AD-A136 403

UNCLASSIFIED

SIMPLIFIED CONFIDENCE INTERVALS FOR AND AWKWARD 171
NONLINEAR MODEL (U) WISCONSIN UNIV-MADISON MATHEMATICS
RESEARCH CENTER M L GOLDBERG ET AL. NOV 83

MRC-TSR-2601 DAAG29-80-C-0041 F/G 12/1 NL

EEEEEEN




L j28 25
I £ 2
F———— t. m L
e 20
T
I|.8

IN

== =

g
B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




MRC Technical Summary Report #2601

SIMPLIFIED CONFIDENCE INTERVALS
FOR AN AWKWARD NONLINEAR MODEL

Miriam L. Goldberg,
Peter Bloomfield
and
Margaret F. Fels

A136403

Mathematics Research Center
University of Wisconsin—Madison
610 Wainut Street

Madison, Wisconsin 53705

November 1983

gheceived January 24, 1983)

oy

Approved for public release
Distribution uniimited

Sponsored by

U. S. Army Research Office and
P. 0. Box 12211

Research Triangle Park

North Carolina 27709

83 12 27 08!

DTIC

RELECTE]
X, 0EC28183 71
8 )

o’

<~ A

National Science Foundation
Washington, DC 20550




Aﬁv-—.

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

SIMPLIFIED CONFIDENCE INTERVALS
FOR AN AWKWARD NONLINEAR MODEL

Miriam L. Goldberg', Peter Bloomfield** and Margaret F. Fels.‘*
Technical Summary Report #2601
November 1983
ABSTRACT

‘)A simple method is developed for approximating confidence intervals for a
linear change-point model representing residential energy consumption. The
method can be applied to any nonlinear model which is conditionally linear in
all but one parameter. The approxjmation is shown to be more accurate than
the Gaussian approximation, and easier to compute than confidence intervals
defined by likelihood (sum-of-squares) regions. Computations are described in

some detail for the motivating model. (<;A
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SIGNIFICANCE AND EXPLANATION !

A method is developed for calculating approximate confidence intervals
for certain types of regression models. The confidence intervals indicate the
accuracy of the parameter estimates. The method is compared with two standard

procedures currently in common use. The method proposed is easier to compute

than the more complicated procedure, but more accurate than the simpler one.

The method is motivated and demonstrated by a simple model of residential

energy consumption.
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SIMPLIFIED CONFIDENCE INTERVALS FOR AN
AWKWARD YONLINEAR MODEL

Miriam L. Goldborg', Peter Bloonueld“ and Margaret F. !'ell'"
1. Introduction

Two methods are commonly used to obtain approximate confidence lintervals
for parameters of nonlinear models fit by the method of least squares. First
is the Gaussian approximation, based on the asymptotic normality of the least
squares estimate. The second is the likelihood or sum—of-squares method,
based on the asymptotic chi-squared distribution of the likelihood ratio.

Asymptotically, for infinite sample sizes, the two methods are
equivalent. In small samples, however, the sum—of-squares method is generally
more accurate, in the sense of providing regions with coverage probabilities
closer to their nominal confidence levels. The Gaussian approximation, on the
other hand, based on an implicit linearization of the model function, is
usually much easier to compute.

A simple procedure developed in this paper produces approximate sum-of-
squares regions. These regions are in general more accurate than those based
on the Gaussian approximation, but easier to compute than the actual sum-of-
squares regions. An additional advantage of the method described below is

that it does not require computation of derivatives of the model function.
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We express the general nonlinear regression equation in matrix form, as
Y = n(0) + ¢

vhere n 1is an n-dimensional vector function of the p-dimensional parameter
8, and € is a random disturbance, also of dimension n. We assume the
components L to be independent, following a Normal distribution with mean
0 and variance 02.

Attention is restricted to model functions n which are conditionally
linear in all but one parameter. That is, we assume the unknown parameter 6

can be partitioned as

o= td
with dim(t) = 1, such that
n(é) = E(1)x , (1. 1)

for £ an n x (p-1) matrix function of t. We further confine attention to
the problem of obtaining confidence intervals for individual components Oj
(i.e., for T and for Aj' 3= 1,2,.00,p~1).

Our method is motivated and illustrated by application to a simple model
of residential energy use. The energy model is described in Section 2, and
the procedures used to fit the model in Section 3. In Section 4, methods of
obtaining confidence intervals for the model's parameters are discussed in
relation to the fitting procedure used. A simplified method of obtaining
approximate confidence intervals for nonlinear models is then introduced in
Section 5, and is applied to the energy model in Section 6. We conclude, in

Section 7, with a discussion of the advantages of this method for general

models of the form (1.1).

PIrE S




2. The Energy Model

For the primary heating fuel in a house, a simple model assumes that
consumption on a particular day is given by the baseload a if the day's
average outdoor temperature T is above a reference temperature T, and
increases in proportion to T - T if T < t. PFor time period m, let Y
denote the average daily fuel consumption, qn the number of days, and qn

the average number of degree-days per day, to base «t:
N

1 m
nm(t) -N E (1'-*'1'“l

<t) , (2.1)
n =1 1

)I(‘rInj

where I is the indicator function. The energy model is then expressed
formally as
E(Y ) = n, (a,B,7)
=q + 88-(1) o (2.2)
In the terms of Equation (1.1), we have A' = [a,8), where the apostrophe
denotes the transpose, and E(t) = [1,H(T)], where 1 denotes an n-vector
of ones.

