4,,. Ag; are upper triangular;
- then (9.5) is of the form
Ay @z o BpllZn T 0 Ty
0 Az Qg ' @ Ta Zop . Xg
L ’ (2.6)
0 M) Za Zpq ’
T Ziz2 0 Iyl M 3P 8iq
Tay ZToz - Zaell O me G gq
, ~ _ . ... |=E
z’l e . z,' 0 e e “'
|
{
! | -
. - e
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For the first column of X we obtain

(Ap = 1) 21 = o5
(Ap—l - i) Tp-11= —Gp_1pZp + Bp2 —
[ .tC. ..

Thus the first column of X can be computed by back-substitution and it satisfes
an estimate o the type (9.5). The other columns are calculated in a correspoad-

ing manner. This proves the lemma.

Let us use the above matrices 4,, and Az, to form
[Au 312]
By Az
We want to canstruct a matrix R such that
[ - All Blg 1 R
0 7 )|Bz Ag)lo IJT

ru — RB2y A\\R — RAze ~ RE\R + Blz] [Cn 0 ] _
B2, Ba\R + Az ~ |\Ca1 Cegf ~

is a lower block triangular matrix, i.e.

AnR RAyp RByR + D;p=0. (a7)
Lemma 9.1 gives us
Lemma 9.2: The iteration .
AR™ — R™M A, — RM-1G, RN 4 By, =0 (28)

converges to a locally unique solution of (9.7) provided |Bg,| and |B,,| wre

sufliciently small.
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We shall now transform C to block diagonal form.

Lemma 8.3: If {B; | and |Bz| are sufficiently small then there is a

transformation @ such that —
[1 o”c“ 0 ”! o] [ Cu ) ]
-Q I){Cai Cog)|l@ I)T |~QC) + CeQ + Coy  Cua) =
11 — RBayy 0
0 Ba R + Agl

Proof: It | B2l . | Byy| are sufficiently small then the sets of eigenvalues of
C1, and Cj; respectively are still disjoint. Therefore we need only to solve the

linear system
“QC + CeQ@ +Cy =0

This proves the lemma.

Remark: In practice, before making the transformation of lemmata 9.1 and
9.2, we diagonally scale the matrix so that the off-diagonal blocks are of the
same order of magnitude: Choosing d such that d{8;,| ¢ 1 = d~?|B,q| + 1, this

transformation is given by

Ay d7'Bl [ Ay Bl

dBga, Ass = d/j\Be; Age a~\l}-
This extra transformation does not change the end result but guarantees that R
and @ are of the same order of magnitude. The effect of this is to help make

S(z) change as slowly as possible.

The results above can be used to construct a transformation g(z) which

transforms A(z) to block diagonal form.

MELEL S T S Y

-~ e
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Theorem 9.1: If [A'(0)B;(z)]. i = 1.2.....,r and |Bg(z)]. j = 0.1.2.....r are

sufficiently small then we can construct S(z) locally in a unique way.

Proof: We write A(z) as —
_ 1 EAu CE‘g o 1 B
A=) = tleBa tAn| °© ’-(;'—“‘Z‘:mﬁl-lfrl
where

An=A +By. Bio=(Bryoy - Bro). Ba=(BL,,. - BL).

By assumption [£4,,] . |(£A4,;)7'| and |zA4zz| are O(1). Aiso the eigenvalues of
tA,, are well separated fromthose of tAz. Thus the above lemmata give us that
!

