” AD-A136 419  ON THE REPRESENTATION OF A BASIS FOR THE NULL SPACE(U) 174

STANFDRD UNIV CA SYSTEMS OPTIMIZATION LAB
E GILL ET AL. NOV 83 SOL-83-19 ARO-18424.13-MA

UNCLASSIFIED NOOOM 75-C-0267 F/G 12/

END
o
Mt
=84
one
—




e
=

2 flis

i d 4 3
FEEE
ERE

==
ll=

I~

=
B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS [963-4




DTIE FILE COPY

AQO /8414. ’3@

Systems
Optimization
Laboratory

ON THE REPRESENTATION OF A BASIS
FOR THE NULL SPACE

by

Philip E. Gill, Walter Murray,
Michael A. Saunders and Margaret H. Wright

AD-A136419

TECHNICAL REPORT SOL 83-19
November 1983

for public release and sale; its
' distribution is ualimited.

i" Thie document bas been approved ‘ ELECTE .
: Suec 30898

Department of Operations Research

Stanford University
Stanford, CA 94305

83 12 30 036

| ! ' . l




SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

ON THE REPRESENTATION OF A BASIS
FOR THE NULL SPACE

by

Philip E. Gill, Walter Murray,
Michael A. Saunders and Margaret H. Wright

TECHNICAL REPORT SOL 83-19
November 1983

_ayfﬁf"i<:::
BRI ;;E_E:c:1ria
';\&“J 5 41983

]

L)‘-

Research and reproduction of this report were partially supported by the
Department of Energy Contract DE-AM03-76SF00326, PA# DE-AT03-76ER72018;
Office of Naval Research Contract NOOQ14-75-C-0267; and National Science
Foundation Grants, MCS-7926009 and ECS~8012974; and Army Research QOffice
Contract DAAG29-81-K~-156.

Any opinions, findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do NOT necessarily
reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the
United States Government. This document has been approved for public
release and sale; its distribution is unlimited.




, ‘recession For

"5 GRAKL
ON THE REPRESENTATION OF A BASIS FOR THE NULL SPACE '~ T48
aeisiounced 0
by N EL 4 ifdcation _____
Philip E. Gill, Walter Murray, Sy
Michael A. Saunders and Margarct H. Wright Distribution/
Systems Optimization Laboratory { Avallability @odes
Department of Opcrations Rescarch : lAvail and/or
Stanford University Dist Special

Stanford, California 94305

a-i|

ABSTRACT

€oPY
INSPECTED

3

Given a rectangular matrix A(z) that depends on the independent variables z, many con-
strained optimization methods involve computations with Z(z), a matrix whose columns form a
basis for the null space of A(x). When A is evaluated at a given point, it is well known that a
suitable Z (satisfying AZ = 0) can be obtained from standard matrix factorizations. llowever,
Coleman and Sorensen have recently shown that standard orthogonal faclorization methods nay
produce orthogonal bases that do not vary continuously with z; they also suggest several tech-
niques lor adapting standard factorization schemes so0 as to ensure continuity of Z in the neigh-
borhood of a given point.
In this note, We discuss several aspecls of the representation of a basis for the null space.
7l Y _Wet deseribe how ap explicit matrix Z can be obtained at any point using a method for updating
' a lactorization with cither Houscholder or stabilized elementary transformations. Under a mild
non-singularity .-us‘ﬁumpl.ion, the clements of Z are continuous functions of z. WE also show
that the chosen fgrm of Z is convenient and cllicient when implementing certain: methods for
nonlincarly constqaincd optimization. '
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2. Representation and computation of 7 1

1. Introduction

Civen an m X n matrix A (m < n), many constrained optimization methods involve computations
with a matrix Z whose columns lorm a basis for the null space of A. (L is well known that certain
factorizations of A provide stable and efficient means for computing Z. We illustrate this process
with the 7°Q factorization, which is defined by

AQ=(0 T) (1)

where @ is an n X n nonsingular matrix, and 7" is an m X m “reverse” triangular matrix such that
Ti; = 0 for i+j < m. (The reverse-triangular form of 7' has advantages in iimplementing certain
constrained optimization methods; see Gill et al., 1982). If A has full rank, T is nonsingular;
in this casc it follows from (1) that the first n — m columns of @ can be taken as the columns
of the matrix Z. If Q is orthogonal, the T'Q factorization is simply a permutation of the QR
lactorization of AT (or Lhe LQQ faclorization of A).