The daily temperature data Tij are obtained in integer degrees
Fahrenheit from a nearby U.S. Weather Bureau station (National Oceanic and
Atmospheric Administration, monthly). The consumption data are derived from
the house's monthly utility bills.

The model defined by Equation (2.2) is also used to describe aggregate
data, representing a utility service region or a whole state. In this case,
the observations Y, are average daily consumption per household for each
month m. In addition, the degree-day variable "n is modified to account
for the lag introduced by meters' being read on different days throughout the

month. The variable H, used for aggregate analysis in this work is defined




» m-1
jg (un..q..j)(f-lruj)l(‘!nj‘f) ’121 j(t-'r__"ju('r._hj«)
B (1) = " N 23 i
I me-n+ Ty
3=1 ¥=1

Por both aggregate and individual-house analyses, a major use of the
energy model is to calculate normalized annual consumption [I'. The index T !

is given by
[ = 365(a + BBQ(T)) . (2.4)

where Ho(r) is the long-run (say, 10~year) average of daily degree-days base
T. That is, for both single and aggregate analyses, H, is computed from
Equation (2.1), with period 0 indicating a base period of several years.

The index [ represents the amount of fuel the house (or the average

household) would consume in a year of typical temperature conditions.

Comparing values of I obtained from two succegsive years of data thus offers

a measure of energy conserved (or wasted) which is unbiased by the severity or

mildness of a particular winter.

The theoretical basis for the model defined by Bgquation (2.2) is
discussed by PFels and Goldberg (1982), who present analyses of aggregate
residential gas consumption, based on the index I. Egquation (2.2) and the

normalized annual consumption T have also been used to analyze a large

number of single houses heated by gas (Dutt et al, 1982), and by oil (Fels

! et al, 1981). Extensions of the method to electricity use in single houses

]
( are under way.
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3. PFitting the Energy Model

Two basic procedures have been used to fit Equation (2.2). One is a grid
search, the other an algorithm based on Newton's method. Since the model
function n 4is linear in a and B8 for fixed T, both procedures start
with a search for the "best Tt.” Once the least squares estimate ; is
found, the estimates ; and ; are found by ordinary linear regression of
Y on H(;).

The first fitting procedure, which is easier to implement, is a simple
grid search taking integer (°F) values of T as grid points. The value of
T for which Y and H(t) have the highest correlation is the best (integer)
T, and the corresponding estimates ; and E the best values of o and
8 for that 1. Of course, once the best integer T is found, a more precise
search can be made in a restricted neighborhood of that T, either by taking
a finer grid or by using steps from the second procedure, described below.

The grid search produces the likelihood function over the entire range of
possible reference temperatures 7T. This information may be of interest in a
detailed analysis, but for routine applications the grid search can be too
cumbersome: the variable H(T) and its correlation with Y must be
evaluated ordinarily for values of T from 55°F to 72°F, and in some
cases for a much wider range.

The second procedure, based on Newton's method, is more efficient, but
somewhat more complicated, requiring the derivatives with respect to a, 8
and T of the model function n given by Equation (2.2). For this model,

the derivatives are given by

s _ 91 - aH(t)

The model function n is classed as nonlinear because the derivative B

depends on the model parameters.




In fact, the energy model is not only nonlinear, but is nondifferentiable
as well: the derivative dH/AT is discontinuous at temperature
observations Tij' However, except at the points 1 = ij (which occur at
integers) dH/4AT 4is well-defined. Therefore, arbitrarily choosing a right-

continuous function, we define

dnm(t)
a3t ¢ Fm(‘l')
where, for a single house
1 ;“
F (T) = =~ I(T .<T) (3.1)
m Nm gm1 mj
and for the aggregate
Nm Nm-1
+1= <
jz1 (N #1=3)T(T, <T) + 321 3 I(Ty y, 4<0)
ﬁn(t) = N N N (3.2)
m m1
I wv-5n+ 7
3=1 3=1

Of course, Fn is a step function, representing the empirical distribution of

the observed temperatures ij.

Wwith the second, derivative-based procedure, the least squares estimate

T 1is found by solving the normal equation

{sFY - sHY snr/suu}|T =0 , (3.3)
where S.. denotes a sum of squares or of crosg-products, corrected for the
mean. Using Newton's method, the solution is found iteratively from an

9

initial value . Dby setting

(1+41) _ (i) _ SFY SHH - SHY SHF
T T ey smr - sny srr}lt(i) y (3.4)
Since the model function n is linear between integers T, exact
convergence (within machine accuracy) occurs in one step after t(i) enters

~

the integer interval containing the least squares estimate 7T1. This estatement

must be qualified, however, by two caveats.

-6




We are seeking the minimum of the function RSS(t), given by
RSS(T) = SYY = {SH‘lz/Slm}h .