¢ it {eBal ~ |4, B gl . 1eBy| ~ |42 Fy,| are sufficiently small, ie. if z is

sufficiently small then there is a unique transformation of the type

seb e -0

such that

1z __~u 0 _ n — RBg 0
SilA(z)s) =] Rea| = 0 BaR ¢ Age

Now, Bz R + A, has the same properties as A(z) did, and so the same process

can be applied again to it. This proves the theorem. N

We have constructed S(z) in a neighborhood of z = D, but it is clear that we
can continue the constructim as long as the block structure does not change,

Le. for 0<z<c,. Let S_(¢,) = limos(z). At £ =c, we change S.{c,) to
8¢, -

S.{c,) in the following way:

T
~
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1) If two sets MY) merge: S does not change (although the blocking does)

2) If a set Ny splits into subsets then construct a transformation which
transforms the corresponding block into block diagonal form. ifnecessary, a
permutation matrix can be applied to rearrange the blocks according to the size

of their eigenvalues. Alternatively, S,(c,) can be computed in the same way as

S(0).

We now use S,(c,) as the starting transformation for the interval
c,<zx <c, and repeat the above procedure to obtain S(z) at intermediate
points in that subinterval. In this way we determine S{x) everywhere and use it

to transform the system (1.1) to

diy /dz = A(z)y + H(z)y + G(z) (9.9)
with
(z) 0 e e 0
0 A_, O --- 0 H = -S"'dS/dz,
A= . .0 . ) G=S"'F,
C - e A=) ¥=5"

on every blocking subinterval ¢; < z < cy,;.

In the same way as in [4] we now "stielch” Lhe independent variable. We
divide each blocking subinterval ¢, € z < ¢;,, into s 2 1 "stretching subinter-
vals” cy <z <cg;, wWith ¢; =c, <c;; < -+ ¢y =¢¢y;. Suppose we have
determined cyp.cqy, * - * ,¢y. Then ¢y 4, is determined as follows: We introduce a

new variable ¥ byr —cy =a4;%, 0<% <1 and obtain

v

= ah(aZ)§ + aH(aZ) + aG(aZ). (9.10)

Here a = ay with 0 < a< ¢y, ~ ¢ is (an approximation to) the largest value

such that

—m
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| 94|

oT!asxl[alA,I 1 ‘aﬁ,u ' =K
dvH

max o SH < (9.11)

. dvG¥)

) -1 ) =
max (max(laGO 1)) la=5—1) S K. j=012..7
|Imax(z)|_ for allk(z) = an eigepvalue of A(z)

|Reax(z)| + Ci/p <h
j=012..r, v=012,..p
Here the first three conditions correspond to assumptions (3.1) and (3.2). The
last condition corresponds to (9.4). One a has been determined we set
Cijs1 = Cy + Qyy.

Now if ¢4, < Cq4; this is repeated until the endpoint c¢,; of the blocking
subinterval is reached. This procedure can obviously be repeated until all block-
ing subintervals are divided into an appropriate number of stretching subinter-
vals.

On every stretching subinterval ¢y < z < ¢y ;,, the system is of the form
(9.10) with a replaced by a; and ¥ replaced by ¥y. The variables §jy are
related by

Uyley) =¥ jmley) if cy # ¢ and ¢y # ¢y
T inroley) = Sule ) yley) if cy = ey
On every subinterval we now use a uniform meshsize R with A& <« 1 and

employ the difference approximation

Uy — Uy

ok

= D(A(z yu, + E,) + (I = DYA(z,sy) +Eysy) (9.12)




cov evo ...| and By = H{zu, + Glz,).
o - .. coody T

The matrix 4 is not in diagonally dominant form. However, in the neighbor-

hood of an interior point z, of any subinterval we can find a constant transfor-

mation S of the form

Uplzs) Ly
Ur—l(zo) Lr—l

.

such that S~14(z)S satisfles the conditions of assumption 7.1. Here U; is a uni-
tary transformation such that U;'A,-(z, YUjo j =12, - - - ,r, is upper triangular for
z = z,. L; is a diagonal scaling such that L;i'U/A;(z, ) U; L; satisfles assumption
7.1 with ¥(6/T) replaced by i(8/T). Then the smoothness properties of the
coeflicients guarantee that assumption 7.1 is satisfled in a whcle neighborhood
of z,. Thus the solution of the differential equation satisfies estimates of the
type (4.3) in the interior of any subinterval. However, for interior subintervals

the estimates can be extended up to the boundary provided that

184(e)l 155 (e) | = O(1)

oc'sasda, <o, o= 0(1). (9.13)

