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ABSTRACT

-Wr consider the two-point boundary value problem for stiff systems of

ordinary differential equations. For systems that can be transformed to

essentially diagonally dominant form with appropriate smoothness conditions, a

priori estimates are obtained. Problems with turnng points can be treated

with this theory, and we discuss this in detail. 06 give robust difference
approximations and present error estimates for these schemes. In particular

ve- give a detailed description of how to transform a general system to

essentially diagonally dominant form and then stretch the independent variable

so that the system will satisfy the correct smoothness conditions. Numerical

examples are presented for both linear and nonlinear problems.
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NUMERICAL METHODS FOR STIFF TWO-POINT BOUNDARY VALUE 
PROBLEMSt

* *4 *

Heinz-Otto Kreiss , N. K. Nichols , and David L. Brown

1. Introduction

In this paper we consider the two-point boundary value problem for a linear

system of n ordinary differential equations (ODEs)

= x)V +F(z) Oz c. (1.1)dr

subject to n linearly independent boundary conditions

Boy(O) + B3l(c) = g . (1.2)

Here /r = (,(1). y (). .,Y(")) 1) is a vector function with n components and B..

B, and A(z) C CP 2) are nxn matrices. We assume furthermore that the vector

F(z) C '.

We are particularly interested in the case when the problem (1.i)-(1.2) can

be characterized as being stiff but not highly oscillatory. The "stiffness" of a

system of ordinary differential equations is defined relative to a computational

grid on which the system is to be solved by means of e.g. a difference approximation:

0 A

0 x x I I-. 'N

We divide the x-axis into subintervals of variable length h. with gridpoints

tAll numerical computations were made on the Caltech Applied Mathematics

Department Fluid Dynamics VAX.

Department of Applied Mathematics, California Institute of Technology 217-50,
Pasadena, CA 91125.

Department of Mathematics, University of Reading, England RG6-2AH.

I) 1vi ma vector then w? denotes tts transpoe and V" its adjoint. The vector norm is
defined by I I - max 11V{01. Similar notations hod for matrices. for example
JAI -sp 1 I/l I. Furthermore for vector unctions I(z). a y()I denotes

e maximum norm.
A(x) £ C1 if the elements of A are i times continuously diferentiable.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
Research partially supported by:

Office of Naval Research Contract No. N00014-83-K-0422; and Air Force office
of Scientific Research Contract No. AFOSR-82-0321.
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Z- 0. Z ! E i. v = 1 . 2. .... N; z =c and denote by uv u(z) vector func-
JU0

tions defined on the grid. Defining h " max hj. we say that the system (1.1) is
I %_

stiff if h IAI >> 1. The case when it is possible to choose A such that A IAI << I

everywhere has been treated many times before and it is not our aim to discuss

that situation here.

There are essentially two features of stiff boundary value problems that

makes their solution by numerical methods difficult. One is that the matrix A

has large eigenvalues of both signs. The second is that there may be turning

points in the problem. The concept of a turning point is not particularly well

defined in the literature; however for our purposes, we take it to mean a subin-

terval of 0 ! z & c over which an eigenvalue of A changes its order of magni-

tude: In general. if the eigenvalues of A vary over several orders of magnitude

as a function of z, there are difficulties.

It is typical that the solutions of stiff boundary value problems vary over

several different scales. Therefore, it is intuitively clear that in order to obtain

an accurate numerical solution to such problems the computational grid must

be constructed in such a way that the solution of the problem is everywhere

smooth with respect to the grid. Alternately, we can think of changing the origi-

nal problem by introducing a "stretched" variable Z ' (z) such that the solu-

tions V(N) of the transformed problem

'(z) ~ AV+

varies slowly with respect to a uniform grid A, a A. Since I(z) can change by

several orders of magnitude we have to be careful about what we mean by "vary-

ing slowly". We must first scale V correctly. We assume that this is achieved by

a positive scaling function p e CP. The smoothness constant of this scaling
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function is defined by

K : K[..., ::,"pmx ~dvpd )i

A A A

Thus can grow like eft or decay like a -
. If, for example, K 10. then we

can obtain a change of scale over a short interval.

Defintion 1.1: A scaling function varies slowly for a 9 z :s b with respect to

a uniform gridlength h if hK << 1.

We now consider y and assume that we have chosen a slowly varying scaling

function ip such that y = O. We can now think of Y as being of order 0(I) and

therefore we define its smoothness constant k by

:up max JdT / .

This leads to

DefniUon 1.2: y varies slowly for a ic z & b with respect to a scaling func-

tion g and a uniform mesh with meshsize h if

Ah~~~~~ <<* O i ^

The deffiition above is useful for numerical purposes only if we can deter-

mine the smoothness constant K without detailed knowledge of V(z). In the

next section we begin by considering scalar equations and show that K can be

determined in terms of the properties of the coefficients of the differential equa-

tion. In sections 3 and 4 these results are then generalized to systems of ODEs

which can be smoothly transformed to essentially diagonally dominant form.

For the problem (1.1),(1.2), the constant K can be determined in every

subinterval b I & z !c bg of 0!9 z A c. If K does not change by orders of magni-

tude from subinterval to subinterval, then we can use a uniform meshsize h with

L S
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Mi << I everywhere on the whole interval. However, as we pointed out above, it

Is typical in stiff problems that there are several different scales on which the

solution varies; for example there can be boundary and internal layers. These

variations manifest themselves in values of K which vary over several orders of

magntude between subintervals. In sections 9 and 10 we discuss how to con-

struct the stretched variable Z (z) mentioned above so that the new smoothness

constant is of the same order everywhere. This stretched variable leads

to a nonuniform mesh in the old variable z.

In the remainder of the paper we discuss difference approximations for stiff

systems and give numerical examples. There are two basic classes of difference

approximations that can be used; these are centered schemes and onesided

schemes. Onesided schemes have the apparent disadvantage that the

differential equation must be transformed to an appropriate form before they

can be applied. However, centered schemes are not as reliable as onesided

schemes, and as we show in section 5, they cannot be expected to give accept-

able results in general unless the system has been transformed to the proper

blocked form. Even then, the combination of onesided and centered schemes

which we advocate in that section will perform better than a strictly centered

seheme. This is true basireay becsuse the fmdamental estimates for the

former more closely mimic those of the differential equation than do the esti-

mates for the centered schemes.

In sections 6 through 8 we discuss difference approximations in more detail.

Section 6 is concerned with difference approximations for scalar equations, and

sections 7 and 8 cover diagonally and essentially diagonally dominant systems.

In section 9 we describe how to transform a general system to essentially diago-

nally form. Finally, in sections 10 and 11 we give a detailed description of our

numerical procedures and present some numerical results.

• , .4
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2. Analytic properties of scalar equations.

In this section we consider scalar complex valued equations

_.. a(z)jv + 1(z).

V(O)=V.. Ozc Pea 0. (2.1)

We are interested in the case that a(z) is large but we ee not interested in

the case that V(z) is highly oscillatory. Therefore we assume that there is a

constant p - 0(1) such that

la,(z) I CRI ,, = lma. = Res < o. (2.2)

Later on we want to solve (2.1) by difference approximation on a grid with

essentially uniform gridsize h. Because our difference approximation will only

depend on point values of a(z) and f (z) it is important that the behavior of

these point values represents well the behavior of the continuous functions. An

appropriate assumption is that there exist a natural number p > 0 and a con-

stant K, > 1 with K1h << 1 such that

. dva,, d
fl(laI + 1  -- 0-lo.. !9K, f(ll +1 )-1!L I K1,

=12 ..... p. (2.3) DTIC

The number p. which will depend on the method we use. will be chosen later.

We can use (2.3) to estimate the local variation of at(z) and f1(z). Letting

g= (1 + s tf )-ldf /dz and p = sgnf we can write

A_= p(z)f (z) + #(z)de

Li a1. r I 1Ut ion/
i.e. ki/z .l i 1t7 Co"eS

Avail and/or

f(z)f (i),. 1  ()'(-I
O f(

-



or

f(Z) = f (0) + zgs(z)

where by (2.3)

Ig(z)l i K1. g ji(=)l ic #1 ' .

Therefore for I KzI 1

I1(X)-f(O)l1 l"'- 11 If(o)l + Izllul !% IKzI(1 + O(IKzI)(I1(O)I + 1).

A similar estimate holds for a(z). Thus we have

Lemma2.1: For aLnz, with K,Iz, -zol ! 1

la(z,) - a(z,)1 i IK,(z, - zo)I(1 + o(IK ,(,z - zo)a))"(z.)I,
If(z1) -fo(z.) ' IK,(zI- zo)1(1 + 0(IK,(! -=a)I)) (If (z.)I + 1).

If the expressions (2.3) are not bounded then we cannot expect that the

solution of (2.1) varies slowly. As an example, consider the differential equation

dU z +.4= € t/+CM JV(0) =. 0, 0C= !1.

Here e > 0 is a small constant ( for example = 10- ). Now

(1a(z)I + 1)-'11d(z)/ l = I(z + 2t)-'

becomes arbitrarily large for e - 0. For x-%/(' >> 1 the solution is to first approxi-

mation given by

ell

and varies slowly.. However. for 0 s z s conLst. ,/e it changes rapidly. To see this

we introduce a new variable V = zi / and obtain

_ ~~~ ~."., . '



-7-

4jt/ cLG- + I&)y +. Y(O) =O

i.e. y(z) varies slowly as a function of.? but not as a function of z. This can also

be seen from the graph of V(z).

The conditions (2.2), (2.3) still do not guarantee that the solutions of the

differential equation change slowly. Consider. for example.

dey/ d = -t- ]. I(0) = 1. 0O< e<< 1.

All the above conditions are satisfied. However the solution is given by

V(-)=

which forms a boundary layer ani decays ap dly ', om I to zero. This possibility

can be avoided if we assume also that a(O) is not too large. i.e. there is a con-

stant K > 1 with Keh << 1 such that



It(o)l 1 iKs. i e Lm() -(P + 1)KI. (2.4)

Observe that the conditions (2.3), (2.4) do not prevent s(z) from becoming large

because (2.3) allows a rather rapid exponential growth of a(z) "away from the

boundary. Numerically this corresponds to the requirement that we use an

exponentially stretched mesh to represent boundary layers in the solution.

The above conditions are not sufficient to guarantee that the solution V(x)

stays bounded. Therefore we assume explicitly that the equation has been

properly scaled such that

NyV(z)llo.. 1. (2.5)

The following lemma says that (2.5) implies the condition

l iI,/ llIa + 1) !% constant.

