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s-I.4) ~ ABSTRACT

- In this paper a nonliear Dirichlet problem for the Laplace operator is

considered on a disc in 3 . It is shown that if the nonlinearity, which may

explicitly depend on the radial variable, is odd and superlinear at infinity,

there exist infinitely many non-radial solutions. If the nonlinearity is odd

and sublinear at infinity, and satisfies certain conditions at zero, a finite

number of radial and non-radial solutions will be found. This number is given
by the number of radial, respectively non-radial, eigenvalues that are crossed

by the nonlinearity. In any case, as a consequence of the oddness of the

nonlinearity, these solutions inherit the nodal line structure of the

eigenfunctions corresponding to the eigenvalues that are crossed.

The results are obtained by using natural constraints in a variational

approach of the problem. C
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SIGNIFICANCZ AND IXPLANATION

For the nonlinear Dirichlet problem on the unit disc D C 12t

-Au - g(r,u) in D - ((r,e) : r e [0,1), e e (-wo))
(*) .(

u1(1,O) - 0 for -W < a ( w

where g is a given function which is odd in u, known multiplicity results

for solutions of (*) provide not much information because of the invariance of

solutions for rotations in R2. Therefore we distinguish between radial

(i.e. 0-independent) and non-radial (explicitly on 6 dependent) solutions.

The non-radial solutions we will look for are odd in 0. Thinking of the

functions on D as being defined for all 0, and 2w-periodic in 0, we

shall also consider "superharmonic' solutions, i.e. solutions with period

2w/2, 2w/3,... in 6. The sts of superharmonic functions are natural

constraints for the functional of which (M) is the Euler-Lagrange equation,

i.e. the critical points of this functional provide solutions of () even in

case it is restricted to these subsets. In that way we show, under the sole

condition that g grows faster than any linear function at infinity (the

suprlinear case), that there exist infinitely many non-radial solutions of

(M). If g is bounded above by a specific linear function at infinity (the

sublinear case), and if g satisfies certain conditions at u - 0, a finite

number of radial and non-radial solutions will be found. This number is given

by the number of radial, respectively non-radial, eigenvalues that are crossed

by the nonlinearity u s-> g(*,u) as u runs from 0 to m. In any case,

the solutions inherit the nodal line structure of the *igenfunctions which

correspond to the sigenvalues that are crossed.

The responsibility for the wording and views expressed in this descriptive
summry lies with NC, and not with the author of this report.
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Consider for a mooth, bounded donain a C P, and given function i)4iatribution/

g Ce( x 6), with 6 6 (0,1), the MIP AvmilP-11 y C-9es

-Au g(xu) in Q Al
umO on so /

Glx~u) t- J glx,s~lds *

00

it 1. well known that under suitrable growth conAti;ons on g cl.ansical solution of (1)

are in an one-to..one correapondence with the critical points of the functional 9, given

by

(2) 9(u) n. 12 .i rvuI 2 . j ~,U

COP
0 3

on the usual Sobolev space I1 (,) of L2-functions which have generalized derivativem
in 12 and vhaiah vanish on the boundary. lor the norm we shall take

ul I u a I'(a ,)

going critical point theory, the aim is to get information about the number and properties

of solutions of (1).
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In the following we shall write A, < 12 ( X 3 < ... for the succosnuie (distinct)

eigenvalues of the linear eigenvalue problem associated with (1)

-Au - Au in 0

U"- 0 on an•

Let uas first recall a classical result. Consider the following conditions.

(NO ) For every x e Q, the function u 6--> G(x,u) is an even function.

(NI) The function G in subquadratic at infinity in the following senses

I insOWG(xuB <14 1 foral xe a

lu l . lu l 
"

(E 2 ) There exists a number y > 0 such that

lA inf G(x,u) >l4 for all x a.

lule+ lui
2

?U303A (Clark (11)

Suppose that G satisfies conditions (0), (81 ) and, for some Y > 0, (N ) .

Then the SW (1) has at least j (pairs) of distinct solutions, where j is the

number of linearly independent oigenfunctions belonging to eigenalues not larger than y.

The proof of this result is an application of Ljusternik-Schnirelauan theory to the

even functional * to show that # has at least j pairs of distinct critical points.

This theorem is the best result (concerning the nber of solutions) one can generally

expect.

Now suppose that 0 is the unit disc 0 in 22 .  (For simplicity we shall restrict

ourselves to 22, but the seas ideas can be used for more general eats 0 C 3P, n > 2,

which are rotationally syet ic about one rotation axis).

