AD-A136 392 AIRBORNE INTELLIGENT DISPLAY (AID} PHASE 1 SOFTWARE
DESCRIPTION(U} MASSACHUSETTS INST OF TECH LEXINGTON
LINCOLN LAB A C DRUMM ET AL. 24 OCT 83 ATC-123
UNCLASSIFIED DOT/FAA/PM-83/30 F£19628-80-C-0002

b

10 bW

“m—:—;— w iR 22

— l‘a_. m s
- 40

s ="

= M“I.B

=

o

lizs flis w

I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 &

‘.,

Report N DOT/FALPWRL R0

Project Report
ATC-123

X i

Airborne Intelligent Display (AID)
Phase I Software Description

rp-A136392

AC Plramm

W.s Heath

] LA Richardeon
24 October 1983

| Lincoln Laboratory @
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINCTON, M ogss 1 HESELS

Prepared for the Federal Aviation Administration
under Electronic Syastems Division Contract FI19628-80-C.0002.

e e e AR P i 1111 £ e % riromoeriaes e o

springfield, Virginia 22161,

83 122 29 ©0o7

>
P
(&b
Pociment i~ availuble to the publie through
! the Nationat Technical laformation Serviee.
a—
e

Chus document - dissemnated vnder the spog-ur dap

af the Department of Teansportationin the iterestof
information en hange. The United States Governme nt

« to tahitits foe gt contents orase thersos

as e

TECHNICAL REPORT STANDARD TITLE PAGE

1. Negert Ne. 2. Governmont Asoession M. 3. Rosipleat’s Cotaleg Ns.
DOT/FAA/PM.83/30 D A \} ‘0. “5 q ;

4 Tiie and Subtitle §. Repert Dot

24 October 1983

Airborne Intelligent Display (AID) Phase I Software Description §. Porforming Orgenization Code

7. Awtherls) 8. Porforming Orgonizetion fagart Be.
Ann C. Drumm, Walter S. Heath and John A. Richardson ATC-123

8. Performing Ovgauinstion Natne end Address 10. Work Uait fle.

' Lincoln Laboratory, M.1.T.
P.O. Box 73 11. Contract or Grant Ne.
Lexington, MA 02173-0073 DOT-FA77-WAL 817
13. Type of Regort and Poried Covered

12. Speusering Ageasy Name and Address)
Department of Transportation Project Report
Federal Aviation Administration
Systems Research and Development Service 14. Speasering Agoncy Code
Washington, D.C. 20591

15. Supplomentary Notss

This work reported in this document was performed at Lincoln Laboratory, a center for research operated
by Massachusetts Institute of Technology, under Air Force Contract F19628-80-C-0002.

18. Abatrest

AN

N

~ The Airborne Intelligent Display is a microprocessor-based display capable of serving as a
cockpit data terminal in a variety of FAA developmental applications. A prototype of this display
was developed by Lincoln Laboratory during 1979-1980 in order to evaluate and demonstrate the
use of the data link between a Mode S ground sensor and Mode S transponder-equipped aircraft.
The AID served as a data link interface allowing the pilot to see, respond to, and initiate commu-
nications from a ground sensor. Later, when Lincoln began testing the Traffic Alert and Collision
Avoidance System (TCAS), the AID became the TCAS display device, showing position estimates
for TCAS-tracked aircraft.

More recently, a redesign effort, focused principally on software, was begun to extend the AID
design so that it could be more quickly adapted to a variety of FAA developmental programs.
Thie document describes the redesigned Airborne Intelligent Display, with special emphasis on
software design.

\\
\\.
17. Koy Werds 10. Olgwribution Sastomont
' Microprocessor Mode S Document is available to the public through

Display system Software the National Technical Informaticn Service,
Airborne Collision Avoidance Operating System Springfield, Virgina 22161.

19, Sevurity Clonsll. (of this report) 20. Seowity Clowall. (of B page) 20, Ne. of Pages . Pis
Unclassified Unclassified 148

Form DOT F 1700.7 ()

CONTENTS
Page
1.0 INTRODUCTION 1
2.0 SYSTEM DESIGN 2
2,1 Design Objectives 2
2.2 Design Approach 2
2.3 Display Requirements 3
2,4 Hardware Structure 7
2,4,1 Overview 7
2,4,2 Video RAM, Video RAM Controller, and Video
Multiplexer 7
2,4,3 Audio RAM and Audio Annunciator 7
2,4,4 Floppy Disk 9
2.4.5 Mode Switch 9
2,4.,6 Caution/Warning Button/Light 9
2,4,7 Keyboard and TEU Serial Input 9
2.4.8 S-100 Slot Utilization 10
2.4.9 Single Board Computer Characteristics 10
3.0 SOFTWARE GENERAL DESCRIPTION 13
3.1 Overview 13
3.2 System Software 14
3.2.1 System Startup 14
3.2.1.1 1Initial Program Load 14
3.2.1.2 Program Initialization 15
3.2.1.3 Interprocessor Startup Coordination 15
3.2,2 Interprocessor Communication 16
3.2.3 Task Scheduler 21
3.2.4 Message Queue Management 24
3.2,5 System Diagnostics 24
3.2.5.1 Non-Realtime Diagnostics 25
3.2.5.2 Realtlme Diagnostics 25
3.3 Service Processor Software General Description 26
3.3.1 Overview 26
3.3.2 Interrupt Handlers 29
3.3.2.1 The Service Processor/User Processor
Communications Interface 29
3.3.2.2 The Timer Interrupt Handler (ctcin()) 29
3.3.2.3 The Mode Switch Interrupt Handler (bswin()) 29
3.3.2.4 The Audio Control Board Interface (audin()) 30
3.3.3 Tasks 30
3.3.3.1 The User Processor Input Task (upint()) 30
' 3.3.3.2 The User Processor Output Task (upoutt()) 30
3.3.3.3 The Command Dispatch Task (dsptch()) 30
3.3.3.4 The Video Task (video()) 30
3.3.3.5 The Audio Task (audfio()) 34
3.3.3.6 The Timer Task (timer()) 34
3.3.3.7 The Mode Switch Task (mswtch()) 34
111
L ' J

CONTENTS (CONT'D)

Page
3.4 User Processor Software General Description 36 '
3.4.1 Overview 36
3.4.2 1Interrupt Handlers 38
3.4.3 Tasks 39
3.4.3.1 The Keyboard Task (keybd()) 39
3.1‘0302 The TEU Task (teu()) 42
3.4.3.3 The Timer Task (stim()) 46
3.4.3.4 The Service Processor Output Task (spoutt()) 47
3.4.3.5 The Service Processor Input Task (spint()) 47
3.4.4 User Graphics Package 47
4.0 SOFTWARE DETAILED DESCRIPTION 51
4.1 System Software 51
4,1,1 The Task Scheduler and Associated Functions 51
4,1,1.1 The Scheduler (sched()) Function 51
4.1,1.2 The Task Initiation (run()) Function 52
4,1.1.3 The Task Suspension (sleep()) Function 52
4.1.1.4 The Task Wakeup (wake()) Function 53
4,1,1.5 The Task Pause (pause()) Function 53
4,1.2 The Data Queues and Queue Management Functions 53
4,1,2,1 The putq(source, dest, count) Function 54
4,1,2,2 The getq(source, dest) Function 55
4,1.2,3 The putqwt(source, dest, stask, count)
Function 56
4,1.2,4 The getqwt(source, dest, stask) Function 56
4.1.2.5 The putqwk(source, dest, count) Function 57
4.1.2,6 The getqwk(source, dest) Function 57
4,1.2.7 The getqc(source) Function 57
4,1,2.8 The getqd(source) Function 57
4,1,2.9 The initq(source) Function 58
4,1.2.10 The mvbyt(source, dest, bytc) Function 58
4.2 Service Processor Software 58
‘ 4.2.1 The User Processor Input Task and Associated
Functions 59
4,2.1.1 The User Processor Input Interrupt
Handler (upin()) 59
4,2.1.2 The User Processor Input Task (upint()) 59
4,2,2 The User Processor Output Task (upout()) 59
4,2,3 The Command Dispatch Task and Associated Functions 60
4.2.3.1 The Dispatch Task (dsptch()) 60
4.,2,4 The Video Task and Associated Functions 61
4.2.4.1 The Video Task (video()) 61 .
4,2,4.2 The draw() Subroutine 61
4,2.4.3 The scalex() and scaley() Subroutines 61
4,2,4.4 The colorg() Subroutine 62

iv

O o T S e

CONTENTS (CONT'D)

E Page
" 4,2.4.5 The circleg() Subroutine 62
3 4,2,4,6 The lineg() Subroutine 62
Lo 4,2.4.7 The getpix() Subroutine and Related
: Routines 63
L 4,2,4,8 The string() Subroutine and Related
; Routines 63
4,2.5 The Mode Switch Task and Interrupt Handler 65
4,2,5.1 The Mode Switch Task (mswtch()) 65
4,2,5.2 The Mode Switch Interrupt Handler (mswin()) 66
4.,2,6 The Audio Task and Interrupt Handler 67
4,2.6.1 The Audio Task (audio()) 67
4,2,6,2 The Audio Interrupt Handler (audin()) 68
4,3 User Processor Software 68
4.3.1 The User Processor Main Program (main()) 69
4.,3.2 The Initialization Task (init()) 70
4.3.3 The Keyboard Task and Associated Functions 72
4.,3.3.1 The Keyboard Interrupt Handler (keyin()) 72
4.3.3.2 The Keyboard Task (keybd()) 72
4,3.3.3 Functions Called by the Keyboard Task 77
4.3.4 The TEU Task and Associated Functions 78
4,3.4.1 Overview 78
4,3,4,2 The Interrupt Handlers teuin() and cwin() 85
4.3.4.,3 The TEU Task (teu()) 86
4,3,4.4 Functions Called by the TEU Task 88
4.3.5 The Service Processor Input Task and Interrupt
Handler 95
4,3.5.1 The Service~Processor Input Task (spint()) 95
4.3.5.2 The Service-Processor Input Interrupt
Handler (spih()) 95
4,3,6 Service Processor Output Task and Interrupt Handler 96
4,3.6.1 The Service-Processor Output Task (spoutt()) 96
4,3,6.2 The Transmission Startup Routine (spout(b)) 97
) 4.,3.6.3 The Service—~Processor Output Interrupt \
Handler (spoh()) 98
4,3.7 The Timer Task (stim()) and Interrupt Handler (ctc()) 98
5.0 THE AUDIO RECORDING AND AUDIO RAM LOADING FUNCTIONS 100
5.1 The Audio Build (AUDBLD.C) File 101
5.2 The Audio Communication (AUDCOM.C) File 102
5.2.1 The Disk Input (input()) Function 102
5.2.2 The Audio Annunciation (annun(audptr, audlng))
Function 102
5.2.3 The Disk Output (output()) Function 103
5.2.4 The Operator Prompt (prompt(msgptr,retflg)) Function 103

WVmnsss e oo st -

CONTENTS (CONT'D)

Page
5.3 The Audio Recording (AUDRED.C) File 103
5¢.3.1 The Audio Record (record()) Function 103
5.3.2 The Audio Output (audout()) Function 104
5.3.3 The Audio Editing (edit()) Function 105
5.3.4 The Tone Generator (tone()) Function 105
5.4 The Sample Bits Recording (AUDBITS.Z80) File 106
5.5 The Audio RAM Loading (AUDRAM.C) File 106
5.5.1 The RAM Loading (AUDRAM.COM) Function 107
5.5.2 The Audio Record Input (input()) Function 107
APPENDIX A AID Operating System A-1
APPENDIX B "C" to Z80 Assembly Optimization B-1
APPENDIX C Aural Alerting for Phase I AID System c-1
‘Abéesﬁ{éaﬂggz_F
TNT1S GRAZI
NTIC TAS
Unazicunced a
B —
By. -
L“l..ﬂ'?b¥lticn1/ [

Availability Codeg~
o Avlfi and/or
Diat Special

Al

Tic
cren

copy

o
WNepr
k]
—

vi

|
WK =W WN -

*

VWO nN &

WWWwWwWiwwwwwwwwwwwww
ST WWWWWWNNNNNN

ILLUSTRATIONS

Fig,
2.3-1 Phase I AID Display
2.,4-1 AID Hardware Configuration
2,4-2 $-100 Buss Slot Usage

- Video Control Messages

- Video Graphics Message

- Audio Messages

- Miscellaneous Messages

Task States

Task Control Block

Service Processor Interrupt Handlers and Tasks
Service Processor Functional Block Diagram
Service Procegsor Data Flow Diagram
Dispatch Task Flowchart (One User—Processor)
Video Task Flowchart

Audio Task Flowchart

User Processor Functional Block Diagram
Keyboard Assignments

Keyboard Task Flowchart

TEU Task Structure

Main TEU Processing Routine TPROC

Keyboard Commands
Display Options Array
TEU Input Data Block Format

TEU Task Structure - Functions Used by the TEU Task

Functions Used by the TEU Task

Allocation of Screen for Text or Target Display

vii

20
22
23
27
28

32
33
35
37
40
41
43
45

74

79
81
84
91

|
‘h
1

APPENDIX ILLUSTRATIONS

Task Control Block

Task States

Task Program Structure

Task States and State Change Mechanisms
Computing Return Addresses: RUNADR, SLPADR
Task Initialtzation

Task Scheduling and Return

Alerting Sounds

Voice Messages for Resolution Advisory Alerts
IVSI Lights Numbering Scheme

Resolution Advisory Alert Processing

Traffic Advisory Alert Processing

Target Selection Logic

On-Screen Display Logic

TABLE

Aural Alerting Phrases Available in Phase I AID System

viii

1.0 INTRODUCTION

The Mode S beacon system, a combined secondary surveillance radar
(beacon) and zround-air-ground data link system, is capable of providing both
the aircraft surveillance and communications necessary to support Air Traffic
Control automation in the future. tlany uses of the Mode S data link within
the FAA ATC system are apparent but are, of course, untried and need to be
validated. The Airborne Intelligent Display (AID) reported here was developed
by Lincoln Laboratorv during 1979-1980 in order to evaluate and demonstrate
the use of the data link between a Mode S ground sensor and Mode S
transponder-equipped aircratt. The AID served as a data link interface
allowing the pilot to see, respond to, and initiate communications with a
vround sensor. Later, when Lincoln began testing the Traffic Alert and
Collision Avoidance System (TCAS), the AID became the TCAS display device,
showinyg position estimates tfor TCAS-tracked aircraft.

The AL is a wicroprocessor-pasea avionics display system which includes
a4 CRI (uoditied dendiv color weather radar display), pilot entry device
(kevpoard), and anmunciator.

The oriyinal AlL acuisn used a single Z8u microprocessor, assembly language
coding, and Ry stora.e and could not be easily moditfied to meet growing user
dewands . A redesipn oftort, focused principally on software, was begun to
develop an ALD that would be flexible in responding to the needs of a variety
ot FAA development programs. The redesizn effort is being done in phases.

The phase [ALD system, completed in 1952, supports the TCAS program. The
phase Il system will add Mode S data link capability.

This document describes the redesigned phase I AID systen. Three
sections follow: Section 2 covers system design, including design objectives
and approach, display requirements, and hardware structure; Section 3 gives a
software overview followed by general descriptions of each of the major phase
1 software functional units; Section 4 gives detailed descriptions of these
software functional units.

2.0 SYSTEM DESIGN

2.1

The

i.

2.

2.

3.

5.

Design Objectives

objectives of the AID software redesign effort were to:

produce a system that could be easily adapted to future design
changes and easily maintained,

require minimum changes to existing hardware,

develop software on a software development facility ($DF) that could
be inexpensively duplicated elsewhere to allow the FAA Technical
Center and others to develop or modify AID software,

use a program load device,

use structured, top-down software design techniques.

Design Approach

stated objectives were met by:

distributing the processing load among multiple Z80 single-board
computers (SBC's). This results in processing bandwidth
(instructions/second) and the amount of directly addressable memory
being multiplied by approximately the number of processors used. It
also allows the system to be divided into logical units that can run
in parallel. The software for these units may then be maintained by
different organizations if the defined interface requirements are
strictly observed.

limiting hardware changes to the addition of a second video RAM board
and modification of the video controller. These changes allow more
time for software screen generation and elimindte screen noise.

developing all software on an LSI-1l SDF and downloading object files
to Z80 SDF's for testing and integration with hardware. This
technique has been demonstrated to be far superior to developing
software on 280 SDF's directly,

using a floppy disk to permit program load before or during flight.
Load time is typically 2 minutes using a single eight-inch disk.

writing all software in the C compiler language. This language
enforces structured programming., It has been used on other similar
projects and 1s compatible with the objectives of this project.

T T

"

2.3 Displav Requirements

A wmajor objective of the AID software redesign effort was to produce an
airborne displav syvster flexible enough to respond to the needs of a variety
of FAA development prourams. £ach development program has specific
requirements in terms of equipment to be interfaced to the AID system and
information to be displayed. The phase I AID system was designed to interface
to a TCAS experimental unit, receiving aircraft position information and
displaviuy targets in a Planned Position Indicator (PPI) mode on the CRT. The
TCAS/ALD installation was used in subject pilot tests at Lincoln. These tests
gathered information on pilots' reactions to the display of 1CAS traffic
advisories under actual tlight conditions,

Features ot the pnase [AID display, especially in the areas of target
sviaboloyy and aural alerting, were reviewed by the FAa's TCAS Il Operational
Fvaluation working sroup,., This was done to ensure that the flight testing done
at Lincoln would oe relevant to future TCAS instdallations. The phase I AID
display requirements are listed below. A sample display is shown in
Fig. 2.3-1.

l. own aircraft

(a) The symbol tor own aircraft will be a chevron centered horizontally
on the displav, approximately 2/3 down from the top of the display.

(H) own aircratt altitude will appear in the lower left corner of the
screen when the display is in absolute altitude mode. Own altitude

will not appear in relative altitude mode.

2. Taryet aircratt

{a) Taryet position will be indicated by a triangle located at the range
and bearing determined bv tne TCAS processor,

th) An alritude tay will accompany eact target, showing relative or
absolute altitude (as selected) in 100's of feet, Non—-mode C
aircratt will display three question marks (??7?), An up or down
arrow will indicate altitude trend whenever altitude rate is > +1U
fevt svce. The altitude tay will be in one of four positions -
relative to the target triangle: above, right, below, or lett.
nominal position is above, but the position will be altered as
required to avoid clutter with other target information.

(¢) Target color will be red to indicate threat (aircraft generating a
TCAS resolution advisory), amber to indicate pre-threat (aircraft
generating a TCAS traffic advisory), or white to indicate proximate
traftic (aircraft within 4 nm and +1200 feet vertically).

(d) Information for threats or pre-threats without bearing will be
written in alphanumeric form in a block in the upper left portion of
the screen, No indication will be provided for proximate aircraft
without bearing,

‘Aeydsiq pty | 9seyd °1-£°2 ‘Bid

13T+

90-

$0+0

el A Lareat or pro-thredat ovceurring off—scereen will be indicated by a
cmacl cguare Tocatod gt the odge ot the »orees at Ule pruper
Pe i Gl ttede tan Wi acvompasy this o symbol,
iy CoenI Wt s ool Gt e tlertlae waatlonl Wil oo cro.ided as
cow Lited o apneadia U sl b Wil odrive a owvisua adert lipht
cienlnited v Uhe torward dnstrument panel. The light wiil illuminace

ree tor the dappedrance ol resolution advisories and amber ror the
Aptearance of pre=threat trartic advisories. Pressing the light
wili extinmuish any illumdnated lights and will return a signal to
te AlL tuat tae lixzot nas veen pushed. Logic ror control of this
lignt is provided in Appendix C,.

() ULnder normai counditions the display will be capabie of providing
l second updates tor up to 8 targets with full altitude tags. But
as a tail-safe feature, the display will revert temporarily to a
2 second update rate 1t it is ever incapaple of updating all targets
within 1 second,

(c) Fixed inforaation (ownship syvmbol and range ring) will be
overwritten (partially erased) by aircraft symbols and their
assoclated altitude tags.

(d) A mode selector switch will be mounted in the cockpit. This switch
has four positions which are described below.

Switch Position Result
TCAS OFF Power to AlD is off. Weather radar data

is displayed.

TCAS STANDSY Power to AlD is on, Weather radar only
is displayed.

WX RADAR/TCAS Power to AID is on., Weather radar data
is displayed unless TCAS interrupts.
Then TCAS data only is displayed for
duration of interrupt,

TCAS Power to AID is on. TCAS data only is
displaved.

when the mode selector switch is in the WX RADAR/TCAS position, TCAS
will interrupt whenever 1) A pre-threat or threat advisory has been
cenvrated or 0) extended display criteria are in etfect.

duced from 3
%:‘:: ocvu:ilablo copY.

4. Keyboard-Selectable Options

The following display options will be available for the phase 1 AID
display. Default values are underlined.

(a) Range tiinimum (rear) distance.
2om
3nm
4nm
Sam
6nm
7nm
8nm

(b) Autoscaling on/off. When the autoscaling option has been selected,
the display scale will be adjusted when necessary to allow all
threats and pre-threats to be visible on the display screen. One of
seven scales will be selected with miniwum screen distance equal to
2,3,4,5,6,7, or 8nm. Regardless of the autoscaling option selected,
the selected fixed display scale will be used whenever tnis scale
allows all threats and pre-threats to be visible on the display
screen.

(c) Altitude format relative altitude
absolute altitude

(d) Proximity suppression suppress proximity advisories (triggered mode)
display proximity advisories (continuous mode)

In triggered mede, proximity advisories are suppressed except when
threat (red) or pre-threat (amber) advisories are present. The
display resuppresses 8 seconds after all threats and pre-threats
have cleared. In continuous mode, advisories (including proximity
advisories) are displayed whenever tracks qualify.

(e) Display criteria normal criteria
expanded criteria (call-up mode)

A “"call-up” button will be provided on the keyboard which can
temporarily expand the display criteria. If the display is in
triggered mode, then pressing the call-up button results in
unsuppressed display for 15-seconds. Uuring this time all proximity
advisories will be displayed. If the display is in continuous mode,
then pressing the buttaon results in display of all tracks within &
miles and 1200 feet for a 15 second period. No off-screen symbols
will be generated for targets which satisfy only expanded display
criteria.

(f) Number of targets to display. 0-38

The TCAS logic will provide priority ranking for all targets sent to
the AID. This ranking will be used to delete targets when the
display limit is exceeded.

1 2.4 Hardware Structure
“ 2.4.1 Overview

. Figure 2.4-1 is a block diagram of the AID hardware configuration,
Phase I components are shown enclosed in solid lines. Components to be added
for phase Il are shown enclosed in dashed lines.

The system is partitioned into functional units by the use of multiple
single~board computers {(SBC's). The SBC's are connected in a master/slave
configuration. The master SBC, referred to as the service processor, serves
primarily as a general-purpose audio/video processor. Une or more slave SBC's
serve as user processors, performing functions which are specific to a
particular user application. All slaves communciate with the master via the
$-100 buss. The master then interfaceguzlgn_ghg_QRI,_audie—annunttator,'and
floppy disk. Unlike the slaves, the master has complete access to the S-100
buss. The slaves use the S$-100 data lines and some status and control lines
in their communication with the master. llowever, they cannot put an address
on the S-100 address lines., In this sense they are similar to 1/0 controller
devices on the buss.

The sections which tollow describe briefly the hardware components shown
attached to the SBC's in Fig. 2.4-1. The hardware discussion ends with
sections on S$~100 Slot Usapge and SBC Characteristics.

2.4.2 Video RAM, Video RAM Countroller, and Video Multiplexer

The video RAM controller has been redesipned to add a second video RAM.

In the original AID, the video controller and the CPU accessed a single video
RAM card. This card contained three 8K banks of RAM -- one each for red,
gyreen, and blue data. Normally the screen was blanked while the computer
updated the video RAM. This caused a noticeable blink on the screen., In
addition, when symbols were purposely blinked, both the computer and the video
controller accessed commmon data lines, causing noise on the screen. To
correct these problems it was decided to use two video KAM cards and to add a

. video multiplexer. In this way the video controller can be reading a screen
image from one video RAM while the CPu is loading the other, The controller
can then switch to the updated image in the other RAM Juring the vertical
retrace of the CRT, This eliminates all blinkiny and noise problems., It also
provides the CPU with a full video frame period to generate a new frame. The
additional video RAM card is identical to the original unit.

2.4.3 Audio RAM and Audio Annunciator

The phase 1 AID system uses three 16K banks of audio RAM for storing
words and phrases to be annunciated. The three banks used are the upper 16K
of the master's onboard memory plus two 16K banks from a 64K RAM card. The
16K off-board RAM banks are selected by the master by de-selecting the onboard
bank with the same address space. The master loads selected words or phrases
trom these audio banks into an annunciator RAM, then activates the
annunciator,

‘ ~_,.Q1

e M=
—f ELM ::a
L - -J
== P P
q—b' SMi
L - J
r - e e P p
MODE 8 USER
xsvoono__.,‘—l PROCESSOR | 4] ANNUNCIATOR
'(suvs sac) !
. | SN ’ SERVICE .
ROM TEU PROCESSOR
OR ARING] FLOPPY DISK
INTERFACE s P (MASTER SBC)
Tev usEr 75 e
PROCESSOR
8 P { PRINTER |
KEYBOAR (SLAVE 88C) +
evsoARo ~ b
CAUTION/WARNING
BUTTON/LIGHT p
i P P,
7 7
VIDEO P VIDEO P VIDEO
LEQEND RAM 0 wx [Aaua
P=PARALLEL
8=SERIAL
S8C=8INGLE BOARD
COMPUTER VIDEO s
CONTROLLER
SMi=STANDARD MESSAGE
INTERFACE
ELM=EXTENDED LENGTH
MESSAGE INTERFACE
MODE BENDIX
SWITCH CRT

Fig. 2.4-1. AID hardware configuration.

To be consistent with the design philosophy, the audio data should be
kept in the appropriate slave, since it is application dependent. However,
this would be inefficient since audio data would then have to be sent back to
the master with each audio command. The audio data file can still be
maintained by the same person or group supporting the application. If
rultiple applications exist in separate slaves, then multiple audio data files
can exist and can be loaded into the same or different RAM banks.

2.4.4 Floppy bisk

f.ach s8C has 04K of onboard RArl. ROM is used only for boot program
storage; program and data files are stored on floppy disk and loaded into the
onboard RAM. The phasc 1 AID systew contains a single floppy disk drive and
uses 3=inch, single~-sided, double-density floppy disks for storage. Because
only tae master intertraces to the floppy disk, the master must be responsible
ror the loading and proper distribution of all program and data files. In
response Lo 4 svstewm boot, tne CP/M operating system is loaded into the
waster. CP/y then in turn autumatically loads the program and data files into
the master. From there, slave programs and audio data files are downloaded
via the s=lo0 buss to the proper destinations.

Disk access is required only duringy initial program load. Following
this, the floppy disk can be removed trom the drive and those parts of CP/M
that handle disk access can be overwritten by the master's application
proyram,.

2.4.5 Mode Switch

The Bendix front panel mode switch is used to switch the video display
among four positions: test, weather radar only, combination weather
radar/ALD, and AID only. The switcn is interfaced to one of the master's
parallel ports un top of the card. When there is a change in the switch
position, the switch interrupt handler causes the new switch position to be
sent to all slaves. The slaves can then change thelr operation as necessary.

2.4.6 Caution/Waraing Button/Light

A combination button/light is interfaced to the phase 1 TCAS slave via
one of the two parallel ports on top of the card. The upper half of the
button contains a red light labeled 'warning'; the lower half contains an
amber light labeled 'caution'., Software in the slave turns on one of the
lights and annunciates a corresponding audio phrase when warranted by the
aircraft threat environment. When the user presses the button, an interrupt
is generated in the slave. The interrupt handler then extinguishes both the
light and the audio annunciation.

2.4.7 Keyboard and TEU Serial Input

Serial inputs to the phase 1 TCAS slave are from the aircraft's onboard
TCAS Experimental Unit (TEU) and the keyboard. These use the two serial ports
on the top of the card.

2.4.8 S-100 Slot Utilization

Figure 2.4-2 diagrams buss slot usaye for the AlD desian. Again phase I
components are enclosed in solid lines; phase Il compounents are enclosed in
dashed lines. The figure also shows card intercunnections via connectors on
the tops of the cards.,

Note that an additional slave SBC and an ARINC 429 interrface card are
shown. Their purpose is to convert ARINC~tormatted TCAS data into 4 tormat
compatible with the current THU-ALD R5-232 interface. This provides an
interface to Dalmo Victor's TEU equipment. MNote that these two cdards will
only draw power from the 5-1UU buss. All communications are through
connectors on the tops of the cards. They therefore have no eftect on the AlD
cards on the buss. This 33C's programs are burned into EPRUM's,

The ARINC interrace also serves a second purpose. If the ARINC TLST
OUTPUT is connected to the ARINC INPUT, then ARINL test uessages, generated
within the ARINC slave, cau be sent to the TCAS slave »8C. In this way all
features of the audio/video display can be tested/demonstrated.

2.4.9 Single~doard Computer cChardcteristics

The salient characteristics of the master and slave SBC's are summarized
below. The SBC's are supplied by Sierra bata Sciences, rairview Park, Ohio.
The master SBC:
1. uses the Z&80A (4-Milz) processor,
2. contains 64K bytes of RAM divided into four 16K ovanks,
3. contains 4K of "shadow” EPROM (that is, the EPROUM shares the 64K RAl
address space. It can be switched in or out. 1t contains a boot

program to load CPM from the disk),

4. is compatible with IEEE-696 buss standard (i.e., the [EEE standard
for the $-100 buss),

5. has two serial and two parallel I/0 channels accessible from tne top
of the card and,

6. has four counter-timers.
The master communicates with the slave SBC using the same protocol that it

would use to communicate with any other /0 controller (slave) device. Tlhis
protocol has been standardized by IKEE-6Y6,

o

SLOTS NEEDED N AN

1 ARINC SLAVE | POWER
s8C ONLY
ARINC INPUT L [e]
rd
OR ARINC 429 POWER
4
s, oa‘
; TEU INPUT 7 TCAS SLAVE
KEYBOARD — ssc
'1
1 FLOPPY DISK - 64K AUDIO RAM
PRINTER -————
1 MODE SWITCH > MASTER 88C
ANNUNCIATOR-
1 READY INT. ‘ VIDEO RAM A
[]
’ 2
y 4 1r] .
o
2 VIDEO MUX S
: le] o
1 P VIDEO RAM B
: ; VIDEO
CONTROLLER
2 ANNUNCIATOR
. 13 13
& ——— a— —— ﬁ
1 | DATA LINK [_'—‘
SLAVE 8BC
r L3 —-—— L]
2 L—q SMI INTERFACE
L e — ——
————
2 ———{ ELM INTERFACE |

vy L———J_-l/"‘w

Fig. 2.4-2. 8-100 buss slot usage. |

i
|
|

T TR e

The slave SBC:

l. uses the Z80A (4-MHz) processor,

2. contains 64K bytes of RAM divided into four 16K banks,

3. contains up to 16K of “"shadow™ EPRUI,

4, has two serial and two (or four, optional) parallel channels,

5. has four counter-timers and

6. contains an X-buss expansion intertace.
The X-buss contains lines ftrom all ZBUA pins plus additioual control and
status signals generated on the board. [t may Le used to iunterface to anotner
memory bank or to a utility card containing a high-speed math chip and

additional serial and parallel ports.

