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ABSTRACT

A simple method is developed for approximating confidence intervals for a

linear change-point model representing residential energy consumption. The

method can be applied to any nonlinear model which is conditionally linear in

all but one parameter. The approximation is shown to be more accurate than

the Gaussian approximation, and easier to compute than confidence intervals

defined by likelihood (sum-of-squares) regions. Computations are described in

some detail for the motivating model.

AMS (MOS) Subject Classification: 62J02

Key Words: Nonlinear, Regression, Confidence Intervals, Energy

Work Unit Number 4 - Statistics and Probability

Mathematics Research Center, University of Wisconsin, Madison, WI 53705.

Department of Statistics, North Carolina State University, Raleigh, NC
27650.

* Center for Energy and Environmental Studies, Princeton University,
Princeton, NJ 08544.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work currently supported by the National Science
Foundation under Grant No. MCS-7927062, Mod. 2, with previous funding from the
Ford Foundation's State Environmental Management Program and the New Jersey
Department of Energy.

IL



SIG1IFICANCR AND ZXPLAN ION

A method is developed for calculating approximate confidence intervals

for certain types of regression models. The confidence intervals indicate the

accuracy of the parameter estimates. The method Is compared with two standard

procedures currently in common use. The method proposed is easier to compute

than the more complicated procedure, but more accurate than the simpler one.

The method in motivated and demonstrated by a simple model of residential

energy consumption.
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SIMPLIFIED COFXDINCE INTERVALS FOR AN
AN=ARD WVMLINZAR MODEL

Miriam L. Goldberg , Peter Bloomfield and Margaret F. role

1. Introduction

Two methods are comonly used to obtain approximate confidence intervals

for parameters of nonlinear models fit by the method of least squares. First

is the Gaussian approximation, based on the asymptotic normality of the least

squares estimate. The second is the likelihood or sum-of-squares method,

based on the asymptotic chi-squared distribution of the likelihood ratio.

Asymptotically, for infinite sample sizes, the two methods are

equivalent. In small samples, however, the sum-of-squares method is generally

more accurate, in the sense of providing regions with coverage probabilities

closer to their nominal confidence levels. The Gaussian approximation, on the

other hand, based on an implicit linearization of the model function, is

usually much easier to compute.

A simple procedure developed in this paper produces approximate sum-of-

squares regions. These regions are in general more accurate than those based

on the Gaussian approximation, but easier to compute than the actual sum-of-

squares regions. An additional advantage of the method described below is

that it does not require computation of derivatives of the model function.
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We express the general nonlinear regresslon equation in matrix form, as

Y - n(e) + c

vhere n is an n-dimensional vector function of the p-dimensional parameter

6, and C is a random disturbance, also of dimension n. We assume the

components a to be independent, following a Normal distribution with meanm

0 and variance a 2 .

Attention is restricted to model functions n which are conditionally

linear in all but one parameter. That is, we assume the unknown parameter 0

can be partitioned as

! T-

with dim(T) - 1, such that

for E an n x (p-1) matrix function of T. We further confine attention to

the problem of obtaining confidence intervals for individual components 0

(i.e., for T and for Ai, J - 1,2,...,p-I).

Our method is motivated and illustrated by application to a simple model

of residential energy use. The energy model is described in Section 2, and

the procedures used to fit the model in Section 3. In Section 4, methods of

obtaining confidence intervals for the model's parameters are discussed in

* relation to the fitting procedure used. A simplified method of obtaining

approximate confidence intervals for nonlinear models is then introduced in

Section 5, and is applied to the energy model in Section 6. We conclude, in

Section 7, with a discussion of the advantages of this method for general

models of the form (1.1).
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2. The Energy Model

For the primary heating fuel in a house, a simple model assumes that

consumption on a particular day is given by the baseload a if the day's

average outdoor temperature T is above a reference temperature T, and

increases in proportion to T - T if T < T. For time period m, let ym

denote the average daily fuel consumption, Nm the number of days, and "m

the average number of degree-days per day, to base T:

m
H (T) (r-T )(T l , (2.1)
m N aIj m

where I is the indicator function. The energy model is then expressed

formally as

3(Y ) -= (W,,t)l

= + OH (T') .(2.2)

In the terms of Equation (1.1), we have A' - [wB]. where the apostrophe

denotes the transpose, and 1(t} - [1,H(T}], where I denotes an n-vector

of ones.

The daily temperature data Tj are obtained in integer degrees

Fahrenheit from a nearby U.S. Weather Bureau station (National Oceanic and

Atmospheric Administration, monthly). The consumption data are derived from

the house's monthly utility bills.

The model defined by Equation (2.2) is also used to describe aggregate

data, representing a utility service region or a whole state. In this case,

the observations are average daily consumption per household for each

month m. In addition, the degree-day variable Hm is modified to account

for the lag introduced by meters' being read on different days throughout the

month. The variable H used for aggregate analysis in this work is defined

as

-3-
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ma m- 1

R - . .-a 1- - (2.3)

J-1 J-1

For both aggregate and individual-house analyses, a major use of the

energy model is to calculate normalized annual consumption r. The index r

is given by

r - 365(a + OHO(r)) , (2.4)

where H 0 ) is the long-run (say, 10-year) average of daily degree-days base

T. That is, for both single and aggregate analyses, H0 is computed from

mquation (2.1), with period 0 indicating a base period of several years.

The index r represents the amount of fuel the house (or the average

household) would consume in a year of typical temperature conditions.

