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Executive Summary

The major progress of note during this contract is summarized below:
1. MIPS: A VLSI Processor. MIPS (Microprocessor without Interlock between Pipe Stages) is a

project to develop a high speed (> 1 MIP) single chip 32-bit microprocessor. During this contract

]* the processor design was completed and submitted to a both a MOSIS run and a run in Stanford's
Fast Turnaround Laboratory. In addition, we developed compilers for C, Pascal, and Fortran.
We also implemented a code reorganizer (which is instrumental in efficient scheduling of the pipe
stages), an assembler and a simulator.

2. SUN Workstations We completed the design and internal fabrication of the final SUN
workstation design. This design was transmitted to a number of companies for fabrication on both
a board basis and as a completed design. Extensive software developments were completed for the
SUN; the most important was leaf, which provides page file access over the network.

3. Geometry Engine The Geometry Engine is a high-performance, floating point computing engine
for geometric operations in 2D and 3D computer graphics. Multiple copies of the Geometry
Engine provide a parallel computing system with very high- performance. (5-10 million floating
point operations per second.) Enough copies of the custom VLSI design have been implemented
to construct a complete prototype (see IRIS).

4. IRIS Workstation The goal of the IRIS workstation project was to design a high-resolution, color,
extra high-performance graphics workstation that utilized all of the features of the Geometry
Engine and was software-compatible with the SUN 68000 processor (excluding graphics software
compatibility). The system was implemented successfully and has been copied for various other
labs.

5. Modular Model of Event-Based Concurrent Systems We have constructed a model that can be
used in specifying and verifying concurrent systems. The formal model has two major
components: a structural algebra for describing module interconnection structures, and a
behavioral semantics that defines the function computed by a network of modules. We have
shown that the model has a number of attractive mathematical properties and have used it to
analyze and verify several composite modules, including a memoryy cell, shift register, and a
flip-flop synthesized from gates.

6. Computer Suypport for a Fast Turnaround Laboratory We completed the planning and
exploratory stages of a project to provide extensive automation and computer support for the Fast
Turnaround Laboratory. This ambitious interdisciplinary project (involving researchers from
Computer Systems. Integrated Circuits, and Solid State Laboratories) will provide control,
documentation, training, portability, repeatability, and efficiency in the area of IC fabrication
process

7. TV. An nMOS Timing Analyzer. TV and IA are timing analysis programs for nMOS VLSI
designs. Based on the circuit obtained from existing circuit extractors, TV determines the
minimum clock duty and cycle times. TV was developed during this contract period and was used
heavily in the MIPS project.

8. Logic Simulaaion System We developed a logic simulation system which was used to support the
development of the MIPS chip.
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9. SILT. Stanford Intermediate Language for Topology Completed the design and implementation
of SILT, a graphic-based language langauge for describing designs that support relative layout.
hierarchical naming structures, and cell parameterization. SILT compiles directly to CIF and is
now used to store our design format for all tools producing geometrical level descriptions.

10. SLIM, a PLA generation and simulation language Extensions were made to SLIM, our language
for generating and simulating PLA's. These extensions include: allowing arbitrary boolean
expressions and if-then-else constructs in the lFSM descriptions, performing a large set of compile
and simulation time checks on the design, and interfacing to a new version of SPAM (a PLA logic
equation minimizer).

11. YALE - Yet Another Layout Editor YALE is a layout editor interface to SILT running on the
SUN workstation. It was designed and implemented during this contract.

12. LA VA. An Electrically Based Layout System A rewritten version of Lava is running test cases,
including the 10,000-transistor serial memory. It seems stable enough to support further
investigations. eg., composition of cells and logic-to-sticks conversion. We have developed
related mathematical optimization techniques that we believe are efficient enough for 100,000-
transistor designs.

13. DUMBO, A Logic-to-Sticks Conversion Dumbo produced a totally automatic layout with
reasonable area efficiency, using force-directed placement. Large cells still incur large area
penalties, however.

14. PLUNDER, a Control-Description Language Plunder is a new control-description language that
we have investigated as an alternative front end to our control synthesis systems. Since the
Plunder language is essentially the control portion of the C programming language, the designer
can write in familiar programming-language control structures (rather than requiring FSM state
diagrams to describe his control sequence.

15. Polygon Package and Design Rule Checker. We have a high-quality design-rule checker based on
our polygon package which now has support for buried contacts in nMOS. We have also
implemented a design-rule checker based on the JPS bulk CMOS rules and distributed it to MIT
and JPL It was used to check pads, PLAs and a counter submitted for fabrication; it has also
checked

16. Sticks Compaction. Supercompaction is a set of techniques to improve the predictablility of 1-D
sticks compactors. These techniques analyze a partially compacted cell and selectively move
components or introduce jogs to break the critical path, thereby driving the compaction toward
minimal pitch for the cell. Results so far indicate that Supercompaction applied to naively-drawn
stick diagrams reduces the cell by 5-20% over straightforward I-D compaction.

17. Cell Library. The 4-micron nMOS cell library is now available as a full-color book from Addison-
Wesley.

18. Routing We analyzed the performance of our original custom-layout router and discovered that
the major problems were in global routing dynamics and in the poor match of channel-based
routing to the problem. We have explored using quadratic programming to control the
placement, and initial results have been promising. We have also devised a new area router based
on pseudo-polar coordinates, and we have proposed new metrics for characterizing area-routing
problems.
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19. Circuit Extraction. We integrated the MIT circuit extrctor with our CLL/CIF processing software,
resulting in an order-of-magnitude improvement in extraction speed.

20. Clocking Discipline. We have developed a 2-phase clocking notation and an associated clocking
discipline. The objective is to provide formal concepts for thinking about clocking in 2-phase
systems, and to delineate a circuit syntax guaranteeing consistent clocking. As a result of this
work, the frequency of occurance of unexplained simulation or testing problems in our classes has
decreased dramatically.

21. The MEDIUM tester chip set. The MEDIUM tester chip set has been designed, laid out, and
submitted for fabrication, along with some test chips. One of the two main chips has been
partially tested, and it appears to be correct. layouts from MIT and Lincoln Labs.