The slave is supplied with a single 2732(4K) EPRON containing a boot
program which cause< the CPU to wait for a program download trom the master.

12

3.0 SOFTWARE GENERAL DESCRIPTION

-~

3.1 Overview

The AlD software, like the hardware, is partitioned into functional units
by the use of multiple single-board computers (SBC's). The master SBC,
referred to as the service processor, serves primarily as a general-purpose
audio/video processor. Uue or more slave 58C's serve as user processors,

E : pertorming tfunctions whicn are specitic to a particular user application.
Some software, called svstem software, is common to all SBC's.

The phase [software described in this document provides tor a singie-
aser application and thus contains a single-user processor. This user
processor intertaces to a TCAS experimental unit (TEU) and a keyboard. Its
function is to ianput TEU aircraft pusition informatiou, process the
information according to kevboard commands, and generate and send audio and
video data blocks to the service processor, The service processor then drives
the audio anmunciator and CRT to produce audio and video output. Phase 1
audio outputs are of two types: (1) tones to indicate whetiier valid or
invalid kevs have been pressed on the keyboard, and (2) words or sounds to
intform tne pilot of a recomaended maneuver or simply draw his attention to the
display. Video output is a color PWl~type display showing targets at given
ranges and bearings trom own aircratt which is located near the center of the
screen,

As stated earlier all programs are written in C. The C compiler allows
direct machine code (vbject bytes) to be inserted in-line in a C program. The
direct code can reference C-defined parameters. This machine code is used in
some cases to programn 1/0 interfaces when timinyg constraints require very
efficient coding.

All programs are coumposed of tasks and interrupt handlers. A
nonpre—emptive task sciheduler satisfies the requirements of this program.
Communication between tasks and between interrupt handlers and tasks is by
means of circular queues. All programs use the same task scheduler design and
queue manaygement functions (i.e., functions for entering messages into queues
and removing messayes from queues). ’

Certain naming conventions have been followed. In general, interrupt
handlers contain letters ot the attached device followed by IN or OUT
depending on the direction ot the data flow. Tasks which serve a function
similar to that of the corresponding interrupt handler are distinguished from
the iaterrupt handler bv an additional letter T. Queue names generally
contaia o letters, the first three corresponding to the function which inputs

Jata to the queue, the last three to the tunction which removes data from the
e .
fhe three subsections which follow give a4 peneral description ot the ‘
shase [osottware: Section 3.2 - Svstem Software, Section 3.3 - Service
frocessor sottweate, and Section 3.4 - User Processor Sottware., A more

jetailed Jdescription ot the software in each ot these areas is piven in
Sectien a, Sertware Detalled Description,

13

3.2 System Software

Topics to be discussed in this section include interproccessor
coordination functions: system startup (3.2.1) and interprocessor
communication (3.2.2); functions used in common by all application programs:
the task scheduler (3.2.3) and queue maravement functions (3._.4); and
diagnostics (3.2.3).

3.2.1 System Startup

when an S8C is initially booted (power turned on) it runs a bout proyram
stored in an on-board EPROM. The slave's bout program initializes the slave
to receive a program download from the master. The master's boot progranm
loads the CPil operating system trom tracks zero and one of the floppy diske.

This section discusses the initial program load procedure, application
program initialization, and interprocessor startup coordination.

3.2.1.1 Initial Program Load

Except for boot program storage, all mewory in the AlD is RAM. The CPH
operating system plus program and data files are stored on and loaded trom
floppy disk.

The Sierra Data Sciences' system contipuration utility has been used to
modify parts of the CP/M operating system residing on the floppv disk.
Specifically, an autoload command line has been specified. 7This command line
contains a list of simulated operator commands. Wwhen CP/!1 is initiallv loaded
into the master, it checks to sec if this command line is present, and it so,
executes the first command. Cpou completion, the svstem does a warm boot and
executes the next command in the command line., This procedure continues
through execution of the last command in the command line.

The tirst three commands load tue three 6K banks of audio data into the
master's upper 6K memory bank and into banks A und B ot the odk RAI1 card,
respectively. The tourth command loads a download prosram into the TCAS
slave., The fifth command loads a corresponding download program into the
master. Together the miaster and slave download programs then read the slave
application program, one pblock at a time, rrom the tloppy disk into the
master, then send the program, still one block at a time, to the slave. once
loaded, the slave application program begins execution. The sixtn and tinal
command loads and executes the master's program. iote that once the master's
application program is loaded and beygins running, control is never returned to
CP/M. The master program may theretore overwrite CP/M in the Master's RAM
memory .

During system integration and at other times tor troubleshooting, it is
desirable to run debuggers in both master and slave. ‘lerminals are attached
to the master and slave serial ports to support this, and sottware is changed
in the slave application program to configure one ot the serial ports for the
terminal. (In normal operation, the two slave serial ports are used tor TEU
and pilot keyhoard inputs, tor debugying the slave serial ports are used ror

[

either terminal and TEU or terminal and pilot keyboard.) The download of the
slave application program is accomplished in the same manner as described
above except that 4 different downlouad program is loaded into the slave.

After this download program finishes downloading the application program, it
transfers control to Sierra Data Sciences' slave monitor program instead of to
the start of the application program. In the master, instead of directly
loading the master program, the standard CP/M symbolic debugger ZSID is
loaded. The master program is then loaded under ZSID control.

3.2.1.2 Program [nitialization

Each program loaded into an SBC goes through a similar initialization
sequence. All C programs begin with the tunction main(). 1In this application
the initialization process is divided into two parts: that performed by the
function main() and that performed by the task init().

The main() tunction performs all initialization operations necessary only
at startup and not duriny a restart., These include:

a) zero the data area

b) load the interrupt vector table

c¢) 1initialize the task scheduler

d) initialize all task control blocks (TC8)

e) initialize all tasks (call them and run them to their first suspend
point)

f) schedule the init() task

g) call the task scheduler,

The init() task performs all functions necessary to perform a restdart. These
include:

a) 1nitialize all circular queue headers

b) initialize all hardware I[/0 devices (e.y., the counter-timers,
parallel and serial I/0 c¢hips, audio and video controller boards,
etc.).

Note that the main()/init() partitioning of initialization is more
appropriate in a system in which the program is stored in ROM. In that case
the application programs can initiate a restart by scheduling the init() task.
Since the program is in ROM it is likely that this process will te successful.
However, if the program is in RAM, it is pussible that the program itself was
altered during abnormal operation, and restart will not be successful.
Initialization is partitioned as described so that the program will be
suitable for ROM storage if the need should arise at a later date. [n the
phase 1 system, restart is accomplished by rebooting the entire system from
the disk.

3.2.1.3 Interprocessor Startup Coordination

Slaves complete initialization before tne master and wait for a "PONE”
message from the master. while waiting, slave external interrupt handlers
ignore all data received (i.e., will not wake tasks to process data). When a

15

POKE is received, the slave activates its external interrupt handlers and
sends an acknowledgement back to the aaster. The master sends PUKE aessapes
to each slave. When all slaves have replied, the master activates the front
panel mode switch handler and sends the current switch setting tov all slaves.
The switch setting indicates which slave should send audio/video data to the
master. This completes the startup process.

3.2.2 Interprocessor Communication

Hessayes sent between master and slave have fixed tormats. The tirst two
bytes of each message contain a type code and a bvte count, respectivelve An
actual transmission can be a string of concatenated, tixed-tormat messd.ces.
Each transmission of a set of messayes is initiated by sendin:, a sinuele bvte
containing the total number of bvtes to tallow (v, to 233 The block ot
concatenated messages of the iandicated length is then seat,

The messayge tormats are shown ia Fivs. 3.2-1 throuan 3..2-4. There are
tour general message catepories: video control, video sraphics, audio, and
miscel laneous.

Figure 3.2-1 shows video control messayes. All messayes descrivine o
single video frame must be preceded bv a START-OF-FRAME asessayve and tollowed
by an END-OF-FRAME message. The screen is blanked bv sending a CLEAR nmessane,
An initial SCALE message is sent from the user processar to the service
processor to specitv the dimensions ot the video screen. (Sec Section S.a.+
for a description of tne virtual screen concept.)

The remaininyg three video control aessazes (Uone o, LINe 0YPE D and (b Voash
VIDEV) each select an option which then remains in etftect until chanped by a
CLEAR command or the video control message with a ditterent option selected,
The control byte in the COLUR message selects one of sevea colors. The
control byte in the LINE TYPE message selects dashed, dotted, or solid lines.
The control byte in the REVERsE VIDEO messaye selects either reverse video on
or off (off = normal wmode).

Three video graphics message types have been aetined: STRIM:, CIRCL:,
and LINE., These are shown in Fig. 3.2-2. The 5TrING message specifies the
X,Y starting coordinates of an ASClLl character string, a reterence position
for the first character (i.e., centered on X,Y, lower left at X\,Y, etc.), and
the ASCII string itself. The ASCIL string is limited to 32 characters, the
width of the screen for our application. The CIRCLE message pives the XY
coordinates of the circle center and its radius. The LINE messapge contains a
byte specifying the number of line segments to be drawn and the X,Y
coordinates of the lines.

Figure 3,2-3 shows the three types of audio messaves. The basic AUDIO
messayge specifies an offset into the audio RAll data area and the length o
that data area in bytes. lultiple AUDIO messages may be combined to torm a
single phrase by preceding the AUDIO messages by a START-OF-AUDlo and

o e L e

‘ CLEAR: START-OF-FRAME: END-OF-FRAME:
3
*_ TC10 TC11 TC12
p 0 0 0
SCALE. COLCR LINE TYPE:
TC i TC 14 t TC16
g : I
i 4 :] ! 1
- T B
YA X L3B i CONTROL : CONTROL
]
E MSB
B o e e e el
YMAY LSE
M58
b
- REVERSE VIDEO:
3 TC=TYPE CODE vc20
P 1
. CONTROL

Fig. 3.2-1. Video control messages.

-

R o e ey

8TRING: CIRCLE: LINE:

TC17 TC18 TC19
COUNT e COUNT
. X-COORD L88 X-COORD LS8 ¢ SEGMENTS
2 Mss MS8
& ¢ X1
Y-COORD LS8 Y-COORD LS8 Y1
M88 M
sB 2
REF. POS. RADIUS LS8 v2
3 MSB
f T " 4 Lo d
Ve -
; A ASCH ~ T
CHARS
4 ”
! - 1
> XN
YN

Fig. 3.2-2. Video graphics message.

N
1

LR R

START-OF-AUDIO:

TC30

0

END-OF-AUDIO:

TCa1

0

Fig. 3.2-3. Audio messages.

AUDIO:
TC32
4
OFFSET LSS
mss
LENGTH Lse
Mes

POKE:

TCo

E,
|
s

USER MODE
SWITCH SETTING:

TC21

1

SWITCH SETTING

SLAVE ACKNOWLEDGE:

TC1

ERROR:

TC2

MODE
SWITCH SETTING:

COUNTY

ASClt
CHARS

) W

TC40

1

SWITCH SETTING

Flg. 3.2-4. Miscellaneous messages.

20

Sl bl thenm s o == e AT snch ene Tosed WLTO mossades are
[o L ' K ! A 1i Sk =y AeeSaie s
. ' \ Meraty o0 ° oo
t v .
. '
i it ‘ f
. ' B ' e e , MR
. i %
. N w
) o f N 3 - e s
Tt o " ot v T :
$o N L . t A [V AT CREIEN ;
S . . N . oo ERSENL o rorits
[R S TE R AP B S I . 0 A I Fioan o Wit e Wi 1S i the
. . . Yot gime o T g . dets s whethier
Lo Yy i N ot NN NS O N L i ~) MDD
oS il e,
Vel s setedalog
fhe applicarion sottware s broker into tanctional blocks called tasks.
pach tas< carries out a specitic tunction. Each task is written as a4

sequential provram,

execution,
tASK
detoermi

One
ot

<

Figure

or waliting. A walting task is stopped because it is waiting tor sowe
congition to ocear, such as receipt of an input chdaracter., A Readyv tdask is
readv to ruc but is stopped because another task is executim.. The Running
tase is the carreatly executing task. The transitions between tie various
states are triyeered by the rund), sleep() and wake() tunctions, [he
coteednder executes the o ran() o rtanction to o start 4 tass ronni:ig. (e Running
tase Wil execute the sleep() tunction when 1t reaches a point in the
coeoation where U st owalt tor some condition, such o as o kevboard 1apat.
el erres tae sk ' stack pointer o its Task o vontrol osloes o ipn o and
vt N t e Lask scheduler. The scheduier then getorwines the
faass T e eveculod trom the lList of “ediv Tasks. FANKs At transierved
ot U sl oy the wake () tunction. WOREeT D Calr e ssted byl
' Sl e e ar DY ot el L ASK.
Y te- va 1y rssoctated Fasik Contrael Block as shown in tie, g AN
o oo e the s Status tlhaer, Sieonac tier, stack poiater, and
. v toee e ot [N Jhee Mt it thay . when set, intioates that o tne task
' j . coocb e P Tt edtes Daal the Lask s heen awancined P
: et e oar atner et v ose ot sioaar tlay s o

Tees, oroceeding: trom begiurning to end without a break in
Vtoany one tlae, several tasks mav be readv to run. Since only
‘an be cxecutiny at g Jiven time, the scheduler pertorms the function
nime wrdeh of toe ready tasks Lo execute,.
Jo_=5 suuws the three possible states of a task: Readv, Running

Reproduced from
best available cop

N o)

WAKE:

SET STATUS=1
SET SIGNAL=1

READY

RUNNING

RUN:
——
SET SIGNAL=0
WAKE: SLEEP:
IF SIGNAL=O0,

SET 8TATUS =1
SET SIGNAL=1

WAITING

Fig. 3.2-8. Task states.

SET 8TATUS =0

SLEEP:

IF SIGNAL =1,
SET SIGNAL=0
SET STATUS=1

Ty

POINTER TO NEXT TCB

TASK ENTRY POINTER

TASK STACK POINTER

TASK STATUS FLAG

TASK SIGNAL FLAQ

Fig. 3.2~8. Task control block.

prevent a task wakeup from being lost while the task is running. The stack
pointer is used to save return addresses for tasks that are Waiting or Ready.
Each task has 1its own stack. The pointer to the next TCB points to the next
highest priority task.

When a task is awakened, the Status and Signal tlags are both set. The
task is now in the Ready stdte. when a currently running task executes the
sleep() function and enters the Waiting state, the schedulev examines the TCBs
to determine the highest prioritv task that has the Status tlap set. The
scheduler then clears the Signal flay of this task and starts the task
running. [f the task is awakened while running, the sSignal flay is set, so
that wake ups are not lost while a task is executing., The siteep() tunction
always checks the signal flag of the Running task betore suspending execution
of the task. If set, sleep() clears the sipnal flag and resumes excecutimr the
Running task.

The application software functions operiate below tue exccative level.
They are implemented as re-entrant tasks. When a task is runniny, it cannot
be suspended by another task. This type of task scheduling is termed
nonpre—emptive since a higher priority task cannot pre-empt a runuim? task.
Task execution is suspended when a hardware iaterrupt occurs put the ruming
task is restored when the interrupt service is complete. This tvpe ol task
scheduling avoids couplex problams associated with inter-tass data transter.
However, it also means that higher priority tasks can be locked out oy lower
priority tasks. For this reason, tasks aust be designed to couvperate in their
use of available processing time.

3.2.4 Message Queue Management

After initialization all intertask and interrupt handler/task
communication is performed by means of queues. Since tasds run asynchronously
this assures that messages will not be lost (over-written). Since the
messages required in this application are variable—lemith, the queue entries
are also variable length. The same Jueue management tunctions are uscd by all
application prourams,

The queue access functions are written so that when an attempt is made to
enter 4 message in a full queue, the task is suspended., Later, when a messaye
is removed from the queue, the suspended task is awakened so that it can store
its message. Similarly, when a task attempts to remove a message from an
empty queue it suspends. When a message is later placed in the queue the
suspended task is awakened., 1In this way messages are "gated” throuph the
program.

3.2.5 System Diagnostics

There are two forms of AID system diagnostics: non real-time and
real-time. HNon-realtime diagnostics are stored on their own floppy disks and
run separately from the application program, either routinely to pertorm
system checkout or specitically to pinpoint a4 suspected malfunction. In
contrast, tealtime diagnostics are part of the application program. They
monftor actual system operation,

24

3.2.9%.1 Non-Realtime Diagnostics

The reliability of the AID hardware has been excellent. There have been
no known failures in any hardware components. Therefore the only diagnostics
run on a reyuldr basis are rioppy disk diagnostics. Two in-house programs
exist, TFLuP - test floppy disk, and WFLOP - write floppy disk. Both programs
communicate witn the tloppy disk controller chip and print out any unusual
status conditions which occur during disk operations. The programs are
interactive and user-triendly, puiding the user through selection of a variety
ot options tor testing the health of the entire floppy or a specific area
onlv. In practice, TFLOP performs all necessary tests. WFLOP is not normally

usend.

A diagnostic packaje was purchased which runs under the CP/M operating
svstem and is desioed to test each major component of a CP/M-based Z80
sicroprocessor svstea. These components include memory, CPU, disk drives, CRT
terwinal, and printer. We are not currentlv usiny this diagnostic package.

It requires moditication to run successtully with our Sierra bata Sciences
cquipment, but it is available as a starting point should some of these tests
be constdered necessary i the tuture.

Jecedes healtime Diagnostics

The AlD realtime diavnostics operate in one ot two ways. (1) The system
detects an error condition and sends a message either to the CRT or the
printer. (Ibe printer is not implemented in phase 1.} (2) The uscr selects a
test mode of operation (e.g., presses the TST key on the keyboard), then
checks to sce that the audio and video outputs dare correct. The metinod
described in (2) cnecks the performance of tne system as a whole. The error
checks used in method (1) are present and operational at all times, whether
the sottware and hardware are in special test wmodes or not. These checks
catch more specific errors that might not be apparent from simply observing
the systeam audio and video outputs.

The error conditions currently printed on the CRI include (1) 'user
inactive' - i.e., slave not responding to POKE messages rrom the master, (2)
'no data' - no TEU input received for 8 seconds, and (3) 'pad input' - TEU
input ficlds do not pass reasonableness checks. Many other error conditions
are sent from the slave to the master intended for the printer. These include
checksum errors in input data, queue overflows, timing conditions that should
never occur. These error checks are currently present only in the slave. In
phase 11, when the printer is available, error checks will be included
throughout the master as well,

There are currently four test states in which the system can be rum and
observed. In all four states, user interactions via the keyboard and the
caution/warning button function normally. For test states (3) and (4) refer
to the AID Hardware Block Diagram (Fig. 2.4-1) and the S-1U0 Bus Slot Usage
(Fig. 2.4-2).

(1) By pressing the TST key on the keyboard, the user selects a mode of
operation in which canned data for 8 targets is input once per second to the
user processor'’s TEU task for processing. Each target's range, bearing,
color, and associated audio are updated each second in a realistic manaer.
The data repeats approximately every three minutes.

(2) when the TST mode is used in combination with the DEMU key, the user
can select one of eleven fixed target scenarios or one of ten wmoving
encounters showing own aircraft with one or two intruder aircrart. (See
Fig. 3.4-2 for operating details.)

(3) By changing the cable which plugs into the AlD system's (U input
port, the user can input actual recordea flight data for processing. 1LU
inputs from four encounters were recorded onto floppy disk. A separate
single-board computer runs a program which reads the data from disk, then
sends it at one-second intervals over an RS-232 link to the user processor.

(4) A shorting pluy can be used to route test data {rom the ARINC slave
single-board computer into the ARI[JC 429 interface to be sent to the user
processor TEU input port. +his provides yet another set of audio and video
outputs which can be observed.

3.3 Service Processor Software General Description

The service processor is intended to be a general-purpose processor in
the AID system. It acts as bus master and is responsible for controlling the
AID display hardware, the audio annunciator system, and other utility devices,
such as the cockpit printer, thus allowing the user processor to concentrate
on its particular application. Since the service processor is tne bus master,
it also has responsiblity for loading the user software into the user
processor.

3.3.1 Overview

The primary function of the service processor is the control of the video
display so that the user prucessor need not be concerned with the details ot
driving the display. A set of general-purpose graphic commands are provided
by the service processor in order to allow a user to easily generate graphic
and alphanumeric displays. The service processor also provides control ot the
audio annunicator hardware, thus relieving the user from the details of
directly handling the device. Additionally, the service processor can provide
support for other utility devices which may pe required by user applications,

The software in the service processor consists ot several interrupt
handlers, a task scheduler, and several utility tasks (sec Fig., 3.3-1).
Functionally, the service processor receives commands from the user processor;
these are then dispatched to the appropriate task for execution (see
Fig. 3.3-2). 1In addition, the service processor sends status, commands aud
data to the user processor, depending upon the configuration required by the
user software and hardware.

*EXECUTIVE®

TAS

SER
BORT SCHED
2

INTERRUPT HANDLERS

TIMER
1

TASKS

Fig. 3.3-1. Service processor interrupt handlers and tasks.

K SCHEDULER

SWITCH
| a—— SWITCH
INTERFACE wiTe
e
MASTER/SLAVE AUDIO
COMMAND CONTROL AUDIO
8-100 INTERFACE }—1 o.epatcH] AND CARD
RIVERS
o INTERFACE
g

="

| omver |

. S Sume— e

L — w-| DEVICES/ |— o~
4) TASKS
|
L u— m— -J
GRAPHICS
PROCESSING
VIDEO
INTERFACE ——3= VIDEO CARO

Fig. 3.3-2. Service processor functional block diagram.

28

e AR - b o Pty

T

TR

Communication amons, tasks and between tasks and interrupt drivers is
accomplished by means of first-in-first-out queues. The flow of data between
interrupt handlers and tasks and between tasks is shown in Fig. 3.3~3. The
tasi scheduler is nonpre-emptive and runs tasks on the basis of priority.

3.3.2 Interrupt Handlers

Since the service processor may be required to handle devices needing
fast respouse, it is necessary to miniaize interrupt latency. (o this end, a
multi-level, prioritized interrupt structure has been implemented, requiring
that low=-priority interrupts, which require appreciable processing, be
interruptible. Iln pgeaeral, therctore, most interrupt handlers consist of a
task to perform time-consuming computations, and a very short, fast interrupt
service routine.

The numbers under the interrupt handlers shown in Fig., 3.3-1 indicate the
relative prioritv ot the iaterrupts, with | being the highest.

3.3.2.1 Tne Service Processor/User Processor Communications
Interface

bata transfers between the service processor and the user processor
consist of variable-lemyrtic blocks, the first byte of which contains the count
of the subsequent bytes in the transfer, thus constraining transfers to less
than 256 bytes. The first byte, coataining the count, dlso acts as a
handshake sipnal, allowing the two processors to synchronize the transfer.
Each transfer direction is fully independent, requiring a separace interface
driver and task to manage the transfers (see Fig. 3.3-2).

Messages received from the user processor are initiated by an interrupt
from the user processor port. Tne interrupt handler upin() passes this one
byte message to upint(), the user processor input task, which receives the
remaining bytes of the transfer. Messages sent to the user processor are
output directly by task unoutt().

3.3.2.2 The Timer Interrupt Handler (ctcin())

The counter-timer circuit interrupt handler, ctcin(), receives an
interrupt whenever the timer counts down to zero. This interrupt merely puts
a message into the timer() task input queue and wakes the timer() task. it is
the responsibility of the timer() task to deterwine what actions, if anv, this
event triggers.

3.3.2.3 The Mode Switch Interrupt Handler (bswin())

The mode switch interrupt handler monitors parallel port lines which are
connected to the Bendix front panel mode control switch. Whenever the state
of this switch changes, an interrupt is generated. The state of the switch is
read by bswin() and passed to the mode switch task, bswtch(). The parallel
port is then reconfipured to respond to any change from the new switch
setting,

] INTERRUPT
HANDLERS TASKS

; —=={ cTCIN r——(oeur)—— TIMER
E -
g : UPIUPI
—-—
‘. UPIN ,-.-(ouzu?)"’ UPINT UPIDSP

—-—— UPOUTT jpem

AUDA
—=1 AUDIN ——(QUEU”E)—— AUDIO jem—— MSWUPO
]]
—a] MSWIN H MS:JE\:,SEW >—ﬁ MSWTCH

DSPAUD
MSWVID DPSVID DSPTCH

VIDTIM J
~={ VIDEO
- e TIMVID ‘

Fig. 3.3-3. Service procesaor data flow diagram,.

N

3.8, . The Audio Control Board Interface (audin())

The audio control poard interface handler, audin(), receives an interrupt
whenever the audio generator control board has completed a message. A one-
byte nessage is queued to the audio() task to notify it, and the audio() task
is awakened.

3.3.3 Tasks
The primary tasks in the service processor are shown in Fig. 3.3-1 along
with their relative priority. Figure 3.3-3 shows the interaction and data
flow between the tasks. The tollowing descriptions give an overview of the

primary tunctions ot cach of the tasas.

3.3.3.1 The Jser Processor Iaput Task (upint())

This task is initiated by tue interrupt handler for the user processor
input port. It is responsible tor completing the triusrer and moving the
message to the command dispatch task, dsptch(). The principal reason for this
architecture is to allow multiple-uscer processors to comnunicate with the
service processor in an orderly fashion., There will be a separate task for
each user processor on the buss.

3.3.3.7 The Uscr Processor Nutput Task {(upoutt())

Tnis task has severdal input gueues, one tor each of the tasks required to
transmit data to the user processor, Upoutt() scans these queues and
assembles a messaye (less than 25 bytes) which is sent to the user processor.
No interrupts are involved in this transfer, so no interrupt handler is
necessary. (The user processor has the hardware and software required to
synchronize this transfer.)

31.3.3.3 The Command Dispatch Task {(dsptcn())

This task has as input the coummand streams coming from one or more user
processors. The commands are vecoded and dispatched to the appropriate
processio tase (audio, video, ete.) via the queue to that tasx. This task,
then, has the responsibility of coordinating the use ot one device by several
nsers, and resolves any contflicts in a manner consistent with the device in
uses Fioure 3.3-4 shows a functional tlow chart tor this task in the case of

One user processor,

3.3.3.4 The Video Task (video())

The two main tunctions ot the video() task are: (1) set the appropriate
bits (pixels) in tne video RAl in order to generate a display frow the user
praphic commands and (2) control the video RAM. Figure 3.3-5 gives an overall
functional diagram or this task.

P S . w .
. e ettt el R -

DSPTCH

- SLEEP
GET Q
g
(UPIDSP)
MESSAGE
IN QUEUE
VIDEO YES PUT Q
MESSAQE
? (DSPVID)
AUDIO YES PUT Q
MESSAGE
7 (OSPAUD)
POKE YES PUT Q
MESSAGE
(DSPUPQ)
[J
[]
Y
ERROR

Fig. 3.3-4 Dispatch task flowchart (one user processor).

—_— - ——— —_— 8. IS .-

SLEEP

'., !

GET Q

(DSPVID)

GET Q NO __~MESSAGE

IN QUEUVE

(TIMVID)

MESSAQE
IN QUEUE
?

DISABLE -_———

FLASHING RE-INIT

FLASHING
ENABLED

END VIOEO

UPDATE - ENABLE
MESSAGE

SCREEN FLASHING

SWITCH PUT Q
VIDEO RAM (VIDTIM)
|
PUT Q DECODE
GRAPHIC
(VIDTIM) MESSAGE
‘ |
LINE CIRCLE STRING COLOR OTHER

R I I B

Fig. 3.3-5. Video task tiowchart.

S ot

The video() task provides a set of general-purpose commands witn which
the user can easily generate the type of display needed. Commands provided
include drawing a circle of a specified center dand radius, drawing a line
given two end points, and displaying a string of characters and special
symbols at an arbitrary screen position, In addition, among other features,
the user 1is able to select the color of the objects to be displayed and the
type of line to be drawn (e.yg., solid, dashed, dotted). Scaling commands are
also provided tou convert user coordinates to displav coordinates so that the
user need not be concerned with the resolution of the screen and other
hardware specific details of the video display.

The graphics are driven on a frame-oriented basis, such that all contents
of the previous frame are lost. A start-of-video message must be sent by the
user to begin accumulating the graphics for the next display. As each graphic
command is received, it is "drawn™ intu the currently available video rRAM.
When the end-of-video message is received, the screen is updated by switching
video RAlls.

3.3.3.> The Audio Task (audio())

The audio() task accepts commdands of the form of an oftset and lengtn,
It is assumed that the data needed to generate the audio has been loaded by
the service processor into a contiguous area of memoryv. The audio() task uses
the offset as a pointer into this area and sends the number ot bytes specified
by the length to the audio control card. These audio messajges are accumulated
until a command is received to start the audio annunciation. 1ln this way, a
number of audio messages can be stacked and then anonunciated at once. (The
hardware puts a limit of 4K bytes on the total that can be accumulated for
subsequent annunciation).

Figure 3.3-6 gives a functional flowchart of the audio() task.

3.3.3.6 The Timer Task (timer())

The timer() task provides a general-purpose timing facility for other
tasks. [t accumulates ticks from the ctein() interrupt routine and maintains
a list of other tasks which need to be awikened after a certain number o1
clock ticks. The list is generated by requests coming from the other tasks
and is of the form of periodic or one-shot wake-ups, both of which can be
cancelled, if necessary. Because of the nature of this task, it is the
highest priority task.

