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ABSTRACT

Cauchy problems for equations modelling non-Newtonian fluids are

discussed and recent existence theorems for classical solutions, based on

semigroup methods, are presented. Such existence results depend in a crucial

manner on the symbol of the leading differential operator. Both "parabolico

and hyperbolic* cases are discussed. In general, however, the leading

differential operator may be of non-integral order, arising from convolution

with a singular kernel. This has interesting implications concerning the

propagation of singularities. In particular, there are cases where

"-smoothing coexists with finite wave speeds.
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SGNFXCANCS AND XPILANATIO

This paper reviews recent existence results for initial value problems

for equations modeling viscoelastic fluids. Motivated by the linear case, the

equations describing these fluids are classified as parabolic, hyperbolic or

intermediate.

The behaviour of these different types in linear wave propagation is

discussed. In the hyperbolic case, propagation of shocks occurs, in the

parabolic case the wave speed is infinite and singularities are smoothed

out. The intermediate cases allow interesting situations where the wave speed

is finite, but smoothing of singularities does occur.

Mathematical techniques applicable to the solution of initial value are

discussed for both the parabolic and the hyperbolic case. In both cases, we

discuss three-dimensional problems including treatment of the incompressi-

bility condition. The intermediate case remain an interesting open problem.
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INITIAL VALUE PROBLEMS FOR VISCOELASTIC LIQUIDS

M. Renardy

I. Introduction

Viscoelastic liquids are characterized by constitutive laws allowing the

stress to depend on the history of the deformation [31, (91, (173, (18). This

dependence is usually assumed to be local, i.e. the stress at the location of

a given fluid particle depends only on the history of the deformation gradient

at this same particle. Following Noll [17], such fluids are called "simple".

The constitutive law is further restricted by the assumption that rigid body

motions do not contribute to the stress (called the principle of frame-

indifference) and by material symmetries. In this paper, I shall deal only

with isotropic, incompressible materials.

For a mathematical existence theory, more needs to be known about the

nature of the constitutive law. However, the precise form is not known for

any particular material, and we must resort to models. Rheological models

have been motivated by one or a combination of the following considerations:

1) Modification of linear theories to make them comply with frame-

indifference.

2) Formal analogy with finite elasticity.

3) Kinetic theories of chain molecules.

From a mathematical point of view, the type of the equation, or, in other

words, the nature of the leading differential operator is of particular

interest. The rheological models can essentially be classified into three

categories:
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hyprbolic case. The equations are transformed in such a way that they fit

into the framework of known theorems due to Sobolevskii (28] and ato 111-131,

respectively. In both cases we deal vith three-dimensional problems,

including treatment of the incompressibility condition.

2. A problem in linear viscoelasticity

If the stress is a linear functional of the strain history, we can

formally write the constitutive law in the form

T(t) - ft ;(t-s)y(t,s)ds • (2.1)

Bre T is the stress tensor and y is the gradient of the relative dis-

placement (from the position at time s to the position at time t). In

particular, contributions resulting from different times s superpose in an

additive fashion. Boltzmann [3] suggested that the following restrictions

should hold:

1) If the relative strain is always positive, so is the stress.

2) The strain from a more remote time always has a lesser influ-

ence than that from a more recent time.

This means that a l 0, a' 4 0 in the sense of distributions. In this case,

it can be shown [251 that

a(T) - -P8'(T) + a(T) , (2.2)

where V) o 0, and a is a non-negative, non-decreasing function of T > 0.

This sUggests that we classify constitutive laws according to the degree

of the singularity of a at T o 0. The strongest possible singularity is

the 6P-distribution. If this term is absent, it is important whether a is

finite or infinite at 0.
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We shall consider the following particular problem: A fluid filling the

half-space above an infinite plate is at rest for t < 0. At t = 0, the

plat is suddenly set into uniform motion. We want to determine the motion

for t > 0.