22. ICTEST and Practical Testing. The ICTEST testing language has been updated to include the
clocking notation. The Tektronix S-3260 tester has been integrated into the testing system and
used to test a number of designs at speed. The MEDIUM tester chip set can also be driven by
ICTEST. The ICTEST system is now in use both in classes and by many research designers.

23. Defect Tolerance in Array Architecture& We have developed a new body of theory treating the
effect that defects have on yield of array architectures. The theory addresses such isues as whether
it is possible to find chains or arrays of working elements embedded in a large array and what
reconfiguration capabilities must be available for the yield of the reconfiguration process to be
non-zero. The theoretical results allow the prediction of yields of reconfigurable 1-dimensional
and 2-dimensional arrays. We have also developed capacity theorems and practical block codes
for error correction in memory systems (eg. a code for correcting 2 hard errors and 1 soft error per
word).

24. Wiring Area of Gate Arrays By applying statistical modeling techniques, we have developed a
body of theory that predicts how to realize a given function in a gate array with smallest overall
die size.

*i'
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Technical Progress

I Design Description, Analysis, and Synthesis

1.1 SILT: A Language for Relative Layout Specification

SILT is a language that plays somewhat the same role in VLSI design as a relocatable assembler does in

software development. It is not as ambitious as a "silicon compiler" would be, but it is much easier to

implement and forms a valuable component of a "silicon compilation" system. SILT is more powerful than

existing "silicon assemblers" in a number of ways.

SILT is a relative layout language which means that every structure's position is relative to some other

structure except for the origin of the entire layout. Changing the distance between a structure and the

structure to which it is relative will thus alter the shape of the cell. This makes it easy to design flexible library

cells and to delay some design decisions by allowing for some stretch in "finished" parts of the cell design.

The "relativity" is hierarchical in nature, which assists in structured design.

Cell descriptions may include parameters so that multiple cells differing only in some power requirement or

pull-up ratio can be described by the same code.

SILT is completely descriptive. It does not attempt to put a lot of intelligence into the program, but rather

depends on the good sense of a human designer. The descriptive nature of the language allows it to be

efficiently translated into CIF or other mask-level descriptions.

SILT is designed primarily to be used in conjunction with a graphical front-end. Circuit descriptions could be

written out by hand, but this is anticipated to be the exception rather than the rule. Although writing SILT is

probably most easily done by a graphical front-end, SILT text is designed to be easily human readable to aid

in debugging. Since SILT will be used as a standard intermediate form for cell designs, its readability and

uniformity are important.

4Finally, special care is taken to control names properly. Names for features deep down in the hierarchy are

hidden from higher levels unless they are important enough to be specifically "exported" up the hierarchy.

The SILT "compiler" was completed, and was used on the MIPS project. The SILT language is translated

into CIF by executing the SILT compiler. The main features of SILT are:

e A hierarchical naming structure for naming symbols(cclls) and instances of symbols, connection
points for symbols, parameters, simple variables, and geometric points within a symbol. ibis

if -9--- II ' . .. - -



March 1981 - June 1983 Final Technical Report

includes an "export" mechanism to prevent "name explosion" at outer levels of a design (names
within instances of inner symbols must explicitly be exported to be visible from the outer
symbols). Vectored names are allowed.

e Symbols are stretchable. Stretchable geometry must be rectangular, but non-rectangular geometry
is allowed. The edges of rectangular geometry are attached to either horizontal or vertical
reference lines, which may in turn be located relative to other reference lines in a hiearchical
structure along the top and side boundaries of the symbol. Attaching one boundary of piece of
geometry to one reference line and the other boundary to another reference line makes the
geometry stretch by moving the ref. lines. Symbols stretch similarly.

o Parameters may control the placement of reference lines. General computational expressions are
allowed on the parameter values to determine the placement of the reference lines.

* Local or global Constraints may be placed on the relative positions of the reference lines.
Constraints are expressed in the form of inequalities.

* Connections between cells may be checked by naming geometric points within each cell to be
connected and specifying that the named points must geometrically correspond. This allows a
simple form of electrical connectivity to be verified.

Documentation for SILT is available as a preliminary edition of a user's guide/technical report. The SILT

translator is implemented in PASCAL. and currently runs under both TOPS-20 and UNIX operating systems.

SILT produces enough information for a linking loader to combine a SILT file with CIF files produced by

ICARUS (or other layout tools). This makes it easy to glue together primitive cells produced using an

interactive layout editor.

Staff. T. Davis, J. Clark, J. Hennessy

Related Efforts: DPL (M IT)

References: [5)

1.2 YALE

Yale (Yet Another Layout Editor) is a graphical layout editor that will run on the SUN workstations. YALE

makes the capabilities of SILT available in a graphics front-end. YALE has been implemented on a

combination of the SUN workstation and the VAX. It uses the SUN as an intelligent graphics workstation (no

disc required). YALE keeps all of its intermediate files in SILT. This work was carried out in collaboration

with the Network Graphics project at Stanford. YALE is primarily a graphics interface to SILT, allowing the

placement of reference lines graphically. It also allows textual or graphical specification of constraints and

textual specification of expressions for computation of reference line placement.

L f ..I"
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A subset of SILT was selected for the initial implementation, and a parser for that subset has been written.

Hicrarchical cell descriptions, rectangles, and reference points are currently working. I'he cell being edited

can be viewed simultaneously through a number of different windows on the screen (the magnification and

region of the cell viewed can be independently set in each window). The windows can be stretched or shrunk,

moved rigidly on the screen, and the view in each window can be zoomed in or out, or panned. Most of the

commands are invoked by means of mouse-button clicks and pop-up menus.

Staff. J. Clark, T. Davis

Related Effors: Daedalus and the Data Path Generator (MM, Caesar (UCB).

References: [41

1.3 SLIM

SLIM, Stanford language for Implementing Microcode, was initially implemented during an earlier contract

and presented at the 1981 Caltech VLSI Conference. The goals of SLIM are to describe on-chip control as

microcode, to simulate that microcode using a functional description of the chip components, and to generate

a PLA implementation of the microcode. The initial SLIM implementation has been working since the end of

1980.