Lemma 2.2: Assume that c k 2/ K I. Then there is a constant C3 which

depends only on K, such that

f (2) o llIo,,(2.5sa)WI) + I.

Proof. Without restriction we can assume that V II0.. = 1. Let z 0 be a

pulut with

It I c -z. I ;l/ K, we consider (2.1) for z X z, and introduce new variables

(z(z.)I 1

Then

- " -- : . i •..: . ,. " • - • "
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dV =Z (1 + l(z.)l)-,a (=)Y + f ()/ I f(M°)l.

By lemma 2.1

a__ _ a(z.) + Ia (x) -a (Z.)
Ia-(Z.) I + T(z.+(z.) + 1

I + O(C K(z -x.)I).

and-f(z I " 1 - 0(I K(x -z.) 1). Thereforeif (Z* )I

t f (x) ( )V(=) f + +7 (Z°) + f I + I C (Z.)l,f(z.) 1,, a.z)

implies

Y(z - )1 z I (z ,)( - O(1K, (z z)I -

(ziz 0) (I + 0(1K,(z I -z o)I)I 103

Thus for z1 - . 1 6/ K, 6 > 0 sufficiently small.

A+(N.)I +. ,If(Z.)I 2K,

Since the last inequality holds for any z,. the inequality of the lemma holds in

this case with C3 = 2K/ 6. If I c - z,I < I/K, then by considering (2.1) for

z i z, instead, we obtain the desired inequality in a similar way. This proves the

lemma.

We shall now prove that under the conditions of (2.2)-(2.5) there is a con-

stant C such that the solution y(z) of (2. 1) satisfies

IIdly/ d.'llo 0 C. !s= C . L .. p. (2.6)
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This is easiest to show when I a(z) is small for all z: We have

Lemma 2.3: Assume that (2.5a) holds, that conditions (2.2)-(2.5) are

satisfied and that

II o.(z) 110.. !9 K2.

Then there is a constant C which depends only on KI, K2, p such that (2.6) holds.

Proof: (2.2) implies

la(z)11o., t (p + I)K2.

Therefore by (2.3)

ldla/dizvlo., , K1((p + l)KO,+1) v 1 i.2.....p.

By (2.5a) and (2.3)

f (T) 11o.. - Ca(1la110.o + 1) i.e. ldf/ fdvo . const.. v = 1.2....,p.

Using the differential equation. (2.6) follows.

We assume now that

LR(X) ' -1. (2.7)

i.e. we allow IaR [ to become arbitrarily large. We will use

Lemma 2.4: The solution of (2.1) with aR(z) = Rea < 0 satisfies the esti-

mates

f Rd
y(z) sz max If(TI)" + I, ly(O). (2.ba)

0<+)<8

IV W a nII

' : l.. . .. ..



Proof: The solution of (2. 1) can be written down explicitly:

Y(M) f f #(,7)d,7 + a Io(o).

0

The first estimate follows from the inequality

X a

f .()' f R(Jdt

Furthermore

N f ,a fo"W"'

IY( )I ! f " If(?7) 1 di? + I I IY(O)I i
0

a RC,7)e" If(,7)/aR#C7)ldi + 80 ly(o)l !5
0

"-It" d27 .max If (,7)/R(,7)I + °(0)1

which gives us (2.8b).

Using lemma 2.4 we can obtain

Lemma 2.5: Consider (2.1) and assume that the condition (2.2) is satisfied.

Then there is a constant C, which depends only on p such that

ld'*y(x)/dyl !9 (2.9a)

C, Ila-, 1.8 1,, EI + Ila-, & V I-'.M ,1 0,1.2....,p.

If furthermore (2.3), (2.5a), and (2.7) hold, then there is a constant CR which

depends only on K, and p such that

A

t~R .... .
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IdMvV(z)/dxvj is Cg[I110.. + I + dT0(2.9b)

Proof: For v = 0 the first two estimates follow from (2.2) Miid lemma 2.4

since

If /aRI = If/ aII/ RI (1 + p) If/a .I

Now let u = dy / dz. Differentiating (2.1) gives us

dx (2.0)

Thus by lemma 2.4

IIdu/ dllo.. Jajjlda/d d .lo,)y i., + IIaj'd.fdx11o.,. + dI/d j,,o.

Now

Ua R' da / d a . !5 ( 1 + p ) I d ' a / d r 11 o..
Ileitf dz a .., (1 +,p)la -'df/ 11.0 .- (0 + p)U t1rIf I 1 10 11 -.,* /d (a..

J iIf I + 1.

and if I a I e 1 we have also that

and

II Ill_1 0 , < z ll ..L.......~, ++IaI+1

and so (2.9ab) follow for v I from (2.2). (2.3), (2.5a) and (2.7).

The estimates for higher derivatives are obtained by repeated

differentiation of (2. 1). This proves the lemma.

. -Y . -...... .. .. - ... ..
, . - , . .
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We can now prove the main result of this section

Theorem 2.1: Assume that C a 2/ K1 and that the conditions (2.2)-(2.5)

hold. Then there is a constant C which depends only on K1 . K t.p euch that (2.6)

is valid.

Proof: Lemma 2.2 tells us that (2.Sa) holds. Now divide the interval

0!9 z & c into as few subintervals c,!g z ! c,,, as possibre such that at least one

of the two conditions

I c1R(--)1 !9 K2-, "e(Z) !C-

holds in the whole subinterval. If IR J ! Ks is valid then we can estimate the

derivatives by lemma 2.3. If aR !5 -1 then we can obtain the estimate using lem-

mas 2.2 and 2.5 if we have a bound for t ldJy(c,)/dzJl. The interval
1=0

0 = cc & z ! cI is included in the case I qR 1 ! Kg. so we are only concerned with

the remaining intermediate points c,. 7 = 1.2..... For these points we obtain this

bound from the estimate for the previous subinterval c,_1 s z s c, This proves

the theorem.

Finally. we can eliminate the condition (2.5). i.e. the assumption that we

have scaled the solution beforehand. If fly 1b.0 > I then V = y/ llyl10., satisfies

/dz =o(z) +7 . =IlYNo.,. (2.10)

Now

(l7 I + l)-'d7/dzyllo.. !S l(lJ I + I)-ILf/ dzvlo.,

implies that (2.10) satisfies all our conditions. Thus

;dII /dzvl o., -_ C.
i.e. lid-V/dzvlo., s ClIV 11C.. for UV110.,> 1.
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Combining (2.6) and (2.11) gives us

Thorem 2.2: If the conditions (2..2)-(2.4) are satisfied, then we obtain the

estimate

Ud"V/d.zlo.,":9 C(llV 110., + 1). v = 1.,2.....p. (2.12)

Remark: If hC << 1 then V(z) is slowly varying with' respect to the scaling

function 9P IV 110.,. We can obtain a much more precise result by using

= V(jF -I l)/(Ua I' - 1) as a scaling function. To explain this we assume

that ct >> 1. f >>landuse go= I/a1. Then

II'If I +- II '/I -2K

andy =1y/i satisfies

(a -'/,)V + ", C..e. I17 1 I=/(a--)-.
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3. Diagoaly dominant sytems.

We consider now systems of differeintial equations. A reasonable assumption

for such systems is that the coefficients change slowly. Le. that they satisfy con-

ditions of the same type as we described for scalar equations. Unfortunately,

this assumption is not sufficient to guarantee that the solutions of the systemsI

also vary slowly. Consider, for example, the system

di[j jJ-o 01 -01z!gI
v(-) = a. w(i) = ( (3.1)

In a neighborhood of z = 0 the functions z, a - I. elz satisfy the conditions (2.3)

with K, - 1. However, the solution is not smooth. In component form (3.1) is

given by

u, z= %. e 'u - ext

Le.

S - L .

A graph of the solution is given in fig. 3.1.

There is however a class of problems that behave like scalar equations and

we shall describe this class now.

Definition 3.1: The matrix function

122 1(z) ... . .

L ,,)A(z) ... .• ... ()

is diagonally dominated if
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X--1 0 ' +1

. 3.1

a)

Reft < 0 t=1.2,....r.
Reau > 0 1 r r+l...f.

p) There is a constant 6 > 0 independent of z such that

2 1 a I s(I -6)1Rea* 1. 1....

7) There is a constant p - 0(1) such that

I]mat, IpIRea* I. i 1.2.....m.

If A i. diagonally dominated then it is appropriate to write the system (1.1)

in the form

"=AYI +OB)v + F. O-z&c (3.2)
dz

where

I 0 big big . b, I

01 b., 0 . b..

.. All B ... ... ... . .. 0
Ib,, ... .. ... b,,,. 0



-I
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With

A' = dL(a 1Va.." .a,.,)- AF = dLV(a,.r.,1.s, .8..,a, .)-

Such a system is said to be in dhizgonaULy dommtt form.. Corresponding to (2.3)

and (2.4) we make

AsummpUon 3.1: There is a constant K, such that

A:-__v dvB
U A 11.. S K,. . --- o.o s. a, =!

Asumption 3.2

i A rL-",6 o .o ii = I,2 ..... p.

Remrk: Corresponding to the previous section we can replace assumption

3.2 with

We shall always assume that j >> 1 and therefore assumption 3.2 means that

we have already scaled the equation properly.

AssumpUon 3.3: There is a constant Kg such that

We shall show that under these conditions the solutions of the system (3.2)

change slowly. We start again with a couple of lemmata:

Lmma 3.1: Assume that A(z) Is diagonally dominated. Then the solutions

of (3.1) satisfy the estimate

I
I

41
-- M
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J,(z)I - 4(A4 +A')-1Fi.. + ,(x)l (3.3)
U

where

-N J' Glum tJ U~

a(z) =aI'(z)l + • Iv'(c). (3.4)

Here we have used the notation

V (X) = (,.. (V))T ViU(z) = (,Vtr).. V(M)

91(z) = min IRea(z) l. a(z) = min I Rehu(z)I

Proof: We consider first the case V'(O) = v77(c) = 0. Let N denote the space

of all continuous functons g with g'(0) = gu(c) = 0. The differential equation

1,,V/ d'/"-,AV =¥F

has a unique solution in K given by

e fAI J(n)dn

Let L, denote the operator defined by

LV = (A -A)V. V c M.

Then we can write the differential equation (3.2) in the form

(I - IVL,-t)V =

In the same way an in lemma 2.2 it follows that

7 '-
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,-'I (z)fg. ' 211(A + A°)-'F(z) Ila.,.

Furthermore

ltLiV Ia., !6 2(A + A°)-'V 1 1 .. s (I - 6 )IIy Ii.o

and the estimate (3.3) follows for the case that V'(O) = V(c) = 0.