3.3.3.7 The Mode Switch Task (mswtch())

This task is awakened whenever the tront panel mode switcn chanpges state.
The new state is recorded and then sent to the command dispatch task which in
turn sends the setting to the user processor output task(s). The switch
position controls what is displayed on the CRT: weather radar data onlv, AID
data only, or combination weather radar/AlD data.

-y

SLEEP

l

GET Q

GET Qw

(AUDAUD)

(DSPAUD)

MESSAGE N\ NO
IN QUEUE

?
YES

NO DONE
FLAG SET

?
YES

START YES
OF AUD!IO

?

NO

END YES
OF AUDIO
?

NO

SEND MESSAQGE
TO AUDIO CARD

YES START

FLAG SET
?

GET Q

(AUDAUD)

SET
DONE FLAG

SET
START FLAG

CLEAR
START &
DONE FLAG

STARTY
AUDIO CARD

T

Fig. 3.3-6. Audio task flowchart,

35

3.4 User Processor Software General Description

3.4.1 Overview

The AID software system is designed to allow division of processing load
among multiple single-board computers (S5C's) in a master/slave contiguration,
The master SBC, designated the service processor, serves primarily as a
general-purpose audio/video processor (see Section 3.3). One or more slaves
serve as user processors, each performing functions which are specitic to a
particular user application. 1/0 devices which are application—specitic are
attached directly to the user processor(s).

The phase I AIU software provides for a simgle-user application and thus
a single-user processor. Its tunction is to tnpat airceratt information trom a
TCAS experimental unit (TEU) and produce audio/video output by sending
appropriate praphics data blocks to the service processor.

There are five basic types ot software contained in the aser processor:
a main program, a task scheduler, tasks, interrupt handlers, and a user
graphics package, All data transferred betweeir tasks dand betweea interrupt
handlers and tasks is passed by means of circular queues. The user
processor's main program, task scheduler, and gqueue management protocols are
similar to those in the service processor and dare Jdiscussed in section 3.2,
The user processor's tasks, interrupt handlers, and user graphics packdpe dare
described here.

The user processor contains six tasks and five interrupt hanalers. A
block diagram of these is shown in Fig. 3.4-1. The user graphics package, not
shown in the block diagram, is a set of routines which way be called from any
task within the user processor.

Initially all of the user processor'’s softwdare is loaded from the service
processor via the S-100 buss. Control is passed to the user main program,
which performs a number of initialization operations, then wakes init() and
calls the task scheduler. The task scheduler will immediately run init()
which performs more initialization operations. Thereatter the program loops
in the scheduler, continually checking tor tasks which are ready tou run.
Tasks, once begun, may not be interrupted oy other tasks, althouph a tasik may
voluntarily suspend itself at any point to allow the task scheduler to
schedule another higher priority task. Interrupt handlers may iunterrupt opoth
tasks and other interrupt handlers depending upon privrity.

There are four sources of input to the user processor: keyboard, TEU,
timer and service processor. FEKach input has a corresponding interrupt
handler: keyin(), teuin(), ctecin() and spin(). There is one output
destination, the service processor, witih its interrupt handler spout().

TEU inputs pive position and equippage information for own aircratt and
up to eight other aircraft. Data is transferred tfrom the aircraft's TEU unit
directly to the processor via an R$S-232 link at one-second intervals. Own
aircraft information is always included, Other aircratt information is
included when available. Teuin() inputs this data block trom the RS-23/2,
places the information in the teuteu circular queue, and wakes the teu()
task.

jo

INTERRUPT

TASKS

INIT

8STiM

HANDLERS
— CTCN
KEYIN
— TEUIN

g—— sPOUT

— SPIN

KEYKEY
QUEVE
(KEYSTROKE
CHARACTERS),

TEUTEVY
QUEUE
(AIRCRAFT
POSITION
INFO)

SPOSPO
QUEUVE
(AUDIO/VIDEO
DATA
BLOCKS)

8PISPI
QUEUE
(*POKE’ AND
SWITCH

SETTING)

Y

KEYBD

KEYTEU
QUEVE
(DISPLAY
OPTIONS
ARRAY)

(ONE SECOKRD

TIMTEU
QUEUE

WAKE-UP)

AUDSPO &

GRASPO

QUEUVES

{AUDIO/VIDEO
TA

DA
BLOCKS)

AUDSPO
QUEUVE
(AUDIO DATA
BLOCKS)

8PISPO

QUEUVE
("POKE"*

MESSAQGE)

SPITEV
QUEUE
(SWITCH

SETTING)

SPINT

Fig. 3.4~1. User processor functional block diagram.

The keyboard allows a user to change various TEU display characteristics,
(e.g., relative or absolute altitude, maximum range displayed). Keyboard
inputs consist of a single byte. They are asynchronous and may occur at any
time. When a key is depressed, an interrupt is generated. Keyin() inputs the
key's corresponding 8-bit byte, places it into the keykey queue, and wakes
the keybd() task.

In phase I, two types of input (not including the initial program load)
are received from the service processor: a Il-byte message which conveys the
setting of the Bendix front panel control switch and a zero-length "POKL"
message which is used to indicate that the service processor is operational.
Both message types are received by spin() and passed via the spispi queue to
task spint(). An acknowledgement for each is immediately sent back to the
service processor via spoutt() and spout(). The switch message is passed to
the TEU task where it is used in determining whether audio and video data
blocks should be sent to the service processor.

Currently all user processor output is directea to tne spout() interrupt
handler for transfer to the service processur. With minor exceptions (see
Section 3.2.2) all outputs are variable-length general-purpose graphics data
blocks which have originated in the teu() or keybd() tasks and been passed
through the spoutt() task to spout(). ‘lnese data blocks are uscda by the
service processor to produce audio and video output.

3.4.2 Interrupt Handlers

There are four sources of input to the user processor: keybuard, TEU,
timer, and service processor, with corresponding interrupt handlers kevin(),
teuin(), ctcin(), and spih(). There is one output destination, the service
processor, with corresponding interrupt handler spout().

The keyboard and TEU intertace to the sldave via serial input ports. Tue
slave contains a serial intertdce cnip that supplies twe serial ports
(Z80-S10). At startup seven bytes are output to each port tor initialization.
During program operation tne interrupt tanalers simplv save the CPU state,
input a byte and store it in a gueue, then restore stdte and returu control to
the interrupted function. Keyin() wakes the kevbodrd tdsk each time 4 byte is
received; teuin() wakes the teu{) task only wheit an entire input messdage uas
been received trom the TEU.

The slave SBC contains 4 chip tnat supplies tour counter-timers
(Z80-CTC). In initialization three bytes dare sent that set its mode, time
interval and interrupt vector. Uuring program operation, control is passed to
the interrupt handler ctcin() at the selected time intervals., Ctcin() saves
all CPU registers and tlags on a dedicated stack, wakes the timer() task, then
restores registers and flags and returns control to the interrupted function.

Communication between the service processor and uscer processor is via the
S-10U pbuss. Both service processor and user processor contain two dedicateu
parallel ports (Z80-PL0O) for S$-100 puss communications. The user processor

interrupt nandlers spin() and spout() handle inputs trom and outputs to the
service~processor respectively, Spih() is awakened each time the service
processor scends a byte to the user processor. The first byte of all UP-SP and
SP-UP transmissions contains the byte count of the message which is to follow.
Following receipt of a byte count from the SP, spih() accumulates bytes until
an entire message is received. It then awakens the spint() tasks and passes
the message to spint() for processing.

To initiate a transfer to the service processor, spout() outputs a single
byte on the S$-100 buss. This output, the byte count for the message to
follow, is configured to generate an interrupt in the service processor. The
service processor sets up a loop to receive the proper number of bytes.

SPOUT then sends the message, this time without generating an interrupt on
each byte,

3.4.3 Tasks

The user processor contains six tasks: 1initialization (init()),
keyboard (keybd()), TEU, interval timer (stim()), service processor output
(spoutt()), and service processor Input (spint()). A general description of
intt() is given in Section 3.2.1.2. General descriptions of the remaining
five tasks are giveun in tnis section. Detailed descriptions of all user
processor software is given in Section 4.3.

The teu() task is the major task within the user processor. With the
exception of init() and stim() all other tasks serve primarily to direct data
to ot from the teu() task, Keyboard commands are processed by the keybd()
task, then passed to teu(). Teu() uses these commands in processing aircraft
position information in order to produce graphics data blocks. These data
blocks are passed from teu() to spoutt() for transfer to the service
processor,

3.4.3.1 The Keyboard Task (keybd())

The keyboard task has two primary functions: (!) to examine keyboard
entries for validity and generate an immediate appropriate audio response and
(2) to update a display options array with valid keyboard entries and send
this array to the teu() task for processing. Figure 3.4-2 shows the keyboard
key assignments. An overall diagram of keybd() 1is shown in Fig. 3.4-3.

There are two basic types of user keyboard commands: those which
consist of a single keystroke and those which are multi-keystroke. Keystrokes
which are not properly ordered in a multi-keystroke command are considered
invalid.

When keybd() is awakened, it first retrieves a character from the
circular {nput queue. Single-keystroke valid characters result in an update
of the options array and generation of a high audio tone. Single-keystroke
invalid characters result in generation of a low audio tone. In either case
(valid or invalid), the program then loops back to input another character.

39

i

40 41 42 43 20 21 22 10 | 12
:f# TOD 1 2 3
44 45 46 47 24 25 26 14 15 16
A CLR CLR

A:: pisp| | xe E°°E 4 5 6
48 49 4A 48 28 29 2A 18 9 VA
:3: TRIG EXT | |RNGE SURYV 7 8 9
4C 40 4t 4F 2C 20 2€ 1C 1D |E
TAU TST osio] NTGT Fwsq . STEP A [B

REL ALT Selects relative altitude format.

TOD Places time-of-day on screen. TOD clock on board aircratt
must be properly set.

ABS ALT Selects absolute altitude format.

CLR DISP Clears display.

CLR KB Clears keyboard entries,

MODE Selects a set of options.

BAR COR Enters barometric correction in hundreds ot feet, Corrections
are cumulative. For use in absolute altitude mode.
EXAMPLE: BAR COR - 2 would decrease own absolute altitude
by 200 feet,

TRIG Selects threat-triggered mode (proximity advisories
suppressed). TRIG is default mode. Pressing key togrles
between threat-triggered mode and continuous mode. In
continuous mode, max range for proximity advisories is shown
in green in lower right corner.

EXT Selects extended display criteria (4 nm) for 15 seconds.
"RNG 4" will appear in lower right corner of display.

RNGE Selects range and autoscaling. EXAMPLYE: Entering “RKGE 20"
provides scale of 2 nmi to rear without autoscaling.
Entering "RNGE 21" provides scale of 2 nmi to rear with
autoscaling.

TAU Selects display of current tau threshold value.

TST Puts display in test mode.

DEMO Selects canned demonstration frame. (00 - walking test data
Operable only in TST mode. 01-0B fixed displayv

11-1A FAA scenarios)

NTGT Selects maximum number of targets which will be displaved.

SURV Selects surveillance display mode (continuous mode, 5 nm).

PAUSE Freeze display. Operable only with FAA test scenarios.

STEP Single-step display. Operable only with FAA test scenarios.

Fig. 3.4-2. Keyboard assignments.

2 by

G

PROCESS=0

\

L

GETCHAR (CHAR)

GET CHARACTER
FROM INPUT QUEVE

YES

PASS OPTIONS
| ARRAY TO TEU TASK
WAKE TEU TASK

PROCESS
FLAG= 1
?

(SINGLE KEYSTROKE COMMANDS)

TONE

- VALID

CASE REL ALT.
ABS ALY. TOD. CLR

DISP, CLR KB, TRQ.

EXT. TAU. T8T, SURV.
PAUSE, STEP:
CASE MODE:
CASE BAR COR:
CASE RNGQGE:

CASE DEMO:

SWITCH
(CHAR)

UPDATE OPTIONS ARRAY
PROCESS =1

MPROC '

PROCESS MULTI-KEYSTROKE s
MODE COMMAND

BPROC

—#=1 PROCESS MULTI-KEYSTROKE Rt
BAROMETRIC CORRECTION CMD

RPROC
PROCESS MULTI-KEYSTROKE o

RANGE COMMAND

DPROC

L> PROCESS MULTI-KEYSTROKE

CABE NTQT:

|

DEFAULT: TONE =

INVALID

1

!

CALL AUDIO (TONE)

DEMO COMMAND

NPROC

PROCESS MULTI-KEYSTROKE -
NUMBER-~OF-TARGETS COMMAND

Fig. 3.4-3. Keyboard task flowchart.

In contrast, each time the program recognizes the start of a
multi-keystroke command, a subroutine specific to that command is entered.
The program will remain within this subroutine, executing its own calls to
input characters and generate audio tones, until either the correct sequence
of characters or a keyboard clear has been entered. Only then is the options
array updated and the subroutine exited, The program then loops back to the
the beginning of keybd() to input a new character,

Each time the options array is updated, a flag (PROCESS) is set., When
the keyboard task has emptied its input queue, it checks the flag setting to
determine whether or not to output the options array and wake the TEU task
before going to sleep.

3.4.3.2 The TEU Task (teu())

The teu() task is the major task within the user processor. Its
functions are to input keyboard commands and aircraft position information,
process the aircraft information according to the keyboard commands, and
output audio/video graphics data blocks to be transferred to the service
processor.

Inputs

Primary TEU inputs are from two sources: the TEU interrupt handler
teuin() and the keyboard task keybd(). Inputs from teuin() arrive once per
second. They are variable length data blocks which contain position and
equippage information for own aircraft and up to eight other aircraft.

Users may enter keyboard commands at any time. [t is the function of the
keyboard task to reject invalid keystrokes and accept valid keystrokes in
order to update a display options array. Each time this 16-byte display
options array changes, keybd() passes it to the teu() task.

OQutputs

Outputs from the teu() task are tne audio/video data blocks described in
Section 3.2.2 and Figs. 3.2-1, -2, -3, and -4.

Task Structure

The teu() task is made up of three levels of routines (Fig. 3.4-4). The
main TEU processing routine tproc() (Fig. 3.4-5) is the highest level. It
combines information in the display options array with aircraft information in
order to generate calls to second-level routines (e.g., rev(), tod(), tau(),
oalt(), rring(), tgt()). These routines in turn generate calls to third-level
user graphics package routines (e.g., circle(), string(), color()). It is
these user graphics routines which actually generate the graphics data blocks
and output them via the graspo queue to the spoutt() task for transfer to the
service processor.

42

I -y~

LEVEL 1

TEU PROCESSING ROUTINE

TPROC

CALL REV
CALL TOD
CALL TAV
CALL OALT
CALL RRING —
CALL TGT

RETURN

LEVEL 2

REV ()
CALL STRING —

RETURN

RRING ()

CALL CIRCLE

RETURN

Tar ()

CALL COLOR —
CALL STAING
CALL STRING

-

| COLOR ()

RETURN

LEVEL 3

USER GRAPHICS PACKAGE
ROUTINES

STRING ()

PUTQ(-.&RASPO.')

RETURN

PUTQ(-,GRASPO,-)

RETURN

Fig. 3.4-4. TEU task structure.

TPROC

]+
REASONABLENESS
RETURN CHECKS SHOW VALID
INPUT DATA

?

MORE TGTS
TO DISP THAN
MAX NO. SELECTED BY
KEYBOQARD

YES CALL ORDER
(SELECT HIGHEST
PRIORITY TARGETS)

CALL BEGF
(BEGINNING OF FRAME)

\

CALL RALERT
(DO AUDIO PROCESSING)

CALL REV

CALL TOD

CALL TAU

CALL OALT

\

CALL TRIGGER
(DO EVENT-~TRIGGERED
MODE PROCESSING)

Fig. 3.4-8. Main TEU processing routine TPROC.

CALL CALLUP
(DO EXTENDED RANGE
MODE PROCESSING)

CALL BRG
(SHOW NO-BEARING
BLOCK IF APPLICABLE)

NO ANY
TARGETS

?

AUTO
\ NO SCALING
CHOSEN
?

)

CALL PSF
USE DISPLAY RANGE (DO PRELIMINARY SCALING
SELECTED B8Y KEYBOARD FACTOR CALCULATIONS) TO
COMPUTE DISPLAY RANGE

-

Y
CALCULATE SCALING
FACTOR FOR TARGETS
(IF ANY) AND RANGE RINQ

CALL RRING
— — — — — — — — —
]
, LOOP ON
CALL TaT TARGETsl
I
—————_——— — — —J
Y
CALL ENDF

(END OF FRAME)

RETURN

Fig. 3.4-5. Main TEU proceasing routine TPROC (cont'd).

Task Operation

Whenever the teu() task is awakened, it first checks its keyboard input
queue. If an entry is present, this l6-byte display options array is input
and used to update TEU's own display options array. Processing using this
updated array is not done, however, until new aircraft inputs are received
from teuin(). This means that there can be as much as a one-second lag in
response to keyboard commands.

When aircraft information is received from teuin(), the main TEU
processing routine tproc() is entered. Tproc() will execute once from start
to finish, generating a single frame for the display. Depeanding upon keyboard
commands and aircraft information, tproc() may execute the following
routines:

ralert() - Do resolution advisory processing. Annunciate audio. Set
caution/warning lights,
rev() - Display current software rev number in upper right corner of
screen.
tod() - Display time of day in upper left corner.
tau() - Display current performance level's threat criteria in lower right
corner. (If time to closest approach is less than threat
criteria, target will be declared a threat.)
oalt() - Display own aircraft altitude in lower left corner,
trigger() - If threat-triggered mode has been selected, and if there are no
threats or pre-threats, set parameters so that TPROC will
display no targets.
callup() - If 'call-up' or extended range mode has been selected, set display
range to extended value.
brg() - Display "no bearing” targets in block in upper left screen area.
psf() - Do preliminary scaling factor calculations to compute miniaum
display range that will show all threats and pre-threats.
rring() - Display 2-nm range ring and chevron.
tgt() - Display target triangle and altitude tag at correct range, bearing
position,

When tproc() exits, the teu() task goes to sleep to await new inputs
from keybd() or teuin().

3.4,3.3 The Timer Task (stim())

The timer task provides general-purpose time interval delays to other
tasks. A hardware timer is initialized to produce an interrupt every
62.5 milliseconds. Interrupt handler ctcin() then wakes stim().

When an application task wishes to start ¢ timer it passes a count to
stim() via a queue. Each time stim(, runs in 1esponse to an interrupt it
checks its input queues and starts new timers when entries are present.

Stim() also decrements each existing counter. If the result is zero it sets
the counter to -i, sends a timeout signal message to the corresponding task
(via a queue) and wakes the task. If a task wishes to stop a running timer it
simply sends a -1 count to stim().

46

)

3.4.3.4 The service Processor Output Task (spoutt())

The spoutt() task receives data from three sources: “slave acknowledge”
messages from the spint() task, audio data blocks from the keybd() and teu()
tasks, and video data blocks from the teu() task. The function of the
spoutt() task is to merge this data into a single array and pass it on to the
spout() interctupt handler for transfer to the service processor. A maximum of
255 bytes wmay be traansferred at one time to the service processor. Therefore
if the combined input from the queues is more than 255 bytes, spoutt() makes
more than one cail to the interrupt handler, passing blocks of < 255 bytes
each time, until all three queues have been emptied. A call to the interrupt
handler starts the transfer to the service processor., The haudler then
responds to interrupts to complete the transfer.

Spoutt() checks the three queues for input, reading one message from each
queue in turn instead of emptying one queue before going to the next. This is !
done so that an audio message will not get backed up behind a long string of
video messages. When all three gqueues have been emptied, or when the 255-byte
buffer fills, whichever ocecurs first, the accumulated data {3 transferred to
the spospo queue and a call is made to the spout() interrupt handler.
Following this, the task efther suspends itself, or if necessary, continues to
read, accumulate, and transfer data until all queues are empty.

3.4.3.5 The Service Processor Input Task (spint())

The spint() task receives data from the service processor via the spih()
interrupt handler. There are two types of input from the service processor to
the user processor: a l-byte message which conveys the setting of the Bendix
front panel control switch and a zero-length “POKE" message which is used to
indicate that the service processor is operational., When spint() 1s awakened,
it reads the logical message passed to it by the interrupt handler. If it is
a mode switch message, the message is passed on to the teu() task for use
there., For all messages received, spint() sends a 2-byte acknowledgement to
the service processor output task spoutt() for transmission to the service
processor.,

3.4.4 User Craphics Package

The user graphics package consists of a set of C-callable audio and video
routines (commands). They reside in the user processor and can be called from
any task within the user processor. These routines translate high-level user
calls and the associated argument strings into graphics data blocks
(Figs. 3.2-1 through 3.2-4) which are transferred from the user processor to
the service processor for audlo or video output. The graphics package acts as
a software interface between the user and the display device; it frees the
user from the necessity of knowing details of Iinterface protocols and hardware
configuration for a given display device. Users work with a virtual screen
with units of their own choosing. A scaling command tells the service
processor the number of units with which the user wishes to represent the
maximum horizontal and vertical distances on the display device. Any number
of audio and video commands can be grouped together using start-of-frame and
end-of-~frame commands to generate a single frame on the display device.

47

The graphics package contains four general classes of routines: audio,
video control, video graphics, and miscellaneous. Descriptions of the
routines contained in each class are given below. All arguments are 16-bit

integers.
Audio

There are three audio commands.
CALL AUDIO (I)
where 1 refers to a word or phrase stored within the audio RAM. This RAM
must be provided in file form by the user along with a table giviang the ottset
and byte count for each phrase or word within the RAM,
CALL BEGA
Start-of-audio.
CALL ENDA
End-of-audio. Placing audio commands of the foram CALL AUDLO (I) between dlGA
and ENDA causes all of the corresponding words or phrases to be stacked in an
annunicator RAM before the annunciator is activated. This allows the user to
compose phrases from words that are not stored sequentially in the user's
audios RAM. Audio messages not eunclosed in BEGA, ENDA pairs are sent to the

annuaciator RAM and activated immediately.

Video Control

There are 7 video control coamands. In general, a video control command
selects an option which remains in effect until changed by a CLEAR command or
the video control command witih a different option selected. SCALE and CLEAR
are special commands.

CALL SCALE (X,Y)
This routine must be called in the INIT task. It defines the coordinates ot

the user's virtual screen and allows the service processor to associdte user
coordinates with the actual physical dimensions of the display device.

CALL CLEAR

This routine clears the display and resets to the following default options:
line type = solid, color = white. Any video calls following CLEAR but before
the next start~of-frame call are ignored.

CALL BEGF

Start-of-frame.

48

)

Leiem

CALIL ENDF

End-of=frame., All commands between BEGKF and ENUF are sent to the display
device to be displayed as a single frame.

CALL LTYPE (D)

LTYRE selects the line type used. Current options are 0O = solid, 1 = dotted,

Qo= dashweds Detfaalt is solid.
Ty L b aR oy
I S S VLS RS LI R crailables
¢ 14
.t
il
v ! P owitl ey
‘\ ¥

e L. 1s o everse ciaeo oa (L=1) or ot (I=4). Wwhen reverse video is on, all
aracters drawn ustoe e video graphics STRING command have thelr color
veorse menersed: pixels narmally o colored ave now left blank; pixels normally
Sk are nos shown o white,

Cite nraphies

there are carreatly hree video graphi-s commands. X and Y coordinates
gt e randid o use) as arguments must be oxpressed in terms of the user
ot tinres solected by toe SCALE command described above.

AL CHedTE Y radias)
b LN (st XPT R

Fhis rootine draws line sepments between (X,Y) coordinate pairs (i.e., (X,Y))
to ((),YAI" (:(;."Yl.f) [(\vj,ij),...,(XN-l,XN_l) to ()\N"\N)).

XPI is a pointer to an array contalaing the coordinates ordered
.-ll'r'l,)(‘,,\"_,... NSEG is a signed interer, [ts mapnitude indicates the number
of (N,Y5 pairs. It NSEG te pusitive, the tirst line segment 1s drawn
beyinnin.g at ‘\:I'Yi)‘ It NsKEG is negative, the 'icst line segment is drawn

bewinnba 4t the previous carsor position, When all seyments have been frawn
*he carsor will o pe positioned at ("'-_.\.'\;). farrent seittware limitations allow

¢ omicimue 9 P v gl

Focwer-

CALL STRING (X Y, NCHAR, REFPOS, CPTR)

This routine places a strin. of NCHAR characters on the displav starting at
location (X,Y). The maximum value for NCHAR is 32, limited by the width of
the screen., REFPOS allows the starting X,Y coordinate to refer to various
positions within the character: 0 = lower left corner | = upper left,

2 = upper right, 3 = lower right, " = center. CPIR is a pointer to aun array
contalning the NCHAR ASCIL characters.

A special feature has been provided to allow color changes within character
strings. Seven 8-bit ASCII characters have been defined to represent the
eight colors. 1In a STRING command, if a character is preceded by one of
these 8-bit ASCII colors, that character (and only that one character) is
displayed in the selected color,

Miscellaneous

CALL ERROR (I, TIME)

This routine allows the user processor to send an error message to the service
processor for output to the line printer. I is the error number and TIME is
the time (since system restart, lsb = | sec) at which the error occurred, An
ASCII character string 1s generated of the form t = xxXXx, err = xXxx.

CALL MODE(I)

This routine is called once per scan to tell the service processor the
priority of the user-processor data. The service processor looks at this
message only when the Bendix front panel mode switch is in the combination
weather radar/AID position. I=1 (STANDBY) causes the service processor to
ignore any AID data received from the user processor and display only weather
radar data. 1=3 (AID) causes the service processor to display the data
received from the user processor. 1 i{s set to 3 by the TEU task when there
are threats or pre-threats to be displayed or when the EXT key has been
pressed on the keyboard.

St

4.0 SUFTWARE DETALLED DESCRIPTION

This section provides a detailed description of each of the major
subdivisions of the All) phase I software: system software, service processor
software, and user-processor software. This section is intended to be read in
conjunction with program listings. The level of detail is that needed by a
person wishing to modify portions of code.

4.1 System Software

System software provides an environment within which application programs
may be run., In the case of the AID, a minimal system executive has been
written to perform this function. It consists of a nonpre-emptive task
scheduler and a set of data queue management functions. The queues are used
to pass data between application tasks and between interrupt handlers and
tasks. The same system executive is used in the AID's user and service
pProcessors.

4,1.1 The Task Scheduler and Associated Functions

A description of the design and operation of the task scheduler and queue
management functions is included in Appendix A. This section will describe
the implementation details of thbe scheduler's component parts. Five functions
are involved: sched(), run(), sleen’V, wake() and pause(). Briefly, the
scheduler provides a mechanism for exec:ting application tasks in response to
task “"wakeups”™ by interrupt handlers and other tasks., It chooses the next
task to run based on a prugrammer-specified task priority.

The tasks' task control blocks (TCBs) and the tasks, themselves, are
initialized as part of the startup procedure in function main(). Task
initialization involves calling each task function and running it to the point
where it first calls sleep(). The task may perform task-specific
initialization operations during this process.

4.1.1.1 The Scheduler (sched()) Function

As described in Appendix A, a task control block (TCB) is defined for
each application task. When a running task suspends (calls sleep()), sched()
scans the TCBs, starting with the one for the highest priority task, until it
finds one for 4 task that has been awakened., It then initiates execution of
that task by calling run(). If no application task has been awakened, sched()
simply keeps scanning TCBs. As a result, when the system is idle, the
progyram spends its time in this TCB scanning loop. The TCBs use a linked list
data structure to facilitate access.

The first operation performed in sched() is to scan the TCB linked list
starting at the beginning (tidxi = 0, hiphest priority task). Each task's
status flag, “tsksta”, is tested until one is found that is set. That task's
signal flag is then cleared, the address of its TCB i1s saved in parameter
"tcbadr” for use by function sleep(), and run() is called., Function run()
will initiate execution for the selected task.

51

At -

When the task later suspends, control is returned to the run() function
which then returns to sched(). sched() then loops back to the TCB scanning
operation which searches for another task to initiate.

4.1.1.,2 The Task Initiation (run()) Function

This function has an initialization mode and a normal running mode. The
inft{alization mode i{s run during system initialization to compute an internal
return address, RUNADR, needed by the normal running mode. The initialization
mode operates if parameter “runint” is set. The initialization operation,
itself, resets "runint” so that subsequent calls to run() will cause it to
operate in 1ts normal running mode. All operations within run() are performed
with interrupts disabled.

The first operation performed is to test “"runint”. If it.is set, it {is
cleared and the address RUNADR is computed. To do this a function "getpc”™ is
called. This function simply gets the current value of the 780's program
counter., The value obtained is the return address for the getpc call,
Address RUNADR may then be computed, since it is located a fixed number of
bytes below the getpc call instruction. Address RUNADR is then stored in
global parameter “runadr” and the run() function returns. This completes the
initialization of run().

Under normal operation (runint = U) the run() function saves the calling
function's (sched()'s) stack pointer in parameter "wmalnsp” and transfers
control to the address contained in paraucter "slpadr”™. slpadr i{s an entry
point in the sleep() function. The sleep() function simply loads the Z80's SP
register with the stack pointer for the selected task (its TCB is pointed to
by "tcbadr™) and returns to the task. When the task again calls sleep(),
sleep() saves its stack pointer in the current task's TCB and transfers
control to RUNADR (using parameter “runadr”™) in run(). The run() function
then restores sched()'s stack pointer from "mainsp”, enables interrupts and
returns to sched(). Note that the calls to and returns from rua() use the
normal C function entry/exit protocol. The return address is stored on and
retrieved from the scheduler's stack.

4,1.1.3 The Task Suspension (sleep()) Function

Like run(), this function has an initialization mode and a normal run
mode. The initialization mode is run to compute an Iinternal entry address,
SLPADR, needed by the run() function. The initialization mode operates 1f
parameter "slpint” i{s set. The initialization mode, itself, clears "slpint”
so that subsequent calls will operate in the normal running mode. All machine
code operations within sleep() are performed with interrupts disabled.