A prototype optimizer, which saves an average of 15% of the minterms, has been developed. It needs further

work to characterize its theortical properties and to make it more efficient on large PLA's. A complete

normalizer was added that allows arbitrary boolean expressions, default next states, and don't care equations

was implemented. A state assignment optimizer was developed.

Staff. 1. Hennessy, L. Adams

Related Efforis: MacPitts (Lincoln Labs), SLANG (UCB) and SLAP (Brown University).

* (References: 1141

* 4
1.4 TV -An nMOS Timing Analyzer

TV and IA are timing analysis programs for nMOS VLSI designs. Based on the circuit obtained from existing

circuit extractors, "rv determines the minimum clock duty and cycle times. It calculates the direction ofsignal

flow through all transistors before the timing analysis is performed. in contrast to combinations of designer-

assisted and dynamic determination of signal flow, as in Crystal. being done at Berkeley. le timing analysis

-' - . o " i....
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is breadth-first (block-oriented) and pattern independent, using only the values stable, rise, fall, as well as

information about clock qualification. Its running time is linear in the number of nodes and transistors, and

can analyze 4.000 transistors per minute of VAX 11/780 CPU time.

IA (TV's Interactive Advisor) allows the user to quickly experiment with ways to increase circuit performance.

With the IA. the user can resize pull-ups and pull-downs or insert super buffers, and find out the effects of

these changes on chip-wide performance interactively. By using information already computed by TV, it is

able to propagate the effects of changes through 1,000 transistors per second of VAX 11/ 780 CPU time.

TV was heavily used in the MIPS project. When TV was run on the first version of MIPS, it predicted a cycle

time four times longer than our original design goal. By making extensive modifications to the design we

were able to reduce the MIPS cycle time to half the original prediction.

Accuracies within 20% for most critical paths compared to circuit simulation and fabricated chips have been

achieved.

Staff.- N. Jouppi

Related Efforts: Crystal (Berkeley)

References: [20]

1.5 LAVA, An Electrically Based Layout System

I --i is an electrically based, general-purpose layout language. Our principal objectives are topological, rather

than geometric, layout description and guaranteed design-rule correctness of layouts. Lava's major

components are a sticks compactor, cell stretching and abutment mechanisms, a router, and a framework to

link them together.

We have rewritten Lava to stabilize it and to incorporate some of the hooks that will be necessary for further

investigations. We have concentrated on a clean implementation of the aspects that we understand well,

removing some of the more ill-conceived mechanisms in the previous implementation. One major

improvement is that much of the technology-specific information is now centralized; while Lava is not

intended to be technology-independent, this technology file makes it possible to change easily parameters of

the nMOS target process.

The result is a sufficiently stable platform for further investigations, for example, a well-conceived

composition level and logic-to-sticks conversion. The rewritten Lava now successfully compiles a large

number of test cases, including the serial memory chip described in a previous report.
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Staff. C. Burns, D. Chapiro, P. Eichenberger, R. Mathews, J. Newkirk, D. Perkins, T. Saxe

Related Efforts: EARL (CalTech), CA BBAG E (UCB)

References: [231

1.6 Routing

We have developed a new, 2-dimensional area router, the loop routing scheme (LRS). LRS handles both

rectangular- and doughnut- shaped routing areas. LRS is a promising box router for the custom routing

problem because, like the dogleg channel router, it indicates how much expansion of the routing area is

necessary to complete a given routing.

The difficulty of channel routing problems, and the performance of channel routers, may be measured by the

number of wiring tracks required to complete the routing. Previously, no similar measures existed for

comparing area routers. Such a measure must describe how difficult a given, fixed, area-routing problem is,

since there is no well-defined way to expand the routing area to guarantee completion of the route.

We have developed an appropriate measure of problem difficulty, the Manhattan Area Measure. By using it

to assess the difficulty of routing problems generated using Monte Carlo techniques, we have compared the

performance of LRS to the classic Lee area-routing algorithm. The LRS has vastly superior performance to

the Lee, successfully routing problems that are twice as dense as those that the Lee will complete successfully.

Staff. T. Saxe, L. Smith

Related Efforts: PI project (MIT)

References: [26)

1.7 DUMBO, Logic-to-sticks Conversion

Dumbo is a program aimed at directly laying out random logic from logic diagrams. It targets its output to

stick diagrams for compaction by our sticks compactor, Lava. The motivation for a tool of this sort is to ease

the layout of miscellaneous logic, especially control logic, in a design. Much logic of this sort is not area-

critical, but its design and layout can consume a lot of time using standard techniques.

We have now refined Dumbo to the point where it produces layouts feasible for some miscellaneous logic.

For small cells (under 25 components), Dumbo's initial layout will be at most about 2 times larger than one

" : P"' - I 9'': v i
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derived from hand-drawn sticks; with hints, this penalty can easily be reduced further. For larger cells, the

penalty can become much larger, but is yet easier to reduce using hints.

However. Dumbo still experiences considerable area inefficiency due to the sensitivity of sticks compactors to

the vagaries of a particular stick diagrams that it produces. Rather than trying to improve the quality of stick

diagrams that Dumbo produces, we have turned our attention to improving the quality of the sticks

compactor itself (see below).

Staff. W. Wolf, R. Mathews

References: [27J

1.8 Sticks Compaction

One-dimensional sticks compactors are sensitive to the details of the stick diagrams that they are given to

compact. Two topologicallly equivalent stick diagrams can produce very different compacted cells. The

essential reason for this behavior is that the compaction algorithms cannot properly exploit the degrees of

freedom present in the stick diagram to prevent components from locking against each other during

compaction.

The problem that we are investigating is how to compact a stick diagram to achieve a pitch specification in a

specified direction. In the majority of a layout, the designer is typically not trying to minimize cell area per se;

rather, he is trying to minimize cell area subject to meeting a particular pitch specification in one dimension.

Therefore, we are seeking techniques to guide the compactor toward a solution with the minimum pitch in a

specified direction, increasing the predicability of the results of compaction by forcing the compactor toward

the same solution irrespective of the details of the initial stick diagram. The resulting compaction scheme is

called Supercompaction.