Using polar coordinates (r.9) on 0, D - ((rS) s 0 4 r 4 1, -w < S ( 0}, assume,

moreover, that the function g depends only on r and u a g - g(ru).

In that case, the result stated in Theorem A is no longer very informative any more.

Indeed, with u(r,S) any solution of

-2-
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the function u 4sf in"d by % u(z'.S) -u(rol + 0 is for any % also a solution of
0 0

(4). lance, the existence of one solution u for which ug 0 0, immediately implies the

existence of infinitely many solutions.

Calling two functions U, and u2  geometrically distinct (as in (21) if %4u1  u2

for all 9 e (- wone thus needs statements about the existence of geometrically

distinct solutions of (4).

lame other obvious terminology that will be used in the sequel: functions (solutions)

which do not depend on S will be called radial functions (solutions),* and the others

non-radial.* An eigenvalus I of (3) will be celled radial or non-radial depending on

whether the corresponding eigenfunctions are radial or not. This makes sense, since the

sigenvaluss and corresponding eigenfunctions (modulo an arbitrary rotation Re) are given

explicitly by

1 -0 
* , 30 1o,me), -m e v

and for k e

(6) k 2 kmsnkmeIUm 1~m Jkikrui S me3

where Jk k 6 U U (0) are Dessel functions of the first kind and 1k ,m denote the m-th

strictly positive zero Of 7k. Grouped together in this way, (1m~ are the radial, and

(" k) are the non-radial eigenvaluss. (it is well known that all zero's of distinctm k,mM

flessel-functions are different (see Watson [3, p. 4651). B ance, modulo rotations of the

eigenfunctions, each eigenvalus is simple).

For subquadratico convex (instead of even) functions a - 0(u) * Costa and Willem (41

proved the existence of at least j-k non-radial, gemtrically distinct solutions of

(4) If a satisfies

k hu+ llim inf "('2) < 1/2 X

where XkAX are such that all eigenvalues In J' are non-radial.

-3-



ftrmn 1SI.'r"quring G to be .uperquadratic at Infinity, i.e.

(3) air. exist numbers pi > 2 and R > 0 such that

) PG(o.u) for all ui, lul > R

moreover, q satisfies the usual bobolev growth condition at infinitys

lg(-,u) 0 O ep(S(U))

for some number a and ese function 0, with OWN~l 2 0 as 1u0*

obtained, without convexity or eveness assumptions, the existence of infinitely many

distinct radial solutions of (4) by, essentially, reducing the problem to a oner-dimensional

problem and exploiting the nodal structure of solutions to distinguish between them.

in this paper we shall proves

tMosm a.

Buppose that the function G satisfies condition (no) and (),and condition

(SU2 ) Yfor some Y) 1  16it 3 .

then problem (4) has at least j geometrically distinct (pairs) of solutionet in

fact, (i) at least kc radial solutions and (ii) at least A non-radial solutions, where

kc and A are, respectively, the numer of radial and non-radial eigenvalues not larger

than )

The proof of this result is an application of Ljusternik-Schnirlmn theory to the

functional # restricted to the set of radial functions (for (i)), and to the functional

# restricted to the set of functions which are odd in S for (ii).* These restricted

sets are natural constraints for the original couple (#,HA (D,3)) in the sense as defined

in (6) se section 2) * More specific information about the non-radial solutions can be

obtained using the idea of naturally embedded sets ((61, see section 2). Roughly speaking,

let for st 63 U(D) denote the set of functions which are defined on D as the

restriction of functions uWr,S), (r,@) 6 [0,13 x it which are odd and 2w/-periodic In

* and which satisfy the boundary condition u01,9) - 0 for all 66 e. Zn particular,

if u 6 HEo(D), than

u(sr,S) - u(r,-O) u(rS + N for all r e 10,11, 6 e a

-k

fkj



and u has Xt "nodal lines':

u(r, n) - 0 for r e 0,lI, n e s. - < n k.

Thoee sets Hk(D) turn out to be natural constraints for the problem at hand. Since

N~()C UKCD) for all a 639, we shall say that u 6 IK(D) has minimal period 2w/k

if u # O(D) for any 6I, > 1.

TEDORDI a,

With the same conditions as in Theorem 3. we have additionallys

(a) For each k 4 N for which 0 k < Y, there exists at least one non-radial

solution of (4) which is a solution of the following minimization problm:

(7) inf(*(u) I u e NO(D)) .

kMreover, any solution of thi minimization prblei has minma period /.