Now we consider the case where f a 0 and VM(0). y"(c) are arbitrary. We

let y be the solution of (3.2) and write

L I = (n + y( O
(c •

0 *

Then vi satisfies

v' = Aw + (A - A)Dy., vr(0) =vrr(c) = .

By (3.3) we obtain

llv(z)1o., ! 6-'1P2(A + A)-'(A - A)0 .. 11 D 0  . IV.

, - ! mx I aq IV. I 1C 6- 0 - 6) IV. I.

Thus

Iv(I !g 6'(1-6) IV.I + IV.I = 6-1 IV. 1 (3.5)

To show that in addition to being bounded, iy(z) decreases exponentially away

from the boundary, we consider the solution of (3.2) with

$ .0. Y(O) = Y.. V"(c) = 0.

LetV = , p(z) = -- f L()d(. Then u(z) satisfies the equation
20J_
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,'(z) : (A(z) + 4-a.(S (X).

Using (3.5) we obtain

1 2

Therefore

I(z) I ig sPg) I x(z)l S26-s0(g) V,1t

The corresponding result holds for y1(O) = 0, y"(c) = y/'. Thus we have proved

the complete estimate (3.3).

In the same way as for the scalar equation we can now use the last lemma

to discuss the smoothness of the solutions of (3.2).

Lemia 3.2: Consider the system (3.2). Assume that A(z) is diagonally

dominated and that the conditions of assumption 3.1 are satisfied. Then there is

a constant C, which depends only on K 1. p. and 6 such that

Izv =0. .1 tJ [ I""

P oou: Thu pruof rescrublus Lhe pioof of luXia 2.5 LLuseIly. Fut P = 0 Lhe

estimate is given by lemma 3.1. Let u = dy/ dz and differentiate (3.2). Then

=- A(z)u + ,P. F=:.--+[ --' (3.6)

Using the estimate for y we obtain an estimate for F , and lemma 3.1 gives us

the estimate for us. This process can be continued and the lemma is proved.

We can now prove the main result of this section.
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Theorem 3.1: Consider the diagonally dominant system (3.2) and assume

that assumptions 3.1-3.3 hold. Then there is a constant C which depends only on

KI. 1 1. p, and 6 such that

I~U ~ ~I~SHo.+ iJ. i' 1.2 .....p (37
.(37)

Proof. By lemma 3.2 and assumption 3.2

N~l~ U(I + 1 i4 J.

By assumptions 3.2 and 3.3 and since A is diagonally dominated.

j a4, t!9 2K2. IF4'i !6 Ksk 1 . J. =1...,
Jul

holds at z = 0. Therefore the differential equations gives us

dv[(O) 2KV y (0)J1 + ..

Correspondingly we get for z = c

I I V(cK2Kk(C i

Thus by lemma 3.2 we can estimate J df/ dz I0. The estimates for higer deriva-

tives are obtained as before by differentiation.

If A'(0), A"(c) are not 0(l) then we introduce an exponential stretching

such that they are bounded in the stretched variables. Let

&I = maxIs*(0)I > 1

and introduce new variables by
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z =Q sj'feQ)d(. o(f) fgqi
a

where g will be defined below. Then the system (1.1) becomes

k.. 'zj(Z)4 + (3.8)

Let Z I = KI-'logaz and choose

Kr/)= f for 0i q9,ai
0or7)= 0 for )={!Z' a, for Z >,'I

Then

( I - 1)/z 1 K for 0!9 z Z'

=, +zl-zl for >' I

Now treat the neighborhood of z = c correspondingly. Then A'(0), A"T(c) are

bounded and assumptions 3.1 and 3.2 hold for p = I with K 1 . k replaced by 2KI,

21 1 . Thus the estimate of theorem 3.1 is valid forp = 1. In particular I .

(where zg = c 11 a'I/" K1 , and ag = max lak 1) is already boundcd in the

unstretched variable because for z, ig z is zg no stretching occured.

To obtain estimates for higher derivatives we could replace g (7) by a

smoother function. However, this is not necessary. Apply the stretching to the

differential equation (3.6) for u = d4 / dz. The we get a bound for du/ dG. On

any of the subintervals 0! Z ! xz. z, i z i z*, ze - z i c differentiation com-

mutes with stretching and therefore we can estimate the derivatives on every

subinterval in terms of It 10.. + 1. In particular we have for the subinterval

away from the boundaries:
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Theorem 3.2: Assume that assumptions 3.1 and 3.2 hold and that c A! 2/ KI.

Then there is a constant C which depends only on K, kj. K2,. p and 6 such that

11 d z ~I I / ,, , ,. -I/ -

AL"
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4. Essentially diagonally dominant systems.

The class of diagonally dominant systems is not broad enough to include

many interesting problems. Therefore, in this section we generalize our results

to systems which are essentially diagonally dominant or which can be

transformed smoothly to systems of that type.

Definition 4.1 A matrix

aXl a22  1g
ALo

is called essentiaijy diagonall y dotinated if there is a constant 1K with K.h << 1

such that A can be partitioned into the form all 0 0. o
A12 o a 0

A = A 1 1 
= A( I +B). A= .

where Al1 is diagonally dominated and

IIA'A 1z1o.. ! K.. BAaj i1o1 O Ko. 1.2.

We consider now systems (1.1)

where A is essentially diagonally dominated. Such a system is said to be in

essentially diagonally dominant form. We are interested in the case that

IAII2 >> 1. We make

Assumption 4.1:

L . ..... ... . ... .. . . .
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H'B/ d~zIo.=~ K1. II d"A 2 /dxz'io..- Kj, j = 1.2: =

Assumption 4.2:

* IIA-'d G dzilo.. ! , IIdH/d"/jo.,-X,. =0.1,...p.

Assumption 4.3:

We want to show that the estimate of theorem 3.1 is still valid.

Theorem 4.1: There is a constant V which depends only on K, ki, K 2. p and

6 such that

lldV/zMIo. t(Ij; 1j0.. + 1). y (4.2)

Proof: We have by (4.1) and assumptions (4.1) and (4.2) that

Write the equations for V in the form

dy/dz = Aly + G, + G

where G, = A 12w. Now.

IlA-'G,/ dz. , K. 11 dw/dr 110, + KIjw 110

so in the same way as the proof of theorem 3.1 we obtain

y //dz Io., " const. (Iy Ilo., + 1)

_Mali
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This proves the theorem for p = 1. For higher derivatives it follows by

differentiation of the differential equations.

If the assumption 4.3 is not satisfied then we obtain from theorem 3.2 that

the derivatives are still bounded in the interior of D z c. Thus we have

Theorem 4.2: Assume that in the neighborhood Iz -z : 2/ K, of

every point z with I/K 1 • x, • c - I/K, we can write'the system (1.1) in the

form (4.1) such that assumptions 4.1 and 4.2 hold. Then we obtain

11dvj / dMll C(I 11. + 1). (4.3)

Remarks: It is important to note that the dimension. m. of the large block

need not be a constant on the entire interval 0 • z • c. As the assumptions of

the theorem state, it is only necessary that we be able to block the system into

the form (4.1) in the neighborhood of every point in the interior of the interval.

Thus the theorem applies to problems with "turning points", since by this we

mean a problem in which one of the eigenvalues of the large block All locally

changes size by an order of magnitude.

Observe also that the estimate (4.3) is invariant with respect to smooth

transformations, i.e. we can replace y locally by V = S(x)ii where

iS UI o- .,. . + S -lUI , .,. 4p K s( .

DdVS/dXv.z -. u. ps K1, P = 1.2....p. (44)

and an estimate of the type (4.3) is still valid. Therefore we can relax the condi-

tions of theorem 4.2. Instead of assuming that A has the form (4.1) we need only

assume that in the neighborhood of every point there is a transformation S.

satisfying (4.4), such that SAS - t is of the form (4.1) and satisfies the conditions

of theorem 4.2.

. . . .. ..... .. . .. . . . .- ' .. : ,-
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We shall now derive estimates for essentially diagonally dominant systems.

We consider All to be the large part and A12 . A21 . An the 0(1) part of the system

(4.1). ,

It is well known that the solutions of the system

- -= A,.gw + P, 0!9 x - c
Odzz

satisfy an estimate

i 1.!9 "K3(tw(0)l + c 11Ia., ). K ':9exp[llAnll. C]. (4.5)

Note that since we do not assume that the eigenvalues i of An satisfy Rel < 0.

this bound for K3 is realistic and so the estimate (4.5) is useful only if c is

sufficiently small.

We can now estimate the solutions of (4.1) in terms of G. H and y'(O),

V1 1 (0), w(O). Lemma 3.1 and (4.5) give us

Iv ff , 26-' II (A + A^)-'A,2110.. liv.c.0 + D.

llv 1. . K3c IlA , llo0 . Iv 1o., + D2 .

where D, = 26-(11 (A + A')-'G 10 .. + Ilv(O)l + (y"(c)(). and

D2 = Kj(jw(O)( + cflHlo.,). Therefore we have

Lemma 4.1 Assume that

26-cK3 (A + A)'A1 2 Al RA , 110.# I - 6. 6; > 0.

then

6'ny o., -D, + 261 (A +. A)-'A3 o., D.

(4.8)
6'1w lo., DI + Kgc IIAll, a..D1,

-- I
- . ..v--
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If c is not small then we can derive global estimates in the following way.

We divide the interval 0 -- z ! c into subintervals ci -9 z !6 c,. i = Q,,2.....q-l,

C' =0. ct = c. Ct,.I-CS sufficiently small. On every subinterval we write

= yP + YN. W = wp + wiH where Vp, wp denote the solution of the differential

equation with boundary conditions

Vk,(c,) = A9(ct.,) = wp(c,) = 0. (4.7)

and yR. tw is the solution of the homogeneous differential equation with

VI,(c,) = V'(c,), yll(c,.,) = ?"(Ct.,), ,W(CO = ,a(,). (4.8)

By lemma 4.1 ClyJ(ct), yi(cj,.), and wp(ci .) are bounded and are uniquely deter-

mined by (4.7). Also, remembering that the differential equations are linear, we

can write

vll/(c,) = F". ct.) = , , . ?4,(Ct,1) = P.

Here P11 . P1. and P are linear relations with bounded coefficients in V'(ct).

Y"1(c+ 1) and w (cj). Thus in every subinterval we obtain n linear relations

Y/'(Ct) = P" + yfg(c). 7j(c+,1 ) = , + Y (ct+,). W(c,+1 ) = P + wp(ct,,)

for the variables i/(cj). y(ct+l). t(ci), and w(ct.1 ). There are n(9 +1) unknowns

V(cj). w(cj) and q subintervals. The missing relations are obtained from the

boundary conditions for the original problem. Thus the V(cj). W(cj) can be

obtained as the solution of a linear system of equations. Whether we obtain rea-

sonable bounds for the original problem (1.1). (1.2) depends on the condition

number of that linear system.