The first operation performed in sleep() clears the selected task's
(specified by "tidx") status flag, "tsksta”. Then the task's signal flag,
“tsksig” 1s tested. If it is set, it means that an interrupt handler
rescheduled the current task to run again. In this case sleep() simply clears
the signal flag “"tsksig”, sets the status flag, "tsksta”, and returns to the
calling task.

r

If the calline task's sional tiasz is

~ohednler

U 1}‘ii.l T

HR

fuip to addtess
trans

scihesd by ovia g
tinding it

NESEN N Zero,

Aot steenlt o aGat s ave e current tasx's

oo lnted to ot e T The Stack poin

St tooadiir e e e e Ui S et g

- T Y. Function ruaes ot

il 3 Pty s oo s aed{ .,

[T -~ R e e be e ted el e TS
Addless Shbaos 1o cieept !t vl catc bt oru
St b treen dieci o oaranetor Teipadr T, in
~olecten Lass tslec it ied polator Ttebad
NP ve o detors rar ot slee,tr taen canabe

Cloecto Tass st e reraal ot tunetion
R) Ve fase Widneu) W

A Lasioney e awasened

Loandler o Dasxe A tass may even awaken

\ .
voLasX

i awdakened by ocalling wake(tebrdx)
(index itato the TeB arrav) of the s
simply Sets thne task's status (tsksta) and

testing flaps, wil

Tumbe v

The schedaler) on these

doleled The Task Pause {(pa

Liees, scheduled to be run) oy an

not set, sleep() will return to the
RUNADR in ren(). Sleep() first
ters to location LAB3. At this

staeck potnter in 1ts TuB. The TuB

ter is located rour bvees beveond the
Crods sdavee, sreepl s o stmpiy lumps to
nen restores sched(! 's stack poitter

coutrul to
cets address
pointer tor tioe
stored in the 28u's
returas to the

Ltranstierns
rund)
“leepl), the stack

wotoorun 1t
ARSI FUnc Lo
v ks read and
S ointerrupts and

retuarn protocol,

ared)}

function

interrupt
itselt (see the pause() function).
., where "tebidx” specifies the
clected task. The wake() function
sipnal (tsksig) tlags and returns.
I then cause the task to run.

use{)) Function

Since the scheduler
itselt ir other hisher priority tasks must
that requires a ldarye amount ot processing
itsellr to allow the scheduler to run other
mayv have been awakened by interrupt handle
pertormed by the pause() function.

is nonpre-emptive

The pause()
carrent v running task as an argument (tid
to the scheduler which scans t
prioritv task, The hijhest pr

is retarned

the nithest

“ote that it no hiaher priority tasks are
calted pauset) will simply continue runnin
Gule ! euaes and Jueue

with the excention ot
cantrol tlaens, all
Lasks 1s

parameter initi
data tr
passed bv
roan asviechronously it is
butters

Dass,oand o few
toterrapt handlers and
fusict ions necessa
will not be ove
data. e quernre mechanism also provides a
dat.a that

S e e,

Intertanction Jdat

thioush the svstem <o operations

a tasx must voluntarily suspend

be given a chance to run. A task
time should periodically suspend
higher priority tasks. These tasks
rs. This “"pause” operation is

function simplv calls wake() with the task number ot the

x). It then calls sleep(). Control
ask TCss starting with the one for
iority awdakened task is then run.
awakened, the task that orvicinally

p o trom the pause{) tunction call.
Manazemeat Fanctions
alization, pertormed by the Init()

tasis and between
nmeans ol gueues, Since
this mechanism so
resufting in the

controlling the

disterred between
these

that
luss ot
tlow ot

proper

rv to use
rwritten,
mneans tor
are pertormed in the

Reproduced from
b:?tr olvu:il.oblo' :oLy.D

The queues are implemented as circular buffers and contain variable
length entries. An entry that exceeds the space remaining at the end of a
buffer will be wrapped. That is, part of it will fill the remalning entries
in the buffer and the rest will be stored at the buffer's start., Entries are
added at the queue's tail and removed at its head.

A common data structure is defined to specify all queue headers. It is

specified in the symb.h file which is attached (via an "#include” statement)
to each source file. It is:

typedef struct {

int head H
int tail ;
int length ;
char task ;
unsigned char *pbuf ;
} QUE ;

Parameter “"pbuf” is a pointer to the actual queue byte array. “taill” points
to the next open byte; "head” points to the first byte of the "oldest™ entry
in the queue (and hence, the next entry to be removed). Thus, if "head"
equals "tail” the buffer is empty. The first byte in each entry specifies the
anumber of bytes contained in that entry (excluding itself). Parameter "lngth”
specifies the total size of the actual queue byte array. Certain queue
management functions are designed to suspend the calling task if a queue is
full or empty. In these cases the aumber of the suspending task is stored in
paraweter "task” so that it can be reawakened later. All queue headers are
initialized in the main() and init() functions by calling functions qianitl()
and qinit2(), respectively.

Nine C functions have been written to manayge the data queues. Two
"basic” functions, putq() and getq() perform actual data entry and retieval
operations, respectively. Four functions, putqwt()}, putqwk(), getqwt() and
getqwk(), perforu higher level operations but call the basic functions to
perform actual data transfers. Finally, three minor functions, getqc(),
getqd() and initq() provides queue information and management operations.
These functions will be described in the remainder of tnis section.

4.1.2.1 The putq(source, dest, count) Function

This function moves “count” bytes from the array pointed to by "source”
to the queue pointed to by "dest”. If not enough room exists in "dest” to
store “"count” bytes (plus one more for the count byte, itself) the function
returns a minus one. It also returns a zero if the queue was initially empty
and a one {f it was partially loaded.

The first operation performed tests the "head” and "taill” pointers. If
they are equal (queue initially empty) the returned value, rtaval, is set to
zero; otherwise it is set to one. Then a trial tail value, trytail, is
computed, based on input argument “count”. It is used to determine it the new
entry would overwrite a current entry. If it would, a minus-one value is :
returned and the function is terminated. ;

-

54

The next operation tests “trytall” against the queue length to see if the
entry must be wrapped.

To wrap an entry a new tall pointer, "newtail"”, is first computed. This
potential tail pointer must then be tested against the current head pointer to
see if enough room exists for the entry. 1If not, a minus one is returned.

If room exists, part of the entry is then stored at the end of the queue
byte array; the remainder is then stored at the beginning of the array. The
actual byte transfers are performed by calling function mvbyt(). This
function takes advantage of the Z80's fast block move iastruction. After the
move, the new tail value, "newtail™, is stored in the queue's header before
returning.

If no entry wrap operation is necessary, the new entry is stored
contiguously in the queue's buffer darray. 1If the current tail Is greater than
the current head, then room exists at the end of the array (remember
wrap-around was ruled out by earlier tests) and the entry 1is simply
transferred into the queue array. The queue's tail pointer is then updated
and the function returns. Also, {f the trial tail, “trytail”, is less than
the current head, then room exists inside the array and the entry is stored.
However, if the trial tail equals or exceeds the current head, insufficient
room exists in the queue and a minus one is returned.

4.1.2.2 The getq(source, dest) Function

This function moves 4 queue entry from the queue pointed to by "source”
to the array pointed to by "dest”. Note that it is the calling program's
responsibility to insure that enough room exists at "dest"” for the entry. The
destination "array”™ may also be simply a single-byte parameter, The function
returns the returned eantry's byte count {f an entry is present, or a minus one
if the buffer is empty.

The first operation performed is to see {f the buffer is empty ("head”
equals "tail™), 1If it 1is, the function returns minus one. 1f an entry
exists, the byte count is then read and the new head pointer is tested and
wrapped, if necessary. The count is then used to determine if the entry was
wrapped., [If 1t was, the bytes at the end of the queue's byte array are
removed, followed by the bytes at the beginning of the array. Function
avbyt() is used to make the actual byte transfer; it uses an efficient Z80
block move instruction, After the entry has been removed, the queue's head
pointer is updated and the entry's byte count is returned.

If the entry was not wrapped, the entire entry can be moved by one call
to mvbyt(). The head pointer is then updated and tested to see if it should
be wrapped. The function then returns the entry's byte count.

4,1.2.3 The putqwt(source, dest, stask, count) Function

This function puts an entry in a queue, if room exists, or waits ({.e.,
suspends the task) 1f not enough room exists. It moves “count” bytes from the
location pointed to by “source” to the array pointed to by "dest”. The
calling task's number 13 specified by "stask™, This function also checks the
"task"” location in the queue's header to see if a task number exists. If one
does, it means that an earlier getqwt() operation was performed and the queue
was empty. When this occurs getqwt() loads “task” with the number of the
calling task and suspends. On detecting a task number in "task™, putqwt()
wakes the specified task. Since putqwt() has also loaded an entry into the
queue, the getqwt() operation will then be successful and the suspended task
will be able to continue. Similarly, 1if the putqwt() function is not able to
store an entry because of i{nsufficient room in the queue, 1t will store its
task number in “task” and suspend. Then, when getqwt{() removes an entry, it
will check "task"” and wake the waiting task. In this way the queues are used
to "gate” the flow of data through the system. A task will not run until its
input queue contains data and will not finish processing an entry until room
exists in {its output queue to store the results.

The first operation performed is to call putq() to atteapt to store the
specified message in the queue. 1If putq() returns a zero (queue was empty)
and if "task” is not empty (not minus one) then the task specified by "task”
is awakened and “task” is set to empty (minus one). However, if the putq()
call returned a minus one (not enough room), the calling task's number,
“stask”™, is stored in “"task” {n the queue's header and the current task
suspends by calling sleep(). When the task 1s next awakened, putg() will
again be called and its returned status tested. The process will be repeated
until putq() returns a value other than minus one (i.e., the nessage was
successfully stored). The function then returns to the calling program.

4.1.2.4 The getqwt(source, dest, stask) Function

This function is the coamplement to putqwt(). It gets a message from the
queue pointed at by "source” if the queue contains an entry. If it doesn't
it stores the calling task's number, “stask™, in the gueue's "task”™ parameter
and waits (suspends). If an entry is present it is moved to the array pointed
to by "dest”. When this function finally terminates it returns the byte count
in the message received.

The first operation performed is to call getq(). If an entry exists, it
will be transferred and getq() will return a number other than minus one (the
byte count). If, in addition, the "task" byte is not empty (not minus one),
the specified task is awakened and "task” is cleared. However, {f getq()
returned minus one, then the queue is empty. In this case the calling task's
number, “stask”, is stored in “task” and the task is suspended by a calling
sleep(). When the task is next awakened, getq() will again be called and its
returned status tested. The process will be repeated until getq() returns a
status other than minus one (i.e., a message was successfully received). The
function then returns the received message's byte count to the calling

program.

welvlyy The putqwk(source, dest, count) Function

This function operates similarly to putqwt() except it does not suspend
if the queue does not contain enough room. Instead, like putq(), it returns
minus one. However, each time it is called it checks the queue's "task”™ byte,
and it it is set, it wakes the waiting task. As such, this function's
capabilities tall somewhere between those of putq() and putqwt(). It is used
to insuare that if the receiving task is suspended for lack of input data, it
will run as soon as its priority will allow,

he tirst weratton performed calls putq(), Then tne destination gqueue's
“taskT obvte 1= tested. 1t task number is present the specitied task is
tware aed and Ttask” 1o learcds o when the runction exits it returns the value
returned Trom the patg ocall, whioh may be winas one 18 the puty() operation

Wit [N O N R P

salelWt The vetowkisource, destor orunct ton

P BUEgWRASOUT e, e _euactbon
Shls tuncbion ik the conplenent to putowk(), Tt wels a nessiaie from the

St vobiited oo by Tsoarce T 1D an o entryois nresent, ronone exists it
Feture Al oie, : AAditior . 1t o evis the sonrce aueues Ttask’ bvee to
See BT L LASK Suspedde s 18 awad iy Storaee spoade in Line gquede. lToone isy,
R T S TSR APE & S0 U PN SO N

e tir-t operation pertotaed is Lo catl setgod,. 1 dn ealry 18 preseit
1L s transterred; otiierwise et () returns minas one. Then the tunction
ciecss the queue ™ Ttesk” bytes Itoa Cask auamber is present, the
corresponding task iy awarkened and Ttask” is reset, tinally, the tunction
tetaras the value retarned trom the wetqge) calls, This amay be either the size
of the catry transterred or minas one, indicating no entrv was present,

co bl The getqe(source) Function

Y

Mhis function chexs the next entry tu be removed from the queue pointed
tooby Tsource” and returns its byte count if oan entry exists or a minus one if
ne oentrv o is present. The entry itself (if one exists) is undisturbed.

The rirst operation performed is to test to see it the queue is cmpty
heod” equatls “rail!l™e It it is, the function returns a minus one. 1t an
entry exist. it reads its byte count and returns it.

ol The getyd(source) Function

Fhis function simplv removes an entry (sgets it and dumps it) from the
quete pointed ts by Tsource” - if an entry is present. If none exists, it
retaras a minus one.

The first operation performed is to test to see it the gueue i{s empty
("head"” equals "tail”). If it 1s, the funcriou returans minus one. [f an
entry i{s present, its byte count is read and a new trial head pointer,
tryhead, is computed. [t {s then tested to see {f {t falls outside the
queue array. In that case it must be wrapped and a new head polnter is
computed. It is stored in "head” in the queue's header. However, 1if
“tryhead” falls within the queue array it is used directly to update "head”,
Finally, i{f an entry was successfully dumped, the function returns a one.

4.1,2.9 The initq(source) Function

This function simply reinitializes (clears) the queue pointed to by
"source”. It does this by zeroing the "head” and "tail” pointers and setting
“task” to minus one.

4.1.2.10 The mvbyt{source, dest, bytc) Function

This function moves "bytc” bytes from the location pointed to be "suvurce”
to the destination pointed to by "dest”™. It uses assembly language code and
the Z80's block move instruction, LDIR, to perform the move as quickly as
possible.

4.2 Service Processor Software

The service processor {s intended to be a general-purpose processor 1in
the AID system. It is the bus master and is responsible for countrolling the
AID display hardware, the audio annunclator system, and other utility devices.
Because it is the bus master, it also has the responsibility of downloading
programs to the user processor(s) during initialization.

The primary function of tne service processor is control of the AID video
display. A set of general-purpose commands has been provided to facilitate
the generation of graphic and alphanumeric displays, thus relieving the user
processor from the time required to drive the display. 1In addition, the
general nature of the commands eliminates the user processor's need to know
the detailed aspects of the display, and will thus facilitate conversion to a
different type of display, should that be necessary.

In the same way, the service prucessor handles the audio annunciator
hardware, providing a general way to select and annunciate phrases and tones.

Communication between the service processor and the user processor 1ls via
I/0 ports on the $S-100 bus. The protocol established for transmission is as
follows: the first byte of transmission contains the count of the number of
bytes to follow.

This procotol limits the number of data bytes in a single transmission to
less than or equal to 255 bytes. Within each of these transmission frames are
a number of logical messages of the following format: one byte specifying the
message type, followed by one byte giving the length ot the message, followed
by the message. While in principle the logical messages could span

58

transmission frames, it should be noted that in the current version the
transmissions consist of an integral number of logical messages. The type
codes and structure of the logical messages are given in MSYME.H.

The major tasks in the service processor software are as follows:

UpPINT User processor input task

upour User processor output task

DSPTCH - Message/command decode and dispatch task
VIDEO Video proucessing task

AUDIO Audio processing task

MSWTCH - Mode switch processing task

TIMER - Timer task

INIT fnitialization task.

4.2.1 The User Processor Input Task and Assoclated Functions

The upiat() task obtalns messages from the user processor and sends them
to the dspteh() task for decoding fnto logical messages.

4.2.1.1 The User Processor Input Interrupt Handler (upin())

By the protocol established for user/service processor data transfers,
the first byte of the message is the count of the bytes in the remainder of
the messayge. The user processor {s configured so that the service processor
1s interrupted on this first byte only, so that it acts as a start of
transmiss{on handshaike signal. The interrupt handler inputs this byte and
puts tt futo the upfopi queue to be processed by the upint() task. [t then
wakes the upint() task to notify it that a transmission has started and then
returns.

4.2.1.7 The User Processar Input Task (upint())

Each tine the upint() task awakens, it checks the upiupl queue, which
contalas counts trom the {nput interrupt handler. Tf a byte count is in the
quene, ft signifies that the usor processor has started 4 transmission, so
upint() performs an "input and repeat”™ operation to obtain the remainder of
the acssage from the user processor. The use of tne 280 fuir operator is
possible becduse the user processor has bheen configured to assert hardware
walt stites If the request for an input cannot ope immediately fulfilled. When
the byte request {s avallable, the waft state {5 released so the service
processor can coatinue, After the entire message has been Input, {t {s placed
into the upidsp queue and the dsptch() task {s awakened.

4.,2.2 The User Processor Qutput Task (upouty))

This task accepts messayges from the dsptch() task via the dspupo queue
ind outputs them to the user processor, No interrupts are generated for the
service processor (. the transmission to the user processor,; the service
processor performs the transmission by doing an “output and repeat™ operation.
This is possible because the user processor has been configured to assert wailt
states {f 1t {s not ready to accept a byte.

959

Because the number of messages golng to the user processor {s small, the
upoutt() task is configured to send one logical message per transmission. 1In
addition, due to several constraints Iin the user processor receiving software,
the service processor waits for each message to be acknowledged before sending
] the next. The acknowledgement flag (sack) is set 1iu the dsptch() task
whenever an acknowledgement message 1s received from the user processor.

transmissions, an optional synchronizing byte was added to the logical message
format. The sync byte 1s added before the message type code byte. The option
can be selected by defining the symbol SYNCB in MSYMB.H, and if 1t {s
selected, {t must be the same Iin all user and service processor I1/0 routines.

u Because of occasional problems encountered in user/service processor

4.2.3 The Command Dispatch Task and Associated Functious

The primary purpose of the dsptch() task is to unpack messages from the
user processor into logical messages and send these to the appropriate task
for processing. It also monitors the mode switchi nd sends mode switch
changes to the video task and to the user processor,

Messages from the user processor arrive unmodified in the upidsp queue.
These messages consist of one or more logical messages whose format consists
of an optional sync byte, followed by a byte specifying the message type,
followed by a byte which contains the number of bytes in the remainder of the
logical message. Although the output routine in the user processor at present
sends an integral number of logical messages in a single transmission, the
dsptch() task has been written to allow for logical messages which span
transmission boundaries.

4,2.3.1 The Dispatch Task (dsptch())

As in all tasks, the processing in dsptch() 1is performed in an infinite
loop. The first thing dsptch() does is to check if the mode switch has
changed by checking the mswdsp queue. If the mode switch has changed, it
sends a message to the video task and to the user processor output task and
wakes these tasks.

Dsptch() then chécks for incoming messages from the user processor. If
; none are available, {t suspends itself and when awakened, {t starts again at
< the beginning of its outer loop. If there {s a message from the user
processor, it begins extracting the logical messages.

If the sync byte option has been selected, dsptch() scans the incoming
message until it encounters a sync byte. It then checks the following byte
for a legal message type code. If everything is okay, it obtains the length
of the message and sends the message to the appropriate task, depending on the
type code.

If a partial packet is encountered, it is moved to the top of the input
buffer and the next message from the user processor is read in at the end of
the partial packet, thus concatenating the incoming messages.

6U

4.2.4 The Video Task and Assoclated Functions

The tunction ot the videat) task fs t 4 conrtrol the AlD video display in
response to raeduess Lot Lae usel DLocess l'tee rogaests 4are vxpected to be
Ol Trame by otrame bDasls. Ihat is, a trame starts witn 4 beeclin—yvifeo
command, toliowed by aav umber of Urann o ‘0escdls, il o termf rites witnooan
vred-2tdeo command, Comrmads walch da 0 Se o sbee os, suc L dr Jodar change
commands, are not required U) be betaven a e2i s video and an enu-video
counmand.

[t should be noted than the curreat version i the video tdask dces not
support tilashinu. [was found fae coastril ts ot qudate rite, maximum number
ot targets, and setting clearin pixels 10 s:rteare did a0t aclow enough time
to perform flashing,

4.2.4,1 The Video Task (videot)

The tirst thing the video rask does is to initialize the display. It
does tnis by blanking the screen, erasing hoth video KAMs, setting the default
conditions, and “inally setting tae video control bits to correspoad
appropriately to the mode switch setting.

The video task then enters aa infinite loop in which video commands are
recelved one bv oune from the dsptch() task and are processed appropriately.
The hegin-video, end-video, and clear-video commands control the switching and
erasing orf the video RAMs, while other graphic commands are decoded and
dispatched to the prouper processing sudroutine. Once a complete frame has
been generated in the service processor RAM, switching causes the frame to be
displaved and a new trame 15 then started.

4.2,4.2 Ine draw() Subroutire

This subroutine decodes all the grapaic commands and calls the
appropriate subroutine. For any subroutine whizh sets/clears pixels, a check
is made to eansure that the command is in a video frame. If not in a frame, it
is ignored.

The separation of the graphics commands into a different decoding
subroutine was done for historical reasons when flashing mode was allowed.

%.204.1 the scalex() and scaley() Subroutines

These subrontianes convert user coordinates to screen coordinates in the x
an v directinns, respectivelv, Scaling from user to screen coordinates was
incorpvorated into the yraphics package to minimize tne {impact of using a
dirferent displav with a dirterent number of pixels and a ditferent aspect
rat{o. The user is tree to choose any scaling in the % and v directions with
the anly constrainr that uxmax/uvmax should correspond to the actual physical
aspect ratio ot the displav bhelny aged.

e emm e _ _ "y

The scaling subroutines use long integers internally to maintain
accuracy. The right shift 18 used in place of division by 2 because it does
the same thing and is much faster.

4.2.4.4 The colorg() Subroutine

This subroutine selects the color in which subsequent graphic commands
will be drawn. It updates a global variable which maintains the current color
and it also sets the appropriate bits in the bank select port.

4.2.4.5 The circleg() Subroutine

This is the subroutine to draw circles on the display. The required
inputs are the x,y coordinate of the center of the circle and the radius. Due
to the complexity and time needed to generate arbitrary circles, the current
version uses 7 prestored circles and requires that the radius match one of
these circles. The prestored circles are saved as offsets in the x and y
directions from the center; only one quadrant of the circle is stored, since
the other quadrants can be generated with appropriate changes in the sign of
the offsets.

By changing the value of the parameter POFF, the number of pixels drawn
can be controlled. In the present version, POFF is 2, which sets every other
point {n the prestored circles., By doing this, the time required to draw the
circle is reduced by half, and the generated circle is quite visible and not
ragged.

4.,2.4.6 The lineg() Subroutine

This routine generates straight lines on the display. It uses
Bressenham's algorithm (see "Principles of Interactive Cowputer Graphics™ by
Newmann and Sproull) which requires no multiplications or divisions. The
inputs are the number of coordinate pairs and a pointer to the coordinate pair
array. If the number of coordinate pairs is a negative number, a line is
drawn from the last coordinate position of the previous call to the
subroutine.

The first thing lineg() does 1is to check if the seclected line type has
changed, and 1f it has, it updates the saved on-count and off-count. The
on-count and off-count are used by the lplot() routine to determine if a pixel
should be set or not. As each coordinate is generated, lplot() sets the pixel
and decrements the on—count until it goes to zero. Subsequent calls to
1plot() merely decrement the off-count until it goes to zero at which time the
cycle is started over. This process allowed dotted, dashed, and dimmed lines
to be drawn,

Next, the coordinate pair array 1is converted from user to screen

coordinates and the parameters are initialized for the subsequent line drawing
algorithm. The line drawn 1is always from the “"last™ coordinate to the

62

“"current one”., [f the last coordinate from the previous call is used, the
“current” is set to be the first in the current coordinate array. If the last
coordinate for the previous call is not used, then the "last" coordinate 1is
set to the first pair and the “"current” is set to the second pair.

The primary loop of the lineg() routine is performed for each line
segment to be drawn. The “current™ and “last™ coordinate pairs are updated
and the line is generated by calculating the intermediate points to be set.
These points are calculated in one of eight different ways depending on the
slope and direction of the line segment (refer to the article mentioned above
for details of the algorithm).

4,2.4.7 The setpix() Subroutine and Related Routines

This 1Is the routine used by lineg() and circleg() to set pixels in the
display memory. Although It sets/clears one bit (pixel) at a time, the
routine must manipulate bytes since the display memory is accessed a byte at
a time. TIn addition, because the colors are controlled by accessing separate
memory banks at the same address, the routine may need to manipulate up to 3
bytes for every pixel access. In order to minimize the bank switching
overhead, an array of three bytes is maintained in memory in which the bit
manipulation is done, and the actual display memory is updated when all the
bits are correctly set or cleared.

The f{nputs to setplx() are the display coordinate of the pixel and a
flay specifyfng whether the pixel should be set or cleared. In the special
case that the x-coordinate 1s -1, the routine flushes the working bytes iIn
memory to the display wmemecry and returns. In the normal case, the routine
first converts the pfxel x-y coordinate to an address offset from the
beginning of the display memory. The coanversion is straightforward, noting
that the coordinate orfigin is at the lower left corner of the screen, but the
aplavr memory orfgin address is at the upper left corner.

f the new address offset {s not the same as the current ({.e., a new
bvt.o i+ bhelng addressed), then the current bytes in memory are written to the

display memory and the new working bytes are obtained from the display memory.

A byte with the correct bit set {s then formed and used to set or clear
the appropriate bit in each of the relevant working bytes.

The routines getbyt() and stobyt() are used in conjunction with setpix()
to obtain and nupdate the bytes in the banks in the display memory.

4.2.4.8 The string() Subroutine and Related Routines

0f all the video display and graphic routines, string() and its related
subroutines are the most complex. This Is due primarily to the fact that
characters are generated in software and can be positioned anywhere on the
display. Further complexity results from allowing imbedded color commands,
carriage-returns, and special graphic characters in character strings.
String() takes ASCIIL strings, generates the appropriate pixel image in an
internal buffer, and then writes the image to the display memory.

63

As input, a tring requires the x and y c.,ordinate of the start of the
string, the reference position parameter, the number of characters in the
string and a pointer to the start of the string. The reference position
parameter specifies the position of the x-y starting coordinate relative to
one of five points of the first character, with the lower left corner being
the default position.

After checking to make sure that the byte count is positive, the string
checks for the special case for appending to the last -tring. If appending is
desired, the current couordinates are set to the last coordinates of the
previous call.

Next, it goes through a loop of all the characters in which lower case is
converted to upper case and all the non-printable characters are marked. In
addition, the string is checked for carriage-return and line-feed. [f CR-LF
is found, the string is broken into two parts, the first part of which is
subsequently displayed up to the CK-LF, and the second part is displayed by a
recursive call to itself at the end of the display of the first part of the
message.

After checking the string, the reference position is ciwecked and the
appropriate offsets from the default are set. Then the coordinates of the
beginning and end of the string are checked in both the x and y directions,
and the string is truncated if it exceeds the screen boundaries,

The call to setups() initializes the internal working buffer to start
building the characters in the string; it also computes the startinyg oftsels
into the display memory where the completed string will be stored.

The next two loops do the actual character drawing. The outer loop goes
by each character (x direction) and the inner loop draws each character in the
vertical (y direction). The call to putcbt() is the place where the correct
bits are extracted from the stored characters and put into the working array
(see below for a detailed description). At the end of the vertical loop, the
x position is updated and the next character is drawn. At the end of the
horizontal (character) loop the character counts are cleared to end the
"while” loop. The call to setbyt() with the first argument of minus one
flushes the current working string butfer. At this puint, if the string has
been broken, the string calls itself with a new pointer and a new byte count
to finish the second part of the message and reforms when it is drawn,

Putcbt() extracts a byte from the character dots array, rtates it if it
is necessary to align to a byte boundary and stores it into the workiny array.
It requires as input the character, the line number in the character matrix,
and the x,y coordinate where the line (byte) is to be stored. The x
coordinate is assumed to be at the left-hand edge of the character. If the
character to be drawn is not the same as the last character drawn, putcbt()
must first compute a pointer to the matrix of dots for the new character., If
the high bit of the character byte is set, then {t is a special graphic
character; otherwise it is an ASCII character. Aptr then points to the start

64

T

of the correct array of character matrices and the offset gives the index of
the start of the matrix for that character. (The character dots arrays are in
the source module called ASCILG.C). The correct byte is then extracted by
using the character line number. The character line number goes from 0 to 7
and is just the oftset from the lower y coordinate of the character. However,
for historical reasons, the character dots array is stored from top to bottom.

It the character line byte is to be stored on a byte boundary, it is
stored directly into the working array, but if it is not on a byte boundary,
the bvte is shifrted into two bytes, and the two are stored separately.

setbyt() isx the iowest level routine used by the string related routines
to store character bvtes into the working string burter, which is large enough
to hold tne displaved characters ot a string that goes across the entire
screen. U computes toe x and v oftsets into the working buffer from the
initial coordinate positions ns specitiea in the call to setups(). It the
ot I'sets are legal, it purs the byte inte the woreing buffer, being careful not
to overwrite previousi. written coatents.

wien the striny os completely duilt in the working butter, it is written
into the displav mem o with a4 call to stbvest). iach "line” of the working
irray is written twice iato the displav butter because although characters are
stored as 8 bvtes ni,n, thev are written io pixels hish, After the entire
array has been written to the gisplav memorv, the "opposite” color is selected
and zeros are written to the same locations to clear any previously written

sraphiios,

40205 The Mode Switceh Task and I[nterrupt Handler

The mode switch task receives an indication that the switch position has
changed from interrupt handler mswin()., It then reads the new position and
sends it on to the dispateh task, dspten(). Each time a position change
iiterrupt is received it (re)starts a detay timer. When the timer finally
times out it: I) recontivures the Plu to detect the next switch position and
2) sends the new switch position data to the dsptch() task. In this way the
timer is used to 'debounce' the rotaryv switeh by allowing multiple changes to
avcur betore the final position is sent to dspteh().

4.2.5.1 The Mode Switch Task (mswtch())

After initializing some parameters, the function checks two queues
(nswmsw and timmsw) to determine the source of the wakeup. If neither queue
contains a message then the wakeup was initiated by the init() task. In this
case the startup switch position is received (via "swtprv™) and sent to the
dspteh() task via queune mswdsp.

It the wakeup wias trom the mode switch interrupt handler, a message will
be present ia queue mswmsw. In this case, due to switch bounce problems, more

than one messaye mav be in the queue. As a result the queue must be cleared.
Next, a4 timer is started. The timer i{s used to allow time for the mode switch

S

.

to settle down before its position is read. Note that in the cdase of severe
switch bounce problems, the timer may be started several times. Eventually 1t
will be allowed to time out and will generate a waxkcup to the wswtch(} task,

It the wakeup 1s from the timer() task, the current a,le switch setting,
mswnsy, 1s read. The three low-order bits corrvespoud to the three switeh
gsettings. A cledred blt 1o one of these three posicions tndicates the curiznt
switch setring., Flags representing the three bdits are established to
factlitate testing., The flags are then tested to determine the new setting.
However, {ts not that stople! The switch may have been meved and then aliowed
to drop back to {ts previous position. In that case the old position and the
new are the same., If this occurs, no new switch position messaze should be
sent to the dsptch() task., When this does occur, the POy port {s configured
to detect the "TCAS standby”™ position. That is, the operdtor must tura the
switch back to “standby” and then advance it to the desired tfinal pusition.