To date we have investigated two principal Supercompaction techniques: moving components apart to break

constraints between them, and introducing jogs into the stick diagram. Both optimization techniques work by

analyzing the critical path in a partially compacted cell and rearranging components or introducing jogs to

break the critical path. Naturally, these manipulations cause the cell to grow in the direction perpendicular to

the preferred directionas well as reducing the pitch in the preferred direction.

We have investigated a few variants of these techniques by comparing compaction results for cells drawn from

a variety of different sources and compacted using the standard Lava compactor and the Suprcompactor.

Our early results indicate that while supercompaction performs no better (and sometimes worse) than simple

.. . .. . . . .. " . . . . _ _"_ . .. . "
• 'I j ,
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compaction for carefully optimized stick diagrams, it easily achieves 5-20% pitch reductions over simple

compaction for naively drawn stick diagrams. Over a test suite of 10 cells, 5 were smaller when

Supercompacted.

These initial results are in keeping with our goal of developing a predictable compactor. Initial results for jog
introduction are even more promising, and we are continuing to investigate supercompaction techniques.

Staff. W. Wolf, R. Mathews, D. Perkins

Related Efforts: CABBAGE (UCB), other 1-D and 2-D compactors

References: [28, 211

1.9 PLUNDER, A Control Description Language

Plunder is a new control-description language that we have investigated as an alternative front end to our

control synthesis systems. The Plunder language is essentially the control portion of the C programming

language. Thus. the designer does not need to describe his control sequences as FSM state diagrams; rather,

he can write in familiar programming-language control structures. On the other hand, he sacrifices the fine

control over the structure of the state machine that a language such as SLIM provides.

Plunder has been used by students in the Stanford design classes. Their experiences suggest that while most

of the software control notions carry over to hardware, there are important differences that the ultimate

language of this sort must cater to. In particular, the designer often must know precisely what actions are

occuring on which clock cycle. Also, description of concurrent activities is an immediately pressing problem

for a hardware control language. Nevertheless, Plunder enforces a structuring on control descriptions that

generally eases that portion of the IC-design task.

The following is the cononical control-description example, the traffic-light controller:

f
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#define green 0
#define yellow 1
#define red 2

input ts, tl, cars;
output restart, hl2]. fl[2];

fs. traffic (

restart;
do hi-green; fl-red; while (-tl j -cars);
restart;
do hi-yellow; fl-red; while (-ts);
restart;
do hl-red; fl-green; while (-tl & cars );
restart;
do hl-red; fl-yellow; while (-ts);

Staff. D. Perkins

Related Efforts: SLIM(SU), MacPitts(LL)

1.10 Polygon Package and Design-Rule Checker

For some time now, we have made available a high-quality dcsign-rule checker based on our polygon

package. It derives circuit connectivity information to prevent reporting of false separation errors between

electrically connected components. This checker is used by our design classes and for our research and has

been heavily tested by 80 + designers. We have recently added support for buried contacts in nMOS.

We have developed and tested an analogous checker for the JPL bulk CMOS rules. It has checked the

designs submitted by Stanford, MIT, and Lincoln labs for the bulk CMOS run. We have distributed the

CMOS checker to JPL and MIT.

Staff. D. Noice

Related Efforts: Lyra (Berkeley), I)RC (MIT)

1.11 Circuit Extractor

We have integrated the MIT circuit extractor with our CLI/CIF processing software, resulting in an order-of-

magnitude improvement in extraction speed. Previously, the 10.000-transistor serial memory required several

hours to extract; extraction now requires approximately 10 minutes. We will distribute the extractor if there is

sufficient interest; however, prospective users should be aware that our CIF processing system is restricted to

Manhattan-only, rectangle-only designs.

, i I l
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Staff. J. Newkirk, T. Saxe, S. Taylor

Related Efforts Mextra (Berkeley), Xtract (MIT)
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2 VLSI Processor Architecture

2.1 MIPS -A High-Speed Single-Chip VLSI Processor

MIPS (Microprocessor without Interlock between Pipe Stages) is a project to develop a high speed (> 1 MIP)

single-chip 32-bit microprocessor. Like the RISC project at Berkeley, MIPS uses a simplified instruction set

and is a load-store architecture.

The two major aims in the MIPS design are

e to attempt to shift the complexity from the architecture to the compiler and code generator for the
processor, and

* to provide instructions that allow 100% utilization of the components of the micromachine
architecture.

The micromachine architecture is a six stage pipeline that holds three active instructions at any one time. The

three pipe stages loosely correspond to instruction retch and decode, operand decode and fetch, and

execution. The major resources that are distributed to the pipe stages are register access, PC access and

increment, ALU functions, and memory access. Thus, each instruction has a chance to use the instruction

memory once, the data memory once, and the ALU twice (once for operand addressing and once for

execution). In each pipe stage a potential instruction can utilize all the resources associated with that stage.

This leads to a design where the major resources have a duty cycle close to 100% (including the memory).

In a pipelined machine, a large segment of the hardware is associated with pipeline interlocks. Additionally,

pipeline interlock hardware is extremely difficult to accommodate in VLSI. since it usually requires a complex

interconnection to many elements of the data path. MIPS does not have pipeline interlock hardware; this

function must be provided by the compiler. Because the MIPS pipeline is simple, it is not difficult to provide

the necessary functionality. The load/store design makes the pipeline interlock checks straightlbrward and

also simplifies the support for branching, interrupts, and page fault handling.

The MIPS instruction set consists of several instruction classes: load/store instructions, ALU insuuctions

(which are all register-register), branches and calls, and miscellaneous instructions. All instructions are 32 bit&

(one word). There are 16 general purpose, symmetric, 32-bit registers. The instruction classes are orthogonal,

although a single instruction word may contain two unconnected instructions. For example, a sinle

instruction word can contain both a load instruction and an ALU instruction (which may use the value loaded

in the load instruction). The instructions are summarized below:

L ! d/Store:

I '. . . . -. . . -
-"9 i l l l -.
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o Loa,. SLre absolute

o Load/Store based - with varying offset sizes

o Load Immediate

* ALU Instructions:

o Two and three register forms: instructions combine with Load/Store instructions or with
another ALU instruction.

o Operations include: Add, Subtract, Multiply and Divide Steps. Shift, Complement, And,
and OR. Noncommunative instructions have a reverse form.

o A short unsigned constant may replace one of the source registers.

e Branches and Calls:

o Branches and Calls can be PC-relative or absolute, and may also be indexed.

o There are conditional branches that test two registers (or a register and a constant).

o A delayed branch is used (the two instructions following the branch are executed).

o Interrupts and Page Faults:

o These are handled as a special class of instructions.

o Instructions prior to the interrupting or faulting instructions are executed.

o The status of the processor is correctly restored by the return.

