
AD-A136392 AIRBORNE INTELLGENT DISPLAY (AID PHASE ISOFTWARE I/ .
OESCRIPTION(U) MASSACHUSETT S T OF 0 TECH LEXNOTON
LNCOLN LA AC DR UMMET UL 24OCT 83 AC-123

UNCLASSIFIED DO T/AUA PM-83/30 F1628-85 DC- 002 /G921111111 IEMn..MENEN Em.M
.....h...hhhh.
MMhhhhhM...h..
MMhhMhh..MhMM.
MMhhMhh..Mhh.I

11111 1-0 W" 2.

1.21111141116

I IU

Project Report

ATC- 123

Airborne Intelligent Display (AID)
Phase I Soft-v are Des'crip-tion

24t Oc tober 19~83

Lincoln Labowratory

und1#r Elrirtmir S.-itv n(Ai ntract.IQ62844W).1(1

1)(ti atient i- imi la e iti11 , ohle piui e throuagthZ

!4h1 'a vi Itfi I d. %i ri ii it~ in 2 ,if 2 10 1. er e

ItUiRtur lit' 1)0 I

aii-portalson iii 1

txaiwt-. Th'. I Olliell '00. - .oNcl 1111).

A."IfIlt- Ull
lit. III II... ther"'a

TECHNICAL REPORT STANDARD TITLE PAGE

DOT/FAA/PM-33/30

4 Oa SAM I awn ~ so
24 October 1963

Airborne Intelligent Display (AID) Phase I Software Description 6. Puimga S,.. Cads

1. hissw 8. P.1 Sssd" % s.

Ann C. Drunmm, Walter S. Heath and John A. Richardson ATC.123 V/

9. Aipaf 8 pg s si AfsS 1. WwkUnk ft

Lincoln Laboratory, M.I.T. 11. c~yi amfs
P.O. Box 73 DOT-FA77-WA1417
Lexington, MA 0217340073 ________________

13. Tpssidseunad suwgiCames

Department of Transportation Project Report
Federal Aviation Administration
Systems Research and Development Service 14. spiamsuI Asia", tab
Washington, D.C. 20591

It. SqgI I Isms

This work reported in this document was performed at Lincoln Laboratory, a center for research operated
by Massachusetts Institute of Technology, under Air Force Contract F19628.80.C4002.

2The Airborne Intelligent Display is a microprocesaor-based display capable of serving as a
cockpit data terminal in a variety of FAA developmental applications. A prototype of this display
was developed by Lincoln Laboratory during 1979-1980 in order to evaluate and demonstrate the
use of the data link between a Mode S ground senior and Mode S transponder-equipped aircraft.
The AID served as a data link interface allowing the pilot to see, respond to, and initiate commu-
nications from a ground sensor. Later, when Lincoln began testing the Traffic Alert and Collision
Avoidance System (TCAS), the AID become the TCAS display device, showing position estimates
for TCAS-tracked aircraft.

More recently, a redesign effort, focused principally on sof tware, was begun to extend the AID
design so that it could be more quickly adapted to a variety of FAA developmental programs.
This document describes the redesigned Airborne Intelligent Display, with special emphasis on
software design.

Microprocessor Mode S Document is available to the public through
Display system Software the National Technical Informatlen Service,
Airborne Collision Avoidance Operating System Springfield, Virgins 22161.

it. asn" Id ft tp" Abeg 0101 (uu~ d~p Ot. s. ft sps iiK . P"~

Unclassified Unclassified 143

Finn DOT F 1700.7(am9)

CONTENTS

Page

1.0 INTRODUCTION 1

2.0 SYSTEM DESIGN 2
2.1 Design Objectives 2
2.2 Design Approach 2
2.3 Display Requirements 3
2.4 Hardware Structure 7

2.4.1 Overview 7
2,4.2 Video RAM, Video RAM Controller, and Video

Multiplexer 7
2.4.3 Audio RAM and Audio Annunciator 7
2.4.4 Floppy Disk 9
2.4.5 Mode Switch 9
2.4.6 Caution/Warning Button/Light 9
2.4.7 Keyboard and TEU Serial Input 9
2.4.8 S-100 Slot Utilization 10
2.4.9 Single Board Computer Characteristics 10

3.0 SOFTWARE GENERAL DESCRIPTION 13
3.1 Overview 13
3.2 System Software 14

3.2.1 System Startup 14
3.2.1.1 Initial Program Load 14
3.2.1.2 Program Initialization 15
3.2.1.3 Interprocessor Startup Coordination 15

3.2.2 Interprocessor Communication 16
3.2.3 Task Scheduler 21
3.2.4 Message Queue Management 24
3.2.5 System Diagnostics 24

3.2.5.1 Non-Realtime Diagnostics 25
3.2.5.2 Realtime Diagnostics 25

3.3 Service Processor Software General Description 26
3.3.1 Overview 26
3.3.2 Interrupt Handlers 29

3.3.2.1 The Service Processor/User Processor
Communications Interface 29

3.3.2.2 The Timer Interrupt Handler (ctcino) 29
3.3.2.3 The Mode Switch Interrupt Handler (bawino) 29
3.3.2.4 The Audio Control Board Interface (audino) 30

3.3.3 Tasks 30
3.3.3.1 The User Processor Input Task (upinto) 30
3.3.3.2 The User Processor Output Task (upoutto) 30
3.3.3.3 The Command Dispatch Task (dsptcht)) 30
3.3.3.4 The Video Task (videoo) 30
3.3.3.5 The Audio Task (audioo) 34

3.3.3.6 The Timer Task (timero)) 34
3.3.3.7 The Mode Switch Task (mswtcho) 34

iii

I 77-

CONTENTS (CONT'D)

Page

3.4 User Processor Software General Description 36

3.4.1 Overview 36
3.4.2 Interrupt Handlers 38

3.4.3 Tasks 39

3.4.3.1 The Keyboard Task (keybdo) 39
3.4.3.2 The TEU Task (teuo) 42

3.4.3.3 The Timer Task (stimo) 46
3.4.3.4 The Service Processor Output Task (spoutto) 47

3.4.3.5 The Service Processor Input Task (spinto) 47
3.4.4 User Graphics Package 47

4.0 SOFTWARE DETAILED DESCRIPTION 51

4.1 System Software 51
4.1.1 The Task Scheduler and Associated Functions 51

4.1.1.1 The Scheduler (schedo) Function 51
4.1.1.2 The Task Initiation (runo) Function 52
4.1.1.3 The Task Suspension (sleep()) Function 52

4.1.1.4 The Task Wakeup (wakeC)) Function 53
4.1.1.5 The Task Pause (pauseo) Function 53

4.1.2 The Data Queues and Queue Management Functions 53
4.1.2.1 The putq(source, dest, count) Function 54

4.1.2.2 The getq(source, dest) Function 55

4.1.2.3 The putqwt(source, dest, stask, count)
Function 56

4.1.2.4 The getqwt(source, dest, stask) Function 56

4.1.2.5 The putqwk(source, dest, count) Function 57

4.1.2.6 The getqwk(source, dest) Function 57
4.1.2.7 The getqc(source) Function 57
4.1.2.8 The getqd(source) Function 57

4.1.2.9 The initq(source) Function 58
4.1.2.10 The mvbyt(source, dest, bytc) Function 58

4.2 Service Processor Software 58

4.2.1 The User Processor Input Task and Associated
Functions 59

4.2.1.1 The User Processor Input Interrupt
Handler (upinO) 59

4.2.1.2 The User Processor Input Task (upinto) 59

4.2.2 The User Processor Output Task (upouto) 59

4.2.3 The Command Dispatch Task and Associated Functions 60
4.2.3.1 The Dispatch Task (dsptcho) 60

4.2.4 The Video Task and Associated Functions 61
4.2.4.1 The Video Task (videoo) 61
4.2.4.2 The draw() Subroutine 61
4.2.4.3 The scalex() and scaley() Subroutines 61

4.2.4.4 The colorg() Subroutine 62

iv

CONTENTS (CONVTD)

4.2.4.5 The circleg() Subroutine 62
4.2.4.6 The lineg() Subroutine 62
4.2.4.7 The setpix() Subroutine and Related

Routines 63
4.2.4.8 The string() Subroutine and Related

Routines 63

4.2.5 The Mode Switch Task and Interrupt Handler 65
4.2.5.1 The Mode Switch Task (mswtcho) 65

4.2.5.2 The Mode Switch Interrupt Handler (mswino) 66
4.2.6 The Audio Task and Interrupt Handler 67

4.2.6.1 The Audio Task (audioo) 67
4.2.6.2 The Audio Interrupt Handler (audino) 68

4.3 User Processor Software 68
4.3.1 The User Processor Main Program (maino) 69

4.3.2 The Initialization Task (inito) 70
4.3.3 The Keyboard Task and Associated Functions 72

4.3.3.1 The Keyboard Interrupt Handler (keyino) 72
4.3.3.2 The Keyboard Task (keybdo) 72
4.3.3.3 Functions Called by the Keyboard Task 77

4.3.4 The TEU Task and Associated Functions 78
4.3.4.1 Overview 78
4.3.4.2 The Interrupt Handlers teuin() and cwin() 85
4.3.4.3 The TEU Task (teuo) 86
4.3.4.4 Functions Called by the TEU Task 88

4.3.5 The Service Processor Input Task and Interrupt
Handler 95

4.3.5.1 The Service-Processor Input Task (spinto) 95
4.3.5.2 The Service-Processor Input Interrupt

Handler (spiho) 95
4.3.6 Service Processor Output Task and Interrupt Handler 96

4.3.6.1 The Service-Processor Output Task (spoutto) 96
4.3.6.2 The Transmission Startup Routine (spout(b)) 97
4.3.6.3 The Service-Processor Output Interrupt

Handler (spoho) 98

4.3.7 The Timer Task (stimo) and Interrupt Handler (ctco) 98

5.0 THE AUDIO RECORDING AND AUDIO RAM LOADING FUNCTIONS 100
5.1 The Audio Build (AUDBLD.C) File 101

5.2 The Audio Communication (AUDCOM.C) File 102
5.2.1 The Disk Input (inputo) Function 102

5.2.2 The Audio Annunciation (annun(audptr, audlng))
Function 102

5.2.3 The Disk Output (outputo) Function 103

5.2.4 The Operator Prompt (prompt(magptr,retflg)) Function 103

v

CONTENTS (CONT'D)

Page

5.3 The Audio Recording (AUDRED.C) File 103
5.3.1 The Audio Record (recordo) Function 103
5.3.2 The Audio Output (audouto) Function 104

5.3.3 The Audio Editing (edit()) Function 105
5.3.4 The Tone Generator (toneo) Function 105

5.4 The Sample Bits Recording (AUDBITS.Z80) File 106

5.5 The Audio RAM Loading (AUDRAM.C) File 106
5.5.1 The RAM Loading (AUDRAM.COM) Function 107
5.5.2 The Audio Record Input (inputo) Function 107

APPENDIX A AID Operating System A-1

APPENDIX B "C" to Z80 Assembly Optimization B-1

APPENDIX C Aural Alerting for Phase I AID System C-1

lAccesnlon For

IS CRA&I

1 3tcatlon-

~AymIi1~bj11ty Codes_

Avat And/or

Dist pec al

vi

ILLUSTRATIONS

Fig. Page

2.3-1 Phase I AID Display 4
2.4-1 AID Hardware Configuration 8
2.4-2 S-100 Buss Slot Usage 11

3.2-1 Video Control Messages 17
3.2-2 Video Graphics Message 18
3.2-3 Audio Messages 19
3.2-4 Miscellaneous Messages 20
3.2-5 Task States 22
3.2-6 Task Control Block 23
3.3-1 Service Processor Interrupt Handlers and Tasks 27
3.3-2 Service Processor Functional Block Diagram 28
3.3-3 Service Processor Data Flow Diagram 31
3.3-4 Dispatch Task Flowchart (One User-Processor) 32
3.3-5 Video Task Flowchart 33
3.3-6 Audio Task Flowchart 35
3.4-1 User Processor Functional Block Diagram 37
3.4-2 Keyboard Assignments 40
3.4-3 Keyboard Task Flowchart 41
3.4-4 TEU Task Structure 43
3.4-5 Main TEU Processing Routine TPROC 45

4.3-1 Keyboard Commands 74
4.3-2 Display Options Array 76
4.3-3 TEU Input Data Block Format 79
4.3-4 TEU Task Structure - Functions Used by the TEU Task 81
4.3-5 Functions Used by the TEU Task 84
4.3-6 Allocation of Screen for Text or Target Display 91

vii

I f

APPENDIX ILLUSTRATIONS

Fig. Pae

A-i Task Control Block A-3
A-2 Task States A-4
A-3 Task Program Structure A-6

A-4 Task States and State Change Mechanisms A-7
A-5 Computing Return Addresses: RUNADR, SLPADR A-9
A-6 Task Initialization A-10

A-7 Task Scheduling and Return A-12

C-I Alerting Sounds C-3
C-2 Voice Messages for Resolution Advisory Alerts C-4

C-3 IVSI Lights Numbering Scheme C-5
C-4 Resolution Advisory Alert Processing C-6
C-5 Traffic Advisory Alert Processing C-7
C-6 Target Selection Logic C-8
C-7 On-Screen Display Logic C-9

TABLE

C-I Aural Alerting Phrases Available in Phase I AID System C-2

viii

1 .0 I NTROUIC'TI 1 ON

The Mode S beacon system, a combined secondary surveillance radar
(beacon) and ,round-air-ground data link system, is capable of providing both
the aircraft surveillance and communications necessary to support Air Traffic
Control automation in the future. flany uses of the Mode S data link within
the FAA ATC system are apparent but are, of course, untried and need to be
validated. The Airborne Intelligent Display (AID) reported here was developed
by Lincoln Laboratorv during 1979-1980 in order to evaluate and demonstrate
the use of the data link between a Mlode S ground sensor and Mode S
transponder-equipped aircraft. The All) served as a data link interface
allowing the pilot to see, respond to, and initiate communications with a
Yround sensor. Later, when Lincoln began testing the Traffic Alert and
Collision Avoidance System (TCAS), the AID became the TCAS display device,
showillh position estimates for TCAS-tracked aircraft.

'[th Al! is a zaicroprocessor-iaseu avionics uisplay system which includes
a Ci~f (,'iodilieu 3edi': color weather radar display), pilot entry device
(kevDoa I ,1) , and annunc i at or.

Thc ori ill.li \'I 1 i'n used a s n:h., Z8ti microprocessor, assembly language

coti:i,, and <Ji, ,tu-a., and could not be easily modified to meet growing user
deihiandai. A r,-'esi ,,n eftort, rocused principally oil software, was begun to
develop an All) that would be flexible in responding to the needs of a variety
ot rAA development prograris. The redesi4n effort is being done in phases.
The pha.e I AID system, completed in 1962, supports the TCAS program. The
phase II system will ,tdd 4ode S data Link capability.

This document describes the redesigned phase I AID systel. Three
sections follow: Section 2 covers system design, including design objectives
and approach, display requirements, and hardware structure; Section 3 gives a
software overview followed by general descriptions of each of the major phase
I software functional units; Section 4 gives detailed descriptions of these
software functional units.

2.0 SYSTEM DESIGN

2.1 Design Objectives

The objectives of the AID software redesign effort were to:

i. produce a system that could be easily adapted to future design

changes and easily maintained,

2. require minimum changes to existing hardware,

3. develop software on a software development facility (SDF) that could
be inexpensively duplicated elsewhere to allow the FAA Technical

Center and others to develop or modify AID software,

4. use a program load device,

5. use structured, top-down software design techniques.

2.2 Design Approach

The stated objectives were met by:

1. distributing the processing load among multiple Z80 single-board
computers (SBC's). This results in processing bandwidth
(instructions/second) and the amount of directly addressable memory
being multiplied by approximately the number of processors used. It
also allows the system to be divided into logical units that can run
in parallel. The software for these units may then be maintained by
different organizations if the defined interface requirements are

strictly observed.

2. limiting hardware changes to the addition of a second video RAM board

and modification of the video controller. These changes allow more
time for software screen generation and eliminate screen noise.

3. developing all software on an LSI-1I SDF and downiloading object files

to Z80 SDF's for testing and integration with hardware. This
technique has been demonstrated to be far superior to developing
software on Z80 SDF's directly.

4. using a floppy disk to permit program load before or during flight.

Load time is typically 2 minutes using a single eight-inch disk.

5. writing all software in the C compiler language. This language

enforces structured programming. It has been used on other similar
projects and is compatible with the objectives of this project.

2

2. Di splay Requi rements

A major objective of the AID software redesign effort was to produce an
airborne display syster flexible enough to respond to the needs of a variety
of FAA development Iroiirams. Each development program has specific
requirements ill terms of equipment to be interfaced to the All) system and
information to he displayed. The phase 1 AID system was designed to interface
to a TCAS experimental unit, receiving aircraft position information and
displaving targets in a 'Planned Position Indicator (PPI) mode on the CRT. The
TCAS/AII) installation was used ill subject pilot tests at Lincoln. These tests
gathered information on pilots' reactions to the display of TCAS traffic
advisories under ac tLn] flight conditions.

Features 0t the plase I All) display, especially in the areas of target
swilmology and aural alerting, were reviewed by the FAi's TCAS II Operational
[vallu.?tion WorRin, .roiip. This was done to ensure that tile flight testing done
at Li Ire Ill WOuld Dne relevant to future TCAS installations. The phase I AID
displx,' reCLuirements are listed below. A sample display is shown in
Fig. 2. 3-1.

1. oJwn aircraft

(ia) The symbol for own aircraft will be a chevron centered horizontally
on the display, approximately 2/3 down from the top of the display.

(r) own aircrdft Altitude will appear in the lower left corner of the
screen when the display is in absolute altitude mode. Own altitude
will not appear in relative altitude mode.

2. ,r ,,et a ircimaft

ia) Target position will be indicated by a triangle located at the range
and hearing determined bv tie TCAS processor.

Ab) in aI rit udc t~i m wiL i accompanv each target , showing relative or
11).stlILte alt it hlde (as selected) in lll's of feet. Non-mode C
aircral t ilt displav three question marks (???). An up or down
arrow wi It indicate altitude trena whenever altitude rate is > +lo
t sctetL. lile altitude tag will be in one of four positions
rel,attive t,, the target triangle: above, right, below, or lett.
';ominal position is above, but the position will be altered as
required to avoid clutter with other target information.

(c) Target color will be red to indicate threat (aircraft generating a
TCAS resolution advisory), amber to indicate pre-threat taircraft
generating a TCAS traffic advisory), or white to indicate proximate
traftic (aircraft within 4 nm and +12U0 feet vertically).

(d) Information for threats or pre-threats without bearing will be
written in alphanumeric form in a block in the upper left portion of

the screen. No indication will be provided for proximate aircraft
wi tilort hear Jmig.

3

' t

0
.4-o

5

0

0

I

Cu

0Ci~1-~ .cg
~qm4O

Oi
~ SI 60

A t I I !r it .',currr i nw off-scret n~ .i [L he inidi cated by a
q i uhe c Ig I a t.?; d t t, c

'-':'.,..iiu~~~~ 1. .rt - iI.nA ~e

~ll ih Ir dI 'ti L I U. i~ light
a Z)rl-rd pat va ie I il I - 1 ih 1) L 1 i I luinnate

)1 1"1 1.*Ar ince Ii r-,(I IL ion advisories and unber tor the
Otpre-ttire~j t trai, Ic advisories. Pressing the light

It e \t in jii i 1Y ilidliaiontW Ii1t and will returnl d signal to
tiicU tia t~iQ Li :it. n005 oen puished. Logic for conitrol of this
I i yirnt ib proviJed in Appendix C.

I,;) Loider normal cod(i t ionS tthe uaplay will be capable of providing
I second updates ior up to 6 targets with full attitude tags. But
as a fail[-safe featuire, the display will revert temporarily to a

2Second 1-pdalite rate it i s ever inCdpaDle of updating all targets
Within I secoiid.

(c) Fixed inforiaation (ownship symbol arid range ring) will be
overwritten (partially erasea) by aircraft symbols and their
associated altitude t ags.

(d) A mode selector switch will be mounted in the cockpit. This switch
has four positions which are described below.

Switch Position Result

TCAS OFF Power to AIl) is off. Weather radar data

is displayed.

TCAS ST'ANDBJY Power to AID is on. Weather radar only

is displayed.

WX RA[)AR/TCAS Power to AID is on. Weather radar data
is displayed unless TCAS interrupts.
Then TCAS data only is displayed for
duration of interrupt.

T CAS Power to AID is on. TCAS data only is
dis5p lay ed.

w4hen th(e mode selector switch is in the WX RAIJAR/TCAS position, FCAS
will inrorrnupL whienever 1) A pre-threat or threat advisory has been
,cirit'd r11 -' extended display criteria are in effect.

4. Keyboard-Selectable Options

The following display options will be available for the phase I AID
display. Default values are underlined.

(a) Range Minimum (rear) distance.
2nm
3nm
4nm
Snm5nm

7nm

8nm

(b) Autoscaling on/off. When the autoscaling option has been selected,
the display scale will be adjusted when necessary to allow all

threats and pre-threats to be visible on the display screen. One of
seven scales will be selected with minimum screen distance equal to
2,3,4,5,6,7, or 8nm. Regardless of the autoscaling option selected,
the selected fixed display scale will be used whenever tiiis scale
allows all threats and pre-threats to be visible on the display
screen.

(c) Altitude format relative altitude
absolute altitude

(d) Proximity suppression suppress proximity advisories (triggered mode)
display proximity advisories (continuous mode)

In triggered mode, proximity advisories are suppressed except when
threat (red) or pre-threat (amber) advisories are present. The
display resuppresses 8 seconds after all threats and pre-threats
have cleared. In continuous mode, advisories (including proximity
advisories) are displayed whenever tracks qualify.

(e) Display criteria normal criteria
expanded criteria (call-up mode)

A "call-up" button will be provided on the keyboard which can
temporarily expand the display criteria. If the display is in

triggered mode, then pressing the call-up button results in
unsuppressed display for 15-seconds. During this time all proximity
advisories will be displayed. If the display is in continuous mode,
then pressing the button results in display of all tracks within 4
miles and 1200 feet for a 15 second period. No off-screen symbols
will be generated for targets which satisfy only expanded display

criteria.

(f) Number of targets to display. 0 - 8

The TCAS logic will provide priority ranking for all targets sent to
the AID. This ranking will be used to delete targets when the
display limit is exceeded.

6

2.4 Hardware Structure

2.4.1 Overview

Figure 2.4-1 is a block diagram of the AID hardware configuration.
Phase I components are shown enclosed in solid lines. Components to be added
for phase II are shown enclosed in dashed lines.

The system is partitioned into functional units by the use of multiple
single-board computers (SBC's). The SRC's are connected in a master/slave
configuration. The master SBC, referred to as the service processor, serves
primarily as a general-purpose audio/video processor. One or more slave SBC's
serve as user processors, performing functions which are specific to a
particular user application. All slaves communciate with the master via the
S-100 buss. The master then interfaces with the -CRT,_ 'd-aTrnrtc-ator, and
floppy disk. Unlike the slaves, the master has complete access to the S-IO0
buss. The slaves use the S-IO0 data lines and some status and control lines
in their communication with tile master. ilowever, they cannot put an address
on the S-IO0 address lines. In this sense they are similar to I/O controller
devices on the buss.

The sections which follow describe briefly the hardware components shown

attached to the SHC's in Fig. 2.4-1. The hardware discussion ends with
sections on S-100 Slot Usage and SBC Characteristics.

2.4.2 Video RAM, Video RAM Controller, and Video Multiplexer

The video RAM controller has been redesigned to add a second video RAM.
In the original AID, the video controller and the CPU accessed a single video
RAM card. This card contained three 8K banks of RAI -- one each for red,
green, and blue data. Normally the screen was blanked while the computer
updated the video RMI. This caused a noticeable blink on the screen. In
addition, when symbols were purposely blinked, both tile computer and the video
controller accessed commmon data lines, causing noise on tile screen. To
correct these problems it was decided to use two video kAi, 1 cards and to add a
video multiplexer. In this way the video controller can be reading a screen
image from one video RAN while the CPL is loading the, other. The controller
can then switch to the updated image In the other RAM during the vertical
retrace of the CRT. This eliminates all blinking and noise problems. It also
provides the CPU with a full video frame period to generate a new frame. The
additional video K(AM card is identical to the original unit.

2.4.3 Audio RAM and Audio Annunciator

The phase I AID system uses three 1bK banks of audio RAM for storing
words and phrases to be annunciated. The three banks used are the upper 16K
of the master's onboard memory plus two IbK banks from a b4K R14 card. The
IK off-board RA! banks are selected by the master by de-selecting the onboard
bank with the same address space. The master loads selected words or phrases
from these audio banks into an annunciator RAM, then activates the
annunciator.

7

6L.. , q: .l

ELM ri p
- 4ELM 0 Po 4K

RAM

"M S p

8 OD USERANUCAO

FROM TEUPRCSO
OR ARINCFLPYDS

KEYBOARD (SLAVE SamPRNTR)

CAUTIONIRNIG P
t

BUTTONILIGHTI" P

EVMIDTNDE LEVDEOGTVDE
MESAG RNTMFAI

Pig RAM1 0l hadw re conlgato

P- PAALLE

To be consistent with the design philosophy, the audio data should be
kept in the appropriate slave, since it is application dependent. However,
this would be inefficient since audio data would then have to be sent back to
the master with each audio command. The audio data file can still be
maintained by the same person or group supporting the application. If
multiple applications exist in separate slaves, then multiple audio data files
can exist and can be loaded into the same or different RAl banks.

2.4.4 Floppy Disk

tLach iBC has 04K of onboard RPAa. ROM is used only for boot program
storage; program and data files are stored on floppy disk and loaded into the
onboard il. The phase I AID systenm contains a single floppy disk drive and
uses ,-inch, single-sided, double-density floppy disks for storage. Because
only toe master intertaces to the floppy disk, the master must be responsible
tor the loadi i , and proper distribution of all program and data files. In
reSpons,. to i sYvstecj boot, the CP/I operating system is loaded into the
iat;rer. CP2i. then in turn automatically loads the program and data files into

the mlaster. From there, slave programs and audio data files are downloaded
vi a th e,-il, buss to the proper destinations.