Here &_, @, denote the stretching factors of any consecutive subintervals. The
reason the estimates can be extended is that the breakpoints ¢y are somewhat
arbitrary. We could move them a distance O(1/ K). Then the old breakpoints
would become interior points in the new subintervals and we could estimate the

derivatives. Provided (9.13) holds, these estimates would not be destroyed if we
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were to move the breakpoints back to the original position. Finally we have to

resolve the boundary layers at = 0,c. This is done as described at the end of

section 3.




~
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10. Numerical details of the transformation to normal form

In this section we discuss some of the details of the numerical implementa-
tion of the transformation of a stiff system to the normal form diseussed in the
last section. The blocking and stretching subintervals introduced there are in
practice not determined separately as in the theoretical discussion, but are
determined simultaneously. For this reason, we introduce some new notation.
Starting with the left endpoint z = 0 = b, and working to the right, we divide the
interval [0.c] into stretching subintervals with endpoints b,,b, etc. The block
structure of the matrix is monitored as this is done, and appropriate points b;
are designated as blocking subinterval endpoints when the structure changes.
The stretching parameter (see (9.10)) for the subinterval [b,,4;,,] is denoted by
aj.

An outline of the algorithm for the mesh construction and the determina-
tion of the transformation to diagonally dominant form follows: We first deter-

mine the eigenvalues k; of A(0). Then «, is determined by

-0, mlinRelc, N K, .

The stretching parameter ay for the stretching subinterval nearest z =c is
determined analogously. Using these stretching parameters near the endpoints
of the interval assures that assumption 4.3 will be satisfled, and any possible
boundary layers will be resolved. In practice we construct a "reference mesh"
{zj;}ﬁo with 2z, =0, zy,,=¢c, 2, -z, =@, and zy =Ty = :;N where the subin-
tervals [z;,2,,,] increase in length exponentially towards the center of the inter-

val according to the rule

1 2N-1.

Ty = T-) = Min. (2q,,

)

o,,0
N’ “max

where apm,y is the maximum length for a stretching subinterval that we wish to

e A

N .
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allow. (Typically oy, ~ ¢/ 10). Then given a stretching subinterval endpoint b,

the next endpoint by, is determined as follows:

A) It by has been previously determined to be the left endpoint-of a blocking
subinterval, then compute S;(b,) using QR and theorem 9.1 (see remark 10.1

below). Let @ = a;.;, & = b; + @ be trial values for a; and b;,, respectively.

B) Compute the eigenvalues x(5) of A(}) and determine the sets M) at
z =¥, Then

a) If no sets M®*) change, go to C.

b) If a new set forms, mark § as a possible blocking subinterval endpoint
and goto C.

c) If two sets merge, then b; was a blocking subinterval endpoint. (We do
not, however, need to make a special computation of S,(b,). since taking
S.(b;) = 5_(b;) is acceptable in this case. The difference in the treatment
of this subinterval is that S(&) will be computed by updating S_(4;) taking

the new block structure into account.) Go to C.

C) Compute the transformation matrix S(5§) by updating S(b;) using
theorem 9.1 (see remarks 10.1 and 10.2). We need this updated version of S

even if z = ¥ is a blocking subinterval endpoint

D) Now compute the left-hand sides of the tests in (9.11). (The actual imple-
mentation of these tests is discussed in remark 10.3). During the determination
of b;,, from b, it is possible to return to this step (D) several times. Using the

reference mesh, we first determine § = gz -

141 { where b’ € [3‘.3‘.,1]. The

action taken can be different in each case:
D1) (First time): If any test fails, replace & with &/ V2 (i.e. decrease the
length of the stretching subinterval) and try again (go to B). If no tests fail,

then replace & with min(v2 a,a) (increase &) and go to B.