Prior to implementing the full MIPS chip, a series of test chips that would provide a complete test of each

major component of the chip individually were developed.

The six test chips contain all the parts needed to implement the complete MIPS processor. Each test chip also

contains additional testing and pin multiplexing hardware. By fully testing the components before fabricating

a complete design, the probability of success on the first run of the full MIPS design is much higher. This

approach also allowed us to characterize the indivdual components and make performance adjustments

before the final fabrication. By designing a single reusable test frame, the individual test chips were

constructed from the exact pieces of the complete chip with a minimal amount of effort. The final assembly

process consisted of merely composing the individual test components to form the complete processor.

Lastly, this process offered an ideal opportunity to test the concept of fast-turnaround foundries. Because

progress on the project depends on receiving and testing the chips prior to completing the final design,

reasonable quality, fast-turnaround fabriction is essential.

* * .
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The six test chips and their status is as follows:

1. Register File Test Chip - submitted and tested at both 3 and 4 microns. The 4 micron chips were
functional, although the yield was (10% (i.e. all parts of the chip worked over 10 die, but no single
die was completely functional). The 31z fabrication produced no working parts.

2. Instruction Decode Test Chip -

3. Barrel Shifter Test Chip -

4. ALU Test Chip -

5. Program Counter Test Chip -

6. Master Pipeline Control Test Chip -

After we received and tested the MIPS' test chips, minor changes were made in the design. We then

completed the entire design, spent approximately 3 months in design and performance verification and

submitted the first complete version of the processor to MOSIS. The project experience is chronicled in [16.

Staff. F. Baskett J. Burnett, J. Gill, K. Gopinath. T. Gross, J. Hennessy, N. Jouppi, W. Park, S. Przybylski,

C. Rowen, A. Strong.

Related Efforts: RISC (UCB), IBM 801 (IBM Yorktown), Cray-Il (Cray Research).

References: (19, 9, 15, 16, 11, 101

2.2 Geometry Engine

le Geometry Engine is a high-performance, floating-point computing engine for geometric operations in 2D

and 3D computer graphics. Multiple copies of the Geometry Engine provide a parallel computing system

with very high-performance. (5-10 million floating-point operations per second.)

Enough chips were fabricated to build a geometry system (10 chips) and a complete prototype. This prototype

system, called the IRIS, is discussed in the next section. The Geometry Fnginc design is completely

functional, although the performance is less than originally predicted.

The current design is 9mm by 8.7mm. Most of this space is governed by metal pitch minimum spacing and

lack of buried contacts. We have obtained metal-spacing design rules from AMI and have learned that there

are several metal spacing constraints in the Mead/Conway rules that arm unnecesary according to these rules.

The most interesting observations are that the minimum pitch is 10 microns, rather than 12. and that the extra

4-lambda flash around all contact cuts is necessary only for the non-metal layers. We have also obtained AMI

buried-contact rules, the most useful of which is that metal may cross theL

r".. .. .. .. .. .. .. . .. .. . .... ,,,,---p- J
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Taking these two things into consideration, the principal bit-slice of the Geometry Engine can be reduced in

area by about 40%. Because this bit-slice consumes approximately 60% of the total area of the chip, the total

area reduction should be about 25%. According to projected yields given by AMI, this amounts to a 5-fold

increase in yield.

Staff. J. Clark, M. Hannah

References: [31

2.3 IRIS Workstation

The goal of the IRIS workstation project was to design a high-resolution, color, extra high-performance

graphics workstation that utilized all of the features of the Geometry Engine and was software-compatible

with the SUN 68000 processor (excluding graphics software compatibility). The system consists of

" A SUN-compatible processor/memory board.

" A Geometry Engine board (10 Geometry Engines).

" A Raster Generation Subsystem.

" A Raster Update Subsystem.

The IRIS allows the user program to generate display programs that provide for real-time motion of 2D and

3D environments, multi-window displays and color lookup table manipulation. To provide for motion

simulation, the system is dynamically configurable to provide either double or single-buffer images. The

system has been in operation since August, 1982. and procedures are underway to replicate copies of the

system for future research at various Stanford Laboratories.

Staff K. Akeley, J. Clark, M. Grossman, C. Rhodes

4
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3 Testing

3.1 The ICTEST System and the MEDIUM Tester

[be ICTEST system is a unified system for functional simulation and testing. The test is written in ICTEST, a

supcrset of C extended to include testing primitives, data formatting, and mechanisms for specifying

parallelism and pipelining. The test may then be targeted to run against a simulator (ESIM or TSIM) or a

tester (MINIMAL, MEDIUM, or TEK S-3260). The MEDIUM tester is the testing workhorse; the TEK

tester is intended primarily for performance measurement and functional testing at speed.

ICrEST itself has remained relatively stable. We continue to use it to test our designs, including the MIPS

test chips. Support for the clocking discipline is now substantially debugged, although we need to rethink our

approach to qualified clocks and decide how they might be supported on the TEK (if that is indeed possible).

We are reducing the MEDIUM tester to a chip set. It will connect to a standard DEC DMA interface, and we

shall distribute it to the community when it becomes available. The chip set that we have designed comprises

2 chip types, and a 64 pin tester will require a total of 3 chips. The tester control and pin electronic chips have

both been designed and submitted for fabrication. Additionally, we have designed test chips for some new

circuits that we need, including pads capable of driving 3OmA loads. We have received the pin electronics

chip and the pad test chip and partially tested them. They both seem to work correctly.