Comparing values of r obtained from two successive years of data thus offers

a measure of energy conserved (or wasted) which is unbiased by the severity or

mildness of a particular winter.

The theoretical basis for the model defined by Equation (2.2) is

discussed by Fels and Goldberg (1982), who present analyses of aggregate

residential gas consumption, based on the index r. Equation (2.2) and the

normalized annual consumption r have also been used to analyze a large

number of single houses heated by gas (Dutt et al, 1982), and by oil (Psol

et al, 1981). Extensions of the method to electricity use in single houses

are under way.

-4-



3. Fitting the hnergy Model

Two basic procedures have been used to fit Equation (2.2). One is a grid

search, the other an algorithm based on Newton's method. Since the model

function TI is linear in a and B for fixed T, both procedures start

with a search for the =best T.0 Once the least squares estimate T is

found, the estimates a and 0 are found by ordinary linear regression of

Y on H().

The first fitting procedure, which is easier to implement, is a simple

grid search taking integer ( F) values of T as grid points. The value of

T for which Y and H(r) have the highest correlation is the best (integer)

T, and the corresponding estimates a and 0 the best values of a and

B for that T. Of course, once the best integer T is found, a more precise

search can be made in a restricted neighborhood of that T, either by taking

a finer grid or by using steps from the second procedure, described below.

The grid search produces the likelihood function over the entire range of

possible reference temperatures T. This information may be of interest in a

detailed analysis, but for routine applications the grid search can be too

cumbersome: the variable H(T) and its correlation with Y must be

evaluated ordinarily for values of T from 5507 to 720F, and in some

cases for a much wider range.

The second procedure, based on Newton's method, is more efficient, but

somewhat more complicated, requiring the derivatives with respect to a, B

and T of the model function n given by Equation (2.2). For this model,

the derivatives are given byOn = 1, H(T), 0 d---T" -
n 3(a,0,T) ' d

The model function n is classed as nonlinear because the derivative n

depends on the model parameters.

I _ ,w i I Il sir -5-



In fact, the energy model is not only nonlinear, but is nondifferentiable

as wells the derivative dR/dr is discontinuous at temperature

observations T. However, except at the points T - T (which occur at

integers) dH/dT is well-defined. Therefore, arbitrarily choosing a right-

continuous function, we define

dr -F r(T)

where, for a single house
N

F (r) I IT 4) (3.1)
m N m=1 j

and for the aggregate

N NM-1

(N a (+I-J)I(T mjCT) + J I(T <T)

I N (3.2)

l (N+1-j) + [ j

of course, P. is a step function, representing the empirical distribution of

the observed temperatures Tm,.

With the second, derivative-based procedure, the least squares estimate

is found by solving the normal equation

{SPY SHY SHF/SHH)I? a 0 (3.3)

where S.. denotes a sum of squares or of cross-products, corrected for the

mean. Using Newton's method, the solution is found iteratively from an

Zinitial value T 0 , by setting

(t+1) . T~l)- M SPY sml - SHY SF(3
SFY SHF - SHY sFF 1 T(i) .

Since the model function n is linear between integers T, exact

convergence (within machine accuracy) occurs in one step after T(i) enters

the integer interval containing the least squares estimate T. This rtatement

must be qualified, however, by two caveats.

-6-

- ,I I* .4f , I"



We are seeking the minimum of the function RSS(T), given by

RSSM(T) - sY - (SKY2/sH}

This function has a discontinuous derivative (a kink) wherever H() has a

discontinuous derivative - that is, at integer values of T. Hence we have
A *

the first caveat: if T itself is an integer, then the minimum, RSd(), is

at a cusp, not at a point where dRSS/dT - 0. That is, T will not satisfy

the normal equation (3.3) in this case, so that the iteration (3.4) will never

converge to T, but will oscillate indefinitely on either side.

The second caveat is that, even when T does satisfy Equation (3.3),

there is no guarantee that the value T M determined from Equation (3.4)

will ever reach the interval containing T. Instead, the iteration may

oscillate over two or more intervals, excluding the right one, or may converge

to a local minimum which is not the global minimum.

The possible shapes of the function RSS), and the corresponding

behavior of the fitting procedure, have been described in detail in Goldberg

(1982). The detailed fitting algorithm, which compensates for these

difficulties, is given in the Appendix. The performance of this procedure in

applications to a large number of gas-heated houses is discussed in Stran et

al (1982).

4. Calculating Approximate Confidence Intervals

Whatever method is used to find the least squares estimate T, estimates

of the intercept a and slope B are found by ordinary linear regression of

the fuel data Y on degree-days H(r ). However, the standard errors computed

from the linear regression formulae will understate the uncertainties in the

estimates a and 0. The understatement results from the assumption,

implicit in these formulae, that the "correct" regressor H(;) was known (or

fixed) in advance, rather than being estimated from the data.

-7-



Appropriate measures of error can be obtained for the estimates of our

model using methods developed for general nonlinear models. In particular, we

will consider confidence intervals first based on the Gaussian approximation

to the distribution of 6, and secondly based on the sum-of-squares or

likelihood method. In the discussion below, these two methods are denoted by

(G) for Gaussian and (S) for sum-of-squares.

The validity of applying these methods to the energy model is discussed

in earlier work (Goldberg, 1982 and 1983). In the present work, we attempt to

find efficient means of computing accurate confidence intervals. After

summarizing the Gaussian and sum-of-squares methods, with particular reference

to models of the type considered here, we will introduce two closely related

approximations. From these two, we will then derive a superior, composite

approximation, in Section 5. Since the sum-of-squares intervals (S) are in

general much more accurate than the Gaussian (G), the former (S) are taken as

the standard against which other approximations are compared.

