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FOREWORD

This research and development was conducted in response to Navy decision coordina-
ting paper Z 1187-PN (Computer-based Manpower Planning and Programming), subproject
PN.02 (Officer Personnel Management Models) and was sponsored by the Deputy Chief of
Naval Operations (Manpower, Personnel, and Training) (OP-0). The objective of this
subproject is to develop a set of user-oriented, computer-based models and data bases to
assist in the development of a Navy officer force that meets the requirements for officer
manpower.

During this effort, various econometric techniques were reviewed to estimate models
using pooled time-series and cross-section data. The techniques discussed herein will be
evaluated in terms of their theoretical and practical utility for forecasting Navy officer
personnel loss rates.

J. W. RENARD JAMES W. TWEEDDALE
Captain, U.S. Navy Technical Director
Commanding Officer
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ARMNARY

~I many pracica regression praolemsl sufficient osrain eutael~t
estimate separate time-aerles Ora cosction equations. One, Nke tiap iss
to combine the time-serles and crous-section data Into one Sidi im~hOduls hVete
practical advaqtag of allowing the estimated coefficients of fte comwbbnea sampe to
Incorporate both time-series and cross-section chaacterIstics. Por example, fte aowe
retention forecaksn model (0RPM) within the structured accessi-on plainili sysem for

* ~officers (STRAP-0) uses time-series, (l97O-l~S) and Ck *..scton (commit by pay
grade by length of service) data to forecast officer loss rats based at a variety of
economic scenaios. Time-series, observations allow the mnes"ement of the effects; of
external Influence (eg., civilian unemlyet o n officer loss behavior; and cross-
section observations, the effects of internal Influences (eg., promotion appotuiites).
'The search for an appropriate model for combiin these data provides the motivation for
this report.

Objective

T'he objective of this effort was to review various econometric techniques used to

estimate and test models that use pooled time-series and cross-section data.

The literature relevant to the estimation and testing of three such moxds was
reviewed.

Results

In Model 1, the Intercept and slope coefficients are assumed to be constant over all
cross-sections and time periods. in Model B, the Intercepts are allowed to vary over both
cross-sections and time periods. Model IIl allows all coefficients to vary over cross-
sections and time. Moreover, In Models U and MD, the coefficients may be viewed as
either fixed or random effects. In a fixed-effects model,, statistical Inferences outside
the set of sample observations cannot be drawn. In a randomeffects model, statistical
Inferences about the entire population can be drawn.

Conclusions,

Models I, U. and III are hierarchical In nature In the sense that fewer restricionis are
Imposed on fth model's structure as the user move from Model I to Model 13. This
enables the user to move systematically down the list of models ashe or do dhceowes,
either via hypotheis tsigof fitted models or prior Information that the lu4%posed
restrictions may be sceively relaed. However it should be reoqplmed that the
satisfaction of the asumuptions of the model donm not validate or invaliae the
approupriateness of the model for the application st hand.
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INTRODUCTION

Problem

Whenever observations are available for several cross-sections or individual' units
over a period of time, the cross-sectional observations may be pooled with the time-series
observations under one of several models. The primary advantage of these models is that
they allow the estimated coefficients of the combined sample to incorporate both time-
series and cross-section characteristics within a specified structure. Another potential
advantage of this approach is that, depending upon the model, pooling may result in an
increase in the degrees of freedom of the estimated coefficients that, all other things
being equal, will yield more efficient estimates.

Cross-section estimates generally differ from time-series estimates made on obser-
vations drawn from the same population. In addition to the empirical observation that
cross-section variation is generally greater than time-series variation, cross-sections
typically will reflect long-run adjustments, whereas time-series tend to reflect short (er)-
run reactions. This is because disequilibrium among individuals is generally synchronized
in response to overall market forces so that many of the disequilibrium effects tend to
disappear in cross-section estimates. A time series of observations on a particular
individual will exhibit a less completely adjusted response to the same overall factors.
Note, however, that cross-section observations, in general, will also contain some short-
run disturbances so that estimates based upon cross-section data will only approximate
fully adjusted, long-run coefficients. For further discussion of these points, see Klein
(1974), Bass and Wittink (1975) and, especially, Kuh (1959).

