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\ Swb 2 ABSTRACT

Ebln this paper a nonlikear Dirichlet problem for the Laplace operator is
congidered on a disc in :;. It is shown that if the nonlinearity, which may
explicitly depend on the radial variable, is odd and superlinear at infinity,
there exist infinitely many non-radial solutions. If the nonlinearity is odd

and sublinear at infinity, and satisfies certain conditions at zero, a finite
number of radial and non-radial solutions will be found. This number is given
by the number of radial, respectively non-radial, eigenvalues that are crossed
by the nonlinearity. In any case, as a consequence of the oddness of the
nonlinearity, these solutions inherit the nodal line structure of the
eigenfunctions corresponding to the eigenvalues that are crossed.

The results are obtained by using natural constraints in a variational

approach of the problem. (:_"“--\\\\\\\\\\
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SIGNIFICANCE AND EXPLANATION

For the nonlinear Dirichlet problem on the unit disc DC R

-Au = g(r,u) in D={(r,0) : x e [0,1], 0 € (-w,v])
(*)
iy u(1,0) = 0 for -w <0 <«

where g is a given function which is odd in u, known multiplicity results

for solutions of (*) provide not much information because of the invariance of
solutions for rotations in l?. Therefore we distinguish between radial
(1.e. 0-independent) and non-radial (explicitly on 6 dependent) solutions.
The non-radial solutions we will look for are odd in 6. Thinking of the
functions on D as being defined for all 6, and 2w-periodic in 0, we

- shall also consider “superharmonic® solutions, i.e. solutions with period
2%/2, 2v/3,... in 0. The sets of superharmonic functions are natural
constraints for the functional of which (*) is the Buler-Lagrange equation,
i.e. the critical points of this functional provide solutions of (*) even in
case it is restricted to these subsets. In that way we show, under the sole
condition that g grows faster than any linear function at infinity (the
superlinear case), that there exist infinitely many non-radial solutions of
(*). If g 4is bounded above by a specific linear function at infinity (the
sublinear case), and if g satisfies certain conditions at u = 0, a finite
number of radial and non-radial solutions will be found. This number is given
by the number of radial, respectively non-radial, eigenvalues that are crossed
by the nonlinearity .u => g(°,u) as u runs from 0 to =. In any case,

) the solutions inherit the nodal line structure of the eigenfunctions which

correspond to the sigenvalues that are crossed.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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1. INTRODUCTION AND RRGULTS. N

Consider for a smooth, bounded domain % C ', and a given function _ Distribution/ )
Avallarility Crides
7 Avell end/or

f1igt y O oaciAal

9ec™B x R,R), with a e (0,1), the BVP

-u = g(x,u) in 8 i
(1)

u=0 on M. ‘A’/L i

u
Gi(x,u) = | g(x,s)ds ,
0

Writing

it is well known that under suitable growth conditions on g classicsl solutions of (1)
are in an one-to-one correspondence with the critical points of the functional %, given
by

(2) oo =% | 1%l2 - [ Gle,m ,
a 2

on the usual Scbolev epace #R'(Q,%) of Ly~functions which have generalized derivatives

in L, and which vanish on the boundary. For the norm wa shall take
1
tul := {J 1W1?}2, wedlam .
2

Using critical point theory, the aim is to get information sbout the number and properties

of solutions of (1).

“Mathematical Institute, Catholic University of Wijmegen, The Metherlands.
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In the following we ghall write x, < xz < x3 < ... for the successive (distinct)

eigenvalues of the linear eigenvalue problem associated with (1):

(3)

-Au = Au in 2
u=0 on M.

Let us first recall a classical result. Consider the following conditions:
(Hy) PYor every x € R, the function u > G(x,u) is an even function.

(ll,) The function G is subquadratic at infinity in the following sense:

lh.upml-z‘u-(‘ék‘ for all xeQ .
lujse  |ul

(Iiz)Y There exists a number Y > 0 such that

lim tng $2:8) 5 Y%y gor a1l xe 9.
lul+0  |ul

THEOREM A (Clark (1})
Suppose that G satisfies conditions (Hg), (Hq) and, for some Y > 0, ('2)1'
Then the BVP (1) has at least 3j (pairs) of distinct solutions, wvhere 3 is the

number of linearly independent eigenfunctions belonging to eigenalues not larger than Y.

The proof of this result is an application of Ljusternik-Schnirelmann theory to the
even functional ¢ to show that ¥ has at least j pairs of distinct critical points.
This theorem is the best result (concerning the number of solutions) one can generally
expect.

Now suppose that 2 is the unit disc D in -20 (Por simplicity we shall restrict
ourselves to l’, but the same ideas can be used for msore general sets 8 C ln, n»d>2,
which are rotationally symmetric about one rotation axis).