If the new position 1s not the same as the previous position a new input
port mask byte i{s prepared to allow detection of the "other two™ switch
positions only. In addition, the current switch position parameter, swtpos,
is set and the previous position piraweter, prevsw, Is updated. The new mask
byte is then output to the Pl1O.

Finally, a final test 15 made to make sure the new switch pusition is
different from the old. The new switch position {3 then sent to the dsptch()
task. Control then returns to the beginning o1 the tash loop and the task
suspends.

4.2.5.2 The Mode Switch Interrupt Hdandler (mswiu())

This function processes mode switch interrupts from PIu channel A. An
interrupt occurs when the switch position is changed., The PI0O was {nitialized
such that its logical equation logically "ORs™ the unmasked l{nes. A line {is
logically true when it is zero. Therefore, the PlU's logleal operation pgoes
from false to true on the occurrence of a zeruv on one Ht {ts unmasxed lines,
This causes the interrupt, The lngical equation s reset to talse by
outputting a control byte (in thia case, a UX97 to port Xd»).

The mswin() Interrupt handler saves the state of the interrupted tunction
and then outputs a control byte to reset the PIO. 1t then outputs 4 mask that
deactivates all input lines (OXFF to port 0X&3). This blocks subsejuent
gwitch bounce faterrupts when fnterrupts are later enabled. [he masc 1s
changed {n the mode switch tasx when it {s ready to accept new switch position

change data.

Atter enabling {nterrupts, mswin() sends a "signal” messave, mswsiy, to
the mswtch() task. The message byte contains no lntormatinn; the presence ot

the message indicates to mswtch() that a switch change has occurred, mswtong)
reads the PIn's data port to determine the new sctting.

Wirih Interrupts disabled the state of the {aterrvapted function is
restored. [aterrupts are ther enabled and ¢ ntrol is returned to tne

{pterruptad fanction,

]

o Parhem

4,2.6 The Audio Task and Interrupt Handler

The audio task receives an audlo request command from the dispatch
task(dsptch()), transfers the prestored, digitized audio data to the
annunciator buffer (4K) and starts the annunciator. The audio data is stored
in the upper 16K of the master's RAM and in the 64K audio RAM board. Audio
data is stored in these areas during the initial program load sequence by the
AUDM.COM, AUDA.COM, and AUDB.COM programs.

A command may request a single audio message (a word or tone) or it may
be part of a concatenated string of messages (a phrase). In the latter case a
“"start-of-audio” message is recelved first, followed by one or more audio
“word"” messages. The sequence is terminated by an "end-of-audio” message. In
this case all words are sent to the annunciator's RAM before it is commanded
to start. When the annunciator is finished it issues an interrupt which is
received by handler audin(). Audin() sends a message to this task via queue
audaud. When the annunclator is started, a two-second timer {s also started.
The annunciator interrupt is used to stop the timer and reset the annunciator.
If the timer times out, it means that no interrupt was received from the
annunciator. In this case the annunciator is simply reset. Two seconds is
more than enough time for the annunciator to output all 4K of its data.

4.2.0.,1 The Audio Task (audio())

After iunitiallzing the "done™ flag, the first operation performed is to
check the queue from the dsptch() task (dspaud) to see 1f an audio request
caused the task to be scheduled. If no dsptch() message is present the queue
from the annunciator interrupt handler 1s checked. A message in this queue
(audaud) indicates that the previous annunciation has been completed. The
task then sets the "done" flag, stops the timer (via queue audtim) and resets
the annunciator (by outputting a byte to port OPT4=0X4F).

If a message is present from the dsptch() task the “done”™ tflag 1s checked
to see {f the previous annunciation has been completed. If not, the queues
from the timer task and the annunciator interrupt handler (timaud and audaud)
are checked. If the timer timed out, "done” 1is set, the annunciator is reset
and the program proceeds to process the message frow dsptch(). If the
interrupt handler queue contains a byte it means that the annunciator is
finished. The "done"” flag i{s set, the annunclator is reset, the timer is
turned off and the program proceeds to process the message from dsptch(). If
neither queue contains a message, the program cannot proceed, so sleep() is
called. When the task is again awakened the two queues are rechecked, etc,

The first step in processing the message from dsptch() is to check its
type for a "begin-audio” or "end-audio” type. For the former, the "start”
flag is set; for the latter, the "start” and “"done” flags are cleared and the
annunciator is started. In both cases the program returns to check the dspaud
queue again.

67

T

If the received message 1s not a begin or end audio control message then
it is an audio data message. The program proceeds to transfer the
corresponding data from the audio RAM to the annunciator's RAM. The audio
data 1is specified by means of an offset {(audbuf.offset) and a length
(audbuf.lngth). The offset is used to determine the 16K audio bank in which
the data resides.

The procedure begins by deselecting the currently selected bank by
selecting a nonexistent bank (bank 1). The currently selected bank was one of
the video banks; it will be reselected after the audio operation is completed.
The offset 1s then tested to determine the proper audio bank to select. The
bank {s selected and the offset into it {s computed. The data is then moved
to the annunciator's 4K RAM area.

If the audio bank selected was the upper 16K of the Master's RAM it wmust
be deselected before the previously selected video bank (as specified by
parameter “bank”) 1s reselected.

At this point the “"start™ flag is checked to see 1f the dspaud message
recelived was part of a concatenated string. TIf it was, the program returns to
input the next part. If not, the "start” and "done” flags are cleared, the
annunciator is started, the timer 1is started, and the program returns to the
beginning of the task loop and suspends.

4,2.6.2 The Audio Interrupt Handler (audin())

This is the handler for the interrupt frowm the annunclator card. The
interrupt vector was set so that it points to the DI instruction at the
beginning of this function. 1In so doing the state of the Interrupted function
can be saved {mmediately (actually, the DI {instruction i{s not needed since the
Z80 disables interrupts automatically when an interrupt occurs).

After saving the {nterrupted function's state the P[0 port's mask is set.
Note that this code seems to be redundant or it may be that it was found to be
needed to make the P[0 work.

After enabling interrupts the handler sends a "signal” byte, "audint™ to
the audio() task via queue "audaud”. This byte coatains no information; the
fact that a byte was sent informs audio() that the interrupt was recefved.

Interrupts are turned off while the state of the previously running
function is restored. Control is then returned to the interrupt function via
the RETI instruction, The normal C function return sequence is bypassed.

4.3 User Processor Software

The AID software system is designed to allow division of the processing
load among multiple single-board computers (SBC's) In a master/slave
configuration. The Master SBC, designated the service processor, serves
primarily as a general-purpose audio/video processor (see Section 4,2)., One
or more slaves serve as user processors, each performing functions which are
specific to a particular user application., 1/U devices which are
application-specific are attached directly to the user processor(s).

68

The phase I AID software described in this document provides for a
single-user application and thus uses a single-user processor. This user
processor interfaces to a TCAS experimental unit (TEU) and a keyboard. Its
function fs to {aput TEU aircraft position information, process the
intormation according to keytoard commands, and generate and send data blocks
rto the service processor tor audio and/or video output. Audio output is of
two types: (1) tones to indicate whether valid or Invalid keys have been
pressed on the kevboard, and (2) words (e.g., climb, descend) or sounds to
inform the pllot of a recommended maneuver or simply draw his attent{on to the
displav. Video output is a color PWl~type display showing targets at given
ranges and bearings from own aircraft which is located near the center of the
screen.

There are five basic types of software contained in the user processor:
a maia program, a task scheduler, tasks, interrupt handlers, and a user-
graphics packayge. All data transferred between tasks and between interrupt
handlers and tasks is passed by means of circular queues. The user-
processor's task scheduler and queue wanagement protocols are similar to those
in the service processor and are discussed in 'System Software', Sections 3.2
and 4.1, The user graphics package 1is covered in Section 3.4.4. The user-
processor's main prograa, tasks, and interrupt handlers are described here.

The user processor contains six tasks and five interrupt handlers. A
block diagram of these, along with the connecting data queues, is shown in
Fig. 3.4-1. The user graphics package, not shown in the block diagraws, is a
set of routines which may be called from any task within the user processor.

Initially all of the user processor's software is loaded from the service
processor via the $-100 buss. Control is passed to the user maln program,
which performs a number of initialization operations, then calls the task
scheduler. The task scheduler will immediately run the init() task which
performs more Initialization operations. Thereafter the program loops in the
scheduler, continually checking for tasks which are ready to run.

There are four sources of input to the user prc. .ssor: keyboard, TEU,
timer and service processor. Fach has a corresponding task (keybd(), teu(),
stim(), spint()) and interrupt handler (keyiun(), teuin(), ctcin(), spih()).
There {s one output destination, the service processor, with task spoutt() and
interrupt handler spoh(). The sixth task is init().

There are seven sections which follow to describe the user processor
software. Section 4.3.1 covers the user~processor main program. Sections
443.2 =~ 4.3.7 correspond to the six user—-processor tasks with their related
interrupt handlers and functions.

4.3.1 The User-Processor Main Program (main())

Upon power-up, the slave single~board computer runs a boot program stored
in an on-board ROM. This initializes the slave to receive a program download
from the Master via the S$-100 buss. After the slave program has been

h9

. et g S o

downloaded, control is passed to main(), the user processor main program.
Main() performs a number of initialization operations, then wakes init() and
calls the task scheduler. The task scheduler immediately runs init() which
performs more initialization operations. Thereafter the program loops in the
scheduler, continually checking for tasks which are ready to run. Nelither
main() nor init() run again unless the system is again powered-up.

In the AID software, the initialization operations have been divided into
two parts. The idea was for main() to perform those operations necessary only
at power-up and for init() to perform those operations necessary for a system
restart. In reality, the partitioning of initializat{on i{s more suited to a
system Iin which the program is stored in ROM and in which restart could be
done by simply scheduling init(). In this system, with program stored in RAM,
restart by running init() would not necessarily be successful. Hence we
restart by rebooting the entire system from the disk, running both main() and
init(). The idea of partitioning is retained, however, in case it should be
desirable to store the program in ROM at a later date.

Main() begins by moving CPM's interrupt vectors trom their high core
locations to low core (starting at location U). Since we do not curreantly use
CPM or any of its interrupt vectors, this is simply a precaution in case of
tuture software changes. Having the faterrupt vectors start at location v
ensures that we will not overwrite them by code or data.

The starting address of each {nterrupt handler we use is then loaded into
the interrupt vector table: timer, keyboard input, teu input, service
processor input, service processor output, and cautioan warning switch. The
interrupt handler addresses used are actually the starting addresses plus 3.
This bypasses the normal C tunction entry sequence and allows the context ot
the interrupted function to be saved immediately when the interrupt occurs.

Next, the task control blocks (Tcb's) are partially inicialized. The
task stacks are allocated space from BUUU downward. Kunl) and sleepl) are
called to inftialize them, and then each tusk is run to its tirst suspend
point.,

NDinfrl() is called to inftialize the length and butter pointer tlelds ot
the circular butters or queues. Finally, main() wakes init() and calis the
task scheduler,

4.3.2 The Infttaltzation Task (tnitQ))

Init() {8 awakened by the matn program main() atter power-up to complete
the {nitlalization begun by main{). The major portion ot inft() is devoted to
inftialization of the user processor hardware 1/U0 devices.

Init() first disables interrupts. These remalin disabled tor the duration
of the task. [nit() completes inittalization ot the task control blouks
(TCB's), then calls qin{t2() to complete {nitfalization ot tne circular
butters or queues. At thig potnt the coordinates ot the user's virtual scteean

|

are defined via the scale() function. This would normally be done in the
initialization segment of the TEU task. However, scale() makes use of the
graspo queue and thus must follow the queue initialization done in qinit2().

The rest of init() deals with the user—processor hardware 1/0 devices.
First the CTC timer channels are initialized, Channels U and 1 are used to
generate baud rates for SIU serial channels A and B, respectively. Either of
two hardware configurations will be present: console I/0 on channel A (9600
baud) and keyboard input on channel B (300 baud) or keyboard input on channel
A and TEU input on channel B (9600 baud). The Sierra monitor assumes that a
console will be connected to at least one of the serial ports and thus as a
default configures the channels for 9600 baud. Therefore, when the console is
on channel A, the software does not initialize either the corresponding CTC
timer—-counter device or serial port.

A detailed explanation of the use of the CTC timer-counter device and of
the 780 serial 1/0 and parallel [/0 is given in the Sierra Data Sciences
Technical Manual, This must be read in order for the 1/0 initialization to be
understood.

The procedure to gencrate 300-baud rate for the keyboard is as follows:
The user outputs bytes which set the channel for timer mode, set the prescaler
P to ln, and set the down-counter time-constant TC to 51. This creates a
pulse train of period = (system clock period)*P*TC = .25 psec*16*52 =
208 usec. A 208~usec period is equivalent to 4807 pulses per second. This is
divided by the prescaler 16 to get 4807/16 = 300 pulses per second. An
important note is that the CTC timer runs off the 4-MHz system clock (period
= .25 psec) whereas the CTC counter runs off the external clock (1.8432 mHz in
the slave + period = .54253 psec).

The procedure to generate 9600 baud rate for the TEU input is as follows:
The user outputs data bytes which set the channel for counter mode and set the
down counter time constant to 12, This creates a pulse every tce*TC = .54253
psec*l2 = 6.5 psec., A 6.5 psec period is equivalent to 1hb,666.67 pulses per
second. This is divided by lbo to get 3600 pulses per second.

Channels 2 and 3 are used together with channel-2 output wired to
channe!=3 input. Chaanel 2 is set to timer mode to produce a period of
25 usec*1h*125 = 500 psec. Channel 3 is set to counter mode to produce a
period of > psec* 125 = 62,95 msec. A bit is set in the channel control
register to penerate an interrupt cach time the b62.5-msec interval elapses.,
This is used by the user-processor's timer interrupt handler ctein() and timer
task stim().

Next the serial I/0 ports are initialized for keyboard input and teu
input, again depending upon the hardware configuration., Detailed comments are
given in the program listings and follow closely the Sierra Technical
Manual.

Parallel 1/0 ports are next {nitfalized. Channel A {s configured tur bit
control mode to be used as the caution/warning switch Interrupt port. Channel
B is configured for output mode to be used as the caution/warning Llight output
port. Channel C is configured for input mode to be used as the service-
processor input port. Channel D is configured for output mode to be used as
the service-processor output port. Agaln detailed comments are given in the
listings.

After PIO initfalf{zation is complete, interrupts are agailn enabled, and
the TEU timer {s startel to awaken the teu() task once per secoad. This is
the end of 1inft().

4,3.3 The Keyboard Task and Associated Functioas

The keyboard allows a user tou chauge various TEU display characteristics
(e.g., relative or absolute altitude, maxiugum Jdisplav rame, number of targets
displayed). Keyboard inputs consist of single bytes. They are asyachronous
and may occur at any time. When a key ls depressed, an interrupt is
generated. Keyin() 1nputs the key's corresponding 8-bit byte, places it into
the keykey queue, and wakes the keyboard task. The keyboard task then uses
valid keyboard entries to update a lé6-byte displav optlons array which is
passed to the teu() task for proucessing.

4.3.3.1 'The Keyboard Interrupt Haadler (keyia())

Keyboard bytes are recelved frou the slave sertal 1/0, configured as
efther channel A (port 0X80) or channel B (port UX82). The normal
configuration is for keyboard inputs to be received on channel A and T:EU
inputs to be received on channel 8. However, our slave single-board computer
allows only two serial channels, and at times it is desirable to connect one
of these to a console for debugging. In this case, console {nput/output is
via channel A and keyboard input is via channel B. This is the reason for the
conditional compile in keyin().

When a key is depressed on the keyboard, an interrupt is generated and
control Is passed to keyin(). Interrupts are disabled, registers are saved,
and the key's corresponding 8-bit byte 1s read into location "inchar”. If room
exists in the keykey queue, the byte is placed into the keykey queue and the
keybd() task 1is awakened. If no room exists, the byte is lost. Registers are
then restored, interrupts enabled, and control is returned to the interrupted
program via RETI.

4.3.3.2 The Keyboard Task (keybd())

The keyboard task has two primary functions: (1) to examine kevboard
entries for validity and generate an immediate appropriate audio response, and
(2) to update a display options array with valid keyboard entries and send
this array to the teu() task for processing. The keyboard key assignments,

along with a brief summary of keyboard commands, are shown in Fig. 3.4-2, A

more detailed description of valid keyboard commands is given in Filg. 4.3-],
A description of the 16-byte display options array is given in Fig. 4.3-_.

Al LI a4z 43 20 2! 22 10 (K} 12
REL

ALT TOD 1 2

RS Ry 46 a7 24 25 26 14 i 5

ABS

CLR
KB

MODE

aA

48

28

29

24

EXT

RNGE

SURV

N o af 2¢ 20 2€ 1C s
phTar] T DEMO| [NTGT PALJSE} STEP A l [
! -
I J & L i i e
f :
e e e o i _— — ——
. .
i NN
tr LN i
' 9’ e
b Wt
V\ it 1, -~
R N
- e el he T ' Ve : o
I,
nah ot VT mode VAT e
Craxinate Loar TR e RN
cre=rhreal is hesowod reved Tdetanls N Pl
i vege to o defacit a1 SOUTIANG artran Csed
'i;l. ce B
F ¢ TR
. cLonl pArane e I dispioan
‘md Let ar o paramete ry ciXed oo

Fig, 4.5~1.

Keyboard commands.

EXT

REL ALT

ABS ALT

BAR COR

Note l: When autoscaling is selected, range will be
set to selected range except when autoscaling is
necessary to show all threats and pre-threats.

Note 2: Fixed ranges 2 to 8 are distances from own
A/C to rear of display. Corresponding forward ranges

are 4,7 to 19,2 nmiles.

Allow extended range display (4 nm, continuous mode)
for 15 seconds.

ALTITUDE CONTROL

Set the display to relative altitude mode but do

not clear any previously entered altitude correction.
(Initial mode on power—up, The initial altitude
correction 1s zero).

Set the display tc absolute altitude mode but do
not clear any previously entered altitude
correction.

-9,-8,...-1,0,1,2,...,9 Set the display to absolute altitude mode and add a

TST

barometric correction of -900 to +900 feet to the
previously entered altitude correction (i.e..
barometric corrections are cumulative). This sum is
then added to all absolute altitudes.

BAR COR O is a special case which clears the
barometric altitude correction, (Sets it to 0.)

TEST MODE

Enable/disable test mode (default is real (non-test)
TEU data). Used in combination with DEMO key.

DEMO 00,01,...,09 0OA,0B When in test mode, selects a moving test scenario

11,...,19,1A

(00) a specific still-frame display (0l1-0B), or a
moving FAA-defined encounter (l1-1A).

Fig. 4.3-1. Keyboard commands (cont'd).

byte keyboard key

0

13

It

12

*Note: Doption

associated

CLR DISP

TOD

TAU

REL ALT,
ABS ALT

BAR COR

RNGE

RNGE

TRIG

TST

DEMO

EXT

NTGT

description

clear display

PPI/tabular

time—-of -day

TAU limit for
current perfor-
mance level
altitude
barometric
correction
range

auto-scaling

threat-triggered
mode

test data
selects

a specific
test data set*

extended range
display

max. number of
targets to display

value default

= clear display
= do not clear display

S

1 = PPI display
0 = tabular display

—
[]

display TOD
0 = do not display TOD

1 = display TAU

0 = do not display TAU
1 = relative altitude
0 = absolute altitude
-9,-8,...,-1,0,1,..,9
(each digit represents

100 ftr)

2,3,...,8 nmi

1 = autoscale

0 = do not autoscale

1 = threat-triggered mode
0 = continus mode

1 = use test data*

0 = use live TEU data

00: 8 moving test targets

01,...,0B: still-frame
displays

11,...,1A: moving
FAA-defined
encounters

1 = extended range
0 = normal range

0,1,...,8

[10] is operational only when doption [9])=1.

Fig. 4.3-2. Display options array.

0

—

associated

byte keyboard key description value derault
13 PAUSE** freeze display 1l = pause 0
0 = normal operation
14 STEP*% single-step 1 = step 0
display 0 = normal operation
15 SURV surveillance 1 = surveillance mode U
mode 0 = other, as defined
(5-nm continuous by TRIG and EXT keys
mode)

** PAUSE and STEP keys operational only when running in test mode with
FAA-defined encounters, (i.e. doption [9]=1, doption[10]=11,...,1A)

STEP operational only when PAUSE=],

Fig. 4.3-2. Display options array (cont’'d).

Srpcrly, keviooard consists mainly of one large "while'! loop. Keybd()

ool cadiag et e rom Lae Revkey guere gnd apdaring The display
Cootinpenopy . om ol T e L T Lty L ey et ries, WU setat, fFoany
N T AR P TR vecte AL et e T e ey e 4T TaY
et TR L1OLUO me VT e,
. . 3 Nl P 3 ~ Wit L. v Lo Lrste
oo N N S LA RIEIPE e ' ik edera 0
. . - [T RO o T -~ N SR
N . v . 1 . ” FEY i [EORRE DA S
o i < oo, ' ST il Ve s t
oo TSy iievse ~ RN Ve ooE M SN L e O o Al Lhose Wi Lot
i [S LT - T, VU e RO SLTE e el JNdlAC e s
Toac vt KRR et AN N S TR A S jerdtie. of 4
o, EP I TS CaE T ACT o TRl T teneral Loy ol
oot [ERFEEPEIN T ire o . Do ria e O Lram LunEen loops
3 o [N .
Tl e Lt T HEE R S RIS S S ULE SR CEMEE S AN S S FUR G = GRS Y SR
B LG AL TR B L Y S O A I 4 nudand Is oentered.
Coocrodram wiil o reaio o wllal LS osubrouiine, execaling Lts own calls te
v maraclers g cesverate cordloc totes o oantil eflher The correct sequence

L
T ardciers or 3 <eviboardt ooiear has tren enlored, wlv then Is the display
ot tons array oupdated ang the subroctiae oxited. lhe program then loops back

coLtee depinnias of Hevndy o Uo oinpul o0 oW Caaractet.

’ P "

nacs Chwe Chwe

Spiay ooptions array 1s oapdatesd, the rlag Tprocess’ 1s
ser. When the kevbdoard task aas emptiled 1ts fnput jqueue, it cnecks the flag
setting to determize whetier or 20! (o output the displav options array and
~ike e teuld o task before

Jetaw Lo osieren.

e b oy vaactiens Calicd by otne Kevboard U

Five funcoions, b, orpaniszed oo the same manner, are= called by the

covnoard task to process multil-RKevstroke commands, They are:

mproact G Lo s acess tae nan ti-gevstroke wode comuand

TLUCT T L process tne nuitloxevsiroke fauyge command
. Cooar Uea s e meiticRevstroke harovwmetric correction comnand
o T et e N LimRevstroxke Jdemo commana
r Y ST T a oo mKevstroee qunher ot tdryels ' comnaid.
Coro et ian Son Taias o an crter Tanianlle doop’ tor Jeading charioters
v RN e e it L CaarAct el TR el autiteted, viads thien is
IRV A T e s i meen s Do Coudind. C AL D ils cint, 1 the
' R el RSN G SRt OKe Sommdnd f, o the Jdlspoav ooptioos
! i . LAt and Lt kot e naln kevdhdye st Lasx, 1T otos
3ot e sResstr o Sommana ., L taner tintirite doop! is entered, again reaging
[SRS AN S S FP S N sk nntered, Where o oan (e Arvdy ds
ey S R P L TO S L =S vy ol
e . . i e . Gl LT Tar s o e e o sevbde b task
‘ . _— . , o

4.3.4 The TEU lask and Assoclated Functions

4.9.4.1 Overview

The teu() task is the major task within the user processor. Its
functions are to input keyboard commands and aircraft position information,
process the aircraft information according to the keyboard commands, and
output audio/video graphics data blocks to be transferred to the service
processor.

Alircraft position information is received from the aircraft's onboard
TCAS experimental unit and read in via interrupt handler teuin()., When
teuin() receives a complete data block, it places this data in the teuteu
queue and wakes the teu() task. Teu() then i{s responsible for determining
which targets to display, where and how the targets should be placed on the
PWIi-type display, what audio should be annunciated, and for communicating this
information to the service processor.

4.3.4.1.1 Inputs

Primary TEU inputs are from two sources: the TEU interrupt handler
teuin() and the keyboard task keybd(). Inputs from teuin() are placed once
per second in the teuteu queue. These inputs are variable-length data blocks
which contain position and equippage Information for own aircratt and up to
elight other aircraft. The format of the TEU input data blocks 1s shown in
Filg. 4.3-3.

Users may enter keyboard commands at any time. The keyboard task rejects
invalid keystrokes and accepts valid keystrokes In order to update a display
options array. It is this l6-byte array (Fig. 4.3-3) which is passed to the 7
TEU task in the keyteu queue.

There are three other inputs to the teu() task:

(1) The service processor sends a4 l-byte message to the user processor
each time there is a change in the Bendix front pdanel switch setting.
This byte {s placed in the spiteu queue for the TkU task and used in
determining whether audio and video data blocks should be sent from
the user processor to the service processor.

(2) The timer task stim() is initialized ‘and reinitialized each time
through teu()) in order to wake the teu() task at one second
intervals. This wake-up is used by teu() to decrement counters once
per second and in test mode to process test data once per second.

(3) The third input is handled via global variables rather than a queue
entry. Whenever the caution/warning button i{s pushed, the
caution/warning interrupt handler cwin() zeroes the variables "cwyel”

and "cwred”, which are used by the TEU function ralert().

78

| ol 1] 2] 3| 4| 51 6] 7
1 hours of system time 0-23
2 minutes of system time 0-59
3 seconds of system time 0-59
HEADER S AUDIO [///7] BRG|*
INFORMATION 5 BEU performance level 0-7
6 LS Byte own altitude
7 | _MS Byte LSB = 100 ft
8 | S Byte IVSI command
9 LS Byte
1 | Priority 1-8 |Window no. 1-8
2 | Range 0-16 nm_LSB = 1/16 nm
3 |_Range Rate * 1280 kt LSB = 10 kt | target 1
TARGET 4 | Rel. Alt. * 9900 ft LS8 = 100 ft
INFORMAT [ON 5 | Azimuth U-360° LSB = 360°/256
6 | BB | NEW| 8A | uP | DN [A/D] COLOR
1|
2
3 target 2
4 . |
3 |///| = spare
o AUDIO 000 none
001 'command'
010 'clear’
v 0ll1 'alert'
; 100 tone
A BRG 0 BEU is not providing bearing data
1 BEU is providing bearing data
PRIORITY 1 = highest
- BB 1 = bad bearing
5 NEW 1 = new target
. BA 1 = bad altitude
3 up [= alt rate > 10 ft/sec
g DN 1 = alt rate < ~-10 ft/sec
Ky A/D 0 ATCRBS
" 1 DABS
COLOR 00 white
0l yellow
X 10 red
s Il undefined
; *NOTE: For certain prerecorded data sets, header words 4 & 5
-4 have special meaning. If word 4 = OXEQ, then word 5 contains a
A number identifying the data set which i{s to follow.

Fig. 4.3-3. TEU input data block format.

79

4.3.4.1.2 Outputs

Outputs from the teu() task are the audio/video data blocks described in
} Section 3.4.4.

4.3.4.1.3 Task Structure

The teu() task is wade up of five levels of funcrtions (Fig. 4.35-4),

i» Figure 4,.3-5 presents an alphabetical listing of these functions showinyg the

X file in which each fuaction {s located aund giving a brief description ot each
' function's purpose., The primary purpose of the level 1 tfunction, task teu(),
18 to check each of the four input queues (spiteu, keyteu, teuteu, and timteu)
for input. When TEU data is present in the teuteu gqueue, or in test mode,
when the timteu queue indicates that test data should be processed, the level
2 function tproc() 1s called.

Tproc() then makes calls to 12 different level-3 functions. These
level-3 functions handle either keyboard selected options (e.g., tod()
-display time-of-day message in upper left screen corner) or handle some
well-defined part of the processing which must be doune each scan (e.g.,
ralert() ~decide what, {f any, audio should be annunciated).

Level-4 and level-5 functions are specialized subroutines used by certain
level-3 functions. The lowest level functions will usually contain calls to
user graphics package routines. It s the user graphics routines which
actually generate the graphics data blocks and output them via the teuspo
queue to the spoutt() task for transfer to the service processor.

4.3.4.1.4 Techniques for Dynamic Screen Allocation

e am < L

There is one concept that requires explanation before many of the TEU
functions can be understood. This is the method of dynamically allocating
.. space on the screen whenever text messages are displayed for the first time or
? removed.

Afrcraft position information is giveu in terwms of range and bearing froa
own aircraft. [t is beneficial rfov traftic displays to have greater rdnge
E visibility in front of the aircraft (U°, up, on the screen) than behiad (180°,
4 down, on the screen). Therefore own alrcraft i{s not located at the center of
the display screen, and the avallable range frow own alrcraft to screen edge
is different for different bearings. In addition, when text messages are
displayed in the screen corners, or when 'no bearing blocks' are displayed,
the space avallable for target display is reduced in certain directions (i.e.,
for certain bearings). Therefore, the user—processor software waintains a
256-element array (target bearing LSB = 360/256 degrees) to show current
available range in each of the 256 bearing positions. This array is called
dunits(]. 1ts units are consistent with the units selected by the user i{n the
scale command (see Section 3.4.4) (our software sets the screen dimensions to
be 1024 units horizontally and 768 units vertically.)

R

tevel Level 2 level 3 Level 4 Level 5
tahles tinit
TEY v T
task -A‘w clyten
- inittaa ~ modeck
toroe o B Tev
nisd 1 e - tod
N ralert g
L
R oalt
i order

trivyer

calluap

_ohry e units
nsi
‘ rring _dspg
top
~ tyrt B _ :
_tag i oright
' |
! sqrt I botton
- apdat ;
¢+ thet ‘ left
« deftop

Fig. 4.3-4. TEU task structure-functions used by the TEU task.

