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SECTION 1
INTRODUCTION

The Lockheed Palo Alto Research Laboratory (LPARL) has carried on
a program supported by the Defense Nuclear Agency (DNA) for the design,
construction, and test at brassboard level of a multi-channel data-
acquisition system (DAS) for the digital recording of analog signals
using charge-coupled-device (CCD) technology. The original brassboard
design provides eight channels of fully independent analog recording at
160 MHz input sampling rate in a single 8-3/4-inch-high rack-mount chassis.
The primary motivation for this program has been to evaluate the tech-
nological problems associated with the technique, not only problems directly
associated with the CCD, but also with such items as
o Clock driver technology
o Triggering and control techniques
o Digitizing techniques
o Output data-handling procedures
It has been evident that if the problems in these areas could be solved in
ways that would permit the realization of the theoretical intrinsic speed
of CCD devices, data acquisition systems based on CCDa could compete favorably
with digital oscilloscopes in providing high bandwidths for the recording of
fast non-repetitive signals. One would then be able to profit from other
capabilities offered by CCD systems, such as
| o Post triggering capability the digital
trigger delay
o The possibility of extremely long time
windows in comparison to conventional
oscilloscope sweep times of corresponding

resolution
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Since CCD technology is relatively new, the opportunity to influence
the course of future CCD device technology development has been an impor-
tant consideration. A very significant synergism has already developed
between the DNA program and an ongoing LPARL Independent Research Program
to develop and test technology for an ultra-~high-speed CCD. Imn particular,
clocking technology exchange has been very fruitful, and there are very
attractive possibilities for using the new CCD device with the present DAS
as a test vehicle.

This report describes the development of the DAS, including the inves-~
tigations of CCD properties and clocking techmnique carried out prior to the

brassboard design.




SECTION 2
TECHNOLOGY DEVELOPMENT

2.1 REQUIREMENTS FOR CCD DAS DESIGN INFORMATION
The design information required prior to defining the final brassboard
design objectives consisted of two major parts. First, it was necessary
to find and characterize the best available CCD for the application. Secondly,
clock drive and control facilities adapted to the CCD and the application
were required. These areas will be discussed in turn in the following
sections.
2.2 CCD CHARACTERIZATION
Excluding laboratory prototype units as being too expensive and of
dubious reproducibility, the best CCD we found available commerically was the
Fairchild FCCD321A, a dual-channel unit with 455 stages per channel, rated
at 20 MHz clock frequency. The unit is of the so-called 1-1/2-phase type,
having a two-phase structure with one clock phase run at a DC level. The two
halves of the unit have separately-driven clock lines with a common DC phase.
By running the two sides at opposite clock phases and making use of input
gating provided on the chip, it is possible to run the device as a 40-megasample
single-input unit with successive samples alternating between the two sides.
2.2.1 High-Frequency Properties of the FCCD321A
Using a breadboard driver and control system based on the techmology
described below in Section 2.3, the properties of the FCCD321A were explored
at clock frequencies ranging from 80 MHz to a few tens of kHz. Figure 1
shows data typifying most of the phenomena observed in operation of the FCCD321A
at high frequencies.
These data were clocked into the register at 50 MHz and clocked out at
3.125 Mhz, with the signal input a series of 10-ns rise-time pulses. The
trace shows the contents of approximately the first third of the register
from the entry end, about 150 cells out of 455. The last pulse on the trace,
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Figure 1 FCCD321A Performance at 50 MHz




therefore, had been clocked only some 16 or 18 cells into the register
before the transition from 50-MHz to 3.125-MHz clocking took place. In
consequence, there is little rise~-time degradation visible on that pulse.
Substantial rise-time increases are visible on the earlier pulses, however,
and at the opposite end of the register (not shown) the signal bandwidth has
dropped to just a few megahertz.

The sharp-edged, irregular negative pulses that appear on the trace are
not assoclated with the signal, but appear at fixed intervals throughout
the register, and are observed with very similar patterns at precisely the
same locations in all CCDs- of this type that we have tested. They are
observable only in fast/slow switched clock frequency operation, and increase
in amplitude with increasing clock frequency. From a number of lines of
argument, we believe they represent regions of poor coupling of the clock
fields in the CCD cell to the signal charge in the channel, probably asso-
ciated with the necessary changes in cell geometry as the register is passed
around a corner in the chip layout. In these regions, a kind of '"puddle" of
charge forms in the cell, with insufficient driving field to transfer at the
high clock rate. When the clock rate is slowed down, the '"puddles" have time
to empty, by diffusion or other slower means, and in consequence deposit
their contents immediately into the signal stream. ’

In first order, the effects of these corner defects of the register are
readily removed from the signal by subtracting a background trace, cell by
cell. From the rise-time effects observed in data such as that of Figure 1,
however, it is apparent that these defects are major contributors to the
degradation of signal bandwidth through the register. The effect is visible
on close inspection of Figure l--the rise-time increment between pairs of
signal pulses separated by a defect is anomalously large in comparison to that
between pulses not so separated. This is the result of the statistical nature
of the charge separation at each clock cycle between propagating signal charge
and the trapped charge in the defect.