Using polar coordinates (r,0) on D, D= {(r,8) 1 0<r< 1, -8 <6< vx}, assume,
moreover, that the function g depends only on r and u : g = g(r,u).

In that case, the result stated in Theorem A is no longer very informative any more.

Indeed, with u(r,0) any solution of

.
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-1 (ru ) -'—-u“- glz,a) 4in D

! (L))

u=20 on 3,

, the function l'ou defined by l,ou(r,O) = u(r,d + 00) is for any 0° also a solution of
(4). Hence, the existence of one solution u for which uy # 0, immediately implies the
existence of infinitely many solutions.

Calling two functions uy and u, gqeometrically distinct (as in (2)) if Rou, ¢ u,
for all 0 e (-%,v], one thus needs statements about the existence of geometrically
distinct solutions of (4).

Some other cbviocus terminology that will be used in the sequel: functions (solutions)

which do not depend on 0 will be called radial functions (solutions), and the others

non-radial. An eigenvalue Xk of (3) will be cslled radial or non-radial depending on
vhether the corresponding eigenfunctions are radial or not. This makes sense, since the
eigenvalues and corresponding eigenfunctions (modulo an arbitrary rotation R,) are given
explicitly by
0 2

(5 ¥p = 3o, Jolio,m®) meW
and for x eW

k 2
(6) u- - 1*'-' Jk(jk’-r).‘.n k.' ReNwW,

vhere J,, k € MU {0} are Bessel functions of the first kind and j, , denote the m-th

strictly positive zero of J,. Grouped together in this way, {u:)‘. are the radial, and

X
(u-)k' e

Bessel-functions are different (see Watson (3, p. 485]). Hence, modulo rotations of the

are the non-radial eigenvalues. (It is well known that all szero's of distinct

eigenfunctions, each eigenvalus is simple).
Por subguadratic, convex (instead of even) functions G = G(u), Costa and Willem (4]

proved the existence of at least 3J - k non-radial, geometrically distinct solutions of 4

(4) if G satisfies

Yo, < lim ine S2L <%y,
lul+0  ful

{ where lk,l are such that all eigenvalues in [xk,le are non-radial.
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Struwe [S], requiring G to be superquadratic at infinity, i.e.
(H3) There exist numbers U > 2 and R > 0 such that
G'(e,u)u > YG(*,u) for all u, |u] >R
moreover, g satisfies the usual Sobolev growth condition at infinity:
lg(*,u)| € a exp(B(u)) ,

for some nusber a and some function 8, with B(ulfu’ + 0 as lul +
obtained, without convexity or eveness assumptions, the existence of infinitely many
distinct radial solutions of (4) by, essentially, reducing the problem to a one-dimensional
problem and exploiting the nodal structure of solutions to distinguish between them.

In this paper we shall prove:
THEOREM B.

Suppose that the function G satisfies condition (Hg) and (Hy), and condition

“’z’y for gome Y > xj, jem.

Then problem (4) has at least J geometrically distinct (pairs) of solutions; in
fact, (i) at least k radial solutions and (ii) at least £ non-radial solutions, where
k and 1L are, respectively, the number of radial And non-radial eigenvalues not larger

than lj.

The proof of this result is an application of Ljusternik-Schnirelmann theory to the
functional ¢ restricted to the set of radial functions (for (1)), and to the functional
9 restricted to the set of functions which are odd in 0 for (ii). These restricted

sets are natural constraints for the original couple (¥, l'l'(D,l)) in the sense as defined

in (6] (see section 2). More specific information about the non-radial solutions can be
obtained using the idea of naturally embedded sets ((6], see section 2). Roughly speaking,
let for k e W, l!a(b) denote the set of functions which are defined on D as the

restriction of functions u(r,8), (r,0) @€ [0,1) x R which are odd and 2w/k-periodic in

0 and which satisfy the boundary condition u(1,0) = 0 for all 6 € R. In particular,
if u € Bg(n). then

u(r,0) = -u(r,-8) = u(r,8 + %‘-) for all r e (0,1), O em,

4=




and u has 2k “"nodal lines®:
wr,fen) =0 for re(0,1, nes, *.<n<Ck.

These sets llg(b) turn out to be natural constraints for the problem at hand. 8ince
1, (0) CB)(D) for all m €W, we shall say that u € H)(D) has minimal period 2v/k
if utl‘.’k(b) for any meN, =m> 1,
THEOREM B’

With the same conditions as in Theorem B, we have additionally:

(a) Yor each k € W for which ¥} <Y, there exists at least one nom-radial
solution of (4) which is a solution of the following minimization problem:
N int{9tw) + v e B} (D)} .
Morsover, any solution of this minimization problem has minimal period 2w/k.