(b) For every couple (k,m) e U x 9 for which Ia < Y, there exist at least a

distinct solutions of (4) with period 2w/.

For superquadratic functions G we shall prove the following result which is

complementary to known results for radial solutions in that case (cf. Struwo 151).

IUUOUUI C.

Suppose that the function 0 satisfies conditions (H0 ) and (83) and that, moreover,

the function u 0-> g(*,u) in locally Lipschits continuous.

Then there exist a nmber k 0 6 e and a sequence {(u), xe n. kPk 0 , of

geomtrically distinct non-radial solutions, for which the minimal period in 6, to be

denoted by rk, satisfies Tk 4 2w/k for all k e N.

The proof of this theorem is an application of the mountain Pass Lema (Ambrooetti and

Nabinowits 191) to the restriction of the functional # to the naturally embedded sets

K(D) for each k U U sufficiently large.

Under slightly more stringent conditions on g we can obtain solutions uk as in

theorem C which have minimal period precisely 2w/ and which are characterized as the

-5-



solutions of a specific minimisation problem. To that end we need the following

assumpion 8

(N4) The function u -> g(e,u) is C1 , and, with g' the derivative of g with

respect to u, the following conditions are satisfLed:

(i) G(*u) ) 0 for all u * 0,

(ii) g9(*,u)*u 2 - (o,u)ou > 0 for all u 0 0.

2IDbON D.

Suppose that G satisfies (Ho), (U) end (N4). If g(,o0) - 0, let k0 1- 1, and

if g'(*,O) 0 0 let k0 e a be such that 9'46,0) 1 (10.
0

Then there exists a sequence (u k ) , k a 0, k O ko, of geometrically distinct non-

radial solutions for which the minimal period in S. Tk# is given by Tk - 2w/A.

Furthermore, for k ; k O, uk is a solution of the following inimlsation problem

(S) inf((u) : u• k)

where 9k is a natural constraint, given by

Mk 1_ {6 e N°(D)\(o) I J Iv.I 2 - I gC..)}.
D D

RSUUK. As we shall see from the proof, the minimization problem () is an explicit

formulation of a mini-max expression for the functional # on HjO(D). Zn fact, for

k ) kO, and with 8(D) s- v e H0(D) : Iv1 - 11 the unit sphere In O(D), for any

v a ' CD) condition (14) implies that the function v+ a P -> )(pv) has a unique

critical point p - ;(v), at which point this function is maximal. Moreover, there exists

00 > 0 such that ;(v) > P0 for all v e j(D), which implies that Mk in given by

Uk a (;(v)v i v e (D)) and that (S) is an explicit formulation of the following mini-

max problem for the functional *:

(9) inf max *(Pv)
S 0 (D) 0>0

In section 2 we shall recall for the readers convenience the concepts of natural

constraint and naturally embedded sets. The non-radial solutions for the problem at hand

-6-
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will be comoidered Ia soction 3, and the radial solutions in sction 4. in that last

secticn also an exaple Is given of the use of wforced natural constraints to provide a

specific characterimatios of the node of one of the radial solutions.

After the ocmpletion of this manuscript I learned from Paul R. Rabinovitz that he had

obtained at the sam tine the multiplicity result of fteorem C in a completely different

Way. I thank him for drawing My attention to the referentCes 1101- [121 related to

proposition S. and David 0. Cost& for seMrI conversation@.

-7-



2. DIWIUITrOM8,

Zn t61 the motion of natural constraint was introduced. It generalizes related

concepts that have been used by several authors (sea e.g. Berger (7, Chapter 6], Nehari (8]

and other references in (61).

For the definition we use the following notation. For a set 3 and a Cl-functional

9 on 3, we denote by S(*,3) the set of critical points of # on a.

DEFINITION 1.

A subset i of Z will be called a natural constraint for the couple (9,) if

S(,i) C S(*,3), i.e. if any critical point of the functional * restricted to the set

is also a critical point of * on Z.

In [6). a restricted kind of natural constraints, namely naturally embedded sets, has

been found useful in the study of periodic solutions of Hamiltonian systems. For the

problem at hand, this same concept will provide rather detailed information on the nodal

structure of the non-radial solutions.

DEFINITQI 2.

A mapping * : . 1 C Z will be called a natural embedding for the couple (*,3),

and I defined by 1 :0 0 will be called a naturally embedded set for (9,3) if:

(i) the functional 3 defined by ; :- $ s Z + R belongs to C(9,R), and

(ii) for every x e SC,3) it holds that Ox e S(*,).