The problem involved in using pooled time-series and cross-section data is to specify
a model that can adequately allow for differences among cross-section units for a given
time period, as well as allow for differences among time-series units for a given cross-
section. After the model has been specified and estimated, hypotheses tests must be
conducted on the estimated parameters to help in evaluating the model's appropriateness.
If the separate time-series and cross-section observation sets are sufficiently large, it
may also be advantageous to estimate separate time-series and cross-section models to
provide a basis for comparison with the pooled model.

The general linear model may be written as

Y = XB + u, (1)
where Y = [Ynt ] ,

X Ix knt
8 [Bknt ] and

11 ki nt]

The subscript n=l,. . .,N refers to a particular cross-section unit or individual; t=l,. .,T
refers to a particular time period; and k=l,.. .,K refers to a particular nonstochastic
independent variable. Therefore, ynt is the observation on the dependent variable for
individual n at time t. The observation of independent variable k for individual n at

'The terms "individual" and "cross-section" will be used interchangeably in this
paper.
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time t is Xknt* The stochastic disturbance term, u, will be assumed to have the standard
Gauss-Markov properties; that is, E(unt)=0 and E(unt)=Var(Un)= au=. As in standard

linear models, 8knt is an unknown parameter to be estimated.

Objective

The objective of this effort was to review various econometric techniques used to
estimate and test models that use pooled time-series and cross-section data.

Background

In many applied manpower models, sufficient observations are not available to
estimate separate time-series or cross-section equations. Quite often, researchers have
resorted to combining the time-series and cross-section data into one model. In many
instances, these models have been estimated with inappropriate econometric techniques.
An equally serious problem is the failure to conduct hypotheses tests of the underlying
assumptions of the model prior to estimation. This research provides a systematic review
of the available techniques to estimate and test pooled time-series cross-section models.

One example of the use of pooled data in manpower modelling is the officer retention
forecasting module (ORFM) within the structured accession planning model for officers
(STRAP-O) (Siegel, 1983). ORFM forecasts Navy officer loss behavior based on a variety
of economic scenarios. In addition to increasing the number of available observations, the
use of pooled data by ORFM provides the opportunity to incorporate both external and
internal variables into the model. Variations in loss behavior over time, for example,
capture the effects of variations in external variables, such as unemployment rates.
Conversely, variations in loss behavior within a given year across communities, pay
grades, and length of service (LOS) capture the effect of internal variables, such as
promotion opportunities.

The ORFM approach is actually a two-stage process. In stage I, a cost-of-leaving
(COL) is calculated via dynamic programming techniques for each unrestricted line (URL)
community, pay grade, and LOS cell for years 1970 through 1983. COL is defined as the
difference between the present value of future earnings from remaining in the Navy I
additional year, and then making the "optimal" stay or leave decision, and the present
value of future earnings from leaving the Navy and entering the civilian labor market
immediately. Among the parameters required to derive COL estimates are military basic
pay, regular military compensation, civilian age-earnings profiles, military promotion, and
involuntary separation probabilities.

In stage II, voluntary loss rates are related via logistic regression analysis to the COL
estimates and other variables that are hypothesized to influence officer retention
behavior. The choice of model specification and estimation technique is critical at this
stage, since ORFM is using pooled time-series (1970-1983) and cross-section (community
by pay grade by LOS) estimates of the cost of leaving the military.

APPROACH

The literature relevant to the estimation and testing of three models that use pooled
time-series and cross-section data was reviewed. Each of these models places certain
restrictions upon the structure of the Bknt* Model I assumes that the Sknt' the intercept

and slope coefficients, are constant over all individuals and all time periods. Model I1 also
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assumes that the slope coefficients are constants but allows the intercept coefficients to
vary over individuals and time. Model III assumes that all coefficients ($knt) can vary

over both individuals and time. Note that some further restrictions on the structure of
the 0knt are necessary in Model III since, without any structure, there are KxNxT

parameters to be estimated from NxT observations.

Additionally, in Models 11 and III, the 0 knt may be viewed as either fixed or random.

In the fixed-effects case, it is assumed that the sample of NxT observations is equivalent
to the population under consideration; that is, there is no interest in making inferences
about any set of observations other than that under consideration. In the random-effects
case, there is no interest in making inferences about the population from which the
observations are merely one sample. Hence, coefficients are forced to be random
variables with means and variance structures that are estimated from the observations.
In Model I1, the fixed-effects approach is known as the covariance model, while the
random-effects approach is referred to as the error components or variance components
model.