:&
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5. The choice of dierence metbod

In this section we shall discuss our choice of difference methods. Perhaps

the simplest stiff problem is given by

dX

where 0 < c << 1 is a very small positive constant and f (i) is a smooth function

with derivatives which are 0(i). The solution V = 17s + it consists of a smooth

part

VS(=) f (z) + 0(c), (.)

which can be obtained by an asymptotic expansion, and a boundary layer part

vs =  ( -" y, - Vs(O)), (5.3)

which is a solution of the homogeneous equation

& _&= -Y(5.4)4.d,

Thus the solution is smooth except in a boundary layer near z = 0 where it

changes rapidly.

Now consider a uniform grid z, = v. v = 0.1.2 .... 0 < h << 1. There are two

standard types of difference approximations. One type is centered schemes of

which the trapezoidal rule is an example:

la+ I - uV U,. + U, fp + f,

h 2 + 2 U . (55)

The other type is one-sided schemes, such as the implicit Euler method:

h v,+ - , t ve =o (5,6)

- *•
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The solutions u. : usV + uB.. u, =13v + vi. of (5.5) and (5.8) respectively, con-

sist again of a smooth part

US. WS, +0e) ,~V + 0(c)

and a boundary layer part

us.,, = e~.- us) c C - (5.7) [
1 + 3Jh/) e)

1i

where xi', r' are solutions of the corresponding homogeneous difference equa-

tions. Ifh << c then w - r - a and therefore v ' i, -- s'/ i.e. the solutions

of the difference schemes approximate the solution of the differential equation

well. However. we are interested in the case that z < h. In this case

X -1. Ii -0 . (5.7a)

Thus u., is in general highly oscillatory everywhere and does not approximate

y(z) well at all. In contrast, Iv. - y(z,) I is small away from the boundary layer.

The advantage of one-sided methods in this situation is clear.

Onesided schemes have a major drawback, however, when they are to be

used for solving systems of equations. For the equation

V - = 11+. t(c) = V.. z!cc

the appropriate onesided scheme is the expLicit Euler method.

lVV4. 1/ _=)-'f N= 50
S = + f . i.e. V= (1 +( + N)V,. (5. 8)

because we start the integration at z = c and calculate the solution for

.Aeiw
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decreasing values of v. This construction of onesided schemes can be general-

ized to systems of the form

- A, 0 0 Y

0 A,0 y+j y + F, V 7 (5.9)
0 A,,

where

JL 1 1. IhB <<1. I1 IA.* i >> 1.

and the eigenvalues x(A- 1 ), tc(Aj.) of A-, . A+, respectively satisfy the inequali-

Lies

-hRe (A-) >> 1, hRe c(A+I) >> 1.

An approximation to (5.9) on a nonuniform mesh is

h, V
. A = }(A z11)ag + A(x,,~)a,+,) +- YF(G +' G i). (5.10)

U 1* 1 = A, 1(z=)u, 11 + Gn,

where

Gv= R(zP)uI + Fv.

i.e. we use implicit or explicit Euler for the variables corresponding to "large"

eigenvalues of negative or positive sign, respectively, and we use the trapezoidal

rule for the variables corresponding to "small" eigenvalues. It the system (1.1)

is not already of the form (5.9), however, we must transform it to that form

before we can tell which combination of these methods to use. Since this
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transformation can be expected to be somewhat difficult to implement numeri-

cally, the question arises as to whether centered schemes can still be success-

fully employed for stiff problems, since they do not require a priori knowledge of

such a transformation before they can be written down. The answer is that in

many cases, centered schemes can be used together with appropriately chosen

nmnorm meshes. Consider again the trapezoidal rule.(5.5). Instead of using

a uniform mesh we now use a nonuniform mesh made up of two uniform meshes

with meshwidths h ce and h respectively.

h

III I| iI II I

In the boundary layer 0!9 z !9 . 2 = (clloge[) we use K and return to h for

z > X. In this case the boundary layer part of the solution is given by

I

s-"i.v(Y. -US.) .)z! 2

It is clear that by choosing I sufficiently large we can make uB,,-VB(Zv)I

small everywhere. For systems we proceed correspondingly. We use a fine grid

in the neighborhood of z = O,c and a coarse grid in the interior. On this coupled

grid we approximate (1. 1) by

=+ -UV (A(z+) l -A(z,)u.,) + *(F1 -F.,,). (5.11)
h,

Weiss and Ascher have considered the use of methods of this type in [21.[6]. The
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collocation methods they discuss can be considered as generalizations of (5.11)

and of the Box scheme, given by

A =- ,, = %A ( Z ,. )(+ U ,, + u ,,+.) + j( Z," + XV- ) (5.12)

hV 2

A code based on those methods is discussed in [I]. For general systems (1.1)

where the matrix A(z) is Hermetian or the equation is already in "almost" block

form.

='Al A~j
S 12i iI v =  [ A 21 A J +  F

where

h(JAj 1 I + IAII + JA 1I + IA&d + ]AMI) << 1

centered schemes can be expected to behave properly provided that the boun-

dary layers are properly resolved as discussed above. However, if the system

has not been blocked beforehand, or if there are turning points present in the

problem, then in general we cannot expect good results from centered schemes.

The oscillatory nature of these schemes (see (5.7a)) in regions of the mesh

where h IAI >> 1 makes reasonable error estimates difficult to obtain for gen-

eraL problems. This is perhaps best illustrated with the following examples.

Consider the system

Sz

-- 0

4j + I WH 0, -1!9z. !1 (5.13)

-- 0

with boundary conditions

liI
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Plot o4 Y(x)

eps x 0.1000[-04 Function no. 3

variable I I TAP RULE

Ynin a -0.1638E#00 ,max = 0.2000E.91
no. of mshpoints = 144

.igure 5. 1

lo-)=1. y(l) = 2. ,,,(-l) =0o

For r << I the solution to this problem consists of boundary layers in the vari-

bles y and w near z = *1 which connect to the constant states y - 0. w - 0 in

the region away from the boundaries. It is easy to verify, in fact that

y(z) = a-€8+)/6 + 2.(s+1)/a + O(r)

is the leading order representation for V. Since there is no non-smooth behavior

In the interior of the interval, it might seem reasonable that this solution could

- 4aag
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be computed numerically using a centered scheme and a nonuniform mesh to

resolve the boundary layers. Figure 5. 1. which shows the results of approximat-

ing (5.13) with r = 10l using the Trapezoidal rule, dramatically demonstrates

that this conclusion is incorrect. In this figure. only the approximation to y(z)

is shown. The horizontal lines at the top and bottom of the plot in-

dicate the locations of the mesh points used in the computation. For

scale purposes the values of "ymin" and "ymax" in the legend accompanying

each plot indicate the locations of these lines. The behavior of the com-

puted solution near the center of the interval is clearly unacceptable.

One might suspect that the behavior near z = 0 is due to the potential turn-

ing point behavior of this problem in that region. The equations for V and v lead

to the equation

-Z' - MV = 0 (5.14)

for y(x). It is easy to verify that there is a potential for nonsmooth behavior in

a neighborhood of size 0(,4 ) near z = 0. In figure 5.2. the mesh has been

refined accordingly near z = 0. In this figure both y and w are shown. Note

that while y now appears smooth, w still exhibits an unacceptable error near

z = 0. Figure 5.3 shows a plot of the approximation to w computed using the

Box scheme (5.12). The behavior near x = 0 is different but still unacceptable in

this case.

It is possible to eliminate erroneous behavior of the type exhibited in

figures 5.2 and 5.3 by using adaptive refinement of the computational mesh.

However, the solution will only become smooth in the neighborhood of z = 0

once the meshwidths there satisfy h = 0(t). We consider this to be an unaccept-
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able restriction since in general turning point behavior occurs on larger scales

than 0(c) and hence would require less refinement.

Finally in figure 5.4 we show the results of a computation using the combi-

nation of onesided and centered schemes that we advocate and discuss in the

following sections. One-sided schemes have the advantage over centered

schemes that in regions where h IAI >> 1. they mimic the'damping behavior of

the differential equations. This means that local errors are damped out quic'ly

by one-sided schemes. In contrast, when using centered schemes, errors tend

to be nonlocal due to the oscillatory behavior of the methods. As can be seen

from the examples above, this can result in significant errors when solving sys-

tems of equations.

Because of the difficulties of this type that can arise when using centered

schemes, we have chosen instead to use schemes of the type (5.10). Although it

might seem that this involves more work that if we were to employ centered

schemes, this extra work is in fact necessary if we wish to guarantee that our

methods be robust. As we have shown, the "cheaper" centered methods can fail

on problems of any generality.

- >!,.
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Plot of v(x)

fps 0.1OOOE-05 Function no. 3
variable I I TRAP RULE

ymin -0.2818E+00 ymax 0.2000E.01
no. of theshpoints 103

II

Plot ofw(x)

fps = O.IO00E-05 Function no. 3
variable I 2 TRAP RULE

ymin -0.100E401 ymax = 0.8572E-01
no. of meshpoInts 242

l~tj: ,,, a '

IJ
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Figure 5. 3

Plot ow(x)

IPS OIOOOE-05 Function no. 3
variabJt 1 2 ON SCHME

vMin a-O.IOOOE0 YlSx- 0.2806E-O
no. of meshpoints = 242

X -- - .,
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Figure 54

Plot o4 w(x)

0p .100CE-05 Function no.
vaatable # 2 ONIE-SIDED SCI4BIE

ymn -0.967CE400 >max 0.634BE-01
no. of rmeshpoints 91
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6. Difference approximations for scalar equatoos

In this section we start the discussLon of our difference approximations. We

divide the z-axis into subintervals of variable length h, with gridpoints z, = 0.

V-I
Xv = Ehj. v = 1.2..-N, xjv = c. and denote by u, = u(zv) functions defined on

jw

the grid. We approximate (2.1) by methods of the form

=,+iU d ,,u,, + (1 - dva~u~ + du , + (1 - dvfV1 (8.1)

uEs =us.

We shall concentrate on two different methods: the Implicit Euler method and

the Trapezoidal rule ( d. a 0 and dv a)j respectively ).

We assume that the conditions (2.2)-(2.5) are satisfied. Then it follows from

the results of section 2 that the solution of the differential equation is smooth

and we can obtain error estimates by standard truncation error analysis. For

this we need stability estimates which we shall derive now.