It must be noted that by restricting to a subset 1 and considering S(*,A) instead of

S(,Z), one may not find all the elements of S(,E). But, as is clear from the results

stated in the foregoing theorems, this possible loss of information is greatly compensated

in Theorems B and C, and provides more specific properties of certain solutions in Theorems

3, and D.

-8-
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3. NWI-RADZAL BOLUTIOdB.

For the problem at hand, with 9given by (2), standard regularity results for ( 4)

imply

In this section weshall look for non-radial solutions of (4), by investigating

thetrvia oe).Intha wy w gt rd f te otaioalsyetry ofteproblem.

To that end we essentially solve the equation on a semi-disc, say the upper half, with

Dirichlet boundary conditions:

{-(rur)r I u i 9 9 - (r,u) in S - ((r,S) i r e (0,), 8 e (0,w))

(3.1) u(r,0) u(r,T) -0 for r e (0,1)
Iu(IS) -0 for S e rD,i ,

and continue the solution in an odd way to the lower-half of the disc. We denote this

continuation by C: if v is defined on S, then Cv is defined by

Cv~rS v(r,O) for 0 -6(14

(-v(r,-O) for -w < 6 < 0

For solutions of (3.1) it turns out that this continuation is C 2, therefore mapping

classical solutions of (3.1) onto classical solutions of (4).

with R(S) : 83,define the following sets of odd functions

0H (D) s Cv t v e (S)

and

30 (uOeK9 u is odd in 6).

Furthermore, let *be the functional # restricted to functions defined on St

(3.2) OWv t- j jvVI 2 G(*,v)



LOI 3.

(i) S(*,n 0D)) 3 C(S(#,H(S)) C 
Z0

Ci) $(*,H
0 
(D)) C S($,H(o), i.e. H

0
(0M is a natural constraint for (#,H(D)).

(iii) #(Cv) = 2#(v) for any v e H(S).

Proof:a

Suppose u S(*,H 0 (D)). Then u satisfies the equation

-Au - g(r.u) = f(r,8) in D

for some function f which is even in 8. Since u, and consequently Au and g(r,u),

are odd in 8, the left hand side is an odd function of 0, from which it follows that

f must vanish identically. Consequently, u satisfies the differential equation in D,

and also the homogeneous boundary conditions on DD. Therefore, u is a classical

solution of (4), which proves part (ii) of the lemma. Moreover, since u e C2
(D), we have

in particular u(r,0) - u(rw) - 0 for r e [0.1]. Hence u = Cv, with v e H(S) a

solution of (3.1). Since any solution of (3.1) is a critical point of # on H(S), it

follows S(,H 0D)) C C(S(H(S))). On the other hand, let v e S(,H(S)). Then v is a

classical solution of (2.1), and Cv e c I (D). In the lower-half disc Cv satisfies also

the differential equation, and from this it readily follows that Cv e C
2(0). Hence

Cv e z0  is a classical solution of (4), which shows C(S(#,H(S))) C S(*,H(D)). Together

with the reversed inclusion obtained above, this proves i). Part (iii) is an immediate

consequence of the definition of the functional # and the continuation mapping C. a

With the foregoing lemma, part (ii) of Theorem B is an immediate consequence of the

following result.

PROPOSIIOt 4

Suppose that the function G satisfies the conditions of Theorem B. Then S(#,H(S))

consists of at least A distinct (pairs) of elements.

Proof. Since the functional # and the set H(S) are invariant for the action of the

group 2 - (id, - id), standard Ljusternik-Schnirelmann theory may be applied with the

genus of symmetric, compact subsets of H(S)\(O) as index theory.

-10-



To that end, first observe that because of condition (8 1), the functional *

satisfies the Palals-Male condition on U(S) (cf. e.g. Clark [M]). moreover, again

because of condition (R1), it can be shown that * in coercive on E(). i.e. #(v) * *

as 1v + -, so that, in particular, # is bounded from below on E().

Furthermore, let u(m), 1 4 a 4 t, be the non-radial, odd eigenfunctions of (3) with

eigenvalue not larger than I Denote by v ( 6 ) ,  1 4 a 4 1, the restriction of u( m) to

the upper-half disc B. Then v ( ) G H(s). Consider for p > 0 the set

e " Ia " %V€= ) , e for 1 fU41 i v -1p•
S-

This set has genus A, and LJusUternik-Schnirelmann theory gives the existence of at least

i distinct pairs of critical points for 0 if #(C) < 0 for ome P > .

in order to estimate *(ZP), note that v ( m ) r 1 4 'a A are the eigenfunctione of

problem (3) on the domain 8 for which the oigenvalues are not larger than 1j. As a

consequence, for any v 6 ZO we have

1/2 1 v 2 4/1,6 J v2
D 0

On the other hand, condition (H 2), implies

G(r,v) )1 /jYv2  for lvi sufficiently mll.