£

g

Name

annunc

bottom

brg

callup

clrteu

deftop

dspw

inftfaa

left

modeck

oalt

order

File in which
function is located

Purpose

tsubsl.c

tsubs.c

tsubsl.c

tsubs2.c

teu.c

tsubs.c

tsubs2.c

faafflm.c

tsubs.c

tsubs2.c

teu.cC

tsubs2.c

Decode 1IVSI command word to annunciate
proper audio word,

Put alt tag (1f no overlap) below target
triangle,

Display 'no bearing' targets in block in
upper left screen area.

If extended range selected via keyboard
figure out what display range should be.

(Re)initialize various screen parameters,
flags, and counters. Called at start-up,
when CLR DISP key is pressed, and when no
data has been received for 8 seconds.

No good position for alt tag. As a default,
put alt tag above target triangle, even
though it will overlap something.

Check to see if proximate a/c meet range
criteria for Jdisplay.

Called whenever a new FAA encounter is
selected or a previously selected encounter
repeats from the beginning. Initialize
arrays and variables used in generating
encounters.

Put alt tag (i{f no overlap) to left of
target triangle.

Set user mode switch based on mode switch
setting recelved from Master and target
severity (threat or prethreat present or
ext key pressed on keyboard).

I[f in absolute altitude wmode, display own
alrcraft altictude in lower left screen
corner.

Reorder targets {n alrcraft data array
according to priority. <Called when there
are more targets recefved than can be
displayed.

Fig. 4.3-8. Functions used by the TEU task.

o2

File in which
Naime tunction 1s located Purpose

psf tsubsl.c Do preliminary scaling factor calculations
to compute min. display range that will
show all threats and prethreats., Called
when autoscaling is selected.

ralerct tsubsl.c Do resolution advisory processing,
annunciate audio (except for commands,
which are annunciated by annunc), set
caution/warning lights.

rev teu.c Display rev message in upper right screen
corner for 8 seconds after power-up.

right tsubs.c Put alt tag (if no overlap) to right of
target triangles.

k- rring teu.c Display 2-nm ranyge ring and chevron symbol.

sqrt faafilm.c Change target x,y coordinates to r, theta
coordinates in updating FAA encounters.

3 tables tables.c Set up the arrays used in dynamically
£ allocating space on the screen when text
9 messages come and go in the corners,

Called at fnitialization only.

:; tag tsubs.c Figure out where to put altitude tag so
] that it doesn't overlap target triangles or
: other altitude tags. Calls top, right,

bottom, left, and deftop.

- tau teuw,c If selected, displday tile message in lower

g right screen corner,

S tut tsubsl.c Convert target position from polar to x,v

o cocrdinates. Set up information necessary
to display target triangle and alt tag.

) thet taatilm,c Change target x,y coordinates to r, theta

3 coordinates in updating FAA encounters.

p tinit tables.c Called at initialization only. Set up the

arrays used in dynamically allocating

space on the screen when text messages come
and go In the corners.

Fig. 4.3-58. Functions used by the TEU task (cont'd).

83

File tn which ,

Name function is located Purpose é
tod teu.c If selected, display time-of-day message in '

upper left screen coruers.

top tsubs.c Put alt tag (if no overlap) above tdrget
triangle,
3
tproc teu.c Main TEU processing routine. Called once

per scan. (See Fig. 3.4-5),

! trigger tsubs2.c If threat-triggered mode selected via ;

keyboard, check to see 1if there are any
threats or pre-threats. If not, set tproc() !
to do no processing. '

units tsubs.c If there is a change 1a the number of 'no

bearing' targets dlsplayed, make
appropriate changes in arrays used in
dynamically allocating space on the screen,

updat faafilm.c In test mode, when FAA encounters hdve been
selected, update encounter data once per
second so that targets move across the
gcreen as specified.

update teu.c In test mode, {(no demonstration scenarios
or FAA encounters selected) update canned
data once per scan so that targets appear
to move across ucreen in a realistic
manner,

Fig. 4.3-6. Functions used by the TEU task (cont’'d)

There are nine other arrays that are used in conjunction with dunits|]:
da0|}), dull],se., du8l]. DuO[] 1s a 256-element array which contains
available units from own aircraft to screen edge for each bearing (i.e., it
assumes that no text messages are being displayed and that the entire screen
is available for tarzZet display). 1Ian the TEU initialization, tables() is
called to set dunitsl] equal to du0l].

The other arvays, dul(],..., du8{[, do not contain a full set of 256
c¢lements. For instance, dul|] contains 19 elements. When the rev message 1s
displayed in the upper right screen corner, the 19 bearing elements in
dunits|[]| that span the upper right screen corner will be replaced by the 19
elements of dull]. The available ranges for those bearings will be small
enough to ensure that target information does not overwrite screen text.

Much code in many of the TEU functions is devoted to changing the
dunits|] array when text messages change on the screen., This 1s true in
functions rev(), tod(), oalt(), trigger(), callup(), brg(), and units().

The numbers in dul)|],..., du8{] are calculated at run time using sine and
cosine tables stored in the file tables.c. The formulas used are
straightforward right-triangle-type calculations, but the input numbers were
derlved from careful screen layout and measurement. Changes in this area
would be time-consumiag.

4.3.4.2 The Interrupt Handlers teuin() and cwin()

Teuin() is the interrupt handler for the TEU input interface. Bytes are
received via serial 1/0 channel B (port 0X82)., Each time a byte is received,
control is passed to teuin() and the byte is read into location "inchar”.
Teuin() requires the TEU data to conform to an expected format: The first
character of the data block must be the sync character 0XA5. The second
character i{s the byte count of the number of bytes that follow. Teuin{() will
look for the sync byte, then accumulate the bytes that follow in the teuara
array, | byte being stored each time teuin() is executed. When all bytes of a
data block have been received, teuian() puts them into the teuteu queue and
wakes the TEU task.

There is a timing check performed to ensure that gaps in the input data
stream do not cause the data processed by the TEU task to get out of sync,
When the sync character is received, the current system time (LSB= 1/16 sec)
is stored in "sttim”. When each subsequent byte is recelved, the new current
system time 1s compared with "sttim”., [f the difference exceeds 3/4 second, a
gap 1n the Input data stream is assumed, the teuara array is effectively
flushed, and teuin() ignores all data until another sync character is
received.

There are two versions of teuin(): one version to handle TEU input with
an accompanying checksum, the other version to handle TEU input without a
checksum., The checksum version 1s located in file TEUCK.C and is the default
version for use at Lincoln. The non-checksum version is located in file TEU.C

85

and has been delivered to the FAA to interface to the Dalmo Victor TCAS unit.
The checksum, when it is present, is expected to be the third byte of the TEU
data, following the sync character and byte count. The data stream is
considered correct when the exclusive OR of all bytes (including sync
character, byte count, and checksum) yields a zero result.

Cwin() is the interrupt handler for caution/warning button inputs via
parallel [/0 channel A, The caution/waraing button contains two separate
lights. The lights can be lit separately, but the software has been set up so
that pushing the button extinguishes both lights. An interrupt occurs when
the button is pushed. Cwin() simply turns both lights out via an output to
port OX85 and zeroes the parameters "cwyel” and "cwred” which are used by the
ralert() function. The interrupt logic is disabled in the handler to
deactivate subsequent interrupts caused by switch bounce. Interrupts are
re-enabled in ralert() when the caution/warning lights are turned on.

Note: The purpose of the caution/warning light/button is to direct the
pllot's attention to the display when a threatening or potentialiy threatening
situation exists. The caution/warning light/button is used in conjunction
with the aural alerting logic in ralert(). When a prethreat appears,
ralert() causes the yellow light to to be lit and a C-chord to be sounded.
When a threat appears, ralert() causes the red light to be lit and the
appropriate command to be annunclated. The lights will remain lit and the
commands will be annunciated repeatedly until the pilot pushes the
caution/warning button as acknowledgement.

4.,3.4.3 The TEU Task (teu())

The primary purpose of teu() is to check each of the four TEU input
queues (spiteu, keyteu, teuteu, and timteu) for input and direct control to
the proper functlon for processing that input.

Teu() begins with an inftlalization segment which is run once at system
start-up time. Tables() is called to set up the dunits(| array (see Section
4.3.4.1.4), and the used(| array 1s initialized (see Section 4.3.4.4.9).
Initialization Is also done for test mode operation. Test mode operation
allows the use of elither moving test data or specitic rixed dewonstration
data sets and is explained in more detail at the end of this section,

Each time the teu() task is awakened, it checks to see {f any of the four
queues has input. If 8o, it proceeds to check each of the queues
individually.

The only defined spiteu entry 15 4 one-byte message passed rrom the
service processor each time there 1s a change in the Bendix front panel switch
setting. The message has one of three values courresponding to the three "on”
switch settings: weather radar only, combination weather radar/AlD, and AlD
only. The switch setting is used by the modeck() function in determining
whether audio and video data blocks should be sent from the user processor to
the service processor each scan. This 1Is explained in detail in
Section 4,3.6.1.

Rob

——— [P - — L]

The keyteu queue is checked next. In general, the l16-byte display
options array from the keyboard simply overwrites the display options array
currently used by teu(). This new display options array will then be used the
next time tproc() is called. Two array elements are handled in a special way.
If CLR DISP has been selected, the display is cleared immediately instead of
waiting for tproc() to be called. (Tproc() may not be called for some time.
Under error conditions (which is usually when CLR DISP is pressed), there may
be some problem getting TEU input data, and tproc() is only called when there
is valid TEU iaput data.) Also, care is taken to ensure that the extended
range or call-up mode (doption|il]) is not zeroed before it has had a chance
to be processed by callup().

The teuteu queue is checked next. If the entry size is valid, the entry
is read into the aircraft data array acdl]. Note: “acdl” is a one-byte field
that immediately precedes acd[]. When the teuteu entry is read by getq, the
entry byte count goes intv acdl and the data itself (see format in Fig. 4.3-4)
goes 1into acd|]. Tproc() is then called .o process the acdl] data.

Finally, the timteu queue is checked. The timer task stim() awakens the
TEU task once per second. At this time various counters are decremented.
Each time new TEU data is received or each time test data is used, the restart
counter “rstcet” is set to RTIM. Therefore, if in operational mode no
data is received for RTIM secounds, "rstct” will time out. If this happens,
the display is cleared and a "no data” message 1s displayed on the screen.

The next section of code deals with test mode operation. Somne
explanation is required. The user selects test mode via the TST key on the
keyboard. This sets doption[9] to !, The TST key 1s used in conjunction with
the DEMO key. The user presses the DEMO key tollowed by two digits
(00,01,...,09,0A,08,11,...,19,1A). DNoption]l0] is set to the value entered.
[f DEMO 00 1is pressed, or it only the TST xey is pressed without pressing the
DEMO key at all, a moving test display results, with target positions being
updated in a talrly realistic way each scan by update(). 1f DEMO Ol,...,DEMO
UB 1s pressed, a fixed prestored demonstration scenario is displayed on the
screein, If DEMO ll,..., DEMO 1A 1is pressed, an FAA-detfined encounter is
displayed, with target pusitions bpeing updated each scan by updat().

Care must be taken to initialize various parameters aund arravs each time
a different test display i{s selected. The [EU tunctions have soume
past-hfistory memory, and without reinitialization, non-related data sets would
be thought to be related. This s where the teu() parameters “canned” and

"olddemo” are used. “Canned” can take on three values:) = real data,
1 = moviny test data, 2 = fixed demonstration scenario or FAA-defined
encounter, “Olddemo” is set to doption [10} showing what demo scenario, 1if

any, was used last scan,

All data tor the moving test display and the fixed demonstration
scenarfos {s stored i+ the file tables.c. Teutst|]| contains own alrcraft
header intormation toliowed by data for elght alrcratt used tor the moving

test Jdata, Dhdri{ i, deao,), dsizel], and dofts| | contain information for the
fixed test datas his i well explained in the tables.c listing, All data
tor the FAA-detined eacounters is stored in the file taatilm.c,
By
!
.

AD-A136 392 AIRBORNE INTELLIGENT DISPLAY (AID) PHASE 1 SOF TWARE
DESCRIPTION{U) MASSACHUSETTS INST OF TECH LEXINGTON
LINCOLN LAB A C DRUMM ET AL. 24 OCT B3 ATC-123

UNCLASSIFIED DOT/FAA/PM-83/30 F19628-80-C-0002 F/G 9/2

10 B I
||“|E R P
TR
TR
=

L2 it Wee
= = ==

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

A

The teu() code checks to see if test data is being used. If so, and if
no demo was selected (if moving test data is being used), and if this is the
firet time moving test data is being used, the aircraft data array acdl] is
loaded with the moving test data. If a fixed demonstration scenario was
selected, acd[] is loaded each scan with the data corresponding to the
scenario, regardless of whether it was already loaded the previous scan. If
an FAA-defined encounter was selected, acd[] is loaded with initial encounter
data in the routine initfaa(). Whenever a demo is selected that differs from
the previous demo, the used{| array is reset.

Finally, tproc() is called to process the acd[]| data. Following trpoc(),
if moving test data or an FAA encounter is being used, update() or updat() is
called to update it.

4.3.4.4 Functiong Called by the TEU Task

There are 31 functions associated with the teu() task. These are shown
in Fig. 4.3-4 and Fig. 4.3-5. Only those functions which need special
explanation will be covered in the sections which follow. Functions not
covered below are assumed to be adequately explained by comments in the
program listings.

4.3.4,4.1 The Main TEU Processing Function tproc()

Tproc() basically directs the program flow through thirteen different
routines (see Fig. 4.3-4) in order to set up a single frame for the display.
A brief description of each of these routines is given in Fig. 4.,3-5., They
handle such tasks as setting up messages displayed in the screen corners,
determining what aural alerts to sound, setting up 'no bearing' blocks for
targets without valld bearing information, doing the calculations connected
with autoscaling, determining which targets to display and where to place the
target symbols and altitude tags on the screen. There is one exception to the
standard tproc() execution sequence. It occurs in playback mode when a
special 'title frame' data block 18 sent instead of the regular TEU aircraft
position information (see note in Fig. 4.3-3). 1In this case, a one-line title
is displayed on the screen, and the normal processing initfated by tproc() is
bypassed.

Pause statements appear throughout tproc() to allow higher priority tasks
to run if necessary. There 18 a provision made in function tgt() to check to
gsee if data from the next scan has arrived while data from this scan is still
being processed. If so, the processing is lagging, and the queue which sends
graphics data blocks out to the service processor is flushed. The service
processor will have already received the begin frame message for this scan,
but it will not receive the corresponding end frame. This causes the service
processor to ignore all of the data for this scan. The effect 18 a temporary
drop in the screen update rate from one second to two seconds. This
guarantees that queues will not severely back up, which in a worst-case
situation could cause the display to freeze.

88

T

4.3.4.4.2 Update()

If the user has elected to display moving test data, update() is called
once per scan, lmmediately following tproc(), to update the aircraft position
information. The intent is to cause the test targets to move somewhat
realistically across the screen, with target color changing in an appropriate
way and aural alerts being sounded.

When the moving test display is first selected, or whenever it is
reselected following another mode of operation, tproc() initializes the
aircraft data array acdl]| to teutst|[]). Teutst|] contains initial data values
for own aircraft and eight other aircraft.

Fach scan, the system time 1s updated. If the current time (elapsed time
since the start of moving test data mode) is greater than “maxtim” seconds,
acd|[] is reinitialized and the sequence begins again. This reinitialization
1s no longer necessary and could be removed, because target movement, as
currently done, could coantinue indefinitely.

After the time update, target information for each of the eight alrcraft
is updated. (Position information for own aircraft (i.e., altitude) never
changes.) An 8-byte array, rarray[], is used in the updating process, each
array element correspouding to one of the eight aircraft. Rarray|] is zeroed
initially, signaling that the range for each target is to be decremented by
“cr” each scan. Whenever an aircraft's range becomes negative, the rarray
entry for that aircraft 1s set to 1 to cause the range to thereafter be
incremented each scan., At the same time (at range cross-over), the afrcraft
bearing is changed by 180 degrees. This effectively causes the target to
approach own aircraft from one side, pass directly above or below, and depart
in the opposite direction. Whenever an alrcraft's range is less than 1.0 nm,
its color 1is set to red and an ivsi command is set. When an aircraft's range
is between 1,0 and 1.5 nm, the color is set to yellow; upon transitioning from
white to yellow, the aural alert “"traffic” is annunciated.

4.3.4.4.3 0alt()

Oalt() is called each scan to display own aircraft altitude {f absolute
' altitude mode has been selected. The function is non-trivial only because the
dunits array for allocating space on the screen must be updated whenever the
altitude text appears for the first time or disappears. The altitude text {is
displayed in the lower left screen coruner. In deciding how to update
dunits{], it is necessary to know how many 'no bearing' blocks are being
displayed on the left screen side.

The left screen side 1s divided into six rectangular areas (see
Fig. 4.3-6(A)) These areas, when used for text, display (from top to bottom):
(1) time-of-day, (2) no bearing block 1, (3) no bearing block 2, (4) no
bearing block 3, (5) no bearing block 4, and (6) own aircraft altitude. The
basic idea for updating dunits{]| is that {f two or more adjacent rectaungles
are available for target display, the corresponding elements of dunits[] will

89

-Keydnip 1908} 1O JX9} IO USOIOS JO UOHEIONY O-EF Bid

()
Wil
N
w\\\
v/
_ () 1§
N V)

AVIdSIO 130UYL 403 1GVUVAVNN

1X31 404 Q3AYISIY = §

(€))

NV
@M

s
H

(@

N

i
i

"
%

)

80018
s |[-owuvae on.

an

be set for target display. However, if a single rectangle is available for
target display, this 1s not really enough space to be of use, and the elements
of dunits are set to be unavailable for target display.

The code 1s as follows: [If own aircraft altitude is to be displayed, and
if it was not displayed last scan, dunits{]| must be updated to reflect a
smaller display area. 1If 0,1, or 2 'no bearing' blocks are being displayed,
simply redo the part of dunits(] that spans the lower left corner (see
Fig. 4.3-6(B)). If 3 'no bearing' blocks are being displayed, only one
rectangle is available for display (Fig. 4.3-6(C)). This 1is not enough. Redo
dunits{] to show that none of the rectangles are available for target display
(Fig. 4.3-6(D)). If 4 'no bearing' blocks are being displayed, the oalt block
has already been declared unavailable in the brg() function, so no change to
dunits|{ | 1s necessary at this time.

1f altitude 1s not to be displayed, and if it was displayed last scan,
dunits|] must be updated to reflect a larger display area. A similar
procedure is followed as before. 1If U, 1, or 2 'no bearing' blocks are being
displayed, simply redo the part of dunits{] that spans the lower left corner.
If 3 'no bearing' blocks are being displayed, free the last two rectangles
on the left side (Fig. 4.3-6(E)). If 4 'no bearing' blocks are being
displayed, only one rectangle is available for display (Fig. 4.3-6(F)). This
is not enough. Leave dunits{]| alone (i.e., leave it with all rectangles
unavailable for target display as in Fig. 4.3-6(D)).

Note: A similar procedure is carried out in function units(), called
when the 'no bearing' blocks are set up.

4,3,4,4.4 Order()

Oorder() is called whenever there are more targets available than can be
displayed, as long as priority information is avajilable to do the ordering.
The TEU-associated functious always process the first "ntgt” targets in the
acd array ("ntgt” = number of targets selected by the keyboard, default = 8),
Therefore order() does not need to produce a priority-ordered acd(] array,
only one in which all of the "ntgt” highest priority targets are within the
first “ntgt” acd entries.

The approach is to first divide the acd array into two sections. When
order() is finished, the first section will contain the “ntgt"” highest
priority targets; the second section will contain the other targets. Two
pointers are used: "i"”, which is initialized to O to point to the first
section, and "index”, which is initialized to point to the second section.
"{+9" and "index+9" are used to skip past the first 9 bytes of the acd array.
These 9 bytes contain own aircraft header information, not target information.

Order() simply starts with the first acd entry and loops "ntgt™” times
through the acd array. Each time a target priority is less than or equal to
“ntgt”, it is left alone. Each time a target priority 1s greater than “ntgt”,
it switches places with the first target it comes to in the second section
whose priority is less than or equal to "ntgt".

91

4.3.4.4.5 Trigger()

Trigger() is called to do event-triggered processing. If event-triggered
mode has been selected, proximate aircraft are displayed only 1f a threat or
prethreat is currently being displayed or has been displayed within the last
TTIM (currently 8) seconds. Trigger() loops through all targets to see {f
there is a threat or prethreat. 1If so, the trigger counter “trgct” 1is set to
TTIM. This counter is decremented once per second in teu() when an eatry is
received in the timteu queue. 1If there are no threats or prethreats and
"trget” has timed out, “"tsize” 1is set to 0, which causes the TEU functions to
process no targets.

There is a special 'surveillance' mode which takes precedence over and
essentially negates trigger mode. If the SURV key has been pressed on the
keyboard, all targets within 5 nm are displayed. A check Is made at the
beginning of trigger() to determine 1f surveillance mode {s in effect. If so,
the checks for threats and prethreats described above are bypassed.

4.3.4.4.6 Callup()

Callup() 1is called to do extended range or call-up processing. Extended
range mode 1s in effect for CTIM (currently 15) secoads each time the EXT key
is pressed on the keyboard. 1In this mode, if threat-triggered mode is also in
effect, show proximate aircraft to 4 nm even if there are no threats or
prethreats being displayed. (This would undo the “"tsize” = 0 setting in
order() above.) If continuous mode 1is in effect, extend the display range for
proximate aircraft (show proximate aircraft to 4 nm instead of 2 nm).

The survelllance mode described in trigger() above also take precedence
over callup mode. 1f the SURV key has been pressed on the keyboard, all
targets within 5 nm are displayed. A check is made at the beginning of
callup() to determine if surveillance mode is in effect. If so, callup() is
not executed.

4.,3.4.4.7 Units()

Units() alters dunits{] to reflect a change in the available target
display area due to a change in the number of 'no bearing' blocks being
displayed. Units() is called by brg(), the function which sets up 'no
bearing' text blocks for targets with invalid bearing. 1In altering dunits|],
it 1s necessary to also check whether the time-of-day message is being
displayed in the upper left screen corner and whether the own aircraft
altitude message is being displayed in the lower left screen corner. See
Section 3.4.4.3, oalt(), for a similar description of how dunits[| is altered.

4,3.4.4.8 Psf()

The function psf() does preliminary scaling factor calculations, when
necessary, in order to determine the screen display range, “dr".

92

In order to correctly position targets on the display screen, it is
necegsary to convert from target range, bearing units to screen X,y
coordinates. The keyboard RNGE option determines in part how this conversion
is done. 1If the auto-scaling option has been selected, psf() must first
determine “dr”, the range to display. If the fixed range only option has been
selected, psf() simply sets "dr" equal to the selected range. In both cases,
“dr” is then used to compute a scaling factor "sf” which scales all afrcraft
ranges for display.

Determination of Display Range

The AID software was designed to allow own aircraft to be positioned at
any point on the display screen. 1In the current system own aircraft is
centered on the screen horizontally, but located about 1/3 of the way up from
the bottom vertically ((512,240) on a virtual screen of (1024,768))., When a
user selects a fixed range, this range corresponds to the distance from own
alrcraft position to the bottom of the screen, i.e., the range at 180°, the
direction of least visibility.

When the auto-scaling option is selected, a display range must be
determinad which allows all threats and prethreats to be visible. This is
done by means of the 256~element array dunits|[]. (Target bearing LSB= 360/256
degrees.) Each array element gives the number of available display units from
own aircraft position to the screen edge corresponding to that beariag. Thus
at 0° there are 768 - 24) = 528 available units; at 90°, 1024 - 512 = 512
available units; at 180°, 240 available units; and at 270°, 512 available
units. Note that when text strings exist around the edges of the screen, the
dunits{] values are reduced so that targets will not overlay the text.

The procedure to compute the display range is as follows: For each
target, use target bearing as an index into the array to get available units.
Divide the number of units by the target range to form the units/am ratio
necessary if the target were to lie at screen's edge. After this has been
done for all targets, select the smallest ratio. This is the anumber of units
which must equal one nm i{f all targets are to fit on the screen,

However, there is an additfonal constraint. The range selected (180°
range) must be an integral number of nautical miles (2,3,4,...,8 with 2 being
the smallest allowed). Therefore divide the 180° available units by the ratio
(units/nm) just selected to get the range (nm) in the 180° direction. Round
this up to be an integer. This is "dr”, the display range to be used.

Calculating the Scaling Factor

Once the display range "dr” has been determined, or if a fixed range has
; been selected, or if all targets are within 2 nm (ifn which case "dr”=2), the
ﬁ scaling factor "sf” can be calculated, “"sf" = 180° available units/"dr". All
* target ranges are then multiplied by "sf”, and the radius of the 2-nm range
ring is 2 * "sf”.

93

Example
Abbreviated Array
element | bearing (degrees) | available units
0 0 528
32 45 735 |
64 90 512
128 180 240
192 270 512
units final
ratio —-——----—- radial distance
nm in units
target 1 S nm 45° 735/5 = 147 240
target 2 9.2 nm 0° 528/9.2 = 57.39 441
target 3 .5 nm 90° 512/.5 = 1024 24

Smallest ratio is 57.39 units/nm, i.e., 57.39 units = 1 nm for all targets to
fit on the screen, Divide 180° available units by 57.39.

240/57.39 = 4,18 nm = range in 180° direction. Round up to get display range
DR = 5 nm, and SF = 240/5 = 48 units/am.

Radius 2-nm range ring is 2*SF = 96 units.

Target 1 range is then 5 nm * 48 units/nm = 240 units.

Target 2 range 18 9.2 * 48 = 44] units.

Target 3 range 1s .5 * 48 = 24 units.

4.3,4.4.9 Tgt()

An important feature of the AID is that target altitude tags do not
overwrite text or target symbols or other tags. Altitude tags may be
positioned in any of four directions relative to the target triangle: top,
right, bottom, or left. In addition, whenever possible, tag direction will
not change from one scan to another. The result is a high level of screen
clarity and readability. In order to accomplish this, in positioning
altitude tags, one must keep track of the position of all previously placed
target symbols and tags. This 1s done by means of the used array. Used|| is
a two-dimensional array that stores information for up to 8 targets, with 8
fields per target: x,y coordinates of the center of the target triangle; x,y
coordinates of the lower left corner of the altitude tag; new target flag;
offscreen target flag; color (white, yellow or red); and most recent tag
position (top, right, bottom, or left). There is also a row (the first row)
for storing own aircraft chevron position information.

Target triangles are placed as accurately as possible, with overwriting

of other triangles allowed. Tags, however, are positioned if possible to be
in the clear.

94

Tgt() consists mainly of two loops through all of the targets. In the
first loop, all target triangle positions are calculated and stored in the
used array without regard for overlap. 1In the second loop, calls are made to
function tag() to calculate altitude tag positions and store them in the used
array. Each time tag() is called, it attempts to position an aircraft's
altitude tag so as not to overlap any of the target triangles or any of the
previously placed altitude tags. Tag() attempts first to place the aircraft's
altitude tag in the same relative direction (top, right, bottom, left) as in i
the previous scan. Failing this, it trys the next direction clockwise. If .
all four directions fail ({.e., 1f the altitude tag cannot be placed in the f
clear), the top direction will be chosen as a default.

4.3.5 The Service-Processor Input Task and Interrupt Handler i

The service-processor input task, spint(), receives two types of logical
messages from the service processor via the interrupt handler: a "switch”
message indicating the setting of the mode switch, and a "poke” message which
is used to indicate to the user processor that the service processor {is
operational. In the current version, spint() expects only one logical message
per transmission from the service processor and sends an acknowledgement
message back for every message it recelives.

4.3.5.1 The Service~Processor Input Task (spint())

The spint() task is constructed as an infinite loop. Each time it is
awakened, it checks to see 1f a message has come from the interrupt handler
via the spispi queue, If there is no message, the task merely suspends itself
again. If there is a message, it clears the first byte(s) of its input
buffer, and then reads the message from the spispi queue into the input
buffer. (The first byte(s) are cleared to effectively remove any previous
message in the input buffer.) If the message is a mode switch message, it 1is
sent to the TEU task via the spiteu queue, and the TEU task is awakened tu
notify it of the receipt of the message. This is the only type of message
that is currently checked.

Then, for every message received, an acknowledgement message is sent back
to the service processor, via the spispo queue and the service processor
output routine, spoutt(). The service processor will not send another message
until the last one is acknowledged - this protocol simplifies the interrupt
handler by allowing it to be singly buffered. 1In addition to sending the
acknowledgement message, spint() also sets a flag to indicate to the output
routine that a message has been received. This is only really significant on
the first message from the service processor.

After processing the input message, spint() again checks the input queue
for messages and continues its infinite loop.

4.3.5.2 The Service-Processor Input Interrupt Handler (spih())

The slave processor is configured to be interrupted for every byte sent
to it from the service processor. For this reason, unlike the service
processor, it must distinguish in software between the first byte of a message

95

and its subsequent bytes. It does this by maintaining a flag called ioinp,
which is cleared initially. Whenever an interrupt occurs, after saving the

- registers, the interrupt routine checks this flag and does one of two

4 different things. If the flag is cleared (the else clause), the byte Input is
the first byte, which, in the transmission format established for service/user
processor communication, is the byte count for the message. The count {is
saved and also stored as a temporary counter. The address pointer is
initialized to the start of the input buffer and if the byte count is
non—-zero, the ioinp flag 1is set.

Once the flag 1s set, subsequent interrupts cause the input bytes to be
stored in the input buffer until all the bytes have been input. When the i
entire message has been received, the ioinp flag is cleared and the input is
sent to the spint() task via the spispi queue.

4.3.6 Service-Processor Output Task and Interrupt Handler

The service-processor output task, spoutt(), receives data from three
queues - spispo, audspo, and graspo. It merges these data into a double-
buffered output array and calls the interrupt handler to start the
transmission., A maximum of 255 bytes can be transferred at one time to the
service processor; if the combined input from the queues is more than 255
bytes, spoutt() will make more than one call to the interrupt handler, until
all the queues have been emptied. The logic of spoutt() has been set up to
take one message at a time from all the queues instead of emptying one queue
before going to the next. This was done so that an audio message would not
get backed up behind a long string of graphic messages.

4.3.6.1 The Service-Processor Output Task (spoutt())

After waiting for the initfalization task, spoutt() initializes the
counts of its double buffers, resets the pointer to the buffers, and clears
the 1/0 flag. It initializes an array of pointers to the input queues and
gets the value of the auxiliary control port, which has been set in the INIT
task. This is done because the interrupt handler must set and clear one bit
of this port without changing the other bits. After its initialization is
complete, spoutt() waits until the first message from the service processor is
recelved before it sends anything.