When studies such as those described above were carried out at various
frequencies, it was found that the maximum signal bandwidth of the FCCD321A

occurs at clock frequencies very close to 20 MHz. At this frejuency, the
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risetime degradation through the entire register is very small, of the order
of one clock cycle or less in duration, giving a signal bandwidth close to
the Nyquist limit. Using both halves of the dual register in time multi-
plex, a sampling rate of 40 megasamples/sec is therefore a usable limit for
one of these devices. Such operation was verified experimentally, including
measurements confirming the efficiency of demultiplexing into the two chann-
els using the input gating facilities of the chip itself.

2.2.2 Low-frequency Characteristics of the FCCD321A

The principal additional parameter of the CCD needed for the design
of fast/slow data-acquisition applications is the register leakage rate,
which sets the lower limit on frequency of readout. It was found that room-
temperature leakage rates of the FCCD321A are typically full scale in 120 ms
or so, corresponding to leakages of about 0.5 pA per cell. If one allows 20%
of the saturation range for leakage drift, this implies a maximum readout
period of the order of 50 or 60 microseconds per sample on each half of the
device, well within the range of conversion time obtainable from inexpensive
integrated circuit anatog-to-~digital converters (ADCs).

It should be remarked here that leakage pattern noise, which is a problem
in start/stop operation of CCDs is largely averaged out in fast/slow oper-
ation, since the clock is mnever entirely stopped.

If multiple channels are required, either for multiple input signals
or for bandwidth expansion using signal demultiplexing techniques, the
measured minimum readout rates do place limits on the use of a single mini-
computer as the digital storage element for an array of CCDs. For example,
using the 5-microsecond minimum I/0 cycle of our laboratory minicomputers,
two 160-MHz demultiplexed channels would be about the maximum practicable
without using substantially more complex direct memory access techniques.

As will be seen below, this conclusion had a strong effect on the architec-
ture of the brassboard DAS.
2.3 CLOCK DRIVER TECHNOLOGY

Because of the capacitive load presented by the CCD clock bus to the

driver, and the careful waveform control required over a very wide frequency

range, high-speed clocking of CCDs presents substantial problems in the
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design of appropriate drive circuits. The initial objectives for this
project required the investigation of the properties of CCDs at frequencies
of the order of 100 MHz, well above the design maximum clocking frequency
of the FCCD321A CCD.
2.3.1 80-MHz Driver Breadboard

In order to drive the capacitance of the clock inputs of the FCCD32]A
at such frequencies, substantial high-frequency power capability is necessary.
The clock capacitance of the device under operating conditions was measured
to be an unexpectedly high 75 pf, more than double the data-sheet specifi-
cation.

The driver circuits built for this part of the investigation were based
on the Siliconix VMP family of RF power field-effect transistors (FETs),
and are diagrammed in Figure 2. The design is fully balanced, allowing both
sections of the FCCD321A to be driven with minimum RF return current from the
common DC phase line of the chip. As is evident, careful compensation and
neutralization were required to achieve the necessary bandwidth. To reduce
the very substantial power dissipation in the driver, the output stage used
broad-band inductive bias elements. This circuit was capable of producing
15~V peak-to-peak output (each side to ground) at up to 80 MHz while driving
75=-pf dummy loads.
2.3.2 20-MHz Driver Circuit

For driving the CCD array planned for the brassboard DAS system, it was
desired to simplify the driving circuits as much as possible, since each
analog channel would require eight clock inputs at 20 MHz. For this purpose
the circuit of Figure 3, based on type 75361 MOS memory drivers, was tested.
It was found that selected 75361's with proper input drive could produce the
clock waveforms 1llustrated in Figure 4, very nearly optimum for the CCD.
To provide a margin of safety, the brassboard layout provides socketing for
enough 75361's to allow paralleling two drivers onto one clock line in order
to reduce the dissipation in each driver.
2.3.3 Very-high-frequency Clock Drivers

It is8 clear from our experimental work that the extension of CCD
driver technology to still highker irequencies is not a trivial matter.