Thus it follows that

) G(r,v) 0,6 Y J v2  for all v e Z', p sufficiently small.
8 U

since y >%kit these two inequalities imply that *(Z p ) < 0 for p sufficiently

small. This completes the proof.

Zn order to investigate the nodal structure with respect to the angle variable s in

more detail, We introduce naturally embedded sets Uo of U0 .

To that end, from now on we will think of the function u e R0(D) as being defined

for all e a U and periodic in 0 with period 2w. Defining a mapping #k for k @ I

1 . by,

#kv(rI) s- v(r'kO)

... M



the sets E(D) will be defined by

Ii(D) H- ().•

K(D) can be interpreted as the set of odd, 2W/k periodic functions (6superharmonic

functions"). The restriction of the functional * to H CD) defines a functonal k

on HO (D) according to

t 1#k"

Then #k 6 CI(N 0 (D),R). It is not difficult to me that

*i( kH 0 D)) C S(,HM0 (D))

which, by definition, mans that Hk(D) is a naturally embedded set for the couple

(*,HN(D)), with *k  the natural embedding. Therefore we shall investigate

0S(ka (M)), as each element of this set gives rise to a solution of the original problem

(4) which is odd in 0 and 21/h-periodic.

0
Zecause of lama 3 (1), we can instead of S(Ck,H 0M)) consider S(#,H(a)), where

k 0 C ((S)) is defined by

(3.3) k(v) t- qk(v) - J G(*,v)S

with qk the quadratic functional

1 2 2 11 v erd
qk(v) y rvr e + k 2 r

0 0 0 0

Hereafter we shall need the following relation between the eigenvalues and -function of

problem (3) and the eigenvalue problem on 8 associated with qk

PROPO ITIOU 1.5

Let k 6 3. The solutions of the variational problem

(3.4) tat(qk(v) B v @ H(s), J v 2 " 1}

(i.e. the eigenfunction8 of the eigenvalue problem associated with qk) are given, up to

m norualliation coefficient, by the functions

-12-
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Vkms~rs):- W J,(jukr)sin aO, m e U, a 0

and the corresponding eigenvalues are 11:a

in particular, up to a normalisation, the function vkjis the solution of the

minimization problem

iuf(qk(y) 1 w6 H(6)' I)

Consequently,

qk(V) Uj'k v2  for all v e B)

Proof:

it is easily verified that if v is any solution of (3.3), then the function #~

is a solution of the eigenvalue problem (3) on D, with A~ - qk(v), and conversely, If

0
* is any eigenfunction of (3) on D which belongs to % Doi.e. u - 0 kCv for some

*6 e (S), then v, normalized such that v v2 
= ,is a solution of (2.4) and qk(v) is

the eigenvalue corresponding to u. hs the functions vk,,, defined above, are such that

Jkm(Jkmsr)sin km9 - *C vk ,(r,S)

the conclusions of the proposition follow immediately.

With these preparation* we can now easily give the

Proof of Theorem 31.

We shell prove the theorem by considering the functional Okon N(S).* In fact, the

minimization problem

(3.5) inff*ktv) 8 v e M())

is equivalent to the minimization problem (7), in the sense that if u ~0),wt

a - *kCv, v e u(s), then u is a solution of (7) iff v is a solution of (3.5). just

as for the functional #* it say be verified that #kon H(S) satisfies the Valais-

Male condition. Purthermore, since #k(v) ), #(v) for all v e x(S) and # is coercive,

#kis oercive on xN). Consequently, the minimization problem (3.5) has a finite value

and the infiu is attained at some point v, e H(S). T o show that v, is nontrivial if

a satisfies (N2) Y with 'I Wki.~ note that. as in the proof of proposition 4 we have the

-13-
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following estimate fusing proposition 5 and the function Vk. 1 defined there)

~,6 P2 (Ia -Y) .1v2  < 0 for 10 sufficiently small.k,1

tram this it readily follows that the solutions of (3.4) are nontrivial. with v any

solution of (3.5), the function *kCv is a solution of (4) and has period 2w/k. fte

statemnt that any solution of the minimization problem (7) has NA/ as its minimal

period, follows from the fact that any solution of (3.5) is sign definite on S. To show

this, note that with v e H(S) also the positive part v +) zaax(0.v(*)) and the

negative pert V-() t- ain(0,v(,)) belong to H(S) and *k (v) - k (v +) + * k (v). Hance,

If v Is a solution of (3.), the assum'ption v+ 0 0 $ v -implies that

min( 40 (v *).k(v7)) is loe than the infimam defined in (3.5). contradicting the

assumption that v is a soltuion of (3.5). This completes the proof of part (a).