RESULTS

Model [--All Coefficients Constant

This model assumes that, in equation (1), 0knt k so that there is no variation over

either individuals (cross-section units) or time. This is equivalent to running one large
pooled regression with NT-K degrees of freedom resulting. This model is the standard
approach to pooling.

To test the implicit hypothesis Bknt = Sk for all k, n, and t, it is necessary to allow

the hypothesis to be violated and perform a statistical test. The way in which the
hypothesis is to be violated is primarily a question of data availability. To violate the
implied hypothesis, separate cross-section regressions are run for each time-period or
separate time-series regressions for each individual. Either or both, if available, of these
sets of regression equations can then be used to perform a Chow (Maddala, 1977) test for
structural change of the regression coefficients between the individualized equations and
the pooled equation. Note that the primary determinant of how the individualized
equations are estimated usually depends on whether one has a small cross-section of a
long-time series or a short-time series of a large cross-section. in the luxurious case of a
long-time series of a large cross-section, one should perform two tests: one to test for
stability across individuals; and the other, for stability across time. In the event that the
null hypothesis is rejected, this testing will help determine what further model is
appropriate.

As an example of testing for stability of coefficients across time, let u be the
(NTxl) vector of ordinary least-squares (OLS) residuals resulting from estimation of

equation (1) under the pooled hypothesis. Let u t be the (Nxl) vector of OLS residuals

resulting from the estimation of a different equatLon (1) for each time period, t . Then
the statistic P may be formed a,

p (0*-0) / M-K

= Q/(N-K)T

3



where Q u u and Q =ZI ut t. P has the Fisher F Distribution with (T-1)K and

(N-K)T degrees of freedom. it should be noted that this test assumes that all Gauss-
Markov assumptions hold for each of the individualized regression equations, whether they
consist of a cross-section of time-series equations or a time series of cross-section
equations. Maddala (1977) discussed this particular test, as well as several conditional
tests that are also available.

If it cannot be assumed that each of the individualized regression equations meets all
of the Gauss-Markov assumptions, then generalized least-squares may be applied LJ the
entire pooled sample. Kmenta (1971) gives results for a time series of cross-section
equations in which the coefficients are the same for all individuals and all time periods,
the disturbance vector for each individual follows a first-order autoregressive process,
and the disturbances for different individuals are heteroskedastic and mutually correlated.
Note that Kmenta's model can be modified to allow for an arbitrary time-series process as
long as it can be identified and estimated.

Model iI--Constant Slope, Variable Intercept Coefficients

The next level of complexity of modelling the pooled data is to allow the varying
intercept coefficients to capture differences in behavior over individuals and over time,
while holding the slope coefficients constant over individuals and time. The coefficients
of this model can be written as

8 knkt, k~l

knt a + n  ,k--l .

Therefore, the entire model can be written as

K
Y a+ Y + 6 +E B(2nt n t k2 xknt Bk + tnt; (2)

n=l,. . .,N ; t=l,...,T ;

where a + yn + St is the intercept for the nth individual at time t, a is the "mean"

intercept for all observations, yn is the difference from a for the nth individual, and 6t is

the difference from a for the tt h time period. Note that yn is common across all time
periods and 6t is common across all individuals.

This discussion will closely follow that of Mundlak (1978). The appropriate estimation
procedure depends upon whether yn and 6t are assumed to be fixed or random. If they are

assumed to be fixed, equation (2) may be estimated as a covariance model. If they are
assumed to be random, equation, (2) may be estimated as a variance components or error
components model. Before discussing the selection of fixed versus random effects, the
estimation procedures for each submodel will be discussed fully so that similarities will
become apparent.

4



Note that equation (2) is the most general formulation of Model II. A restricted
version of this model exists where either the time or the individual effect is assumed to
be absent. Further discussion of this restricted version of the model may be found in
Balestra and Nerlove (1966), Maddala (1971), Nerlove (1971a), and Swamy (1971). Further
discussion of the model in equation (2) may be found in Mundlak (1978), Nerlove (1971b),
Swamy (1971), Swamy and Arora (1972), and Wallace and Hussain (1969).

