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ABSTRACT copy
INSPECTEU

Given a rectangular matrix A(x) that depends on the independent variables x, many con-
strained optimization methods involve computations with Z(z), a matrix whose columns form a
basis for the null space of A(x). When A is evaluated at a given point, it is well known that a
suitable Z (satisfying AZ = 0) can be obtained from standard matrix ractorizations. However,
Coleman and Sorensen have recently shown that standard orthogonal factorization methods may
produce orthogonal bases that do riot vary continuously with x; they also suggest several tech-
niques for adapting standard factorization schemes so as to ensure continuity of Z in tile neigh-
borhood of a given point.

In this note, 'Wediscuss several aspects of the representation of a basis for the omll space.
-A* describe how an explicit matrix Z can be obtained at any point using a method for updating

a factorization witi either Iouseholder or stabilized elementary transformations. Under a mild
non-singularity asiumption, the elements of Z arc continuous functions of x. W also show
that the chosen ftrm of Z is convenient and ellicient when implementing certain methods for
nonlinearly constgained optimization.
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2. lleprescntation and computation of Z

1. Introduction

Given an m X n matrix A (m < n), many constrained optimixation methods involve computations
with a matrix Z whose columns form a basis for the null space of A. It is well known that certain
factorizations of A provide stable and efficicnt means for computing Z. We illustrate this process
with the TQ thetorization, which is defined by

AQ=(O T),

where Q is an n X n nonsingular matrix, and T is an m X m "reverse" triangular matrix such that
T i = 0 for i +j < tn. (The reverse-triangular form ofr 7 has advantages in implementing certain
constrained optimization methods; see Gill et a., 1982). if A has full rank, T is nonsingular;
in this case it follows from (i) that the first n - in columns of Q can be taken a1s the columns
or the matrix Z. if Q is orthogonal, the TQ factorization is simply a permutation of the QI?
Iactorization of AT (or the LQ factorization of A).

In matty applications, the elements of A are functions of an independent variable x (z E W")
- for example, A often represents tile Jacobian of a set of constraints. In such a context, it is

desirable that the basis for the null space can be represented by a continuous matrix function Z(z).
For example, a continuous representation of Z is advantageous in proving local convergence of
methods for nonlinear constraints that maintain a quasi-Newton approximation to the projected
(|essian of tLe Lagrangian function, since the operation of projection is defined by X.

Coleman and Sorensen (1982) recently posed the following question: Let B be a ball around
a point 1 (;P E R"). Suppose that A(x) is an m X n matrix of rank m whose clemnents vary
contirIm.tly with x in B. Is it possible to construct, in a stable and efficient manner, a matrix
Z(r) with lerntents that vary continuously with z in B? They observe that a "standard" method
or computing tie orthogonal f'actorization through Ihouseholder matrices may not provide the
required continuous matrix Z(x), and then propose several alternative strategies for ensuring a
contirumos Z in a neighborhood of -.

This note summarizes the main features of a scheme for computing Z that has been used in
software For quadratic programmig and nonlinear progratmminirg (Gill et al., 1983a and 1983b). In
Section 2, we describe the algorithm for computing Z. Section 3 shows that the method produces a
continuous basis for the null space under the conditions given by Coleman and Sorensen. Finally,
in Section 4 we discuss some advantages of the chosen representation for Z in the context of
algorithins for constrained optimization.

We e.mphasize that the procedures given in this note do not depend on use of the TQ rather
than other fac torizations. We have chosen to specify the computations in ternis of the TQ
ractorizalion in order to describe precisely the implementations mentioned above. Use of the TQ
ractorization leads to no increase in complexity or tile imnplemrentation, although it does slightly
complicate the exposition.

2. Representation end computation of Z

The algorithm For computing Z is essentially a method for updating the TQ factorization (1)
when the malrix Q is stored explicitly (see Gill et al., 1982).

We assume that the m rows of A(z) can be partitioned into two groups: the first m. rows
(lenoted by AL) are constant, and the last mn,, rows (denoted by AN(z)) vary with z. (This
partition corresponds to the cae when A(z) is the Jacobian of a mixture of linear and nonlinear
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2 On the Representation of A BJasis for tihe Null Space

constraints.) Thus, A and 7' in (1) have the forms

A =(AL) and T=(. )A4, F,, W

where TL and T, arc reverse-triangular.
Consider now a different matrix A that is not necessarily close to A. Observe that the old Q

reduces the first mL rows of A to reverse-triangular form, i.e.