(B) Por every couple (k,m) € Wx W for which WS <Y, there exist at least =

distinct solutions of (4) with period 2w/k.

For superquadratic functions G we shall prove the following result which is
complementary to known results for radial solutions ﬁ\ that cage (cf. Struwe (S)).

THEOREM C.

Suppose that the function G satisfies conditions (Hjy) and (H3) and that, moreover,
the function u +=> g(°*,u) is locally Lipschitz continuous.

Then there exist a number kg € ¥ and a sequence {w )}, XeW, Xk >k, of
geometrically distinct non-radial solutions, for which the minimal period in 68, to be

denoted by T satisfies T € 2v/k for all k € N.

Kk’ k

The proof of this theorem is an application of the Mountain Pass Lemma (Ambrosetti and
Rabinowits [9]) to the restriction of the functional ¢ to the naturally embedded sets
l:(D) for each k € B gufficiently large.

Under slightly more stringent conditions on g we can obtain solutions u, as in

theorem C which have minimal period precisely 2v/k and which are characterized as the ¢

NOTVIPEE




solutions of a specific minimization problem. To that end we need the following

assumption:

(B4) The function u > g(*,u) is c', and, with g' the derivative of g with

i
1
1

respect to u, the following conditions are satisfied: ;
(1) G(*,u) >0 for all u# 0, :
(11) g'(s,wsu? - glo,u)ou > 0 for all u * 0.

Suppose that G satisfies (Hp), (Hy) and (Hg). If g'(¢,0) = 0, let ky := 1, and

Af g'(°,0) #0 let ky e W be such that g¢'(*,0) < u' .
0

Then there exists a sequence {u}, k €M, k > k;, of geometrically distinct non-

radial solutions for which the minimal period in 0, <«

is given by <t = 2w/k.

| 3 k
Purthermore, for k 2 k5, uw, is a solution of the following minimization problem

(8) inf{¢(u) s u e “k} ’

where My 1is a natural constraint, given by
"): 1= {u e n:(n)\{o) | ul? - ] gte,wu} .
] D

REMARK. As we shall see from the proof, the minimization problem (8) is an explicit
formulation of a mini-max expression for the functional ¢ on I:(D). In fact, for

k > kg, and with 8.(D) := {v e BO(D) + Ivi = 1] the unit sphere tn RZ(D), for any

ve !:(D) condition (B,) implies that the function R, 3 p => $(pv) has & unique
critical point ; - ;(v), at which point this function is maximal. Moreover, there exists
Po > 0 such that o(v) > P, for all v e SH(D), which implies that M) 1s given by
“k - (;(v)v 1 ve 8:(0)) and that (8) is an explicit formulation of the following mini-

max problem for the functional ¥:

(bt e e P i A e gD

9) inf max $(pv) .
ves (D) 020

.l i,

In section 2 we shall recall for the readers convenience the concepts of natural

constraint and naturally embedded sets. The non-radial solutions for the problem at hand

-G
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will be considered in section 3, and the radial solutions in section 4. In that last

section also an example is given of the use of "forced" natural constraints to provide a
specific characterisation of the node of one of the radial solutions.

After the completion of this manuscript 1 learned from Paul H. Rabinowitz that he had
obtained at the same time the multiplicity result of Theorem C in a completely different

way. I thank him for drawing my attention to the references [10]1-[12] related to

proposition 8, and David G. Costa for several conversations.




2. DEPIRITIONS.

In (6] the motion of natural constraint was introduced. It generalizes related
concepts that have been used by several authors (see e.g. Berger [7, Chapter 6], Nehari [8)
and other references in {6]).

Por the definition we use the following notation. For a set E and a ¢'~tunctional

9 on E, we denote by S($,E) the set of critical points of ¥ on E.

DRPINITION 1.

Asubset E of E will be called a natural constraint for the couple (¥.,E) if

S($,E) C S(9,B), i.e. if any critical point of the functional ¥ restricted to the set

E is aleo a critical point of ¢ on E.

In [6]), a restricted kind of natural constraints, namely naturally embedded sets, has
been found useful in the study of periodic solutions of Hamiltonian systems. For the
problem at hand, this same concept will provide rather detailed information on the nodal
structure of the non~radial solutions.

DEFINITION 2.

A mapping & : E + E CE will be called a natural embedding for the couple (¥9.E),

and E defined by ¥ := OE will be called a naturally embedded set for (¥,E) if:
(1) the functional ¥ defined by ¥ := ¥# : E + R belongs to C'(E,R), and

(11) for every x € S(¥,E) it holds that &x e S(¥,E).