Covariance Model

When yn and 6t are treated as fixed effects, one of the Yn 's and one of the 6t's are

redundant. Otherwise, the model represented by equation (2) is not of full rank and,

hence, is not estimable via ordinary matrix inversion algorithms. The restrictions E- =0

and Z 6t=0 need to be imposed to maintain a model of full rank. (A discussion of
tt

estimability, restrictions, and alternative parameterizations may be found in Scheffe
(1959).) The model may be reparameterized so that yn = Yn -y 1 for n=2,.. .,N and

6t =6t -61 for t=2,.. .,T. Then, for the nth individual, the model may be written as

Yn =aIT+Yn IT+ 6 +XRn OR +un

where yn is a (Txl) vector of observations on the dependent variable for the nth

individual; 'T is a (Tx1) vector of ones; 6* is a [(T-l)xl vector of 6* ; XRn is the

[ Tx(K- )1 matrix without a constant term that is the reduced version of Xn, the [TxK ]

matrix implicit in equation (1); 1' = (B29 ...,K) , as in equation (2); u' = (un,.UnT);
K n n1l 9n

and the other elements are conformable. Noting that yi-O, the entire set of NT
observations may be written as

y = NTZI Z2 X R ] r01+u, (3)

= IT16

where z (I =(N,_I)

Y " =(yI" " "Yn)9

u =(u-,. . .,,u-) ,and
I N  ,

y is aKN-l)xlJ vector of Yn

5



This is the fixed-effects version of Model 11 written as equation (1). The assumptions on

the disturbance term are that E(u) =0 and E(uu')=ou I * Therefore, via the Gauss-

Markov Theorem, the OLS estimator of the [(N+T+K-2)xl] parameter vector in equation
(3) is minimum-variance for all linear estimators and is unbiased.

Several hypotheses concerning the coefficients may now be tested using the usual
least-squares (OLS) procedures. Of particular interest is the hypothesis of whether
anything may be gained from moving from Model I to Model 11. This is equivalent to the

hypothesis that Y2 ... =YN:s2 62. 6 T=0. This may be tested using the conventional F test

that compares the restricted, via the hypothesis, sum of squares with the unrestricted sum
of squares. The restricted sum of squares is available from a fit of Model I to the data.
The test statistic is the statistic P given in the section on Model I above.

Another hypothesis of interest is that concerning whether the slope coefficients are
constant over individuals and time. To test this hypothesis, the data must be arrayed in a
fashion so that different slope coefficients, as well as different intercept coefficients,
may be estimated. This requires estimating either a time series of cross-sections or a
cross-section of time series with the degrees of freedom constraints N+K<T and T+K<N
respectively. Then, using the F test comparing the restricted with the unrestricted sums
of squares, the hypotheses of constant versus varying slope coefficients over both
individuals and time, as appropriate, may be tested.

Two important problems are associated with the use of this covariance model for
pooling. The first is that the dummy variables included in equation (3) for shifting the
intercept of the regression equation over both time and individuals do not directly identify
the variables that are causing the shifts. This is a standard problem with using dummy
variables since the dummies are functioning as proxies for variables that are missing from
the model. Therefore, dummy variable coefficients are difficult to interpret. The reader
should recall that the dummies represent either cross-section or time-series differences
from the overall mean, c.

The second problem involved with the covariance model is that it uses up a
substantial number of degrees of freedom. In Model 1, K coefficients are estimated using
NT observations but, in this covariance model of Model II, N+T+K-2 coefficients are
estimated using NT observations. An implicit assumption of the above development, now
made explicit, is that N4T+K-2<NT. Additionally, the statistical quality of the covari-
ance model decreases as the number of coefficients approaches the number of
observations.

Another problem that is machine- and implementation-dependent is that N+T+K-2
may be too large for inversion. This problem may be overcome by considering the
partitioned inverse that yields the OLS estimator for 1 R in equation (3). Application of

formulas for partitioned inverses and simplification yields:

zw = (X.Q XR)- (X Y)

The (NTxNT) matrix Q is idempotent and is defined by

,Q T I (IN IN '-r) + N (4)

6



This matrix is a generalization of the usual deviation-from-means matrix A=I - /N
N N/

(see Theil (1971). This matrix arises from averaging equation (2) over n, t, and both n and
t and subtracting the two single averages from the sum of equation (2) and the double
average. Using the obvious notation, this yields:

K

Ynt- n .- t + y = (Xknt - Xkn - Xkt - Xk- ) k + (Unt - u .- Ut -Q') "
k=2

For this notation, as well as a similar approach to covariance analysis, see Sheffe (1959).
In matrix formulation, this may be written as

Qy =QXR 8 RW +Qu . (5)

Consequently, BRW may be viewed as the OLS estimator obtained from equation (5) or the

GLS estimator from equation (5) where Q is the idempotent covariance matrix of the
disturbance term, Qu. Note that Q being idempotent is equivalent to it being the

generalized inverse of itself. The covariance matrix for R is given by a (X Q XR).
Because 6RW utilizes the variation of the independent and dependent variables within

each individual, each time period, and both individual and time period, it is known as the
"within" estimator. As shown by Mundlak (1978), this will play an important role in the
error components model.

A

IfRW is estimated using the partitioned model, the remaining parameters in the
model may be estimated from

A K _
a =Y.. -Z Xk-. SkW

k=2

K

y n- .-) - E (xkn.- x k'.) kW and
n k=2

K
t- (j.t- ..)- Z (Xk.t - k.) ARWk=2

These are standard results from covariance analysis, as shown in Scheffe (1959).

The covariance model framework may also be used to introduce problems of
heteroskedasticity and autocorrelation among residuals. A recent extension of the
covariance model for time series of cross-sections, to include arbitrary interteiiporal
covariances, has been made by Kiefer (1980).

7



Error Components or Variance Components Model

The error components or variance component models treat Yn and St in equation (2)
as random variables with

E(Yn) = E( t ) O= 0;

E(Ynym) : o;t n s

0 s ; and

E(Yn6t) E(YnUnt) = E(6tUnt) 0, for all n and t.

Therefore, the model can be written for the nth individual as

Yn = Yn'T + lT 6 + XnB + ui I

where 6' = (6 k,. J'6 T) and xn and 8 include a constant term and its coefficient, t. The

full model with NT observations may be written as

y =(f tT) + (iN ( ) IT)6 + XB +u,

where Y'= (Y" .. "'yN) " The covariance matrix for the individualized equation may be
written as

Z nrn E (Yn IT + IT6 +u n) (m1T + IT6 + urn) ]

ty r tT + T+O n-rn

so that the complete covariance matrix for all NT observations becomes

=y N ( 'T') + a6 ('N'N O'T)+ u INT

In general, Z does not have any simplifiable structure, except as noted at the beginning of
this section.

S



t te t r, and 2 , are known, then the GLS estimator

for 8,

= x-i (xW y) (6)
N (X (X

is the minimum-variance, unbiased linear estimator. As is shown by Mundlak (1978) and

a
others,if 8 is partitioned as , it is possible to show that 1R is a matrix weighted

RE

average of three other estimators. This partitioning results from

+ + Q3  (7)

02 a 
2

11 2 3

where Q is defined in equation (4) above,

=Q C T T- N) NT
T NT

(N N ®IT)- I NTNT
Q2  -i

1 NTNT NT - Q-QI-Q2
Q3 - NT

02 2 2I T aOy + aOu ,

a2 = N a2 + a 2  and
2~ 6 u

0
2 

= 2 + y2 2 2 2 2

3 = T o Y + u = I 2 u"

Partitioning equation (6) in the manner noted above and using equation (7) yields

R. ('R I it X RQ 2
X R + XR-8RE (12! + 2=o

1 2 u

X LIR ^I + Xi 2XR\ ~2+ :RL
8R a R

K _

E X.- k -k9k -2 q



where is the "within" estimator from the covariance model above. The other two

estimators come from OLS applied to averaging equation (2) over individuals and time

respectively. To see this for I, note that

K
Yn. =  +Yn 4 E Xkno Bk +u no

k=2
is equivalent to

Qly =QIXR R+QIU

so that B = (XQlX9V' (XQly)

Similarly, OR = (XRQ2XR)- ( Q2y). Consequently, BR is an efficient, matrix-

weighted average of the three estimators: (1) R R which is based upon the variation over

individuals, (2) OR which is based upon the variation over time, and (3) BRW , which is

based upon variation not explained by differences over individuals or over time. For
further details of calculations and alternative transformations, see Fuller and Battese
(1974), Mundlak (1978), Nerlove (1971b), and Swamy and Arora (1972).