9




HYOLINOW

ITNOIT) 19ATIQ APOTD ZHW-08

400 N1D

ez 2andyyg

1154

10




]

ITNDIT) ISATIQ-31d NO01D ZHW-08  qZ 2and1y

el X7 258

i+
MZ/ 5ot
vz
— o (o) {
i1 00€ YU 001~ "
Al Mu_‘; oLy
IS IS
1 %01l

11

s
i

Jurt yu ool ~

V096 LWW

(454




ECL TO TTL TRANSLATOR TTL TO MOS DRIVER

“—iF 9— +5(A)
% 75361
360

360
D=

1
2N2369A ,
IN913 IN914 |ﬂ .
— 3 }IG_O
200 100 200 2.8K> "8 u[ 5

1 | I I

T 1
100 500 = = =

- +5(B)

+15
3.2
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Using the approaches outlined in Section 2.1.1, even allowing for substan-
tial reductions in clock bus capacitance and drive voltage requirements in
CCDs designed for higher frequencies, the power level required becomes
formidable. We therefore devoted some effort to the development of a clock
driver concept capable of fast/slow switching that would show more favorable
frequency-scaling properties.

The concept developed is illustrated in Figure 5. In essence, the cir-
cuit is a tuned amplifier, with the tank circuit containing a series step-
recovery diode (SRD). With a relatively modest DC forward bias current, the
SRD can be maintained entirely within its high~conductivity operating region
even with relatively large circulating RF currents passing through it. This
is so because stored charge in the junction built up over charge storage
lifetimes of typically hundreds of nanoseconds is available to provide the
conductivity during the reverse half-cycles of the RF, while the forward
half-cycles return to the junction most of the charge extracted during the
reverse half-cycles. During the high-speed writing of data into the CCD,
then, the Q of the tank circuit greatly reduces the required input power
from the driving transistor.

When the time for the transition to low-frequency readout of the data
arrives, an avalanche transistor, fired in synchronism with the master clock,
can be used to remove the stored charge from the SRD. By the proper adjust-
ment of the timing, the SRD may be made to snap into its high-impedance mode
at the peak of the voltage waveform on the tank, when the inductor current
is zero. This "catches" and stops the oscillation with all of the charge
resident on the capacitance of the CCD clock bus. Low-frequency, low-power
auxiliary circuits can then take over the task of the low-speed readout of
the CCD data.

While no experimental version of this circuit has yet been built,
previous work in this laboratory has demonstrated that the key timing requir-
ement for the snap-off can be met with stability of the order of 1 psec.

The limitations on frequency scaling of this curcuit are therefore expected
to lie in the achievable tank Q and in the deviations of the impedance of
the CCD clock lines from pure capacitance at higher frequencies.

13
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Figure 5 Simplified Schematic of Tuned "Catcher"
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Figures 6 and 7 show more detailed circuit diagrams of the catcher
concept, in versions which catch the tank voltage at high and low levels,
respectively, as required for a two-phase CCD drive. These figures show the
SRD, tuning inductor L, equivalent CCD bus capacitance, and drive transistor
on the right in each case, and the avalanche transistor (Ql) on the left.

As is indicated, the same avalanche transistor would be used for both
phases, simplifying triggering.

The added circuitry in each figure serves to shift the operating biases
of the SRD and the driver transistor from values suited to high-frequency
tuned operation to those required for low-frequency operation with resistive
biasing. Referring to Figure 6, the Gate 2 input to transistor Q3 serves
to switch the forward bias of the SRD off for the low-frequency mode. 1In
Figure 7, a similar function 1s provided by Gate 4 and transistors Q7 and Q8.

In Figure 6 again, Gate 1 and Q2 serve to bypass bias current from R2
during high-frequency operation, so that Q4 is biased through D2 and L1 at
approximately half the peak-to-peak level of the bus waveform. After snap-
off occurs, Q2 is turned off, so that R2 becomes the load resistor for Q4.

In Figure 7, high-frequency-mode bias is supplied via D4 and L2, while low-
frequency operation is biased via R3. Gate 3 and transistors Q5 and Q6

serve to switch between these two modes. Note that the switching time re-
quirements on the gates are not at all severe, since the full duration of the
avalanche current pulse is available before the resistive bias is needed.

Diodes D1 and D3 serve as clippers, to bypass any excess avalanche
current to the supply buses and minimize overvoltage transients during the
snapoff process. Finally, we comment that all diodes except the SRDs
should be fast Schottky types. Aside from the tuning inductors, the remaining
component values are relatively non-critical.