AQ=(A&)Q (O TL) (2)A, S- s w ,

where S is mN X (n - mL). In order to obtain the new TQ factorization, S is triangularized by a
sequence of mN transformations. The procedure can also he viewed as applying m, updates to
the TQ factorization of A, while the rows of AN are added one at a time.

The triangularization of S is accomplished in a standard fashion by applying a sequence of
elementary transformations to its rows. As usual, eachi step may be viewed as transforming the
"first" row of a successively smaller matrix. To illustrate the procedure, consider the definition
of the i-th transrormation (i = I... , aN). At this stage, rows I through i - I of S have already
been triangularized, and the corresponding i - I transformations have been applied to the rows
of S. Let j denote the index mL + i - 1 (j is the number of rows of A already in reverse-triangular
form). Let .i denote the "reduced" vector to be triangularized (i.e., the first n - j components
of row i), and assume that ir is given by

-T (3)s, = (s , ), )

where sr is a vector with n - j - I components and oi is the i-th reverse-diagonal element. The
triangularization of !' is achieved by an elementary matrix I or the form

! T

Pi = I- I u,'. (4)

We give two alternative definitions of P. First, P can be taken as a louseholder natrix, in
which case

= ' (oi + sign(0i)l&,12 ) and = Ilu,,,I. (5)

(For a detailed discussion of iouseholder matrices, see Stewart, 1973.) I1' regarded as a function
of the elements of 1-, the matrix Pi is discontinuous at any point where Vj vanishes.

The second option is to define P as an elementary but non-orthogonal matrix (as in Gaussian
elimination). In this case,

u _e=(:) and / , = a,, (6)

where e,-_ is the (n - j)-th coordinate vector. In constructing a stabilized elementary transfor-
mation, requirements or numerical stability forbid the use of a pivot element oa that is "small'

relative to the elements of si. Ilence, if a, is too small, a column interchange must be performed,

which introduces a discontinuity in Pi as a function of i5.



3. Continuity of Z

We now place the triangularixation or s within the framework of obtaining the TQ factoriza-
Lion oF A. The succesively smaller matrices {Pi) defined above are embedded in a sequence of
n X n matrices {P), i = 1,...,mJ, defined by

0( 0* 
(7)

A matrix Q that triangularizes the first j + I rows of A is given by

(5i _ Q,"" 15i = 4i115,, (8)

where o = Q. The final result (after mv updates) is

A =(O 0 7.(0 T,Q"" o TN W"I'

so that Q is defined by
Q: 0mN =QPI,..PmN. (9)

The total number of operations required to obtain r and Q includes the Following: n2mN to
apply the transformations to S; , + tn(n - m) to perform the reduction with Householder
transformations (1m + Im2(n - m) with elementary matrices); 11 + 2mn(n- m) to transform

Q with Householder matrices (4ms, + m,(n - m) with elementary matrices).

3. Continuity of Z

In this section we sketch a prooF that Z as computed by the method oF Section 2 is continuous
in a neighborhood oF a point i where A(i) has full rank.

Let AN denote A,(!), and AN denote AN(i+6x), where i+6z is in the ball B. By assumption,
A is continuous, and hence

AN = AN + 6A, (10)

where 6A can be made as small as desired by restricting the size oF B.
We assume that the TQ factorization (1) oF A is given, and that Q is bounded (iF Q

is orthogonal, the latter assumption is satisfied automatically). It follows from (10) and the
boundedness of Q that the result of applying Q to A, is a matrix that is "almost" in reverse-
triangular form. Thus, the first n - m, columns of AQ may be. written as

fT (0 TN,)+67", (11)

where the elements of 6T can be made as small as desired by appropriate definition of B. Let jT
denote the i-th row oF T. We now consider the continuity properties of the matrices {P} that
will be applied to restore T; to reverse-triangular form.

The continuity argument is essentially an inductive demonstration that the "almost' reverse-
triangular form or T is not destroyed by application oF the transformations {P}. To why, consider
the special character of the Ilouseholder transFormation that reduces the first row oFT. It follows
from (1U) tlat, when B is sulficiently small, the first row ofr is oF the form

17=( 6T '+,), (12)



4 On the Representation of A liasis for the Null Space

where 6 is a vector with n - in, - 1 components, ' is the first reverse-diagonal element or TN,
and 11811 and Itl are small. From (5), the Householder vector v, is given by

( + c + sign(r + )IIi1) (13)

Since A has full rank, T is non-zero, and hence the choice of sign in (13) will be constant in a
neighborhood of 1. Therefore, v, (and P1) will converge to a limit as IIbzxl approaches zero.