For the proof of part (b) one uses Ljusternik-Schnirelmann theory for the functional

#k~~~ ~ on R()Isne%<y it follows that #k (p 0 for p > 0 suff iciently

small, where

Since the genus of 1Pis m, the existence of m pairs of solutions (tvl,....*vm)

follows, and * Cv j , ( j lC m are the corresponding solutions of (4), which have period

Wk.

RSAU. As we have seen, any solution v of the minimization problem (3.5) is sign-

definite on 8, which implied that the corresponding solution *kCv of (4) has 21/k as

its minimal period. Without additional conditions on G It cannot be decided if the sm

is true for the other solutions found in pert (b) of Theorem 2'. H owever, under the

additional condition that G satisfies

0(O.u) < 2I40. for all S a3

-14-
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it am be shown that all the critical points of #k  on N(B) give rise to solutions of (4)

which have 2w/k am minimal period (cf. (61 ).

Uiing the same ideas as before, Thoorem C is a consequence of the following

propomition.

Pl0woszIw 6

Let a satisfy conditions (80 ) and (N3), and suppose that the function g(ru) is

locally Lipechitz continuous in the variable u.

Then there exists a number k0 63 such that for all k e C•, k )O k,0 the functional

4k, defined in (3.3), has at least one nontrivial critical point v on N(B). For such

a critical point v. the function 0 kCv is a solution of (4) with period 2w/k.

Proof.

lince 0 satisfies (H3)P the functional k is neither bounded from below nor from

above on H(S). We shall use the well-known NMountan lass Lemma (Ambrosetti and Rabinowitz

191) to prove the existence of a critical point.

For the applicability of this lesm, the Palais-Smale condition has to be verified.

For functions 0 which satisfy condition (83). this is a standard result (see e.g. (91).

Next define a nuber Ck by

ck o inf max 4Y(v)

where max* Is taken over the points of a continuous path in H(8) connecting two points

v0 and v, in H(S), and wLnf" is taken over all the paths with this property. Then the

Mountain lass La states that C is a critical value of #k if

Ck ' max (4k (V 0 ) ,4k (V I )

We shall take v0 1 0 and for vi any point in H(S) with sufficiently large norm,

say IvII > 1, for which #k(v1 ) 4 #k(v0 ) - 0. The existence of points v1 with this

property is an easy consequence of condition (H3). Therefore it remains to show that Ck

is strictly positive for all k 0 • sufficiently large. To that end note that, since

a(*,0) G'(9,0) a 0, and mince g is locally Lipchits, there exists constants N > 0

and 6>0 such that

-15-
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(3.6) 00,u) 4 1/2u2 for all u e 3t with Jul 4 .

With proposition 5, and the continuity of the embedding of U(S) in Lp(S) it readily

follows that for some p0 
< I and all p < p 0 :

(3.7) #k(u) I1 ( - N) j u2  for all u e H(s), lut - P
S

1n Uk as k*, there exists k 0 e x such that - N > 0 for all k ) k0 .

Consequently, Ck ) 0 for all k e v with k ) k0. The proof is complete once it is

shown that Ck > 0 for k ) k0 . Assume, on the contrary, that Ck - 0 for k • k0 .
Than, for any p < po, there exists a sequence of functions {V} for vhich #k(Vn) + 0

as n - -, and IvnI - P for all n e N. This sequence has a subsequence, again to be

denoted by Vn, that converges weakly in H(S) to some element v e H(S). Then v.
converges strongly to v in L2(S). Since *k(vn) + 0, it follows that j 2 + 0, thus

v 0-. rom this it follow that G(,v n ) n 0 as n*. Since

#k (v) -1/2v 2 + (k- 1) 1/211v 6 - (6 (.v). we have #k(vn) >1/p2  nSr

This contradicts the assumption that #k(vn) + 0. Hent• Ck > 0 for k •0 k0 , and the

proof is complete.