It must be noted that by restricting to a subset E ana considering S(Q.i) instead of

S(¢,E), one may not find all the elements of S(¥,E). PBut, as is clear from the results
stated in the foregoing theorems, this possible loss of information is greatly compensated
in Theorems B and C, and provides more specific properties of certain solutions in Theorems

B' and D.




3. NON-RADIAL SOLUTIONS.

For the problem at hand, with ¥ given by (2), standard regularity results for (4)

imply
S(9,H(D)) CE 1= {u : ue ci(p) N cg(B)} '
where (D) = R'(D,m).

In this section we shall look for non-radial solutions of (4), by investigating
critical points of § that are odd in 8 (the only radial solution which is odd in 6 is
the trivial one). In that way we get rid of the rotational symmetry of the problem.

To that end we essentially solve the equation on a semi-disc, say the upper half, with
Dirichlet boundary conditions:

=(ru,), ~ % ugg = g(r,u) in 8= {(r,8) : r e (0,1), 8 & (0,m)}
(3.1) u(r,0) = u(r,v) = 0 for r € [0,1)
u(1,8) =0 for 8 e [0,v] ,
and continue the solution in an odd way to the lower-half of the disc. We denote this
continuation by C: if v is defined on 8, then Cv is defined by
v(r,8) for 0< 8 < w
Cv(r,0) :=
-v(r,~0) for -w <9 <0.
For solutions of (3.1) it turns out that this continuation is c’. therefore mapping
classical solutions of (3.1) onto classical solutions of (4).
with H(8) := fi'(8,R), define the following sets of odd functions
8%(D) = {Cv : v e H(8)}
and
B ={ues:u isodd in 6).

PFurthermore, let $ be the functional ¢ restricted to functions defined on S:

(3.2) o) = 2 1901? - [ 6le,w)
-] 8




LEMMA 3. ]

(1) Ste,8%0)) = C(Ste,H(8)) c &° i

(11) S(4,8°(D)) C S(9,H(D)), i.e. HO(D) is a natural constraint for ($,H(D)).

(111) #(Cv) = 2¢(v) for any v € H(S). g
Proof:
Suppose u € S(’.HO(D))- Then u satisfies the equation
-Au - g(r,u) = £(r,9) in D,
for some function f which is even in 6. Since u, and consequently 4u and g(r,u),

are 0dd in 6, the left hand side is an odd function of 6, from which it follows that

R~ TR Pt WA VY

f must vanish identically. Consequently, u satisfies the differential equation in D,

and also the homogeneous boundary conditions on 3D. Therefore, u is a classical
solution of (4), which proves part (ii) of the lemma. Moreover, since u @ Cz(D), we have

in particular u(r,0) = u(r,s) =0 for r € [0,1). Hence u =Cv, with v € H(S) a

L Rty <mry

pog

solution of (3.1). Since any solution of (3.1) is a critical point of ¢ on H(S), it

follows S(¥,H°(D)) C C(S(4,H(S))). On the other hand, let v € S(§,H(S)). Then v is a
classical solution of (2.1), and (v & c'(D). 1In the lower-half disc Cv satisfies also
the differential equation, and from this it readily follows that (v € cz(o). Hence
Cv e 2 s a classical solution of (4), which shows C(S(4,H(S))) C S(¥,H(D)). Together
with the reversed inclusion obtained above, this proves (i). Part (iii) is an immediate
consequence of the definition of the functional ¢ and the continuation mapping C. .
With the foregoing lemma, part (ii) of Theorem B is an immediate consequence of the
following result.
PROPOSITION 4
Suppose that the function G satisfies the conditions of Theorem B. Then S(¢,H(8))
consists of at least L distinct (pairs) of elements.
Proof. Since the functional ¢ and the set H(S) are invariant for the action of the
group 3, = {i4, - 14}, standard Ljusternik-Schnirelmann theory may be applied with the

genus of symmetric, compact subsets of H(S8)\{0} as index theory.
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To that end, first observe that because of condition (By), the functional ¢
satisfies the Palais-Smale condition on H(8) (cf. e.g. Clark [1]). Moreover, again
because of condition (Hy), it can be shown that ¢ is cosercive on H(g), i.e. ¢(v) + =
as Ivl + =, g0 that, in particular, ¢ is bounded from below on H(S).

Purthermore, let u'®), 1 ¢ m < t, be the non-radial, odd eigenfunctions of (3) with
sigenvalue not larger than lj. Denote by vi®, 1 < m< £, the restriction of u'™ ¢o
the upper-half disc 8. Then v(™ @ H(S). Consider for p > 0 the set

P e {ve= i' c.v(-) 10, €R for 1<mcly vl = p} .
"~
This set has genus £, and Ljusternik-Schnirelmann theory gives the existence of at least
£ dietinct pairs of critical points for ¢ it #(I®) <0 for some ¢ > O.