Now consider the effect or P on the remaining rows of f. It follows from (4) that the i-th
row transformed by P, is given by

1T - y, T where -y, = 1,Tlf,. (14)

Since (13) shows that the first n-m,- 1 components orv, are small, (14) indicates that the effect
of transforming T/ by P1 is merely to add small perturbations to the first n -m, - 1 components
or rows 2 through mnN. Thus, T't remains in "almost" reverse-triangular form and a relationship
like (12) holds for the next row to be triangularizd. Using a similar argument, we carl show that
each vector vi is continuous in a neighborhood of i. (In the limit, (13) shows that vi becomes a
multiple or e,_j.)

An analogous argument can be made for continuity of each Pi defined by a stabilized
elementary transformation. In this-case, it can be shown that for a sufficiently small neighborhood,
the pivot elements do not become too small because they are small perturbations of the reverse-
diagonal elements of T. Using (6) and (12), we also see that the vector vi converges to zero as
I 11 approaches zero.

Having shown that the matrices (Pi} are continuous in a neighborhood of i, we must now
consider the continuity of Z. Recall from (9) that

Q = QP ....

In the stabilized elementary case, it is easy to see that each Pi converges to the identity matrix
as II6xI[ approaches zero. lence, Q (and Z) are continuous.

Unfortunately, the same simple argument does not apply in the Householder case, since it
is well known that the identity matrix is not a louseholder matrix. However, because the first
n- j - I components of vi are converging to zero, the application of P causes changes that
converge to zero in columns I through n -j- 1, where j assumes the values m ....,rn- 1.
Since Z comprises the first n - m columns of Q, this implies that the changes in the columns
of Z converge to zero as 116z1] approaches zero. Thus, Z is continuous in the Householder case,
although Q is not.

)espite the continuity or Z, it may be considered undesirable for the remaining columns of Q
(and the reverse-diagonals of T) to undergo the changes in sign that result when a louseholder
reduction is applied to a nearly triangular matrix. If so, the dilliculty call be avoided by
systematically changing the relevant sign alter each transformation is applied - for example,
by applying the composite transformation P4l), where the (n - j)-dimensional diagonal matrix
Di is defined by

Di = diag(l,..., 1,-1).

With this technique, T and Q would become continulous in a neighborhood of i. Coleman al:i
Sorensen (1982) suggest an alternative procedure that avoids alternating signs in the diagonals of
T and the last m columns of Q.



4. Further pralpertie5

4. Further properties

The approach of Section 2 is not the only possible way to obtain a representation of z. 'rhe
most obvious alternative is to apply a "standard" Ihouseholder triangularization. In this case,
the louseholder vectors are stored in compact forir along with T' in an n X m matrix (plus an
m-vector) (see, e.g., Stewart, 1973), so that no explicit matrix Q is stored. (Products of the form
Qv or QTv are obtained by applying the stored transformations to v.)

Assuming that the rn transformations corresponding to constant rows of A are retained, the
matrices P and (2 of Section 2 can be computed uising the standard Iouseholder procedure in
mn(2nmm-vrne) operations to apply the m, fi-,, transformations to AN and ""1 + m2(n-m)

operations to produce the desired reverse-triangular form. ir the explicit matrix Q is needed, it
can be formed (in 2nm(n - m) + ? md operations) by multiplying the transformations together in
reverse order. Thus, the standard Ilouseholder approach requires less storage and work than the
method of Section 2.

Nonetheless, an explicit representation of Q has certain advantages because of its convenience
and flexibility under more general circumstances that occur in constrained optimization methods.
Our particular concern is to perform updates efficiently and uniformly when simple hounds and
linear constraints are treated separatcly from nonlinear constraints - as in the methods described
in Gill et al. (1983b). Special treatment of these constraints involves not only exploiting the
presence of constant rows in A (which can be done with the standard llouseholder procedure, as
noted above), but also performing operations on A other than simply adding rows. In particular,
a given matrix A will often be subject to the deletion of rows and the addition or delction of
columns -- say, in computing Lagrange multiplier estimates for different versions of the working
set at the same point. With Q stored explicitly, all four types of updates can be performed in an
efficient uniform manner (see Gill et al., 1982, for details). However, it is not possible to perform
the latter three updates within the framework of a compact representation of Q.