Disk access is required only during initial program load. Following
this, the floppy disk can be removed trom the drive and those parts of CP/M
that handle disk access can be overwritten by the master's application
program.

2.4.5 Mode Switch

The Bendix front panel mode switch is used to switch the video display
among tour positions: test, weather radar only, combination weather
radar/AID, and All) only. The switch is interfaced to one of the master's
parallel ports on top of the card. When there is a change in the switch
position, the switch interrupt handler causes the new switch position to be
sent to all slaves. The slaves can then change their operation as necessary.

2.4.0 Caution/Warning Button/Light

A combination button/light is interfaced to the phase I TCAS slave via
one of the two parallel ports on top of the card. The upper half of the
button contains a red light labeled 'warning'; the lower half contains an
amber light Labeled 'caution'. Software in the slave turns on one of the
lights and annunciates a corresponding audio phrase when warranted by the
aircraft threat environment. When the user presses the button, an interrupt
is generated in the slave. The interrupt handler then extinguishes both the
light and the audio annunciation.

2.4.7 Keyboard and TEU Serial Input

Serial inputs to the phase I TCAS slave are from the aircraft's onboard
T(:AS Kxperimental Unit (TEU) and the keyboard. These use the two serial ports
on the top of the card.

9

2.4.8 S-100 Slot Utilization

Figure 2.4-2 diagrams buss slot usage for the All) desi. n. Again phase I

components are enclosed in solid lines; phase 11 components are enclosed in

dashed lines. The figure also shows card interconnections via connectors on

the tops of the cards.

Note that an additional slave SBC and an AAINC 429 interface card are

shown. Their purpose is to convert AI\NC-tormatted 'AS data into a tormat

compatible with the current [EU-AID RS-232 interface. This provides an
interface to Dalmo Victor's TEU equipment. Note that these two cards will

only draw power from the S-IUU buss. All communications are through

connectors on the tops of the cards. They therefore have no effect on the Al)
cards on the buss. This SdC's programs are burned into EPRUM's.

The ARINC interface also serves a second purpose. If the ARINC TEST
OUTPUT is connected to the ARINC INPUT, then ARIMN test messages, generated

within the ARINC slave, can be sent to the TCAS slave ,)i. In this way all

features of the audio/video display can be tested/demonstrated.

2.4.9 Single-3oard Computer Characteristics

The salient characteristics of the master and stave SBC's are summarized

below. The SBC's are supplied by Sierra Data Sciences, Fairview Park, Ohio.

The master SBC:

I. uses the ZSOA (4-Mliz) processor,

2. contains 64K bytes of RAI divided into four I6K)anKs,

3. contains 4K of "shadow" EPROM (that is, the EPRo shares the b4K RAIl

address space. It can be switched in or out. It contains a boot

program to load CPM from the disk),

4. is compatible with IEEE-696 buss standard (i.e., the [l-JEE standard

for the S-l00 buss),

5. has two serial and two parallel 1/(J channels accessible from tne top
of the card and,

6. has four counter-timers.

The master communicates with the slave SBC using the same protocol that it
would use to communicate with any other [/0 controller kslav) device. [his

protocol has been standardized by lEEI*-b9.

iI

SLOTS NEEDED

2 AINCTES OUPUT ORARNC;G420:E POWER

II
KEYBOARUTIDPWE

PRINTERE ONL

PRINEDRT

2:

I MD WTH3MSE B

2 ED ELIITT.AE

2~g 2.I-E. S-M u. t uae

13 13

The slave SBC:

1. uses the Z80A (4-M z) processor,

2. contains 64K bytes of KAM divided into four 16K banks,

3. contains up to lbK of "shadow" EPROM, V
4. has two serial and two (or four, optional) parallel channels,

5. has four counter-timers and

6. contains an X-buss expansion iiltertace.

The X-buss contains lines trom all Z80A pins plus additioual control and
status signals generated on the board, It may be used to intertack, to anotier
memory bank or to a utility card containing a high-speked math chip and
additional serial and parallel ports.

The slave is supplied with a single 2732(4K) EPROfl containing a hoot
program which causpe the CPU to wait for a program download fron the aster.

12

3.0 SOFTWARE GENERAL DESCRIPTION

3.1 Overview

The AID software, like the hardware, is partitioned into functional units

by the use of multiple single-board computers (SBC's). The master SBC,
referred to as tihe service processor, serves primarily as a general-purpose

audio/video processor. otie or more slave SdG's serve as user processors,
pertorming functions which are specific to a particular user application.
Sorer, software, called svstew software, is common to all SBC's.

Flit, phase I software described in this document provides for a single-
uer application and thus contains a single-user processor. This user

processor intertaces to a 'CAS experimental unit (TEU) and a keyboard. Its

function is to input TEU aircraft posiLion information, process tile
inoformation according to keyboard commads, and generate and send audio and

video data blocks to theC service processor. The service processor then drives
the laudi)o aLiIuci,itor and C(,T to produce audio and video output. Phase I
audi) ovttputs are of two types: (1) tones to indicate whether valid or
inv:alid keys have been pressed on the keyboard, and (2) words or sounds to

iliform tie pilot ot a recomnended maneuver or simply draw his attention to the
display. Video output is a color PWl-type display showing targets at given
ranges ;nd bearings tron oun aircraft which is located near the center of the

screen.

As stated earlier all programs are written in C. The C compiler allows

direct machine code (object bytes) to be inserted in-line in a C program. The
direct code can reference C-defined parameters. This machine code is used in

some cases to program 1/0 interfaces when timing constraints require very

efficient coding.

All programs are colaposed of tasks and interrupt handlers. A

nonpre-emptive task scheduler satisfies the requirements of this program.
Communication between tasks and between Interrupt handlers and tasks is by

means of circular queues. All programs use tile same task scheduler design and

queue management functions (i.e., functions for entering messages into queues
and removing messages from queues).

Certain naming conventions have been followed. In general, interrupt
handlers contain letters ot tie attached device followed by IN or OUT

depending oil ttie direction ot the data flow. Tasks which serve a function
imilLr to that of the corresponding interrupt handler are distinguished from

,le i iterrupt landter hv an additional Letter T. (ueue names generally

,,,t.iti, t tters, the first three corresponding to the function which inputs

,,I t to. qneuLtle, tle last three to the tlinction which removes data from tile

ht' three subsections whiclh follow give a gtneral description of tile
'has. I ,t twire : Sct ion 1.2 - System Software, Svct ion 3. 1 - Service

'r1.'"ss l '',t , ' .aid Sectlion .3.4 - User P'rocessor Sottware. A more
It'tai 1ed ,iecriptioll (1 the software Iii each If these areas is given In

a r , -: wtr.)i t i l e d s)escr i ,t ioll.

I i

3.2 System Software

Topics to be discussed in this section include interproc-;sor
coordination functions: system startup (3.2.1) and interprocessor
communication (3.2.2); functions used in common by all application programs:
the task scheduler (3.2.3) and queue marai-ement func, ions (3..4); and
diagnostics (3.2.5).

3.2.1 System Startup

When an StiC is initially booted (power turned on) it runs a bout program
stored in an on-board EPROM. The slave's boot program initializes the slave
to receive a program download from the master. 'fhe master's boot program

loads the CPtl operating system trom tracks zero and one of the floppy disk.

This section discusses the initial program load procedure, application

program initialization, and interprocessor startup coordination.

3.2.1.1 Initial Program Load

Except for boot program storage, all mewory in the AID is RAM. Fie CI'M
operating system plus program and data files are st ored on Ind load.d trom
floppy disk.

The Sierra Data Sciences' system contiguration utilitv has been used to
modify parts of the CP/M operating system residinl on the floppy disk.
Specifically, an autoload command line has been specified. 'iis command line
contains a list of simulated operator commands. when CP/I is initiaillv loadeu
into the master, it checks to set, if this command line is present, and if so,
executes the first commano. Cpon completion, the svstet, dots a warn boot and
executes tile next command in the command line. This procedure cont inues
through execution of the last command in the command line.

The first three commands load toe three InK banks ot audio data into tile
master's upper IbK memory bank and into banKs A and B oh the n-. RA:1 card,
respectively. The tourth command loads a downI ad provrani into the I(:A,;
slave. The fifth command loads a corres pondinlr dooitload program into the
master. Togetner the master and slave download programs then read the sla't.
application program, one blocK at a time, trom the floppy disk into tie

master, then send the program, still one block at a time, to the slave. iice
loaded, the slave application program begins execution. ihe liXtiil and tinal

command loads and executes the master's program. Note that once th' master 's
application program is loaded and begins running, control is never returned to
CP/M. The master program may theretore overwrite CP/M in the Master's KAM
memory.

Liring system integration and at other times for troubleshootini., it is
desirable to run debuggers in both master and slave. 'lerminals are attached
to the master and slave serial ports to support this, and sottware is changed
in the slave application program to contigtire one ot the serial ports tor tlhe
terminal. (in normal operation, the two slave serial ports are used for TEhU
and pilot keyboard inputs. For dehuging the slave serial ports are used tor

I-.

either terminal and TE'C or terminal and pilot keyboard.) The download of the
slave application program is accomplished in the same manner as described
above except that a different download program is loaded into the slave.
After tnis download program finishes downloading the application program, it
transfers control to Sierra Data Sciences' slave monitor program instead of to
the start of the application program. In the master, instead of directly

loading the master program, the standard CP/N symbolic debugger ZSIt) is
loaded. '[he master program is then loaded under ZSID control.

3.2.1.2 Program Initialization

Each program loaded into an SBC goes through a similar initialization
sequence. All C programs begin with the tunction maino. In this application
the initialization process is divided into two parts: that performed by the
function main() and that performed by the task inito.

The maino) function performs all initialization operations necessary only
at startup and not during a restart. These include:

a) zero tie data area
b) load the interrupt vector table
c) initialize the task scheduler
d) initialize all task control blocKs (TC)
e) initialize ali tasks (call them and run them to their first suspend

point)
f) scnedule the init() task
g) call the task scheduler.

The init() task performs all functions necessary to perform a restart. These
include:

a) initialize all circular queue headers
b) initialize all hardware 1/0 devices (e.g., the counter-timers,

parallel and serial I/0 chips, audio and video controller boards,
etc.).

Note that the maino/init() partitioning of initialization Is more
appropriate in a system in which the program is stored in ROM. In that case
the application programs can initiate a restart by scheduling the init() task.
Since the program is in ROMl it is likely that this process will he successful.
However, if the program is in RAPI, it is possible that the program itself was
altered during abnormal operation, and restart will not be successful.

Initialization is partitioned as described so that the program will be
suitable tor ROM storage it the need should arise at a later date. In the
phase I system, restart is accomplished by rebooting the entire system from
the disk.

3.2.1.3 Interprocessor Startup Coordination

Slaves complete initialization before tie master and wait tor a "POtE"
message from the master. while waiting, slave external interrupt handlers
ignore all data received (i.e., will not wake tasks to process data). When a

15

POKE is received, the slave activates its external interrupt handlers and
sends an acknowledgement back to the master. The master sends POKE messages
to each slave. When all slaves have replied, the master activates tile front
panel mode switch handler and sends the current switch setting to all slaves.
The switch setting indicates which slave should send audio/video data to the

master. This completes the startup process.

3.2.2 Interprocessor Communication

Messages sent between master and slave have fixed tormnts. The t irst two
bytes of each message contain a type code and a bvtco Lt'Okl , respect ivelv. An

actual transmission can be a string of concatenated, fixed-lormat nesales.
Each transmission of a set of messages is initiated bv sendin0, a sincie nvte
containing the total number of bvtes to tollow (t!,, to h. The blocK oI
concatenated messages of the indicated lenkgth is tion sc t

The message formats are shown ia Fis. 1.2-1 throu ni .--. lnere arc

tour general message categories: video cILrol r vv deo 1raphic, , dual,0, ,id
miscellaneous.

Figure 3.2-1 shows video control messages. A I I Messaes c scr i i ,
single video frame must be preceded bv a SI'AR-OF-FRAMtL messal!, and to I [owed
by an END-OF-FRAME message. The screen is blanked b, sendiL i CLFA!R ,lessace,.
An initial SCALE message is sent from the user process:,r to the ser ice
processor to specit v Lilt' dimensions ot tl viden Sc-etLo. ke! Sect iotl i 1
for a description of tile virtual s;creen concept.)

The remaining three video control AI ,is sa Ces i , - 1 ,t , . ;
VIDEO) each select an option which then rem~ains in et Iect not ii c Iuutaed by a
CLEAR command or the video control message with a dii ierei)t option selected.
The control byte in the COLOR message selects one ol sereca colors. The
control byte in the LI:,E TYPE message selects dashed, dotted, or solid li nes.
The control byte in the REVERSE VIDEO message selects either reverse video on

or off (off = normal ,node).

Three video graphics message types have tbeen Lcl ined: STRKIM, CIRCI't.,
and LINE. These are shown in Fib. 3.2-2. The STsI./G ilessage specities the
X,Y starting coordinates of an ASCII character string, a reference position
for the first character (i.e., centered on X,Y, lower left at X,Y, etc.), and
the ASCII string itself. The ASCII string is limited to 32 characters, the
width of the screen for our application. The CIRCIL message ,gives the XY
coordinates of the circle center and its radius. The LINE message contains a
byte specifying the number of line segments to be drawn ind the X,Y
coordinates of the lines.

Figure 3.2-3 shows the three types of audio messagt's. Ihe basic AUI)I,
message specifies an offset into the audio RiI dat a irei and the lengl ,
that data area in bytes. Multiple AUDIO messages mav bc combined to Iorci a
single phrase by preceding the AUDIO messages by a S'T\RT-OF-AUIllo and

In

CLEAR: START-OF-FRAME: END-OF-FRAME:

TC10 TC11 TC12

0 0 0

SCALL. COLOR LINE TYPE:

7C! T r4 TC16

Y K,4 A x T S0 nL C NTROL

Y M I -I - L S F,

REVERSE VIDEO:

TC= TYPE CODE TC20

CONTROL

Fig. 3.2- i. Video control messages.

I-

STRING: CIRCLE: LINE:

TC17 TCIS TC19

COUNT SCOUNT

X-COORD LBO X-COORD LSB *SEGMENTS
Mee MSe

Y-COORD LSB Y-COORD LBS Yl

Mae MSB X

REF. P0O. RADIUS LBO Y2

t MSB

ASCII
CHARS

I I IXN
I V jYN

Fig. 3.2-2. Video graphics message.

START-OF-AUDIO: END-OF-AUDIO: AUDIO:

TC30TC31TC3 2

0 0 4

OFFSET LS9
Mae

LENGTH LS.
Mae

Fig. 3.2-3. Audio messages.

POKE: SLAVE ACKNOWLEDGE: ERROR:

0 I0 COUNT

ASCII
CHARS

USER MODE MODE
SWITCH SETTING: SWITCH SETTING:

TC21 TC40

I I

SWITCH SETTING SWITCH SETTING

Fig. 3.2-4. Miscellaneous messages.

20

II

1 V. t IID

lit cpI I01 t .7 i i t L wa r' 1) 71 K I fijto tIalct tonaI block(s -,i I1-- t asks.
-ic1h L~tsIm ,.irrl Iefm out a spec itic t(nlIcti,II. E~ach task is; writte;n as .i

s tIaIrr. iI ried1~tre begiiioi1w t .) end mi thou t a break in

U secilt i n *\ arc. -ic tie, seve ra1 taisks may be re.nitv to ruin. Since on ly
0 lit t ifs K Cin 11 .) , E '.0-IIt 7 t . , i VyCen ti m e , theit s hudi e r ,e r t o rms thre funlcti~on

f dt,[t rmI i (I i :l W: i I; tICt r ',1 ', t , IS S LuC ecuCkit C

F ~re3. 0.~tstie Littot possi ble states or aI task: Rcady , Running
C -1i t inc 71 11.i 1 7: t ,I .,K it, stoptpedi because it is wait log tor siome

c'liwkii t i nLnocar, slih I-, receipt of an input charater. A\ leadv task is
r e;~ dv Lo) r ut nut 7i - st Ippt.I r, CUe a ue:nother L. .iK is Dicr LIiP h unning

as, :s tlit. cuirT-t v LI \X cu i!W, task. The transitions bet wee', tti various
L, It t-5 art, trl 0 'rt~ h L ly t- riil.() , Slc.ep()anld WaK(1u o 1 1 m he i . IIk

b'll kr '>CI, 0 'iln() nac'ion [I0 st rt a tas 1Unnni:II,, * fi

7 i I i c Vic ;it li tIIp llkf.) nc t ioni when:- 1t. reaicls a Point init tbe

itt'::~1A , t ~ii tr 51)1W C~ii~l.1Ili -,n 1 ;eb)1. 1 1 1)n

... . i -it wk poiinter ini it L, s loll 01 "(i I ~ r tid

0 .'k scheduler. t'C h Cd (1 1 0r 71.. .i CC r 7, t he
I f r1Im th liLiSt o t 05.-. H11K 1 trans er r k t

* .', t' - I i ~ .nft ,1 I 21 ii t 'r Lass

* .ei :v , 1:717.3 II t~ 71,151 it,- LC~ . . I,; K

IR~prodcfrom 7

WAK~E:

SET STATUS-1

SET SIGNAL- I

SLEEP:

IF SIGNAL =1

SET SIGNAL=

SET~~~E STTATU I SGNA-0

Fig. 3.2-5. Task states.

POINTER TO NEXT TCB

TASK ENTRY POINTER

TASK STACK POINTER

TASK STATUS FLAG

TASK SIGNAL FLAG

Fig. 3.2-6. Task control block.

2 1

prevent a task wakeup from being lost while tile task is runing. The stack
pointer Is used to save return addresses for tasks that are Waiting or Ready.
Each task has its own stack. The pointer to the next TCH points to the next
highest priority task.

When a task is awakened, the Status and Signal tLags are both set. The
task is now in the Ready state. "hIien a currently running task executes tile
sleep() function and enters tile Waitini state, the scheduler examines the TCBs
to determine tile highest priority task that has the Status flag, set. The
scheduler then clears the Signal flag of this task and starts tile task
running. If the task is awakened while running, tile Signal fla, is set, so
that wake tips are not lost while a task is executing. The sleep() rt lnction
always checks the signal fLag of the Runn ing task hbetore suspendi u, xec,'t LAM
of the task. If set, sleep() clears the si gnal t lag and resumes execut, Ln l the
Running task.

The application software functions operate below tie eXt.cutive level.
They are implemented as re-entrant tasks. When a task is rinnihi?., it -annot
be suspended by another task. This type of task scheduling is termed
nonpre-emptive since a higher priority task cannot pre-empt a running task.
Task execution is suspended when a hardware interrupt occurs ul thi rilni np'
task is restored when the interrupt service is comaplete. '1his type ,1 tasK
scheduling avoids complex)roblems associated with inter-tis,, dat, transtcr.
However, it also means that higher priority tasks can be locked out ny lower
priority tasks. For this reason, tasks must be des igned to cooperat, ill their
use of available proce.ssing tilve.

3.2.4 Message Queue ,M1anagement

After initialization all intertask and interrupt handler/task
communication is performed by means of queues. Since tas.-s run asynchronously
this assures that messages will not be lost (over-written). Since the
messages required in this application are variable-length, the queue entries
are also variable length. The sane queue management tunctions are used by all
application programs.

The queue access functions are written so that when an attempt is made to
enter a message in a full queue, the task is suspended. Later, when i messa,',e
is removed from the queue, the suspended task is awakened so that it can store
its message. Similarly, when a task attempts to remove a message from an
empty queue it suspends. When a message is later placed in the queue the
suspended task is awakened. In this way messages are "gated" through the
program.

3.2.5 System Diagnostics

There are two forms of AID system diagnostics: non real-time and
real-time. Non-realtime diagnostics are stored on their own floppy disks and
run separately from the application program, either routinely to perform
system checkout or specifically to pinpoint a suspected malfunction. In
contrast, realtime diagnostics are part of the application program. They
monitor actual system operation.

24

.. 2.5.1 Non-Realtime Diagnostics

The reliability of tihe AID hardrare has been excellent. There have been

no known failures in any hardware components. Therefore tile only diagnostics

run o,1 a re,ular batsis are tioppy disk diagnostics. Two in-house programs

exist, TH.ol' - test floppy disk, and WFLOP - write floppy disk. Both programs

cormili icate wit n the zloppy disk controller chip and print out any unusual

status cUnditions which occur during disk operations. The programs are

interactiV C and user-friendly, guiding the user through selection of a variety

ot otflOis tar testing,, the health of the entire floppy or a specific area

onrly. In practice, TI.Ioll pertorms all necessary tests. WFLOP is not normally
use;td.

A di.lrgIlostic package was purchased which runs under tie CP/tI operating

t aTd is diesi '.,,L'd to test ealch major component of a CP/M-based Z80

cii , r,) p ,r ,t es ; r .vs tt, . 'irest, compone nts include memory, CPU, disk drives, CRT

Ler orinI , ,rnj priret r. ,.4e are not currentLv using this diagnostic package.
It retqirir,.s tioditicition to rul successtully with our Sierra Data Sciences

OJiLi ,:3e 1t1 , rNt it is ,v.ri I be a .1 starting point should some of these tests

he coisijeed ressir\ i re tutrrre.

Z. >. tkeaLtirne Diagnostics

Tteit kt:l rcl tiitit' diatgnosticS ope'rate in one ot two ways. (1) Tile system
detcts <ir error cornditii a ad sends a message either to the CRT or the

printer. (ine printer is ot implemented in phase 1.) (2) The user selects a

test mode of operation (e.g., presses the TST key on the keyboard), then

checks to see Linat the audio and video outputs dre correct. The method

described in (2) cnecks the performance of the system as a whole. The error

checks rised iii method (1) are present and operational at all times, whether

the sottware and hardware are in special test wnodes or not. These checks

catch more specific errors that might not be apparent from simply observing

the systeon audio arid video outputs.

The error conditions currently printed on the CRT include (1) 'user
inactive' - i.e., slave not responding to POKE messages from the master, (2)
'no data' - no TEU input received for 8 seconds, and (3) 'Dad input' - TEU

input fields do riot pass reasonableness checks. Many other error conditions

are sent from the slave to the master intended for the printer. These include

checksum errors in input data, queue overflows, timing conditions that should

never occur. These error checks are currently present only in the slave. In

phase 11, when the printer is available, error checks will be included

throughout the master as well.

There are currently four test states in which tile system can be run and

observed. In all four states, user interactions via the keyboard and the

caution/warning button function normally. For test states (3) and (4) refer

to tie All) Hardware Block Diagram (Fig. 2.4-I) and the 5-100 Bus Slot Usage

(Fig. 2.4-2).

25

(1) By pressing the TST key on the keyboard, the user selects a mode of
operation in which canned data for 8 targets is input once per second to the
user processor's TEU task for processing. Each target's range, bearing,
color, and associated audio are updated each second in a realistic manner.
The data repeats approximately every three minutes.

(2) When the TST mode is used in combination with the DE"U key, the user
can select one of eleven fixed target scenarios or one of ten moving
encounters showing own aircraft with one or two intruder aircraft. (See
Fig. 3.4-2 for operating details.)

(3) By changing the cable which plugs into the ,\iD system's £iKC input
port, the user can input actual recordeu flight data tor processinj. 'fLU
inputs from four encounters were recorded onto floppy disK. A separate
single-board computer runs a program wrich reads the data from disk, then

sends it at one-second intervals over an RS-232 link to tile user processor.

(4) A shorting plug can be used to route test data from the AKINC slave
single-board computer into the ARIAC 429 interface to be sent to the user
processor TEU input port. This provides yet another set of audio and video
outputs which can be observed.

3.3 Service Processor Software General Oescriptioi

The service processor is intended to be a general-purpose processor in
the AID system. It acts as bus master and is responsible for controlling the
AID display hardware, the audio annunciator system, and other utility devices,
such as the cockpit printer, thus allowing the user processor to concentrate
on its particular application. Since the service processor is tne bus master,
it also has responsiblity for loading the user software into the user
processor.

3.3.1 Overview

The primary function of the service processor is tIe controi of the video
display so that the user prucessor need not be concerned with the details 01
driving the display. A set of general-purpose graphic commands are provided
by the service processor in order to allow a user to easily generate graphic
and alphanumeric displays. The service processor also provides control ot the
audio annunicator hardware, thus relieving the user from the details ot
directly handling the device. Additionally, the service processor can provide
support for other utility devices which rnay De required by user applications.

The software in the service processor consists of several interrupt
handlers, a task scheduler, and several utility tasks (see Fig. 3.3-1).
Functionally, the service processor receives commands from the user processor;
these are then dispatched to the appropriate task for execution (see
Fig. 3.3-2). In addition, the service processor sends status, commands and
data to the user processor, depending upon the configuration required by the
user software and hardware.

A Mo

"EXECUTIVE"

TASK SCHEDULER

UPIN UPOUT DSPTCH VIDEO AUDIO TIMER MSWTCH

TA3KS

Fig. 3.3-1. Srvice processor Interrupt handlers and tasks.

27

SWITCHSWITCH
INTRFACE

MASTER/3LAVE COMMAND CONTROL AUDOO

I OTHER
L~~ DEVICES/

TAK

LIE CR

Fig. a-a. SRPICeS~ ucinlboKdarm

-- - 28

CommuLnication amon) tasks and between tasks and interrupt drivers is
accomplishedi by means of tirst-in-first-out queues. The flow of data between
interrupt handlers and tasKs and between tasks is shown in Fig. 3.3-3. The
task scheduler is nonpre-emptive and runs tasks on tile basis of priority.

1. 1.2 [Ite rrupt ItandJers

Since the service processor ix,° be required to handle devices needing
f,lst respone , it i- necessary to mini iiize interrupt latency. o this end, a
muIlti-lovel, prioritized interrupt structure has been implemented, requiring
that low-priority interrupts, which require appreciable processing, be
interrniptih i. [n ener, l, theret ore, most interrupt handlers consist of a
task to perform ti re-coni U, computations, and a very short, fast interrupt
service rout iIle.