Lemma 8.1: Let -y, a! 0, 0 be positive constants and consider a grid

function v,, satisfying

I+v = 0.1.2,...

or for 0 -y 7 1

IT Y7+-n =0O1.2.

Then

'v ,, max + fj ll .i "

NOI
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with r, = I/(I + 1) = (I - 7)/(l + 7j) for the first and second case respec-

tively,

Proof: is by induction on v. it being trivially true for v = 0. For arbitrary v,

both inequalities state that IV" I! r,,uvl + (1 - . with 0!6 r"; 1. Hence,

using the induction hypothesis,

IV .+1 I: 'SrCMaLXPV +IV II oI T'j) + (1 - -r.)Pv
J<v ,f4V

= rmaxp, + (1 - T',)P, + IV. I l Tj ! maXt + IV. -[rj.
j <V JaV JAV

Let us first consider the case that

Re a < -1 (6.2)

The implicit Euler method (d, 0) can be written in the form

Uv hvjvl

1 - h(6a.3 1 -

U1 h,ea, , (6.3)
T ray~+l 1 - bray+, Rear,+!

Using lemma 6. I with 7 h = IhtRea1+1 I we obtain therefore

Jsu V I Re ', Jul+

We can now use (6.4) to obtain an error estimate. Assume that p 2. Then (z)

has two bounded derivatives and

(6 .5 ) , -W = +V + JI + r+
'ii,

where

L,. .; AI .. m. .,,h -- -
-

A
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Ir..1 !Sj. max Iv"((I.

Thus the error e =y, - u,, satisfies

8'& max-- •  (6.6)

This error estimate is satisfactory if thjRea1 I I because in that case it follows

that jej = O(h'). However if IhReajI << 1, then the method is not accurate

enough for our purposes.

We consider now the trapezoidal rule (d. r *):

U =,|- 1+ L. b4 v+l ,=Y(f sof,+,). (6.7)
1 - 3%J,,fv 4. + - i)htz~ ' 9"

To estimate I(I + Ma.)/(1 - )ihvav+ )I we have to distinguish among a number

of cases.

1) Thre is a constant a7, 2 such that IhRea, a. Ih.Rea,,I 1 !for U

v. In this case

I + Yi a , 1 + Yth fa . I

1 -1 - h, 1 1-h.8

where

is uniformly bounded. Let hva,= b +i, b, c real, c I s p bI. Then

1 * j vi v 1 + b + .c'+b) 1 -__ 27 (6.8)

where
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Thus

+'-'_-_,_, t 1 , (6.9)

whereby = Vv + M 0.. Also

h__v+ hvReczv,1  gv+l

1 - Mv 1 ,,",+1  1 - Kh,,=,l R-ei",+"

Therefore we obtain from lemma 6. 1 for sufficiently small Kzh,

iuJ ! a Re YI .V +gj Iu,1 (8.10)

where

V hvIRea,, - v" 4472(1 +p 2 )) + O(h).

The last estimate gives us again an error estimate. Assume that p a! 3. Then the

solution of the ditTerential equation has three bounded derivatives and by Taylor

expansion we obtain

-V = Ye(I,.,y1 ! + + f v+ I f,) + %(r,, + ).

where

-! ma IV"().12 ~~a

Thus

.9

4

.oO.A%..
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9e1 T. rmax1 ( r l +r + "

2) 'here is a catznt a, > 2 such that for all v, 2!s hReavl Ig aS,

2!c h1 ReeL, S a,. This case can be reduced to the previous one by writing

(8.7) in the form

-1 1 + b, UV v+i 1
1 A, 4 1 - 6 L, - v+1 I - ev

where

b. ()JhA.uY'. c., 31A~i'

Thus the same results as earlier hold. i.e. as long as IhkRetzvl stays bounded we

obtain satisfactory error estimates.

3) 1 h.ReaI can become arfitrarL V l arge. In this case

(1 + ,,,,,,)/(i - - +

and the exponential damping is lost. The solution of the homogeneous equation

can grow. We have

Thus if azj is very large compared with qN, then vp is very large compared with

vj . This shows that even for a scalar equation the trapezoidal rule need not be

stable.

L



-45-

The above error estimates suggest that we should use a combination of the

trapezoidal rule and the implicit Euler method. The simplest way to do that

would be to choose the coefficients d, in (6.1) in the following way:

, 0 if Ihva., >1

if hai,zI1. (.2

However we would like to prevent the situation that we switch too often from one

method to the other as a function of Y. Therefore the h, are only allowed to vary

slowly and we replace (6.12) by

1) d, is chosen by (B. 12)

2) For v ae 1 we use

0 if I h.,a >
If d,_ 1 = 0 choose dv = otherwise

it I h,, tc2 (6.13)
If d,-L =  choose d,- =  0 otherwise

Assume now that we have calculated the solution of (6.1) on some mesh

.hvl. Then we can divide the interval 09sz sc into subintervals

Sxz ct +,. where ci are meshpoints, i = 0.1. .q -1. c. = 0, .=C,

such that on every subinterval we have used either the trapezoidal rule or

the implicit Euler method. On every subinterval we can write down an error

estimate. These local error estimates can be used to obtain global error

estimates. Consider an interval c4 & z !% c4+1 and let y(c4 ) and u(ct) denote

the solutions at z = ci of the differential equation and difference approxi-

mation respectively. Let up be the solution of the difference approximation

with initial data up(c) = y(c4 ) and let uH be the solution of the homogene-

ous difference equation with uy(ct) = u(ct) - up(ct). Thus u = up + u H .

Our previous results tell us that

I

I

-,-s-
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up(cjj) = i(c,) + e,. c, = 0(h').

Also

UAs(c,.=) xtuy(c,) = (Ju(ct) -V(c,))

where IA I <1. Thus the error a = y - u satisfies the relatipn

a (c,. 1) = y(c, 1 ) - u(c, 1 ) = V(ct.,) - H(ct+,) - LP(Ci-) (6.14)

=,v(c,) + s,.

Observing that a (0) = 0 we obtain a linear system of equations

A.

where

1 0...... (C1) LI
-A1  1 0 0 (02) 2

A = ... ... ... ... ... . = .

0......... ,_, 1 t,(C,-,)*

The vector a represents the local error. The global error is obtained by

inverting A. In this particular case all I X] < 1 and the condtion number is

bounded by q.

To stress the interplay between local and global error we remove the

restriction that Rea !9 -1. We allow Rea to become arbitrarily large and

positive. We assume, however, that j(z) = 0(1) and slowly varying.

Corresponding to (6.12) we choose the d, as follows:

0 if Ih,, > 1 Rea,, < 0.

.= if IhaL , 1, (6.15)
- if Ih ,aL,I >1. Rea,>0.

~1
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(In the same way as above, we would in practice modify (6.17) such that the

d, do not change too often).

As before we divide the interval 0 x ! c into-subintervals

c ta x & ct+i such that the parameters d, are constant on these subinter-

vals. Also, if d, = j then we subdivide ct & x ! ct+l into subintervals

cts z s ctj+l where one of the following conditions holds:

Rea !c -1, ReaI < 1. Rea a 1.

Without restriction we can assume that the orginal ct are chosen such that

no subdivision is necessary. As earlier we obtain a relation of the type

(6.14) for every interval ct z - ct+1 with Rea !9 -1. The same is true for

intervals with [Rea I 1. This follows from well-known error estimates for

nonstiff differential equations. If Rea > 1 then we use yj(cj+j) as initial data

and integrate the differential equation in the direction of decreasing z.

Correspondingly we solve the difference approximation in the direction of

decreasing v. This does not change the behavior of the trapezoidal rule but

the explicit Euler method d, = 1

(U+I- U1 )/ hv a~u. + f

can be written as

UV+ I + f.,

1 +ha, I + hta,

and is the same as the implicit Euler method for decreasing values of v.

Thus we can apply our previous results and obtain

e(ct) = Xt~1 e(cj+1 ) + at, at= 0(h2 ).

This shows that the local behavior of the difference approximation is
.1

&
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satisfactory also in the general case. However, it is well known that the ini-

tial value problem for (2.1) is not well posed if Rea becomes arbitrarily

large and positive. In this case the linear system of equationt.or the global

error is not well conditioned. Observe that the Xt can be computed and

therefore also the condition number of A is available.

4~-J
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7. Difference approximaUons for diegonaily dominant syltems

In this section we consider systems of the type (3.2) and assume that aU the

conditions of section 3 are satisfied. We write the differential equations in the

form

AV- + GV) (7.1)dw

where

G() =(A -A)y + F.

We approximate (7.1) by

hV+1 - = DvA(zx)uv + (I - Dv)A(zv.I)u, 4 . + DvFv + (I - D.)F.+, (7.2)

= DbA(z,)u. + (f - D)A(y+ )uv+I + DvG(uv) + (1 - D.)G(u+,)

Here D, is chosen by (S.17). Le.

d(1) 0 0
0 d,(2) 0 0

D = .. (7.3)

0 if h,a (z)I > 1. Reatt < 0
d ' ) = % if lha*(.,)l !C 1,

1 if I h.u(x,)l > 1. Reatt > 0

In actual computations we modify (7.3) in the same way as earlier. For simpli-

city we assume that the d,,(') = 0 ) do not depend on v. Associated with the full

system (7.2) is the diagonal system

- D.A(x,,)v, + (I - D.)A(z,+ )v+, I + Hv. (7.4)
h-

__A
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By (6.4) and (6.10) we can find a constant r - 2 + p2 such that

Iv,,I 2 11f(A+ A')-'H~ + Iu1I + I'u"l (7.5)

where me have used the notation

fl I9} = ,axigvl

Instead of assuming that A is diagonally dominated we make a slightly

stronger assumption:

Assumption 7.1: There is a constant 6 with 0 & 6 < 1 such that

lI(A + A')-(A - A)ll1, & W6/r).

Renrfrk: If we were only to use

10 if Reui <0
= 1 if Ret > 0 (7.6)

then (SA) would tell us that r = I and so assumption 7.1 is equivalent toassum-

ing thatA is diagonally dominated.

In the same way as lemma 3.1 we can now prove

Lemma 7.1: If assumption 7.1 is valid then the solutions of (7.2) satisfy the

estimate

i1I (A + A*')-(DF, + (I- D)Fv,1)i1f + Iu.1I + I (7.7)

Reark: In the same way as for the continuous problem one could etimate

how the influence of i41 and j uffj decreases away from the boundaries.

Lemma 7.1 gives us immediately an error estimate:
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Theorem 7.1: Assume that y(z) is a smooth and bounded solution of the

differential equation. Then

Y~ U h !g, const. (hI + Jul - yj1 + ju#l-yff I).