This function has a discontinuous derivative (a kink) wherever H(T) has a
discontinuous derivative - that is, at integer values of T. Hence we have
the first caveat: if ; itself is an integer, then the minimum, nss(;), is
at a cusp, not at a point where dRSS/dr = 0. That is, ; will not satisfy
the normal equation (3.3) in this case, so that the iteration (3.4) will never
converge to ;, but will oscillate indefinitely on either side.

~

The second caveat is that, even when T does satisfy Equation (3.3),

there is no guarantee that the value t(i) determined from Rquation (3.4)

will ever reach the interval containing ;- Instead, the iteration may
oscillate over two or more intervals, excluding the right one, or may converge
to a local minimum which is not the global minimum.

The possible shapes of the function RSS(t), and the corresponding
behavior of the fitting procedure, have been described in detail in Goldberg
(1982). The detailed fitting algorithm, which compensates for these
difficulties, is given in the Appendix. The performance of this procedure in

applications to a large number of gas-heated houses is discussed in Stram et

al (1982).

4. Calculating Approximate Confidence Intervals

Whatever method is used to find the least squares estimate ;, estimates
of the intercept a and slope £ are found by ordinary linear regression of
the fuel data Y on degree-days n(;). However, the gtandard errors computed
from the linear regression formulae will understate the uncertainties in the
est imates ; and 3. The understatement results from the assumption,

implicit in these formulae, that the "correct"™ regresgsor H(t) was known (or

fixed) in advance, rather than being estimated from the data.




Appropriate measures of error can be obtained for the estimates of our
model using methods developed for general nonlinear models. In particular, we
will consider confidence intervals first based on the Gaussian approximation
to the distribution of 8, and secondly based on the sum-of-squares or
likelihood method. In the discussion below, these two methods are denoted by
(G) for Gaussian and (S) for sum-of-squares.

The validity of applying these methods to the energy model is discussed
in earlier work (Goldberg, 1982 and 1983)., 1In the present work, we attempt to
find efficient means of computing accurate confidence intervals. After
summarizing the Gaussian and sum-of-squares methods, with particular reference
to models of the type considered here, we will introduce two closely related
approximations. From these two, we will then derive a superior, composite
approximation, in Section 5. Since the sum~of-squares intervals (S) are in
general much more accurate than the Gaussian (G), the former (S) are taken as
the standard against which other approximations are compared.

4.1. The Gaussian Approximation

Confidence intervals based on the Gaussian approximation (G) are easily
obtained for a general nonlinear model fit by the Gauss-Newton method. The
variance-covariance matrix of the parameter estimate é is estimated by

vo) = 2w . (a.1)

(]
with

o = RSS(0)/(n-p) . (4.2)
The standard error aj of the jth component of é is the square root of the
jth diagonal element of G(é). The confidence interval for ej of
approximate confidence level 1 - % (for some small probability «) is

therefore bounded by

o, ¢+ s.t"/> (4.3)




where t::: is the 1 - x/2 quantile of the t-distribution on n-p degrees
of freedom.

For the energy model, when the reference temperature T is estimated by
the procedure based on Newton's method, approximate confidence intervals for
a, 8, and T can be obtained from Equations (4.1) and (4.3). For the fourth

parameter of interest, I, approximate variance and covariances are obtained

using the linearization
P2+ B, (1) - B(T)) + (T-0IBLRLLT) = F(TD) (4.4)
where X denotes the sample mean of xm. For both single houses and
aggregates, the normalized derivative F, is defined by Equation (3.1), with
"month® 0 defined as for H,.
With variances and covariances denoted respectively by ; and é,

evaluating the variance-covariance matrix for the four parameters yields

-~ ~ ;2
v(g) = 2
SHH(1-x")
- oa ;2
V(t) =
strr(i-rz)
~ ~ ~ - .2
c(B,t) = oﬁﬂ

BSHH SFP(1-:2)
(4-5)

via) = L e v @? + 26(8,T)8 F + V(1) (8F)2

-~
2 a A A ~

V(D = £ 4 vidram? + 20(8,7) (BmIB(AR) + V(1) (8ap)?

A A A A A A A~

G(T,T) = AH C(B,T) + BAF V(1)




where rz -'E, and AP =F -~ ;, all evaluated at

0 0
T. In Section 6, the Gaussian approximation represented by Equations (4.3) to

= SHPz/(SHH SFP), AH = H

(4.5) will be applied to particular data sets for the energy model. The
covariances ; given in Equations (4.5) are the only two that will be needed
here.

Note that the formula for G(;) is the same as would be given by
Equation (4.1), if the model function had been defined in terms of I, 8, and

T as

*
“m(PIB'T) =T + B(HE(T)-HO(T)) N

This agreement is to be expected, since both Equation (4.4) and Equation (4.1)

are based on a linearization of the model function n.
4.2. The Sum-of-Squares Method

The second basic method we will consider for obtaining approximate
confidence intervals is the sum-of-squares method (S). For a general model of
the form of Equation (1.1), if the "nonlinear" parameter 7T is estimated by a
grid search, the boundaries of a sum-of-squares region are easily computed
during the estimation.