In order to estimate ¢(I®), note that v{®) 1 < m < ¢ are the eigenfunctions of

problem (3) on the domain 8 for which the eigenvaluse are not larger than xj. As a

consequence, for any v & I we have

Y% | 1w)? <Yy .
D D

On the other hand, condition (liz)Y implies
G(r,v) >‘/g?vz for (vl sufficiently small.

Thus it follows that
J6tr,v) >%y ) v2 for all v eI®, o sufficiently emall.
8 s

Since Y >1/§ lj. these two inequalities imply that 0(2’) €0 for p sufficiently

small. This completes the proof. - .
In order to investigate the nodal structure with respect to the angle variable @ in
more detail, we introduce naturally embedded sets !2 ot o
To that end, from now on we will think of the function u € H?(D) as being defined
for all 0 @ R and periodic in ¢ with period 2v. Defining a mapping 0,‘ for xem
by
Okv(r,O) 1= v(r,k0) ,

-11-




the sets HJ(D) will be defined by

0 0

“k(m 1= Okll (D) .
Ig(b) can be interpreted as the set of odd, 2v/k periodic functions ("superharmonic
functions”). The restriction of the functional ¢ ¢to H:(D) defines a functional .k
on l!o(b) according to

.k'."k'

men ¥ e c'm(d), ). It 1s not aifficult to see that
0 °
o,5te,.8°(0)) € S(e,u°0)) ,

which, by definition, means that B:(D) is a naturally embedded set for the couple
(O.BO(D)). with .k the natural embedding. Therefore we shall investigate
S(Ok.lo (D)), as each element of this set gives rise to a solution of the original problem
(4) which 1s 0dd in O and 2v/x-periodic.
Because of lemma 3 (1), we can instead of S(Ok.llo(b)) consider S(ok,n(s)), vhere

¢, @ c'(B(8)) e defined by

{3.3) 4 (V) 1= g (V) = ]| Gle,¥) ,
8

with q the quadratic functional

1:1 21:
qk(v)-{) ] zrvierad +x° ) |

Hereafter we shall need the following relation betwsen the eigenvalues and -functions of
problem (3) and the eigenvalue problem on S8 associated with q
PROPOBITION 1.5

Let X € N. The solutions of the variational problem

(3.4) stat{q (v) 1 v e B(8), | v* = 1}
8

(i.e. the eigenfunctions of the eigenvalue problem associated with q,) are given, up to

some normalization coefficient, by the functions

-2~




vu,.(r,ﬁ) 1= J-k(j‘k'.r)cln m0, meN senN,

and the corresponding sigenvalues are u:‘.
In particular, up to a normalization, the function v, 4 is the solution of the
minimization probles

inflg (v) : v € H(8), J =),

8
Consequently,
q,(v) > % u'; L v for all ve H(8) .
Proof :

It is easily verified that if v is any solution of (3.3), then the function Oka
is a solution of the eigenvalua problem (3) on D, with )\ = qk(v). and conversely, if
u 1is any eigenfunction of (3) on D which belongs to l:(D). i.¢. u= OKCv for some
v € H(8), then v, normalized such that J v2 = 1, 1s a solution of (2.4) and qy(v) is
the eigenvalue corresponding to u. As thosf\mction- Vkm, 8’ defined above, are such that
Ienllym, o7 )8in kut = & Cv (x,0) ,
the conclusions of the proposition follow immediately.
With these preparations we can now easily give the
Proof of Theorsm B'.
We shall prove the theorem by considering the functional .k on H(S). In fact, the
ninimization problem
(3.5) inelp (v) ¢ v e H(S))
is equivalent to the minimization problem (7), in the sense that if u € E)(D), with
us= Okcv, v € H(8), then u is a solution of (7) iff v is a solution of (3.5). Just
as for the functional ¢, it may be verified that ‘k on H(8) satisfies the Palais-
Smale condition. PFurthermore, since Ok(v) > §(v) for all v e H(8) and ¢ 1is coercive,
’k is coercive on H{(8). Consequently, the minimization problem (3.5) has a finite value
and the infimum is attained at some point vy @ H(8). 7o show that v, 4s nontrivial if )

G satisfies (llz)7 with Y > u:. note that, as in the proof of proposition 4 we have the

-13~




following estimate (using proposition 5 and the function Yy, defined tbere)

- z - [ ]
W (ovy o) = 0Tq iy ) ‘LG‘ LAY

1
< '/)Dz(l!k -7} V: g €0 tor Ip| sufticiently small.
8 .

