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N SUMMARY

The parameters of a linear dynamic system are estimated by using the maximum
likelihood method.
%Ma.xbnum likelihood estimates are asympiotically unbiased and efficient, that is they
aré good"?emnwm. Furthermore the maximum likelihood estimate of a fimction of
parameters is the finction of the maximum likelihood estimates of those parameters.

Two different situations are studied:

(1) the excitation force is random;
A —
—"

(2) the excitation force is deterministic.
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NOTATION . '
Drawing a distinction between a random variable and a possible realisation of that random
variable leads to a cumbersome notation.
Contextual information should make it clear which possibility is referred to. As a result, in
this report no distinction will be made. f
M A matrix with components M,
X A vector with components x;
E The mathematical expectation operator
b A summation over all observed frequencies
n A product over all observed frequencies '
v* The complex conjugate of w
u’ The transpose of u
n The number of ensemble averages ?
m The number of discrete frequencies observed '
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FORMAL DEFINITIONS
OV, = jth observation of output at frequency w.
19, ,,, = jth observation of input at frequency .
Sample estimate of average output power
l N
P (iw) = 171?1 o 0
Sample estimate of average input power
1 N
Pliw) = N ng IO
Sample estimate of average cross power
1 N
P (iw) = 1—V1§1 om(l-)'w'(u)
Sample estimate of coherence

Py = P, . P}
¢ P,.P,
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1. INTRODUCTION

This report is concerned with the maximum likelihood estimation of dynamic system
parameters. The particular linear systems considered are:

(i) an elastic aircraft on the ground;

(i) an clastic aircraft in flight.
{(The method used, however, is of quite gencral application.) The acrodynamic feedback forces
depend in a linear way on the past history of the aircraft. The transfer functions for the “aircraft—
air”’ system cannot be represented by rational transfer fuuctions. However, rational transfer
functions can approximate non-rational transfer functions to any degree of accuracy over s
limited frequency range. Chapter 2 gives a brief summary of the properties of linear systems
pertinent to the estimation process. Chapter 3 formulates the deterministic likelihood function
for excitation for single and multiple channels. '

“Globally” stable numerical algorithms are also presented to solve the likelihood equations !
and an estimate is made of the asymptotic covariance matrix.

Chapter 4 formulates the likelihood function for random excitation of single and multiple
channels. A “globally” stable numerical algorithm is presented for the single channel case.

No attempt is made to solve the general inverse problem of determining the mass density f
variation throughout the structure nor the boundary conditions. There is also no attempt made
at finding coefficients of a set of lincar differential equations which is a minimal realisation of the :
process. '

The purpose of the estimation procedure is to provide estimates of the damped modes and '
frequencies which may be compared with the results of finite element program and/or allow the
calculation of generalised mass, generalised damping and generalised stiffness. The Ho ;
algorithm (Anderson and Moore) provides a method to obtain a minimal realisation from a ‘ ‘
transfer function matrix. It is well known that the general inverse problem is unstable, i.c. large ‘
changes in mass density variations can lead to small changes in the impulse response. An extremely !
i good summary of the maximum likelihood method is given by Kendall and Stuart [1]. The
\ ) asymptotic distribution of the finite Fourier transform, on which this method of estimation '
| relies for robustness is covered by Brillinger {2] and Anderson [3]. Only clementary resuit in

dynamics theory are called for with the exception of the minimum-phase transfer functions and

. the fact that the principal subdeterminants of the transfer function matrix under certain con-
i ditions form a minimum-phase system.
\ There can be a number of reasons for estimating dynamic system parameters. The simple
{ i answer being to obtain a mathematical model, however this really begs the question. Given a
i mathematical model of an aircraf on the ground it is possible to compute a model for an air-
- craft in flight. Stability questions may then be answered, i.c. for what range of values of forward
l : speed and altitude is the aircraft stable? Control laws may also be devised to stabilize an
I

unstable system or to move the system in the shortest possibie time (subject to contro! constraints)
to another state. The last problem requires an sccurate model of the dynamical system. The
literature on system identification is immense; a good survey paper is System Identification—A
Survey, by K. J. Astrom and P. Dykhofl. The paper Spectrum Analysis—A Modern Perspective by
. S. M. Kay and S. L. Marple Jr. looks at some of the deficiencies of various estimation procedures,
. especially in the time domain, and suggests that the direction of future research is in formulating
‘ computationally efficient maximum likelihood auto-regression moving averages for spectral
estimation. This report is confined to the frequency domsin and as such has a number of inherent
advantages for linear systems:

(i) lightly damped modes “‘separste” more than in the time domain;
(ii) measurement noise and process noise are much easier to model;
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(iii) the Fourier transform being a sum of a large number of sample time values allows the
application of the central limit theorem to give a Gaussian distribution for both the
real and the imaginary components—in other words there is a statistical robustness;

(iv) if the noise processes are stationary each frequency component is asymptotically inde-
pendently distributed.

The dissdvantages of frequency domain analysis are:
(i) pon-linearities are harder to deal with in the frequency domain;
(ii) non-stationarity of noise causes frequency components to be statistically correlated.

2. LINEAR SYSTEMS
In this section a brief summary will be given of the essential properties of linear systems
pertinent to the estimation process.
Consider a second-order linear stable system
Mx+Dx+Kx =0 @n
where x may be finite dimensional or infinite dimensional.
If an impulsive force is applied at the ith position it follows that

o
Mx+Dx+Kx = | &t) | ith position 22)
0
Equation (2.2) is equivalent to (2.1) for ¢ > 0+ with initial conditions x(0+) = 0
0

x(0+)=0  Mi(0+)= | 1 ] ith position.

The response at time ¢ is
x(r) = T (ke +kfubel) @3

where u's and a's satisfy
[’} +ap+ K =0. (2]

If impuises are spplied at all other positions then the impulse response matrix is, assuming that
the matrix is symmetric,

0= ‘g(-m’e"“ﬂ.‘-f'e”')- (PX))
If the matrix is not symmetric then »
)= ‘g(l.v,'e“"+lfv,‘"e‘") 26)
where v satisfles
[P} +aD+K]'v=0.
2
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For a linear system with general input K(t)
00) ~ || Koo @7

where O(t) is the reponse vector. On taking the Fourier transform of equation (2.7) it follows
that

Oty = Liorl 1y Q38

where T, is the transfer function matrix. T, is also known as the Fourier transform of the
Green’s function. Equations (2.5), (2.6), (2.7) and (2.8) are very general results and do not rely
of the “lumped parameter” model (2.1) which assumes a spatial averaging of the true partial
differential equation and that the system has no memory. The probability density functions of
observed time functions become much simpler in the frequency domain than in the time domain
hence all calculations are done in the frequency domain. The parameters to be estimated are the
damped modes (modes of decay), decay rates and decay frequencies. A number of situations
are studied :

(i) linear system excited by a deterministic signal;

(ii) linear system excited by a random signal.

3. DETERMINISTIC EXCITATION -

3.1 Deterministic Excitstion, Single Input and Single Output
In this Section a linear dynamic system is excited by a deterministic force at a particular
point and the response is measured at the same or another point. Typical force inputs that may be
used are:

@) Fi) = Asin%!‘ 0<1<T;

(ii) F(+) = “Hammer blow™.

Any force history that has an approximately flat power spectrum over the frequency range of
interest may be used. The relationship between measured output and measured input is

Oy = T (i) T Niaoys @G.1.1)
where N, is the noise at frequency @ and E(N,) = 0.
E(N oy {iap) = 6*(®). (3.1.2)

The noise may be considered to be made up of three components, viz:
(i) output measurement noise;
(ii) effect of non-linearities (non-lincarities are treated as though they come from a random
noise source),
(iii) process noise.
In the time domain nothing can be said about the probability density function of the noise,
without making some very strong assumptions. In the frequency domain, however, it is assymp-
totically true that the number of points in the transform increases:
(i) that the real and imaginary parts of N(,,, have a normal probability density function;
(ii) each frequency component is independently distributed.
Statement (i) has two exceptions. At zero frequency and at the NYQIST frequency the imaginary
part of N, is zero with probability one. These two frequencies will be excluded from this
analysis although only simple modifications are needed to include them. The likelihood function
may be formed in the following manner, at each frequency w the output has the “‘complex™
normal probability density function