For any single parameter © the confidence region of approximate

j'

confidence level 1 - n is the projection onto the ©, axis of the region

3
bounded by a surface satisfying
RSS()A,T) - RSS{),t) - F'
RSS(A,T)/(n=p) V.np

(4.6)

where F:,n-p is the 1 - T quantile of the F-distribution with 1 and
n - p degrees of freedom. Regions determined by Equation (4.6) are sometimes
called "likelihood regions."”

Let Et = E(1), and denote by ;1 the least-squares estimate of A

from the linear regression of Y on ET. Equation (4.6) can then be

rewritten as

-10-
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“2 .

RSS(X,1) - RSS(A_,T) =0 F1,n-p - (RSS(AT,T) = R8S(A,T))

or
]
1,n-p
~ ~ A A2
where f£(T1) = (RSS(At,t) - RSS(A,T))/0 is the P-statistic for testing the

~ ~ “2
- [] ] - = -
(A AT) (Et,ET)(A XT) o (F £(1)) (4.7)
hypothesis that <t is the true value of that parameter. The left-hand side
of the equation results from the fact that the model function is linear in A
for fixed T. For any T within the confidence region (of approximate

confidence level 1 - w) given by

v
1,n-p
the right-hand side of Equation (4.7) is positive, so that the equation has

£(t) < F . (4.8)

real solutions in ). We will assume that the region in T defined by
Equation (4.8) is an interval, which we denote by [r-,t+].

Equation (4.7) defines the cross section at T in the A subspace, for
the surface given by Equation (4.6). Bquation (4.7) is familiar from the

theory of linear models, with the difference P: n-p - f(1) taking the place
14

of an F-value by itself. For any component A then, the extreme values

jl
+ -
ij and Ajr for which Equation (4.7) has a solution can be found using the

linear theory formula

A - ;‘31 t {Gt(ijt)(r';,n_p RINEE (4.9)
where Gr(ijt) is the jth diagonal element of
v =t (4.10)
A confidence interval [l;,X;] is then obtained by maximizing (minimizing)
the upper limit X;t (lower limit X;T), over Tt € ['r-,r+].

The matrix V‘r of Equation (4.10) represents the variance of AT

assuming T to be known. Note that in Equation (4.10) the estimated sample

variance 02 is still given by Equation (4.2). Therefore, if a standard

linear regression is used to compute xt, the variance of At as calculated

by the rout’ne mast be multiplied by Rss(k,t)(n-p+1)/[(Rss(kt,t)(n-p)] to




-~ a L

produce the values v%(xt). When T = v, the multiplier reduces to a
correction factor (n-p+1)/(n-p) for the degrees of freedom.
4.3. Applications to the Energy Model

To motivate the shortcut confidence regions to be considered next, we
apply the computational method just described to the parameters of the energy
model. The known-T variances given by Equation (4.10) become

~2
VT(BT) = g /SHH

» -~ ~

V. (a) = 6% (1/n + H/sHH) (4.11)
V_(F.) = 0%(1/n + (A-6,)%/sHn)
T T 0
where H stands for H(T). The first of Equations (4.11) was used to
evaluate the contour shown in Figure 1.
This figure displays, for a particular data set fit to Equation (2.2},
the projection onto the B - T plane of a surface defined by Equation
(4.6). The projection shown in the figure does not represent a planar cross
section, with constant a, of the surface defined by Equation (4.6). Rather,
for each point (B,T) in the projection, there is some value of a such that
Equation (4.6) is satisfied.
For the contour displayed, the number of observations n = 12, and
F:,n-p was set equal to 9, corresponding to a nominal confidence level
1 - 7 of approximately 0.99 (for n-p = 9 degrees of freedom). The
contour was evaluated at each integer T satisfying Equation (4.8). 1In
addition, the endpoints T and 1+ were found in closed form (that is,
without iterative or grid search) once the integer intervals containing these
points had been determined. Similarly, the B8-limits 8~ and B+ were found
in closed form after the extreme values for integer T, and the corresponding

integers, had been identified. The procedures used to compute these endpoints

are described in Goldberg (1982, Appendix D).




Figure 1: Sum-of-Squares Contour in the g-t Plane
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The overall ghape of the contour displayed in Pigure 1 is roughly
elliptical, but slightly bent. If the contour had been evaluated over a
continuous range of T, rather than just at integers, it would still have the
same basic shape, with cusps or kinks at integer values of T, where the
function RSS has discontinuous derivatives. The segments between integers,

however, would be curves, not straight lines.

4.3. Shortcut Approximations to the Sum-of-Squares Contour :
Even with the simplification represented by Bquation (4.9), computing the %
sum-of-squares intervals can be rather involved, as indicated above. To :
compute these intervals accurately, a very fine grid must be used, or |
additional steps must be taken to pinpoint the limits once they have been f
roughly identified. It is tempting, therefore, to look for shortcut methods
to approximate a sum-of-squares region. The Gaussian approximation (G) of i
this region by an ellipsoid is one such shortcut. Before examining the
accuracy of this approximation for the energy model (Section 6) we introduce

three other shortcuts, obtained by evaluating points on the actual sum-of-

squares contour.