The IInInners uder the interrupt handlers shown in Fig. 3.3-1 indicate the
rel ative prioritv ot the iatvrrpts , with I being tile highest.

. . 2. 1 Ine .;erviCe Processor/User Processor COmmunications
Interface

Data transfers between the service processor and tile user processor
consist of variahle-le,,th blocks, the first byte of which contains the count
of tile subsequent bytes in tile transfer, tnus constraining, transfers to less
than 256 bytes. The first byte, containing the count, also acts as a
handshake signil, allowinig the two proce:ssors to synchronize the transfer.
Each transfer direction is fully independent, requiring a separaLe interface
driver and task to manage tie transfers (see Fig. 3.3-2).

Messages received from the ,iser processor are initiated by an interrupt
from tile user processor port. Te interrupt handler upin() passes this one
byte message to upint(), tile user processor input task, which receives the
remaining bytes of the transfer. Messages sent to the user processor are
output directly by task upoutto.

3.1.2.2 The Timer Interrupt lHandler (ctcinU)

Tie counter-timer circuit interrupt handier, ctcin(, receives an
interrupt whenever the timer counts down to zero. This interrupt merely puts
a message into tile timero task input queue and wakes the timer() task. it is
the responsibility of the timer() task to determine what actions, it any, this
event triggers.

3.3.2.3 The "lode Switch Interrupt Handler (bswin()

The mode switch interrupt handler monitors parallel port lines which are
connected to the Rendix front panel mode control switch. Whenever the state
of this switch changes, an interrupt is generated. The state of the switch is
read by bswin() and passed to the mode switch task, bswtch(). The parallel
port is then reconfigured to respond to any change from tile new switch
setting.

29

INTERRUPT
HANDLERS TASKS

CTCIN CT TI TIMER
0 EUE

UPIN UPOUPI UPINT UPIDSP
0 EUE

r

AUDIN AU UD AUDIO MSWUPO

MSWIN Mewmew MSWTCHOUEUE

DSPAUD

me DPSVID

ciwvlo

DSPTCH

V1 TIM

VIDEO

TIMVID

Fig. 3.3-3. Service processor data flow diagram.

io

alli

~. *~** DlW Audio) Control Board Interface (audin()

The :ud iO cootrtl tonard interface handler, audi n(, receives an interrupt
whenever thle at~d ik generator control board has completed a message. A one-
byte rlessage is queuied to thle dudio() task to notify it, and the audio(task
is awakened.

3. 3. 3Tas'i~s

Tht, pr imarv tais.s in thle service processor are shown in Fig. 3.3-1 along
with their relative priority. Figure 3.3-3 shows thle interaction and data
tflow between the' t Ak.Thle tot lowing descript ions give an overview of thle
primary tUnetiol Om 01 ach Of the tss

3 . . 3. 1 The Cser Processor Input Task (upint()

hi S tASk' is ilt iate.d by toe interrupt handler for the user processor
o poit p r t It is responsihle for comiplet ing, the' tr ius-2r anid moving the

message to the command dispatch task, dsptcho. The principal reason for this
arch itec tuLre is tO 31loW 1mu~Itie~k-user processors t-o commnuni cate with the
se r v ice prcso Ln rel aho.Tee~ 1 be a separate task for

ech user processor onl thle buss.

'3. '3. .? fbi2 CL>r Processor Output Tasik (upoutto)

En is t isk has several ilipuit uueuesv ,One for each of the tasks requi red to
t ransiit data to the user jprocessor. Upout t(scanis ttnese queues and

t assembles at message (less than L")6 hytes) which is sent to thle user processor.
No inter rUI)tS are i Ov I ved in th I trios fer , so no interrupt handlecr is
rOCces3arv . (The u1ser pr1oceVssor hiis the hardware and software requi red to
svnchironi ze this transfer.)

3. 1.33. 3 The Comm-iand.Di spat cb Task (ds Pt cn))

'liii s t oiss htn as inlput tnev coi,111aiid streams 'omning' fruin one or mnore user
pr!oces--sors . The coornallds ire ouccoded anld dispatched to the appropriate

l~r~cessiV tni dio ki vi., etC.) VLa theC quteue to tbat task. This task,
thenli* hs I he res Dns ibh lt\ vOt 'oo rdiiia t ing thbe utse of one device by several

is rs od res 01 .'es any con flii.ts in a manne r cons is tent with the device in
LiV igiirl, 5.3-4 sh!ows, a functional t low chart tor this task in trie case of

oneC miser processor.

3. 3.31.4 The Video Task (vldeo()

TrhL tWO Mail ~n un ions ot tile video(task are: (1) set the appropriate
hits (pixels) in tne video RA,l in order to generate a display fromo the user
gr1aph ik c o~imna ds and (2) cootrolI tile video KAM'l. Figure 3. 3-5 gives an overall
ludi~tOna I diagram o1 this task.

DSPTCH

SLEEP

GET 0

(UPIDSP)

NO MESSAGE
IN QUEUE

VIDE YESPUTOI
(DSP V 0)

AUDI YESPUT 0

(OSPA U)

POKE YESPUT 0

? NO (OSPUPO)

F4g 3.3-4 Dispatch task flowchart (one user processor).

32

SLEEPETLG T a

I (DSPVID) J

GET 0 No MESSAGE

(TIMVID) IN QUEUE

YES

NO MESSAGE START YES
VIDE DISABLE RE-INIT

IN QUEUE MESSAGE FLASHING? ?
YES NO

NO FLASHING END VIDEO YES UPDATE ENABLE
ENABLED MESSAGE SCREEN FLASHING

YES NO

SWITCH PUT 0

VIDEO RA (VIDTIM)M

r PUT DECODE
GRAPHIC

L (VIDTIM) MESSAGE

y

LINE CIRC E STRING COLOR OTHER

Fig. 3.3-5. Video task flowchart.

The video() task provides a set of general-purpose commands witn which

the user can easily generate the type of display needed. Commands provided

include drawing a circle of a specified center and radius, drawing a line

given two end points, and displaying a string of characters and special

symbols at an arbitrary screen position. In addition, amon other features,

the user is able to select the color of the objects to be displayed and the

type of line to be drawn (e.g., solid, dashed, dotted). Scaling commands are

also provided to convert user coordinates to display coordinates so that the

user need not be concerned with the resolution of tiht screen and other

lardware specific details of the video display.

The graphics are driven on a frame-oriented basis, such that all contents

of the previous frame are lost. A start-of-video message must be sent by the
user to begin accumulating the graphics for the next display. As each graphic

command is received, it is "drawn" into the currently available video RAI.

When the end-of-video message is received, the screen is updated by switching

video RAfts.

3.3.3.3 The Audio Task (audio()

The audio() task accepts commands of the form of an oftseL and length.
It is assumed that the data needed to generate the audio has been loaded oy

the service processor into a contiguous area of memory. Tne audio() task uses

the offset as a pointer into this area and sends the number ot bytes specified

by the length to the audio control card. These audio messages are accumulated

until a command is received to start thie audio annunciation. In this way, a

number of audio messages can be stacked and then annunciated at once. (The

hardware puts a limit of 4K bytes on the total that can be accumulated for

subsequent annunciation).

Figure 3.3-6 gives a functional flowchart of the audioO) task.

3.3.3.h The Tiner Task (timero)

The timer() task provides a general-purpose timing facility for other

tasks. It accumulates ticks from the ctcin() interrupt routine and maintains

a list of other tasks which need to be awakened after a certain number oi
clock ticks. The list is generated by requests coming from the other tasks

and is of the form of periodic or one-shot wake-ups, both of which can be

cancelled, if necessary. Because of the nature of this task, it is the

highest priority task.

3.3.3.7 The Mode Switch Task (mswtch())

This task is awakened whenever the front panel mode switch changes state.

The new state is recorded and then sent to the command dispatch task which in

turn sends the setting to the user processor output task(s). The switch

position controls what is displayed on the CRT: weather radar data only, AID

data only, or combination weather radar/All) data.

34

C D
SLEEP

i
r GET 0

(03PAUD)

MESSAGE
NO r GET 0

IN OUEUE (AUDH
L Up)

YES

GET OW NO DONE MESSAGE NO

(AU AUDI FLAG SET IN OUEUE

YES YES

SET
DONE FLAG

START YES
OF AUDIO

?

NO SET
31ANT PLAU1

END YES LEA START
OF AUDIO ART

? D E FIL AUDIO CARD

NO

SEND MESSA
ETO AUDIO CARDIke

YES START NO
FLAG SET

7

Fig. 3.3-6. Audio task flowchart.

3.4 User Processor Software General Description

3.4.1 Overview

The AID software system is designed to allow division of processing load

among multiple single-board computers (SBIC's) in a master/slave configuration.
The master SBC, designated the service processor, serves primarily as a
general-purpose audio/video processor (see Section 3.3). One or more slaves

serve as user processors, each performing functions whilch ire spec if ic to a
particular user application. I/O devices which are application-specitic are

attached directly to the user processor(s).

The phase I AID software provides for a singl Ie-user application and thuts
a single-user processor. Its tunction is to Ltipt ;iircralt inform,itioi irob ,i
TCAS experimental unit (TEU) and produce audio/video output by sending
appropriate graphics data blocks to the service processor.

There are five basic types ot software contained in the user processor:
a main program, a task scheduler, tasks, interrupt handlers, and a user

graphics package. All data transferred betweeii tasks and betweva interrupt
handlers and tasks is passed by means of circular queues. The user
processor's main program, task schedulter, and queue managenlient protocols are
similar to those in tile service processor and are discussed in :)ecti,)n 3.2.

The user processor's tasks, interrupt handlers, aild user graphics packa,. are
described here.

The user processor contains six tasks and five interrupt hanulers. A
block diagram of these is shown in Fig. 3.4-1. The user graphics package, not

shown in the block diagram, is a set of routines which nay be called from any

task within the user processor.

Initially all of the user processor's software is Loaded from the service
processor via the S-100 buss. Control is passed to tle user iain program,
which performs a number of initialization operations, then wakes init() and

calls the task scheduler. The task scheduler will immediately run init()

which performs more initialization operations. Thereafter tile program loops
in the scheduler, continually checking for tasks which are ready to run.

Tasks, once begun, may not be interrupted oy other tasks, although a task may
voluntarily suspend itself at any point to allow the task scheduler to

schedule another higher priority task. Interrupt handlers may interrupt ooth

tasks and other interrupt handlers depending upon priority.

There are four sources of input to the user processor: keyboard, fT11,
timer and service processor. Each input has a corresponding interrupt

handler: keyin(), teuin(), ctcin() and spin(). There is one output
destination, the service processor, witn its interrupt hiandLer spout(.

TEU inputs give position and equippage information for own aircralt and
up to eight other aircraft. Data is transferred from tile aircraft's TEU unit
directly to the processor via an RS-232 link at one-second intervals. Own

aircraft information is always included. Other aircraft information is
included when available. Teuin() inputs this data block from the RS-232,

places the information in the teuteu circular queue, and wakes the teu()

task.

INTERRUPT
HANDLERS TASKS

CTCIN STIM INIT

KEYKEY
QUEUE

---IKEYIN (KEYSTROKE KEYSID
HARACTERS

KEYTE TIMTEU
OUEU QUEUE

(DISPL (ONE SECONDOPTIO
ARRA WAXE-UP)

TRUTEU
QUEUE

TEUIN (AIRCRAFT TEU
POSITION

INFQ)

AUDSPO &
GRASPO AUDSPO
QUEUE$ QUEUE

(AUDIOIVIDEO (AUDIO DATA
DATA BLOCKS)

BLOCKS)

SPOSPO
QUEUE

$POUT (AUDIO/VIDEO SPOU T
DATA

BLOCKS)

SPISPO SPITEU
QUEUE QUEUE

VPOKE' (SWITCH
MESSAGE) SETTING)

SPI&PI
QUEUE

SPIN VPOKE' AND $PINT
SWITCH

SETTING)

Flo. 3.4-1. User processor functional block diagram

37

The keyboard allows a user to change various TEU display characteristics,

(e.g., relative or absolute altitude, maximum range displayed). Keyboard

inputs consist of a single byte. They are asynchronous and may occur at any

time. When a key is depressed, an interrupt is generated. Keyin() inputs the

key's corresponding 8-bit byte, places it into the keykey queue, and wakes

the keybd() task.

In phase 1, two types of input (not including the initial program load)
are received from the service processor: a I-byte message which conveys the

setting of the Bendix front panel control switch and a zero-length "POKL"

message which is used to indicate that the service processor is operational.

Both message types are received by spin() and passed via the spispi queue to

task spint). An acknowledgement for each is immediately sent back to the

service processor via spoutt() and spouto. The switch message is passed to

the TEU task where it is used in determining whether audio and video data

blocks should be sent to the service processor.

Currently all user processor output is directed to the spout() interrupt

handler for transfer to the service processor. With minor exceptions (see

Section 3.2.2) all outputs are variable-length general-purpose graphics data

blocks which have originated in the teuO() or keybd() tasks and been passed

through the spoutt() task to spout(). 'Inese data blocks are uscO by the

service processor to produce audio and video output.

3.4.2 Interrupt Kanalers

There are four sources of input to the user processor: keyboard, TEL.',
timer, and service processor, with corresponding interrupt handlers kevini),

teuin(), ctcin(), and spih(). There is one output destination, the service
processor, with corresponding interrupt handler spout(.

The keyboard and TELU intertace to the slave via serial input ports. flne,
slave contains a serial interlace cthip that supplies two serial ports
(Z80-S 10). At startup seven bytes are output e,, each port tor initialization.

During program operation tie interrupt hanuler5, simply sav: tie C1t; state,

input a byte and store it in a queue, then restor,, start auid retort control t',

the interrupted function. Keyin() wakes the kovboard task eal'm time a byte is
received; teuin() wakes the teu() task only wheo an ent ire inptit imess.ig 1iis
been received trom the EEU.

The slave SBC contains a chiip tnat supplies tour counter-timers

(Z80-CTC). In initialization three bytes are sent that set it, mode, time

interval and interrupt vector. During program operation, control is passed to)

the interrupt handler ctcin() at the selected time intervals. Ctcin() saves
all CPU registers and flags on a dedicated stack, wakes the timer() task, then

restores registers and flags and returns control to the interrupted function.

Communication between the service processor and user processor is via the'

S-IoU buss. Both service processor and user processor contain two dedicatco

parallel ports (Z81(-PIO) for S-100 buss communications. The user processor

interrupt nandiers spin() and spoutt.) handle inputs from and outputs to the
service-processor respectively. Spih() is awakened eacn time the service
processor sends a byte to the user processor. The first byte of all UP-SP and
SP-UP transmissions contains the byte count of the message which is to follow.
Following receipt of a byte count from the SP, spih() accumulates bytes until

an entire message is received. It then awakens the spint() tasks and passes

the message to splnt() for processing.

To initiate a transfer to the service processor, spout() outputs a single

byte on the S-100 buss. This output, the byte count for the message to
follow, is configured to generate an interrupt in the service processor. The

service processor sets up a loop to receive the proper number of bytes.

SPOUT then sends the message, this time without generating an interrupt on

each byte.

3.4.3 Tasks

The user processor contains six tasks: initialization (inito),

keyboard (keybdo), TEU, interval timer (stimo), service processor output

(spoutto), and service processor input (spinto). A general description of

init() is given in Section 3.2.1.2. General descriptions of the remaining

five tasks are given in this section. Detailed descriptions of all user

processor software is given in Section 4.3.

The teu() task is the major task within the user processor. With the

exception of init() and stim() all other tasks serve primarily to direct data
to or from the teu() task. Keyboard commands are processed by the keybd()

task, then passed to teu(. Teu() uses these commands in processing aircraft
position information in order to produce graphics data blocks. These data

blocks are passed frown teu() to spoutt() for transfer to the service

processor.

3.4.3.1 The Keyboard Task (keybdo)

The keyboard task has two primary functions: (1) to examine keyboard

entries for validity and generate an immediate appropriate audio response and

(2) to update a display options array with valid keyboard entries and send
this array to the teuo) task for processing. Figure 3.4-2 shows the keyboard

key assignments. An overall diagram of keybd() is shown in Fig. 3.4-3.

There are two basic types of user keyboard commands: those which
consist of a single keystroke and those which are multi-keystroke. Keystrokes
which are not properly ordered in a multi-keystroke command are considered

invalid.

When keybd() is awakened, it first retrieves a character from the

circular input queue. Single-keystroke valid characters result in an update

of the options array and generation of a high audio tone. Single-keystroke

Invalid characters result in generation of a low audio tone. In either case
(valid or invalid), the program then loops back to input another character.

39

IL

40 41 4 3 20 21 2 0 11 2

[E1DHT0D DDD WWW:11 E
44 45 46 47 24 25 26 14 15 1

AE 9 El L FhJEWWWF
48 49 4A 48 28 29 2A Is 19 I AE9ES WIElD WEE
4C 40 4E 4F 2C 2D 2E IC ID

WEHlE EE E] WIElD
REL ALT Selects relative altitude format.
TOD Places time-of-day on screen. TOD 'lock on board aircraft

must be properly set.
ABS ALT Selects absolute altitude format.
CLR DISP Clears display.
CLR KB Clears keyboard entries.
MODE Selects a set of options.
BAR COR Enters barometric correction ini hundreds of feet. Corrections

are cumulative. For use in absolute altitude mode.
EXAMPLE: BAR COR - 2 would decrease own absolute altitulde
by 200 feet.

TRIG Selects threat-triggered mode (proximity advisories
suppressed). TRIG is default mode. Pressing key togeles
between threat-triggered mode and continuous mode. In
continuous mode, max range for proximity advisories is shown
in green in lower right corner.

EXT Selects extended display criteria (4 nm) for 15 seconds.
"RNG 4" will appear in lower right corner of display.

RNGE Selects range and autoscaling. EXANI'LF: Entering "REE 20"
provides scale of 2 nmi to rear without autoscaling.
Entering "RNGE 21" provides scale of 2 nmi to rear with
autoscaling.

TAU Selects display of current tau threshold value.
TST Puts display in test mode.
DEMO Selects canned demonstration frame. (00 - walking test data

Operable only in TST mode. Ol-OB fixed display
11-LA FAA scenarios)

NTGT Selects maximum number of targets which will be displayed.
SURV Selects surveillance display mode (continuous mode, 5 nm).
PAUSE Freeze display. Operable only with FAA test scenarios.
STEP Single-step display. Operable only with FAA test scenarios.

Fig. 3.4-2. Keyboard assignments.

40

:
SLEEP
Ep

PROCE8Suo

-1
GETCHAR(CHAR)

GET CHARACTER
FROM INPUT OUIEUE

NO

OUEUE YES PROCESS YES PASS OPTIONS

EMPTY FLAG= 1 ARRAY TO TEU TASK

? ? WAKE TEU TASK

NO

'YES IN(T
RUNNING (SINGLE KEYSTROKE COMMANDS)

UPDATE OPTIONS ARRAY
NO PROCESS-1

TONE VALID
MPROC

PROCESS MULTI-KEYSTROKE
MODE COMMAND

SWITCH

CASE REL ALT. (CHAR) SPROC

ADS ALT. TOO' . CLR PROCESS MULTI-KEYSTROKE
DISP, CLA KO. +TRIG. BAROMETRIC CORRECTION CMD
EXT, TAU. TOT. SURV.

PAUSE, STEP:

CASE MODE: RPROC

PROCESS MULTI-KEYSTROKE
CASE BAR COR: RANGE COMMAND

CASE RNGE:

CASE DEMO: DPROC

Lm- PROCESS MULTI-KEYSTROKE
CASE NTGT: DEMO COMMAND

DEFAULT: TONE z INVALID NPROC

PROCESS MULTI-KEYSTROKE
NUMBER-OF-TARGETS COMMAND

I"" "-I"I" T "' "'J""

CALL AUDIO P (TONE)

NUM Or -0 a _T floW TO CoFig. 3.4-3. KKeeyybbooardd ttasekk flowcchhaarrtt.

In contrast, each time the program recognizes the start of a
multi-keystroke command, a subroutine specific to that command is entered.

The program will remain within this subroutine, executing its own calls to
input characters and generate audio tones, until either the correct sequence

of characters or a keyboard clear has been entered. Only then is the options

array updated and the subroutine exited. The program then loops back to the
the beginning of keybd() to input a new character.

Each time the options array is updated, a flag (PROCESS) is set. When
the keyboard task has emptied its input queue, it checks the flag setting to
determine whether or not to output the options array and wake the TEU task
before going to sleep.

3.4.3.2 The TEU Task (teuo)

The teuo) task is the major task within the user processor. Its
functions are to input keyboard commands and aircraft position information,
process the aircraft information according to the keyboard commands, and
output audio/video graphics data blocks to be transferred to the service
processor.

Inputs

Primary TEU inputs are from two sources: the TEU interrupt handler
teuin() and the keyboard task keybd). Inputs from teuin() arrive once per
second. They are variable length data blocks which contain position and
equippage information for own aircraft and up to eight other aircraft.

Users may enter keyboard commands at any time. It is the function of the
keyboard task to reject invalid keystrokes and accept valid keystrokes in
order to update a display options array. Each time this 16-byte display

options array changes, keybd() passes it to the teu() task.

Outputs

Outputs from the teu() task are toe audio/video data blocks described in
Section 3.2.2 and Figs. 3.2-1, -2, -3, and -4.

Task Structure

The teu() task is made up of three levels of routines (Fig. 3.4-4). The
main TEU processing routine tproc() (Fig. 3.4-5) is the highest level. It
combines information in the display options array with aircraft information in

order to generate calls to second-level routines (e.g., rev(), todo, tau),
oalto, rringo, tgto). These routines in turn generate calls to third-level
user graphics package routines (e.g., circleo, string(), coloro). It is

these user graphics routines which actually generate the graphics data blocks
and output them via the graspo queue to the spoutt() task for transfer to the
service processor.

42

LEVEL I LEVEL 2 LEVEL 3

USER GRAPHICS PACKAGE

TEU PROCESSING ROUTINE ROUTINES

CAEL REVSRIG

CAALLLL STRING PUO-GAO)

CALRIN ()N

CALL CIRCL

RETURN A

CAL eOORCOLOR)

CALL STRING IPUTQ(-.GRASPO.-)

RETUj RETURN*

Flo. 3.4-4. TEU task structure.

TPROC

CORALL0NALERTS

(DOAUIO ROESSIG

CALL TOOS

TO03 HN YSCALL TAUE

CALL BOL

CALL TRIGER
MDOAD PROCESSING)

CARE

Fig. ~ ~ AL 3.-.T~nTpODesn otieTRC

CALL CALLUP
(DO EXTENDED RANGE

MODE PROCESSING

BLOCK~OO ONAPLCAL

Z3OEZNY TTARGETS

RES

CHOSEN

Task Operation

Whenever the teu() task is awakened, it first checks its keyboard input
queue. If an entry is present, this 16-byte display options array is input
and used to update TEU's own display options array. Processing using this
updated array is not done, however, until new aircraft inputs are received
from teuino. This means that there can be as much as a one-second lag in
response to keyboard commands.

When aircraft information is received from teuin(, the main TEU

processing routine tproc() is entered. Tproc() will execute once from start
to finish, generating a single frame for the display. Depending upon keyboard
commands and aircraft information, tproc() may execute the following
routines:

ralert() - Do resolution advisory processing. Annunciate audio. Set
caution/warning lights.

rev() - Display current software rev number in upper right corner of
screen.

tod() - Display time of day in upper left corner.
tau() - Display current performance level's threat criteria in lower right

corner. (If time to closest approach is less than threat
criteria, target will be declared a threat.)

oalt() - Display own aircraft altitude in lower left corner.
trigger() - If threat-triggered mode has been selected, and if there are no

threats or pre-threats, set parameters so that TPROC will
display no targets.

callup() - If 'call-up' or extended range mode has been selected, set display
range to extended value.

brg() - Display "no bearing" targets in block in upper left screen area.
psf() - Do preliminary scaling factor calculations to compute minimum

display range that will show all threats and pre-threats.
rring() - Display 2-nm range ring and chevron.

tgt() - Display target triangle and altitude tag at correct range, bearing
position.

When tproc() exits, the teu() task goes to sleep to await new inputs
from keybd() or teulno.

3.4.3.3 The Timer Task (stim())

The timer task provides general-purpose time interval delays to other

tasks. A hardware timer is initialized to produce an interrupt every
62.5 milliseconds. Interrupt handler ctcin() then wakes stim().

When an application task wishes to start c timer it passes a count to

stim() via a queue. Each time stim(. runs irL iesponse to an interrupt it
checks its input queues and starts new timers when entries are present.

Stim() also decrements each existing counter. If the result is zero it sets
the counter to -1, sends a timeout signal message to the corresponding task
(via a queue) and wakes the task. If a task wishes to stop a running timer it
simply sends a -I count to stimo.

46

3.4.3.4 Fhe Service Processor Output Task (spoutto)

The spoutt() task receives data from three sources: "slave acknowledge"
messages from the spint() task, audio data blocks from the keybd() and teu()
tasks, and video data blocks from the teu() task. The function of the
spoutt() task is to merge this data into a single array and pass it on to the
spout() interrupt handler for transfer to the service processor. A maximum of
255 bytes may be transferred at one time to the service processor. Therefore
if the combined input from the queues is more than 255 bytes, spoutt() makes
more than one call to the interrupt handler, passing blocks of - 255 bytes
each time, until all three queues have been emptied. A call to the interrupt
handler starts the transfer to the service processor. The handler then
responds to interrupts to complete the transfer.

Spoutt() checks the three queues for input, reading one message from each
queue in turn instead of emptying one queue before going to the next. This is
done so that an audio message will not get backed up behind a long string of
video messages. When all three queues have been emptied, or when the 255-byte
buffer fills, whichever occurs first, te accumulated data is transferred to
the spospo queue and a call is made to the spout() interrupt handler.
Following this, the task either suspends itself, or if necessary, continues to
read, accumulate, and tranisfer data until all queues are empty.