Staff. D. Boyle. D. Marple, R. Mathews. J. Newkirk, I. Watson

Related Work: FIFI Project (CalTech)

Reference. [Mathews82), [Watson82]

3.2 Clocking Discipline

We have developed a 2-phase clocking notation and an associated clocking discipline. The objective is to

provide appropriate formal concepts for thinking about clocking in 2-phase systems, and to delineate a circuit

syntax guaranteeing consistent clocking. The clocking discipline can also be co-opted to guarantee other

forms of correctness e ., freedom from charge sharing. The auditing tool clockck checks circuits extracted

by the ESIM extractor for conformance to the discipline.

Staff: R. Mathews. J. Newkirk. D. Noice

Related Efforts: Glaseer's work (MRI)

* '
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References" [Noice82

3.3 Practical Testing

We have tested 30 more copies of a 10,000-transistor serial memory based on a 3-transistor RAM cell. The

memory was originally intended as a step toward a serial signal processing system, but has actually proved to

be test of our testing system and our understanding of the technology.

Of the 30 new parts from run MIDV, 40% are defect-free. Sixteen percent show anomalously low (less than

100-microsecond) storage times of the sort we reported previously. The remainder have failures that may be

explained in terms of fabrication defects, with the exception of 2 chips that have the mysterious property that

while every bit in the memory plane seems to be functioning correctly, when we apply error correction to this

perfect data, errors result

As a result of our frustration with short storage times, we have designed and tested a canary circuit that
monitors storage times directly. The storage-time oscillator is a 3-stage ring oscillator, one stage of which is a

storage node that is charged and allowed to relax toward ground.

We have tested 2 chips so far, one with very short (1 microsecond) storage times. The storage oscillator

successfully indicates that the short-storage time chip is defective and that its companion is acceptable. Using

optical injection to vary storage times over a large range, we have found that the storage oscillator on each

chip predicts the storage time very precisely. The design seems to be insensitive to power supply variations.

but we will need to test more chips before we are completely confident.

As a simple experiment in performance measurement, we have designed and tested an instrumented family of'

7 PLAs with different loading characteristics. We have measured the performance of each path through each

chip and computed regression lines to fit the observed data with delays predicted by r models. The observed

fits are very good, with correlation coefficients around .8 and derived T's ranging from .25 to .57 nanoseconds.

However, the intercepts of the regression line are non-zero, indicating systematic measurement errors specific

( to each member of the family.

Staff. G. Eckert, R. Mathews. J. Newkirk, T. Saxe, L. Shwetu, 1. Watson

Related Efforts: FIFl (Caltech)

References: [Saxe 821
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4 Theoretical Investigations

4.1 Modular Model of Event-based Concurrent Systems

We have constructed a model that can be used in specifying and verifying concurrent systems. The formal

model we have been developing has two major components: a structural algebra for describing module

interconnection structures, and a behavioral semantics that defines the function computed by a network of

modules. We have shown that the model has a number of attractive mathematical properties, which are

summarized below. In addition, we have used it to analyze and verify several composite modules, including a

memory cell, shift register, and a flip-flop synthesized from gates.

The structural algebra defines a set of operators for synthesizing networks of interconnected modules. The

basic building blocks are primitive modules. Each primitive module is associated with a set of named ports

for input/output, but it has no internal structure. Compound modules have both internal structure and ports

for communication. There are three operators for defining compound modules: port renaming, composition.

and the feedback loop. Port renaming leaves structure unchanged but applies new names to ports; it is useful

because the other operators make connections based on port names. Composition of two modules matches

output ports of the first module with input ports of the same name in the second module. Looping matches

output ports of a module with input ports of the same module, wherever the names match.

The algebra defined in this way exactly captures the set of proper nets, which are essentially nets with distinct

port names. That is, any expression in the algebra is a proper net, and any proper net corresponds to an

expression in the algebra. Also, any expression can has an equivalent normal form as a composition of

feedback loops of primitive modules, possibly with renaming of ports. This fact makes it possible to test for

equivalence of nets. An axiomatic system for manipulating net expressions is provided.

The structural algebra describes static structure; the, dynamic aspects of a system are described by its

behavioral semantics. This semantics associates with each module:

* a functional mapping between partially ordered events at input and output ports.

* a domain constraint, specifying that certain output events must precede certain input events, and

* a functional constraint, specifying that certain input events must precede certain output events

The domain constraint is essentially a statement of the conditions under which the module can be expected to

work correctly. For example, it might require that no new input events arrive until after all outputs fur the

current input values have been produced. If the domain constraint is violated, the behavior becomes

unpredicatable. The functional constraint, on the other hand, contains information about when a module will
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produce new output events. Thus the domain constraint tells what the module requires of its environment,

and the functional constraint tells what it guarantees.

We have used Scott's least-fixed-point semantics to derive the semantics of compound modules created by the

operators of the structural algebra. As a result of this derivation, we can prove that the semantics of a

compound net are computable if its components' semantics are computable.

The main problem remaining to be worked out concerns the conditions under which one module can be

substituted for another without affecting the properties of a compound system. This is most important when

we consider module specifications. In that case we are asking when a module implementation satisfies its

specification, and can be used wherever a module of that specification is required. We also expect to expand

the range of examples that we have analyzed.

Our work has been particularly concerned with the problems of module substitution and the semantics of

non-deterministic systems. The module substitution issue arises because we often wish to substitute one

module for another in a network and need to know when this can be done without affecting the properties of

the network. A simple criterion for such substitution is semantic equivalence. If two modules have the same

functional mapping, domain constraint, and functional constraint, then one may replace the other without any

change in the network's behavior.

In some cases, however, we need a more flexible criterion. We would like to be able to make a substitution so

long as it allows the network to continue working correctly and produce the same outpuL This may be

possible even with modules that are not identical. For example, suppose we have a system containing a

module that can perform correctly as long as it is asked to buffer no more than three input elements at a time.