15
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SECTION 3
SYSTEM DESIGN AND CONSTRUCTION

3.1 DESIGN PARAMETERS AND SYSTEM ARCHITECTURE

We give here a brief recapitulation of the critical factors which
determined the system design. The major choice was that the requisite
analog sampling rate be achieved by demultiplexing the input signal into an
array of commercially available CCDs as shown in the block diagram of
Figure 8. A nominal 160-MHz sampling rate is achieved using four Fairchild
FCCD321A dual 455-element registers at a basic clock rate of 20 MHz, which
we have determined is the maximum practical drive rate for these chips.

The minimum readout rate is determined by the maximum charge-retention
time of the chip, and is about 40 kHz for the entire register. To allow
independent readout of any number of channels onto a single digital data
bus without loss of data, and without saturating standard microcomputer
technology, individual integrated-circuit (IC) analog-to-digital converters
(ADCs) are used for each dual CCD register chip, multiplexed between the
two channels of the chip, and the results stored in memory within the DAS
module for later readout on the bus. This is also illustrated in Figure 8.

A more detailed block diagram of a single DAS module is given in
Figure 9, showing signal and control flow, major components of the controller
and memory systems, and the interface to the main-frame data bus. While
the high-speed clock and trigger control system is hard-wired,and necessarily
quite closely tailored to the drive requirements of the CCDs the low-speed
controller is PROM-driven, using a standard microprogram sequencer. This
allows great flexibility combined with considerable sophistication of oper-
ation built into the firmware of the module. Among the features of the firm-
ware are automatic baseline acquisition and a calibration mode, both controll-

able from the external computer bus.
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Communication with the external control and data-processing
computer is via a data and control bus permitting direct read and write of
the DAS module memory by the external computer. A 16-bit address bus is
used, the three most-significant bits of which are used to address one of
eight modules in the DAS mainframe, the remainder serving as module memory
address lines.

Two 16-bit 1/0 ports of a minicomputer are used in our particular
interface implementation. One output port is dedicated to the address bus.
Since the DAS data bus is 12 bits wide, four bits of the second output port
may be used for command and handshaking functions while still allowing a
full 12-bit write to the DAS.

The system design parameters are summarized in the following table:
160-MHz maximum sampling rate '

22.75 microsecond maximum time window at full rate
> 8-bit data word

10-bit data word

Post-trigger capability

Main-frame capacity 8 modules

6 0 0 0 ©0 o o

Firmware automatic baseline subtraction and calibration modes
3.2 PROGRESS IN LAYOUT AND CONSTRUCTION

As stated in the introduction, the primary goal of the program has been
to evaluate the general technological problems associated with fast data-
acquisition systems utilizing CCDs. A secondary goal, not actually realized,
was to generate a working 8-channel DAS capable of sufficiently high perform-
ance to have useful applications in the field. Because of problems encount-
ered in the actual layout and construction of the 8-channel system, it was
not possible to complete the system within the program cost without comp-
romising the primary goal and settling for much lower performance parameters.
This would have generated a completed system with perhaps some limited
utility, but would not have made any significant contribution to the ultimate
goal of a really satisfactory fast DAS. For this reason it was decided to
retain the original performance parameters and to work towards a solution of

the attendant problems introduced into system layout and construction.
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The physical layout of the DAS system is detailed in the next
sequence of figures. The main-frame, containing power supplies, cooling
fan, and a small computer interface board, is designed to occupy 8 3/4 inches
of standard rack space. Aside from a narrow panel containing the main
power switch and three manual control buttons, the entire width of the main-
frame is devoted to eight DAS module slots. This is illustrated in Figure
10. In Figure 10a, one module is shown partly inserted into its slot, while
Figure 10b shows the main-frame with modules removed. The module connectors
and interface bus are visible at the rear.

Figure 11 shows the rear of the chassis, first fully assembled (Fig.
11a), and then with the 5-volt power supply laid back for access to the bus
structure (Fig. 11b). Note the ribbon cable daisy-chain construction of the
bus. '

Figures 12a and b show the two sides of the first module in its present
state of construction, with the covers removed. Our original single-CCD
breadboard has been mounted in the location designed for the main analog
board for testing of the remaining sections of the module. All boards are
mounted on standoffs to the central septum plate that forms an interstage
shield and the mechanical backbone of the module.

Figure 13 shows detail of the left front section of the module,
including the high-speed control board and the input signal conditioning
board mounted on the front panel. Figure 14 shows the final version of
the analog board, with one of the four CCD sections complete, and the high-
speed demultiplexer installed in the center. The remaining three CCD sections
fit in the three remaining quadrants of the board.