In most cases, the error components, o u , aY and at , are not known. The

following estimators, suggested by Swamy and Arora (1972), are unbiased:

=U 1 : u1 /N-K

a ' /T-K , and
2 =u 2

A
2 

AAA

(Y u/ 2( N-I) (T-I) (K-I)

where uI = Q y - QIXROR I u 2 -Q 2 y - Q2XRBR, and u =Qy-QXRORW are the residuals

from each of the above estimators. Alternative estimators have been suggested by
Amemiya (1971), Fuller and Battese (1973, 1974), Maddala (1971), Nerlove (1971a), Rao
(1972), Swamy (1971), and Wallace and Hussain (1969).

When X contains lagged values of the dependent variable, several problems are
introduced. The most significant are that the parameters may not be identified and that
the error components estimators are no longer unbiased. These problems, as well as some
suggested corrections, are described in Berzec (1979), Maddala (1971), Nerlove (1967,
1971a), and Swamy (1974).
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Several hypotheses are available for testing after the model has been estimated.
Perhaps the most important is the hypothesis of whether anything has been gained by
moving from Model I to Model II. This is equivalent to testing the vectors y=O and 6=0,

which is equivalent to 02 = 02 = 0. Under the null hypothesis, the individual components
Y 6

do not exist, so that the OLS estimator of Model [ is minimum-variance unbiased. To
carry out the test, the estimator from the covariance model may be compared with the
OL estimator from Model I via the F test, which compares the restricted and
unrestricted sums of squares. Details are given in the section on the covariance model

above. An asymptotic test of a 1 = oa = 0 based upon OLS residuals from the regression
Y a

of y on X is available from Breush and Pagan (1980).

Another test of interest is whether the slope coefficients are equal over the cross-
section and time-series subsamples. As pointed out by Maddala (1977), these tests are
asymptotic when performed within the framework of an error components model. The
test is again the standard F-test using restricted and unrestricted sums of squares, where
the restriction is that the slope coefficients must be constant over individuals and time.
Further details are given in the section on the covariance model above.

Attempts to generalize the error components model in the directions of a Bayesian
analysis and an errors in variables approach have been suggested by Swamy and Mehta
(1973) and Chamberlain and Grilichas (1975) respectively.

Conclusions for Model i

As noted above, the fixed effects assumption of the covariance model implies that it
is desirable to make inferences concerning only the sample at hand. The random effects
assumption of the error components model, however, assumes that the yn and 6t are

random variables and that the individuals and time periods can be regarded as some
random samples from larger populations. The desire in the error components model is to
make inferences about the larger populations. Additionally, the error components model

assumes that there is no correlation between yn and Xn or between 6t and Xt.

Mundlak (1978) states that, in both the fixed-effects and random-effects cases, yn

and 6t may be considered as random but, in the fixed-effects case, inference about the

sample is conditional upon the values of yn and 6t observed in the sample. On the other

hand, in the random-effects case, specific distributional assumptions are made about y n

and 6t, so that unconditional inference is appropriate. Because no specific distributional

assumptions are made on yn and 6t in the covariance model, it can be used for a

(conceivably) wider class of problems. If, however, the distributional assumptions of the
error components model are correct, a more efficient estimator is obtained than that
available from the covariance model. Mundlak (1978) points out, however, that it may be
preferable to use an estimator that possesses bias but that has a lower mean square error
than an available unbiased estimator.
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it should be noted here that the primary interest in both the covariance model and
the error components model is in obtaining good estimates of the slope coefficients.
Using the Mundlak (1978) interpretation, in the covariance model the intercepts are
random but are conditional on the sample values of the pure individual and pure time
effects. They become the coefficients of dummy variables simply because the true way
that individual and time effects enter the model is not known. In the error components
model, the effects are treated as unconditionally random with assumed distributions but,
again, they function as proxies for unknown cross-section and time series factors.
Perhaps a skeptical interpretation of Model Ii is that, although it is desirable to account
for the time-series and cross-section effects, it is difficult or impossible to model the
process adequately.

An additional point, made by Maddala (1977), is that systematic, as opposed to
random, variation in the intercepts implies that the error components model is not
appropriate. He also states that it is important to check whether there is a systematic
pattern in the residuals. This should reveal whether the residuals are heteroskedastic or
autocorrelated and, hence, what model is appropriate.