4.1. The Gaussian Approximation

Confidence intervals based on the Gaussian approximation (G) are easily

obtained for a general nonlinear model fit by the Gauss-Newton method. The

variance-covariance matrix of the parameter estimate 0 is estimated by

v(6) - 14,
* A *2 ,(4.1)

with

A2
a = RSS(6)/(n-p) .(4.2)

The standard error sj of the jth component of 6 is the square root of the

1 th diagonal element of V(0). The confidence interval for 6j of

approximate confidence level 1 -w (for some small probability w) is

therefore bounded by

t a t0w / 2  (4.3)
] n-p

' -8-
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where tw / 2  in the 1 - 1/2 quantile of the t-distribution on n-p degrees
n-p

of freedom.

For the energy model, when the reference temperature T is estimated by

the procedure based on Newton's method, approximate confidence intervals for

a, 0, and T can be obtained from Equations (4.1) and (4.3). For the fourth

parameter of interest, r, approximate variance and covariances are obtained

using the linearization

X +60 )+(r4-r)O(1 0 (T) - ;:(T)) ,(4.4)

where X denotes the sample mean of Xm.  For both single houses and

aggregates, the normalized derivative F0  is defined by Equation (3.1), with

"month" 0 defined as for HO.

With variances and covariances denoted respectively by V and C,

evaluating the variance-covariance matrix for the four parameters yields

V(O) - 2

SHH(1-r )

-2

0 SFF(1-rv(B;) - 2

O5H SFF(-r )

a a a (I12 2
n

Vr) : VB)(AN)= + 2C(B,T)(hH)8(AF) + v(r)(B.F) 2

c( r, T) -All C(O,r) + OAF V(T)

{ v, -.-
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where r- SHF2/(SHH 5FF), AH - H0 - H and AF - F0 - , all evaluated at

T. in Section 6, the Gaussian approximation represented by Equations (4.3) to

(4.5) will be applied to particular data sets for the energy model. The

covarlances C given in Equations (4.5) are the only two that will be needed

here.

Note that the formula for V(r) is the same as would be given by

Equation (4.1), if the model function had been defined in terms of r, B, and

T as

im(r,B,r) - r + B(H(W)-H 0 (T))
m 0

This agreement is to be expected, since both Equation (4.4) and Equation (4.1)

are based on a linearization of the model function n.

4.2. The Sum-of-Squares Method

The second basic method we will consider for obtaining approximate

confidence intervals is the sum-of-squares method (S). For a general model of

the form of Equation (1.1), if the "nonlinear" parameter T is estimated by a

grid search, the boundaries of a sum-of-squares region are easily computed

during the estimation.

For any single parameter Oi, the confidence region of approximate

confidence level 1 - w is the projection onto the 0 axis of the region

bounded by a surface satisfying

RSS(XT) RSS(AT) =F W(
AA- F1 4.6)

RSS(A,T)/(n-p)

where F is the 1 - w quantile of the F-distribution with 1 and
F,n-p

n - p degrees of freedom. Regions determined by Equation (4.6) are sometimes

called *likelihood regions."

Let CT = C(T), and denote by A T the least-squares estimate of A

from the linear regression of Y on C . Equation (4.6) can then be

rewritten as

-10-



RSS(X,T) - RSS( T T) - 02 F'n-p - (RSS(X ,T) - RSS(XA,))

or

(A - a(F p - f(T)) (4.7)

where f(T) - (RSS(ATT) - RSS(AT))/a is the F-statistic for testing the

hypothesis that T is the true value of that parameter. The left-hand side

of the equation results from the fact that the model function is linear in A

for fixed T. For any T within the confidence region (of approximate

confidence level 1 - w) given by

f(T) 4 FW 1  (4.8)• n-p

the right-hand side of Equation (4.7) is positive, so that the equation has

real solutions in A. We will assume that the region in T defined by

Equation (4.8) is an interval, which we denote by [T ,T .

Equation (4.7) defines the cross section at T in the A subspace, for

the surface given by Equation (4.6). Equation (4.7) is familiar from the

theory of linear models, with the difference F, - f(T) taking the place
Inp

of an F-value by itself. For any component Ail then, the extreme values

X and X for which Equation (4.7) has a solution can be found using the

linear theory formula

Xt = 1 - (V (A )(F n  - fcT))} 1 1  (49)
Jr jr T JT 1,n-p

where VT (A JT) is the jth diagonal element of

V (A ) a (4.10)

A confidence interval [A- ,AJ is then obtained by maximizing (minimizing)

+ -- +
the upper limit AJT (lower limit A T), over T e [T -T+].

The matrix V of Equation (4.10) represents the variance of A

assuming T to be known. Note that in Equation (4.10) the estimated sample

variance 2 is still given by Equation (4.2). Therefore, if a standard

linear regression is used to compute X, the variance of AT as calculated

by the routne mist be multiplied by RSS(X,r)(n-p+1)/[(RSS(X,T)(n-p)] to

-11-



produce the values V (A ). When T -T, the multiplier reduces to a

correction factor (n-p+1)/(n-p) for the degrees of freedom.