Figure 1 shows the confidence intervals [B-.B+l and [t-,r+] as the
projections of the sum-of-squares contour onto the corresponding axes. The
figure also indicates how two of the shortcuts to be considered correspond

directly to points on the contour.
Pirst is the "fixed-t" shortcut (F): confidence intervals for all

parameters except T are calculated as if T had been fixed in advance. For

+
general models of the form (1.1), the fixed-tau limits Xj’ and Xjr are of

the form of Equation (4.3), but with VT(X), as given by Equation (4.10) with

-~

T = 1, used to estimate the variance of ). These limits are the points

X* given by Equation (4.9) for T = T,and correspond to the cross-section of

b 14
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the contour at ;. For the energy model example of Figure 1, the fixed-tau
int . al [8;,8;] is roughly half as wide as the sum-of-squares interval
8”,8%1.

The second shortcut displayed is the “extreme-t" shortcut (E). For the

+

general case, the extreme-tau limits X;z and ij are obtained by

" ~ +
evaluating Xt at the extreme values T and T . Implicit in this

procedure is the assumption that ), could be determined perfectly if <t

3
were known. In terms of the sum-of-squares contour, the points (t ,A _) anad
- T
+
(t ,A +) are the extreme points in the T direction. In Figure 1, the
T

- -+
extreme—~T confidence interval (BE'BB] understates the width of the sum-of-

squares interval by only about 15%.

The fixed-tau interval (F) indicates the uncertainty the estimate E
would have even if T were known, while the extreme-tau interval (E) shows
the uncertainty in S attributable to uncertainty in T. The correct
confidence interval must combine these two sources of error. As will be seen
in the next section, the two simple shortcuts can be combined in a straight-
forward way to give a confidence interval quite cloge to that obtained by the
complete sum-of-squares method. This composite shortcut will be shown in
Section 6 to perform extremely well for all the conditionally linear

parameters a, 8, and T of the energy model.

S. The Composite Shortcut
If the energy model function n were linear in all parameters, the
contour shown in Figure 1 would be a perfect ellipse. The equation for this

ellipse is conveniently expressed as

(i—o—)’ + (2;)’ - zo(;‘—o-)@;) =12, (5.1)
«15=-




vhere X = T-17

1’ n.p .
w

p = Corr(B,t) .

X, = th(;)r

Z = Vnr(a)r

OpoOoN

For the general model of the form (1.1), the parameter £ can be understood !
to represent any conditionally linear parameter Xj.
An arbitrary ellipse centered at the origin can be written in the form of
Equation (5.1), with X, and Z; positive. S8ince the equation has no real
solution (X,2) for (X| > lxol or |zZ]| > Izol, the values txo and tzo
respectively represent the extreme values of X and Z on the ellipse.
Now assume that we know two points on the ellipse. Once is (xo,z‘).
the single point satisfying Equation (5.1) at the extreme value X = Xg. The
other is (o,zr), one of the two points satisfying the equation for X = 0.

Solving the equation for Zy and z,, we find

zz - pzo (5.2) .
and
zZ_ 2
G5 = 1-0? . (5.3)
0
As a result, we have
zg - z: + zi . (5.4)

Next, assume X and 2 are random variables following a bivariate
normal distribution with mean zero, variances (kxo)2 and (kzo)2
respectively (for some constant k) and correlation p. It is a straight-

forward exercise to show that the conditional mean and variance of Z are

given by

E(ZiX) = p :— (zo) (5.5)
0

eizEzIn X = -pfrxz)? . (5.6)

-16-




Comparing Equations (5.5) and (5.6) with Bquations (5.2) and (5.3), we see
that (kz‘)2 and (kzr)2 respectively represent the variance of the
conditional expectation of Z given X, and the expectation of the
conditional variance of Z given X.

Equation (5.4) is thus a restatement of the classical decomposition of
variance

Var(z) = Vhrx(l(zlx)) + B (Var(zix)) . (5.7)
Equation (5.7) may be found, for example, in Rao (1979, p. 97). This
decomposition applies to general, jointly distributed random variables. The
assumption of normality yields the components in proportion to oz and
1-92.

Finally, we return to our original interpretation of X and Z as
T - ; and B - ;. respectively, for a given pair of estimates (?,5). with
the model function n still assumed linear, Equations (5.2) - (5.4) then
become

8*-812 = o28%-8) + (197)(8%-8)?
- 3-8 + 8387, (&8
and similarly for B8 .

The ellipse defined by Equation (5.1) now represents a confidence region
for the unknown parameters £ and T, rather than a prediction region for
two random variables with zero means. Nevertheless, Equation (5.8) can still
be interpreted in terms of the decomposition given by Equation (5.7). A
similar decomposition, given below, relates more directly to the confidence
interval for 8.

Pirst, corresponding to the conditional expectation E(Z|X), the least-

squares estimate of B at a particular assumed value T can be expressed as

8, =8 +0p /!“—‘P (t=1) . (5.9)
Var (1)




As a result,

Var(8_-8) = E(B_ - 8)° = p’var(8) . (5.10)

If B could be determined perfectly if <t were known, as assumed by the
extreme-tau method (E), then the left-hand side of Equation (5.10) would
represent the variance of E, and we would have p2 = 1. Thus, as indicated
earlier by Equation (5.2), the extreme-tau method amounts to understating
Var(a) by a factor of 02.