A final point is that, since the error components model assumes no correlation

between the effects and the Xknt , this should be checked and tested. The null hypothesis

is that there is no asymptotic correlation and an asymptotic test can be carried out via a

comparison of the estimator from the covariance model, ORW' and the estimator from the

error components model, 8 RE' The test statistic, which is proposed by Hausman (1978)

for use in the errors in variables problem, is

m = 0 - B a )-

where D is the difference between the estimated covariance matrices for 0R and BRE'

Note that m is asymptotically distributed as a X2 (K-I) variable.

Model Ill--Variable Slope Coefficients

The final logical level of complexity of modelling the pooling process is to allow all
the coefficients to reflect differences in behavior over individuals and over time. It is no
longer necessary to treat intercepts differently from slopes, so that the general model can
be written as

y = XB+ u,

as in the introduction, or as

K
Ynt E Xkn t Sknt +unt, (8)

k=l

in the two previous sections. In the most general case shown in equation (8), there is an
immediate difficulty. Since there are KNT parameters to be estimated from NT
observations, some further structure must be placed on the coefficients. The usual
structure is to set

Bknt ': ak ' Ykn + 6 kt' (9)

12



where Bk represents some mean effect over all individuals and time periods, Ykn

represents the effects due to specific individuals, and 6 kt represents the effects due to

specific time periods. Note that now the individual and time effects, as well as the mean
effect, are specific to individual columns of X.

As in Model II, Ykn and 6kt may be assumed to be either fixed or random and, again,

this is how the various approaches to estimation of Model Ill will be dichotomized.
However, in this case, there are ways of estimating the fixed effects, all of which are
extensions of the covariance model presented above. The following discussion of both
types of Model I11 will closely follow Hsiao (1974, 1975).

The version of Model III represented by equations (8) and (9) is the most general
formulation of the varying slopes hypothesis. As in Model 11, restricted versions of the
formulation are available in which either the time or individual effects are absent. For
the fixed-effects case, these will be treated below since the assumptions are crucial to
the estimation procedures. In the random-effects case, further discussion of the
restricted version may be found in Rosenberg (1973a) and Swamy (1970, 1971, 1973, 1974).
Further discussion of the general formulation is found in Hsaio (1974, 1975).

Fixed Effects

When Ykn and Skt '". veated as fixed parmeters, an immediate useful simplification

is to permit either Ykn or 5kt to diz)apear so that a cross-section of time-series equations

or a time series of cross-section equations respectively is produced. Additionally, the
coefficients can be defined as Bkt or Bkn respectively, so as to incorporate the time

effects or individual effects into the mean effects of the coefficients of the explanatory
variables. Once in this form, Zellner's (1962) seemingly unrelated regressions model (or
joint GLS) can be applied to allow different time-series equations in each cross-section or
different cross-section equations in each time series. The joint estimation can be carried
out for separate Bkn or 3kt' as Well as common Bk, and the hypothesis of equal Bk may be

tested. Details are contained in Zellner (1962). One should check that the assumptions of
the Zellner model hold for a particular application prior to estimation and testing.
Estimation techniques for differing assumptions on error structures are contained in
3udge, Griffiths, Hill, and Lee (1980).

The full model of equations (8) and (9) can also be viewed as a covariance model in
the case where Ykn and l. oi' su.ned to be fixed effects. In the matrix version of the

model, the matrix of explanatory variables has the dimension NT x (T + N + )K while its
rank is only (T + N - I)K, so that 2K independent linear restrictions must be imposed on

N T
the Ykn and 6 kt. Hsaio (1975) suggests the natural restrictions E yn = 6 t = 0 as the

n=1 t=l
2K restrictions necessary. Again, standard F tests of comparing restricted with
unrestricted sums of squares may be carried out here, just as in the case of Model II.
Note that the degrees of freedom constraint for this full version of the covariance model
is NT>(T+N-I)K and this is likely to be violated, except in the case of large N and large T.

13



Random Effects

Given the model of equations (8) and (9), which can be written
K

Ynt E ( " k + Ykn + 6kt)Xknt +Unt

the model for the nth individual can be written as

Yn = XnQ + XnYn + Zn6 + Un (10)

where yn is (Txl), Xn is (TxK), ynA= (¥1n'" " "'¥kn)

nn

6' (6;,...,6j., 6;: I6t,...,t , u,= (uni..,ut*

(TxTK) n

and Xnt' = (X .nt," . "Xknt). Hsiao's (1974, 1975) assumptions are that

E [un I =O=E[ynI, E 6t =0,

E fu u' I o forn-mn m 2a

0 for nim,

A for n=m
F [nYm 0 for nim, and

B for s=t
E 6 ] 0 for sAt.