3.4.3.5 The Service Processor Input Task (spinto)

The spint() task receives data from the service processor via the spih()
interrupt handler. There are two types of input from the service processor to

the user processor: a 1-byte message which conveys the setting of the Bendix
front panel control switch and a zero-length "POKE" message which is used to
indicate that the service processor is operational. When spint() is awakened,
it reads the logical message passed to it by the interrupt handler. If it is
a mode switch message, the message is passed on to the teu() task for use
there. For all messages received, spint() sends a 2-byte acknowledgement to
the service processor output task spoutt() for transmission to the service

processor.

3.4.4 User Graphics Package

The user graphics package consists of a set of C-callable audio and video
routines (commands). They reside in the user processor and can be called from

any task within the user processor. These routines translate high-level user
calls and the associated argument strings into graphics data blocks

(Figs. 3.2-I through 3.2-4) which are transferred from the user processor to
the service processor for audio or video output. The graphics package acts as
a software interface between the user and the display device; it frees the

user from the necessity of knowing details of interface protocols and hardware
configuration for a given display device. Users work with a virtual screen
with units of their own choosing. A scaling command tells the service

processor the number of units with which the user wishes to represent the
maximum horizontal and vertical distances on the display device. Any number
of audio and video commands can be grouped together using start-of-frame and

end-of-frame commands to generate a single frame on the display device.

47

The graphics package contains four general classes of routines: audio,
video control, video graphics, and miscellaneous. Descriptions of the
routines contained in each class are given below. All arguments are 16-bit

integers.

Audio

There are three audio commands.

CALL AUDIO (I)

where I refers to a word or phrase stored within the audio RAA. rhis RAM
must be provided in file form by the user along withi a table giving" ult, *utset
and byte count for each phrase or word within the RKA.

CALL. BEGA

Start-of-audio.

CALL ENDA

End-of-audio. Placing audio commands of the form CALL AUDth (1) between :;!A
and ENDA causes all of the corresponding words or phrases to be -;tacked i i an
annunicator RAM before the annunciator is activated. This allows too usor tO

compose phrases from words that are not stored sequentially in the user'
audio RAM. Audio raessages not enclosed in BEGA, ENDA pairs are sent to the
annunciator RAM and activated imnediately.

Video Control

There are 7 video control coiamands. In general, a video control command
selects an option which remains ini effect until changed by a CLEAR command or
the video control command with a different option selected. SCALE uid CLKARi

are special commands.

CALL. SCALE (X,Y)

This routine must be called in the INIF task. It defines the coordinates ot
the user's virtual screen and allows the service processor to associate user

coordinates with the actual physical dimensions of the display device.

CALL CLEAR

This routine clears the display and resets to the following default options:
line type = solid, color = white. Any video calls following CLEAR but before
the next start-of-frame call are ignored.

CALL BEGF

Start-of-frame.

48

Kn-of-franv. %I I cnnunaids between BEGF~ and FNDF are sent to the display
dei k to co di-ip1ayvd is a single frame.

CALL1 iLrteL I

J'Y~.~wer~-, 1~Iie- vpe used. Current options are 0=solid, I =dotted,

2 -I~i;K, ct . kilt is so lid.

t I; cvLVSO se. ."-lo)l)r o: k 1=u). hon reverse vileo is on, all
r~d r .iwi us :it' video graopni cs ST<NC-oizaaid liave tliei£r color

0 It : dt x,-1l rmna I!% coIored 6 are now 1 le ft blank ; pixels iior ,.alLy
ike A! - shonn j wil" te.

the oir Lyru t hree video graphi -,- commands. X a-id Y coordinate-;
1 r i, I .I s irgum, -its iiiis-t he oxpressed iT' term., ot the user

i: s~;'iet.~ 'v e CAA- imnad doscri ed abov.

Pii rooit in ri- r iws I 'e(sQ)Jjeats between (X,Y) coordinoate pairs (i Pe. , (XI Y,

XPvr is .1 poi it or t,' in jrraty contail Jng the) coortiinate!, ordered
S X, *Y , .NSE:; is; a sigyned inoe' r. It,; maignitude indicate-; the number

Y pa i rs i it N1'; -positive, the i rst Iinfe segment is drajwn
heg'injiii.: it \,Y.) It :4SIG is tiegative, the !irst line segnient ib drtwn

b.iii~ it the provim)t- irsor posi! ion.. '4he: i .i I I me n t haive be en I r d w
ir11 It .:i I I o, p. ~it i :iod at (V) . 'irr tit t tware I imi tit ions aIllow

:T, < ~ Xi :2 V .1 i

CALL STRLNG (X Y, NCHAR, REFPOS, CPTR)

This routine places a strin5 ot NCUAR characters on tle display starting it

location kX,Y). The maximum value for NUCAR is 32, limited by the width of
the screen. REFPOS allows the starting X,Y coordinate to refer to various

positions within the character: 0 = lower left corner I = upper left,

2 = upper right, 3 - lower right, = center. CPTR is a pointer to an array

containing the NCHAR ASCiI characters.

A special feature has been provided to allow color changes within character

strings. Seven 8-bit ASCII characters have been defined to represent the

eight colors. In a STRING command, if a character is preceded by one of

these 8-bit ASCII colors, that character (and only that one character) is
displayed in the selected color.

Miscellaneous

CALL ERROR (I, TIME)

This routine allows the user processor to send an error message to the service

processor for output to the line printer. I is the error number and TIME is

the time (since system restart, lsb = I sec) at which the error occurred. An
ASCII character string is generated of the form t = xxxxx, err = xxx.

CALL MODE(I)

This routine is called once per scan to tell the service processor the

priority of the user-processor data. The service processor looks at this
message only when the Bendix front panel mode switch is in the combination

weather radar/AID position. 1=1 (STANDBY) causes the service processor to

ignore any AID data received from the user processor and display only weather
radar data. 1=3 (AID) causes the service processor to display the data

received from the user processor. I is set to 3 by the TEU task when there

are threats or pre-threats to be displayed or when the EXT key has been
pressed on the keyboard.

4.0 SOFTWARE DETAILED DESCRIPTION

This section provides a detailed description of each of the major

subdivisions of the All) phase I software: system software, service processor

software, and user-processor software. This section is intended to be read in

conjunction with program listings. The level of detail is that needed by a

person wishing to modify portions of code.

4.1 System Software

System software provides an environment within which application programs
may be run. In the case of the AID, a minimal system executive has been

written to perform this function. It consists of a nonpre-emptive task

scheduler and a set of data queue management functions. The queues are used
to pass data between application tasks and between interrupt handlers and

tasks. The same system executive is used in the AID's user and service

processors.

4.1.1 The Task Scheduler and Associated Functions

A description of the design and operation of the task scheduler and queue
management functions is included in Appendix A. This section will describe

the implementation details of th, scheduler's component parts. Five functions

are involved: sched(, runo, 110t('), wake() and pauseo. Briefly, the

scheduler proviles a tectanisn for exet .ting application tasks in response to

task "wakeups" by interrupt handlers and other tasks. It chooses the next

task to run based on a programmer-specified task priority.

The tasks' task control blocks (TCtis) and the tasks, themselves, are

initialized as part of the startup procedure in function maino. Task

iLuitialization itivolves calling each task function and running it to the point

where it first calls sleep(). The task may perform task-specific

initialization operations during this process.

4.1.1.1 rhe Scheduler (schiedo) Function

As descrihed in Appendix A, a task control block (TCB) is defined for

each application task. When a running task suspends (calls sleepo), sched()

scans the TCs, starting with the one for the highest priority task, until it

finds one for a task that has been awakened. It then initiates execution of

that task by calling runo. If no application task has been awakened, sched()
simply keeps scanning TCBs. As a result, when the system Is idle, the

program spends its time in this TCB scanning loop. The TCBs use a linked list

data structure to facilitate access.

The first operation performed in sched() is to scan the TCB linked list

starting at the beginning (tidxi = 0, highest priority task). Each task's
stdtus flag, "tsksta", is tested until one is found that is set. That task's

signal flag Is then cleared, the address of its TCB is saved in parameter

"tcbadr" for use by function sleepo, and run() is called. Function run()

will Initiate execution for the selected task.

51

When the task later suspends, control is returned to the run() function

which then returns to schedo. schedo) then loops back to the TCB scanning
operation which searches for another task to initiate.

4.1.1.2 The Task Initiation (run()) Function

This function has an initialization mode and a normal running mode. The
initialization mode is run during system initialization to compute an internal
return address, RUNADR, needed by the normal running mode. The initialization
mode operates if parameter "runint" is set. The initialization operation,
itself, resets "runint" so that subsequent calls to run() will cause it to
operate in its normal running mode. All operations within run() are performed
with interrupts disabled.

The first operation performed is to test "runint". If it is set, it is
cleared and the address RUNADR is computed. To do this a function "getpc" is

called. This function simply gets the current value of the ZSU's program
counter. The value obtained is the return address for the getpc call.
Address RUNADR may then be computed, since it is located a fixed number of

bytes below the getpc call instruction. Address RUNADR is then stored in
global parameter "runadr" and the run() function returns. This completes the
initialization of runo.

Under normal operation (runint = 0) the run() function saves the calling
function's (sched()'s) stack pointer in parameter "mainsp" and transfers
control to the address contained in parameter "slpadr". slpadr is an entry
point in the sleep() function. The sleep() function simply loads the Z80's SP
register with the stack pointer for the selected task (its TC8 is pointed to

by "tcbadr") and returns to the task. When the task again calls sleepo,
sleep() saves its stack pointer in the current task's TCB and transfers
control to RUNADR (using parameter "runadr") in runo. The run() function
then restores schedo's stack pointer from "mainsp", enables interrupts and
returns to schedo. Note that the calls to and returns from run() use the
normal C function entry/exit protocol. The return address is stored on and

retrieved from the scheduler's stack.

4.1.1.3 The Task Suspension (sleepo) Function

Like runo, this function has an initialization mode and a normal run
mode. The initialization mode is run to compute an internal entry address,

SLPADR, needed by the run() function. The initialization mode operates if
parameter "slpint" is set. The initialization mode, itself, clears "slpint"
so that subsequent calls will operate in the normal running mode. All machine
code operations within sleep() are performed with interrupts disabled.

The first operation performed in sleep() clears the selected task's
(specified by "tidx") status flag, "tsksta". Then the task's signal flag,
"tsksig" is tested. If it is set, it means that an interrupt handler
rescheduled the current task to run again. In this case sleep() simply clears

the signal flag "tsksig", sets the status flag, "tsksta", and returns to the
calling task.

52

If ti he 't I I , t.-inK's si'.a! f L1 is !ot set. sleep() will return to the
t'el[,iit L . i, f. A , iu ' nld ess ZUdtNAirZ in rtii(). Sleep() first

: t- t l ' :' i ifi " it vrt,, tralti-ters t,- ieition LAB'3. At this
Iit r t i nr nt so L ". ' .-;tis 'outLer in its 'B. The T (,B

t, ' ' . -'i.' t4t~ic-t ;'a i lot',itci our '/tiv s bevund tim

' , ' .{ L 'O; IS t o rn i Lr .il r ik:, tral to

.. , ;" '. . t ''I rLt , i. ' iictL oi rn:l() t.- s address

. I It' ri : . tn < I I i t, stack o :K po I: t 2r tot tile

.,L' t..K :- .~ w t1 U t " ,l ' i- rL.ld nan store.d in the , t is

. C. 1. L t1 :,, 's Ite : t' nrt d retIr Is to iIte
t1 jil t i); r L i rot oi l.

I, z; o I I 11Cutc io

A t~l i ii , . ,t',, 'i 'i ti.0., scieit 'i,,d to he rmn) av an i-iterrupt

, i I is,. .\ tis, ;i tv eveni iwiken it-elt (ee the pause() function).
t : is ;c-' l t%) I c l lii: sak&tcbidx), sh re "tcbidx" specifies the

"Itilr hAr (idetX I:-t, tilt i'.i arrav) of tilie selected task. The wake() function

t imli .v 5e te is Stit(is 1tskst a) and signal (tsksig) flags and returns.
Flit, c I - t id I e r on Lt'.Li ii, Lht se f I as, wi I I then cause the task to run.

4 . I .)'lie isk Pause tpause()) Function

Since the sc',itdiler is nonpre-emptive a task must voluntarily suspend
itself it other higher priority tasks mOst be given a chance to run. A task
that requires i large amoint ot processing time should periodically suspend
itsel to lloiw tile scheduler to run other hiigher priority tasks. These tasks
miav have been awake ned by interrupt handlers. This pause" operation is

performed by tile ptse() function.

l'e ialise() fulcti on s imply calIs waKe() with the task number ot the
ctirrent Iv running task as an argunent (tidx). It then calls sleep(). Control
i r ie r'ltd to the sciheditter which scans task TCis starting with the one for

it- 'i,,hest priorit ' task. The hi,,.hest priorit v awaKened task is then run.
'.ott' int it lo hi titer priority tasKs are awaKened, the task that or i~iinallv

11 I t'd paisa,') Wil simplyv continue runni ag troum tile pauset,) t t i 11on call.

4. I.' itL 'Ii5 . 41tunenes anld i ivu e ,a ._mn_,t_'otictitols

. t i1 t ilt i {1ii 'ft par.ameiter in tin izition, petrlormed by tilt i iito

ion thl tI t ,; l li',:s, ri tI dttai tr:is,;t et ed h emwt tisea atdd between
! t ,i i ipt mu~indit i-; iaid titKs is passed by iean.is i -itlie.C Since th'st

ti, t iii11-; rilo . 'v .i' lli lS Iv it is niecessarv to uist this ltchalism so that
int, r , nt iwl do ' t i ti i I t cr!; will not be)ve rwr-iLttn, resulti t , i it tit loss o t

Lii i. ' ilt ii. met''haiis i I o nr,)vid s ,a !!evans tor control i tilU tI low ot

lil tl i I :, 'v'sttn ,i that)perat io is art perftor:ned i; tile prilpi'

i [l~Feproduced from __
ibest available co;P-y-

St I'

The queues are implemented as circular buffers and contain variable
length entries. An entry that exceeds the space remaining at the end of a
buffer will be wrapped. That is, part of it will fill the remaining entries
in the buffer and the rest will be stored at the buffer's start. Entries are
added at the queue's tail and removed at its head.

A common data structure is defined to specify all queue headers. It is
specified in the symb.h file which is attached (via an "Ifinclude" statement)
to each source file. It is:

typedef struct {
Int head
int tail
int length
char task
unsigned char *pbuf

}QUE

Parameter "pbuf" is a pointer to the actual queue byte array. "tail" points

to the next open byte; "head" points to the first byte of the "oldest" entry
in the queue (and hence, the next entry to be removed). Thus, if "head"

equals "tail" the buffer is empty. The first byte in each entry specifies the
number of bytes contained in that entry (excluding itself). Parameter "Ingth"
specifies the total size of the actual queue byte array. Certain queue
management functions are designed to suspend the calling task if a queue is
full or empty. In these cases the number of the suspending task is stored in
parameter "task" so that it can be reawakened later. All queue headers are
initialized in the main() and init() functions by calling functions qinitl()
and qinit2(), respectively.

Nine C functions have been written to manage the data queues. Two
"basic" functions, putq() and getq() perform actual data entry and retieval
operations, respectively. Four functions, putqwto, putqwK(, getqwt() and

getqwk(), perform higher level operations but call the basic functions to
perform actual data transfers. Finally, three minor functions, getqc),
getqd() and initq() provides queue information and management operations.
These functions will be described in the remainder of titis section.

4.1.2.1 The putq(source, dest, count) Function

This function moves "count" bytes from the array pointed to by "source"
to the queue pointed to by "dest". if not enough room exists in "dest" to
store "count" bytes (plus one more for the count byte, itself) the function
returns a minus one. It also returns a zero if the queue was initially empty
and a one if it was partially loaded.

The first operation performed tests the "head" and "tail" pointers. if
they are equal (queue initially empty) the returned value, rtnval, is set to
zero; otherwise it is set to one. Then a trial tail value, trytail, is
computed, based on input argument "count". It is used to determine if the new
entry would overwrite a current entry. If it would, a minus-one value is
returned and the function is terminated.

54

AL

The next operation tests "trytail" against the queue length to see if the
entry must be wrapped.

To wrap an entry a new tail pointer, "newtail", is first computed. This
potential tail pointer must then be tested against the current head pointer to
see if enough room exists for the entry. If not, a minus one is returned.

If room exists, part of the entry is then stored at the end of the queue
byte array; the remainder is then stored at the beginning of the array. The
actual byte transfers are performed by calling function mvbyto. This
function takes advantage of the Z80's fast block move instruction. After the
move, the new tail value, "newtail", is stored in the queue's header before
returning.

If no entry wrap operation is necessary, the new entry is stored
contiguously in the queue's buffer array. If the current tail is greater than
the current head, then room exists at the end of the array (remember
wrap-around was ruled out by earlier tests) and the entry is simply
tranisferred into the queue array. The queue's tail pointer is then updated
and the function returns. Also, if the trial tail, "trytail", is less than
the current head, then roow exists inside the array and the entry is stored.
However, if the trial tall equals or exceeds the current head, insufficient
room exists in the queue and a minus one is returned.

4.1.2.2 The getg(source, dest) Function

This function moves a queue entry from the queue pointed to by "source"
to the array pointed to by "dest". Note that it is the calling program's
responsibility to insure that enough room exists at "dest" for the entry. The

destination "array" may also be simply a single-byte parameter. The function
returns the returned entry's byte count If an entry Is present, or a minus one
if the buffer Is empty.

The first operation performed is to see if the buffer is empty ("head"
equals "tail"). If it is, the function returns minus one. If an entry
exists, the byte count is then read and the new head pointer is tested and
wrapped, if necessary. The count Is then used to determine if the entry was
wrapped. If it was, the bytes at the end of the queue's byte array are
removed, followed by the bytes at the beginning of the array. Function
mvbyt() is used to make the actual byte transfer; it uses an efficient Z80
block move instruction. After the entry has been removed, the queue's head
pointer is updated and the entry's byte count is returned.

If the entry was not wrapped, the entire entry can be moved by one call
to mvbyto. The head pointer is then updated and tested to see if it should
be wrapped. The function then returns the entry's byte count.

55

4.1.2.3 The putqwt(source, dest, stask, count) Function

This function puts an entry in a queue, if room exists, or waits (i.e.,
suspends the task) if not enough room exists. It moves "count" bytes from the
location pointed to by "source" to the array pointed to by "dest". The
calling task's number is specified by "stask". This function also checks the
"task" location in the queue's header to see if a task number exists. If one
does, it means that an earlier getqwt() operation was performed and the queue
was empty. When this occurs getqwt() loads "task" with the number of the
calling task and suspends. On detecting a task number in "task", putqwt()
wakes the specified task. Since putqwt() has also loaded an entry into the

queue, the getqwt() operation will then be successful and the suspended task
will be able to continue. Similarly, if the putqwt() function is not able to
store an entry because of insufficient room in the queue, it will store its
task number in "task" and suspend. 'hen, when getqwt() removes an entry, it
will check "task" and wake the waiting task. In this way the queues are used
to "gate" the flow of data through the system. A task will not run until its
input queue contains data and will not finish processing an entry until room
exists in its output queue to store the results.

The first operation performed is to call putq() to attempt to store the

specified message in the queue. If putq() returns a zero (queue was empty)
and if "task" is not empty (not minus one) then the task specified by "task"

is awakened and "task" is set to empty (minus one). However, if the putq()
call returned a minus one (not enough room), the calling task's number,
"stask", is stored in "task" in the queue's header and the current task
suspends by calling sleepo. When the task is next awakened, putq() will
again be called and its returned status tested. The process will be repeated
until putq() returns a value other than minus one (i.e., the message was
successfully stored). The function then returns to the calling program.

4.1.2.4 The getgwt(source, dest, stask) Function

This function is the complement to putqwto. It gets a message from the
queue pointed at by "source" if the queue contains an entry. If it doesn't
it stores the calling task's number, "stask", in the queue's "task" parameter
and waits (suspends). If an entry is present it is moved to the array pointed
to by "dest". When this function finally terminates it returns the byte count
in the message received.

The first operation performed is to call getq(). If an entry exists, it
will be transferred and getq() will return a number other than minus one (the
byte count). If, in addition, the "task" byte is not empty (not minus one),
the specified task is awakened and "task" is cleared. However, if getq()
returned minus one, then the queue is empty. In this case the calling task's
number, "stask", is stored in "task" and the task is suspended by a calling
sleep(). When the task is next awakened, getq() will again be called and its
returned status tested. The process will be repeated until getq() returns a
status other than minus one (i.e., a message was successfully received). The
function then returns the received message's byte count to the calling
program.

5b

.6..2. lin putgwk(source, dest, count) Function

This tu ICt iol operates .;imi lar ly to put qwt() except it does not suspend
f the queue does not contain enIough room. Instead, like putq(), it returns

minIus 01e. IHowev'er, eaich time it is called it checks the queue's "task" byte,
nid if it is sot , it wa -e.s the waiting task. As sucti, this function's

caipabili i ea tal I somewlhere between those of putq(and putqwt(). It is used
t, insiire t cit if t in receiving task< is sus pended for lack of input data, it

will rtis an, is it-; pr ioritv will :i low.

FI,' 1s 1 Mr It I 'n~ perf ormed ca I Is put q(Then tne destination queue's

t i_- 1etr si! It a tasK number is present tlhe specified task is

"' .d 1ni ti I learCCi. i hvn tliv :Linct loii exits it returnFs thle value
or ~ .rn~ *t~ iI. whin. mna: be . uni it' Ltt' potq() operationl

I'\' 'It ci~ CC c.n vi 'et A 1 nc cx its ~ it

! 1 i I ta'FR rvtt- to

ie L Ir~ l Ii 1 peil n1- 1' .FI I ..J2 I I t I an 11 ittUV - pJ)resentt
Ii t F Fe~ !t' J)t !1, 1- C 0t r lU I rc li S Mfi~l 1 e 1 1'tie i t Ie t.1:Ii W1~o

:ItC, s t Iit, (ni ,(t t-K- byte. I! ai "ask luiifler iV tes o , tl

"0FresPoIldi n: 'L ti K i~ 7,wa Ke i cd aind ta" L ISI". r eset .* i I Ia Ilv , thle tI iction
I Ltr ; nek v~i [ie r,-Lt Iincid trr I,; t I1 e (qtq i call. fitis nay bce i therI thle size

In t r v t ris! tr reQd or mi tiks onie, ld i cati: no entry was p1ro een t

'1 be get qc (source) FUnI ti100

ii a- func tion ,!it, <. t he niext ot ry to, be removed from tile queue pointed
-byineeAnld t nrns its bvte co)unt if .in ent rv exists or a, minus one, if

:iit rv is pr esen t The, enitry itself (if oneC exists) is uid is tur bed.

Ft irsL tpera 1 110 performed i, to test to see if the queue is empty,
il'IT ni tia rai ! " H It it is, thle funct ion returns a minus onie. it an

cit rv ex i. at-- it treals; its Pt e count and cc tlrns it.

-. .. ti e ge t q d S'Ource) Fuiict ion

Phllis tuni:t, ion a impLy removes an entry (gets it and dumps it) from the
lilpoilteid t by Isouirce' - if ain entrv is, present. If none exists, it

rti .i ri ins one.

The first operation performed is to test to see it the queue is en.Itv

("head" equals "tail"). If it is, the function returns .ions One. It an

entry is present, its byte count is read and a new trial head pointer,
tryhead, is computed. It is then tested to see if it falls outside the

queue array. in that case it must be wrapped and a new head pointer is

computed. it is stored in "head" in the queue's header. However, if
"tryhead" falls within the queue array it is used directly to update "head".

Finally, if an entry was successfully dumped, the function returns a one.

4.1.2.9 The Initg(source) Function

This function simply reinitializes (clears) the queue pointed to by

"source". It does this by zeroing the "head" and "tail" pointers and setting

"task" to minus one.

4.1.2.10 The mvbyt(source, dest, bytc) Function

This function moves "byte" bytes from the location pointed to be "source"
to the destination pointed to by "dest". It uses assembly language code and

the Z80's block move instruction, LDIR, to perform the move as quickly as

possible.

4.2 Service Processor Software

The service processor is intended to be a general-purpose processor in

the AID system. It is the bus waster and is responsible for controlling the

AID display hardware, the audio annunciator system, and other utility devices.

Because it is the bus master, it also has the responsibility of downloading

programs to the user processor(s) during initialization.

The primary function of tile service processor Is control of the AID video

display. A set of general-purpose commands has been provided to facilitate

the generation of graphic and alphanumeric displays, thus relieving the user

processor from the time required to drive the display. In addition, the

general nature of the commands eliminates the user processor's need to know

the detailed aspects of the display, and will thus facilitate conversion to a

different type of display, should that be necessary.

In the same way, the service processor handles the audio annunciator
hardware, providing a general way to select and annunciate phrases and tones.

Communication between the service processor and the user processor is via
I/0 ports on the S-100 bus. The protocol established for transmission is as

follows: the first byte of transmission contains the count of the number of

bytes to follow.

This procotol limits the number of data bytes in a single transmission to

less than or equal to 255 bytes. Within each of these transmission frames are

a number of logical messages of the following format: one byte specifying the

message type, followed by one byte giving the length ot the message, followed

by the message. While in principle the logical messages could span

transmission frames, it should be noted that in the current version thne
transmissions consist of an integral number of logical messages. The type
codes and structure of tile Logical messages are given in MSYMI$A{.

The major tasks in the service processor software are as follows:

UPINT - User processor input task
UPOUT - User processor output task
DSPTCI - Message/command decode and dispatch task
VIDEO - Video processing task
AUDIO - Audio processing task
MSWTCR - Mode switch processing task
T tI'ER - Time r task
[NrT - Initialization task.

4.2-1 The UIser Processor Input Task and Associlated Funct ions

The uplit (task o)ltafi s messagTes fromn the user processor and sends them
to the dspt ch(talsk far decoding tinto logi Cal mlessages.

4.2.1.1 The User Processor Input Interrupt Handler (upino)

By the protocol .,-t:ii shed for user/ser'Lce proceqior data transfers,
the first byte of thet messige Is the count of the bytes, in the remainder of
the nsge.The t oer processor is; configuredi so that the 3ervice processor
is Interrupted onl this first byte only, so that It acts as a start of
trans-mission hanid-hae- -;i&1nal. Thie Interrupt handler Inputs this byte and
pots; it LInto the ilpInpjI queue to be processed by the upint(task. tt then
wakes the upint (task to notify it that a tranisini. ston has started and then
retuirns.