From this it readily follows that the solutions of (3.4) are nontrivial. with v any
solution of (3.5), the function ORCv is a solution of (4) and has period 2v/k. The
statemsnt that any solution of the minimization problem (7) has 2w/k as its minimal
period, follows from the fact that any solution of (3.5) is sign definite on 8. To show
this, note that with v € H(S) also the positive part v'(*) 1= max(0,v(+)) and the

negative part v () 1= min(0,v(*)) belong to H(S) and # (V) = o,‘((v’) + 0,(v7).  Hence,

if v 1s a solution of (3.5), the assumption v' % 0 £ v_ implies that
-m(.k(v*).Ok(v-)) is less than the infimum defined in (3.5), contradicting the
assumption that v is a soltuion of (3.5). This completes the proof of part (a).

PFor the proof of plrt {b) one uses Ljusternik-Schnirelmann theory for the functional
¢, on H(S): saince H: <Y, it follows that 0k(t°) <0 for p > 0 sufficiently

small, where

= (v= i Q

RS 3v.3 eRm 1< 3<m Ivh =p) .

3

since the genus of ? is m, the existence of m pairs of solutions (#vy,...,tv,)

follows, and ORCv 1< j<m are the corresponding solutions of (4), which have period

3
2% /k. .
REMARR, As we have seen, any solution v of the minimization problem (3.5) is sign-
definite on 8, which implied that the corresponding solution ONCV of (4) has 2w/kx as
its minimal period. Without additional conditions on G it cannot be decided if the same
is true for the other solutions found in part (b) of Theorem B'. However, under the
additional condition that G satisfies

G{*,u) < ygu;‘\az for all uenRr,
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it can be showm that all the critical points of .k on H(8) give rise to solutions of (4)

vhich hava 2v/k as minimal period (cf. [6]).

Using the same ideas as before, Theorem C is a oconsequence of the following
proposition.
PROPOSITION 6

Let G satisfy conditions (Hy) and (Hy), and suppose that the function g(r,u) is
locally Lipschits continuous in the variable u.

Then there exiats & number Xk, € B such that for all k €N, k > ks, the functional
¢y defined in (3.3), has at least one nontrivial critical point v on H(S). Por such
a critical point v, the function Oka is a solution of (4) with period 2w/k.
Proof.

Since G satisfies (Hy), the functional ¢, is neither bounded from below nor from
above on H(S). We shall use the well-known Mountain Pass lemma (Mbrosetti and Rabinowitz
[{9]) to prove the existence of a critical point.

For the applicability of this lemma, the Palais-Smale condition has to be verified.

Por functions G which satisfy condition (Hj), this is a standard result (see e.g. (9]).
, - Next define a number C, by

Cy 1= inf max Ok(V) .
where "max” is taken over the points of a continuous path in H(8) connecting two points
vy and vy in H(8), and "inf” is taken over all the paths with this property. Then the
Mountain Pass Lemma states that C), is s critical value of ¢, if

C,

x > nx(.k(vo) .Ok(v') |

We shall take vy 5 0 and for v, any point in H(8) with sufficiently large norm,
say lv'l > 1, for which Ok(v,) < ‘x"o’ = 0. The existence of points v, with this
property is an easy conssquence of condition (H4). Therefore it remains to show that G,
is strictly positive for all k € B sufficiently large. To that end note that, since

G(*,0) = G'(*,0) = 0, and since ¢ is locally Lipechits, there exists constants N > 0

‘i and § > 0 such that i ‘1

=185~




(3.6) G(s,u) ¢Yom? for all uem with [ul < & .
With proposition 5, and the continuity of the embedding of H(S8) in z.p(s) it readily

follows that for some Py < 1 and all p < Po!
(3.7 o 2% -m | u? for a1l uwens), t=p.
8

Since l!: +® as k + @, there exists k; € ¥ such that Il,: “M>0 for all X > k.
Consequently, Ck ?0 for all k €N with k > kg. The proof is complete once it is
shown that Cy > 0 for k 2 ky. Assume, on the contrary, that Cx =0 for k > kg
Then, for any 0 < p;, there exists a sequence of functions (vn) for which ¢ (v ) + 0
as n+ =, and Ivnl =p for all n € B. This sequence has a subsequence, again to be

-

denoted by v, that converges weakly in H(S) to some element V € H(S). Then n

converges strongly to V in L,(S). Since .k(vn) + 0, it follows that | V: + 0, thus
s 8

v = 0. Prom this it follows that | G(e,v ) * 0 as n ** Since

8
2 2 1 2
o =%+ - 1) {"/2:5 Voo " st(°.v), we have & (v ) >%p% - [ Gle,v ).
This contradicts the assumption that Ok(vn) + 0. Bence Cp > 0 for k > kg, and the
proof is complete. ' .
As in the foregoing, to prove Theorem D, we first observe that there is a one-to-one

correspondence between the minimization problem (8) and the minimization problem

(3.8) int{ (v) s veN]),
where N, is given by

(3.9) Ny = {vensnio): (v = i gte,viv} .