-II

S

_ A .i - _ _ _ _" _ _ _--
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8. Difference approximations for essentially diagonafly dominant systems In

this section we consider difference approximations for the system (4.1) with

boundary conditions (1.2). They are of the form

U.,+ -/ = D4,4,)u , + (I - D.) z,, +,)u,., + Dv + (I - Dv)Gv4 ,. (8.1)

2+.1 - V = W(A 22 (x3 )v, + A2(x / +1 *i)v3 ,) + Y(Ev + E,) (8.2)

with boundary conditions

~.OB2 N, =

Here G = A 12 v + F. E = A 2 1 u + H and D,, is defined by (7.3). We assume again

that D, r D does not depend on v. By assumption IA22A << 1 and it is therefore

well-known that the solutiop5 of (8.2) satisfy the estimate

I v;1, _- k,?(Ivo I+ c )I Ellit). k2 - exp(IIA22l0..c).

Lemma 7.1 tells us that if assumption 7.1 holds then the solutions of (8.1) satisfy

the estimate (7.7) with F replaced by G. Using the assumptions 4.1 and 4.2 we

obtain the analog of lemma A.1:

Lemnaa 8.1: If c is sufficiently small then there is a constant K a such that

(11, IA,% + llu ll,) - K3(11ll , + (lHl,,. + ('l + I uli + Iv. I)

Here K 3 depends only on KI, R, and p.

We assume again that the solution of the differential equations is slowly

varying and bounded. Lemma 8.1 leads then immediately to the error estimate

IIy - U IIh + 0., - V 11h
-c const.(h. + -y.1 - U11/I + lWo -v.1). (8.3)

~.1
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This estimate gives us an error estimate for our problem provided that the

interval 0!9 z i c is sufficiently small. Since again this cannot be expected to

be the case, we can obtain global error estimates in the same way as for the

scalar equation by dividing the interval up into subintervals. We divide 0 ! z !9 c

into subintervals ci z cj 1 , i = 0.1,2.q-1 with the following properties:

1) D is constant on every subinterval.

2) cj+1 - cj is sufficiently small such that the estimate of lemma 8.1 holds.

3) The solution of the differential equation is bounded and slowly varying.

Let y(z) be the solution of the differential equation. We write again I

Iu = Up + u H , v = vp + vH where (upp)T is the solution of the difference V

approximation with

,4(c= = uJ(ct)= j"(c,,). VA(cO) = I(c,) (8.4)

and (uHR.lJ) T is the solution of the homogeneous difference equation with

uh(ct) = e'(ct). uff(c 1,) e"(c,+,), Hu(c,) = W(c,). (8.5)

Here e = u- = v -u; denotes the error. Using the estimate (8.3) we

obtain from (8.4)

uJIcO) = Y11 (ct) + f
uJ/( c+) = Y1 (Ct-) + l. (8.6)
1//l(c,+i) = W(Ci+I) +'-a.

Recalling that the difference equations are linear we can write

uy(c,) = L'1. u(c.,) = L1. vH(cI+,) = L (8.7)

Here L". L', L are linear expressions in e'(cj), e1 -(ct+) and '(c 1 ) whose

coefficients can be estimated by K:I. The equations (8.6) and (B.7) give us n

linear equations
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8"(c,) - { ti.
e'(c +1 ) _- _ tI,

a - i

for every subinterval ci A z ct . There are q intervals and n(q+1) variables

a (ci). Z' (ci). Therefore, using the boundary conditions we obtain a linear system

of n(q +1) equations in n(q +1) variables. Again, global error estimates depend

on the condition number of this system.

Remark: In section 4 we reduced the solutions of the differential equations

to the solution of a corresponding linear system of equations. The two linear

systems of equations obtained in that section and in this one need not be* close,

because we have not resolved the potential boundary layers near z = ct,ct+l with

an appropriate mesh. Thus in general the fundamental solutions of the homo-

geneous differential and difference equations respectively are not necessarily

close. However, if the diagonal elements of All satisfy lReath~, >> 1 then one

can show using asymptotic expansions that the corresponding relations are, in

fact, close.
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9. Normal form for the differential equation

We will now discuss how the general system (1.1) can be transformed to

essentially diagonally dominant form. In this section we give a theoretical

presentation of this procedure. The practical implementation of the transfor-

mation differs somewhat from the discussion in this section; those differences

are discussed in section 10.

The procedure can be outlined as follows: We assume that away from a

finite number of turning point regions tI7e system is well-behaved. Then the

transformation to essentially diagonally dominant form is effected in each subin-

terval of 0 ! z ! c through similarity transformations which put the matrix A(z)

into an appropriate "blocked" form, and a stretching of the independent variable

x such that relative to the basic meshsize h, smoothness requirements similar

to assumptions 3.1-3.2 and (2.2) are enforced. The results of section 4 then

guarantee that we will get the appropriate error estimates when the difference

approximation is applied.

First we calculate the eigenvalues i(x) of A(z) and divide them into sets

MU) containing eigenvalues which are of the same order of magnitude. This is

done in the following way: Let K. 6 > 0 with 0 !r. A << 1 be constants. Then

E M(0 ) if either j i K or there exists a' E M(0 ) such that

hlx - IIj'II a(lci + I -IC ). (9.1)

By choosing 6 sufficiently small we can guarantee that "all X C M(O) satisfy

Itch I << 1. If all eigenvalues belong to M(a) then the construction is complete.

Otherwise let xj. x2. zx denote the eigenvalues not contained in M(O) and let

AIXj = min li. Then the set M) is formed recursively by taking Cj C NO) .

KE M( ' ) if (Reuj)(Re) - 0 and there is ac I MM) such that (9.1) holds. Further

sets are constructed correspondingly. We allow the number of sets MU ) to

, * .... .. ~
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depend on z, i.e. as a function of x, sets can split up and recombine. Therefore

the block-structure can be a function of x as well. We assume, however, that we

can divide the interval 0! z % c into a finite number of subintervals

ej . z - ct.j such that on every subinterval the block structure is constant. We

will refer to such subintervals as "blocking subinterals".

The next step is to determine a transformation S(z).such that

(z) 0 ... 0
SA,_,(z) 00

is in block-diagonal form. Here the eigenvalues of every Aj(z) are exactly the

eigenvalues contained in MU ) (counted according to their multiplicity). We must

make a couple of assumptions about the blocks A1(z). For the matrix A6 (z) we

require that

h I A.(z)I< 1. (9.2)

We know that the eigenvalues of A,(z) satisfy I h << 1. Therefore (9.3) says

that if we were to transform A4(z) to upper triangular form by a unitary

transformation, the off-diagonal elements o~q would also satisfy Iatjh << 1. The

following shows that this is a reasonable assumption: Consider the differential

equation

J- = U'(z)AU(x)y
dz

where A is a constant matrix and

I') C cst :int
U(z) =-msint cosz

- -- . . . . . . .. . . .
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is a unitary matrix. - 0 0 and 0 < e << 1. The matrix A is in upper triangular

form but the off-diagonal element is not small. If we change variables to

= Ely. then the system becomes

o 2 =..

o0 0O

The eigenvalues of X are given by x = 4 1-(7/Z 1) and thus the solution of the

equation with variable coefficients has nothing to do with the solution of

cd1/ dz = A.

For the other blocks we assume correspondingly that

X;'A - 0(1). where j - 1 i - J) (9.3)

with nj the order and E a*U) the trace of A,. If these conditions are not satisfied

then we choose the basic meshsize small enough so that h I A,[ << I for all

.A that violate the assumption.

We are not interested in highly oscillatory problems, because they have to

be treated differently ( see Scheid [51). Thus we make the assumption that the

eigenvalues i of A(z) satisfy

I Im1 !P I RewI + C1 (9.4)

where p 0(l) and 0 < Clh << 1 are threshold constants. Observe. however.

that (9.4) allows highly oscillatory solutions provided that the meshsize is

sufficiently small.

We now describe the construction of S(z) in detail. We start with the inter-

val 0 z !9 c. At z 0 we construct a unitary transformation U(O) such that

-- '1 a r .. . .
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U*(O)A(O) U(O) is an upper triangular matrix in which the eigenvalues appear in

the correct order, i.e.

4 4.-I .A01
0 Ar-I ... .r1,

U 'C A(O) U(O) = . . . ... I . .I

0 ... 0

This can be done with a slightly modified version of the usual QR method. We

then determine

.1 S,..,_- .. S,.o
0 1 ... St l.o[

9 (o)= ... .. ... ..."

such that

oA,.r 0-- 0

X(o) = S-(O)A(QS(O) = . S(M) = U(O)N(X)
0 ... 0 A

has the desired block form. Now consider the transformed matrix

X(z) = X(O) + B(z). B(O) - 0.

B, B,.,_- ... 1,o

B(x) = S-'(0)(A(z) - A(0))S(O) = . . .. .. . ....

By assumption the eigenvalues of each block are well separated from the eigen-

values of all other blocks. Therefore in the neighborhood of z = 0 we can con-
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struct an 9(z) such that

r() 0 .. 0
o A,-(z) 0 0

S-'(z)A(x)S(z) = ......... . S(z)

o 0 A (x)

To discuss this transformation in detail we nee a couple o lemmata.

Lemma 9.1: Let All , A,. E be pxp. qxg and pxg matrices respectively.

Assume that the eigenvalues .,i = 1.2....,p of All are disjoint from the eigen-

values 1Aj = 1.2.....q of A22. Then the matrix equation

A11X - XAe =

has a unique solution and there is a constant C which depends only on p, q, IA,

B I and min iA -14j I such that

1XI' C IEI • (9.5)

4Pr.oof: Without restriction we can assume that All, An are upper triangular;

then (9.5) is of the form

... ... ... .... .... ... . . j

0 , ... / / ... Ik X,, P
X11 Z12 Zaq Zg C2 CL g

z1j op 0 ... ... Zp

Sao
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For the first column of X we obtain

(V- $AI) X-VI = SguI

(AP-I - A,) =p-i.1 = - - p-pI + ep2
.. etc....

Thus the first column of X can be computed by back-substitution and it satisles

an estimate d the type (9.5). The other columns are calculated in a correspold-

ing manner. This proves the lemma.

Let us use the above matrices All and An to form

(All B121
BgB A22

We want to cmastruct a matrix R such that

I o IjJ .A , A , . I1 R
I B21 A,I =

[Au R9 21 A 11R - RA22 - RB2 IR + B12  I= B21 B,?tR + A22 = C21 22 =

is a lower block triangular matrix, i.e.