2—117—()(“? {(0—TIXO* —T*I*)a*(w)})
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where o(w) is the unknown noise power at . The likelihood function, when there are n ensembies,
is at a particular frequency w
1 1
(i;).['Tw)]- (exp—{(O—TINO* —T*I*)/e*(w)})

The total likelihood function for » ensembles across a discrete frequency spectrum is
= —l‘ L —_ — & __ TR )i 2
L-11 (2:;){,2(,,,)]- exp—{UO—TINO* —T*I*)/o*(@)}. (3.13)

The likelihood function is a maximum when the negative log likelihood is a minimum. Not only
does L contain the parameters of the transfer function, L also contains the noise spectrum o*(w).

Now
oL
di(w)
when
o) = }'E(O—TI)(O-TI)‘. 3.149)

Substitution of (3.1.4) into (3.1.3) and taking the negative logarithm leads to the minimisation of
T log{z % (o—n)(o~-r'1~)}. (3.1.5)

A simple interpretation may be put on the function (3.1.5), viz. choose parameters in the transfer
function such as to minimise the estimate of the total noise in decibels.

3.2 Numerical Solution of the Objective Function

In any optimisation procedure the objective function should be well scaled. Let the para-
meters (decay rates, decay frequencies and damped modes) of interest be a,, . . ., ap. Then the
function to be minimised is

1 1
Fay, ..., ¢p) = — — —TI).(0-TI)*
(2, ap) mgloz[Nz(O ) . ( )]
where m is the number of frequency points. The non-linear equations to be solved are
—=0 I=1...p (3.2.1)

The Newton-Raphson method of solving non-linear equations states that if a; are initial estimates
then x,+Aa, are improved estimates where

oF ?F

— +E——Ax;=0 foralli 3.22

sa,+ Erape, M 0.22)
Unfortunately this method fails to converge or takes a long time to converge unless the initial
estimates are sufficiently close to the true values so as to ensure that the Hessian *F matrix

dapa,
is positive definite. An approximation to the Hessian matrix is used which is globally positive
semi-definite. This approximation is the asymptotic expected value of the Hessian matrix

T .Y
b 1P — ARTR)

w = ME

1 3.23)
N XO0-TIXO-TI)*
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The asymptotic covariance matrix which reflects the amount of uncertainty in the estimates is
given by
1 [ 2F 7. )
MN a«aa,]

3.3 Deterministic Single Point Excitstion Multiple Point Measurement

If a linear system is excitod at & single point and measurements are mae at a number of
points then there are two possibilities which will be discussed:

(i) the outputs are measured simultancously;

(ii) the outputs are not measured simultaneously.
If the outputs are measured simultancously then it is possible that the system output is con-
taminated by correlated noise. Under these circumstances the maximum likelihood method leads
to the minimisation of the “integral” of the logarithm of the determinant of the estimated covari-
ance matrix of the noise. The function to be minimised in the case of two outputs is

O, —T I X0} T3, 1Y) (0,—T\ )O3 —T3,1})
' “ (0, T3 IO —T1:1,) (0;—To y)XO3~T3,1Y)

Sufficient statistics for this situation are: all the average output powers and al! the average cross-
i powers between outputs and all the average cross-powers between output and input. If the outputs
: are not measured simultaneously and are not measured during the same excitation then the
correlated noise is assumed not to be present and the off-diagonal terms in (3.3.1) vanish.

The maximum likelihood method under these circumstances leads to the minimisation of
the sum of all the “integrated™ logarithms of the estimated noise power spectra. This result is
the direct analogue of the single input-single output case.

33.0)

4. RANDOM EXCITATION

. 4.1 Siagle Output

If a system is excited by random noise then both real and imaginary components of the
output have a normal distribution. Each frequency component is asymptotically independently
distributed. If the real and imaginary components of the input are independent and have the same |
expocted power then phase has & circular uniform distribution and output power has a negative '
exponential probability density function. The previous restriction is equivalent to assuming that
the process has a certain type of stationarity.