4.3. Applications to the Energy Model

To motivate the shortcut confidence regions to be considered next, we

apply the computational method just described to the parameters of the energy

model. The known-T variances given by Equation (4.10) become

V (0 ) - a /SRH

a a 2a -2
V (a ) = a (/n + H /SHH) (4.11)

A -2- 2
vT (r)- a (/n + (H-H 0) /SHH)

where H stands for H(T). The first of Equations (4.11) was used to

evaluate the contour shown in Figure 1.

This figure displays, for a particular data set fit to Equation (2.2),

the projection onto the B - T plane of a surface defined by Equation

(4.6). The projection shown in the figure does not represent a planar cross

section, with constant a, of the surface defined by Equation (4.6). Rather,

for each point (B,T) in the projection, there is some value of a such that

Equation (4.6) is satisfied.

For the contour displayed, the number of observations n - 12, and

F1  was set equal to 9, corresponding to a nominal confidence levelI,n-p

I - w of approximately 0.99 (for n-p - 9 degrees of freedom). The

contour was evaluated at each integer T satisfying Equation (4.8). In
- +

addition, the endpoints T and T were found in closed form (that is,

without iterative or grid search) once the integer intervals containing these
i+

points had been determined. Similarly, the 8-limits B- and B+ were found

in closed form after the extreme values for integer T, and the corresponding

integers, had been identified. The procedures used to compute these endpoints

are described in Goldberg (1982, Appendix D).

-12-



Figure 1: Sun-of-Squaes Contour in the B- plane

0,&30.

+

0%

-I

A

55 "75

Reference Temperature T (0)

Based on a fit of Equation (2.2) to data for the state aggregate,
August 1969 - July 1970. The contour is defined by Equation (4.6),
with F1 = 9 (w - 0.01). The abbreviations are Th for therms,1,9
cu for customer, and d for day.
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The overall shape of the contour displayed in Figure 1 is roughly

elliptical, but slightly bent. If the contour had been evaluated over a

continuous range of T, rather than just at integers, it would still have the

same basic shape, with cusps or kinks at integer values of r, where the

function ROS has discontinuous derivatives. The segments between integers,

however, would be curves, not straight lines.

4.3. Shortcut Approximations to the Sumr-of-Squares Contour

Even with the simplification represented by Equation (4.9), computing the

sum-of-squares intervals can be rather involved, as indicated above. To

compute these intervals accurately, a very fine grid must be used, or

additional steps must be taken to pinpoint the limits once they have been

roughly identified. It is tempting, therefore, to look for shortcut methods

to approximate a sum-of-squares region. The Gaussian approximation (G) of

this region by an ellipsoid is one such shortcut. Before examining the

accuracy of this approximation for the energy model (Section 6) we introduce

three other shortcuts, obtained by evaluating points on the actual sum-of-

squares contour.

Figure I shows the confidence intervals (0",B and [T-,T I as the

projections of the sum-of-squares contour onto the corresponding axes. The

figure also indicates how two of the shortcuts to be considered correspond

directly to points on the contour.

First is the "fixed-T" shortcut (F): confidence intervals for all

parameters except T are calculated as if r had been fixed in advance. For
+

general models of the form (1.1), the fixed-tau limits AJF and X are of
a A

the form of Equation (4.3), but with V (A), as given by Equation (4.10) with

T T, used to estimate the variance of X. These limits are the points

A given by Equation (4.9) for T ; r,and correspond to the cross-section of

-14-
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the contour at T. For the energy model example of Figure 1, the fixed-tau

Al E-,s;I is roughly half an wide as the sum-of-squares interval
lntF

[ -, 1.

The second shortcut displayed is the "extreme-TO shortcut (E). For the

general case, the extreme-tau limits A and + are obtained by
a- +

evaluating XT at the extreme values T and T . Implicit in this

procedure is the assumption that i could be determined perfectly if T

were known. In terms of the sum-of-squares contour, the points (T A ) and
T

(T + ) are the extreme points in the T direction. In Figure 1, theT+T - +
extreme-T confidence interval (E ,B I understates the width of the sum-of-

squares interval by only about 15%.

The fixed-tau interval (F) indicates the uncertainty the estimate B

would have even if T were known, while the extreme-tau interval (3) shows

the uncertainty in B attributable to uncertainty in T. The correct

confidence interval must combine these two sources of error. As will be seen

in the next section, the two simple shortcuts can be combined in a straight-

forward way to give a confidence interval quite close to that obtained by the

complete sum-of-squares method. This composite shortcut will be shown in

Section 6 to perform extremely well for all the conditionally linear

parameters a, B, and r of the energy model.

5. The Composite Shortcut

If the energy model function n were linear in all parameters, the

contour shown in Figure I would be a perfect ellipse. The equation for this

ellipse is conveniently expressed as

(X)2 + (Z - o- 2 (5.1)
X0 z0 X0 z0

'0 , 115-
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where X T-

2 - B-
2

X Var(B)1 1w0Z' Var( B)Flw-

A A

p - Corr(0,c)

For the general model of the form (1.1), the parameter B can be understood

to represent any conditionally linear parameter X

An arbitrary ellipse centered at the origin can be written in the form of

Equation (5.1), with X0  and Z0 positive. Since the equation has no real

solution (X,Z) for III > 1X0I or IZI > IZ0I, the values ±10 and ±0

respectively represent the extreme values of X and Z on the ellipse.

Now assume that we know two points on the ellipse. once is (X0, U),

the single point satisfying Equation (5.1) at the extreme value X - 10. The

other is (0,Z,), one of the two points satisfying the equation for X - 0.