D2) (Second time): If no tests failed under D1 but any test fails this time,
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set ay = &/ VZ and go to E (below). If no test failed this time, -replace &
with min(VZ2&.&) and go to B). If any tests failed under D1 and any test fails
this time, replace @ by &/ V2 and go to B. —
D3) (Third time): It no tests fail, set ay =& and go to E If any test fails at
this point, but no test failed under D2), set ay = &/ V2 and go to E. If any
test fails at this point and any test failed under D1, then special action must
be taken, because if we were to decrease @ any further, we would have
as/ a;-) <} We would like to avoid this situation for the reasons discussed
at the end of the last section (with ¢ = 2). First, however, we must deter-
mine how small a actually needs to be near b;. So replace & with @/2 and
goto B.

D4) (Fourth and succeeding times): If any test fails, replace @ with &/ 2 and
goto B. If no tests fail, then we have a value for a which represents the
proper stretching near z = b;. In order to use this, however, we have to
redistribute the previous endpoints d;_,.b;-2, * - - so that there is a smooth
exponential grading of subintervals into the region around z = b;. We do
this by first looking for the minimum value of i with

O -1
2

< 2'A <20, _,
where k is determined by first calculating
z= b, - a i:Z‘ . »

and then finding k such that = € [b,,b,,)- Then the stretching subinterval

endpoints by,.b4,2 ' - - .b; are replaced by

by + W72, 1=12 .4
4Tl #3727, I=itl, o m
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where m is chosen such that by -y < b; < b, n. Steps E and F must now
be redone for all of these corrected subintervals [b;,b;,,]).

l=zk+l, - - k+m. Thenset j =k +m and goto A.

E) The subinterval endpoint has now been determined, i.e. by, =¥.
Stretch the interval [b;.b;,,] to 0<% < 1. Put down a uniform mesh {Z S3TRY4
with meshwidth A where k' is a meshwidth that would be aonsidered appropriate
for the resolution of a smooth function on the interval 0 < ¥ < 1. (This is some-
what vague; typically R ~ 1/10). The meshpoints in the original variable z are

given by
zy] =b; + uﬁa, v=0,1,..1/k

F) Now compute the transformation matrices S(z[#1), v = 1.2,....17R by
updating S,(b;) using theorem 9.1 (again see remarks 10.1 and 10.2). The
difference approximation can now be written down for the mesh intervals
[z11.z81), v=0,1,2...1/ A -1. Suppressing the superscript [j], the difference

approximation is given by

1“jm‘l - 17., = Dv(hvxvﬂ - S;Jl(svn = sv))?’. vl
+ (I - Dv)(hvzv - S;‘ (snnl - Sv))"&;v (10°1)
+ thvsv-Jvaﬂ + hv(I - Dv)sv-lpv

where S, = §{(z{/]) and ¥, is an approximation to ¥ (z,). In practice we have

found it more convenient to make our computations in terms of the original

3

(untransformed) variables y(z,) which we approximate with v,. The difference

R

O NP
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approximation then becomes

B

Schvye - Sy, = Dy(h,SFhAve + Soh ~ S, ven
+ ([ - Dv)(h'vsv-lAv + SU_O!I -Soth, (10-2)
+ thvSv—blvaH + hv(l - Dv)s;lFV T

where A, = A(z}/!). This is done because it is usually the original variabies that

NTR

we are interested in. One should note, however, that if 18,1 + {S;t| is not of
reasonable size, one can expect the system (10.1) to be somewhat better condi-
tioned that (10.2). The transformed variables  are in some sense the "correct”
variables for the problem since they have been scaled in such a way that we can

obtain estimates for the system.
At this point we can now increment j and return to step A. i

Remarks 10.1: When computing the transformation S,.(b;) at the left end-

point of a blacking subinterval, we first transform A(b,) to upper triangular form

using the QR method. If the eigenvalues do not appear in the correct order on
the diagonal of the transformed matrix, in practice we repeat the QR iteration

K using the (now known) eigenvalues as shifts in the order in which we wish them

to appear.