For the second component of the variance, corresponding to the g
conditional variance Var(z{X), consider the variance of ;t' the estimate |
of B when T is known (or fixed in advance). For a linear model with
uncorrelated, constant variance errors, this variance is related to the
unknown-=t varjiance Vhr(a) by

var(at) = (1-92)Var(a) . (5.11) ,
For the energy model, for example, in the case of known T we have |

var(g ) = o2/,

whereas when T is estimated the linear approximation gives

var(8) = o2/sur(1-p?) .

For the general case, Equations (5.10) and (5.11) together give a
decomposition analogous to Equation (5.7). Assuming T to be the true value
of that parameter,

VAr(S) = v.:(ﬁt-ﬁ) + Var(aT) . (5.12)
This decomposition coincides with that given by Equation (5.7) when the
estimates ; and E follow a normal distribution.

Equation (5.12) can now be understood as the formal expression of an

+
earlier statement. The extreme~tau limit B‘ represents the error in 8

associated with error in 1, as given by Equation (5.10). The fixed-tau
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limit 8; represents the error in BT for a given T, as in Equation
(5.11). Equation (5.12) shows how the true limit B+ combines these two
sources of error, for a linear model function.

For the nonlinear model functions, the composite shortcut (C) given by
Equation (5.8) offers a simple approximation to B+. One indication that this
approximation should be good for the parameters of the energy model is the
fact that, for the data set of Figure 1, the shortcut limits B+ and B; are

B
quite close to those indicated by Equations (5.2) and (5.3). The correlation

# Dbetween E and ;, based on Equation (4.5) for the Gaussian approxi-
mation, is =-0.83 for this data set. Thus, Equations (5.2) and (5.3) imply
that the extreme-tau (E) and fixed-tau (F) shortcuts should understate the
sum-of-squares interval lengths (S) by 17% and 44%, respectively, as compared
with the actual understatements of 15% and 45%.

As will be seen in the next section, the composite shortcut is indeed
excellent for the parameters a, 8, and T of the energy model. After
examining the performance of this shortcut for our motivating model, we will
turn in Section 7 to considerations for general models of the form (1.1), with
an arbitrary parameter Xj taking the place of B.

6. Application of Approximation Methods to the Energy Model

Figure 2 compares confidence intervals obtained by the sum~of-squares
method (S) and by the different approximations for the data set of oﬁr earlier
example., For each parameter a, 8, ', and T of the energy model, the
different upper and lower confidence limits are plotted as functions of the
nominal confidence level, or equivalently, of t';z. For the reference

temperature T, only the sum-of-squares (S) and Gaussian (G) methods apply.

The sum-of-squares (S), extreme-tau (E), and composite (C) limits were
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Figure 2. Confidence Intervals by Different Approximation Methods
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The figure shows confidence intervals for the energy model parameters obtained
by the Gaussian (G), Sum-of-Squares (8), Fixed-t (F), Extreme~t (E), and
w-ito (C) methods. The nominal confidence level is indicated at the top
and the corresponding t-value at the bottom of each graph. See caption to *
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computed only for integer t-values. Since the Gaussian (G) and fixed~tau (¥)
limits are linear in the t-value, these limits are shown exactly over the
range displayed.

6.1. Comparisons for Baseload, Hsating Rate, and Reference Temperature

Por the intercept a, slope B, and reference temperature T, Figure 2
shows the Gaussian and sum-of-squares limits in fairly close agreement for
lower confidence levels, though they diverge at higher confidence levels. For
data sets like this one, then, we might be satisfied with the Gaussian
approximation for any confidence level of practical interest.

However, in applications of the energy model where the standard errors of
the estimates are relatively large compared to those seen here, these two sets
of limits.will tend to diverge earlier. In particular, for data sets with a
high sample variance ;2 or with too few observations, the Gaussian
approximation may be unreliable. Such data sets have been found occasionally
in single~house analyses.

when the Gaussian approximation (G) is suspect, the composite method (C)
offers a convenient improvement for the linear parameters. For both a and
8, the composite limits follow the sum~of-squares limits (S) quite closely,
only a slight discrepancy being seen for t;/z = 5, corresponding to a
confidence level greater than 0.999. PFor a as well as for B, the two
components (E) and (F) of the composite approximations are of roughly equal
magnitude, so that neither alone is adequate.

6.2. Approximations for Normalized Annual Consumption

A different pattern is seen for the index [, of major interest in

energy analyses. The curves for the Gaussian (G), fixed-tau (F), and

composite (C) approximations are indistinguishable from those for the sum-of-




squares limits (S8) in Figure 2. The reason the four methods coincide is that
the index it is quite insensitive to the nonlinear parameter <, as
indicated by the narrow bands of the extreme-tau (E) approximation. For this
parameter then, it is reasonable to ignore the estimation error associated
with error in ;, relying simply on the fixed-tau method (F). The composite
(C) and Gaussian (G) approximations represent negligible corrections over the
fixed-tau method alone. Because the accuracy of the fixed-tau method is quite
useful in practice, we consider in more detail what circumstances make this
method reliable.