(This would be expressed in the domain constraint.) If we replace this module with one that is identical

except for the fact that it can buffer more items, then the new network should continue to work correctly. In

general, we can always replace a module by one with a weaker domain constraint. If the environment of the

original module guaranteed that the stronger domain constraint was satisfied, then the weaker one will

necessarily be satisfied, and the composed system will continue to perform correctly. Likewise, we can always

substitute a module with a stronger functional constraint, because if the original module operated in a way

that satisfied the domain constraints of other parts of the network, then the (more constrained) new module

must do so too. Thus we can perform such a substitutioi if the new module has an identical functional

mapping, weaker (or identical) domain constraints, and stronger (or identical) functional constraints. The

new network may not be equivalent to the old, but it will operate correctly in any environment where the old

one does. This sort of substitution arises very naturally when the original system is viewed as a spec7calion

and the substitution represents an inpleinentation of the specification.
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The second problem we have considered is extending the semantics to non-deterministic systems. Non-

determinism is a property of many concurrent systems. It may arise even in networks where all the primitive

modules are deterministic: this is because the relative timing of events at different modules is unpredictable,

and different timings may cause the system to produce different outputs. A non-deterministic module can be

described by altering the functional mapping to give. for each input, a set of possible outputs. There are

several technical problems that must be resolved in this sort of definition. The most significant is being able

to guarantee that loop-feedback (the operation that sends some of a network's output to its own input ports) is

* always well-defined. By modifying the approach of Plotkin and Smyth, which deals with non-determinism in

state-oriented rather than event-oriented models, we have been able to solve these problems and develop a

mathematically sound semantics for non-deterministic networks.

Staff. S. Owicki and N. Yamanouchi

References: [221

4.2 Defect Tolerance in Array Architectures

We have developed a new body of theory treating the effect that defects have on yield of array architectures.

The theory addresses such issues as whether it is possible to find chains or arrays of working elements

embedded in a large array and what reconfiguration capabilities must be available for the yield of the

reconfiguration process to be non-zero.

For the problem of finding a connected chain of working elements in a square array, we have developed a

new algorithm that requires time linear in the number of elements to be chained. We have also made

progress on the problem of finding an array of working elements embedded within a larger array by

tightening the bounds determining when such reconfiguration is possible. We are beginning some new work

investigating the effects of defects in the interconnect itself.

Staff: A. El Gamal, J. Greene

Related I.fforis: l eicerson & ILeighton (M IT)
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References: [81
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4.3 Wiring Area for Gate Arrays

By applying statistical modeling techniques, we have developed a body of theory that predicts how to realize a

given function in a gate array with smallest overall dic size. The central result is that it is preferable to have a

smaller gate array with a larger number of tracks in between blocks, thereby permitting higher overall use of

the array elements, rather than sparsely using a larger array. llese theoretical results are borne out by a large

body of empirical data collected by IBM.

Staff. A. El Gamal

References: [61
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5 Other Projects

5.1 The SUN Workstation

The SUN workstation is a project begun during a previous contract. During this contract, the prototypes were

completed and the ideas were successfully transferred to commercial vendors.

A set of workstation boards was manufactured early December, 1980. (The SUN workstation consists of a

Ethernet Interface board, a 68000 processor board, and a graphics system).

The SUN project represents a successful transfer of technology to industry. This transfer was implemented at

three levels:

1. By publishing a detailled paper on the SUN workstation.

2. By offering PC boards, wirewrap tapes, and other manufacturing documentation that will allow
others to build the hardware in-house at low cost.

3. By licensing industrial companies to manufacture the design, to make assembled board-products
and eventually complete workstations commercially available. Again our goal is to get the widest
possible base by planning to grant only non-exclusive licenses to as many companies as practical.

SUN workstations are now available from a number of commercial vendors.

There are numerous configurations for the SUN workstation:

* Smart Graphics Terminal to the Ethernet (Processor/Memory, Ethernet Interface, and Display
controller, plus keyboard and mouse)

* Standalone Workstation with Disc (Add a disc controller board and disc)

* Ethertip - terminal concentrator to allow normal terminals access to Ethernet. (Graphics Board
not needed)

* Gateway between Ethernets - Two Ethernet boards, one Processor/Memory board.

5.1.1 The SUN Workstation: File System Development

The SUN represents a radical departure from the customary workstation design in that it does not have a local

disk. A typical SUN workstation at Stanford has 256K bytes'of memory, a frame buffer with some additional

memory to hold the raster image, and a high-performance Ethemet link. In order to use the SUN as a

workstation for VLSI design or other applications, it must be possible to read and write file storage from

software resident in the SUN.

............................
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Our initial approach, which permits us to run simple software on the SUN. was to implement a page-at-a-time

file server called a Leaf Server, which ran on a supporting computer (usually a Vax) and provided disk page

access in response to request packets. This server and its development were reported in a previous report, and

we have done little work to it since. It is worth mentioning that the Unix-based Leaf Server that we wrote was

made available to other Arpa-supported users of Xerox 1100 Lisp Workstations, and (after suitable

modifications at ISI to make it compatible with the Xerox equipment) it provides a valuable disk support

facility to A[ programmers using the 1100's.

Our experience with the. Leaf Server approach to Remote File Access demonstrated conclusively that a

single-host file server was not an adequate level of file support for a network machine participating in a

distributed system. We experimented for a few months with changes that could be made to the Unix file
system or to the behavior of the Unix Leaf Servers that would make a more reasonable distributed file system

available to SUN users. We abandoned this approach for three reasons:

* The Unix file system does not map neatly to a distributed environment. At the design level, it
assumes that there is at most one copy of any file, and that the entire file system is tree-structured.
It is difficult to modify the Unix kernel to think that parts of its file systems are on other machines
though at the 1981 SIGOPS conference some Bell Labs researchers reported having accomplished
it (with a severe degradation in performance.) At the implementation level, its locking
mechanisms are unreliable and the fixed I/O table sizes in the kernel provide unreasonable fixed
bounds on the total number of files that can be accessed simultaneously on a given server host.
We thought that we could get by with a combination of a few kludged Unix file systems for the
first generation of SUN software, but the problems overwhelmed us.

* Leaf-Server access to files on a time-shared Unix system was a second class citizen. We frequently
found the need to log a job on to the host Unix, probe around the file system, then log off and
resume a stopped SUN job that was having file problems. This problem could be bandaged by
providing a set of file utility programs resident on the SUN. but the essence of the problem is that
a Unix file system is not very suitable for a non-Unix-like operating system; we do not intend to
run Unix on our SUNs.