In fact, if v is any solution of (3.8) which is sign definite on §, then Oka is a
solution of (8) which has minimal period 2w/k, and, conversely, if u € Hg(b), with
u= Qka, v @ H(8), is a solution of (8), then v is a solution of (3.8). Therefore,
Theorem D and the remark following it, are consequences of the next result.
PROPOSITION 7.

Assume that G satisfies (M3}, (H3) and (Hg), and let kg € W be defined as in

Theorem D. Then, for all x > ko, the minimization problem (3.8) has at least one
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solution v, which is sign definite on 8 and which satisfies the equation 0;‘(') =0,
i.0. N is a natural constraint.

Purtherwore, for k ? kg, (3.8) is an explicit formulation of the mini-max problem

! (3.10) inf{sup 4 (pw) 1 v € H(S), wi = 1} .
p>0
Proof .

First we show that for k > X, the set N,‘ is a smooth manifold, radially

e ot Dl At e =

diffeomorphic to the unit sphere 8' = (wewns : =1}, To that end, define for “
wes' the function £: ®, + » by

£(p) 1=~ ‘k(ov) for p >0 .
Then f 1s a C*-function, f£(0) = 6 since G(*,0) = 0, and £(p) + —= ag p+ ®
because of condition (H3). If ; b ;(v) >0 is any critical point of £, write

v 1= p(w)w, and the equation f'(p) = 0 reads

g (v) - ) gto,mv] =0,
[} qu 8

-~ -~
which implies that v @ Nk' Conversely, tor v @ Ny, p 1= Ivl is a critical point of

f(p) for w = -.! v.
I L] -
- M a critical point P of f, the second derivative is given by

t70) = &5 (3, (91 - | @' Cev?] .
[

Using !'(;) = 0 it follows from condition (H,) that !'(;) < 0. 1In other words, at any
positive critical point, the function ia a strict (local) maximum, which implies by the
global behaviour of f, that positive critical points of f are unique. Now we show
that £ has indeed a positive critical point if k > ko. In fact, for any constant

M >0 guch that M > q'(*,0), it follows that there exists a § > 0 such that G

satisfies (3.6). HNence, for some T 0 and all p, 0 < p < 0p. inequality (3.7)
; holds. Consequently, with k, defined as in Theorem D, the function f€(p) is positive
for o @ (0,0,), and thus, by the foregoing, for each w € 8' and k >k, £ has a

positive maximum at its unigue critical point. This result provides the equivalence of the
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problems (3.8) and (3.10). To show that Nk is a smooth manifold for k » kge it remains
to show that 0 is an isolated point of N, U {0}. This is immediste from the fact that
for all v @ H(8) with 0Ivl sufficiently small, | g(e,v)IV < N | v2, whereas
2q,(v) > u: { on £ v for k> LY * s

Wext we shall show that N, is a natural constraint. The sultiplier rule states that
a solution v of (3.8) satisfies the homogeneous boundary conditions and for some
multiplier ¥ € R the equation

G (v) = gle,v) = ul2gp(v) = gle,v) = g'(s,vIv) .

Multiplying this equation by v, and integrating over 8, the fact that v € "k and
condition (Rg) readily imply that u = 0, which was to be proven.

To prove the existence of a solution of (3.8), note that the infinuum in (3.8) is
finite, and in fact positive, so that it suffices to verify that the functional .k on
"k satisfies the Palais-Smale condition. This verification proceeeds along well-known
lines s0 that we shall omit the proof. Finally, in much the same way as in the proof of
Theorem B', it follows that any solution of (3.8) is sign definite on 8. This completes

the proof. o
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4. RADIAL SOLUTIONS.

In this section we shall briefly investigate radial solutions of equation (4), in
particular prove part (i) of Theorem B. To that end consider the space of radial
functions H:

H = {ued'(D,R) 1 ulr,8) = ulr)} .

It is easily verified that this set is a natural constraint for the couple ($,H(D)).

Proof of Theorem B, part (i).

The proof is a simple application of the Ljusternik-Schnirelmann theory to the
S,-invariant set H and functional §, so we shall be brief.