As is evident from the Figures, both sides of the module are fairly
well filled by boards. Because of the module width restrictions arising from
the DNA-requested 8-slot main-frame format, there is not sufficient room to
put standard wire-wrap boards on both sides of the module septum. For this
reason, insulation-displacement-contact (IDC) integrated-circuit sockets were
used, a fairly recent introduction by the 3M Company. Among the advantages
of these sockets is a compactness of construction that allows the resulting

boards to fit easily within the available sparc.
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Figure 10a DAS Mainframe with Oneotule .nstalled
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Figure 10b DAS Mainfraue Front View
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Figure lla DAS Mainframe Rear View

Figure 11b Rear Access to DAS Mainframe
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Present Condition of First Module

Figure 12
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3.2.1 The Socket Reliability Problem
0f the various types of construction one might consider for a brass-

Eiice i 2y

board system of this level of complexity, the insulation~displacement

contact (IDC) is unique in its combination of compactness, ease of construc-
tion, and--most importantly--ease of modification. We have found that in

some circuit configurations, especially highly bus-oriented systems, construc-
using IDC systems may approach a factor of 5 greater speed than a similar
wire-wrapped circuit. We also find that the continuous wire runs character-
istic of the IDC system are considerably easier to document than the many
short wires of the wire-wrap approach.

Figure 15 shows two types of IDC systems. In Figure 15a, we see the
two-plece contact structure of the 3M Scotchflex IDC socket. The IDC forks
are carried on contact tails molded into carrier strips. The sockets are
assembled by pushing the contact tails through 0.043-inch holes on 0.l-inch
centers in the circuit board and into receptacles in the under side of the
socket body, on the other side of the board. The resulting system is
extremely convenient to use.

Unfortunately, we find that the contact within the original 3M socket
body is made of too soft a material, so that the circuit through the socket
body becomes intermittent rather easily. As a result, these sockets may be
suitable for small breadboarding applications, but they present an intolerable
reliability problem for any application requiring more than a few sockets.

We are not alone in this conclusion. The manufacturer has recently revised
the socket body and contact material in response to similar complaints from
other customers.

It should be emphasized that we have had no problems whatever with the
insulation-displacement fork contacts themselves. Therefore, the arguments
for the use of IDC contacts remain the same: compactness, ease of documenta-
tion, rapid modification, ease and low cost of construction. In view of the

3M socket upgrade, the most economical approach to correcting the present

DAS reliability problem 1is to replace the existing socket bodies directly
with the upgraded 3M sockets. We have verified that this can be done easily
without disturbing the existing wiring, thereby minimizing the cost of the

repair. 27




Figure 15a 3M Insulation-Displacerier.t Sockets
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Figure 15b Robinson-Nugent Insulation-Displacement
Contacts
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For applications in the field, it may ultimately prove desirable to
take further steps to increase the reliability of the socket contacts.
This could be accomplished by replacing the Scotchflex sockets with Robinson-
Nugent press-in IDC contacts, which are of high-quality one-piece construc-
tion, with hard beryllium-copper IDC forks and integral IC socket contacts.
These contacts are illustrated in Figure 15b.
3.2.2 Present Status of Construction and Checkout
The construction status of the DAS may be summarized as follows:
o The main chassis is complete and operational, including
the computer interface bus and bus control board.
o Sheet metal parts for all eight modules have been fabricated.
o0 Module 1 has been completely constructed except for the
final version of the analog board, which has been laid
out and one CCD section constructed.
o With the exception of the final version of the analog
board, boards have been completed and wired for Module 2.
but have not been installed on the module chassis. Some
wiring corrections made during the checkout of Module 1
have not yet been made to the Module 2 boards.
Checkout of the main-frame of the DAS is complete, and checkout of one
module is approximately 75% complete. The sub-systems checked include
o The input amplifier and gain control
o High-speed logic board
o Controller board functions and controls--minor correctioms
to the PROM-resident firmware remain to be made and checked
o Memory address register functions
Addtional checkout is required for the following subsystems:
o Memory read/write functions
o ADC board
o Analog board
3.3 SUMMARY AND FUTURE POSSIBILITIES
The progress achieved to date has indicated the workability of the basic
DAS design and its compatibility with future ultra-fast CCD development.

29




To provide an operating instrument and a useful basis for future develop-
ment, it would be necessary to complete at least one module using the
improved 3M sockets. After completion of the socket replacement, a short
experimental test series would be carried out using the existing single-
chip CCD breadboard as a substitute for the analog board. This sgeries
would be the first opportunity to obtain really reliable data on the system
perfofmance ultimately obtainable, and would permit making any necessary
changes to the design of the analog board before finishing construction.

We would then complete the analog board with any required corrections, and
carry out tests of the full system.
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