After the first message has been received from the service processor,
spoutt() enters an infinite loop in which it checks its input queues and if
nothing has been input, it suspends itself. If there {s an entry, it enters a
do-while loop which continues until all the input has been processed. The
input 1is processed by extracting one message at a time from each queue which
contains an entry. The messages are added to one of the output buffers until
either the output buffer is filled or all the messages have been extracted.
This output buffer is sent to the interrupt handler by the call to spout(b)
and then the buffer pointer is switched to the other buffer. The double-
buffering technique allows one buffer to be transmitted while the other is
being filled in preparation for transmission.

96

There is one condition that requires special handling by spoutt(). It is
the selective transmission of messages based on the setting of the Bendix
front panel mode switch. The mode switch has three 'on' settings. They are
weather tadar only, combination weather radar/AILD, and AID only. In general,
regardless of switch setting, tasks within the user processor function as if
audio and video data blocks are always to be sent to the service processor.

In actuality, the data blocks are always sent as far as spoutt(). Then
spoutt(), with the help of the teu() task, determines which audio and video
data blocks should be sent on to the service processor. Audio data blocks in
response to keystrokes are always sent. Target-related audio and video data
blocks are sent always in AID only mode, never in weather radar only mode, and
sometimes in combination wode.

In more detall the process is as follows. Each time there is a change in
the front panel switch setting, the service processor sends this setting to
the user processor. [t ultimately is passed to the teu() task where it 1s used
by the modeck() function, Modeck() is called once per scan before any audio
or video data blocks are sent to spoutt() for this scan. Modeck() sends a
'user mode switch' data block to spoutt(). The user mode switch has one of two
settings: AID only or weather radar only. If the front panel setting is AID
only, the user mode switch setting will be AID only. If the front panel
setting i{s weather radar ouly, the user mode switch setting will be weather
radar only. 1[f the front panel setting is combination mode, the user mode
switch setting will be weather radar only except when one of the following
conditions {s met: (1) there is a threat or prethreat to be displayed, (2) a
threat or prethreat has been displayed witain the last 8 seconds, or (3) the
EXT key has been pressed on the keyboard. If one of these conditions is met,
the user mode switch setting is AID only.

When spoutt() recognizes a user mode switch message in its input data
stream, it uses this to set its internal flag "uswitch". Thereafter, whenever
there 1s an entry in one of spoutt()’'s input queues, spoutt() uses "uswitch"
to decide whether to flush the entry or to send it on to the interrupt handler
for transmission to the service processor. If "uswitch"” = weather radar only,
the entry will be flushed., If "uswitch™ = AID only, the entry will be sent
on. Regardless of "uswitch” setting, three message types are always sent to
the service processor. They are the scale message, slave acknowlege message,
and user mode switch message.

4,3.6.2 The Transmission Startup Routine (spout(b))

Spout(b) 1is used by the spoutt() task to start the transmission of a
message to the service processor, It i{s called with the pointer (index) of
the buffer to be output and has the facility to retransmit a message if a
transmission timeout occurs. This was inciuded because the service processor
is interrupted only on the first byte of the message and if that interrupt is
missed for some reason, the message must be retransmitted from the start.
Thus, if spout(b) is called by spoutt() and I/0 is still in progress, spout(b)
waits until it is awakened either by a timeout or by the completion of the
1/0. 1If the timeout occurred, the previous message is retransmitted.

97

If the last message was transmitted properly, any pending timeout
messages are cleared and then the byte count of the current message is
checked. 1If the byte count is not legal, spout(b) merely returns, thus
ignoring the message. If the byte count is okay, it then prepares to set up
the transmission. Interrupts are disabled at this point because the alternate
register set, used by the interrupt handler, is set up during this time. A
spurious interrupt would cause the set up to be erroneously done.

The alternate registers are used for the output interrupt handler so that
this interrupt can be handled as fast as possible. The hardware of the user
processor 1s set up so that the service processor 1is put into a wait state
each time it tries to input a byte from the user processor and remains in the
wait state until the interrupt routine in the user processor outputs the byte.
The use of the alternate registers allows the interrupt routine to save and
restore the state of the machine as fast as possible in the Z80.

Register C is set to the output port address, register B is set to the
byte count, and HL is set to the address of the byte to be output. This setup
allows the interrupt routine to use the OUT{ instruction. Next the byte count
is output to the transmission port and then bit 7 of the auxiliary control
port is set, which causes tne service processor tc be interrupted. (See
Sierra documentation.)

After the transmission has started, spout(b) requests a timeout message
from the timer task and if not a transmission, returns to the spoutt() task.

4.3.6.3 The Service Processor QOutput Interrupt Handler
(spoh())

The interrupt routine switches to the alternate register set, which has
been initialized by the startup routine, spout(b). Register A is output to
the auxilary control port to make sure that the service processor is
interrupted only on the first byte. (Register A had been left by spout(b) to
contain the proper value to be output.) Next the Z flag is tested to
determine if the transmission is comnplete. (Note that the OUTI instruction
will set the Z flag when the byte count goes to zero.) If there is more to
do, it outputs the next byte using OUTI and returns. If the transmission is
done, it clears the 1/0 flag and wakes the output task, spoutt().

4,3.7 The Timer Task (stim()) and Interrupt Handler (ctc())

Stim() and ctc() together provide interval timing for tasks within the
user processor. They also maintain a one-second timer, "sectimr”, which is a
global parameter that may be referenced by other tasks.

The slave single-board computer contains a chip that supplies four
counter-timers. It is initialized in init() to produce an interrupt every
62.5 milliseconds. When this interrupt occurs, control is passed to the
interrupt handler, ctc(), which simply places a one-byte dummy message into
the timtim queue and wakes the timer task, stim().

In addition to being awakened by ctc() at regular intervals, stim() can
be awakened by a task wishing to initiate or halt a timer. Stim() maintains
an array tcount||, each element of which serves as a timer for one of the
user-processor tasks. A task initiates a timer by loading a delay count into
its timer output queue and waking the timer task. The delay count is from 1
to 255, with each count = 62,5 mseconds. Stim(), when awakened, places this
delay count into the task’s tcount[] entry. Thereafter, each time stim() is
awakened by ctc(), it will decrement each active tcount{] entry. When a count
reaches zero, the corresponding task is sent a message in its timer input
buffer, the task is awakened, and the timer is deactivated (set to -1). A
task may stop its timer at any time by sending stim() a -1 count.

stim() first checks three queues for input: initim, teutim, and spotim,
from tasks init(), teu(), and spoutt(), respectively. If an input is present,
it is used to update the tcount[] array. Next stim() checks for an entry in
the timtim queue, signalling a 62.5-msec wake-up from ctc(). If an entry is
preseat, all active tcount|] entries are decremented. Tasks whose timers
time-out are sent a one-byte message and awakened. Finally, stim() increments
"sectimr"” every l6th ctc() wake-up, to keep elapsed system time since
power-up, lsb = 1 second.

99

- Y

5.0 THE AUDIO RECORDING AND AUDIO RAM LOADING FUNCTIONS

A program has been written to facilitate the recording of spoken words
and phrases and generated tones. Another program was written to store the .
generated data into audio RAM banks in the AID system during its initial
program load sequence.

The audio recording program 1s formed by linking the following
relocatable files using indirect command file LZBLD.CMD:

AUDBLD.R
AUDCOM.R
AUDREC.R
AUDBITS.R
CT.Z

MT.2
CHDR.Z

The first four are application files; CT.Z and MT.Z are C-compiler libraries
which provide console and disk I/0 interfaces; CHDR.Z provides the call/return
interface between the CP/M operating system and the initial C-function,
main().

X The audio recording program provides a menu—-driven interface for the

. operator, It interfaces to the Continuously Variable Slope Delta Modulation
(CVSDM) audio recording and playback S-100 boards. 1t 1s also capable of
processing previously recorded data contained in a floppy disk input file and
of storing old or newly recorded data in an output disk file. TInput file
entries and newly recorded data may be annunciated, edited, bypassed or output
to the output file. Thus, the entries in a previously recorded audio file may
be deleted, edited or passed on to the output file. 1In addition, newly
recorded entries may be Iinserted between previously recorded entries in the
output file. A provision 1s also present for quickly bypassing N records of
the input file. Finally, a capability is present for synthesizing audio tones
of operator—specified frequency and duration.

PRE 19 oelbdy

e .r

The 1input and output data files contain variable-length records. Each
record consists of a fourteen-byte header and a variable-length (4095 bytes

' max) data array. The record format is specified using the C "union” and
"struct” data structures as follows:

union{
B struct {
4 int entpres
int lngth
char audnam{10]
char auddat{4096)
}audent
char filrec|[l)
bun = O

.
y
.
£
.
’
.
’
.
’
.
’
.
’

100

Parameter “entpres” is used simply to verify that a valid entry 1is present,
“Lngth” specifies the length of the audio data stored in array “auddat[]".
Array "audnam{]" contalns an operator-selectable name for the recorded
audio. Array “"filrec{]" overlays the “audent” data structure and provides a
means for easi{ly wmoving records.

The linked output from LZBLD.CMD is downloaded to the Z80 software
development facility and converted to a COM file. It is then renamed to
AUDBLD.COM. The program is run by operator command:

A> AUDBLD Fl1.T F2.T

where F1.T 1s the input audio data file and F2.T is the output file (any file
names may be substituted). Both files must be specified. If no input data is
available, a dummy F1.T file should be specified. A "null" file, F3.T, is
present on the floppy disk. It may be used to clear a data file, as follows:

A> PIP F1.T = F3,T
Note that a program calling arguments can't eas{ly be run under the ZSID
debugger. When debugging, the conditional compile flag "FIXED" in file

AUDBLD.C should be set. The program will then automatically use Fl.T for
input and F2.T for output without specifying them as arguments in the call,

5.1 The Audio Build (AUDBLD.C) File

This file contains the main{) function, which is the first function run
in any C program (called by CHDR.Z).

The main() program opens the input and output files, presents the
operator with prompts for selecting program operations and then closes I/0
files when the program terminates.

The first operation performed is to open the I/0 files. Depending on the
setting of the conditional compile switch "FIXED", these files may be operator
specified in the program initiation statement or the pre-specified files FI1.T
and F2,T. In the former case a test is made to make sure the operator
specified the correct number of files (two).

A set of prompt statements are then output to the operator informing him
of the options available. They include: "“R", record new data, "I", input
next record from input file, "B", bypass N records in input file and "Q",
quit -~- return to CP/M. The program proceeds, based upon the operator
response, After each operation has been performed, the operator 1is again
presented with the options menu,

If the operator chose to record new data, the record() function is called.
1f (s)he chose to input a record, the fnput() function is called. In this
case the function returns a one if a record is present. The operator is then
prompted to determine if the record should be sent to the output file or

101

R

ignored. If it should be output, the output() function is called. If input()
returned a zero then no more entries exist in the input file. The operator 1is
so informed.

If the operator chose to bypass input records then (s)he is prompted to
specify the number to bypass. That number of records are then input (by
calling function input()) automatically. Note that function input() displays
the name attached to each record as it is read. If less than the specified
number of records exist in the input file, the operator is so informed.

The operator may also choose to quit, in which case the I/0 files are i
closed and control is returned to CP/M, Finally, if the operator enters an
illegal response (s)he is so informed.

5.2 The Audio Communication (AUDCOM.C) File

This file contains the functions that input/output audio data records
from/to the disk and communicate with the console and annunciator card.

5.2.1 The Disk Input (input()) Function

This function inputs an audio record from the input disk file and sends
its identifying character string to the console, Upon operator direction it
then sends the recorded audio to the aannunciator card where it is annunciated.
The function returns a one if a record was found, a zero if none was present
(the last record had been read) and a two if the record could not be read.

The first operation performed is to read the record header from the disk.
The length of the record's data area may then be used to load the data. If
either of these reads falls, the operator is so informed and the function
returns a two. Next, the function sends the record's name and size to the
console. The operator is then prompted to see if the data should be sent to
thc annunciator. Note that this operation is bypassed when the operator has
chosen to bypass N records. The function returns a one when a successful
record read has been accomplished.

5.2.2 The Audio Annunciation (annun(audptr, audlng)) Function

This function sends audio data to the annunciator card and activates the
annunciator. The data to be sent starts at address "audptr”; “audlng" bytes
are sent.

The first operation performed is to reset the annunciator carada. This is
accomplished by outputting a byte (any byte) to port OX4F. The "audlng”
bytes, starting at "audptr” are then output using the otir() function to
perform the actual transfers. This function uses the fast block move Z80
instruction "OTIR” for this purpose. Port OX4D is used. Since otir() may
move a maximum of 256 bytes at a time, multiple calls may be needed. Finally,
the annunciator {s started by outputting a byte (any byte) to port OX4E. The
function then returns,

102

5.2.3 The Disk Output (output()) Function

This function outputs the record currently stored in union “un" to the
output disk file.

The first operation performed is to inform the operator of the size of
the record to be output. The record is then output. If the output operation
fails the operator is so informed and is asked 1f another attempt should be
made.

5.2.4 The Operator Prompt (prompt(msgptr,retflg)) Function

This function outputs the ASCII string pointed to by "msgptr” to the
console. If "retflg” is one, it waits for the operator to press a key. If
the key entered is a 'Y' the function returns a one. If the entered key is an
'N' it returns a zero. Entering any other key causes an error prompt to be
sent to the operator. If "retflg” is zero the function simply returns after
outputting the prompt.

The first operation performed is to send the message pointed to by
"msgptr” to the console. Note that C library function lenstr() is used to
determine the length of the string.

If a response was requested ("retflg” non zero) then a character is input
from the keyboard. Note that the C library function getch() is used and that
a loop is needed to "fix" it. The loop removes any left over line feed (0XOA)
characters from the input buffer.

The character received is tested to see 1if it was a 'Y' or an 'N', If it
was, a one or a zero, respectively, is returned. Otherwise, an error message

is sent to the operator. The function will not return until a legal key is
pressed. However, the error prompt is output only once.

5.3 The Audio Recording (AUDREC.C) File

This file contains the functions required to record and edit audio data.
It also contains the function that generates a tone record.

S5.3.1 The Audio Record (record()) Function

This function supervises the recording of data received from the CVSDM
card, the editing of the data, its playback by the annunciator and finally,
its output to the output disk file.

The CVSD card always records 4095 bytes of data (about 1.6 seconds of
speech). 280 assembly language function getaud() inputs this data and
stores it in array crsddat{]. The data in thia array may then be edited
(i.e., starting and ending bytes may be specified) by manipulating pointers
"strptr” and "endptr”. When the operator is satisfied with the results, the
edited data may then be copied into the file record buffer un.audnet and
output to the output disk file.

103

Y

The first operation performed is to compute starting (stradd) and ending
(endadd) address for the cvsddat[] array. Then the operator is sent a series
of prompts specifying the options available. These include: "S", start
recording, "T", generate a tone, "E", edit, "P", playback, "O", output a
record and "Q", quit.

When the operator presses “S", the getand() function 1is called and audio
data is recorded and placed in cvsddat[]. Flag “"recflg” is set to indicate
that audio has been recorded, the start and end pointers, "strptr™ and
“endptr” are initialized to "stradd” and “endadd”, respectively, and the
function redisplays its options prompts,

If the operator presses "P", the recorded data is played back through the
annunciator. The “recflg” is checked first to make sure recorded data is
present. If it is not, the operator is so informed. The function's option
prompts are then redisplayed.

If the operator presses "E", the "recflg” flag 1s checked. If it is zero
it means that no data recorded using the "S™” option exists in un.audent.
However, it may contain a record received from the disk input file. This data
will then be edited and the operator is so informed. Start and end pointers
"strptr” and “"endptr” are set and the data is read from un.audent to
cvsddat|[]). Flag “"recflg"” is then set, since "recorded” data now exists in
cvsddat[] and the edit function edit() is called. When edit() returns, the
record() function's option prompts are redisplayed.

If the "recflg"” flag was set when "E" was entered, then edit() is called
directly.

The operator may also enter "T" to record a tone. In this case "recflg”
is set and the tone() function is called. When it returns and the options
prompts are redisplayed. Note that a tone record may also be edited.

Once a new record has been satisfactorily created it may be output to the
output disk file by pressing "0". This operation tests “recflg” to make sure
a new record exists. If one doesn't the operator is so informed. 1If one
does, the audout() function is called to output the record. The options
prompts are then redisplayed.

Finally, when the operator has completed recording operations (s)he may
return to the main menu by pressing "Q".

5.3.2 The Audio Output (audout()) Function

This function builds an audio record in un.audent from data in array
cvseddat[] and the audio nametag supplied by the operator. It then outputs
the record to the output disk file.

104

The first operation performed is to get the audio nametag from the
operator and store it in the record header. The tag can be up to nine
characters in length. Next the “lngth” and “entpres” fields in the header are
set. Then the audio data in array cvsddat[] is moved to the record's auddat{]
array. Finally, the output() function is called to output the record to the
output disk file.

et Bty

5.3.3 The Audio Editing (edit()) Function

This function displays the current start and end indexes for the audio
data in array cvsddat[]. It then requests index changes from the operator.
Finally, it checks to see that the end index is greater than the start index.
If not, it re-requests index values,

R 0 Mot

The first operation performed is to compute cvsddat{] array indexes
“gtridx”, "endidx” from pointers “"strptr"”, “endptr” and cvsddat[] start
pointer, “staadd”. It then displays these indexes on the console.

The operator is then prompted to input, if desired, a new start index and
end index. These values are then tested to be sure they do not exceed 4094,

A test is then made to insure that the end index is not less than the start
index. Finally, new start and end pointers to the cvsddat(] array are
computed and the new data size is displayed on the console. The function then

returns.

5.3.4 The Tone Generator (tone()) Function

This function generates data bytes in edit file cvsddat[] representing a |
continuous tone, as specified by the operator. The operator 1is prompted for
tone frequency and duration. The data space after the tone is filled with

zeros (silence).

The first operation performed is to prompt the operator to input the tone
frequency. If the value specified is out of range (20 to 2000 Hz) the
operator is so informed. The operator is then prompted to enter tome duratiom
in tenths of seconds. Again, if the value input is out of range (0 to 16) the
operator is informed and prompted to re-enter the value.

The program then computes the number of 19.7 kHz (the sampling rate)
samples in a half cycle of the tone and the number of samples in the tone's
duration. Note: Tone duration was limited to 1.6 seconds so that the total
number of samples would fit in a 16-bit, signed parameter “"timidx" (16x1970 =
31520), thus avoiding the use of double-precision arithmetic. A tone
duration of 1.6 seconds 1s long enough for all applications. Some loop
control flags are then set before proceeding to the tone sample generation

loop.

Before the tone sample loop is started the operator is informed that
calculations are proceeding. This "human factors” prompt was found to be
necessary, since the loop takes a noticeable time to complete. The loop 1is

then entered.

105

“timidx"” tone samples are generated and stored in bytes in array
cvaddat[]. An inner loop counts through the number of samples in each half
cycle of a tone., If amplitude flag “amp” 18 one, then ones are stored in the
bytes in cvsddat[]); otherwise the bits are left zero. Flag “amp” is toggled
after each half cycle of samples has been generated. When timidx 1s not
divisable by eight, a partially loaded byte remains., That byte is then output
to cvsddat|(].

The start and end pointers “strptr” and “endptr” are then set so that the
edit() function can be used to edit the tone data, if desired. Finally, the
remaining bytes in the 4K cvsddat{] array are zeroed. This produces a
“silent” period after the tone which may be "edited into” the record if
needed. The function then returns,

5.4 The Sample Bits Recording (AUDBITS.Z80) File

This function inputs audio sample bits from the CVSD audio recording
card, packs them into bytes and stores the bytes in array cvsddat{]. This
function also provides the sampling clock signal at a 19,7 kHz rate that is
needed by the CVSD card. This timing is dependent upon the execution time of
the major loop within the program, itself. 1In fact, certain statements are
included simply to adjust sample timing. The program is written in assembly
language and assembled using the AZ80.CMD assembler indirect command file,

The first operation performed is to read the start address for cvsddat|[],
“gtaddd”, into the DE register pair, Eight data bits will be shifted into a
byte within the sampling loop. A bit count of eight is placed in the C
register to control this loading operation. Next, the sampling loop is
entered and a CVSD card sample pulse-high is output. The audio data sample is
then input and shifted into the current byte (pointed to by registers DE) in
array cvsddat[]. The byte count in C is then decremented. If the current
byte has been completely filled, the bit counter is set back to eight and a
sample clock pulse-low is output. A check is then made to see if the end of
the cvsddat{] array has been reached (check DE against “enddat”); 1if it has,
the program returns. If it hasn't, the program delays a fixed number of
clock cycles and returns to the start of the sampling loop.

If the current byte has not yet been filled, some path delay instructions
are executed, a sample clock pulse-low is output, some more delay statements

are executed and the program returns to the beginning of the sampling loop.

Note that the timing in this program has been "fine tuned” to produce the
required 19.7 kHz sampling frequency. Program changes could alter this timing
and cause the audio recording system to malfunction.

5.5 The Audio RAM Loading (AUDRAM.C) File

This file contains the functions required to load the previously recorded
audio data into the audio RAM banks., The AUDRAM.COM function is called as
part of the AID's initfal program load sequence. If more than one 16K audio
RAM bank exists, then separate versions of AUDRAM.COM are called. Each
version 1is tailored to load a particular bank with its proper audio data.

106

5.5.1 The RAM Loading (AUDRAM,COM) Function

This function operates in two modes. If it is called with a file
specified as an argument, e.g.:

A>AUDRAM F2.T

then it will load the audio data bytes from the records in the specified file
into an internal 16K-byte array and then return to the CP/M operating system.
The operator may then save the new version of the program (with the 16K array

loaded) by entering:
A > SAVE 111 AUDRAM.COM.

This “loaded” version is then ready to be called as part of the AID's initial
program load sequence.

In the second mode, which runs when AUDRAM.COM is called without a file
specified in the call, it transfers the audio data bytes from the 16K internal

array to the specified audio RAM bank.

The first operation performed is to check to see if an input file was
specified in the program call line. An additional check is made to make sure

that only one file was specified.

If a file was specified, it is opened. The contents of the file are read
(minus the record headers) into array annunc{[]. A check is made during this
process to make sure the array's 16K size is not exceeded. If it is, the
operator is so informed, the input file is closed and the function returns.

If the array size is not exceeded, the function exists normally by closing the
input file and returning.

If no input file {s specified, the function moves the contents of
annunc{] to the specified RAM bank. This 1s accomplished in machine code
using the block move instruction, LDIR, Note that if the destination RAM bank
is the upper 16K of the master's RAM, then the move is straightforward with
destination starting address 0XC000. However, if the audio RAM bank is one of
the 16K RAM banks on the 64K RAM board, then the on-board 16K bank must be
deselected and the off~board bank selected before the block move is performed.
The on-board bank is then reselected.

5.5.2 The Audio Record Input (input()) Function

The AUDRAM.COM function must read records from the specified input file.
It does this by calling the input() function.

The first operation performed is to read the record's entry-present flag
and record-length field (the first four bytes). If this read fails, the
operator is so informed. It then checks to see if the file is empty or if no
records remain (entry-present flag not 'A'), If this is true, the function
returns a zero,

107

If the file 1s not empty the remainder of the record is read. If this
read operation fails, the operator is so informed and the function returns a
2. If the record read was successful, the function returns a l.

AlD Operating System

Lo INTRODUCTILON

The purpose of this appendix is to present a description of the system
executive used in the AID master and slave single board computers. The system
executive to be described consists of two major components: a task scheduler
and a set of queue access functions. The scheduler initiates application
tasks on a priority basis in response to wakeups from interrupt handlers and
tasks. Messages are passed between tasks and between interrupt handlers and
tasks by means of circular queues. The queue access functions provide
standardized access to these queues. The task scheduler will be described
first, followed in later sections by a description of queue data structures
and queue access functions.

2.0 SCHEDULER

Task scheduler designs may ve grouped into two general catagories:
pre—emptive and nonpre-emptive. A task running under a pre~emptive scheduler
may be suspended if a task of higher priority is awakened by an interrupt
handler, This is iwmportant for systems in which data received by an interrupt
handler must be processed immediately by a task awakened by that handler.
Pre-enptive scheduling may also be necessary if the data rate is such that
there {s the possibility of data being overwritten before it can be processed.
This problem can sowetimes be solved by double buffering the data either in
hardware or in software.

By contrast, a task running under a nonpre-emptive scheduler may not be
pre-empted (that is, suspended) even though a task of higher priority is
awakened. Except for interrupt servicing, the running task has control of the
computer until it suspends itself. In systems using non pre-emptive
scheduling it is necessary for tasks to cooperate in using processor bandwidth
by limiting the amount of processing performed between voluntary suspensions,
This is not a serious limitation in many real-time applications in which
timing requirements are not too critical. A significant advantage is that it
considerably simplifies the scheduler design and therefore reduces memory and

' execution time requirements.,

Another major advantage of nonpre—emptive scheduling is that it reduces
the possibility of inconsistent data being passed between program components.
Presumably, a task will complete the output (or input) of an entire data
message before voluntarily suspending. By contrast, a task running under a
pre-emptive scheduler may have processed part of the data in a message when an
interrupt handler causes a higher priority task to run. This task might
change the content of the message that was being processed by the original
task. A data access lockout mechanism must be implemented to avoid this
probleml.

Trhe use of queues to pass all data between program components also reduces
the possibilitvy ot this type of error, since new data does not overwrite old
data until the space has been released.

A-1

An objective of this design was to keep the scheduler as simple as
possible so that executive execution time overhead would be minimized. In
addition, the anticipated applications did not require the immediate
processing of data received from interrupt handlers. As a result, a
nonpre~emptive type scheduler was chosen.

2.1 Task Control

The status of each task 1s maintained in a Task Control Block (TCB). The
TCBs for all application tasks are contained in a linked list data structure,
as shown in Fig. A-1. A TCB contains a forward link pointer, used by the
scheduler to access TCBs, the starting address of the task, the task's current
stack pointer and "status” and "signal” flags.

A linked list data structure is used for the TCB data area primarily for
the purpose of determining task priority and to facilitate scheduler
operations. When a task suspends itself the scheduler always starts checking
TCBs at the beginning of the linked list. As a result, the task described by
this TCB has highest priority. Scheduler operations are also facilitated by
linking the lowest priority TCB to the highest. Then, during periods when no
tasks are scheduled, the scheduler simply searches continuously tunrough the
TCBs. Note that this will be the normal idle condition for the task scheduler
unless a lowest priority idle task is defined. The idle task must be designed
such that it pauses periodically to allow higher priority tasks to run.

The linked list data structure for TCBs is also convenient for systemns
in which tasks install other tasks to run or in situations in which task
priorities must be changed dynamically. The forward link pointers may simply
be changed to reorder the list.

A task may be in one of three states: running, waiting or ready, as
shown in Fig. A-2. 1Its current state is determined by the values of its
“"status” and "signal™ flags. A task's state may be changed by calling one of
the three functions: run(), sleep() or wake(). Note that the “"signal"” flag
for a RUNNING task may be in one of two states. This means that a RUNNING
task may also be in the READY state. This situdtion can occur when a RUNNING
task is interrupted and scheduled to run again. Ilore will be said about this
later.

The scheduler and each task maintain their own stack areas. When a task
is interrupted or suspended, its context (that is, the processor's registers
and flags) is stored on its stack. Similarly, when the scheduler transfers
control to a task, the scheduler's context is stored on its stack. The
context is restored when control is returned to the task or scheduler., When a
high level language is used, the scheduler may use the stack area originally
allocated by the compiler; task stacks must be explicitly declared as data
areas in the program.

POINTER TO NEXT TCB

TASK ENTRY POINTER

TASK STACK POINTER

TASK STATUS FLAG

TASK SIGNAL FLAG

Fig. A-1. Task control block.

READY:

STATUS =1
SIGNAL =1

run ()

WAITING:

sleep ()

RUNNING:

STATUS=1
SIGNAL = 0,1

STATUS =0
SIGNAL =0

Fig. A-2. Task states.

When a task is invoked, the scheduler's stack pointer is saved in a
memory location., The task's stack pointer is then read from its TCB and
loaded into the 280's SP register. When a task 1s suspended the reverse
operation is performed. On the other hand, when an interrupt occurs, the
context of the running program (task or scheduler) is saved on 1its stack, but
the interrupt handler uses the running program's stack for its operations. It
must, of course, POP off all data that it pushes onto this stack before
returning to the interrupted program. Interrupts are disabled while the
handler is saving and restoring the interrupted program's context., However,
they may be enabled while it is performing other operations, since subsequent
E interrupt handlers will merely stack the context of the handler they
interrupt.

A task program has the general structure shown in Fig. A-3. It is a C
function containing an “infinite” loop. During program startup each task is
run from its beginning to the point where it first suspends itself (i.e.,
calls sleep()). During this time the task may perform any task—-specific
initial setup operations. This would include the initialization of any data
items that do not have to be reinitialized during a restart (restart is
performed by an initialfzation task which will be described later). After
startup, task entry and exit operations are performed entirely within sleep().

2.2 Scheduler Functional Components

The scheduler is comprised of four basic functions: sched(), wake(),
run() and sleep(). Thelr relationships to task states are shown in Fig. A-4.
Each is a C function; some contain machine code.

After initialization, the scheduler scans TCBs until {t finds one with a
"status” flag set. It then clears the corresponding "signal” flag and calls
run(). Run() transfers control to the previously suspended task and resumes
task operation at the point where suspension occurred.

A task suspends itself by calling sleep(). This function clears the
task's "status” flag and transfers control back to the scheduler. However, it
first checks the "signal” flag. If it is set it means that the RUNNING task
was also READY. That is, while the task was running, an interrupt occurred.
The interrupt handler rescheduled the running task to run again. The “"signal”
flag indicates this condition. The sleep() function handles this situation by
resetting the task's state to READY (by setting the "status” flag) and
] returning control to the scheduler, The scheduler then scans TCBs, starting
% at the highest priority, until {t finds a READY task and invokes 1it.

Z Note that the order in which the operations are performed in sleep() 1is
important, For example, 1t would appear that STATUS could be reset after the
SIGNAL test, when the SIGNAL test fails. However, if an interrupt occurs
between the test and the reset, then STATUS and SIGNAL will both be set (if
the interrupt handler reschedules the running task). Then, when STATUS is
reset after returning from the interrupt, the final state will be:

STATUS = 0, SIGNAL = 1, which is a disallowed state. Programming sleep() as
shown will avoid this problem.