Equations (5.2) and (5.3) indicate that more of the variance of ; will
be associated with the extreme-tau limits, and less with the fixed-tau limits,
when the covariance p between ; and ; is large. The magnitude of this
covariance (E(f,;) in Equation (4.5)) tends to be larger for larger values
of AH and AF. The general insensitivity of Ft to T stems from the fact
that normal degree-days Ho(r) and its derivative Fo(r) are usually close
to the corresponding sample means H(T) and F(1), so that the terms AH
and AF are small.

However, the insensitivity of ;1 to T may not hold if the
observations Y, are not taken over an integral number of years, or are taken
at unevenly spaced times. In such cases, the differences AH and AF
between the base-period values and the gsample means are likely to be large.
Such irregularly occurring data are common, for example, for fuel oil
deliveries, which are more frequent during cold months. As a result, for some
oil-heated houses the correlation p between i and ; is occasionally too
high for the fixed-tau (F) approximation to be trusted.

For the example data set of Figure 2, AH = 1.3°F anda AF = 0.012,

while the correlation p between T' and T is 0.07. The situation is

quite different for a particular oil-heated house in the same region. For
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that house, all but one of the nine observations represented winter
consumption; the corresponding values are AH = 7.6°r, AP = 0.426 and p =
0.6. In this case, for n = 0.05 the fixed-tau limits (F) understate the
sum~of-squares limits (S) by 20% (as compared with a negligible amount for the
data set in Figure 2). By contrast, the Gaussian interval of (434,938]
(gallons per year) is quite close to the sum—of-squares interval [412,927].
The composite interval is even closer: [423,923].

Thus, the same relationship that was found for the parameters a and 8
of the ordinary aggregate gas data set displayed in Figure 2 holds also for
the index T even in a case where the fixed-tau approximation (F) is
unreliable. That is, the Gaussian approximation (G) seems to be adequate for
confidence levels of practical interest, but the composite shortcut (C) is
stil]l more accurate. In the next section we will discuss why the composite
should be superior in general for models of the form (1.1).

6.3. Implications for Other Energy Data Sets

A total of 75 aggregate gas data sets were fit by Equation (2.2), with
the degree-day variable defined by Equation (2.3). Although they were not
studied in the same detail as the data set used for Figures 1 and 2, our
analysis indicates that the rest of these data sets should behave similarly.
For one thing, the (Gaussian approximation) correlations among the parameter
estimates ;, a, ;, and E were similar for all the data sets studied.
Secondly, as discussed elsewhere (Goldberg, 1983), the example data set seems
to be typical in terms of the severity of nonlinearities which might distort
the sum-of-squares contour from an ellipse. From the previous section, we
know that the success of the extreme-~tau (E) and fixed-tau (F) shortcuts

depends on the magnitude of the correlation p, while the success of the

composite gshortcut (C) depends on how nearly elliptical the sum-of-squares

contour is.
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7. Advantages of the Composite Shortcut

In applying the approximation represented by Equation (5.3) to a general
model of the form (1,1), two considerations are important: ease of computa-
tion, and accuracy. As noted above, we here measure accuracy in terms of how
closely the composite limits (C) approximate the sum~of-gquares limits (8).

Computation of the composite limits (C) is considerably easier than
finding the sum-of-squares limits (S). Once the least squares estimate 8
has been found, a nonlinear equation must be solved only to obtain the limits

T and t+ for the nonlinear parameter <. For the linear parameters Aj'
the extreme-tau limits (E) are then easily obtained as the coefficients from a
linear regression at T+ and t-, and the fixed-tau limits (F) as confidence
interval bounds for a linear regression at ;.

If the model has been fit using the derivatives r.\, as with the commonly
used procedures based on Newton's method, the composite shortcut (C) will
require more computational effort than the Gaussian approximation (G).
However, for some types of models, particularly non-differentiable <«yes,
derivative-based fitting procedures may be impractical. The compiixity such
methods can impose was indicated in Section 3. Even for continuously
differentiable model functions n, it may be easier, and more informative,
for an analyst to run a series of linear regressions, varying the parameter

7, than to implement a nonlinear regression routine correctly for his
model. Provided a wide enough range of values of 1T was used initially, the
composite shortcut (C) can be computed directly from the output of such a
series of linear regressions.
whatever the fitting procedure used, both the Gaussian (G) and fixed-tau

(F) methods offer the computational advantage of giving limits for any

confidence interval of interest by multiplying a single standard error
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egtimate by the appropriate t-value. PFurther, the latter method (F) does not
require the derivative of the model function n with respect to the nonlinear
parameter 1. However, the linear, t-based confidence intervals (F) and (G)
cannot reflect any asymmetry in the likelihood (8) region. As can be seen in
Figure 2 of the previous section, this asymmetry is captured by the extreme-

tau method (E), and is appropriately incorporated in the composite (C).

For the energy model, the composite approximation (C) was seen in the
previous section to be quite accurate, and superior to the Gaussian
approximation (G). The difficulty with the Gaussian approximation in general
is that any nonlinearity in the model function will make the Gaussian ellipse
different from the sum~of-squares contour, even though many types of
nonlinearity will leave the sum-of~squares contour itself essentially
elliptical.