As in the foregoing, to prove Theorem D, we first observe that there is a one-to-one

correspondence between the minimization problem (8) and the minimization problem

(3.9) inff#(v) S v e N)

where Nk is given by

(3.9) N k - (v e H(s)\(O) : 2qk(v) - j g(.,v)v}

In fact, if v is any solution of (3.8) which is sign definite on 8, then kCv is a

solution of (6) which has minimal period 2w/k, and, conversely, if u e H(D), with

u 0 kCv, v e H(S), is a solution of (8), then v is a solution of (3.8). Therefore,

Theorem D and the remark following it, are consequences of the next result.

Pp1POSITIo 7.

Assumo that 0 satisfies (NO), (83) and (164), and let k0 e X be defined as in

Theorem D. Then, for all k 0 k0 , the minimization problem (3.6) has at least one

-16-
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solution v, which is sign definite on 8 and which satisfies the equation *i(v) " a,

i.e. Nk is a natural constraint.

Furthermore, for k ) ko, (3.6) is an explicit formulation of the mini-max problem

(3.10) infsup *k(Dw) 1 w a R(5), Owl - 1)
p)O

proof.

First m show that for k o k 0  the met Nk  is a smooth manifold, radially

diffeomorphic to the unit sphere 8 $- (w e R(5) t Ovl a 1) • To that and, define for

w 8
1  the function fa a 2 by

f(D) I- k(Pw) for p • 0 .

Then f is a C
2
-function, f(Ol - 0 since G(o,@) - 0, and f(9) * ". as P . -

because of condition (93). If ; - p(w) > 0 is any critical point of f. write

v s- (v)w, and the equation f'(;) - 0 reads

.2 - q(;);] - 0

P 3

aa

which implies that v Nk . Conversely, for v e N, P :- Ivi is a critical point of

f(p) for w v.
P

At a critical point P of f, the second derivative is given by

. 2 [2q _ j g.(.,;);21
P

Using f(P) - 0 it follows from condition (84 ) that f"(P) C 0. In other words, at any

positive critical point, the function is a strict (local) maximum, which implies by the

global behaviour of f. that positive critical points of f are unique. Now we show

that f has indeed a positive critical point if k •o k O . In fact, for any constant

N > 0 such that K ) q'(*,O), it follows that there exists a S > 0 such that G

satisfies (3.6). Nence, for sae p0 > 0 and all p, 0 < p < *O , inequality (3.7)

holds. Consapently, vith k 0  defined as in Theorem D, the function f(p) is positive

for p 6 (0,pe), and thus, by the foregoing, for each w .51 and k P ko, f has a

positive maximum at its unique critical point. This result provides the equivalence of the

-17-
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probems (3.3) and (3.10). To show that Nk is a smooth manifold for k b k0 , it remains

to show that 0 is an isolated point of NH U (0). This is Immediate from the fact that

for all v 0 N(S with 1v1 sufficiently smal, J (.,v)v 4 N V ,~ whereas

2%k(v) 11 1 v2 ujv2 for k o i

next ws shall show that Nhk is a natural constraint. The multiplier rule states that

a solution v of (3.3) satisfies the homogeneous boundary conditions and for sme

multiplier P 0 a the equation

9~v (*,v) - vC2q;(v) - g(ev) - (ovv

Multiplying this equation by v, and integrating over 8, the fact that v e Nk and

condition (14) readily Imply that ua - 0, which was to be proven.

Yb prove the existence of a solution of (3.3), note that the infinuum in (3.3) is

finite, and In fact positive, so that it suffices to verify that the functional *k On

Nk satisfies the Ialais-ftal* condition. This verification proceeeds along well-known

lines so that we shall omit the proof. Finally# in much the same way an in the proof of

Teorem a', it follows that any solution of (3.3) is sign definite on S. This completes

the proof.



4. RADIAL USC IOU .

In this section we *hall briefly investigate radial solutions of equation (4), in

particular prove part (i) of Theorem S. To that and consider the space of radial

functions Ha

N I- (u 0 1 (DI,) 3 u(r.6) - u(r))

It is easily verified that this set is a natural constraint for the couple (*.H(D)).

Proof of Theorem , part (i).

The proof in a simple application of the Ljusternik-Schnirelmann theory to the

12-invariant set H and functional *, so we shall be brief.