4.2. 1." The User Processor- Input Task (upinr I,

HEach tine the aiplfit (tas;k awaikens, it chiocks thet upimipi queoue, which
ant tii is mirt s t roi te o pat int erruopt haleor . If a byte count is in the

queuie, it signifies that the Lisor processor hla, started a trainsmiss ion, so
upIint () perf erins- an 1 npait and repeat" upe r ition to obtain the remainder of
Lite 1-o, ss.m e I ruin Lite use r processoar . Thet ki.st' of tole ',S!) iotir operator i s

poss ible becauso the, user process;or Ila; heen cuntfi ired to assert hardware
wti It s t itos If the requnest foir an I nputr antnat te immed iate ly fulIfilled. When
thet byte reques-t i-- aval lr0,ie, the wa-i t state I., releaised so the service
processor can centinmoe. Af ter the eot ire messaige has been inlpt, it Is placed
into the up idsp q ueiie and thle Is ptch (task Is awakenmed.

4.2.2 The User Processor Output Task (upout0)

Th is task accepts message.- from the dsptch() task via the dspupo queue
i outputs; thein to the user processor.* No interrupts are generated for the

service processor I,, the traiisstcon to thle user processor; the service
processor performs the transmission by doing an "output and repeat" operation.

This is possible because the user processor has been configured to assert wait
states if it is not ready to accept a byte.

5i9

Because the number of messages going to the user processor is small, the
upoutt() task is configured to send one logical message per transmission. In
addition, due to several constraints in the user processor receiving software,
the service processor waits for each message to be acknowledged before sending
the next. The acknowledgement flag (sack) is set in the dsptch() task
whenever an acknowledgement message is received from the user processor.

Because of occasional problems encountered in user/service processor
transmissions, an optional synchronizing byte was added to the logical message
format. The sync byte is added before the message type code byte. The option
can be selected by defining the symbol SYNCB in MSY,4B.H, and if it is
selected, it must be the same in all user and service processor 1/0 routines.

4.2.3 The Command Dispatch Task and Associated Functions

The primary purpose of the dsptch() task is to unpack messages from the
user processor into logical messages and send these to the appropriate task
for processing. It also monitors the mode switch nd sends mode switch
changes to the vtdeo task and to the user processor.

Messages from the user processor arrive unmodified in the upidsp queue.
These messages consist of one or more logical messages whose format consists
of an optional sync byte, followed by a byte specifying the message type,
followed by a byte which contains the number of bytes in the remainder of the
logical message. Although the output routine in the user processor at present
sends an integral number of logical messages in a single transmission, the
dsptcho) task has been written to allow for logical messages which span

transmission boundaries.

4.2.3.1 The Dispatch Task (dsptch())

As in all tasks, the processing in dsptch() is performed in an infinite
loop. The first thing dsptch() does is to check if the mode switch has

changed by checking the mswdsp queue. If the mode switch has changed, it
sends a message to the video task and to the user processor output task and
wakes these tasks.

Dsptch() then chicks for incoming messages from the user processor. If
none are available, it suspends itself and when awakened, it starts again at

the beginning of its outer loop. If there is a message from the user
processor, it begins extracting the logical messages.

If the sync byte option has been selected, dsptch() scans the incoming
message until it encounters a sync byte. It then checks the following byte
for a legal message type code. If everything is okay, it obtains the length
of the message and sends the message to the appropriate task, depending on the

type code.

If a partial packet is encountered, it is moved to the top of the input
buffer and the next message from the user processor is read in at the end of
the partial packet, thus concatenating the incoming messages.

60

- i

4.2.4 The Video Task and Associated Functions

The t u f t iol of the vide,() t.,i-lk I- t i ,,irro; tilev AID video display in
respoIlse to request .-,-, r .i L i ti ,et or wt,- , r. 1'it- r. sts i!,, t-})(;ected to be
;);I t le V Ir.ine no i,- . i:s, LS ,I trF ine ,tdrr. w A DaI1i- ' le,

c inmald, i i ,d v it . .io. *t ,'-.i l .- n..: Is is , . I I i,n S '. iltr an

. it-1deo coinai~i. 'Oc ?ls .ilcli !. ,' I. 1. , 'u" O I ,,- ,-nanige

omimi , is , art- not requ i red e i) , - r 4t- i 1 , I do, jlA cti t'! ko-video

C o 1uma:' od.

it houlA 'i tri '. the current ver .0): th .I video tasK loes 'lot

sI!)port r La shi l . I was 4; 1" to fl .# ' il, I i !i r:,ot rite , ,-ix inum number

ot L.rgets, and seLti ng 'Liea ringK p ,Ix o I , li w -?r., ,li d :i t , t!,w enough time
to perform fLashuin,,.

4.2.4.1 Tihe Vide" Task tvijteol

The first think the 7ideo, taqK does is to) initial ize the display. It
does tnts by hi inking th , ,screen, eras tg hoith video RAIs, setting the default
conditins, and ia Ilv ,et ti:g -It vi'ieo 'otrol Oits to correspond

approprlate v to the node swi cti setting.

The video task then enters aa infinite Loop In which video commands are
received one by one from the dsptch() task and are processed appropriately.

The begin-video, end-vileo, and ,Lear-video commiands control the switching and
erasing of the video RAIs , whi ie other Yraphic commands are decoded and
dispatched to the proper orocessing suoroutine. Once a complete frame has

been generated in the service processor RAM, switching causes the frame to be
displayed and a new trame is then started.

4.2.4.2 [he draw() Subroutire

This subroutine decodes all the graphic commands and calls the
appropriate subroutine. For any subroutine which sets/clears pixels, a check
Is made to ensure that the command is in a video frame. If not In a frame, it

is Ignored.

The separation ot the graphics commands into a different decoding

subroutine was done for historical reasons when flashing mode was allowed.

4. 2.4. 1The scalex() and scalev() Subroutines

-;4esO subriti nes convert user coordinates to screen coordinates in the x

an ; directions , respectively. Scaling from user to screen coordinates was

icoroorated intro the graphics package to minimize tie impact of using a
,Ii'ferent dispiav with a ditferent number of pixels and a difterent aspect

rit i0. The user is tree to choose any scaling in tile x and v directions with

the relny constrqinr that ixifll'('ivmnax should correspond to the actual physical

Ispect ratio o; the dipIlv hoin:' 'Ised.

I. I

The scaling subroutines use long integers internally to maintain
accuracy. The right shift is used in place of division by 2 because it does
the same thing and is much faster.

4.2.4.4 The colorg() Subroutine

This subroutine selects the color in which subsequent graphic commands
will be drawn. It updates a global variable which maintains the current color

and it also sets the appropriate bits in the bank select port.

4.2.4.5 The circleg() Subroutine

This is the subroutine to draw circles on the display. The required
inputs are the x,y coordinate of the center of the circle and the radius. Due

to the complexity and time needed to generate arbitrary circles, the current
version uses 7 prestored circles and requires that the radius match one of

these circles. The prestored circles are saved as offsets in the x and y

directions from the center; only one quadrant of the circle is stored, since
the other quadrants can be generated with appropriate changes in the sign of
the offsets.

By changing the value of the parameter POFF, the number of pixels drawn
can be controlled. In the present version, POFF is 2, which sets every other

point in the prestored circles. By doing this, the time required to draw the
circle is reduced by half, and the generated circle is quite visible and not
ragged.

4.2.4.6 The linego() Subroutine

This routine generates straight lines on the display. It uses

Bressenham's algorithm (see "Principles of Interactive Computer Graphics" by
Newmann and Sproull) which requires no multiplications or divisions. The
inputs are the number of coordinate pairs and a pointer to the coordinate pair
array. If the number of coordinate pairs is a negative number, a line is
drawn from the last coordinate position of the previous calL to the

subroutine.

The first thing lineg() does is to check if the selected line type has
changed, and if it has, it updates the saved on-count and off-count. The
on-count and off-count are used by the Iplot() routine to determine if a pixel
should be set or not. As each coordinate is generated, lplot() sets the pixel

and decrements the on-count until it goes to zero. Subsequent calls to
Iplot() merely decrement the off-count until it goes to zero at which time the
cycle is started over. This process allowed dotted, dashed, and dimmed lines
to be drawn.

Next, the coordinate pair array is converted from user to screen
coordinates and the parameters are initialized for the subsequent line drawing

algorithm. The line drawn is always from the "last" coordinate to the

62

current o,". if the last coordinate from the previous call is used, the
"current" is set to be the first in the current coordinate array. If the last

coordinate for the previous call is not used, then the "last" coordinate is
set to the first pair and the "current" is set to the second pair.

The primary loop of the lineg() routine is performed for each line
segment to be drawn. The "current" and "last" coordinate pairs are updated
and the lIne is generated by calculating the intermediate points to be set.

These points are calculated in one of eight different ways depending on the
slope and direction of the line segment (refer to the article mentioned above

for details of the algorithm).

4.2.4.7 The setpix() Subroutine and Related Routines

This is the routine used by lineg() and circleg() to set pixels in the
display memory. Although It sets/clears one bit (pixel) at a time, the
routine must manipulate bytes since the display memory is accessed a byte at
a time. In addition, because the colors are controlled by accessing separate
me;aory banks at the same address, the routine may need to manipulate up to 3

bytes for every pixel access. In order to minimize the bank switching
overhead, an array of three bytes is maintained in memory in which the bit
manipulation is done, and the actual display memory is updated when all the
bits are correctly set or cleared.

The inputs to setpix() are the display coordinate of the pixel and a
flag specifying whether the pixel should be set or cleared. In the special

case that the x-coordiiate is -1, the routine flushes the working bytes in
memory to the display memory and returns. In the normal case, the routine

first converts the pIxel x-y coordinate to an address offset from the

beginning of the display memory. The conversion is straightforward, noting
that the coordinate origin is at the lower left corner of the screen, but the

,la' memory origin address is at the upper left corner.

f the new address offset is not the same as the current (i.e., a new

b t v being addressed), then the current bytes in memory are written to the
di.play memory and the new working bytes are obtained from the display memory.

A byte with the correct bit set is then formed and used to set or clear
the appropriate bit In each of the relevant working bytes.

The routines getbyt() and stobyt() are used in conjunction with setpix()
to obtain and update the bytes in the banks In the display memory.

4.2.4.8 The string() Subroutine and Related Routines

Of all the video display and graphic routines, string() and its related
subroutines are the most complex. This Is due primarily to the fact that
characters are generated in software and can be positioned anywhere on the
display. Further complexity results from allowing imbedded color commands,
carriage-returns, and special graphic characters in character strings.

String() takes ASCII strings, generates the appropriate pixel image in an
internal buffer, and then writes the image to the display memory.

63

As input, a tring requires the x and y c~ordinate of the start of the

string, the reference position parameter, the number of characters in the
string and a pointer to the start of the string. The reference position
parameter specifies the position of the x-y starting coordinate relative to
one of five points of the first character, with the lower left corner being
the default position.

After checking to make sure that the byte count is positive, the string

checks for the special case for appending to the last ,tring. If appending is
desired, the current coordinates are set to the Last coordinates of the

previous call.

Next, it goes through a loop of all the characters in which lower case is

converted to upper case and all the non-printable characters are marked. In
addition, the string is checked for carriage-return and line-feed. If CR-LF
is found, the string is broken into two parts, the first part of which is
subsequently displayed up to the CR-LF, and the second part is displayed by a
recursive call to itself at the end of the display of the first part of the
message.

After checking the string, the reference position is ciiecked and the
appropriate offsets from the default are set. Then the coordinates of the
beginning and end of the string are checked in both thie x and y directions,
and the string is truncated if it exceeds the screen boundaries.

The call to setups() initializes the internal working buffer to start

building the characters in the string; it also computes the starting offsetL
into the display mewory where the completed string will be stored.

The next two loops do the actual character drawing. The outer loop goes
by each character (x direction) and the inner loop draws each character in the
vertical (y direction). The call to putcbt() is the place where the correct
bits are extracted from the stored characters and put into the working array
(see below for a detailed description). At the end of the vertical loop, the
x position is updated and the next character is drawn. At the end of the

horizontal (character) loop the character counts are cleared to end the
while" loop. The call to setbyt() with the first argument of minus one
flushes the current working string butfer. At this point, if the string has
been broken, the string calls itself with a new pointer and a new byte count
to finish the second part of the message and reforms when it is drawn.

Putcbt() extracts a byte from the character dots array, r tates it if it
is necessary to align to a byte boundary and stores it into the working array.
It requires as input the character, the line number in the character matrix,
and the x,y coordinate where the line (byte) is to be stored. The x
coordinate is assumed to be at the left-hand edge of the character. If the
character to be drawn is not the same as the last character drawn, putcbt()
must first compute a pointer to the matrix of dots for the new character. If
the high bit of the character byte is set, then It is a special graphic
character; otherwise it is an ASCII character. Aptr then points to the start

64

ot the correct array of character matrices and the offset gives the index of
the start of the miatrix for that character. (The character dots arrays are in
the source Module called ASCIIG.C). The correct byte is then extracted by
using the character linle number. The character line number goes from 0 to 7

and is just the offset from the lower y coordinate of the character. However,
for historical reasons, the character dots array is stored from top to bottom.

If the character line byte is to he stored on a byte boundary, it is
s tored di rt Lly iTLo the working array, bUt if it is not on a byte boundary,
the byte is shi fted ijato- two bytes, and the two are stored separately.

)ethVt(I is' the! west level routine used by the String related routines
t st ore charactter ht C into the workin!g -striiii, bu t er, which is large enough
to hll .1 to displa\'ed ,haricters (, a stigthat goes across the entire

crc. It coamipitcs V n L sc2ts in)t., the i rin bUffer from the
in: ia!' coardinate pwcs ions :i- i:!i enl tiwt call to setups(. 1t the
ot s;ets ar eial, it !ancs the 5vt, ito the worrliiac- buffer, being careful nat

~i~2tI~ : ro) o;Ipett\' Uil Itit the worki:!g butter, it is written
lot, tole dipt:)a% 111:11 o.icittt ' calt L, '11,11~). Ith ine" or the working
irritv isr itte wi,> iito thu display butlter becautse 1lthough1,1 characters are

store as lwhteS nii he re WrItteni 10 piXels high. After the entire
arriv has hben writ Leni to tthe disp Liv :IleilorY, the "opposi te" color is selected
And'ro ir- writ tenI to the same!1 I wat ioil, to QlIear aayv previously written

-. Tl'he ",nle- Swi tch Tas k and hi rrupt Handlier

The mode swi tch ta1sk receives an indication that, the swi tch position has
changed from initerru~r.t hanldIcr inswini().It then reads Lte new position and
senids it)i toa the di spat: ct task, ds pt c h(. Each time a pos ition change

or ropIIt IS reto iVed it (re)s tarts ai delay timer. When the timer finally
t ite4ot i t I1) rec ml i gores the PloI to detect the next switch pos it ion and
2) s:ndn the new swi tch pos i tion dati to the dsptch(task. In this way the
imer is tnsed to 'dehounce' the, rotatry switch by allowing multiple changes to

occtir beftore the fin i] psi tioll is sent to dsptch(

4. 2.). I The Mode Switchi Task (mswtch()

A It t Ir itI itL ia IIi Z i '1g some parameters, the function checks two queues
iTlswmsw and1(t irmsw) to de-termine the source of the wakeup. If neither queue

coo aI n aMes sag),e tholn the wakeup was in it iated by the mlit (task.* In this
caseC the StatrtLL) SWi ch posit ion is received (via swtprv") and sent to the
ds pt c h(task via quenie miswd sp.

It the waikeup was t rom the mode swi tch interrupt handler, a nwissage will
he irescoit i; a11U qoen m;WM14W. In this case, due to switch bounce problems , more

L 11: Mn I CesS SA) r,0 Pla b ini thle queue . As at result tLiet queue inust he cleared.
%ext , ai timer is startLed. 'Che timer is used to allow time for the mode switch

to settle down before its position is read. Note that in the case of severe
switch bounce problems, the timer may be started several times. Eventually it
will be allowed to time out and will generate a waK'up t, trie mswtch() task.

It the wakeup is from the timer() task, the current ;,.ie switch setting,
mswinsg, Is read. The three law-order bits correspoind to the three swl.Cch

settings. A cleared bit ii n: e :) t'iese [hree 'Oc; ii en. ivd~cates tie ,:t cut

switch setting'. Flags iepresenting the three hit, ar. et s neh Ii t-
factlitate testing. The I ags are then tested t do. tr(i:>i the itew setti ,'.

However, its not that simple! The switch may have het:: :ncced aid then ali)wed

to drop back to its previous position. In that case the old ,.sIt nand tte
new are the same. If this occurs, no new switch position ,ncs-ae shouid bc-

sent to the dsptch() task. When this does occur, ,he PP) por t Is configured(
to detect the "TCAS standby" position. That is, tile operator must tirn the
switch back to "standby" and then advance it to the desired final Dosition.

If tie new position Is not the same as the previous position a new input
port mask byte is prepared to allow detection of the "other two" switch

positions only. In addition, the current switch position parameter, swtpos,
is set and the previous position parameter, prevsw, Is updated. The new mask

byte is then output to the PIO.

Finally, a final test is made to make sure the new switch position is

different from the old. The new switch position is then sent to the dsptch()

task. Control then returns to the beginning ot tile task loop and the task

suspends.

4.2.5.2 The Mode Switch Interrupt Handier (mswi|())

This function processes mode switch interrupts from Pi) channel A. An
interrupt occurs when the switch position Is changed. The 111O was initialized

such that its logical equation logically "ORs" the unmasked lines. Nx line is
logically true when it is zero. Therefore, the PlO's logl-al operation goes

from false to true on the occurrence of a zero on one)t Its unmasied lines.
This causes the interrupt. The logical equation is reset to talse by

"-, outputting a control byte (in thi3 case, a 0)X9' to port 'Xid).

The mswin() interrupt hand[er saves tilt, state of the interrupted tkinctton
and then outputs a control byte to reset tile PI'u. Lt ttei output,, rasK that

deactivates all input Lines ()XFF to port)X8 I). Fui,(s hlks subse,jkent

switch bounce Interrupts whe~t I terrupts are later enCb Lcd. the mast, is
changed In the mode switch task wheai ir in readv to accept new switch positimu

: i t:}chanl~in dat A

At ter enabling Interrupts, mswin(I send,; a "signal" messa 'n, mswsig, to
the mswtch() task. The messag,-e byte contains nio tntormatiflu; the presence of

the messae Indicates to mswtch() that a switch change has occurred. mswtLcnl
reads the 11P)'s data port to detrml ne the new set t ing.

Wiri interrupts dt,abld the stat,, 1 tt i-trr it,,I :nu, t lonl is

restored. Interrupts ire t!:ei, enujhled cml c ot.)Il is rttir~ited tI toe
litter r:pi:.d t'iti,,t 1 ,0mm.

4.2.6 The Audio Task and Interrupt Handler

The audio task receives an audio request command from the dispatch
task(dsptcho), transfers the prestored, digitized audio data to the
annunciator buffer (4K) and starts the annunciator. The audio data is stored
in the upper 16K of the master's RAM and in the 64K audio RAM board. Audio
data is stored in these areas during the initial program load sequence by the
AUDM.COM, AUDA.COM, and AUDB.COM programs.

A command may request a single audio message (a word or tone) or it may
be part of a concatenated string of messages (a phrase). In the latter case a
"start-of-audio" message is received first, followed by one or more audio
"word" messages. The sequence is terminated by an "end-of-audio" message. In
this case all words are sent to the annunciator's RAM before it is commanded
to start. When the annunciator is finished it issues an interrupt which is
received by handler audin(). Audin() sends a message to this task via queue
audaud. When the annunciator is started, a two-second timer is also started.
The annunciator interrupt is used to stop the timer and reset the annunciator.

If the timer times out, it means that no interrupt was received from the
annunciator. In this case the annunciator is simply reset. Two seconds is
more thani enough time for the annunciator to output all 4K of its data.

4.2.6.1 The Audio Task (audioo)

After initializing the "done" flag, the first operation performed is to
check the queue from the dsptch() task (dspaud) to see if an audio request

caused the task to be scheduled. If no dsptch() message is present the queue
from the annunciator interrupt handler is checked. A message in this queue
(audaud) indicates that the previous annunciation has been completed. The
task then sets the "done" flag, stops the timer (via queue audtim) and resets
the annunciator (by outputting a byte to port OPT4-0X4F).

If a message is present from the dsptch() task the "done" flag is checked
to see if the previous annunciation has been completed. If not, the queues
from the timer task and the annunciator interrupt handler (timaud and audaud)
are checked. If the timer timed out, "done" is set, the annunciator is reset

and the program proceeds to process the message from dsptcho. If the
interrupt handler queue contains a byte it means that the annunciator Is

finished. The "done" flag is set, the annunciator is reset, the timer is

turned off and the program proceeds to process the message from dsptcho. If
neither queue contains a message, the program cannot proceed, so sleep() is
called. When the task is again awakened the two queues are rechecked, etc.

The first step in processing the message from dsptch() is to check its
type for a "begin-audio" or "end-audio" type. For the former, the "start

flag is set; for the latter, the "start" and "done" flags are cleared and the
annunciator is started. In both cases the program returns to check the dspaud
queue again.

67

If the received message is not a begin or end audio control message then
it is an audio data message. The program proceeds to transfer the
corresponding data from the audio RAM to the annunciator's RAM. The audio
data Is specified by means of an offset (audbuf.offset) and a length
(audbuf.lngth). The offset is used to determine the 16K audio bank in which
the data resides.

The procedure begins by deselecting the currently selected bank by
selecting a nonexistent bank (bank I). The currently selected bank was one of
the video banks; it will be reselected after the audio operation is completed.
The offset is then tested to determine the proper audio bank to select. The
bank is selected and the offset into it is computed. The data is then moved
to the annunciator's 4K RAM area.

If the audio bank selected was the upper 16K of the Master's RAM it must
be deselected before the previously selected video bank (as specified by
parameter "bank") is reselected.

At this point the "start" flag is checked to see if the dspaud message
received was part of a concatenated string. If it was, the program returns to
input the next part. If not, the "start" and "done" flags are cleared, the
annunciator is started, the timer is started, and the program returns to the
beginning of the task loop and suspends.

4.2.6.2 The Audio Interrupt Handler (audino)

This is the handler for the interrupt from the annunciator card. The
interrupt vector was set so that It points to the DI instruction at the
beginning of this function. In so doing the state of the interrupted function
can be saved immediately (actually, the Dl instruction is not needed since the
Z80 disables interrupts automatically when an interrupt occurs).

After saving the interrupted function's state the PLO port's mask is set.
Note that this code seems to be redundant or it may be that it was found to be
needed to make the PLO work.

After enabling interrupts the handler sends a "signal" byte, "audint" to
the audioo) task via queue "audaud". This byte contains no information; the
fact that a byte was sent informs audlo() that the interrupt was received.

Interrupts are turned off while the state of the previously running
function is restored. Control is then returned to the interrupt function via
the RETI Instruction. The normal C function return sequence is bypassed.

4.3 User Processor Software

The AID software system is designed to allow division of the processing
load among multiple single-board computers (SBC's) in a master/slave
configuration. The Master SBC, designated the service processor, serves
primarily as a general-purpose audio/video processor (see Section 4.2). One
or more slaves serve as user processors, each performing functions which are

specific to a particular user application. 1/0 devices which are
application-specific are attached directly to the user processor(s).

68

The ph;,se I AID software described in this document provides for a

sgLe-user app!ication and thus uses a single-user processor. This user

processor interfaces to a TCAS experimental unit (TEU) and a keyboard. Its
tIu,.'tion [s to i1puit TEU aircraft position information, process the

intrmation according to keyt-oard commands, and Lenerate and send data blocks
to toe ,;ervie processor tor audio and/or video output. Audio output is of

two types: (1) tones to indicate whether valid or invalid keys have been
pressed on the kevboar., and (2) words (e.g., climb, descend) or sounds to

inform the pitot of a recommended maneuver or simply draw his attention to the

display. Video output is a color PWl-type display showing targets at given

ranges and bearings from own aircraft which is located near the center of the

gcreen.

There are five basic types of software contained in the user processor:

a main program, a task scheduler, tasks, interrupt handlers, and a user-
graphics package. All data transferred between tasks and between interrupt

handlers and tasks is passed by means of circular queues. The user-

processor's task scheduler aid queue aanagement protocols are similar to those
in the service processor and are discussed in 'System Software', Sections 3.2

and 4.1. The user graphics package is covered in Section 3.4.4. The user-

processor's main program, tasks, and interrupt handlers are described here.

The user processor contains six tasks and five interrupt handlers. A

block diagram of these, along with the connecting data queues, is shown in

Fig. 3.4-1. The user graphics package, not shown in the block diagrams, is a

set of routines which may be called from any task within the user processor.

Initially all of the user processor's software is loaded from the service

processor via the S--100 buss. Control is passed to the user main program,

which performs a number of initialization operations, then calls the task

scheduler. The task scheduler will immediately run the init() task which

performs more initialization operations. Thereafter the program loops in the

scheduler, continually checking for tasks which are ready to run.

There are four sources of input to the user prc ssor: keyboard, TEU,
timer and service processor. Each has a corresponding task (keybd), teu(),

stin(), spint()) and interrupt handler (keyin), teuino, ctcino, spiho).

There Is one output destination, the service processor, with task spoutt() and

interrupt handler spoho. The sixth task is inito.

There are seven sections which follow to describe the user processor
software. Section 4.3.1 covers the user-processor main program. Sections

'.3.2 - 4.3.7 correspond to the six user-processor tasks with their related

interrupt handlers and functions.

4.3.1 The User-Processor Main Program (maino)

Upon power-up, the slave single-board computer runs a boot program stored
in an on-board ROM. This initializes the slave to receive a program download

from the Master via the S-IO0 buss. After the slave program has been

69,

downloaded, control is passed to mainO, the user processor main program.
Main() performs a number of initialization operations, then wakes init and

calls the task scheduler. The task scheduler immediately runs init() which
performs more initialization operations. Thereafter the program loops in the

scheduler, continually checking for tasks which are ready to run. Neither

main() nor init() run again unless the system is again powered-up.