Haﬁilton, et al (1981) presented, as an improvement over the Gaussian, an
explicit elliptical approximation to the sum—of-squares regions, based on a
second-order expansion of the model function n. Their method applies to
general continuously differentiable models, but requires that the model
function have no "parameter-effect" nonlinearities. As shown in related work
by Bates and Watts (1980 and 1981), this requirement is not often met by
models under a natural parameterization, nor is it easily achieved by
reparameterization for most models.

The composite method is accurate so long as the sum-of-squares region is
roughly elliptical, even if the ellipse does not coincide with any explicit
approximation we might consider. Further, since the composite method
approximates the two halves of the sum-of-squares region (for T > ; and for

t < T) separately, the procedure can perform well even in the presence of

substantial asymmetry, unlike any single elliptical approximation. Finally,

e




an important consideration in the present study, the composite method can be

applied to both continuously and piecewise differentiable models. Extensions
of the method to accommodate joint confidence regions or models with more than
one nonlinear parameter are also possible; the practicality of such procedures

remaing to be investigated.
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estimate by the appropriate t-value. PFPurther, the latter method (F) does not
require the derivative of the model function n with respect to the nonlinear
parameter T. However, the linear, t-based confidence intervals (F) and (G)
cannot reflect any asymmetry in the likelihood (S) region. As can be seen in
Figure 2 of the previous section, this asymmetry is captured by the extreme-
tau method (E), and is appropriately incorporated in the composite (C).

For the energy model, the composite approximation (C) was seen in the
previous section to be quite accurate, and superior to the Gaussian
approximation (G). The difficulty with the Gaussian approximation in general
is that any nonlinearity in the model function will make the Gaussian ellipse
different from the sumof-squares contour, even though many types of
nonlinearity will leave the sum—of-gquares contour itself essentially
elliptical.

Hamilton, et al (1981) presented, as an improvement over the Gaussian, an
explicit elliptical approximation to the sum—of-squares regions, based on a
second-order expansion of the model function n. Their method applies to
general continuously differentiable models, but requires that the model
function have no "parameter-effect” nonlinearities. As shown in related work
by Bates and Watts (1980 and 1981), this requirement is not often met by
models under a natural parameterization, nor is it easily achieved by
reparameterization for most models.

The composite method is accurate so long as the sum~of-squares region is
roughly elliptical, even if the ellipse does not coincide with any explicit
approximation we might congider. Further, since the composite method
approximates the two halves of the sum-of-squares region (for Tt > ; and for
T < ;) separately, the procedure can perform well even in the presence of

substantial asymmetry, unlike any single elliptical approximation. Finally,

=28

AEBE- ) P




an important consideration in the present study, the composite method can be
applied to both continuously ;nd piecewise differentiable models. Extensions
of the method to accommodate joint confidence regions or models with more than
one nonlinear parameter are also poasible; the practicality of such procedures

remains to be investigated.
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APPENDIX

Following is the procedure used to fit Equation (2.2). For more details,

see Stram, et al (1982). The terms T,,.  and T,; respectively denote the

highest and lowest temperatures ij in the data set.

1)

2)

3)

q4)

5)

Choose a starting value T(o)' a maximum number IMAX of iterations i,

and checking ranges N1 and N2. (Recommended values are ‘(0) = 65°,

IMAX = 10, N1 = 4, N2 = 10.) Set i = 0.

Iterative search by Newton's method

(i+1)

Find T from Equation (3.4).

Find T by one of the following, and choose the corresponding checking

range NCHECK:

(i)

a) If i 2 IMAX, set T =T (NCHECK= N2).

(i+1) (i+1) . = (1) -
b) If T > Thax or T < Tiin' set T T (NCHECK N2).
c) If T(i+1) = 1(1-1), set T = integer between t(i) and r(1+1)

(NCHECK = N1).

LD | () (1)

4a) I1f , 8t T =17 (NCHECK = N1),

e) Otherwise, replace i by i + 1 and return to step 2.

local grid search

Set: k = integer part of the current estimate 13
kmin = max(Tmin, k=NCHECK) ;
kpax = ®in(Ty,. k+NCHECK) .
a) Repeat for k = ki, tOo Kp../ then go to b):
If RSS(k) < RSS(T), replace T by k and replace k by k.

b) If T = kmin or T = kmax continue to c¢).

Otherwise go to 4d).




c) (Por the rare cases when 3a) or 3b) gives an initial value T close

to T- in or T-.x o)

-~

Por k=T = knin (k-.x)' reset k.. (ky,,) as in Step 4. If the

“reset” makes no change, go to d). Otherwise, return to a) for k =

kpin to k (k to k- ).

d) Por k = k=1 and k = k:

(i) <

Pind Tt as from Equation (3.4), evaluated for

k

e v, e {k,k+1] and RSS(tk) < RSS(t), replace T by T

6) Computation of remaining parameters

Calculate

T

- ¥ - 8H(T)

f>»

-~ ~

P=g+ BHo(t) .

A procedure described by Hinkley (1971) for fitting a very similar change
point model is equivalent to starting at step (5), and letting k range
from Thin + 1 ¢o Tiax = 1. The full procedure given here greatly reduces
the total number of function evaluations required, at the risk of settling on
a local minimizer which is not the global minimizer of RSS(T). The values N1

and@ N2 have been chosen to reduce this risk to a very low level (see Goldberg,

1982).
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