Solving the equation for Z. and Z., we find

ZZ  P z0  (5.2)

and

!Z 2 1-P2  (5.3)
Z0

As a result, we have

Z2 '2 ~2 (5.4)
0  Z + Z .

Next, assume X and Z are random variables following a bivariate

normal distribution with mean zero, variances (kX0 )
2 and (kZ0 )

2

( respectively (for some constant k) and correlation p. It is a straight-

forward exercise to show that the conditional mean and variance of Z are

given by
XO3(z12) = p !-(o ( ) (55)

2 2 2
E((z-3(zlx)) lII - (1-p )(kZ ) (5.6)

-16-



Comparing Equations (5.5) and (5.6) with Equations (5.2) and (5.3), we see

that (kZ,) 2 and (kZ 7 )2 respectively represent the variance of the

conditional expectation of Z given X, and the expectation of the

conditional variance of Z given X.

Equation (5.4) is thus a restatement of the classical decomposition of

variance

Var(Z) - Var1 (3(Z lX)) + z1 (Var(ZIX)) ( (5.7)

Equation (5.7) may be found, for example, in Rao (1979, p. 97). This

decomposition applies to general, jointly distributed random variables. The

2
assumption of normality yields the components in proportion to p and

2
1-p.

Finally, we return to our original interpretation of X and Z as

and B - B, respectively, for a given pair of estimates (W,). With

the model function n still assumed linear, Equations (5.2) - (5.4) then

become

(B+_)2 0 2 (g +-;) + (1"p2)(B+-;)2

. *, - , '2 , +- a, (5.8)

and similarly for B"

The ellipe defined by Equation (5.1) nov represents a confidence region

for the unknown parameters B and r, rather than a prediction region for

two random variables with zero means. Nevertheless, Equation (5.8) can still

be interpreted in terms of the decomposition given by Equation (5.7). A

( similar decomposition, given below, relates more directly to the confidence

i interval for B.

t Frsrlt, corresponding to the conditional expectation Z(Z IX), the least-

squares etimaLte of B at a particular assued value T can be expressed as

;,~ ~ + & 2 5,

Var 1r)
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As a result,

Var(O0 -0) 3 3(0 - B) -P Var(i) *(.0

If B could be determined perfectly if T were known, as assumed by the

extreme-tau method (3), then the left-hand aide of Equation (5.10) would
M 2

represent the variance of ;, and we would have p 2 1. Thus, as indicated

earlier by Equation (5.2), the extreme-tau method amounts to understating

2
Var(B) by a factor of P

For the second component of the variance, corresponding to the

conditional variance Var(ZIX), consider the variance of TO, the estimate

of 0 when T is known (or fixed in advance). For a linear model with

uncorrelated, constant variance errors, this variance is related to the

unknown-C variance Var(O) by

A 2
Var( ) - (10 )Var() . (5.11)

For the energy model, for example, in the case of known T we have

2Var( T )  a 2/SlH ,

whereas when T is estimated the linear approximation gives

Var(S) q 2/SH1(1-p 2 )

For the general case, Equations (5.10) and (5.11) together give a

decomposition analogous to Equation (5.7). Assuming T to be the true value

of that parameter,

Var(S) - Var( -) + Var(S , (5.12)

This decomposition coincides with that given by Equation (5.7) when the

estimates I and B follow a normal distribution.

Equation (5.12) can now be understood as the formal expression of an
+*

earlier statement. The extreme-tau limit 0 represents the error in

associated with error in T, as given by Equation (5.10). The fixed-tau

-Ia-
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limit 8+represents the error in B for a given T, as in Equation

+
(5.11). Equation (5.12) shows how the true limit B combines these two

sources of error, for a linear model function.

For the nonlinear model functions, the composite shortcut (C) given by

Equation (5.8) offers a simple approximation to 0 . One indication that this

approximation should be good for the parameters of the energy model is the

fact that, for the data set of Figure 1, the shortcut limits 0 and F are

quite close to those indicated by Equations (5.2) and (5.3). The correlation

p between B and T, based on Equation (4.5) for the Gaussian approxi-

mation, is -0.83 for this data set. Thus, Equations (5.2) and (5.3) imply

that the extreme-tau (E) and fixed-tau (F) shortcuts should understate the

sum-of-squares interval lengths (S) by 17% and 44%, respectively, as compared

with the actual understatements of 15% and 45%.

As will be seen in the next section, the composite shortcut is indeed

excellent for the parameters a, B, and r of the energy model. After

examining the performance of this shortcut for our motivating model, we will

turn in Section 7 to considerations for general models of the form (1.1), with

an arbitrary parameter X taking the place of B.

6. Application of Approximation Methods to the Energy Model

Figure 2 compares confidence intervals obtained by the sum-of-squares

method (S) and by the different approximations for the data set of our earlier

example. For each parameter a, B, r, and T of the energy model, the

different upper and lower confidence limits are plotted as functions of the

w/2
nominal confidence level, or equivalently, of t " . For the reference

temperature T, only the sum-of-squares (S) and Gaussian (G) methods apply.

The sum-of-squares (S), extreme-tau (W), and composite (C) limits were

-19-



Figure 2. Confidence Intervals by Different Approximation methods
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computed only for integer t-values. Since the Gaussian (G) and fixed-tau (F)

limits are linear in the t-value, these limits are shown exactly over the

range displayed.