Additionally, he assumes Yn' 6t, and un are all uncorrelated and that A and B are diagonal
with elements ak and bk respectively.

Rewriting (10) to include all NT observations gives

y=Xo+ZY+!6 + u,

where Z is block diagonal with X as the nth diagonal block, (Z' = Zj,... ,!1), and the
other vectors and matrices are stacked in the natural way.
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Given the assumptions above, as well as the assumption that y and 6 are random, the

covariance matrix for the complete error term is

Q = E [zy - 76 u (ZY + Z6 + uY] Z (IN()A)Z' + Z (lT.®B)f" +u 2 lNT"

Then the G LS estimator = = (XA 'S- I X (X '1- 1 y) is the minimum-variance unbiased linear

estimator for a and has the covariance matrix (X -1X) "l .

Unless A, B and a2 are known, they will have to be estimated from the sample. Hsiao

gives two estimation techniques for the unknown parameters of 11. One is a direct
maximum likelihood approach, while the other is an indirect minimum norm quadratic
unbiased estimator (MINQUE) approach. Since the estimation procedures are both rather
complicated, the reader is referred to Hsiao (1974, 1975) for details. Hypotheses
concerning constancy of coefficients over time may be tested via procedures given in
Hsiao (1974).

Conclusions for Model IIl

As in Model 11, there is a choice of whether to assume the effects are fixed or
random. The conclusions given previously concerning Model 11 carry over completely in
the case of Model 111. Again, the most important consideration is correlation of the
random coefficients with the explanatory variables. If this correlation is present, then
the GLS estimator for the random effects case is biased, so it is probably better to use
the fixed-effect model. If, however, such correlation is not present and the distributional
assumptions of the random-effects model are reasonable, this model will provide more
efficient estimates than the fixed-effects model. Also, systematic variation of the
individual time effects, as opposed to random variation, is an indication that the fixed-
effects model is preferable.

Extensions of Model Ill in various directions have been suggested by Singh and Ullah
(1974), Swamy (1974), and Swamy and Mehta (1975, 1977).

CONCLUSIONS

The random-effects models above, when combined with the coefficients of the
explanatory variables, imply the mixed model of the classical analysis of variance
literature. Additionally, the random-effects models can be viewed as an intermediate
step between the OLS model where all the coefficients are the same for all individuals
and time periods and the covariance models where the coefficients are different for all
individuals and time periods.

A point that should be heavily stressed when making choices over pooling models is
the importance of the sample sizes for both the cross-section and the time-series samples.
These sample sizes determine both how the data can or cannot be grouped and place
constraints on the choice of particular estimation methods. Specifically, estimators of the
random-effects models maintain their properties only when a reasonably large sample is
available.

15



One model, not seen in the pooling literature, is one in which the slope coefficients
vary over individuals and time periods but the intercept coefficients are constant. This is
a variation of Model II that can be handled by a minor extension of Model III. It is not
clear that this model would have any applications in economics.

The organization of the three models discussed in this report is hierarchical in nature.
This enables the user to move down the list of models as he or she discovers, via either
hypothesis testing of fitted models or prior information, that imposed restrictions must be
successively relaxed. It should be noted that Models II and III imply that XB does not
account for all the modelling variation in y. In the random-effects case, this remaining
variation is modeled by classifying its distribution; in the fixed-effects case, it is modeled
via dummy variables. A third alternative that exists in this modelling scheme is to allow
random variation of the individual and time components but place it within a structural
framework. This leads into the varying parameter literature. Note that this is the next
logical step from Model III above. Some applications of varying parameter models to
pooling problems are considered by Johnson and Rausser (1975), Rosenberg (1973b),
Saxonhouse (1977), and Greenwood, Ladman, and Siegel (1981). The literature on varying
parameter models is voluminous and still growing. Good overviews are available in Judge,
Griffiths, Hill, and Lee (1980) and Maddala (1977).

It is important to remember that, after pooling problems have been dealt with, the
application of standard regression tools to the pooled problem at hand should not be
forgotton. An excellent example of this is provided by Izan (1980).
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