For a linear viscoelastic fluid, this leads to the equation

Ut(xt) = Pu x(xt) + ft a(t-s)ux(xt)

- Uxx (x,s))ds, x > 0, t > 0 (2.3)

u(x,t) = 0 t < 0

u(O,t) = 1 , t > 0

In addition to Boltzmann's restrictions, we assume that a decays fast enough

at m so that the integral converges (in all rheological models I know of it

decays exponentially).

If P jO 0, the term P Uxxt  is the highest order term on the right hand

side, and we would classify the equation as "parabolic". If u - 0 and a

is continuous, then the highest order term is Uxx a(T)dt, since the

convolution is a differential operator of order -1. We would therefore call

the equation "hyperbolic". Intermediate types arise from singular integral

kernels, which act like fractional derivatives.

It is interesting to consider how these different types propagate

singularities. Coleman and Gurtin [4] have shown (for P = 0) that, if there

is a propagating shock front, its wave speed is /i and its amplitude is

e -aO)t/2A Here A = a(r)d .

It was shown in [161, [24] that indeed the singularity propagates as a

shock if V = 0 and a has I + C derivatives in L1 , For ia . 0, the

shock is smoothed out and analytic solutions are obtained.

A class of kernels which act like fractional derivatives is given by

a(T) =n1 e ,Z > 2  (2.4)

-4-



hyperbolic case. The equations are transformed in such a way that they fit

into the framework of known theorems due to Sobolevskii [281 and Kato [11-131,

respectively. In both cases we deal with three-dimensional problems,

including treatment of the incompressibility condition.

2. A problem in linear viscoelasticity

If the stress is a linear functional of the strain history, we can

formally write the constitutive law in the form

T(t) = ft a(t-s)y(t,s)ds . (2.1)

mere T is the stress tensor and y is the gradient of the relative dis-

placement (from the position at time s to the position at time t). In

particular, contributions resulting from different times s superpose in an

additive fashion. Boltzmann [31 suggested that the following restrictions

should hold:

1) If the relative strain is always positive, so is the stress.

2) The strain from a more remote time always has a lesser influ-

ence than that from a more recent time.

This means that a 0 0, a' 4 0 in the sense of distributions. In this case,

it can be shown [25] that

a(") - -ua'(.r) + a(T) , (2.2)

where V ; 0, and a is a non-negative, non-decreasing function of T > 0.

This suggests that we classify constitutive laws according to the degree

of the singularity of a at T 0 0. The strongest possible singularity is

the 81-distribution. If this term is absent, it is important whether a is

finite or infinite at 0.

-3-

IJ



We shall consider the following particular problem: A fluid filling the

half-space above an infinite plate is at rest for t < 0. At t 0, the
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Kernels of this nature are suggested by some molecular theories (7], (261,

(31]. As T + 0, a behaves like Ti/a* It is thus integrable for a > I

and not integrable for a 4 1. Thus the result of Coleman and Gurtin suggests

an infinite wave speed for a 4 1, while for a > 1 you expect a wave with

finite speed but with no amplitude. This is in fact the case: If a > 1,

the solution u is zero for x > VT t and is analytic and not identically

zero for x < r t. Across the line x - V t, however, there is no

singularity and the solution is C [24]. If a 4 1, the solution is

analytic except at t - 0.

From the point of view of classification, we see that the hyperbolic term

is still the leading order for a > 1, however, the order of the correction

is lower only by a fraction, not by one. If a < 1, the right hand side of

(2.3) is of fractional order.

3. An example of a parabolic model

The simplest class of "parabolic" models arises when a term of lower

differential order is added to a Newtonian term. This is a common way of

modeling dilute polymer solutions. Here you assume that the stress consists

of a Newtonian part arising from the solvent, and some additional term coming

from the dissolved polymer.

Before formulating the equations, we have to introduce some notation.

Since the "simple fluid" is essentially a Lagrangian concept, it is natural to

use Lagrangian coordinates. We denote those by g - (C , C 3). j varies

over a bounded domain n with a C4-boundary. By X(j,t) we denote the

position of the particle j at time t. The deformation gradient P has

components F yi. It has to satisfy the incompressibility condition

-5-



det F . (3.1)

The Cauchy strain tensor is defined by Y FTF. We write the constitutive

law in terms of the upper convected stress w, which is related to the Cauchy

Tstress T by T - FrF . We assume that the constitutive law has the form

It - v (y I + F-y) . (3.2)

F is a tensor-valued functional of y, the history of y:

y(j,t)(s) = y(j,t+s), s e (-,0] . (3.3)

If F = 0, [3.2] describes a Newtonian fluid.