A-5

PERFORM TASK

- SPECIFIC
INITIAL SETUP
OPERATIONS

\ TASK APPLICATION
OPERATIONS

T
=

Fig. A-3. Task program structure.

sched():

READY: el)
wake():
STATUS =1
SIGNAL = 1 l
SIGNAL =0 interrupt SIGNAL = ¢
| STATUS = 1

CALL run()
RUNNING:
STATUS = 1
SIGNAL = 0,1
wake():
SIGNAL =1
STATUS = 1 ﬁ
2 sleep():
. I

STATUS =0

R

WAITING:

STATUS =0
SIGNAL =0

No S8IGNAL =1

?

STATUS = 1

Fig. A-4. Task states and state change mechanieme.

A task may be awakened from the WAITING state by calling wake(). This
function's single argument specifies the number of the task to be awakened.
It is used as an index into the array of TCBs. Wake() sets the task's
“status” and "signal” flags. These are the only operations performed by
wake; it is written entirely in C. Wake() may be called either from an
interrupt handler or from a task.

One additifonal scheduler program component is the pause() function. It
was not included as a “basic” function since it can be derived from the wake()
and sleep() functions. It provides a means for a task to voluntarily give
processor control back to the scheduler but, before doing so, reschedule
itself to run again. This gives higher priority tasks that may have been
awakened by interrupt handlers a chance to run before the pausing task
resumes. The pause() function may be implemented simply as a C function
that calls wake() and then sleep(). The task number needed as an argument in
the call to wake() may be supplied either as an argument in the pause() call
or, since the number of the currently running task is known to the scheduler,
it may be supplied automatically.

2.3 Scheduler Initialization

All C programs start at the beginning of the function called main(). In
this application main() performs initial startup operations that do not have
to be performed during a program—controlled restart.

One operation performed by main() 1s to initialize run() and sleep(), as
shown in Fig. A-5, by computing addresses RUNADR and SLPADR, respectively.
These addresses are needed when control is passed between run() and sleep()
during invocation and suspension of tasks, as will be explained later. Since
these addresses will be referenced from outside thelir respective functions,
they must be computed and treated as global data items.

s I WA

B oy - iy

As mentioned earlier, each task must be called and run to the point at

p: which it first suspends itself. This operation is diagramed in Fig. A-6. In

B main(), return address STRADR is computed and stored in variable "rtnadr”, It
is used as a return address by sleep() during task initialization operations.
Then main() saves its stack pointer and gets the stack pointer for the first

' application task (in the figure, taskn() represents “task n") from its TCB.

A

It then calls the task using a normal C function call operation. The task

initializes startup data, as described earlier, and suspends by calling

sleep(). Function sleep() saves the task's stack pointer in its TCB and

- passes control back to main() via the address in “"rtnadr”. Main() then

b restores its stack pointer and repeats the entire sequence of operations for

j each application task. At this point sleep()'s return address, “rtnadr”, is
switched to RUNADR, the entry point in run(). During all future operations
sleep() will return to this point.

YES

NO

runint =0
COMPUTE
ADDRESS
RUNADR:

f

MAIN BODY OF
run():

e00ee0egos

RUNADR:

YES

NO

sipint =0
COMPUTE
ADDRESS
SLPADR:

1

MAIN BODY OF
sloop():

SLPADR

Fig. A-8. Computing return addresses: RUNADR, SLPADR.

A-9

=

|

rinadr = STRADR

SAVE 8P IN mainep;
QET taskn()'s OP
FROM ITS TCO

CALL taskn(

mon|

RESTORE sr
FROM mainep

ANY MORE
TASKS
?

NO

ritnadr = RUNADR

I
I
I
I

taskn()

INITIALIZE
TASK DATA

SAVE 8P N
taskn()’'s TCO

SLPADR:|
L]

—_——— .y

Fig. A-6. Task initiaization.

2.4 Scheduler Operation

After initialization, scheduler operation proceeds as diagramed in
Fig. A-7. Function sched() scans TCBs, starting at the beginning of the
linked list, until one 18 found in which the "status” flag {s set., It then
stores the index of the selected TCB in variable "tcbidx™ and calls run().
Run{) saves the scheduler's context by switching to the second set of
registers provided by the Z80 (it also pushes registers IX and IY om {its
stack).3 It then saves the current stack pointer and transfers control to
address SLPADR in sleep(). Sleep() gets the stack pointer from the TCB
pointed to by “tcbidx" and places it in the 280's SP register. It then
restores the task's context from its stack and returns to the task by means of
the normal C function return protocol. This 18 possible since the return
address was pushed on the stack when the task was initially run to {ts first
call to sleep(), as described earlier.

At this point the task proceeds to perform application operations until
it again calls sleep(). As shown in Fig. A-7, after sleep() clears the
“gtatus” flag it checks the “"signal” flag. 1If it 1is set 1t proceeds, as
described earlier, to reschedule the task. In either case it then saves the
task's context on its stack, stores the task's stack pointer in its TCB and
transfers control to address RUNADR in run(). run() then restores the
scheduler's stack pointer and its context and returns to the scheduler via the
normal C return protocol. The scheduler then starts at the top of the TCB
linked list and scans for another task to run.

Note that as far as the task is concerned, its call to sleep() and the
return were just the same as any other C function call. It is not "aware" of
the fact that sleep() transferred control back to the scheduler and that other
tasks possibly ran before sleep() returned. The same 1is true of sched() and
its call to run{(). The scheduler is not “aware™ that run() transfers control
to a task and receives control back before returning. It is therefore
unnecessary for the person writing an application task to know the operational
details of the task scheduler; (s)he simply programs a call to sleep() to
cause a suspension and expects the task to be awakened at the next C
instruction.

Programming interrupt handlers is somewhat more complicated. First, the
context of the interrupted function must be saved on the currently active
stack. This is performed using PUSH instructions in machine code. After
performing I/0 operations the context is POPed off the stack and control is
returned to the interrupted function.

31If the second register bank is needed for some other purpose, the
scheduler's entire context may be saved on its stack. For example, the second
register bank could be used to save context in {interrupt handlers and thereby

minimize their execution times.

A-11

“wnjes pue Bupnpeyos xsel L-V ‘Bid

| [ewnve u3isioay
¥OV1S SLI Wou4 ONIIYMS
NENL3Y 1X3LNOD A8 1X3IINOD NuNL3Y
ﬂ Tvo 8,98V1 IHOLSIM uo...ﬂm».moww Tvo
(Ydeers SNOIAIYd (Juns §NOA3Ud
MOYd NUNL3Y NOU3 NYNL3Y
ss o1 aaimoa | | omve mous
291 NOYJ ¢8 .
$.)SV.1 340183 3YOL83y
T * ‘wavd1s L ‘wavNny _.l...ﬁ'_lul'_
S —C IR
| “ _ HavNny _ [_
_ _ _ o1 dnne | ! | ~
<<
_ | | |
801 811 M 48 | |
| _ 8.N8VL 3WOLS _

_ vavds _
| ! o1 émnr l _
| =) |
_ | t=suvis || NO 1X31NOD oy _ _
_ .IL _ $.%8V1 3AVS s. 018 _ _
_ _ OoN _ T Y _
_ E SUNVE ..n»h.oe!. | | ™01 swevs _
| o | | | e

8.03108 IAVS h |
| _ “ _
| _ |
Lo ety L _SSWemee B §

X a0

The interrupt handler 1is written as a normal C function (with in-line
machine code). However, it is not entered or exited usinyg the normal C
protocol, Instead, the interrupt vector is computed such that the first
instruction performed is the first PUSH of the context-gave sequence. This
bypasses the normal C function entry sequence. It 18 necessary to save the
context before any other operations occur so that the interrupted program's
context will not be lost. Similarly, control is transferred back to the
interrupted program with a normal Z80 return-from—interrupt (RETI) instruction
just after the context has been POPed from the stack, bypassing the normal C
function exit sequence,

An interesting observation can now be made concerning this particular
implementation of a task scheduler., 1t has not been necessary for the
implementor to be aware of the details of the C function entry or exit
protocols used by the compiler. In interrupt handlers, they are simply
bypassed. The running program's context (machine state) is saved, interrupt
operations are performed, the context is restored and control 1is returned to
the running task before the handler's normal C function return operations.
Similarly, transfers between the scheduler and tasks are performed within C
functions run() and sleep(). These functions save machine context on the
currently active stack, transfer control and restore the context of the
destination function from its stack. In this way task scheduling and
interrupt operations are transparent to the compiler. The C program's context
is saved before these operations are performed and restored afterward.

3.0 QUEUES

The other aspect of real-time program design involves the implementation
of a means for passing data between tasks and between interrupt handlers and
tasks., Since tasks and interrupt handlers run asynchronously, the use of
queues for these operations insures that messages will not be lost. A
discussion of the subject of queues, queue access functions, and their
interaction with the task scheduler will be presented in this section.

3.1 Queue Structures

Within C it 1is possible to define a queue header structure data type by
using a "typedef"” declaration. For a varlable-entry-size queue, this might
take the form:

typedef struct{
int head
int tail
int length
char task
char *pbuf
}quE

This declaration may be placed in an "include” file that 1s attached to each
program source file. Entries are added to the queue starting at the “"tail”
pointer and removed starting at the "head”. The queue's length 1is specified
by parameter “length”. The parameter “task” will be described in more detail
later when queue access functions are described. Briefly, it contains the
number of a task that suspended 1itself when it was not able to complete a
requested queue access operation. Pointer “pbuf” points to the beginning of
the actual queue data array. The first byte in each queue entry contains the
number of bytes that follow in that entry.

Using the QUE data type it is then possible to define queues and their
headers as follows:

#define TKLNGTH = 6

QUE timkey = {0,0,TKLNGTH,0} ;

char tkbuf[TKLNGTH] HES
This might define, for example, a queue for passing data between a timer task
and a keyboard task. The pointer "pbuf” to the queue array tkbuf[] must be
initialized to the address of the array with a statement of the form:

timkey.pbuf = tkbuf S

This queue may be referenced from the file containing the timer or
keyboard task by first declaring the queue header as an external reference:

extern QUE timkey H

and then by referring to its address, &timkey, in, for example, the argument
118t of a queue access function.

3.2 Queue Access Functions

Various queue access functions may be written to satisfy different
application requirements., These functions may be built upon two primitive
functions which will be called putq() and getq().

The putq() function declaration has the form:
putq(source, dest, count)

where “source” 18 a pointer to an array (or item) of data to be placed in the
queue and "dest” is a pointer to the queue header. “Count” is the length of
the message to be moved, in bytes. For example, this function could be used
to move a four-byte message from array gmttim[]| in the timer task to the
keyboard task by writing:

i1f (putq(gmttim, &timkey, 4) == -1)
sleep() ; .

A-14

R

As indicated, putq() is programmed to return a -1 value if not enough room
exists in the specified queue to store a message of length four (including one
more byte for the entry size). In the case shown the programmer has simply
chosen to suspend the task if this situation arises.

The function getq() 1is declared similarly:
getq(source, dest),

It also returns a -1 if no entry 1s present in the queue pointed to by
argument “source”.

Using these two primitive functions to perform the actual queue access
operations it 1is possible to write other useful functions that have general
application within a task scheduling environment and support the orderly flow
of messages between tasks. For example, a function may be designed such that
when an attempt is made to enter a message Into a full queue, the task will be
suspended. Later, when a message 1is removed, the suspended task will be
awakened so that it can store its message. The suspended task identifies
itself by storing its task number in the queue's header in item "task™. Such
a function might be declared as follows:

putqwt (source, dest, stask, count).

The function name suggests that the task will put a message in the queue 1if
room exists but will wait (suspend, call sleep()) if not enough room exists.
Parameter “stask” specifies the number of the calling task™., Similarly, a
function to remove messages from a queue, getqwt(), may be designed such that
when a task attempts to remove a message from an empty queue it will suspend.
When a message 1s later placed in the queue the suspended task will be
awakened.

By using putqwt() and getqwt() it is possible to control the execution of
tasks in response to the availability of messages to process in their input
queues and the availability of space to store messages in their output queues.
For example, if an output device becomes momentarily blocked, the queues that
feed it messages will become "backed up” and will cause the corresponding
tasks to suspend. When the device becomes unblocked the tasks waiting to send
data will be awakened in an orderly manner, based upon the availability of
storage space in thelr respective output queues, The flow of messages lis
similar to the flow of automobiles in a traffic tle-up on a major highway.

4,0 SYSTEM OPERATION

The previous sections have described the design and operation of the task
scheduler and queue management functions. What remains 1is to describe the
sequence of operations that occur during the startup of an application program
and to briefly discuss some typical application tasks.

#Note that the number of the currently running task is available in global
parameter “tcbidx” so that it need not be specified as an argument. This

would eliminate a possible source of programming error.

A=15

After the initfalizatfon of each task, as described earlier, main() calls
wake() to schedule the initialization task, init(), and sets the TCB linked
11st pointer to zero so that the scheduler will test init()'s TCB first
(init() 18 the highest priority task). Main() then calls sched() and, from
this point on, control is never passed back to main() unless the system 1is
reset from hardware. Sched() then checks init()'s TCB and passes control to
it.

Task init() performs all initialization operations that must be performed
first during startup and later during restart. That {s, init() 1is programmed
so that {f another task or Interrupt handler wakes it, it will restart the
application program from the beginning. 1t performs these operations with
interrupts disabled and it enables interrupts just before it suspends itself.

The first operation performed in init() is to link all the TCB's together
in a loop. This is accomplished by setting the forward link pointers in the
TCBs. As described earlier, the last (lowest priority) TCB is linked to the
first so that the scheduler will loop looking for READY tasks. Init() then
performs other application-specific restart initialization operations and
finally suspends 1itself by calling sleep{(). These operations may involve
waking application tasks. However, {f other tasks are not awakened the
scheduler will simply loop until an interrupt handler wakes a task.

Tasks and interrupt handlers provide the various data processing and
control services required by the particular application. For example, most
real-tim. 2pplications will be required to service interrupts from a hardware
timer device. The interrupt handler wakes a timer task which, in turn,
provides interval timing services to other application tasks, Applications
that provide a man-machine interface will usually need to service a keyboard.
The interrupt handler for this device places the received key-stroke character
in an output queue and wakes a keyboard task., This task will then input the
character from the queue and process it, Tasks and interrupt handlers may
also be defined to process data from other sources such as communication
channels or measurement sensors.

Tasks processing data inputs will usually wake tasks that provide data to
output devices. These might be video or alpha-numeric displays, communication
channels or equipment controllers. The typical output device is designed to
receive a byte of data and then produce an interrupt when it {s veady to
receive the next byte. The interrupt handler must therefore be designed to
output subsequent bytes until the entire message has been sent. It then wakes
the output task. The output task must initiate the transfer by sending the
first byte and then suspend and wait to be awakened by the interrupt handler.
It may be assured that the wakeup was from the interrupt handler if the
handler sends a “signal™ byte message to the task before waking it, The task,
on being awakened, checks the queue from the interrupt handler and possibly
other input queues to determine the source of the wakeup.

i
!

¥

APPENDIX B

“C" To 280 Assembly Optimization

1.0 INTRODUCTION

The purpose of this appendix is to provide a brief guideline for
generating and optimizing the 280 assembly language output of Vandata's "C"
compiler and translator. The reader is assumed to be familiar with the C
programming language and with 280 assembly language. In addition, the reader
is assumed to be familiar with the use of Vandata's compiler under the RSX-11M
operating system,

1.1 Procedure

The C source to be optimized should be compiled as usual and thoroughly
tested before the optimization procedure 1is started., When this has been done,
the first step in optimizing is to generate the Z80 assembly language from the
C source code. This 1s accomplished using the indirect command file
CZ80A.CMD, which goes through all the phases of the compiler to the point
where the asharp code has been generated and then Invokes the translator to
convert asharp to Z80 assembly., The output assembly language file has the
file name extension ,ASM,

The next step 1s to use PIP to copy the .ASM file to a file with .Z80 as
an extension. All subsequent modifications are done to the .280 file, This
step 1s done for several reasons: first, it leaves the original assembly
language source intact for comparisons to the edited version; second, 1t
provides a way to know if the assembly source has been optimized; and third,
it provides some safety in preventing the deletion of the hand-optimized file
if, for example, the CZ80A.CMD command file 1s invoked again.

The .7280 file i1s then edited and when the optimizations required are
accomplished, the AZ80,CMD command file 1s invoked to assemble the file and

generate the relocatable object file. (If a listing file 1is desired in
addition, use AZ80OW.CMD.) Again, the modified object should be thoroughly
tested. When this is done, the .ASM file may be deleted since it can be
regenerated easily from the C source and is no longer useful.

1.2 Optimization Guidelines

The primary reason in the AID application for optimizing the C code is to
increase the speed of execution. Appropriate optimization can usually gain a
factor of two In execution speed but much consideration must be given to what
parts should be optimized and how in order to obtain the benefits. Efforts in
improving the original C algorithm will often result in higher performance
than hand optimizing a poor algorithm.

{e2el Tuning the C Source

In addition to the proper choice of algorithm, there are a nuuber ot
considerations at the C source level that will aid in the subsequent
optimization of the Z80. rirst, the C source should be divided into
relatively small and simple modules in order to make the optimizdtion editing
more tractable and easier to follow. A two-page € source tile mav be cijgnt or
more pages long when translated to assembly language and because ot the nature
of the compilation process, the generated assembly code will not necessarily
follow the C source line tor line, especiallv with deeply ilmbedded lopical
structures. On the other hand, it may not help much to optimize procedures
which are too small because the overhead in catling and returning trom such
routines could account for a large part of the time spent in them.

Secondly, one must give some consideration to the variables in the
routine. As tar as possible all variables should be declared as characters
(1l byte) and local variables should be declared static. Static varianles are
easier to locate and eliminate the relatively long indexed stack instructions,
but using static local variables will render a4 subroutine nonrecursive.

Thirdly, care should be used in selecting arithmetic operdtions. For
example, multiplication dalwavs calls tne liprarv multiplication routine,
whereas left shifts are encoded in-line witn add instructions. Thus, it
multiplication by a power ot two is needed, use the lett snitt operator
instead.

There are a number of other ways to help "tune” to € source tor later
optimization. For example, the ordering of statements attects the way in
which the compiler generates its output. Such considerations, however, are
too specific to discuss here, and can be learned throupgh eiperience.

1.2.2 optimizing the 280 Assembly Language

Once the assemblyv code has been generated, care must be wviven to what
sections should be modified. Obvious candidates for optimization are loops
and code inside loops, arithmetic expressions, arrav indexing expressiovns,
complex logical tests, and procedure calls., The tollowing discussions are
intended as general considerations and cannot cover all the possible means of
optimization.

l1.2.2.1 Arithmetic Expressions

One of the specifications of C is that in arithmetic expressions, all
8-bit quantities are converted to 16-bit quantities and l6-bit arithmetic is
performed, even if all the quantities are & bits. On an 8-bit machine like
the Z80, the overhead involved in doing l6-bit arithmetic is considerable,
and can be eliminated if it is not necessarv. Here is a tvpical example,

i
i
!

C Source 2-80 OUTPUT OPTIMIZED Z-80
char na, nb ; LD H,20H LD A,(na.)
nb = 32 -na ; LD A,(na.) LD B,A
LD E,A LD A, 20H
ADD A SUB B
SBC A LD (nb.), A
LD D,A 10 sec (@ 4 MHz)
LD A,L
SUB E
LD L,A
3 LD A,H
SBC D
LD H,A
LD A,L

LD (nb.), A
20 sec (@ 4 MHz)

Multiplication and division by powers of two should be done by adding
and shifting instead of the calls to the C library functions. Here is a
typical example:

C Source 2-80 Output Optimized Z80
9 setups (x,v,nb,nl) LD L,(IX+0AH) LD A, (IX+0AH)
: int x,y ; LD H,(IX+OBH) SRL A
E: char nb,nl ; PUSH HL LD (h.),A
; LD HL,02H 10 usec
1 static char n ; PUSH HL
B n =nl/2 ; CALL c.idiv
POP HL
LD A,L
, LD (n.),A

30 + usec (not including time in c.idiv)

(Note that even though nl was declared a character argument, C always passes
argument values as 16-bit integers).

There are many other ways of improving arithmetic expression coding, and
some experience 1s needed to be able to understand why the compiler sometimes
genecrates very obscure code and to be ahle to optimize the coding
appropriately, Needless to say, a primary consideration in modifying such
code {3 that the result should be the same as in the unmodified version. Here
is another example where the compiler must perform unnecessary operations to
perform 16-bit logic where only 8-bit is required. It also shows how register
usage may be improved.

B-3

C Source Z80 OUTPUT OPTIMIZED

CALL c.entO CALL c.ento
#define MASKO 0x70 LD A, (ccolor.) LD A, (ccolor.)
CP 0f0H CP OFOH
#define MASK1 OxFO JR Z,.35 JR z, .35
LD A, (ccolor,) LD (.74), A
#define WHITE OxFO LD (.74),A AND 70H
LD A, (ccolor.) CPL
extern char ccolor ; LD C,A AND OFOH
ADD A LD L,A
SBC A LD H,0
LD B,A CALL colorg
stbyt() LD L,C .35 JP c.ret0
LD H,B 17 sec (not including
LD A,L calls)
AND 70H
static char scolor ; LD L,A
: LD A,H
n if (ccolor! = WHITE) AND 00
k: LD H,A
LD A,L
CPL
scolor = ccolor ; LD L,A
, LD A,H
3 colorg ((~(ccolor & CPL
MASKO)) & MASK1); LD H,A
LD A,L
.. AND OFOH
? LD L,A
: LD A,H
AND 00
LD H,A
38 CALL colorg
g .35: JP c.retd
44 usec (not including calls)

' 1.2.2.2 Loops

Loops are an obvious area for optimization. If it is known that a loop
index will always be less than 128, it should be declared as a character
rather than an integer. Even when declared as a character some time can be
saved in incrementing and checking the loop index as the following example
demonstrates:

e ———

C Source 280 OUTPUT OPTIMIZED 280
static char i, nb ; SUB A SUB A

LD (.34),A LD (.34),A
for (1=0; i<nb; i++) ,55:LD HL, nb. .55: LD HL, nb.
{body of loop! LD A,(.34) CP (HL)

CP (HL) JP P,.75

JP P,.75 (body of loop)

{body of loop) LD A,(.34)

LD A,(.34) INC A

ADD OiH LD (.34),A

LD (.34),A JP .55

JP .55 «75:

o 75:

While in this example only &4 usec per iteration is saved, it shows one type of
optimization that can be performed. 1f the above loop was executed 100 times

inside of a loop that executed 1000 times, a total 4/10 second could be saved.
In a real-time program, such a savings could be crucial,

1.2.2.3 Logical and Arithmetic Tests

Normally, the code generated for tests 1is quite compact, but it is not
unusual to encounter jumps to jumps, unnecessary register manipulations, and
other time wasting instructions. Here 1s an example where an integer on the
stack 1s compared to -1.

Z80 OUTPUT Improved Optimized
LD A,(IX+04) LD A, (IX+04) LD A, (IX+04)
CP OFFH CP OFFH INC A
JR NZ, .2 JR N2, .11 JR NZ, .1l
LD A,(IX+05) LD A,(IX+05) LD A, (IX4+05)
CP OFFH CP OFFH INC A
.2: JR NZ, .11 JR Nz, .11 JR Nz, .11
(body) (body) (body)
.11: (continue) .11: continue 11: continue

The above "optimized” version could be further improved if the integer was
expected to be -1 more often than not., It is left to the interested reader

to find the improvement.

1.2.2.4 Other Areas of Optimization

There are a number of other areas where code optimization can be applied.
For example, the compiler does not do an optimum job at allocating and using
reglisters. Many such cases are obvious, but in complex expressions, it may
require considerable thought and effort to improve the code. How much effort
should be applied to extract as much as possible from code optimization must
be answered from the overall programming effort.

1.2.3 MVarnings, Bugs, and Disclaimers

There {s one known bug in the Vandata Z80 assembler which must be
mentioned - it does not flag some relative addresses properly to the linker,
In particular, this means that one 3hould not use the CASE statement in the C
source of routines to be optimized because the CASE statement generates a
{ table of addresses., When this table goes through the Z80 asgembler and the
’ linker, only the address offsets get generated in the actual code, which
causes the program to jump to the wrong place.

& o

Py

APPENDIX C

Aural Alerting for Phase 1 AID System

The AID alerting system is based primarily upon the guidelines for TCAS
alerting developed in simulation at the Boeing Commercial Airplane Company.
Sounds employed in the alerting system are stored in digital form in 48K of
RAM. Both voice and non-voice sounds are employed. The user-processor single
board computer contains logic which determines when to annunciate each aural
alert message,

Aural alerting phrases are listed in Table C-1. Definitions of the
siren, C-chord and chime are provided in Fig. C-1. These sounds are identical
to those used in the Boeing simulation.

Figures C-2 and C-3 define the voice alerting messages which correspond
to each of the possible IVSI commands, In the event of both up-sense and
down-sense limit rate advisories, the aural messages for each will be
concatenated with a short pause.

Figure C-4 provides a flowchart of the logic used for resolution
advisory alert processing. This logic is called once per scan.

Figure C-5 provides a flowchart of the logic used for controlling alerts
associated with traffic advisories. This logic is entered once per scan per
target, It is entered after resolution advisory alert processing has been
completed.

Figure C-6 provides a high-level flowchart of the logic used to determine
whether or not a particular target received from the CAS logic should be
selected for possible display.

Figure C-7 provides a high—-level flowchart of the logic used to determine
if a selected target can be displayed on-screen or, if it is off-screen,
whether to use an off-screen symbol or to simply delete the target.

Some principal design characteristics of this alerting system are:

1. The siren is annunciated once at the beginning of a sequence of RA
indications on the IVSI.

2, After the siren, a voice message which corresponds to the types of
RA's present is repeated continuously until manually cancelled by the

crew,

3., After cancellation, the voice alert message (unaccompanied by the
siren) will sound once each time the state of the IVSI changes. Only

the RA-sense which has changed is annunciated,

4, A C-chord is sounded when a target transitions to prethreat (amber)
status from a lower priority status. However, this alert is
suppressed if an uncancelled aural alert for an RA is being
annunciated.

c-1

TABLE C-1.
Aural Alerting Phrases Avalilable in Phase I AID System
(Note: Some of these phrases are not employed in the Phase I AID system,
but have been provided to facilitate future modifications,)
VOICE NON-VOICE
ABORT Beep
ALERT Buzz
ALTITUDE C-chord
CAUTION Chime
CLFAR Chirp
CLIMB Pause
DESCEND Siren
DESCENT
DON'T
FEET
FIVE
HUNDRED
LIMIT
MAINTAIN
ONE
PER MINUTE

TCAS

TEST

THOUSAND

TRAFFIC

TWO

-

FREQUENCY (Hz)

FREQUENCY (Hz)

INTENSITY (dB)

1,000

800

400

200

1,000

800

400

200

100
80

40
20

{660 Hz)

(s)Waning (siren)

(330 Hz)

(b) Caution (C-chord)

(750 Hz)

(500 Hz)

{c) Advisory (Frequency: 475Hz) (chime)

1 [1 | | | 1

1 1

- 50-ms rise
-=— 1 8-sec decay

0.1

02

03 04 05 06 07 08 08
TIME (sec)

Fig. C-1. Alerting sounds.

10 11 12

, ————————

RA VOICE MESSAGE CAS/IVSI LAMPS o

10987654321 f

1 CLIMB 10600000CO0O0O0 :
2 DESCEND 01000000O0O0

3 DON'T CLIMB 0011110000 i

4 LIMIT CLIMB 06011100000 é

5 LIMIT CLIMB 0011000000 |
6 LIMIT CLIMB V010000000V
7 DON'T DESCEND 0OO0O0DO0DLDOILT 111
8 LIMIT DESCENT Vooouuoouvol1ll
9 LIMIT DESCENT 0000000011
10 LIMIT DESCENT 000000VLOVDLOO
1 MAINTAIN CLIMB 00000011111
12 MAINTAIN CLIMB 0oooo0o1 11111
13 MAINTAIN CLIMB ool ltiririttli
14 MAINTAIN DESCENT 0011111000
15 MAINTAIN DESCENT 00111111060
16 MAINTAIN DESCENT ooll1rrtlti1riri1o
17 TCAS ABORT 1111111111

Fig. C-2. Voice Messages For Resolution Advisory Alerts.

"swayos Supaquinu S4By (SAI ‘€~ Oiy

ANY v N\ NO
LIGHT ON

3 SIRENz O

YES SIREN=1;
—— T ANNUNCIATE
SIREN; CWRED=1

!

ANNUNCIATE BOTH

SIREN=0
?

CwWRED= 1\ T E8 UP-SENSE AND
» » DOWN-SENSE
IVSI RA
ANNUNCIATE BOTH
Vel YES UP-SENSE AND
CHANGED » DOWN-SENSE
? CHANGES
SINEN=O If siren has not sounded for

this RA sequence: otherwise, SIREN=t.

CWRED= O if red C/W light 1s off;
otherwise, CWRED= 1. Light can de
cancelled manually or by software.

Fig. C~4. Resolution Advisory afert processing.

AATA=0

CWRED =1
?

SOUND
C~-CHORD AATA=

CWYELs ¢

NOTE:
Logic is entered once for each active target. AATA=O
It target has not been annunciated; otherwise AATAx 1.
Threat aural alerts serve to annunciate ali threats and
pre~threats on display at the time the threat appears.
CWYELs 1 if gmber Caution/Warning light is to be Iit.

, Fig. C-56. Tratfic advisory alert processing.

This logic is called once per scan for
each target received from the CAS logic.

A hard limit on the number of targets to be

YES displayed can be set as any number 0 to 8.

Time of activation is stored to
allow 8-second time-out.

ACTIVATE
i- DISPLAY
DISPLAY v
ACTIVE]
2 /
NO
Note: Continuous mode
means that display
is always ‘active’.
NO
ALT LT YES SELECT
1200 FY — ™ tARGET
?
}
»

Fig. C-8. Target selection logic.

} (-8

This logic ls entered once per scan
for each target selected by the target
selection logic.

TARGET YES

ON-SCREEN

THREAT OR AUTOSCALE COMPUTE
PRETHREAT OPTION NEW SCALE
1
USE USE
OFF-8CREEN ON-8CREEN
SYMBOL SYMBOL
-

Fig. C-7. On-screen display logic.