6.1. Comparisons for assload, Heating Rate, and reference Temperature

For the intercept a, slope 0, and reference temperature T, Figure 2

shows the Gaussian and su-of-squares limits in fairly close agreement for

lower confidence levels, though they diverge at higher confidence levels. For

data sets like this one, then, we night be satisfied with the Gaussian

approximation for any confidence level of practical interest.

However, in applications of the energy model where the standard errors of

the estimates are relatively large compared to those seen here, these two sets

of linits.will tend to diverge earlier. In particular, for data sets with a

high sample variance (F or with too few observations, the Gaussian

approximation may be unreliable. Such data sets have been found occasionally

in single-house analyses.

When the Gaussian approximation (G) is suspect, the composite method (C)

offers a convenient improvement for the linear parameters. For both a and

0, the composite limits follow the sum-of-squares limits (S) quite closely,

w/2
only a slight discrepancy being seen for t 9  - 5, corresponding to a

confidence level greater than 0.999. For a as well as for B, the two

components (9) and (F) of the composite approximations are of roughly equal

magnitude, so that neither alone is adequate.

6.2. Approximations for Normalized Annual Consumption

A different pattern is seen for the index r, of major interest in

energy analyses. The curves for the Gaussian (G), fixed-tau (F), and

composite (C) approximations are indistinguishable from those for the sum-of-

-21-
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squares limits (S) in Figure 2. The reason the four methods coincide is that

the index is quite insensitive to the nonlinear parameter T, asT

indicated by the narrow bands of the extreme-tau (3) approximation. For this

parameter then, it is reasonable to ignore the estimation error associated

with error in T, relying simply on the fixed-tau method (F). The composite

(C) and Gaussian (G) approximations represent negligible corrections over the

fixed-tau method alone. Because the accuracy of the fixed-tau method is quite

useful in practice, we consider in more detail what circumstances make this

method reliable.

Equations (5.2) and (5.3) indicate that more of the variance of r will

be associated with the extreme-tau limits, and less with the fixed-tau limits,

when the covariance p between F and T is large. The magnitude of this

covariance (C(F,r) in Equation (4.5)) tends to be larger for larger values

of AH and AF. The general insensitivity of r' to T stems from the fact

that normal degree-days H0 (T) and its derivative F0 (T) are usually close

to the corresponding sample means H(T) and i(T), so that the terms AH

and AF are small.

However, the insensitivity of F to T may not hold if theI

observations Y are not taken over an integral number of years, or are taken

at unevenly spaced times. In such cases, the differences AH and AF

between the base-period values and the sample means are likely to be large.

Such irregularly occurring data are comon, for example, for fuel oil

(deliveries, which are more frequent during cold months. As a result, for some

oil-heated houses the correlation p between r and T is occasionally too

high for the fixed-tau (F) approximation to be trusted.

For the example data set of Figure 2, AH - 1.30F and AF - 0.012,
AA

while the correlation p between r and T is 0.07. The situation is

quite different for a particular oil-heated house in the same region. For

-22-
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that house, all but one of the nine observations represented winter

consumption; the corresponding values are AH - 7.60F, AF - 0.426 and p -

0.6. In this case, for w = 0.05 the fixed-tau limits (F) understate the

sum-of-squares limits (S) by 20% (as compared with a negligible amount for the

data set in Figure 2). By contrast, the Gaussian interval of (434,9381

(gallons per year) is quite close to the sum-of-squares interval (412,927].

The composite interval is even closer: [423,923].

Thus, the same relationship that was found for the parameters a and 6

of the ordinary aggregate gas data set displayed in Figure 2 holds also for

the index r even in a case where the fixed-tau approximation (F) is

unreliable. That is, the Gaussian approximation (G) seems to be adequate for

confidence levels of practical interest, but the composite shortcut (C) is

still more accurate. In the next section we will discuss why the composite

should be superior in general for models of the form (1.1).

6.3. Implications for Other Energy Data Sets

A total of 75 aggregate gas data sets were fit by Equation (2.2), with

the degree-day variable defined by Equation (2.3). Although they were not

studied in the same detail as the data set used for Figures I and 2, our

analysis indicates that the rest of these data sets should behave similarly.

For one thing, the (Gaussian approximation) correlations among the parameter

estimates a, 8, T, and r were similar for all the data sets studied.

Secondly, as discussed elsewhere (Goldberg, 1983), the example data set seems

to be typical in terms of the severity of nonlinearities which might distort

the sum-of-squares contour from an ellipse. From the previous section, we

know that the success of the extreme-tau (W) and fixed-tau (F) shortcuts

depends on the magnitude of the correlation p, while the success of the

composite shortcut (C) depends on how nearly elliptical the sum-of-squares

contour is.
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7. Advantages of the Composite Shortcut

In applying the approximation represented by Equation (5.3) to a general

model of the form (1.1), two considerations are important: ease of computa-

tion, and accuracy. As noted above, we here measure accuracy in terms of how

closely the composite limits (C) approximate the sum-of-squares limits (3).

Computation of the composite limits (C) is considerably easier than

finding the sum-of-squares limits (S). Once the least squares estimate 0

has been found, a nonlinear equation must be solved only to obtain the limits

T and + for the nonlinear parameter T. For the linear parameters AV

the extreme-tau limits (E) are then eaioly obtained as the coefficients from a

linear regression at T and T , and the fixed-tau limits (F) as confidence

interval bounds for a linear regression at T.

If the model has been fit using the derivatives ;, as with the commonly

used procedures based on Newton's method, the composite shortcut (C) will

require more computational effort than the Gaussian approximation (G).