In many applications, the clements of A are functions of an independent variable z (z € R")

- for example, A often represents the Jacobian of a sel of consiraints. In such a context, it is

desirable that the basis for the null space can be represented by a continuous matrix function Z(z).
For example, a continuous representation of Z is advantageous in proving local convergenee of
methods for nonlinear constraints that maintain a quasi-Newton approximation to the projected
flessian of the Lagrangian function, since the operation of projection is defined by Z.

Coleman and Sorensen (1982) recently posed the following question: Let 8 be a ball around
a point & (£ € R™). Suppose that A(z) is an m X n matrix of rank m whose clements vary
continuously with & in B. Is it possible to construct, in a stable and eflicient mauncr, a matrix
Z(z) with clements that vary continnously with z in B? They observe that a “standard” method
of computing Lthe orthogonal factorization through llouscholder malrices may not provide the
required continuous matrix Z(z), and then proposc several alternative strategics for ensuring a
continuous Z in a neighborhood of 2.

This nole summarizes the main features of a scheme for computing Z that has been used in
software lor quadratic programming and noulinear programming (Gill et al., 1983a and 1983b). In
Section 2, we describe the algorithin for computing Z. Scection 3 shows that the method produces a
continuous basis for the null space under the conditions given by Coleman and Sorensen. Finally,
in Scction 1 we discuss some advantages of the chosen representation for Z in the context of
algorithms for constrained optimization.

We emphasize that the procedures given in this note do not depend on use of the TQ rather
than other faclorizations. We have chosen to specily the computations in terms of the TQ
factorizalion in order to deseribe preeisely the implementations mentioned above. Use of the TQ
faclorization leads Lo no increase in complexity of the implementation, although it does slighUly
complicate Lhe exposition.

2. Representation and computation of 7

The algorithm for compuling Z is cssentially a method for updating the TQ factorization (1)
when the matrix @ is stored explicitly (see Gill et al., 1982).

We assume that the m rows of A(z) can be partitioned into two groups: the first m, rows
(denoted by A,) are constant, and the last m, rows (denoted by A,(z)) vary with z. (This
partition corresponds to Lhe case when A(z) is the Jacobian of a mixture of linear and nonlincar
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2 On the Representation of A Basis for the Null Space

constraints.) Thus, A and T in (1) have the forms

T,
A=(A") and T=(,0 "),
Ay T W
where T, and T are reverse-trinngular.

Consider now a different matrix A that is not nccessarily close to A. Obscrve that the old Q
reduces the first m, rows of A to reverse-triangular form, i.e.

do=(g:)e=(5 W) @

where S is my X (n—m,). In order to obtain the new T'Q faclorization, S is triangularized by a
scquence of my transformations. The procedure can also be viewed as applying my updates to
the T'Q factorization of A, while the rows of A, are added one at a time.

The triangularization of S is accomplished in a standard fashion by applying a sequence of
clementary transformations Lo its rows. As usual, each step may be viewed as transforming the
“first” row of a successively smaller matrix. To illustrate the procedure, consider the definition
of the i-th transformation (i = 1,...,m,). At this stage, rows | through i — | of S have already
been triangularized, and the corresponding 7 — 1 transformations have been applied to the rows
of S. Let j denote the index m, +1~1 (5 is the number of rows of A already in reverse-triangular
form). Let 37 denote the “reduced” vector to be triangularized (i.c., the first n — j components
of row i), and assume that 37 is given by

53‘ ={ ":'r o) (3)

where 8T is a vector with n — j — 1 components and o; is the i-th reverse-diagonal element. The

triangularization of &7 is achicved by an clementary matrix I% of the form

1
Pi=1-~ F‘_u,-v,r. (4)
We give two alternative definitions of P;. First, P; can be taken as a Houscholder matrix, in
which case
== ¥ d f = llul} )
WEUZ o +sign(odllalls ) 20C P T gl

(For a detailed discussion of Houscholder matrices, see Stewart, 1973.) Il regarded as a function
of the clements of 3;, the matrix I’ is disconlinuous at any point where o; vanishes.