Since the functional ¢ is coercive on H because of condition (H ), the Palais-
Smale condition is easily verified. PFrom this it also follows that ¥ is bounded from
belowon H. For all p > 0 the set I° defined by

k
P = {u(e) = ) a,3pdg p®) 18, @R for 1< m <K Mul = o}
[ )

has genus k. As a consequence of condition (ilz)Y it follows, as in proposition 4, that
for all v e b i

#w <%l -v) ] u? for p >0 surficiently small.
D

Hence, if Y > u:. the Ljusternik-Schnirelmann theory provides at least k distinct
(paire of) critical points of % on H, i.e. radial sclutions of (4), which was to be
proved. [}

The restriction to radial solution of (4), esaentially reduces the problem to a one-
dimensional problem. For such problems one may obtain multiplicity results by considering
subsets K, of H which, roughly speaking, consist of functions which have precisely Xk
simple sero's in (0,1), and then looking for critical points of ¢ on H,. This ides
has been exploited by Struwe (5] for the case that G ie superquadratic (without eveness

assumption), to get the result stated in the introduction.
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A more constructive method to get results of this type has been used by Nehari (10}

for a special class of superquadratic, even functions G. PFixing k nodes in (0,1),

appropriate solutions on the subintervals between the nodes are glued together to give a
function on {0,1]. Only for a specific choice of the nodes, this function will be a
solution of the original problem on [0,1]. In [10], these “"critical® nodes are obtained
as the minimal elements of a certain function of k variables which depends on the
solutions of the subintervals. See also Hempel [12]). For a nonlinear sigenvalue problem,
Rabinowitz [11]) obtained the critical nodes as the fixed points of a continuous mapping
from the set of ordered k-tuples into itself. PFor the problem at hand we shall give an
example of this procedure of “"forced"™ natural constraints for the simplest case of one
interior node. From this it will be clear how the method can be generalized. (See also
{12}.

Proposition 8.

0
Assume that G satisfies (Hp), (Hy) and (H,)  with Y > u,. MNoreaver, suppose

Y
that g 4is differentiable, g(r,u) =0 iff u = 0, and that g is convex for u > 0.

Then there exists at least one radial solution of (4) which has precisely one zero in
the interval (0,1).
Proof: Define for a € (0,1} the sets H(a) by

H(a) = {u € H : u(a) = 0} .

(This set is well defined, see [5, lemma 1]). We shall show that {H(a)}, 0 <a <1, 4s
a forced natural constraint. Define the function £ : [0,1) + R as

f(a) = -1(ola) + -2(511) .

where m; and m, are functions defined on (0,1] by
e 2
(4. 1) =, (0,8) 1= mf{% (orv - rG(z,v) 1 ve “(“’ho,ql} for a> 0,

-1(010) =0,
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1
(4.2) 'z"'" - !.n!{j ('lgrv: - rGl(r,w)) 1 v e i'((c,‘l,n)} for ¢ <V,
a

-2(1,1) =0

First observe that the infima in (4.1) and (4.2) are finite and are attained for some

functions, say v and w, which are sign definite on the interval at which they are

; defined, i.6. v on [0,a] and w on [a,1). As a consequence of the convexity
assumption for g, both v and w are unique solutions (apart from sign) of these
minimisation problems. From this it follows that the functions my and my are

continucusly differentiable, with derivative

2
| g; » (0,00 =% xv2 - Gtr,v] o =% av:(a -0,

Louan = -%nd torm] o= -hada@s 0 .

Hence f 1is differentiable on (0,1) and if a € (0,1) can be found such that

%ﬁ- (a) = 0, then v:(c -0)= v:(o + 0), and the function

v(r) tor O(r(;
u(r) = '

~
wir) for a<xr <1,

is a solution of the original problem on the interval (0,1) and u has precisely one
zero, nasely ;.

We claim that at least one critical point ; @ (0,1) of the function f can be
found, namely any number ; for which £ attains its maximum value. To show that, it
suffices to prove that f(a) < 0 for all a @ [0,1] and that £ 4is not maximal at

a=0 or a= 1, To that end observe that there sxist numbers c,>o and “2“ such

that:
-1(0,0) =0 for 0¢ac¢a,, -,(o.a) is monotonically decreasing for a > ay ,

12(0,1) =0 for a <cacit, -2(0,1) is monotonically increasing for a < a, .

it

(01 and e, depend on the behaviour of g at u = 0),
Wow let a®* @ (0,1) dencte the sero of the eigenfunction corresponding to the

eigenvalue u:. Then a, < a* ¢ G,. Indeed, a, ¢ a* because ug is the lowest

w2l-




eigenvalue of the eigenvalue problem associated with the interval [0,a*], and, as
Y>> ug. it follows that -‘(o,u') <€ 0. In the same way it follows that a* < ay. From
these observations it follows easily that the function f attains its (negative) maximum

at some interior point o € (0,1), and the prnof is complete. .
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