In the AID software, the initialization operations have been divided into

two parts. The idea was for main() to perform those operations necessary only

at power-up and for init() to perform those operations necessary for a system

restart. In reality, the partitioning of initialization is more suited to a
system in which the program is stored in ROM and in which restart could be

done by simply scheduling init(). In this system, with program stored in RAM,
restart by running init() would not necessarily be successful. Hence we

restart by rebooting the entire system from the disk, running both main() and

inito. The idea of partitioning is retained, however, in case it should be

desirable to store the program in ROM at a later date.

Main() begins by moving CPM's interrupt vectors trom their high core

locations to low core (starting at Location U). Since we do not currently use

CPM or any of its interrupt vectors, this is simply a precaution in case of
future software changes. Having the interrupt vectors start at location u

ensures that we will not overwrite them by code or data.

The starting address of each interrupt handier we use is then loaded into

the interrupt vector table: timer, Keyboard input, teu input, service

processor input, service processor output, and cautln.,warning switch. The
interrupt handler addresses used are actually tile starting addresses plus i.

This bypasses the normal C tunctiun entry sequence and allows the context ot
the interrupted tunction to be saved immediatelv when the interrupt occurs.

Next, the task control blocks (Fcb's) are parttilly iniLtialized. Inhe

task stacks are allocated space from 6000 downward. Runk) ana sleepU) are

called to tnitialize them, and then each task i:a rtn to its tirst suspend
point.

Oinltl() is called to initialize the length and putter pointer Ilelds)t
the circular butters or queues. Finally, maini) wakes inlt) and calls the

ta sk schedulor.

4.3.2 The Initializat ion Task (init(t

nit() is awakened by the mIntIr program mai&) at ter power -up to Comp I et,
the Initialization begun by main(). The major portion ot init() is devoted to

initialization of the user processor hardware i/0 devices.

[nit() first disables Interrupts. These remain disabled tor the duration
of the task. Init() completes initialization o1 the t:isk control blous

(TCH's), then calls qinlt2I,) to complete initialization ol tile circular

butters or queues. At thIs poirt the coordiinates ot tie uselr's Vittual , cc

, L,

are defined via the scale() function. This would normally be done in the
initialization segment of the TFU task. However, scale() makes use of the
graspo queue and thus must follow the queue initialization done in qinit2().

The rest of init() deals with the user-processor hardware I/0 devices.
First the CTC timer channels are initialized. Channels 0 and I are used to
generate baud rates for SIt serial channels A and B, respectively. Either of
two hardware configurations will be present: console I/O on channel A (9600
baud) and keyboard input on channel B (300 baud) or keyboard input on channel
A and TEL' input on chantel B (9600 baud). The Sierra monitor assumes tnat a
console will be coanected to at least one of the serial ports and thus as a
default configures the channels for 9600 baud. Therefore, when the console is
on channel A, the s,,ftware does not initialize either the corresponding CTC
timer-counter device or serial port.

A detailed explanation of the use of the CTC timer-counter device and of
the Z80} serial 1/0 and parallel I/N is given in the Sierra Data Sciences
Technical Manual. This must be retad in order for the 1/0 initialization to be
unders tood.

The procedure to generate 300-baud rate for the keyboard is as follows:
The user outputs bytes which set the channel for timer mode, set the prescaler
P to lo, and set the down-counter tine-constant TC to 52. This creates a
pulse train of period = (system clock period)*P*TC = .25 psec*16*52 =

208 psec. A 208--isec period is equivalent to 4607 pulses per second. This is
divided by the prescaler 16 to get 4807/16 = 300 pulses per second. An
important note is that the CTC timer runs off the 4-MHz system clock (period
= .25 psec) whereas the CTC counter runs off the external clock (1.8432 mHz in
the slave + period = .54253 lsec).

The procedure to generate 9bol) baud rate for the TEU input is as follows:
The user outputs data bytes which set the channel for counter mode and set the
down counter time constant to 12. This creates a pulse every tc*TC = .54253
psec* 12 = (.5 psec. A 6.5 psec period is- equivalent to 166,666.67 pulses per
second. This is divided by l6 to get 96tMt' pulses per second.

Channels 2 and 3 are used together with channel-2 output wired to
channe1-3 input. Channel 2 is set to timer mode to produce a period of
.25 psec*16*125 = 5M11) (sec. Channel 3 is set to counter mode to produce a
period of , p- ec *125 = 62.5 msec. A bit is set in the channel control
regi. ter to generate an interrupt each tiC the (h2. 5-msc interval elapses.
This is used by the user-processor's timer interrupt handler ctcin() and timer
task stim(.

Next the serial 1/0 ports are initialized for keyboard input and teu
input, again depending upon the hardware configuration. Detailed comments are
given in the prgram listings and follow closely the Sierra Technical
Manual.

71

Parallel 1/0 ports are next initialized. Channel A is configured tor bit

control mode to be used as the caution/warning switch interrupt port. Channel

B is configured for output mode to be used as the caution/warning Light output
port. Channel C is configured for input mode to be used as the service-

processor input port. Channel 1 is configured for output mode to be used as

the service-processor output port. Again detailed comments are given il the
listings.

After PIO initialization is complete, interrupts are again enabled, and

the TEU timer is startei to awaken the teu() task once per second. This is

the end of inito.

4.3.3 The Keyboard Task and Associated Functions

The keyboard allows a user to change various TEU display characteristics
(e.g., relative or absolute altitude, maxi-aun displty range, Lumhcr of targets

displayed). Keyboard inputs consist of sinigle bytes. They are asynchroluns

and may occur at any time. When a key Is depressed, an interrupt is

generated. Keyln() inputs the key's corresponding 8-bit byte, places it into

the keykey queue, and wakes the keyboard task. The keyboard task thel uses
valid keyboard entries to update a 16-byte display options array which is

passed to the teu() task for processing.

4.3.3.1 The Keyboard Interrupt Handler (Keyin()

Keyboard bytes are received frow the slave serial l/, configured as

either channel A (port OX80) or channel B (port 0X82). The normal
configuration is for keyboard inputs to be received on channel A and TEU

inputs to be received on channel 8. However, our slave single-board computer

allows only two serial channels, and at times it is desirable to connect one

of these to a console for debugging. In this case, console input'output is

via channel A and keyboard input is via channel B. This is the reason for the

conditional compile in keyin(.

When a key Is depressed on the keyboard, an interrupt is generated and

control is passed to keyino. Interrupts are disabled, registers are saved,

and the key's corresponding 8-bit byte is read into location "inchar". If room

exists in the keykey queue, the byte Is placed into the keykey queue and the

keybd() task is awakened. If no room exists, the byte is lost. Registers are
then restored, interrupts enabled, and control is returned to the interrupted

program via RETi.

4.3.3.2 The Keyboard Task (keybd())

The keyboard task has two primary functions: (1) to examine keyboard
entries for validity and generate an immediate appropriate audio response, and

(2) to update a display options array with valid keyboard entries and send

this array to the teuO() task for processing. The keyboard key assignments,
along with a brief summary of keyboard commands, are shown in Fig. 3.4-2. A

more detailed description of valid keyboard commands is given in Fig. 4.3-I.

A description of the 16-byte display options array is given in Fig. 4.3-2.

72

4. 43 20 21 2 0 11 1

; 1 4 6 47 24 25 - 4 1 6

A[S CLR Rm m mrn-I 4]6

t13 . i 4A 48B 28 29 2 o9 2[72~EXI F]7F F2H7W
4 F 2 C 2 E1 I

N J TG T JC Li FS W7E E W

ro --,ir ih *.5

Fig. 4.3-1. tKeyboard- Cimmaflds.

Note 1: When autoscaling is selected, range will be

set to selected range except when autoscaling is
necessary to show all threats and pre-threats.

Note 2: Fixed ranges 2 to 8 are distances from own
A/C to rear of display. Corresponding forward ranges
are 4.7 to 19.2 nmiles.

EXT Allow extended range display (4 nm, continuous mode)
for 15 seconds.

ALTITUDE CONTROL

REL ALT Set the display to relative altitude mode but do
not clear any previously entered altitude correction.
(Initial mode on power-up. The initial altitude
correction is zero).

ABS ALT Set the display to absolute altitude mode but do
not clear any previously entered altitude
correction.

BAR COR
-9,-8,...-1,0,1,2,...,9 Set the display to absolute altitude mode and add a

barometric correction of -900 to +900 feet to the
previously entered altitude correction (i.e..
barometric corrections are cumulative). This sum is
then added to all absolute altitudes.

BAR COR 0 is a special case which clears the
barometric altitude correction. (Sets it to 0.)

TEST MODE

TST Enable/disable test mode (default is real (non-test)

TEU data). Used in combination with DEMO key.

DEMO 00,01,...,09 OA,0B When in test mode, selects a moving test scenario
11,...,19,1A (00) a specific still-frame display (Ol-OB), or a

moving FAA-defined encounter (11-IA).

Fig. 4.3-1. Keyboard commands (cont'd).

S

associated
byte keyboard key description value default

0 CLR DISP clear display I = clear display 0

0 = do not clear display

I PPI/tabular I - PPI display I

0 tabular display

TOD time-of-day I = display TOD 0

0 o do not display TOD

3 TAU TAU limit for I = display TAU 0

current perfor- 0 - do not display TAU
tI1l(Qt 1 't' I

REL ALT, - relative altitude

4 ABS ALT altitude 0 = absolute altitude 1

5 BAR COR barometric -9,-8,...,-1,0,1,..,9 0

correction (each digit represents
100 ft)

6 RNGE range 2,3,...,8 nmi 3

7 RNGE auto-scaling I = autoscale 0

0 = do not autoscale

8 TRIG threat-triggered 1 = threat-triggered mode 0

mode 0 = continus mode

9 TST test data I = use test data* 0
0 = use live TEU data

10 DEMO selects 00: 8 moving test targets

a specific 01,...,OB: still-frame

test data set* displays
11,...,lA: moving

FAA-defined

encounters

II EXT extended range 1= extended range 0

display 0 - normal range

12 NTGT max. number of 0,8,...,8
targets to display

*Note: Doption[101 is operational only when doption 191-1.

Fig. 4.3-2. DIsPIay options array.

75

• b

associated
yte keyboard key description vaele d __ ora ult

13 PAUSE** freeze display I = pause
0 = normal operation

14 STEP** single-step I = step
display 0 = normal operation

15 SURV surveillance I = surveilhLace mode 0
mode 0 = other, as defined
(5-nm continuous by TRIG and EXT keys
mode)

** PAUSE and STEP keys operational only when running in test mode with
FAA-defined encounters, (i.e., doption [91=1, doption[101=11,...,IA)

STEP operational only when PAUSE=1.

Fig. 4.3-2. Display options array (cont'd).

7 6

II

.. . , .. = '-,- -m~ m S=n

I~v I. V r I tuz-t-ts Tudlii of uric Lairge 'Whil' loopL. Keybd(

21.i 'tI - f)f 0 C KC 11 ft- I' uiI; k7 t di ''pI3vN

-I. I: 2' -At.2. X< . c~trtts. t::t -W, f sl

Z L'<

- .2. * 't ,. 't.I.t .d rat' 7f

1 L '1)) tI i :2i n~ '2.cLstf

nit'r-!- He i c! 1.-- u, Ct I fT r ti te orrect seque!nce

I?~~~~~~~~1 'lt7'lc~rd l :v ~tie *isptav
I I *d i 1'1 s I nt I; .tXt tod. I rokcr ir then Loops back

P t'fII ff c/d L 0.111 t Ik"4 2 1 itt:C.

set tWie.. tle ctev.)ar Loo :1sp. Os eii >d its Inpu1-t: "U e it cnecKs the 1hag

- t it dLr~a m c !,e wnet ie r .r iotA o Ouptth-e dispi-t cj'options array and
Ai&Q i~e tell(11titi Pe-)At' '!"e!;f

'**~ it512 -r.L h'stie Nevo adni2s

ti ~ ~ P1 lii:Itt, r ",'I2/ 1 tMA19IiP& f lfflr, ar>- callet, 1)Y tie
Cu ~ ~ ~ ~ ~ n I. It. rcts m lt 1 -,Lu-vs ro!ke C-IO...i lsI~H. [icyv are:

21 r . tit, fIIlS I-'I v t riKce Cilge command

' ~ ~ ~ ~ ~ ~ ~) t ef c t ,)n co. - - -5:- .. i.)n inIif

II t, V 'MCS ti t r-i f-tI

'lim 't' ot al 'I L''') in a 10

- -- - ' 2 li r j i e r, -

-U - - . 1 - ---a...S Lt'

1. The 1EJ 'ask and Assoc iated Functions

4.1.4.1 Overview

The teu() task is the major task within the user processor. Its

functions are to input keyboard commands and aircraft position information,

process the aircraft information according to the keyboard commands, and

output audio/video graphics data blocks to be transferred to the service

processor.

Aircraft position information is received from the aircraft's onboard

TCAS experimental unit and read in via interrupt handler teuino. When

teuin() receives a complete data block, it places this data in the teuteu

queue and wakes the teu() task. Teu() then is responsible for determining
which targets to display, where and how the targets should be placed on the

PWI-type display, what audio should be annunciated, and for communicating this

information to the service processor.

4.3.4.1.1 Inputs

Primary TEU inputs are from two sources: the TEU interrupt handler

teuin() and the keyboard task keybdo. Inputs from teuin() are placed once

per second in the teuteu queue. These inputs are variable-length data blocks
which contain position and equippage information for own aircraft and up to

eight other aircraft. The format of the TEU input data blocks is shown in

Fig. 4.3-3.

Users may enter keyboard commands at any time. The keyboard task rejects

invalid keystrokes and accepts valid keystrokes in order to update a display

options array. It is this 16-byte array (Fig. 4.3-3) which is passed to the

TEU task in the keyteu queue.

There are three other inputs to the teu() task:

(1) The service processor sends a 1-byte message to the user processor

each time there is a change in the Bendix front panel switch setting.

This byte is placed in the spiteu queue for the TEU task and used in

determining whether audio and video data blocks should be sent from

the user processor to the service processor.

(2) The timer task stim() is initialized land reinitialized eacn time

through teu()) in order to wake the teu() task at one second

intervals. This wake-up is used by teu() to decrement counters once

per second and in test mode to process test data once per second.

(3) The third input is handled via global variables rather than a queue

entry Whenever the caution/warning button is pushed, the

caution/warning interrupt handler cwin() zeroes the variables "cwyel"

and "cwred", which are used by the TEU function ralerto.

O1 1 _2 3 1 4 1 5 1 6 1 7
1 hours of system time 0-23
2 minutes of system time 0-59
3 seconds of system time 0-59

HEADER 4 ////////I AUDIO I/ BRG(*

INFORMATION 5 BEU performance level 0-7

6 LS Byte own altitude

7 MS Byte LSB = I00 ft

8 14S Byte IVSI command
9 LS Byte

I Priority 1-8 [Window no. 1-8
2 Range 0-16 nm LSB = 1/16 nm

3 Range Rate ± 1280 kt LSB = 10 kt target 1
TARGET 4 I Rel. Alt. ± 9900 ft LSB - 100 ft

INFORMATION 5 Azimuth O-3b00 LSB - 360'/2561

6 1 BB I NEWI BA I UP I DN LA/DI COLOR

2

3 target 2

II/' spare

AUDIO 00 none
001 'command'

010 'clear'

011 'alert'

100 tone
BRG 0 BEU is not providing bearing data

I BEU is providing bearing data
PRIORITY I - highest

BB 1 = bad bearing

NEW I = new target
BA I - bad altitude

UP I - alt rate > 10 ft/sec

DN I = alt rate < -10 ft/sec
A/D 0 ATCRBS

1 DABS

COLOR 00 white
01 yellow

10 red

11 undefined

*NOTE: For certain prerecorded data sets, header words 4 & 5

have special meaning. If word 4 - OXEO, then word 5 contains a
number identifying the data set which is to follow.

Fig. 4.3-& TEU Input data block format.

79

-SOL-r

4.3.4.1.2 Outputs

Outputs from the teu() task are the audio/video data blocks described in
Section 3.4.4.

4.3.4.1.3 Task Structure

The teu() task is made up of five levels of functions (Fig. .4. -4).
Figure 4.3-5 presents an alphabetical listing of these functions showing the
file irt which each function is located and giving a brief description ot each
function's purpose. The primary purpose of the level I function, task teu),
is to check each of the four input queues (spiteu, keyteu, teuteu, and timteu)
for input. When TEU data is present in the teuteu queue, or in test mode,
when the timteu queue indicates that test data should be processed, the level
2 function tproc() is called.

Tproc() then makes calls to 12 different level-3 functions. These
level-3 functions handle either keyboari selected options (e.g., tod()
-display time-of-day message in upper left screen corner) or handle some
well-defined part of the processing which must be done each scan (e.g.,
ralert() -decide what, if any, audio should be annunciated).

Level-4 and level-5 functions are specialized subroutines used by certain
level-3 functions. The lowest level functions will usually contain calls to
user graphics package routines. It is the user graphics routines which
actually generate the graphics data blocks ard output them via the teuspo
queue to the spoutt() task for transfer to the service processor.

4.3.4.1.4 Techniques for Dynamic Screen Allocation

There is one concept that requires explanation betore many of the TEUJ
functions can be understood. This is the method of dynaamically allocating
space on the screen whenever text messages are displayed for tihe first time or
removed.

Aircraft position information is given in terins of range and bearing from
own aircraft. It is beneficial for traffic displays to have greater range
visibility in front of the aircraft (0 *, up, on the screen) than behind (180U,
down, on the screen). Therefore own aircraft is not located at the center of
the display screen, and the available range from own aircraft to screen edge
is different for different bearings. In addition, when text messages are
displayed in the screen corners, or when 'no bearing blocks' are displayed,
the space available for target display is reduced in certain directions (i.e.,
for certain bearings). Therefore, the user-processor software maintains a
256-element array (target bearing LSB = 360/256 degrees) to show current
available range in each of the 256 bearing positions. This array is called
dunitsil. Its units are consistent with the units selected by the user in the
scale command (see Section 3.4.4) (our software sets the screen dimensions to
be 1024 units horizontally and 768 units vertically.)

80

2vI Level 3 Level 4 Level 5

t ts I 1

L r0 II r

t~ Ss

Arle

t rright

S i I T t h t)I.

cle to

Fig. 4.3-4. TEU task structure-functions used by the TEU task.

File in which

Name function is located Purpose

annunc tsubs2.c Decode IVSI command word to annunciate

proper audio word.

bottom tsubs.c Put alt tag; (if no overlap) below target

triangle.

brg tsubsl.c Display 'no bearing' targets in block in
upper left screen area.

callup tsubs2.c If extended range selected via keyboard
figure out what display range should be.

clrteu teu.c (Re)initialize various screen parameters,
flags, and counters. Called at start-up,
when CLR DISP key is pressed, and when no

data has been received for 8 seconds.

deftop tsubs.c No good position for alt tag. As a default,
put alt tag above target triangle, even

though it will overlap something.

dspw tsubs2.c Check to see if proximate a/c meet range
criteria for display.

inltfaa faafilm.c Called whenever a new FAA encounter is
selected or a previously selected encounter

repeats from the beginning. Initialize

arrays and variables used in generating

encounters.

left tsubs.c Put alt tag (if no overlap) to left of

target triangle.

modeck tsubs2.c Set user mode switch based on mode switch

setting received from Master and target

severity (threat or prethreat present or

ext key pressed on keyboard).

oalt teu.c If in absolute altitude mode, di.play own
aircraft altitude in lower left screen

corner.

order tsubs2.c Reorder targets in atrcraft data array

according to priority. Called when there
are more targets received than can be

displayed.

Fig. 4.3-5. Functions used by the TEU task.

.2 =

itel in which

Name tunction ts located Purpose

psf tsuhsl.c Do preliminary scaling factor calculations

to compute min. display range that will
show all threats and prethreats. Called

when autoscaling is selected.

ralert tsuhs2.c Do resolution advisory processing,
annunciate audio (except for commands,

which are annunciated by annunc), set
caution/warning lights.

rev teu.c Display rev message in upper right screen
corner for 8 seconds after power-up.

right tsubs.c Put alt tag (if no overlap) to right of

target triangles.

rring teu.c Display 2-nm range ring and chevron symbol.

sqrt faafilm.c Change target x,y coordinates to r, theta

coordinates in updating FAA encounters.

tables tables.c Set up the arrays used in dynamically

allocating space on the screen when text

messages come and go in the corners.

Called at initialization only.

tag tsubs.c Figure out where to put altitude tag so

that it doesn't overlap target triangles or

other altitude tags. Calls top, right,

bottom, left, and deftop.

tau teli.c If selected, display the message in lower

right screen corner.

tgt t41bst.c Convert target position from polar to x,v

coordinates. Set up information necessary

to display target triangle and alt tag.

thet taaftim.c Change target x,y coordinates to r, theta

coordinates in updating FAA encounters.

tlrlt tables.c Called at initialization only. Set up the
arrays used in dynamically allocating

space on the screen when text messages come

and go in the corners.

Fig. 4.3-5. Functions used by the TEU task (cont'd).

83

,,, J[] i= I1 i a -i~ li'm -m-hll° =ZZ Z .=.=Z [

File in which
Name function is located Purpose

tod teu.c If selected, display time-of-day message in
upper left screen corniers.

top tsubs.c Put alt tag (if no overlap) above target
triangle.

tproc teu.c Main TEU processing routine. Called once
per scan. (See Fig. 3.4-5).

trigger tsubs2.c If threat-triggered mode .elected via
keyboard, check to see if there are any
threats or pre-threats. If not, set tpruc()
to do no processing.

unite tsubs.c If there is a change ia the number of 'no
bearing' targets displayed, make
appropriate changes in arrays used in
dynamically allocating space on the screen.

updat faafilm.c In test node, when FAA encounters have been
selected, update encounter data once per
second so that targets move across the
screen as specified.

update teu.c In test mode, (no demonstration scenarios
or FAA encounters selected) update canned
data once per scan so that targets appear
to move across screen in a realistic
manner.

Fia. 4.3-6. Functions used by the TEU task (cont'd)

84

!I

There are nine other arrays that are used in conjunction with dunits[]:
duOl], dull],..., du8lj. DuO!] Is a 256-element array which contains
available units from own aircraft to screen edge for each bearing (i.e., it
assumes that no text messages are being displayed and that the entire screen
is available for target display). In the TEU initialization, tables() is
called to set dunits[]I equal to duO[].

The other arrays, dul[J,..., du8H , do not contain a full set of 256
elements. For instance, dull] contains 19 elements. When the rev message is
displayed in the upper right screen corner, the 19 bearing elements in

dunits[] that span the upper right screen corner will be replaced by the 19
elements of dull]. The available ranges for those bearings will be small
enough tL, ensure that target information does not overwrite screen text.

Much code in many of the TEU functions is devoted to changing the
dunits] I array when text meossages change on the screen. This is true in
functions revo, tod), oalto, triggero, callupo, brgo, and units(.

The numbers in duO[],..., du8]J are calculated at run time using sine and
cosine tables stored in the file tables.c. The formulas used are
straightforward right-triangle-type calculations, but the input numbers were
derived from careful screen layout and measurement. Changes in this area

would be time-consumlig.

4.3.4.2 The Interrupt Handlers teuin() and cwin()

Teuin() is the interrupt handler for the TEU input interface. Bytes are
received via serial [/0 channel B (port 0X82). Each time a byte is received,
control is passed to teuin() and the byte is read into location "inchar".
Teuin() requires the TEU data to conform to an expected format: The first
character of the data block must be the sync character OXA5. The second
character is the byte count of the number of bytes that follow. Teuln() will
look for the sync byte, then accumulate the bytes that follow in the teuara
array, I byte being stored each time teuin() is executed. When all bytes of a
data block have been received, teuin() puts them into the teuteu queue and
wakes the TEU task.

There is a timing check performed to ensure that gaps in the input data
stream do not cause the data processed by the TEU task to get out of sync.
When the sync character is received, the current system time (LSB= 1/16 sec)
is stored in "sttim". When each subsequent byte is received, the new current
system time is compared with "sttim". if the difference exceeds 3/4 second, a
gap in the Input data stream is assumed, the teuara array is effectively
flushed, and teuin() ignores all data until another sync character is
received.

There are two versions of teuino: one version to handle TEU input with
art accompanying checksum, the other version to handle TEU input without a
checksum. The checksum version is located in file TEUCK.C and is the default
version for use at Lincoln. The non-checksum version is located in file TEU.C

85

S _______

and has been delivered to the FAA to interface to the Dalino Victor FCAS unit.

The checksum, when it is present, is expected to be the third byte of the TEU

data, following the sync character and byte count. The data stream is

considered correct when the exclusive OR of all bytes (including sync

character, byte count, and checksum) yields a zero result.

Cwin() is the interrupt handler for caution/warning button inputs via
parallel [/0 channel A. The caution/warning button contains two separate

lights. The lights can be lit separately, but the software has been set up so

that pushing the button extinguishes both lights. An interrupt occurs when

the button is pushed. Cwin() simply turns both lights out via an output to

port 0X85 and zeroes the parameters "cwyel" and "cwred" which are used by the

ralert() function. The interrupt logic is disabled in the handler to

deactivate subsequent interrupts caused by switch bounce. Interrupts are

re-enabled in ralert() when the caution/warning lights are turned on.

Note: The purpose of the caution/warning light/button is to direct the

pilot's attention to the display when a threatening or potentially threatening

situation exists. The caution/warning light/button is used in conjunction
with the aural alerting logic in ralerto. When a prethreat appears,

ralert() causes the yellow light to to be lit and a C-chord to be sounded.

When a threat appears, ralert() causes the red light to be lit and the

appropriate command to be annunciated. The lighlts will remain lit and the

commands will be annunciated repeatedly until the pilot pushes the

caution/warning button as acknowledgement.

4.3.4.3 The TEU 'ask (teuo)

The primary purpose of teu() is to check each of the four TEU input

queues (spiteu, keyteu, teuteu, and timteu) for input and direct control to

the proper function for processing that input.