The second option is to define I’; as an elementary but non-orthogonal matrix (as in Gaussian
climination). In this case,

U =€ 4y U= ( : ), and B; =o;, (6)

where en_; is the (n — 5)-th coordinate veclor. In constructing a stabilized clementary Lransfor-
mation, requircments of numerical stability forbid the use of a pivol clement o; that is “small”
relative to the clements of s;. Hence, if o, is oo small, a column interchange must be performed,
which introduces a discontinuity in P as a function of ;.




3. Continuity of Z

We now place the triangularization of S within the framework of obtaining the T'Q factoriza-
tion of A. The successively smaller matrices {F;} defined above are embedded in a sequence of
n X n matrices {P;}, s = 1,...,my, defined by

15"=(’: z) (7)

A matrix Q; that triangularizes the first j + 1 rows of A is given by
Qi = QP Py = Qi Py, (8)

where Qo = Q. The final result (after m,, updates) is

- 0 0 T,
janm""(o Tu W)!

so that Q is defined by L - -
Q=0CQmy =QP1:+Pp,. (9)

The total number of operations required to obtain 7 and Q includes the following: n?m,, to
apply the transformations to §; $m3, + m?(n — m) to perform Lhe reduction with Houscholder
transformations (§m3, + 3m? (n — m) with elementary matrices); m2, + 2my(n —m) to transform
Q with Iouseholder matrices (m?2 + muy(n — m) with clementary matrices).

8. Continuity of 7

In this section we skelch a proof that Z as computed by the method of Section 2 is continuous
in a ncighborhood of a point & where A(£) has full rank.

Let Ay denote Ay(2), and Ay denote Ay (£+6z), where 46z is in the ball 8. By assumption,
A is continuous, and hence

AN == AN + JA, (10)

where §A can be made as small as desired by restricting the size of B.

We assume that the T'Q factorization (1) of A is given, and that @ is bounded (if @
is orthogonal, the latter assumption is satisfied automatically). It follows from (10) and the
boundedness of @ that the result of applying @ to A, is a matrix that is “almost” in reverse-
triangular form. Thus, the first n —~ m, columns of A,Q may be written as

T=(0 T,)+86T, (11)

where the clements of 6T can be made as small as desired by appropriate definition of 8. Let tT
denote the i-Lth row of T. We now consider the continuity properties of the matrices {F;} that
will be applied to restore T to reverse-triangular form.:

The continuily argument is essentially an inductive demonstration that the “almost” reverse-
triangular form of 7 is not destroyed by application of the transformations {F;}. To why, consider
the special character of the Houscholder transformation that reduces the first row of T. It follows
from (11) that, when B is sulliciently small, the first row of T is of the form

T =(6T 7+¢), (12)




4 On the Representation of A Basis for the Null Space

where 6 is a vector with n ~ m,, — 1 components, 7 is the first reverse-diagonal clement of Ty,
and ||6]| and |¢| are small. From (5), the Houscholder vector v, is given by

é
n= ( 7+ ¢ + sign(r + |l ) (13)

Since A has full rank, 7 is non-zero, and henee the choice of sign in (13) will be constant in a
ncighborhood of £. Therefore, vy (and /) will converge to a limit as {|6z|| approaches zero.

Now consider the effcct of Py on the remaining rows of 7. It follows from (4) that the i-th
row transformed by Py is given by

tT — o7, where v =tTv /8. (14)

Since (13) shows that the first n—m, — 1 components of vy are small, (14) indicates that the effect
of transforming T by P, is mercly to add small perturbations to the first n —m, — 1 components
of rows 2 through m,. Thus, T/ remains in “almost” reverse-triangular form and a relationship
like (12) holds for the next row to be triangularized. Using a similar argument, we can show that
cach vector v, is continuous in a neighborhood of £. (In the limit, (13) shows that v; becomes a
multiple of e, _;.)