AIIR RA22 RBgjR + DI.- = 0. (97)

Lemma 9.1 gives us

Lemma .2: The iteration

AIIR(s) - R(")A 22 - R("-I)B1 R(R-') + B 12= 0 (98)

converges to a locally unique solution of (9.7) provided BI BI and IB 121 are

sufficiently small.

j
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We shall now transform C to block diagonal form.

Lemma 9.3: it 1821l and JBIZI are sufficiently small then there is a

transformation Q such that

! O)(Ct: j f 0 01 f Cu C1  oslce, c22 Q = -QC11 + CUQ + C21 Ce 21

1 11- RBS, 0
0 BzR + An]"

Proof: If I B, I B 21 1I are sufficiently small then the sets of eigenvalues of

C1 1 and C22 respectively are still disjoint. Therefore we need only to solve the

linear system

-QCu1 + C.Q + C21 = 0

This proves the lemma.

Remark: In practice, before making the transformation of lemmata 9.1 and

9.2. we diagonally scale the matrix so that the off-diagonal blocks are of the

same order of magnitude: Choosing d such that d1B21 1 + I = d-1 112 + 2. this

transformation is given by

rAll ri-IBIE fAI, B 2111 d 11(d " = dIj B2, Alt

This extra transformation does not change the end result but guarantees that R

and Q are of the same order of magnitude. The effect of this is to help make

S(z) change as slowly as possible.

The results above can be used to construct a transformation 3 '(x) which

transforms ((z) to block diagonal form.II _

.... .. .. .. .. .. .. .. .. .. .. .
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Theorem 9.1: If IA4-'(0)Bt(z)I. i = 1.2.....r and lB 0j(z)1. = 0.1.2.....r are

sufficiently small then we can construct S(z) locally in a unique way.

Proof: We write (:) as

;A :.,:,<

where

All = , + B, 912 = (B,.,_i. ... ,o). jyt = (BrL,. " Bjr)r.

By assumption IeA,,I I I(eA,,)-' and leA 2 21 are 0(1). Also the eigenvalues of

eAII are well separated from those of eA2. Thus the above lemmata give us that

if IClP 2 l ", lA 1-l '. 12l . -I - IA 2a.- 1I are sufficiently small, Le. itf z is

sufficiently small then there is a unique transformation of the type

R I 01 + RQRI

such that

Sj' (z)Sl a =21 0 B 2 1R f A22]

Now. B2 1 R + A, 2 has the same properties as X(z) did. and so the same process

can be applied again to it. This proves the theorem.

We have constructed S(z) in a neighborhood of x = 0. but it is clear that we

can continue the construction as long as the block structure does not change,

Le. for Og z ! c,. Let S-(c,) = im S(z). At z c we change S-(c1) to

S,(c I) in the following way:

'.,3
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1) If two sets MU) merge: S does not change (although the blocking does)

2) If a set MU ) splits into subsets then construct a transformation which

transforms the corresponding block into block diagonal form. If--necessary, a

permutation matrix can be applied to rearrange the blocks according to the size

of their eigenvalues. Alternatively. S,(c 1) can be computed in the same way as

s(o).

We now use S.(c ) as the starting transformation for the interval

cj z c 2 and repeat the above procedure to obtain S(z) at intermediate

points in that subinterval. In this way we determine S(z) everywhere and use it

to transform the system (1.1) to

dj-/ x = ,(z)y + H(z)y + G(x) (9.9)

with (Z) 0 ... ... o }
0 Ar-t 0 ... 0 H -S-'dS/dz.

. .. . . . . .. I
(.G=S'= .

on every blocking subinterval c ! x !5 c+j.