However, for some types of models, particularly non-differentiable -. sI

derivative-based fitting procedures may be impractical. The comptxity such

methods can impose was indicated in Section 3. Even for continuously

differentiable model functions n, it may be easier, and more informative,

for an analyst to run a series of linear regressions, varying the parameter

Tr, than to implement a nonlinear regression routine correctly for his

model. Provided a wide enough range of values of T was used initially, the

composite shortcut (C) can be computed directly from the output of such a

series of linear regressions.

Whatever the fitting procedure used, both the Gaussian (G) and fixed-tau

(F) methods offer the computational advantage of giving limits for any

confidence interval of interest by multiplying a single standard error
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estimate by the appropriate t-value. Further, the latter method (F) does not

require the derivative of the model function n vith respect to the nonlinear

parameter T. However, the linear, t-based confidence intervals (F) and (G)

cannot reflect any asymetry in the likelihood (8) region. As can be seen in

Figure 2 of the previous section, this asymmetry is captured by the extreme-

tau method (Z), and is appropriately incorporated in the composite (C).

For the energy model, the composite approximation (C) was seen in the

previous section to be quite accurate, and superior to the Gaussian

approximation (G). The difficulty with the Gaussian approximation in general

is that any nonlinearity in the model function will make the Gaussian ellipse

different from the sum-of-squares contour, even though many types of

nonlinearity will leave the sum-of-squares contour itself essentially

elliptical.

Hamilton, et al (1981) presented, as an improvement over the Gaussian, an

explicit elliptical approximation to the sum-of-squares regions, based on a

second-order expansion of the model function n. Their method applies to

general continuously differentiable models, but requires that the model

function have no "parameter-effect" nonlinearities. As shown in related work

by Bates and Watts (1980 and 1981), this requirement is not often met by

models under a natural parameterization, nor is it easily achieved by

reparameterization for most models.

The composite method is accurate so long as the sum-of-squares region is

roughly elliptical, even if the ellipse does not coincide with any explicit

approximation we might consider. Further, since the composite method
A

approximates the two halves of the sum-of-squares region (for T o ; and for
A

T < T) separately, the procedure can perform well even in the presence of

substantial asymmetry, unlike any single elliptical approximation. Finally,
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an important consideration in the present study, the composite method can be

applied to both continuously and piecewise differentiable models. Extensions

of the method to accommodate joint confidence regions or models with more than

one nonlinear parameter are also possibles the practicality of such procedures

remains to be investigated.

2
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estimate by the appropriate t-value. Further, the latter method (F) does not

require the derivative of the model function n with respect to the nonlinear

parameter T. However, the linear, t-based confidence intervals (F) and (G)

cannot reflect any asymmetry in the likelihood (8) region. As can be seen in

Figure 2 of the previous section, this asymmetry is captured by the extreme-

tau method (M), and is appropriately incorporated in the composite (C).

For the energy model, the composite approximation (C) was seen in the

previous section to be quite accurate, and superior to the Gaussian

approximation (G). The difficulty with the Gaussian approximation in general

is that any nonlinearity in the model function will make the Gaussian ellipse

different from the sum-of-squares contour, even though many types of

nonlinearity will leave the sum-of-squares contour itself essentially

elliptical.

Hamilton, et al (1981) presented, as an improvement over the Gaussian, an

explicit elliptical approximation to the sum-of-squares regions, based on a

second-order expansion of the model function n. Their method applies to

general continuously differentiable models, but requires that the model

function have no "parameter-effect" nonlinearities. As shown in related work

by Bates and Watts (1980 and 1981), this requirement is not often met by

models under a natural parameterization, nor is it easily achieved by

reparameterization for most models.

The composite method is accurate so long as the sum-of-squares region is

(roughly elliptical, even if the ellipse does not coincide with any explicit

approximation we might consider. Further, since the composite method

approximates the two halves of the sum-of-squares region (for T ) ; and forAA

T 4 T) separately, the procedure can perform well even in the presence of

substantial asymmetry, unlike any single elliptical approximation. Finally,
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an important consideration in the present study, the -mposite method can be

applied to both continuously and piecewise difforentiable models. xatensions

of the method to accommodate joint confidence regions or models with more than

one nonlinear parameter are also poasibles the practicality of such procedures

remains to be investigated.
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APPENDIX

Following is the procedure used to fit Equation (2.2). For more details,

see Strat, et al (1982). The terms Tmax and Tain  respectively denote the

highest and lowest temperatures Tmj in the data set.

(0)
1) Choose a starting value T , a maximum number IMAX of iterations i,

and checking ranges Ni and N2. (Recommended values are T(0) - 650F,

IMAX - 10, Ni - 4, N2 - 10.) Set i -0.

Iterative search by Newton's method

2) Find T(i+1) from Equation (3.4).

3) Find ; by one of the following, and choose the corresponding checking

range NCHECK:

a) If i ) IMAX, set T = T(M (NCHECK- N2).

b) If T (i+ ) ) T or T(i+1) C T set )  (NCHECK - N2).max Mn

c) If T (i+1) T(i 1) set - integer between T(i) and T(i+)

(NCHECK - NI).

d) If T(i+I) = T(i), set T M( ) (NCHECK - NI).

e) Otherwise, replace i by i + I and return to step 2.

Local grid search

4) Set: k - integer part of the current estimate r:

kmin - max(Tmin, kNCHECK);

kmax ' min(Tmax, k+NCHECK).

5) a) Repeat for k - kmin to kmax' then go to b):
A A

If RSS(k) < RSS(T), replace T by k and replace k by k.

b) If t kmi n  or T -kma x  continue to c).