Representing each change to Q as in (8) rather than recomputing Q from a compact rep-
resentation is useful in other situations - for example, modifying a projected hlessian (or ap-
proximate Hessian) to reflect the new sibspace of projection. Finally, an explicit representation
of Q is convenient if finite-difTerences are to be taken along the columns of Z.

References

Coleman, T. F. and Sorensen, 1). C. (1982). A note on the computation of an orthogonal basis
for the null space of a matrix, Report, Computer Science Department, Cornell University,
Ithaca, New York. To appear in Math. Prng.

Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. 11. (1982). Procedures for optimiza-
tion problems with a mixture of bounds and general linear constraints, Report SOL 82-6,
Department of Operations Research, Stanford University, California. To appear in ACM
Trans. Math. Software.

Gill, P. H,., Murray, W., Saunders, M. A., and Wright, M. II. (1983a). User's guide to SOL/QPSOL,
Report SOL 83 -7, Department of Operations Research, Stanford University, California.

CiI1, P. K., Murray, W., Saunders, M. A., and Wright, M. II. (1983b). User's guide to SOL/NPSOL,
Report SOl, 83 II, Department of Operations Research, Stanford University, California.

Stewart, C. W. (197:1). Introduction to Matrix Computations, Academic Press, London and New
York.

O INE



UNCLASSIFIED
SECURITY CLASSIPICATI1011 OF T14IS PAGEL (W__________________

REPOR DOCm EMTA&TW PAGE BEFORE COMPLETIM 70IM
1. REPORT "NMUEN .sv ACCSIOMNO 0 AMECIET'S CATALOG MUM Z9

SOL 83-19 N 7
S. TITLE (em80ao)S.TPI F EEOT tt*DCVEE

ON THE REPRESENTATION OF A BASIS FOR THE
NULL SPACE 6.P91111O~RIING 040. REPORT NUMBER

1. AUTNORfiJ S. ANAC 00 GRANT NUMSECg'.)

Philip E. Gill, Walter Murray,
Michael A. Saunders and Margaret H. Wright N00014-75-C-0267

________________________________________ DAAG29-8 1-K-O 156

9. PERFORMINIGORGANIIZAflON NME A$D ADDRESS to.k UNIT, PUU CTRTS

Department of Operations Research - SOL
Stanford University NR-047-14 3
Stanford, CA 94305 ______________

11. CONTROLLING OFFICE NAAMR ADDS It. REPORT DAT%

Office of Naval Research - Dept. of the Navy November 1983
800 N. Quincy Street I&. NUM0OER OF PAGES

Arlington, VA 22217 5 nn.
T4. woNETOMING AGENCY NAME S AODNESSi!ST0fM d&m * C,..aj OHMo.) IS. SECURITY CLASS. (0t Nl. ,.pmt)

U.S. Army Research Office UNCLASSIFIED
P.O. Box 12211 IS& DakAIFIZATN10011_1NG______

Research Triangle Park, NC 27709 ' C14 Ok5 CAIM/LEGAN

IS. DISTRIOUTION STATEMEKNT (at Ohio ROPMe)

This document has been approved for public release and sale;
Its distribution is unlimited.

17. OISTM91JTIOIO STATEMENT (of Me allioee samed ft Week MISElit *8 *ipmO

-19. SUPPLEMENTARY NOTEtS

THE VIEW, OPIt-404S. AND1/OlR FINDIO#NSCT~ IN T'41S REPORT

ARE THOSE (OF TH"AT4~. '~A

CISION, UNLESS SO DESIGNAWOI DY C I ). uliMWTATIQN.

IS. KEY GORDS (CalMHM. O.W. Ofm 00*68 -d..u mW* F &P "I* -=&soj

ABSTRACT ON REVERSE SIDE

I JIM 73 COITION OF I NOV Of6 1@GS@S.S7tE

56ECU4TV CLAMPICAYWN OF Tite PASS fWwo Do -



SCURITY CLASSIFICATION OF THIS PAGS(Whi Date Smnmtuo

SOL 83-19, "ON THE REPRESENTATION OF A BASIS FOR THE NULL SPACE,"

by Philip E. Gill, Walter Murray, Michael A. Saunders and

Margaret H. Wright.

Given rectangular matrix A(x) that depends on the independent

variables x, many constrained optimization methods involve computations
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