In the saune way as in [4] we nuw "stietch" Lhe ildepeiden. variable. We

divide each blocking subinterval c ! x !9 cjj into s ; 1 "stretch g subimter-

veals" j !g X!ct.J+t with cj = cj, !9 • • C1 = el+. Suppose we have

determined cf,c,.. ,cj. Then ctj+l is determined as follows: We introduce a

new variable Z by x -ct = aq . 0!9 ' !5 1 and obtain

a__ c(az()Y + alH(c ) + aG(a!). (9.10)
dx

Here a = aq with 0 < a ! ct l - ct is (an approximation to) the largest value

such that

~~~........................---............................
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max (±1 K

max a dH 1 K (9.11)

max ((max(laG0)j,))-' ajd (i) 1 K, , =

I z) + C/p for allc(Z) = an eigenvalue of (z)Reax(z)l + C11 p

0, 1,2....r, v= 012. p.

Here the first three conditions correspond to assumptions (3.1) and (3.2). The

last condition corresponds to (9.4). One a has been determined we set

C.j+ 1 = Ctj + atij.

Now if ctj+l < cj+1 this is repeated until the endpoint ctj+ of the blocking

subinterval is reached. This procedure can obviously be repeated until all block-

ing subintervals are divided into an appropriate number of stretching subinter-

vals.

On every stretching subinterval c q ! z ! c .~ l the system is of the form

(9.10) with a replaced by aij and V replaced by -. The variables y(j are

related by

tj(cjy)= j.y+j(cj) if cj1 i ci and c ; cj+t

,+,.a(cj) = S+(c,)p (c, ) if cq = Ct+,.

On every subinterval we now use a uniform meshsize 9 with I << 1 and

employ the difference approximation

V I - = oD((x,)u, + E,) + (I - D)((x,+,) +E,+,) (9.12)
AE

I . .A
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where

C... ... 0
0 d,_. 11 0 . . 0

=and E, =H(x,)uv+G(z).

The matrix A is not in diagonally dominant form. However, in the neighbor-

hood of an interior point z. of any subinterval we can find a constant transfor-

mation S of the form

U,-((o)) -

S=

such that S-A(z)S satisfies the conditions of assumption 7.1. Here U is a uni-

tary transformation such that U°A (zo )U,j = 1,2. •r, is upper triangular for

z = X.. LI is a diagonal scaling such that L[UJ°Aj(z,)UjLj satisfies assumption

7.1 with (6/F) replaced by 4.6/). Then the smoothness properties of the
44

coefficients guarantee that assumption 7.1 is satisfied in a whcle neighborhood

of X.. Thus the solution of the differential equation satisfies estimates of the

type (4.3) in the interior of any subinterval. However, for interior subintervals

the estimates can be extended up to the boundary provided that

IS.(cOI Is;V (cOI = 0(0)
a -t. /d+,a. a =0(l).(.)

Here a-, A, denote the stretching factors of any consecutive subintervals. The

reason the estimates can be extended is that the breakpoints cq are somewhat

arbitrary. We could move them a distance 0(1/ K). Then the old breakpoints

would become interior points in the new subintervals and we could estimate the

derivatives. Provided (9. 13) holds, these estimates would not be destroyed if we

I I ]*1| , . .... "
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were to move the breakpoints back to the original position. Finally we have to

resolve the boundary layers at z = O,c. This is done as described at the end of

section 3.
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10. Numerical details of the transformation to normal form

In this section we discss some of the details of the numerical implementa-

tion of the transformation of a stiff system to the normal form diseussed in the

last section. The blocking and stretching subintervals introduced there are in

practicP not determined separately as in the theoretical discussion, but are

determined simultaneously. For this reason, we introduce some new notation.

Starting with the left ernpoint z = 0 a b0 and working to the right, we divide the

interval [Oc] into stretching subintervals with endpoints b.62, etc. Tne block

structure of the matrix is monitored as this is done, and appropriate points bi

are designated as blocking subinterval endpoints when the structure changes.

The stretching parameter (see (9.10)) for the subinterval [bj.bj+,] is denoted by

An outline of the algorithm for the mesh construction and the determina-

tion of the transformation to diagonally dominant form follows: We first deter-

mine the eigenvalues icj of A(O). Then a, is determined by

-a ominRe j d K2

j

The stretching parameter aN for the stretching subinterval nearest x = c is

determined analogously. Using these stretching parameters near the endpoints

of the interval assures that assumption 4.3 will be satisfied, and any possible

boundary layers will be resolved. In practice we construct a "reference mesh"

zjB, =o with z. = 0. zN4 = c. z - zo = o andxN-z N -1 = - v where the subin-

tervals [xjzt~. increase in length exponentially towards the center of the inter-

val according to the rule

xt - zj _ = m in.. (2 a , 2 N a ax )

where am, is the maximum length for a stretching subinterval that we wish to
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allow. (Typically a,. - c/ 10). Then given a stretching subinterval endpoint bi

the next endpoint bj+1 is determined as follows:

A) If bi has been previously determined to be the left endpoint-of a blocking

subinterval, then compute S+(bj) using QR and theorem 9.1 (see remark 10.1

below). Let Z = aj-1. V = b, + - be trial values for aj and bi +1 respectively.

B) Compute the eigenvalues x(V) of A(1) and detirmine the sets Mt) at

Z = 9. Then

a) If no sets M) change, go to C.

b) If a new set forms, mark V as a possible blocking subinterval endpoint

and go to Q

c) If two sets merge, then bi was a blocking subinterval endpoint. (We do

not, however, need to make a special computation of S+(bj), since taking

S+(bj) = S_(b1 ) is acceptable in this case. The difference in the treatment

of this subinterval is that S(V) will be computed by updating S_(bj) taking

the ne w block structure into account.) Go to C.

C) Compute the transformation matrix s(g) by updating S(bj) using

theorem 9.1 (see remarks 10.1 and 10.2). We need this updated version of S

even if z = is a blocking subinterval endpoint

D) Now compute the left-hand sides of the tests in (9.11). (The actual imple-

mentation of these tests is discussed in remark 10.3). During the determination

of bj I from bi it is possible to return to this step (D) several times. Using the

reference mesh, we first determine 6 -x Xl - "I where bi E [x:t+]. The

action taken can be different in each case:

DI) (First time): If any test fails, replace 3 with 1/V2 (i.e. decrease the

length of the stretching subinterval) and try again (go to B). If no tests fail,

then replace 2 with min(V'2 ;, a ) (increase ') and go to R

D2) (Second time): If no tests failed under D1 but any test fails this time,

.... II I I. - ..
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set au = -/vT and go to E (below). If no test failed this time, replace -

with min(v'io,) and go to B). If any tests failed under D1 and any test fails

this time, replace Z by -/ V2 and go to BR

D3) (Third time): If no tests fail, set at = - and go to K If any test fails at

this point, but no test failed under D2), set aq = '/ and go to E. If any

test fails at this point and any test failed under D1. toen special action must

be taken, because if we were to decrease - any further, we would have

/ aj -1!9 ). We would like to avoid this situation for the reasons discussed

at the end of the last section (with a = 2). First, however, we must deter-

mine how small a actually needs to be near bi. So replace ' with -/ 2 and

go to B.

D4) (Fourth and succeeding times): If any test fails, replace - with -/ 2 and

goto B. If no tests fail, then we have a value for a which represents the

proper stretching near z = b1 . In order to use this, however, we have to

redistribute the previous endpoints bj.,.bj 2 , • so that there is a smooth

exponential grading of subintervals into the region around z = bi. We do

this by first looking for the minimum value of i with

2

where k is determined by first calculating

x = bi-3 t 21 ,

and then finding k such that z E [bt,bkaJ. Then the stretching subinterval

endpoints bk,.bt ,2. •,b are replaced by

t+ + a/ - . I=i+l, •
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where m is chosen such that btmi- < bi J b%,m. Steps E and F must now

be redone for all of these corrected subintervals [b&,.bj 4 1].

I = k+1. 'k+m. Then setj = k+m and go toA.

E) The subinterval endpoint has now been determined. i.e. b1 j =

Stretch the interval [bj.bj,.] to 0 : 1. Put down a uniform mesh JZ U

with meshwidth i where K is a meshwidth that would be considered appropriate

for the resolution of a smooth function on the interval 0 1. (This is some-

what vague; typically K - 1/ 10). The meshpoints in the original variable x are

given by

V=j) = 6j + vkaj v = o.0.. 1/,.

F) Now compute the transformation matrices S(xzJ). v= 1.2.....1/IK by

updating S+(bj) using theorem 9.1 (again see remarks 10.1 and 10.2). The

difference approximation can now be written down for the mesh intervals

[z iJI.xy; ], v = 0.1.2.....i -i. Suppressing the superscript [], the difference

approximation is given by

+ (I - D&)(hiAv - S;' (S.+I - S.)) (10.1)
+ hM(MS;,'lFM+I - Dh)S-IF,

where S. = S(zxl) and V , is an approximation to 9 (z,). In practice we have

found it more convenient to make our computations in terms of the original

(untransformed) variables y(xv) which we approximate with v . The difference

I
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approximation then becomes

S-1+I -+lS;tvv D,(hS;' 1A,+ 1 + S-l1 -3;1)v,+,

+ (I - D,)(hS;'4 + S&.#1 - S;' )V., (10.2)

hvDvS;!,IFv+l + h,(I -D)S;'F.

where A, = A(zy)I). This is done because it is usually the original variables that

we are interested in. One should note, however, that if I SvI + I Sv- is not of

reasonable size, one can expect the system (10.1) to be somewhat better condi-

tioned that (10.2). The transformed variables P are in some sense the "correct"

variables for the problem since they have been scaled in such a way that we can

obtain estimates for the system.

At this point we can now increment j and return to step A.

Remarks 10. 1: When computing the transformation S,(bj) at the left end-

point of a blocking subinterval, we first transform A(b 1 ) to upper triangular form

using the QR method. If the eigenvalues do not appear in the correct order on

the diagonal of the transformed matrix, in practice we repeat the QR iteration

using the (now known) eigenvalues as shifts in the order in which we wish them

to appear.

The resulting matrix is then transformed to block diagonal form using lem-

mata 9.2 and 9.3. Note that if the eigenvalue sets MMl) are well separated then

the iteration (9.8) can be replaced with

A11R(a) = R(R-I)A22 + R("-1)B2jR(n-1) - B12 . (10.3)

i.e. we only need to invert A1I. (This remark also applies when updating S later

on ).

'Note also that the off-diagonal blocks need not be completely eliminated as

any 0(1) blocks can be absorbed into the matrix H of (9.9).

I.

-i 1 -
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Remrk 10.2 As long as a blocking subinterval endpoint does not lie

between two points zj,z1 ,1 , S(zj+1 ) can always be computed from S(zj) by

updating S(xj) using the blocking technique of lemmata 9.2,9.3. In practice the

iteration (9.8) is replaced by

, ) - - "2, ft " - 0 + 'Y" = 0 (10.4)

where

X1, = U,*A1 Ut, 122 = U;A=UU

are upper triangular ( U, and Uz are unitary and are determined by QR). Here

.92= U(JB 1 5 U2 and Vz = UB 2 1 U1. R is then computed from y using

R = UIMU;. This simplifies the computation since in particular the iteration

(10.4) only involves the solution of systems of the form (9.6). The only exception

is if the elgenvalue sets MW are well enough separated so that (10.3) can be used

in place of (9.8).

Remark 10.3: In practice we only compute the tests (9.11) with p = 1.

Although this means that we do not necessarily get the smoothness required for

good error estimates, our experience has been that we always obtain satisfac-

tory results. Also taking p = I means that. the difference approximations to

(9.11) will only involve two adjacent subinterval endpoints bJ which simplifies

the algorithm considerably. The difference approximations for the smoothness

tests are described as follows: Suppose we want to assure that the function f (z)

satisfies

(max(I af (aZ){ 1)) -'adf (aZ )/d c ! K (10.5)[

In practice we replace this with the test

df(6 + ( ) -+(bH(06
I %) )I

* i
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for some appropriate value of kA K. where b is the previously determined

subinterval endpoint and Z is the stretching parameter that we are testing.

(10.6) is obtained by stretching [bj.b1 + -] to [0,1] and thenreplacing the

derivative of (10.5) with a divided difference over the whole interval 0 ! 1.

The denominator of (10.5) has been replaced by a sum because it is cheaper to

compute than the maximum but gives approximately the same effect.

We have computed several examples to test our procedures, and we present

three of them here. Each example was chosen to test a different aspect of the

transformation to normal form. For the first example we consider the system

with y(-1) = 1, V(1)= 2. This problem has turning point behavior near

z = and thus we are testing the aspect of the mesh construction that

looks at the smoothness of the coefficients in order to determine the proper

stretching. Figure (10.1) shows the results of a computation with e = I0-1. Only

the approximation to y(z) is shown. As with the earlier plots, the horizontal

Lines above and below the plots are used to indicate the locations of the the

meshpoints.

The second example (figure 10.2) shows an example with both boundary

layers and a possible turning point at z = 0. The system is given by

d C* y (-l1)= 1. y (1) = 2. t 10O3

Note that the region of the possible turning point has been refined even though

the solution is smooth there. In order that our code be robust we have chosen

to "resolve" all possible unsmooth behavior even though in cases such as this

-- . ................... ..... .
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one it might be possible to tell a priori that the solution will be smooth there.

In the third example (figures 10.3. 10.4), we test the feature of the mesh

refinement algorithm that resolves possible highly oscillatory behaior. The sys-

tem we consider is given by

d ] +"-
1 0 =0 .,. 1

In this example, the eigenvalues of the matrix become complex in a neighbor-

hood of x = 0 of width O(z'). The mesh in this region is thus determined by

imposing the fourth of conditions (9.111 Another interesting feature of this

example is that it is not particularly wll-posed. The solution becomes very

large near the left boundary (1iy(z)I]. =.9x0g ). However, the method is able

to handle the situation quite well. Fgure 10.4 is a magnification of the region

near z = 0. This shows the oscillations tkat occur near z = 0, and demonstrates

that the mesh has been properly scaled toresolve these oscillations.

*1. .. r
, _ .. ... ...... ,ae " i ' . , ... ..: ' .;,: . ...:. .. . ,.,.,...,. . ...... ....
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E dd(y)/dxdx 4 Wx3 - x/2) dy/dx - y 0

E epsilon a O.100SE-04 No. o4 *,hpoimts 124

ymin -O.6565E-01 0mx .1871E+91

Figure 10. 1
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E dd(y)/dxdx -x dy/dx - y/2 = 0

E epsilon =0.1000E-02 No. of meshpoints 106

ymin =-0.2345E-01 ymax =0.2000E+01

Figure 120. 2
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E dd(y)/dxdx * (x'2) dy/di * y 0 s

E - epsilon 0 0.I000E-03 No. o mushpoints 229

min •-0.9270E+09 ymax 0 O.8912E410

Figure 10.3

'-- ~~~~~~~~ ~ ~ W M O I 

n , l l 
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E dd(y)/dxdx 4 (x2 dy/dx # y * 0

E = tpsiloo n 0.1000E-03 No. of meshpoint$ = 150
xN •-0.1212E400 max a 0.467lE40
ymin -0.9179E406 ymax - 0.2673E407

Figure 10.4
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11. Solution of nonlinear systems

It is relatively straight-forward to apply our methods to nonlinear problems

of the form

d-Y (T) f (Y(z))(11.1)

where for simplicity we specify linear boundary conditions (1.2). Here y and f

are vector functions of dimension n. As in [3], we solve (11. 1),(1.2) using a func-

tional Newton iteration technique: We linearize (11.1) about a previous guess or

approximate solution yn(x), obtaining

(n) .T( "(z)) +-- n(,) (11.2)

Here j(z) =y"I -n is the correction to the guess y'/, and -t-(nO(L)) A(z)
d d,

is the Jacobian matrix of f. Letting f = f (in(z)) - i n (z) we see that (11.2)

is in the same form as (1.1) and so we can apply the methods discussed earlier

in this paper for linear problems. We emphasize here that the linearization is

done before the method is applied. This is in contrast to the usual approach for

solving noninear ODEs, which is to first apply the difference method, and then

use a Newton iteration to solve the resulting system of nonlinear algebraic equa-

tions. The reason for this is that we can only expect our method to apply to

linear differential equations, and so to be certain that it works, we must first

reduce the nonlinear ODEs to linear ones.

We have used this approach to solve a simple test problem, given by

E ,+ _!_(y2), -_,y = 0. -1- 1- .i, y(-l)=1, y(1)=2.
2

r :-"*
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As in [3] we replace this with the 2x2 system of equations

= 2 (11.3)

and then linearize this system. The matrix transformations and mesh construc-

tion are the same as before. The difference approximation is essentially the

same as (10.2) except that the term dyn/ix is grouped with the term dg/dz

when making the difference approximation. In terms of V, and vn, the approxi-

mations to 9(z,) and yn(xz,) respectively, and letting F, = f (yn(z,)), we add the

terms

to the right-hand side of (10.2) to obtain our difference approximation.

Figure 11.1 shows the result of a numerical computation of the solution of

(11.3) for r = 10- 3, We started with an initial guess for y of a straight line

between the boundary values and continued in t with the values c = .1, .03, .015,

.0075. .004. .001. Convergence was obtained to a tolerance of less than 10 -3 in

the maximum norm at each step.

i '=: I
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Figure 11.1

E = epsilon = 0.1000E-02 No. o4 meshpoints = 47

• 'min --.1673E+01 )'max = 0.2000E+01
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