The resulting matrix is then transformed to block diagonal form using lem-
mata 9.2 and 9.3. Note that if the eigenvalue sets MY are well separated then

the iteration (9.8) can be replaced with

AR = R4, 4 ROA-NR, RI-1 _ g o (10.3)

i.e. we only need to invert 4,,. (This remark also applies when updating S later

on ).

‘Note also that the off-diagonal blocks need not be completely eliminated as

any O(1) blocks can be absorbed into the matrix H of (9.9).
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Remark 10.2 As long as a blocking subinterval endpoint does not lie
between two points z;,z;,,, S(z;,,) can always be computed from S(z;) by
updating S(z;) using the blocking technique of lemmata 9.2,9.3. In practice the

iteration (9.8) is replaced by

A, R~ BZp - RO-VE, R -1 4 By = (10.4)

.

.

where
A= UlAgU . Zpe = UzAgU,

are upper triangular { U, and U, are unitary and are determined by QR). Here
B2 = UB\aU, and By = UsBU,. R is then computed from K using
R = U,RU;. This simplifies the computation since in particular the iteration {
(10.4) only involves the solution of systems of the form (9.8). The only exception
is if the eigenvalue sets M) are well enough separated so that (10.3) can be used

in place of (9.8).

Remark 10.3: In practice we only compute the tests (9.11) with p = 1.

Although this means that we do not necessarily get the smoothness required for
good error estimates, our experience has been that we always obtain satisfac-
tory results. Also taking p = 1 means that the difference approximations to
(9.11) will only involve two adjacent subinterval endpoints b;, which simplifies
the algorithm considerably. The diflerence approximations for the smoothness
tests are described as follows: Suppose we want to assure that the function f (z)

satisfles
i (max(|af (aZ)!|.1)) 'adf (a¥ )/ d&F < K. (10.5)
In practice we replace this with the test

a‘f(°1_“" &) - 1(b)1 <R

(10.8)

! 1+alr()]
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for some appropriate value of X & X, where b; is the previously determined
subinterval endpoint and @ is the stygtch'mg parameter that we are testing.
(10.8) is obtained by stretching [b;.b; + @] to [0,1] and then .replacing the
derivative of (10.5) with a divided difference over the whole interval 0 £ < 1.
The denominator of (10.5) has been replaced by a sum because it is cheaper to

compute than the maximum but gives approximately the same effect.

¥We have computed several examples to test our procedures, and we present
three of them here. Each example was chosen to test a different aspect of the

transformation to normal form. For the first example we consider the system

0 e

with y(-1) =1, y(1)=2. This problem has turning point behavior near
z = -V2,0,V2, and thus we are testing the aspect of the mesh construction that
looks at the smoothness of the coefficients in order to determine the proper
stretching. Figure (10.1) shows the resuits of a computation with ¢ = 1075, Only
the approximation to y(z) is shown. As with the earlier plots, the horizontal
lines above and below the plots are used to indicate the locations of the the

meshpoints.

The second example (figure 10.2) shows an example with both boundary

layers and a possible turning point at z = 0. The system is given by

Y

z _1
%{:]= ;é 08 t] y(-1)=1y(1)=2,£=10".

Note that the region of the possible turning point has been refined even though

the solution is smooth there. In order that our code be robust we have chosen

to "resolve” all possible unsmooth behavior even though in cases such as this
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one it might be possible to tell a priori that the solution will be smooth there.