Since the functional # is coercive on H because of condition (HI), the Plais-

smale condition is easily verified. From this it also follows that # is bounded from

below on H. For all p > 0 the set Zo defined by

k
s uC.) - 1 eJ70(3j0 *) sa ae S for I C U Cki RuE -P

awl

has genus k. As a consequence of condition (H 2) it follows, as in proposition 4, that

for all v e zPt

*(u) < 1 2 (Usk _ Y) u2  for P > 0 sufficiently mall.
0

Nnce, if Y ) k , the Ljusternik-Schnirelmnn theory provides at least k distinct

(pairs of) critical points of # on 9, i.e. radial solutions of (4), which was to be

proved. a

The restriction to radial solution of (4), essentially reduces the problem to a one-

dimensional problem. For such problems one my obtain multiplicity results by considering

subeets Rk of H which, roughly speaking, consist of functions which have precisely k

simple seros' in (0,), and then looking for critical points of # on k . This idea

has been exploited by Struwae (51 for the case that G is superqudratic (without evenes

assmption), to get the result stated in the Introduction.

-19-
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A more constructive method to get results of this type has been used by Nahari 1101

for a speciel clams of euperquadratic, even functions G. Fixing k nodes in (0,1),

appropriate solutions on the subintervals between the nodes are glued together to give a

function on (0,11. only for a specific choice of the nodes, this function will be a

solution of the original problem on 10,11. In [101, these Ocritical" nodes are obtained

as the minimal elements of a certain function of k variables which depends on the

solutions of the subinterval. Bee also Hempel [12). For a nonlinear •igevalue problem,

Piabinowits [11] obtained the critical nodes as the fixed points of a continuous mapping

from the set of ordered k-tuples into itself. For the problem at hand we shall give an

example of this procedure of *forced" natural constraints for the simplest case of one

interior node. From this it will be clear how the method can be generalized. (See also

[121.

Proposition e.
0

Asavee that G satisfies (80), (K1 ) and (H2 ) with Y > 2 Moreover, suppose

that g is differentiable, g(r,u) - 0 iff u - 0, and that g is convex for u > 0.

Then there exists at least one radial solution of (4) which has precisely one zero in

the interval (0,1).

Proofs Define for a e(0,) the sets H(a) by

(a) z- (u e x s u(s) - o)

(This set is well defined, see [5, lemma 1]). We shall show that (H(s)), 0 1 a < 1, is

a forced natural constraint. Define the function f s (0,11 + i as

f(s) s- al(0,s) + m2 (*,1)

where m and m2 are functions defined on (0,11 by

5

(4.1) . 1(IM) ,- inflJ 0/ 2 
- '(,,MU ) : v 6 H(s)Ito,, 1I for a > 0

0

ml(0,0) *m 0

-20-
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2
(4.2) U2(6,1) - inflJ rw - rG(rw)) i1(,1,) for I

32(1,1) -

First obeerve that the inf ia in (4.1) and (4.2) are finite and are attained for am*

functi cs, say v and w, which are sign definite on the interval at which they are

defined, i.e. v on 10,) and w on [a,1]. Au a conequenc* of the convexity

asaeuptinc for g, both v and w are unique solutions (apart from sign) of these

lnimisatLon problems. From thin it follows that the functions 0I  and m2 are

continuously differentiable, with derivative

-' Grvj .1,o 2 ( 0)1 ( 0 , ) " -/ r~ G(r'vl -0 " v2(a "O

a 32(6,1) - -1 +t r • G(rw)]. 'I - (a + 0)

Bncoe f is differentiable on (0,1) and if ; e (0,1) can be found such that
df a the, v2(o _) _ 2(a + ),

)r andthefunction
66r r

v(r) for 0 4 r 4

u(r) :-

v(r) for a 4 r 4 ,

is a solution of the original problem on the interval (0,1] and u has precisely one

zero, namely ;.

we claim that at least one critical point ; 6 (0,1) of the function f can be

found, namely any number ; for which f attains its maximum value. To show that, it

suffices to prove that f(s) ( 0 for all a ( [0,11 and that f i not maximal at

a - 0 or a - 1. To that end observe that there exist numbers a, ) 0 and 62 < I such

thats

0 (Os) - 0 for 0 4 a 4 a,, ml(Oa) is monotonically decreasing for a > a,

m2(o,1) - 0 for s2 4 a 4 1, 32(o,1) is monotonically increasing for a 4< 2

(a I and 2 depend on the behaviour of g at o - 0).

Now let a* a (0,1) denote the mro of the elgenfunctLon corresponding to the
0 0igeavalue i2 • ehen a < * 6" Zndeed, a1 a* because N2  is the lowest

-21-



eigenvalus of the eigenvalue problem associated with the interval (C,a* and. as

Y 2,': it follow that *,(0,**) <(0. In the sams way it follows that 4* 't 2- wo

these observations it follows easily that the function f attains its (negative) maximsa

at some interior point 06(,) and the proof is complete.

-22-
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