Teu() begins with an initialization segment which is run once at system

start-up time. Tables() is called to set up the dunits[I array (see Section

4.3.4.1.4), and the used[J array is initialized (see Section 4.3.4.4.9).

Initialization is also done for test mode operation. Test node operation

allows the use of either moving test data or specitic rixed demonstration

data sets and is explained in more detail at the end of this section.

Each time the teu() task its awakened, it checks to see if any of the four
queues has input. If so, it proceeds to check each of the queues

individually.

The only defined spiteu entry 13 u one-byte message passed from the

service processor each time there is a change in the Bendix front panel switch

setting. The message has one of three values corresponding to the three "on"

switch settings: weather radar only, combination weather radar/AID, and All)
only. The switch setting is used by the modeck() function in determining

whether audio and video data blocks should be sent from the user processor 1o

the service processor each scan. This is explained in detail in

Section 4.3.6.1.

86

In lU lU : --

The keyteu queue is checked next. In general, tile 16-byte display

options array from the keyboard simply overwrites the display options array
currently used by teuo. This new display options array will then be used the

next time tproc() is called. Two array elements are handled in a special way.
If CLR DISP has been selected, the display is cleared immediately instead of

waiting for tproc() to be called. (Tproc() may not be called for some time.

Under error conditions (which is usually when CLR DISP is pressed), there may

be some problem getting TEU input data, and tproc() is only called when there

is valid TEU input data.) Also, care is taken to ensure that the extended

range or call-up mode (doption lII) is not zeroed before it has had a chance

to be processed by callup().

The teuteu queue is checked next. If the entry size is valid, the entry

is read into the aircraft data array acd[I. Note: "acdi" is a one-byte field
that immediately precedes acd[J. When the teuteu entry is read by getq, the

entry byte count goes into acdl and the data itself (see format in Fig. 4.3-4)

goes into acd[j. Tproc() is then called "o process the acd[] data.

Finally, the timteu queue is checked. The timer task stim() awakens the

TEU task once per second. At this time various counters are decremented.
Each time new TEU data is received or each time test data is used, the restart

counter "rstct" is set to RTiM. Therefore, if in operational mode no

data is received for RTIM seconds, "rstct" will time out. If this happens,

the display is cleared and a "no data" message is displayed on the screen.

The next section of code deals with test mode operation. Some
explanation is required. The user selects test mode via the TST key on the

keyboard. This sets doption[91 to I. The TST key Is used in conjunction with

tihe DEMO key. The user presses the DEMO key followed by two digits
(OO,OI,...,09,0A,OB,l1,...,19,1A). DoptiontlOl is set to the value entered.

If DEMO 001 is pressed, or if only the TST key is pressed without pressing the
D)EMO key at all, a moving test display results, with target positions being

updated in a fairly realistic way each scan by updateo. If DEMO 01,...,DEMO

OB is pressed, a fixed prestored demonstration scenario is displayed on the

screen. If DEMO 11,..., DEO IA is pressed, an FAA-defined encounter is
displayed, with target positions being updated each scan by updat().

Care must be taken to initialize various paraneters and arrays each time
a different test display is selected. The CrAt functions have some

past-history memory, and without reinitialization, non-related data sets would
he thought to be related. This is where the teu() parameters "canned" and
.. olddemo" are used. "Canned" can take on three values; = real data,

1 = movin, test iata, 2 = fixed demonstration scenario or FAA-defined
: ,icounter. "iddm" is set to doption 1 101 showing what demo scenario, if

any, was used last scan.

AlI data tor tii moving test display and the fixed demonstration
ceienarios Is stored i the tile tables.c. Teutst[contains own aircraft

header int.ornt ici ,li ,wtid 1v data for eight aircraft used for the moving
test [itt. T ;hr , iin,, t zel I, and dotts[I contain information for tile

ixt'd t,.t datr . lhi4 i, wc1 I expLailed in the tabLes.c listing. -X I data

tor the V\A--det liti' *nc-, otrs is stored in the ti le taatl Im.c.

$2

r

AD-A136 392 AIRBORNE INTELLGENT DSPLAY (AID) PHASE ISOFTWARE
DESCRIPTION(U) MASSACHUSETTS NS OF TECH LEXINGTON
LNCOLN LAB A C DRUMM ET AL 24 0C 83 ATC-123

UNCLASFE DO/A/M8/0F9288--02FG92

EEohEohEEEmhEE
mhhhmhmmhhmhl

mommoomommEND

Li 13 2 .
3 6

1 1.25 11111.4.
u111 3

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAUI Of STANDARDS Iq63 A

The teu() code checks to see if test data is being used. If so, and if
no demo was selected (if moving test data is being used), and if this is the
first time moving test data is being used, the aircraft data array acdll is
loaded with the moving test data. If a fixed demonstration scenario was
selected, acd[i is loaded each scan with the data corresponding to the
scenario, regardless of whether it was already loaded the previous scan. If
an FAA-defined encounter was selected, acd[I is loaded with initial encounter
data in the routine initfaaO. Whenever a demo is selected that differs from

the previous demo, the used[] array is reset.

Finally, tproc() is called to process the acd[j data. Following trpoco,
if moving test data or an FAA encounter is being used, update() or updato) is
called to update it.

4.3.4.4 Functions Called by the TEU Task

There are 31 functions associated with the teu) task. These are shown
in Fig. 4.3-4 and Fig. 4.3-5. Only those functions which need special
explanation will be covered in the sections which follow. Functions not
covered below are assumed to be adequately explained by comments in the
program listings.

4.3.4.4.1 The Main TEU Processing Function tproc()

Tproc() basically directs the program flow through thirteen different
routines (see Fig. 4.3-4) in order to set up a single frame for the display.
A brief description of each of these routines is given in Fig. 4.3-5. They
handle such tasks as setting up messages displayed in the screen corners,
determining what aural alerts to sound, setting up 'no bearing' blocks for
targets without valid bearing information, doing the calculations connected
with autoscaling, determining which targets to display and where to place the
target symbols and altitude tags on the screen. There is one exception to the
standard tproc() execution sequence. It occurs in playback mode when a
special 'title frame' data block is sent instead of the regular TEU aircraft
position information (see note in Fig. 4.3-3). In this case, a one-line title
is displayed on the screen, and the normal processing initiated by tproc() is
bypassed.

Pause statements appear throughout tproc() to allow higher priority tasks
to run if necessary. There is a provision made in function tgt() to check to
see if data from the next scan has arrived while data from this scan is still
being processed. If so, the processing is lagging, and the queue which sends
graphics data blocks out to the service processor is flushed. The service
processor will have already received the begin frame message for this scan,
but It will not receive the corresponding end frame. This causes the service
processor to ignore all of the data for this scan. The effect is a temporary
drop in the screen update rate from one second to two seconds. This
guarantees that queues will not severely back up, which in a worst-case
situation could cause the display to freeze.

88

4.3.4.4.2 Update()

If the user has elected to display moving test data, update() is called
once per scan, immediately following tproco, to update the aircraft position
information. The intent is to cause the test targets to move somewhat
realistically across the screen, with target color changing in an appropriate
way and aural alerts being sounded.

When the moving test display is first selected, or whenever it is

reselected following another mode of operation, tproc() initializes the
aircraft data array acd[J to teutstiJ. Teutst[J contains initial data values
for own aircraft and eight other aircraft.

Each scan, the system time is updated. If the current time (elapsed time

since the start of moving test data mode) is greater than "maxtim" seconds,
acd[J is reinitialized and the sequence begins again. This reinitialization
is no longer necessary and could be removed, because target movement, as

currently done, could continue indefinitely.

After the time update, target information for each of the eight aircraft
is updated. (Position information for own aircraft (i.e., altitude) never

changes.) An 8-byte array, rarray[], is used in the updating process, each
array element corresponding to one of the eight aircraft. Rarray[J is zeroed
initially, signaling that the range for each target is to be decremented by
"cr" each scan. Whenever an aircraft's range becomes negative, the rarray
entry for that aircraft is set to I to cause the range to thereafter be
incremented each scan. At the same time (at range cross-over), the aircraft

bearing Is changed by 180 degrees. This effectively causes the target to
approach own aircraft from one side, pass directly above or below, and depart
in the opposite direction. Whenever an aircraft's range is less than 1.0 rum,
its color is set to red and an ivsi command is set. When an aircraft's range
is between 1.0 and 1.5 nm, the color is set to yellow; upon transitioning from
white to yellow, the aural alert "traffic" is annunciated.

4.3.4.4.3 Oalt()

Oalt() is called each scan to display own aircraft altitude if absolute
altitude mode has been selected. The function is non-trivial only because the

dunits array for allocating space on the screen must be updated whenever the
altitude text appears for the first time or disappears. The altitude text is
displayed in the lower left screen corner. In deciding how to update
dunits[H, it is necessary to know how many 'no bearing' blocks are being
displayed on the left screen side.

The left screen side is divided into six rectangular areas (see
Fig. 4.3-6(A)) These areas, when used for text, display (from top to bottom):

(L) time-of-day, (2) no bearing block 1, (3) no bearing block 2, (4) no
bearing block 3, (5) no bearing block 4, and (6) own aircraft altitude. The

basic idea for updating dunits[I is that if two or more adjacent rectangles
are available for target display, tile corresponding elements of dunits[I will

89

I g

X I-
I~I

F w x

100

cmI

be set for target display. However, if a single rectangle is available for
target display, this is not really enough space to be of use, and the elements
of dunits are set to be unavailable for target display.

The code is as follows: If own aircraft altitude is to be displayed, and
if it was not displayed last scan, dunitstI must be updated to reflect a

smaller display area. If 0,1, or 2 'no bearing' blocks are being displayed,
simply redo the part of dunits(J that spans the lower left corner (see

Fig. 4.3-6(8)). If 3 'no bearing' blocks are being displayed, only one

rectangle is available for display (Fig. 4.3-6(C)). This is not enough. Redo

dunitsiJ to show that none of the rectangles are available for target display
(Fig. 4.3-6(D)). If 4 'no bearing' blocks are being displayed, the oalt block
has already been declared unavailable in the brg() function, so no change to
dunitsij is necessary at this time.

If altitude is not to be displayed, and If it was displayed last scan,
dunitsl must be updated to reflect a larger display area. A similar
procedure is followed as before. If 0, 1, or 2 'no bearing' blocks are being
displayed, simply redo the part of dunitsil that spans the lower left corner.

if 3 'no bearing' blocks are being displayed, free the last two rectangles
on the left side (Fig. 4.3-6(E)). If 4 'no bearing' blocks are being
displayed, only one rectangle is available for display (Fig. 4.3-6(F)). This

is not enough. Leave dunitslj alone (i.e., Leave it with all rectangles
unavailable for target display as in Fig. 4.3-6(0)).

Note: A similar procedure is carried out in function unitso, called
when the 'no bearing' blocks are set up.

4.3.4.4.4 Order()

Order() is called whenever there are more targets available than can be
displayed, as long as priority information is available to do the ordering.

The TEU-associated functions always process the first "ntgt" targets in the

acd array ("ntgt" - number of targets selected by the keyboard, default - 8).
Therefore order() does not need to produce a priority-ordered acd[J array,
only one in which all of the "ntgt" highest priority targets are within the
first "ntgt" acd entries.

The approach is to first divide the acd array into two sections. When
order() is finished, the first section will contain the "ntgt" highest

priority targets; the second section will contain the other targets. Two
pointers are used: "I", which is initialized to 0 to point to the first

section, and "index", which is initialized to point to the second section.
"i+9" and "index+9" are used to skip past the first 9 bytes of the acd array.

These 9 bytes contain own aircraft header information, not target information.

Order() simply starts with the first acd entry and loops "ntgt" times
through the acd array. Each time a target priority is less than or equal to

"ntgt", it is left alone. Each time a target priority is greater than "ntgt",

it switches places with the first target it comes to in the second section
whose priority is less than or equal to "ntgt".

91

4.3.4.4.5 Trigger()

Trigger() is called to do event-triggered processing. If event-triggered

mode has been selected, proximate aircraft are displayed only if a threat or
prethreat is currently being displayed or has been displayed within the last
TTIM (currently 8) seconds. Triggero) loops through all targets to see if
there is a threat or prethreat. If so, the trigger counter "trgct" is set to
TTIM. This counter is decremented once per second in teuO) when an entry is
received in the timteu queue. If there are no threats or prethreats and
"trgct" has timed out, "tsize" is set to 0, which causes the TEU functions to
process no targets.

There is a special 'surveillance' mode which takes precedence over and

essentially negates trigger mode. If the SURV key has been pressed on the
keyboard, all targets within 5 nm are displayed. A check is made at the
beginning of trigger() to determine if surveillance mode is in effect. If so,
the checks for threats and prethreats described above are bypassed.

4.3.4.4.6 Callup()

Callup() is called to do extended range or call-up processing. Extended
range mode is in effect for CTIM (currently 15) seconds each time the EXT key
is pressed on the keyboard. In this mode, if threat-triggered mode is also in

effect, show proximate aircraft to 4 nm even if there are no threats or
prethreats being displayed. (This would undo the "tsize" = 0 setting in
order() above.) If continuous mode is in effect, extend the display range for

proximate aircraft (show proximate aircraft to 4 nm instead of 2 nm).

The surveillance mode described in trigger() above also take precedence
over callup mode. If the SURV key has been pressed on the keyboard, all
targets within 5 nm are displayed. A check is made at the beginning of
callup() to determine if surveillance mode is in effect. If so, callup() is

not executed.

4.3.4.4.7 Units()

Units() alters dunits[J to reflect a change in the available target
display area due to a change in the number of 'no bearing' blocks being
displayed. Units() is called by brgo, the function which sets up 'no
bearing' text blocks for targets with invalid bearing. In altering dunitsjj,
it is necessary to also check whether the time-of-day message is being

displayed in the upper left screen corner and whether the own aircraft
altitude message is being displayed in the lower left screen corner. See
Section 3.4.4.3, oalt(), for a similar description of how dunits[j is altered.

4.3.4.4.8 Psf()

The function psf() does preliminary scaling factor calculations, when
necessary, in order to determine the screen display range, "dr".

92

, !

In order to correctly position targets on the display screen, it is

necessary to convert from target range, bearing units to screen x,y

coordinates. The keyboard RNGE option determines in part how this conversion
is done. If the auto-scaling option has been selected, psf() must first

determine "dr", the range to display. If the fixed range only option has been
selected, psf() simply sets "dr" equal to the selected range. In both cases,
"dr" is then used to compute a scaling factor "sf" which scales all aircraft
ranges for display.

Determination of Display Range

The AID software was designed to allow own aircraft to be positioned at
any point on the display screen. In the current system own aircraft is
centered on the screen horizontally, but located about 1/3 of the way up from

the bottom vertically ((512,240) on a virtual screen of (1024,768)). When a

user selects a fixed range, this range corresponds to the distance from own
aircraft position to the bottom of the screen, i.e., the range at 1800, the
direction of least visibility.

When the auto-scaling option is selected, a display range must be

determined which allows all threats and prethreats to be visible. This is
done by means of the 256-element array dunitsil. (Target bearing LSB= 360/256

degrees.) Each array element gives the number of available display units from

own aircraft position to the screen edge corresponding to that bearing. Thus
at 0* there are 768 - 24) = 528 available units; at 90', 1024 - 512 - 512
available units; at 1800, 240 available units; and at 270, 512 available

units. Note that when text strings exist around the edges of the screen, the

dunits(iJ values are reduced so that targets will not overlay the text.

The procedure to compute the display range is as follows: For each
target, use target bearing as an index into the array to get available units.

Divide the number of units by the target range to form the units/nm ratio
necessary if the target were to lie at screen's edge. After this has been

done for all targets, select the smallest ratio. This is the number of units
which must equal one nm if all targets are to fit on the screen.

However, there is an additional constraint. The range selected (1800

range) must be an integral number of nautical miles (2,3,4,...,8 with 2 being

the smallest allowed). Therefore divide the 180* available units by the ratio
(units/nm) just selected to get the range (nm) in the 180* direction. Round

this up to be an integer. This is "dr", the display range to be used.

Calculating the Scaling Factor

Once the display range "dr" has been determined, or if a fixed range has
been selected, or if all targets are within 2 nm (in which case "dr"-2), the

scaling factor "sf" can be calculated. "sf" - 1800 available units/"dr". All
target ranges are then multiplied by "sf", and the radius of the 2-nm range

ring is 2 * "sf".

93

L

Example

Abbreviated Array

element bearing(degrees) available units
S 0 0 528

I 32 45 735
64 90 512

128 180 240
I 192 270 512

units final

ratio -radial distance
nm in units

target 1 5 nm 450 735/5 - 147 240
target 2 9.2 nm 00 528/9.2 f 57.39 441

target 3 .5 nm 900 512/.5 = 1024 24

Smallest ratio is 57.39 units/nm, i.e., 57.39 units - I nm for all targets to
fit on the screen. Divide 180* available units by 57.39.
240/57.39 - 4.18 nm = range in 1800 direction. Round up to get display range
DR - 5 nm, and SF - 240/5 - 48 units/nm.
Radius 2-nm range ring is 2*SF = 96 units.
Target I range is then 5 nm * 48 units/nm - 240 units.
Target 2 range is 9.2 * 48 - 441 units.
Target 3 range is .5 * 48 24 units.

4.3.4.4.9 TgtO

An important feature of the AID is that target altitude tags do not
overwrite text or target symbols or other tags. Altitude tags way be

positioned in any of four directions relative to the target triangle: top,
right, bottom, or left. In addition, whenever possible, tag direction will
not change from one scan to another. The result is a high level of screen
clarity and readability. In order to accomplish this, in positioning
altitude tags, one must keep track of the position of all previously placed
target symbols and tags. This is done by means of the used array. Used[I is
a two-dimensional array that stores information for up to 8 targets, with 8

fields per target: x,y coordinates of the center of the target triangle; x,y
coordinates of the lower left corner of the altitude tag; new target flag;
offscreen target flag; color (white, yellow or red); and most recent tag

position (top, right, bottom, or left). There is also a row (the first row)
for storing own aircraft chevron position information.

Target triangles are placed as accurately as possible, with overwriting
of other triangles allowed. Tags, however, are positioned if possible to be

in the clear.

94

Tgt() consists mainly of two loops through all of the targets. In the
first loop, all target triangle positions are calculated and stored in the
used array without regard for overlap. In the second loop, calls are made to
function tag() to calculate altitude tag positions and store them in the used
array. Each time tag() is called, it attempts to position an aircraft's
altitude tag so as not to overlap any of the target triangles or any of the
previously placed altitude tags. Tag() attempts first to place the aircraft's
altitude tag in the same relative direction (top, right, bottom, left) as in
the previous scan. Failing this, it trys the next direction clockwise. If
all four directions fail (i.e., if the altitude tag cannot be placed in the
clear), the top direction will be chosen as a default.

4.3.5 The Service-Processor Input Task and Interrupt Handler

The service-processor input task, spinto, receives two types of logical
messages from the service processor via the interrupt handler: a "switch"
message indicating the setting of the mode switch, and a "poke" message which
is used to indicate to the user processor that the service processor is
operational. In the current version, spint() expects only one logical message
per transmission from the service processor and sends an acknowledgement
message back for every message it receives.

4.3.5.1 The Service-Processor Input Task (spinto)

The spint() task is constructed as an infinite loop. Each time it is
awakened, it checks to see if a message has come from the interrupt handler
via the spispi queue. If there is no message, the task merely suspends itself
again. If there is a message, it clears the first byte(s) of its input
buffer, and then reads the message from the spispi queue into the input
buffer. (The first byte(s) are cleared to effectively remove any previous
message in the input buffer.) If the message is a mode switch message, it is
sent to the TEU task via the spiteu queue, and the TEU task is awakened tu
notify it of the receipt of the message. This is the only type of message
that is currently checked.

Then, for every message received, an acknowledgement message is sent back
to the service processor, via the spispo queue and the service processor
output routine, spoutto. The service processor will not send another message
until the last one is acknowledged - this protocol simplifies the interrupt
handler by allowing it to be singly buffered. In addition to sending the
acknowledgement message, spint() also sets a flag to indicate to the output
routine that a message has been received. This is only really significant on
the first message from the service processor.

After processing the input message, spint() again checks the input queue

for messages and continues its infinite loop.

4.3.5.2 The Service-Processor Input Interrupt Handler (spiho)

The slave processor is configured to be interrupted for every byte sent
to it from the service processor. For this reason, unlike the service
processor, it must distinguish in software between the first byte of a message

95

' .

and its subsequent bytes. It does this by maintaining a flag called ioinp,
which is cleared initially. Whenever an interrupt occurs, after saving the
registers, the interrupt routine checks this flag and does one of two
different things. If the flag is cleared (the else clause), the byte input is
the first byte, which, in the transmission format established for service/user
processor communication, is the byte count for the message. The count is

saved and also stored as a temporary counter. The address pointer is
Initialized to the start of the input buffer and if the byte count is
non-zero, the ioinp flag is set.

Once the flag is set, subsequent interrupts cause the input bytes to be
stored in the input buffer until all the bytes have been input. When the

entire message has been received, the ioinp flag is cleared and the input is
sent to the spinto) task via the spispi queue.

4.3.6 Service-Processor Output Task and Interrupt Handler

The service-processor output task, spoutto, receives data from three
queues - spispo, audspo, and graspo. It merges these data into a double-
buffered output array and calls the interrupt handler to start the
transmission. A maximum of 255 bytes can be transferred at one time to the

service processor; if the combined input from the queues is more than 255
bytes, spoutto) will make more than one call to the interrupt handler, until
all the queues have been emptied. The logic of spoutt() has been set up to
take one message at a time from all the queues instead of emptying one queue
before going to the next. This was done so that an audio message would not
get backed up behind a long string of graphic messages.

4.3.6.1 The Service-Processor Output Task (spoutto)

After waiting for the initialization task, spoutt() initializes the
counts of its double buffers, resets the pointer to the buffers, and clears
the I/0 flag. It initializes an array of pointers to the input queues and
gets the value of the auxiliary control port, which has been set in the INIT
task. This is done because the interrupt handler must set and clear one bit
of this port without changing the other bits. After its initialization is
complete, spoutt() waits until the first message from the service processor is
received before it sends anything.

After the first message has been received from the service processor,
spoutt() enters an infinite loop in which it checks its input queues and if
nothing has been input, it suspends itself. If there is an entry, it enters a
do-while loop which continues until all the input has been processed. The
input is processed by extracting one message at a time from each queue which
contains an entry. The messages are added to one of the output buffers until
either the output buffer Is filled or all the messages have been extracted.
This output buffer is sent to the interrupt handler by the call to spout(b)
and then the buffer pointer is switched to the other buffer. The double-
buffering technique allows one buffer to be transmitted while the other is
being filled in preparation for transmission.

96

There is one condition that requires special handling by spoutto. It is
the selective transmission of messages based on the setting of the Bendix
front panel mode switch. The mode switch has three 'on' settings. They are
weather radar only, combination weather radar/AID, and AID only. In general,
regardless of switch setting, tasks within the user processor function as if

audio and video data blocks are always to be sent to the service processor.
In actuality, the data blocks are always sent as far as spoutto. Then
spoutto, with the help of the teu() task, determines which audio and video
data blocks should be sent on to the service processor. Audio data blocks in
response to keystrokes are always sent. Target-related audio and video data
blocks are sent always in AID only mode, never in weather radar only mode, and
sometimes in combination mode.

In more detail the process is as follows. Each time there is a change in
the front panel switch setting, the service processor sends this setting to
the user processor. It ultimately is passed to the teu() task where it is used
by the modeck() function. Modeck() is called once per scan before any audio
or video data blocks are sent to spoutt() for this scan. Hodeck() sends a
'user mode switch' data block to spoutto. The user mode switch has one of two
settings: AID only or weather radar only. If the front panel setting is AID
only, the user mode switch setting will be AID only. If the front panel
setting is weather radar only, the user mode switch setting will be weather
radar only. If the front paneL setting is combination mode, the user mode
switch setting will be weather radar only except when one of the following
conditions is met: (I) there is a threat or prethreat to be displayed, (2) a
threat or prethreat has been displayed witaiin the last 8 seconds, or (3) the
EXT key has been pressed on the keyboard. If one of these conditions is met,
the user mode switch setting is AID only.

When spoutt() recognizes a user mode switch message in its input data
stream, it uses this to set its internal flag "uswitch". Thereafter, whenever
there is an entry in one of spoutto's input queues, spoutt() uses "uswitch"
to decide whether to flush the entry or to send it on to the interrupt handler
for transmission to the service processor. If "uswitch" - weather radar only,
the entry will be flushed. If "uswitch" - AID only, the entry will be sent
on. Regardless of "uswitch" setting, three message types are always sent to

the service processor. They are the scale message, slave acknowlege message,
and user mode switch message.

4.3.6.2 The Transmission Startup Routine (spout(b))

Spout(b) is used by the spoutt() task to start the transmission of a
message to the service processor. It is called with the pointer (index) of

the buffer to be output and has the facility to retransmit a message if a
transmission timeout occurs. This was included because the service processor
Is interrupted only on the first byte of the message and if that interrupt is
missed for some reason, the message must be retransmitted from the start.
Thus, if spout(b) is called by spoutt() and I/0 is still in progress, spout(b)
waits until it is awakened either by a timeout or by the completion of the
I/0. If the timeout occurred, the previous message is retransmitted.

97

' I

If the last message was transmitted properly, any pending timeout
messages are cleared and then the byte count of the current message is
checked. If the byte count is not legal, spout(b) merely returns, thus
ignoring the message. If the byte count is okay, it then prepares to set up
the transmission. Interrupts are disabled at this point because the alternate
register set, used by the interrupt handler, is set up during this time. A
spurious interrupt would cause the set up to be erroneously done.

The alternate registers are used for the output interrupt handler so that

this interrupt can be handled as fast as possible. The hardware of the user

processor is set up so that the service processor is put into a wait state
each time it tries to input a byte from the user processor and remains in the

wait state until the interrupt routine in the user processor outputs the byte.
The use of the alternate registers allows the interrupt routine to save and
restore the state of the machine as fast as possible in the Z80.