The equation of motion reads

p = (1y ,rs)+ gi(X,t) (3.4)s ¢r

and we impose Dirichlet conditions on the boundary

ii
y (jt) = *i(j,t), j e 30 . (3.5)

(The traction problem has also been considered 121]). We want to show that,

if F, g, f and the initial history y(O) are "nice", then the initial value

problem is uniquely solvable.

For the analysis, we introduce the following function spaces: wPk( )

denotes the usual Sobolev spaces, and we write wP,k p,kto indicate spaces

of vector-valued or symmetric tensor-valued func-tions. p is assumed to lie

between 3 and 6. For the history dependence we use lim the space ofCi lim _lim

bounded continuous functions which have a limit at -. We write Ci lim
;-b =b_lim.

for vector- and tensor-valued functions and CbiM) for functions taking

values in the Banach space X.

The following describes the main ideas used in dealing with (3.1)-

(3.5). For details, the reader is referred to [21].

1) Of course the basic idea is to treat (3.4) as a perturbation of the

Navier-Stokes equation. The theory of the Navier-Stokes equation has

been developed in the Eulerian frame. In order to carry over Eulerian
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results to Lagrangian coordinates, we need sufficient smoothness of the

transformation. This transformation, however, is itself one of the

unknowns, so its smoothness has to be inferred from the equation

itself. In order to satisfy this consistency requirement, it is

advantageous to differentiate (3.4) with respect to time. We also

differentiate (3.1) and (3.5) twice with respect to time. This leads

to a system of equations for y, u y, a -y, p and q - p.

2) 3quation (3.4) and the first time derivative of (3.1) can be used to

express u and p in terms of a and Y. This involves solving an

elliptic system t291. There is a gain of regularity: u has two more

derivatives than a.

3) The boundary and incompressibility constraints for a can be reduced

to a homogeneous form by determining an appropriate reference function

and subtracting it from a. The determination of this reference

function again involves solving an elliptic system.

4) A projection operator is used to eliminate q. This leaves an

evolution problem for y, b (the reference function from step 3) and

d (a new variable which replaces a).

5) In order to deal with the history dependence, we now regard the system

from step 4 as an evolution problem on a history space. In doing this,

we follow the following recipe. Suppose you have an equation of the

form

z - F(;,t) , (3.6)

where ;(t)(s) - z(t+s), s e (-i,01. Then we define an operator
S A A

which maps z to the history of F: Fzt)(s) - F(T z,t+s), where

T ;(t)(r) - ;(t)(s+r) - z(t+s+r). If the initial history satisfies the

equation, (3.6) can be written in the form

-7-



z= F(zt) . (3.7)

We can always make the initial history satisfy the equation by adding

an appropriate term to the body force.

6) This finally leads to an evolution problem for y, b, d. When posed on

the space Clim(WpI4 (g) x W' 2 (Q) x _P(,)) where _P denotes the
b-

subspace of divergence-free vector fields with zero normal component on

the boundary, this problem satisfies the assumptions of a theorem due

to Sobolevskii (28] on abstract quasilinear parabolic equations. The

essential point in proving this is of course the fact that the Stokes

operator generates an analytic semigroup in LP  ([8], [30]).

4. An example of a hyperbolic model

The K-BKZ model [2], [14] is motivated by an analogy with finite

elasticity. The constitutive law for an incompressible elastic material

has the form

-P1 + Y 0 1 3W y-1y Oy-1 (4.1)

1 1 2

where y is a constant tensor and W is a scalar function of I, =

tr(YY01) and 12 = tr(y- 1y0). Kaye (14] and Bernstein, Kearsley and

Zapas substituted the following for a viscoelastic material

=-pY
1 + ft a(t-T) Y W(T)_- (t). (4.2)

y(r)y- (t)IdT

with 1 = tr(y(t)y- (T)) and 12 = tr(y- (t)y(T)). The model thus assumes

that every previous state of the material is like a temporary equilibrium

state to which the material likes to revert; the influences of all the

previous are assumed to superpose in an additive fashion.