)
| Q=11 @.L1) '
b it follows that
oo 00* = TT*II* 4.12)
- i Hence the likefihood function at a particular frequency is
3
s 1 00* 1
L= ;u{-—”—.;} @13
where
P=TT". “.1.9
S




If there are N ensembles the likelihood function is

W Z00* 1 ‘
L= (;) exp{—-—T’—.— . ;}. 4.1.5) )

The likelihood function across a discrete frequency spectrum is ‘

Y Zoo* 1 '

Maximising (4.1.6) is equivalent to minimising

00*
g (log P(~) + ”-—P——M). (4.'.7)
A unique solution for the transfer function is not possible even if P, is known without error.
This is because if T,,) = N,/ D,,, where N and D are polynomials in s (the Laplace variable) then
| _ MO M=)
D(s) D(—s)

s = iw

P(s)

(4.1.8) )

$ = 0

D(s) is uniquely determined since the system is stable. N(s) is not uniquely determined since any
pair of conjugate zeros can be replaced by their “unstable™ images and still have the same power
spectrum. If there are 4N complex zeros in P(s) this means that there are 2(%) possible solutions
for T(s). However the damping and frequencies are uniquely determined from DXs). As an
example of this non-uniqueness consider the two time histories:

(i) —e™¥42e%;
(i) Se™3 —6e~ %, .

4+w?)
O+w*)16+0?)
the above time histories by —1 will generate another two time histories still having the power

Both these time histories have the power spectrum density Multiplication of

4+w X . .
OFwiNi6t o) It should be noticed that the exponents remain the same in
all four time histories. The minimum phase system is —~3'+2¢™ %",

spectrum density

4.2 Numerical Solution of the Likelibood Equation
After appropriate scaling the function to be minimised is

00* ,
{4:'08 P, (o) + 7,2‘ é(n)]}/ M= F (alvalra') (4-2'l)

*
where M is the number of frequency points. For ease in notation define S, = Iol——?; where 00*

is the measured averaged output power and J/* is the known average population input power.
The equations to be satisfied are
W

— =0 i=1,...
>, i=1 Y 4

If a; are initial estimates then a,+ Ax, are improved estimates where

F ?*F
il = 4.2.3 * .
M‘+ Sapa, Az, =0 “23) Co
Now

dIF 1{1taP S

eyt _ 29 , 4.2.4

da, zM{P“l ? “l} ¢ )
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sapa; * zﬁ{?a?.a?,} (4.2.5)

The Hessian matrix is again approximated by a globally positive definite matrix. The matrix is
replaced by its expected value, and the approximation is asymptotically exact.

4.3 Linesr System Excited by an Usknown Random Pressure Field

If a linear system is excited by an unknown random pressure field, not necessarily white in
space and time, then it is possible to recover the damped modes, frequencics and dampings of the
system provided that the pressure distribution is assumed to be due to the one random source.
In other words the pressure distribution is coherent. In theory it is only necessary to assume that
any extraneous noise is uncorrelated between measuring stations. However to avoid working
with an unmanageable number of parameters it is assumed that the extraneous noise has a popu-
lation white power spectrum and this is of the same magnitude for all measuring stations. Let

0‘=T,I+N‘ i=l,...,m

where O, is the measured output at position i due to a random pressure distribution / and noise
N,. T, is an overall transfer function for the output at position i and

E(NNY) = 0%, 4.3.1)
ElIN=1 EIN}D=0 4.3.2)

If E(II*) # 1 then this is absorbed in 7). Hence
E0,07) = T.T}+06%,;. 4.33)

To uncorrelate the data it is necessary to find the eigenvectors of the matrix (4.3.3). The matrix
(4.3.3) has a degeneracy of order m—1 and as a result the eigenvectors may be defined in a number
of ways. This is now done.

Define
zZ, = IT?0, 4.3.49)
e Z,=T0,-T.0, M32 4.3.9)
EZ,Z}) = ETTIXETT; + 0% 4.3.6)
BZ,Z2) = (T\T1+T,T3)? @.3.7

EZZ})=0 i+#].
The Z random variables are uncorrelated. The maximum likelihood method in this situation leads
to the minimisation of

Z{ln(tT,T N+In(XT,T 1 +0%)+(n—1)ino* +
. S zz: z,z} }
-gz["'(r'r‘ AL e ] T ETTET T+

It should be noted that the ambiguity in the transfer functions is resolved by using the cross-
power spectra (see Appendix A).