* Even with just 4 server hosts available (3 Unix and one Tenex), the amount of context that needed
to be maintained in a user's head was overwhelming. The lack of automatic location, migration, or
replication facilities made it particularly difficult to find files whose precise location was not
known.

We therefore, reluctantly, concluded that we were going to have to design and implement our own file system

to our own specifications. This file system would be network-wide, provide a uniform set of access
mechanisms and management tools, and be implemented on a variety of file computers.

We have settled on a multi-level design based around a central archival file system and distributed cached

copies. We are implementing the design "from the inside out", starting with the reliable archival part and

- .--.-...-.-. b
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working towards the fast cache servers: the reasoning behind that decision beingtchat it is better to have a slow
reliable file system than a fast unreliable file system during the development phase. The initial

implementation is taking place on our time-shared VAX, but we hope to move to a dedicated machine with a

larger disk as soon as it becomes available.

Staff. J. Mogul, B. Reid

References: [11

5.2 Computer support for a Fast Turnaround Laboratory

We complcted the planning and exploratory stages of a project to provide extensive automation and computer

support for the Fast Turnaround Laboratory. This ambitious interdisciplinary project (involving researchers

from Computer Systems, Integrated Circuits, and Solid State laboratories) will provide control,

documentation, training, portability, repeatability, and efficiency in the area of IC fabrication processes.

As a result of this exploration, we have isolated the following goals for t project:~

* Automatic control of the IC fabrication processing equipment.

* Integration of fabrication control with simulation control, to run simulation and fabrication in
parallel.

* A transportable, repeatable means for recording a fabrication process.

* The ability to repeat an arbitrary process on demand, for demand production of parts.

* The ability to manage and schedule a single IC fabrication line for multiple purposes.

* Computer aids for training and documentation.

* General data processing and database support for analytic work in the Laboratories.

We recognize that particular technical achievements will contribute to the realization of several of these goals.

The most important of the is the development of a language for the representation of fabrication processes.

Whcn this language exists, it can be used as input to the control system, as input to the simulation system, as

the contents of an archive for demand production of parts, aod as a basis for training and documentation aids.

Furthermore, the nature of this language will color most of the other work.

We have therefore spent several months on the preliminary design of such a language, which we now call
FABLE This language resembles Ada semantically, but contains built-in type support for non-numeric types

pertaining to manufacturing, and contains extension and package mechanisms suitable for he description of

reibefl ytmta at neibefl ytmdrn hedvlpetpae h nta
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typed objects whose physical existence is outside the controlling computer. e. furnaces. We quickly found

that two languages were necessary, one to describe the manufacturing process and another to describe the

fabrication line itself. This second language corresponds very much to the microcode found on conventional

computers, and it is used to implement a somewhat abstract instruction set. into which the FABLE is

compiled. A compiled FABLE program can operate an automated fabrication line with the appropriate

microcode, or it can operate a simulation system (one component of which would be programs like

SUPREM) with a different set of microcode. Other microcode would be written to permit experimentation

and testing of new processes before actually turning them loose on the fabrication equipment.

Only by implementing all pieces of this system and actually using it to manufacture parts can we satisfy
ourselves that it is complete; we would therefore want to do an automating implementation even if that were

not one of the goals of the project.

Having completed the first level of implementation, we intend to write software that amounts to a distributed

time-shared operating system for the fabrication line; this will permit multiple independent fabrication

processes, or laboratory experimentations, to be run on the same fabrication line simultaneously just as a

time-shared computer is now capable of running independent programs simultaneously. This operating

system will also take responsibility for the long-term scheduling and priority realization.

We consider that a system like this will be a superb testbed for explorations in knowledge-based systems for

training and diagnosis, and for applications of interactive graphics, computer aided instruction, and reliable

models of computation.

Staff. B. Reid, W. Ossher

Publications: [71

5.3 Cell Library

The Cell Library is finally available as a book from Addison-Wesley and in machine readable form from

Addison-Wesley (or via ARPAnet for DARPA VlSI research groups). The book is in full color, and contains

considerable additions beyond the July '81 version of the Cell Library. Many thanks to the people who

contributed cells, who helped with testing them, who participated in the massive job of documenting them,

and who encouraged us along the way.

Staff. R. Mathews, J. Newkirk, C. Bums, and everyone else on the project.

I
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5.4 Design Classes

The Stanford Mead/Conway design classes have continued to evolve. Starting in the fall of'82, they became

a 3-quarter sequence. The first quarter is the introductory class, but with a paper-only design project. This

format allows TAs and graders to handle most of the routine work, important since 125 students took the class

in Fall Quarter '82, 60 took it in Spring Quarter '83, and 125 are taking it this Fall Quarter. The second and

third quarters are the design and testing laboratories, with a more manageable enrollment of about 50

students.

In the '82 sequence, because the students now had an entire quarter to do a design and because they had the
prior experience of a first paper design, we allowed the projects to grow as large as their designers desired.

That was a mistake, but the results were dramatic \- half of the projects contained over 10.000 transistors. We

provided no significant new tools except a simple channel router and ICDEBUG. The end-quarter rush of

design-rule checking and simulation overwhelmed our VAX, so checking was no more thorough than in

previous years, and the testing results were very similar.

A small number of teams undertook bulk CMOS projects. We provided plotting, design-rule checking,

RSIM, and a small library of 1/O pads and pieces of a precharged PLA. Since the Stanford CMOS process is

n-well and the MOSIS CMOS process is p-well, all designs were described in psuedo-twin-well design rules.

(These rules are fully symetric, with explicit well and shorting layers of both types.) The resulting designs

were then mapped to each target process .ad submitted for fabrication.

The last four years of design classes at Stanford are summarized in [241. This technical report begins with a

short paper describing the class from the instructor's perspective, but it is mostly a picture book of abstracts

and plots displaying almost all of the class designs carried through since the second design class in the spring

of 1980.

Staff. J. Newkirk, R. Mathews, T. Saxe, S. Taylor

4 References: [241
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