-8-



We assume that the kernel a is positive and smooth, including

t-T - 0. Let F denote the relative deformation gradient, F =

ayC t) -i ~ t -p ___

and let 9 denote the entries of F-1: FP . The
ayP(T) i ayi(T )

equation of motion can be written in the form

= - t J a~t-T)
aS 2 yi

,q,, yr(j,) + i
aFiaF j  q~ s ayr(T) yP(T)
p r

(4.3)

) as ]dT + g ,

at ayr(T) ayP(T)

ai
det(aY) -1

The "hyperbolic" character of (4.3) is guaranteed by a strong ellipticity

condition, which has the same form as in elasticity

2W + jP-r),

3F aF 30 p r
p r (4.4)

clXI2 12 , c > 0

for large enough K. This condition is expressed in terms of F and has a

rather indirect form in terms of I, and 12. However, it is possible to

give the following sufficient condition: (4.4) holds if W is monotone in

both I, and 12, strictly monotone in at least one of them, and W is a

convex function of II and I .

In (23], I proved a local existence theorem for (4.3) posed in all of

space, assuming that (4.4) holds. The analysis proceeds in L2-type spaces,

i.e. we deal with solutions for which y - * + 0 at infinity.

-9-



Equation (4.3) can formally be written as a non-delay evolution problem

on a history space. In this case, we have chosen a way of doing this which is

different from the one adopted in chapter 3. For each t ) 0, we put

x(t)(o) - z(t). That is, y only contains the history from the initial

time t 0 up to the present time, not the history for t < 0 (which is of

course considered known).

Again, it is advantageous to differentiate the equation with respect to

time, in this case we do this twice. Lower order time derivatives can be

expressed in terms of higher order time derivatives by solving systems which

are elliptic in the sense of Agmon, Douglis and Nirenberg [1]. For instance,

(4.3) can be regarded as a nonlinear elliptic equation for y and p, if you

presume y is known. One then looks at the second time derivative of

(4.3). The variable p can be eliminated from this equation using the Hodge

projection. One finally ends up with an evolution problem for the two

variables - (y - ) and y - y , where X is an appropriately chosen

constant.

In this system the leading operator is elliptic and generates a quasi-

contraction semigroup. An existence theory for systems of this kind is

provided by Hughes, Kato and Marsden f11]. They study quasilinear evolution

equations in a reflexive Banach space X of the form

= A(t,u)u + f(t,u) , (4.5)

where A(t,u) is a possibly unbounded linear operator and f is a bounded

nonlinear term. The essential assumptions of the theory are that A

generates a quasi-contraction semigroup (in a norm which is allowed to depend

on t and u), and that there is an "elliptic" operator S(t,u) such that

SAS- I - A is bounded. Here "elliptic" means that S is a bijection from an

embedded space Y, which is contained in the domain of A and independent

-10-



of t and u, onto X. In the present case, A turns out to be elliptic,

and we can simply take S - A. The theorem of Hughes, Kato and Marsden

guarantees the local existence of solutions to the initial value problem, if

we assume sufficient smoothness of the data. These solutions can be obtained

by the iteration

n A(t,un)un+1 + f(t,u n ) . (4.6)

The most interesting question from the rheologist's point of view is

probably whether (4.4) is valid. While it is clear that (4.4) would hold for

mall deformations in any reasonable model, the global validity is not so

clear. Some popular rheological models, e.g. W = 11 or 12, always satisfy

(4.4). For other models, however, (4.4) fails at large deformations. This is

not necessarily bad. If (4.4) fails, the evolutionary character of the

equations can be lost (cf. also [27]), and one expects something strange to

happen to the material. In fact, strange things do happen at high shear

rates, and lose of hyperbolicity may be a possible explanation for these

phenomena, generally known as "melt fracture".
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