In the third example (figures 10.3, 10.4), we test the feature of the mesh
refinement algorithm that resolves possible highly oscillatory behavior. The sys-

tem we consider is given by

z 1
é!z_ﬁ]*. t"l ;[://]':0. I(-1)=1.y(1):-2.¢=1o—4,

In this example, the eigenvalues of the matrix become complex in a neighbor-

hood of z = 0 of width 0(2%). The mesh in this region is thus determined by
imposing the fourth of conditions (9.11} Another interesting feature of this
example is that it is not particularly well-posed. The solution becomes very
large near the left boundary (| y(z)||. =8.9x10%). However, the method is able
to handle the situation quite well. Figure 10.4 is a magnification of the region
near z = 0. This shows the oscillations that occur near z = 0, and demonstrates

that the mesh has been properly scaled toresolve these oscillations.

H
¥
13
;




E dd(y)/dxdx + (x°3 = x/2) dy/dxs -y 0 H
E = epsilon = 0,1000E-04 No. of meshpoints = 124

min = -0,8563E-01 max = 0.1871E+01

" Figure 10.1
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E dd(y)/dxdx - x dy/dx - y/2 = 0
E = epsilon = 0.1000E-02 No. of meshpoints = 106

ymin = -0.2343E-01 ymax = 0.2000E+01

Figure 10.2

I

S A
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E dd(y)/dxdx ¢ (x°2) dy/dx ¢+ y= 0 1
E = epsilon = 0,1600€-03 No. of meshpoints = 229
min = 0006409  maxw 0.89126410 ;

Figure 10.3
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€ dd(y)/dxdx ¢ (x°2) dy/dx ¢+ y= §

E = epsilon = 0.1000E-03 No. of meshpoints = 150
min = -0,12128400 xmax = 0.4671E400
min = -0,9179E+06 max = 0,2673E407

; AL N
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11. Solution of nonlinear systems

It is relatively straight-forward to apply our methods to nonlinear problems

of the form

Ly(z) = 1 (¥(2)) - (11.1)

where for simplicity we specify linear boundary conditions (1.2). Herey and f
are vector functions of dimension n. As in {3], we solve (11.1),(1.2) using a func-
tional Newton iteration technique: We linearize (11.1) about a previous guess or

approximate solution y™(z), obtaining
#9@) = L enie) + 1 4mE@) - v @) (11.2)

Here %(z) =.y"” —y™ is the correction to the guess y™, and %‘s(y"(z)) = A(z)

is the Jacobian matrix of f. Letting # = f (y"(z)) - %y"(z) we see that (11.2)

is in the same form as (1.1) and so we can apply the methods discussed earlier
in this paper for linear problems. We emphasize here that the linearization is
done before the method is applied. This is in contrast to the usual approach for
solving noninear ODEs, which is to first apply the difference method, and then
use a Newton iteration to solve the resulting system of nonlinear algebraic equa-
tions. The reason for this is that we can only expect our method to apply to
linear differential equations, and so to be certain that it works, weé must first

reduce the nonlinear ODEs to linear ones.

We have used this approach to solve a simple test problem, given by

ty'+ YD) -y =0, -lszs 1, y(-1)=1 y(1)=2.

-l
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As in [3] we replace this with the 2x2 system of equations

ty' = —-é—y"’ +v
v = (11.3)

Y

and then linearize this system. The matrix transformations and mesh construc-

tion are the same as before. The difference approximation is ;essentially the
same as (10.2) except that the term dy™Alz is grouped with the term djtiz
‘when making the difference approximation. In terms of v, and v, the approxi-
mations to ¥(z,) and y™(z,) respectively, and letting F, = f (y™(z,)). we add the

terms
(DASoh =S5t =S Wi + (I =D)(SGh - Sot) + S5 we

to the right-hand side of (10.2) to obtain our difference approximation.

Figure 11.1 shows the result of a numerical computation of the solution ot
(11.3) for £ =1073, We started with an initial guess for y of a straight line
between the boundary values and continued in & with the values ¢ = .1, .03, .015,

.0075, .004, .001. Convergence was obtained to a tolerance of less than 1073 in

the maximum norm at each step.
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Pigure 11.1

E = epsilon = 0.1000E-02 No. of meshpoints = 49?7

wmin = -0,1473E+01 ymax = 0,2000E+01
- -
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