5. CONCLUSION

The maximum likelihood method has been applied to the estimation of linear dynamic
system parameters for both deterministic and random excitation.

Globally stable numerical methods have been presented for the estimation of these para-
meters together with an estimate of the corresponding asymptotic variance. These estimatse have
the desirable property of being both asymptotically unbiased and asymptotically efficient.
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APPENDIX A

Ambiguity in Transfer Function Resolved Using Cross-power Spectra

Let 7,(s) and I;(s) be two transfer functions from a multiple output and multiple input
model. Let 7 be the random input to each (this is assumed to be white). Hence,

0,=T 0,=T (A1)
E0,0% = T\T*E(lI*) = 1,T" (A2
E(0,0%) = T,T3E(I*) = T,T}. (A3)

T, and T, will have common poles and thesc may be identified from either the output power
spectrum of channel 1 or the output power spectrum of channel 2 using the knowledge that the
system is stable. Given the output power spectrum the zeros of 77* may be determined but there
is a question as to how to assign these zeros to T and T'* respectively.
Let
T, = N,/Dand T, = N,/D

where Ny, N, and D are polynomials in S. It follows that

E(0,0}) = N,N1|D?, (A%)

Hence

£(0,00)/E(0,07) = N3N} (A5)
It follows that provided T, and T, have no zeros in common then T, and 7, may be determined
from power spectra and cross-power spectra. In practice the division (A5) is not performed as the

argument may proceed from common factors of E(0,0%) and E(0,0%). Overall ambiguity in
sign remains since multiplying each transfer function by —1 does not change the power spectra.




APPENDIX B

Redundent Information Contained in a Tramsfer Function Matrix
Consider a linear time invariant vibrational system obeying Maxwell's law of reciprocity
with no external energy source. Let T, (s) (i = 1, N;J = 1, ..., N) be a transfer function matrix
then the following statements are true.
(i) Each element has the same poles which lie on the LHS of the complex plane.
(ii) All the zeros of T, lic on the LHS of the complex plane, that is they are minimum phase
transfer functions.
(iii) Any principal sub-determinant forms a minimum phase transfer function.
(iv) Knowledge of the zeros along the main diagonal determines all the zeros of all the off-
diagonal elements.

Comments will now be made on each of these statements.

(i) The location of poles gives information on the damping and frequency of modes.

It is possible for zero-pole cancellation, if this occurs then for our purposes the
zero and pole are both replaced.

(it) The zeros of T;; correspond to the dampings and frequencies of the original elastic
system rigidly constrained at position i. Furthermore these frequencies must be greater
than or equal to the frequencies of the unconstrained system, for lightly damped
systems.

(iii) The zeros of any principal sub-determinant correspond to the original elastic system
constrained at every position whose element is left along the main diagonal. As the
determinant increases in size the transfer function tends to an all-pole filter.

(iv) As an example consider the 2 x 2 determinant
! Tll Tll |
i let T,y = Ny/D (Ty; = Tay)
i TlZ TIZ
where N and D are polynomials in s. The determinant is
E(s)
Ny Ny — N3 D¥s) = —=
(N11N2 =N 1) DA(s) D)
hence
N%z(-‘) = Ny N2 —E(s)D(s)
and N%; may be uniquely determined, provided N,,, N, and D are known. E(s) is
determined from the fact that N,, N, —ED has repeated roots and
N{z(si) = Nu(sl)sz(si)

where S, is any zero of D(s). The zeros of any off-diagonal term (7';) are calculated by
considering the binary system

{ Ty Tu{

i

| |

[Ty Ty
The total transfer function matrix cannot, however, be reconstructed due to ambiguity
in signs. In the example given N2, may be uniquely found, N,,, however, has an
ambiguity of sign.




The number of possibilities considering only binary systems is 2(3). Taking into account
higher order determinants reduces this number to 2°~'. As an exampie of these *“phase” possi-
bilities consider a matrix which is 3 X 3 with an acceptable phase distribution

[+ + +"
+ + +
|+ + 4+
then the other possibilities are
+ - - [+ — +T + + -
- + + - + - + + -
- + + |+ — 4+ - -+

This pattern of signs leaves all principal sub-determinants invariant.
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