Otherwise go to d).

-27-
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c) (For the rare cases when 3a) or 3b) gives an initial value I close

to Tain or Toax" )

For k-n-k.in (km,,) reset kmin (k.ax) as in Step 4. If the

"reset" makes no change, go to d). Otherwise, return to a) for k -

knin  tO k (k to kax

d) For k-k-I and k- ,

Find Ik as Ti from Equation (3.4), evaluated for TI k.
If ;ke [k,k+13 and ROB(; ) < RSS(A), replace T by T

kn k kS()

6) Computation of remaining parameters

Calculate

S-(SHY/SHIE)

Y - OHM
A A A- Y- 81(r)

r a a aH0 T

A procedure described by Hinkley (1971) for fitting a very similar change

point model is equivalent to starting at step (5), and letting k range

from Tin + 1 to Ta x - 1. The full procedure given here greatly reduces

the total number of function evaluations required, at the risk of settling on

a local minimizer which is not the global minimizer of RS(T). The values N1

and N2 have been chosen to reduce this risk to a very low level (see Goldberg,

1982).

2

: -28-

* ° 4

. . . .' I *Ii



REFERENCES

Sates, D. N. and Watts, D. G. (1960). "Relative Curvature Measures of

Nonlinearity." J.R.S.S. B 42 :1-25.

(1981). "Parameter Transformations for Improved

Approximate Confidence Regions in Nonlinear Least Squares." Annals of

Statistics 9 : 1152-1167.

Dutt, G. S., Lavine, N., Levi, B., and Socolow, R. (1962). "The Modular

Retrofit Experiment: Exploring the House Doctor Concept." Princeton

University Center for Environmental Studies, Princeton, NJ, Rapt. No.

130.

Fels, M. F. and Goldberg, M. L. (1982). 'Measuring Household Fuel Consumption

on the Standard Living Cycle.a Energy 7 : 489-504.

Fels, M. F., Goldberg, M. L., Lavine, N. L., Socolow, R. H., and Abrams, P. S.

(1982). "Exploratory Analysis of Oil-Heated Rouses." Princeton

University Center for Energy and Environmental Studies, Princeton, NJ,

Report Ho. 139.

Goldberg, M. L. (1982). "A Geometrical Approach to Mondifferentiable

Regression Models as Related to Methods for Assessing Residential Energy

Conservation." Princeton University Center for Energy and Environmental

Studies, Princeton, NJ, Rapt. No. 142; Ph.D. dissertation for the

Department of Statistics.

(1983). "Measures of Nonlinearity for Segmented Regression

Models." University of Wisconsin-Madison, Mathematics Research Center,

Technical Summary Report #2549.

Hamilton, D. C., Watts, D. G., and Sates, D. N. (1982). "Accounting for

Intrinsic Nonlinearity in Nonlinear Regression Parameter Inference

Regions." Annals of Statistics 10 : 386-393.

-29-



National Oceanic and Atmospheric Administration, U. S. Department of Commerce

(monthly publication). oTAcal Climatological Data, Monthly Sumary,

Newark, New Jersey.O

Straw, D., Dutt, G. S., rols, N. F., and Goldberg, N. L. (1982). *The Score-

j, keeping Model for Residential fnergy Consumption: Procedures and

Problems." Princeton University Center for Xnergy and Environmental

Studies, Princeton, NJ, Rept. No. 147.

(J

MLG/Ps/Mtf/ jva

-30-

*-44t'



SECURITY CLASSIFICATION of TNIS PACE ( W,." Dge gEqes.d)

AWKWAEP RD N ONIER BOEEF v v p~~OR .O P EPINRT NUM

andTITaEgaaet F. Fels

MthEmaic ResearchNCEINTERAS O U ANrst ofmar RepOo rwt -noUM eci i
610KWAlnu StLNARMDLreetWortin WrkU i g pueri4od

II.~~~~S CONTROLLINGG 041E AE N ADES. REPORT DATEa

S. MOERORINGORAGECY I NAME ADSQ ADDRESS benCi10~W.j I t AEUR C9LASS. SMeC. TASKe

11. ONTROLTING OFTATE MEN ADDES 12. REPOR DAT

Approved ~ ~ ~ ~~ Noeme f19uli8eese3itibto nlmtd

16. DISTRIBUTION STATEMENT (of .*is j Re e i sb e ,316 0 *1 dt . . Ie CE DULE

14. SUPPLEMENTARY NOTES
U. S. Army Research Office and National Science Foundation
P. 0. Box 12211 Washington, DC 20550
Research Triangle Park
North Carolina 27709( ~it. Key WORDS (Cemea an rovere aid. It no.60wr OW 0~1?N* bp block ommet)

Nonlinear, Regression, Confidence Intervals, Energy

III. ABSTRMAC T (Cmntiu. on revers side It necessar and ideftit by block umb.,)
A simple method is developed for approximating confidence intervals for a

L linear change-point model representing residential energy consumption. The
imethod can be applied to any nonlinear model which is conditionally linear in
all but one parameter. The approximation is shown to be more accurate than the
Gaussian approximation, and easier to compute than confidence intervals defined
by likelihood (sum-of-squares) regions. Computations are described in some
detail for the motivating model.

,A~"73 1473 EDTO PIO 1 BOEEUNCLASSIFIED

SECURITY CLASSIFICATION OF T14IS PAGE (Mhena e.ROOMS*



I 4