An analogous argument can be made for continuily of cach P; defined by a stabilized
elementary transformation. In this case, it can be shown that for a sufficiently small ncighborhood,
the pivot elements do not become too small because Lthey are small perturbations of the reverse-
diagonal elements of 7". Using (6) and (12), we also sec that the vector v; converges to zcro as
J|6z|| approaches zero.

Ilaving shown that the matrices {F;} are continuous in a neighborhood of 2, we must now
consider the continuity of Z. Recall from (9) that

Q=QPy Pm,.

In the stabilized elcmentary casc, it is casy to sce that cach P converges to the identlity matrix
as ||6z|| approaches zero. llence, @ (and Z) are continuous.

Unfortunately, the same simple argument does not apply in the Houscholder case, since it
is well known that the identity matrix is not a lHouscholder matrix. lowever, because the first
n — 7 — | components of v; are converging to zero, the application of ?; causes changes that
converge to zcro in columns 1 through n — j — 1, where j assuines the values m,,...,m — 1.
Since Z compriscs the first n — m columns of @, this implics that the changes in the columns
of Z converge to zcro as ||6z|| approaches zcro. Thus, Z is continuous in the Houscholder case,
although @ is not.

Despite the continuity of Z, it may be considered undesirable for the remaining columns of @
(and the reverse-diagonals of T) to undergo the changes in sign that result when a Houscholder
reduction is applied to a nearly triangular matrix. 1If so, the difliculty can be avoided by
systematically changing the relevant sign after each Lransformation is applied — for cxample,
by applying the composite transformation /%1, where the (n — j)-dimcnsional diagonal matrix
D; is defined by

D; = diag(1,...,1,-1).

With this technique, T and @ would become continuous in a neighborhood of 2. Coleman ard
Sorcnsen (1982) suggest an alternative procedure that avoids alternating signs in the diagonals of
T and the last m columns of Q.




4. Further propectics S

4. Further propetties

The approach of Scction 2 is not the only possible way to obtain a representation of 7. The
most obvious alternative is to apply a “standard” Householder triangularization. In this case,
the llouscholder vectors are stored in compact form along with 7' in an n X m matrix (plus an
m-vector) (sce, e.g., Stewart, 1973), so Lhat no explicit matrix @Q is stored. (1’roducts of the form
Qv or QTv are obtained by applying the stored transformations to v.)

Assuming that the m, transformations corresponding to constant rows of A are retained, the
matrices T and Q of Section 2 can be computed using the standard Houscholder procedure in
m,(2nm, — m?) operations to apply the m, fi-cd transformations to Ay, and 3m? +m?% (n —m)
operalions to produce the desired reverse-triangular form. If the explicit matrix @ is needed, it
can be formed (in 2nm(n —m) + %m“ operations) by multiplying the transformations together in
reverse order. Thus, the standard Houscholder approach requires less storage and work than the
method of Section 2.

Nonctheless, an explicit representation of @ has certain advantages because of its convenicnce
and llexibility under more general circumstances that occur in constrained oplimization methods.
Our particular concern is to perform updates cfliciently and uniformly when simple bounds and
linear constraints are treated separalely from nonlinear constraints — as in the methods desceribed
in Gill et al. (1983b). Spcecial treatinent of these constrainls involves not only exploiting the
presence of constant rows in A {which can be done with the standard Houscholder procedure, as
noted above), but also performing operalions on A other than simply adding rows. In particular,
a given matrix A will often be subject to the deletion of rows and the addilion or deleiion of
columns -- say, in computing Lagrange multiplier estimates for dilferent versions of the working
sel at the same point. With @ stored explicitly, all four types of updates can be performed in an
cfficient uniform manner (sce Gill et al., 1982, for details). However, it is not possible to perform
the latter three updates within the framework of a compact representation of Q.

Representing each change to @ as in (8) rather than recomnputing @ from a compact rep-
resentation is uscful in olher situations - for example, modifying a projected llessian {or ap-
proximate Hessian) Lo reflect the new subspace of projection. Finally, an explicit representation
of Q is convenicnt if finite-differences are to be taken along the columns of Z.
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