Register C is set to the output port address, register B is set to the
byte count, and HL is set to the address of the byte to be output. This setup
allows the interrupt routine to use the OUTI instruction. Next the byte count
is output to the transmission port and then bit 7 of the auxiliary control
port is set, which causes tne service processor to be interrupted. (See

Sierra documentation.)

After the transmission has started, spout(b) requests a timeout message
from the timer task and if not a transmission, returns to the spoutto) task.

4.3.6.3 The Service Processor Output Interrupt Handler
(spoh())

The interrupt routine switches to the alternate register set, which has
been initialized by the startup routine, spout(b). Register A is output to
the auxilary control port to make sure that the service processor is
interrupted only on the first byte. (Register A had been left by spout(b) to

contain the proper value to be output.) Next the Z flag is tested to
determine if the transmission is ccnplete. (Note that the OUTI instruction
will set the Z flag when the byte count goes to zero.) If there is more to

do, it outputs the next byte using OUTI and returns. If the transmission is
done, it clears the I/O flag and wakes the output task, spoutto.

4.3.7 The Timer Task (stimo) and Interrupt Handler (ctc())

Stim() and ctc() together provide interval timing for tasks within the
user processor. They also maintain a one-second timer, "sectimr', which is a
global parameter that may be referenced by other tasks.

The slave single-board computer contains a chip that supplies four

counter-timers. It is initialized in init() to produce an interrupt every
62.5 milliseconds. When this interrupt occurs, control is passed to the
interrupt handler, ctco, which simply places a one-byte dummy message into
the timtim queue and wakes the timer task, stimo.

98

In addition to being awakened by ctc() at regular intervals, stim() can
be awakened by a task wishing to initiate or halt a timer. Stim() maintains
an array tcount[l, each element of which serves as a timer for one of the

user-processor tasks. A task initiates a timer by loading a delay count into
its timer output queue and waking the timer task. The delay count is from I
to 255, with each count = 62.5 mseconds. Stimo, when awakened, places this
delay count into the task's tcount[I entry. Thereafter, each time stim() is
awakened by ctco, it will decrement each active tcount[entry. When a count
reaches zero, the corresponding task is sent a message in its timer input
buffer, the task is awakened, and the timer is deactivated (set to -I). A
task may stop its timer at any time by sending stim() a -1 count.

Stim() first checks three queues for input: initim, teutim, and spotim,
from tasks inito, teuO), and spoutto, respectively. If an input is present,
it is used to update the tcount[H array. Next stim() checks for an entry in
the timtim queue, signalling a 62.5-msec wake-up from ctco. If an entry is
present, all active tcount[J entries are decremented. Tasks whose timers
time-out are sent a one-byte message and awakened. Finally, stim() increments
"sectimr" every 16th ctc() wake-up, to keep elapsed system time since
power-up, Isb = I second.

99

5.0 THE AUDIO RECORDING AND AUDIO RAM LOADING FUNCTIONS

A program has been written to facilitate the recording of spoken words
and phrases and generated tones. Another program was written to store the
generated data into audio RAM banks in the AID system during its initial
program load sequence.

The audio recording program is formed by linking the following
relocatable files using indirect command file LZBLD.CMD:

AUDBLD.R
AUDCOM.R
AUDREC.R
AUDBITS.R
CT.Z
MT.Z
CHDR. Z

The first four are application files; CT.Z and MT.Z are C-compiler libraries
which provide console and disk I/0 interfaces; CHDR.Z provides the call/return
interface between the CP/M operating system and the initial C-function,
maino.

The audio recording program provides a menu-driven interface for the
operator. It interfaces to the Continuously Variable Slope Delta Modulation
(CVSDM) audio recording and playback S-100 boards. It is also capable of
processing previously recorded data contained in a floppy disk input file and
of storing old or newly recorded data in an output disk file. Input file
entries and newly recorded data may be annunciated, edited, bypassed or output
to the output file. Thus, the entries in a previously recorded audio file may
be deleted, edited or passed on to the output file. In addition, newly
recorded entries may be inserted between previously recorded entries in the
output file. A provision is also present for quickly bypassing N records of
the input file. Finally, a capability is present for synthesizing audio tones
of operator-specified frequency and duration.

The input and output data files contain variable-length records. Each
record consists of a fourteen-byte header and a variable-length (4095 bytes
max) data array. The record format is specified using the C "union" and

"struct" data structures as follows:

union{
struct(

int entpres
int lngth
char audnam[10]
char auddat(40961

}audent
char filrec[l]

}un -0

100

Parameter "entpres" is used simply to verify that a valid entry is present.
"Lngth" specifies the length of the audio data stored in array "auddat[".
Array "audnam[]" contains an operator-selectable name for the recorded
audio. Array "filrecl]" overlays the "audent" data structure and provides a
means for easily moving records.

The linked output from LZBLD.CMD is downloaded to the Z80 software
development facility and converted to a COK file. It is then renamed to
AUDBLD.COM. The program is run by operator command:

A> AUDBLD F1.T F2.T

where F1.T is the input audio data file and F2.T is the output file (any file
names may be substituted). Both files must be specified. If no input data is
available, a dummy F1.T file should be specified. A "null" file, F3.T, is
present on the floppy disk. It may be used to clear a data file, as follows:

A> PIP FI.T - F3.T

Note that a program calling arguments can't easily be run under the ZSID
debugger. When debugging, the conditional compile flag "FIXED" in file
AUDBLD.C should be set. The program will then automatically use FI.T for
input and F2.T for output without specifying them as arguments in the call.

5.1 The Audio Build (AUDBLD.C) File

This file contains the main() function, which is the first function run
in any C program (called by CHDR.Z).

The main() program opens the input and output files, presents the
operator with prompts for selecting program operations and then closes I/0
files when the program terminates.

The first operation performed is to open the I/0 files. Depending on the

setting of the conditional compile switch "FIXED", these files may be operator
specified in the program initiation statement or the pre-specified files FI.T
and F2.T. In the former case a test is made to make sure the operator
specified the correct number of files (two).

A set of prompt statements are then output to the operator informing him
of the options available. They include: "R", record new data, "I", input
next record from input file, "B", bypass N records in input file and "Q",
quit - return to CP/M. The program proceeds, based upon the operator
response. After each operation has been performed, the operator is again
presented with the options menu.

If the operator chose to record new data, the record() function is called.
If (s)he chose to input a record, the inputo) function is called. In this
case the function returns a one if a record is present. The operator is then
prompted to determine if the record should be sent to the output file or

101

IL1

ignored. If it should be output, the output() function is called. If input()
returned a zero then no more entries exist in the input file. The operator is
so informed.

If the operator chose to bypass input records then (s)he is prompted to
specify the number to bypass. That number of records are then input (by
calling function inputo) automatically. Note that function input() displays
the name attached to each record as it is read. If less than the specified
number of records exist in the input file, the operator is so informed.

The operator may also choose to quit, in which case the I/0 files are
closed and control is returned to CP/M. Finally, if the operator enters an
illegal response (s)he is so informed.

5.2 The Audio Communication (AUDCOM.C) File

This file contains the functions that input/output audio data records
from/to the disk and communicate with the console and annunciator card.

5.2.1 The Disk Input (input()) Function

This function inputs an audio record from the input disk file and sends
its identifying character string to the console. Upon operator direction it
then sends the recorded audio to the annunciator card where it is annunciated.
The function returns a one if a record was found, a zero if none was present
(the last record had been read) and a two if the record could not be read.

The first operation performed is to read the record header from the disk.
The length of the record's data area may then be used to load the data. If
either of these reads fails, the operator is so informed and the function
returns a two. Next, the function sends the record's name and size to the
console. The operator is then prompted to see if the data should be sent to
thc annunciator. Note that this operation is bypassed when the operator has
chosen to bypass N records. The function returns a one when a successful
record read has been accomplished.

5.2.2 The Audio Annunciation (annun(audptr, audlng)) Function

This function sends audio data to the annunciator card and activates the
annunciator. The data to be sent starts at address "audptr"; "audlng" bytes
are sent.

The first operation performed is to reset the annunciator card. This is
accomplished by outputting a byte (any byte) to port OX4F. The "audlng"
bytes, starting at "audptr" are then output using the otir() function to
perform the actual transfers. This function uses the fast block move Z80
instruction "OTIR" for this purpose. Port OX4D is used. Since otir() may
move a maximum of 256 bytes at a time, multiple calls may be needed. Finally,
the annunciator is started by outputting a byte (any byte) to port OX4E. The
function then returns.

102

2dk

5.2.3 The Disk Output (outputo) Function

This function outputs the record currently stored in union "un" to the
output disk file.

The first operation performed is to inform the operator of the size of
the record to be output. The record is then output. If the output operation
fails the operator is so informed and is asked if another attempt should be
made.

5.2.4 The Operator Prompt (prompt(msgptrretflg)) Function

This function outputs the ASCII string pointed to by "msgptr" to the
console. If "retflg" is one, it waits for the operator to press a key. If

the key entered is a Iy the function returns a one. If the entered key is an
IN' it returns a zero. Entering any other key causes an error prompt to be

sent to the operator. If "retflg" is zero the function simply returns after

outputting the prompt.

The first operation performed is to send the message pointed to by

"msgptr" to the console. Note that C library function lenstr() is used to
determine the length of the string.

If a response was requested ("retflg" non zero) then a character is input
from the keyboard. Note that the C library function getch() is used and that

a loop is needed to "fix" it. The loop removes any left over line feed (OXOA)

characters from the input buffer.

The character received is tested to see if it was a '' or an 'N'. If it
was, a one or a zero, respectively, is returned. Otherwise, an error message

is sent to the operator. The function will not return until a legal key is

pressed. However, the error prompt is output only once.

5.3 The Audio Recording (AUDREC.C) File

This file contains the functions required to record and edit audio data.
It also contains the function that generates a tone record.

5.3.1 The Audio Record (recordo) Function

This function supervises the recording of data received from the CVSDM
card, the editing of the data, its playback by the annunciator and finally,
its output to the output disk file.

The CVSD card always records 4095 bytes of data (about 1.6 seconds of

speech). Z80 assembly language function getaud() inputs this data and

stores it in array crsddat[]. The data in this array may then be edited

(i.e., starting and ending bytes may be specified) by manipulating pointers
"strptr" and "endptr". When the operator is satisfied with the results, the

edited data may then be copied into the file record buffer un.audnet and
output to the output disk file.

103

-tL- I I I.. ..

The first operation performed is to compute starting (stradd) and ending
(endadd) address for the cvsddat[] array. Then the operator is sent a series
of prompts specifying the options available. These include: "S", start
recording, "T", generate a tone, "E", edit, "P", playback, "0", output a
record and "Q", quit.

When the operator presses "S", the getand() function is called and audio
data is recorded and placed in cvsddat[]. Flag "recflg" is set to indicate
that audio has been recorded, the start and end pointers, "strptr" and
"endptr" are initialized to "stradd" and "endadd", respectively, and the

function redisplays its options prompts.

If the operator presses "P", the recorded data is played back through the
annunciator. The "recflg" is checked first to make sure recorded data is

present. If it is not, the operator is so informed. The function's option
prompts are then redisplayed.

If the operator presses "E", the "recflg" flag is checked. If it is zero
it means that no data recorded using the "S" option exists in un.audent.

However, it may contain a record received from the disk input file. This data
will then be edited and the operator is so informed. Start and end pointers
"strptr" and "endptr" are set and the data is read from un.audent to
cvsddatf). Flag "recflg" is then set, since "recorded" data now exists in
cvsddat[j and the edit function edit() is called. When edit() returns, the
record() function's option prompts are redisplayed.

If the "recflg" flag was set when "E" was entered, then edit() is called
directly.

The operator may also enter "T" to record a tone. In this case "recflg"
is set and the tone() function is called. When it returns and the options
prompts are redisplayed. Note that a tone record may also be edited.

Once a new record has been satisfactorily created it may be output to the
output disk file by pressing "0". This operation tests "recflg" to make sure

a new record exists. If one doesn't the operator is so informed. If one
does, the audout() function is called to output the record. The options
prompts are then redisplayed.

Finally, when the operator has completed recording operations (s)he may
return to the main menu by pressing "Q".

5.3.2 The Audio Output (audouto)) Function

This function builds an audio record in un.audent from data in array
cvsddat[J and the audio namerag supplied by the operator. It then outputs

the record to the output disk file.

104

The first operation performed is to get the audio nametag from the
operator and store it in the record header. The tag can be up to nine
characters in length. Next the "Ingth" and "entpres" fields in the header are
set. Then the audio data in array cvsddat[I is moved to the record's auddat[]
array. Finally, the outputo) function is called to output the record to the
output disk file.

5.3.3 The Audio Editing (edito) Function

This function displays the current start and end indexes for the audio
data in array cvsddatf). It then requests index changes from the operator.
Finally, it checks to see that the end index is greater than the start index.
If not, it re-requests index values.

The first operation performed is to compute cvsddat[] array indexes
"stridx", "endidx" from pointers "strptr", "endptr" and cvsddat[] start
pointer, "staadd". It then displays these indexes on the console.

The operator is then prompted to input, if desired, a new start index and
end index. These values are then tested to be sure they do not exceed 4094.

A test is then made to insure that the end index is not less than the start
index. Finally, new start and end pointers to the cvsddat[j array are
computed and the new data size is displayed on the console. The function then
returns.

5.3.4 The Tone Generator (tone()) Function

This function generates data bytes in edit file cvsddat[] representing a
continuous tone, as specified by the operator. The operator is prompted for
tone frequency and duration. The data space after the tone is filled with
zeros (silence).

The first operation performed is to prompt the operator to input the tone
frequency. If the value specified is out of range (20 to 2000 Hz) the
operator is so informed. The operator is then prompted to enter tone duration
in tenths of seconds. Again, if the value input is out of range (0 to 16) the
operator is informed and prompted to re-enter the value.

The program then computes the number of 19.7 kHz (the sampling rate)

samples in a half cycle of the tone and the number of samples in the tone's
duration. Note: Tone duration was limited to 1.6 seconds so that the total

number of samples would fit in a 16-bit, signed parameter "timidx" (16x1970 -

31520), thus avoiding the use of double-precision arithmetic. A tone
duration of 1.6 seconds is long enough for all applications. Some loop
control flags are then set before proceeding to the tone sample generation
loop.

Before the tone sample loop is started the operator is informed that
calculations are proceeding. This "human factors" prompt was found to be
necessary, since the loop takes a noticeable time to complete. The loop is
then entered.

105

"timidx" tone samples are generated and stored in bytes in array
cvsddat[I. An inner loop counts through the number of samples in each half
cycle of a tone. If amplitude flag "amp" is one, then ones are stored in the
bytes in cvsddat[J; otherwise the bits are left zero. Flag "amp" is toggled
after each half cycle of samples has been generated. When timidx is not
divisable by eight, a partially loaded byte remains. That byte is then output
to cvsddat[l.

The start and end pointers "strptr" and "endptr" are then set so that the
edit() function can be used to edit the tone data, if desired. Finally, the
remaining bytes in the 4K cvsddat(] array are zeroed. This produces a
"silent" period after the tone which may be "edited into" the record if
needed. The function then returns.

5.4 The Sample Bits Recording (AUDBITS.Z80) File

This function inputs audio sample bits from the CVSD audio recording
card, packs them into bytes and stores the bytes in array cvsddat[]. This
function also provides the sampling clock signal at a 19.7 kHz rate that is
needed by the CVSD card. This timing is dependent upon the execution time of
the major loop within the program, itself. In fact, certain statements are
included simply to adjust sample timing. The program is written in assembly
language and assembled using the AZ80.CMD assembler indirect command file.

The first operation performed is to read the start address for cvsddatf],
"staddd", into the DE register pair. Eight data bits will be shifted into a
byte within the sampling loop. A bit count of eight is placed in the C
register to control this loading operation. Next, the sampling loop is
entered and a CVSD card sample pulse-high is output. The audio data sample is
then input and shifted into the current byte (pointed to by registers DE) in
array cvsddat[|. The byte count in C is then decremented. If the current
byte has been completely filled, the bit counter is set back to eight and a
sample clock pulse-low is output. A check is then made to see if the end of
the cvsddat[] array has been reached (check DE against "enddat"); if it has,
the program returns. If it hasn't, the program delays a fixed number of
clock cycles and returns to the start of the sampling loop.

If the current byte has not yet been filled, some path delay instructions
are executed, a sample clock pulse-low is output, some more delay statements
are executed and the program returns to the beginning of the sampling loop.

Note that the timing in this program has been "fine tuned" to produce the
required 19.7 kIlz sampling frequency. Program changes could alter this timing
and cause the audio recording system to malfunction.

5.5 The Audio RAM Loading (AUDRAM.C) File

This file contains the functions required to load the previously recorded
audio data into the audio RAM banks. The AUDRAM.COM function is called as
part of the AID's initial program load sequence. If more than one 16K audio
RAN bank exists, then separate versions of AUDRAM.COM are called. Each
version is tailored to load a particular bank with its proper audio data.

106

5.5.1 The RAM Loading (AUDRAM.COM) Function

This function operates in two modes. If it is called with a file
specified as an argument, e.g.:

A>AUDRAM F2. T

then It will load the audio data bytes from the records in the specified file
into an internal 16K-byte array and then return to the CP/M operating system.
The operator may then save the new version of the program (with the 16K array

loaded) by entering:

A > SAVE III AUDRAM.COM.

This "loaded" version is then ready to be called as part of the AID's initial
program load sequence.

In the second mode, which runs when AUDRAM.COM is called without a file
specified in the call, it transfers the audio data bytes from the 16K internal

array to the specified audio RAM bank.

The first operation performed is to check to see if an input file was
specified in the program call line. An additional check is made to make sure

that only one file was specified.

If a file was specified, it is opened. The contents of the file are read
(minus the record headers) into array annunc[]. A check is made during this

process to make sure the array's 16K size is not exceeded. If it is, the
operator is so informed, the input file is closed and the function returns.

If the array size is not exceeded, the function exists normally by closing the
input file and returning.

If no input file is specified, the function moves the contents of
annunc[] to the specified RAM bank. This is accomplished in machine code

using the block move instruction, LDIR. Note that if the destination RAM bank

is the upper 16K of the master's RAM, then the move is straightforward with
destination starting address OXCOOO. However, if the audio RAM bank is one of

the 16K RAM banks on the 64K RAM board, then the on-board 16K bank must be

deselected and the off-board bank selected before the block move is performed.
The on-board bank is then reselected.

5.5.2 The Audio Record Input (inputo) Function

The AUDRAM.COM function must read records from the specified input file.
It does this by calling the input() function.

The first operation performed is to read the record's entry-present flag
and record-length field (the first four bytes). If this read fails, the

operator is so informed. It then checks to see if the file is empty or if no

records remain (entry-present flag not 'A'). If this is true, the function

returns a zero.

107

If the file is not empty the remainder of the record is read. If this
read operation fails, the operator is so informed and the function returns a
2. If the record read was successful, the function returns a 1.

108

APPEND[X A

All) Operating System

1 .0 iNTRoUCT[ON

The purpose of this appendix is to present a description of the system

executtive used in the AID master and slave single board computers. The system

executive to be described consists of two major components: a task scheduler

and a set of queue access functions. The scheduler initiates application

tasks on a priority basis in response to wakeups from interrupt handlers and

tasks. Messages are passed between tasks and between interrupt handlers and

tasks by means of circular queues. The queue access functions provide

standardized access to these queues. The task scheduler will be described

first, followed in later sections by a description of queue data structures

and queue access functions.

2.0 SCHEDULER

Task scheduler designs may ue grouped into two general catagories:

pre-emptive and nonpre-emptive. A task running under a pre-emptive scheduler

may be suspended if a task of higher priority is awakened by an interrupt

handler. This is important for systems in which data received by an interrupt

handler must be processed immediately by a task awakened by that handler.

Pre-emptive scheduling may also be necessary if the data rate is such that

there is the possibility of data being overwritten before it can be processed.

This problem can sometimes be solved by double buffering the data either in

hardware or in software.

By contrast, a task running under a nonpre-emptive scheduler may not be

pre-empted (that is, suspended) even though a task of higher priority is

awakened. Except for interrupt servicing, the running task has control of the

computer until it suspends itself. In systems using non pre-emptive

scheduling it is necessary for tasks to cooperate in using processor bandwidth

by limiting the amount of processing performed between voluntary suspensions.

This is not a serious limitation in many real-time applications in which

timing requirements are not too critical. A significant advantage is that it

considerably simplifies the scheduler design and therefore reduces memory and

execution time requirements.

Another major advantage of nonpre-emptive scheduling is that it reduces

the possibility of inconsistent data being passed between program components.

Presumably, a task will complete the output (or input) of an entire data

message before voluntarily suspending. By contrast, a task running under a

pre-emptive scheduler may have processed part of the data in a message when an

interrupt handler causes a higher priority task to run. This task might

change the content of the message that was being processed by the original

task. A data access lockout mechanism must be implemented to avoid this

problemI .

Trhe use of queues to pass alt data between program components also reduces
the possibilitv ot this type of error, since new data does not overwrite old

data until the space has been released.

A-I

An objective of this design was to keep the scheduler as simple as
possible so that executive execution time overhead would be minimized. In
addition, the anticipated applications did not require the immediate
processing of data received from interrupt handlers. As a result, a
nonpre-emptive type scheduler was chosen.

2.1 Task Control

The status of each task is maintained in a Task Control Block (TCB). The
TCBs for all application tasks are contained in a linked list data structure,
as shown in Fig. A-i. A TCB contains a forward link pointer, used by the
scheduler to access TCBs, the starting address of the task, the task's current
stack pointer and "status" and "signal" flags.

A linked list data structure is used for the TCB data area primarily for

the purpose of determining task priority and to facilitate scheduler
operations. When a task suspends itself the scheduler always starts checking
TCBs at the beginning of the linked list. As a result, the task described by
this TCB has highest priority. Scheduler operations are also facilitated by
linking the lowest priority TCB to the highest. Then, during periods when no
tasks are scheduled, the scheduler simply searches continuously titrough the
TCBs. Note that this will be the normal idle condition for the task scheduler
unless a lowest priority idle task is defined. Tle idle task must be designed
such that it pauses periodically to allow higher priority tasks to run.

The linked list data structure for TCBs is also convenient for systems
in which tasks install other tasks to run or in situations in which task
priorities must be changed dynamically. The forward link pointers may simply

be changed to reorder the list.

A task may be in one of three states: running, waiting or ready, as
shown in Fig. A-2. Its current state is determined by the values of its
"status" and "signal" flags. A task's state may be changed by calling one of
the three functions: runo, sleep() or waKeO. Note that tile "signal" flag
for a RUNNING task may be in one of two states. This means that a RUNNING

task may also be in the READY state. This situation can occur when a RUNNING
task is interrupted and scheduled to run again. lore will be said about this
later.

The scheduler and each task maintain their own stack areas. When a task
is interrupted or suspended, its context (that is, the processor's registers
and flags) is stored on its stack. Similarly, when the scheduler transfers

control to a task, the scheduler's context is stored on its stack. The
context is restored when control is returned to the task or scheduler. When a

high level language is used, the scheduler may use the stack area originally
allocated by the compiler; task stacks must be explicitly declared as data
areas in the program.

A-2

POINTER TO NEXT TCB

TASK ENTRY POINTER

TASK STACK POINTER

TASK STATUS FLAG

TASK SIGNAL FLAG

Fig. A-1. Task control block.

A-3

RUNNING:
READY: run

STATUS= I
GTATUB =1 SIGNAL 0. 1
SIGNAL

WAITING: *loop
wake

STATUS- 0

SIGNAL 0

Fig. A-2. Task states.

A-4

When a task is invoked, the scheduler's stack pointer is saved in a
memory location. The task's stack pointer is then read from its TCB and

loaded into the Z80's SP register. When a task is suspended the reverse
operation is performed. On the other hand, when an interrupt occurs, the
context of the running program (task or scheduler) is saved on its stack, but
the interrupt handler uses the running program's stack for its operations. It
must, of course, POP off all data that it pushes onto this stack before
returning to the interrupted program. Interrupts are disabled while the
handler is saving and restoring the interrupted program's context. However,
they may be enabled while it is performing other operations, since subsequent

interrupt handlers will merely stack the context of the handler they
interrupt.

A task program has the general structure shown in Fig. A-3. It is a C

function containing an "infinite" loop. During program startup each task is
run from its beginning to the point where it first suspends itself (i.e.,
calls sleepo). During this time the task may perform any task-specific

initial setup operations. This would include the initialization of any data
items that do not have to be reinitialized during a restart (restart is

performed by an initialization task which will be described later). After

startup, task entry and exit operations are performed entirely within sleepo.

2.2 Scheduler Functional Components

The scheduler is comprised of four basic functions: schedo, wakeo,

run() and sleepo. Their relationships to task states are shown in Fig. A-4.
Each is a C function; some contain machine code.

After initialization, the scheduler sLans TCBs until it finds one with a
"status" flag set. It then clears the corresponding "signal" flag and calls
run(). Run() transfers control to the previously suspended task and resumes
task operation at the point where suspension occurred.

A task suspends itself by calling sleepo. This function clears the
task's "status" flag and transfers control back to the scheduler. However, it
first checks the "signal" flag. If it is set it means that the RUNNING task
was also READY. That is, while the task was running, an interrupt occurred.

The interrupt handler rescheduled the running task to run again. The "signal"
flag indicates this condition. The sleep() function handles this situation by
resetting the task's state to READY (by setting the "status" flag) and
returning control to the scheduler. The scheduler then scans TCBs, starting

at the highest priority, until it finds a READY task and invokes it. 2

Note that the order in which the operations are performed in sleep() is
important. For example, it would appear that STATUS could be reset after the
SIGNAL test, when the SIGNAL test fails. However, if an interrupt occurs

between the test and the reset, then STATUS and SIGNAL will both be set (if
the interrupt handler reschedules the running task). Then, when STATUS is
reset after returning from the interrupt, the final state will be:
STATUS - 0, SIGNAL - 1, which is a disallowed state. Programming sleep() as
shown will avoid this problem.

A-5

IPERFORM TATK
- SPECIFIC
INITIAL SETUP

OPERATIONO

I

CALL oloop ()

I TASK APPLICATION
I OPERATIONS

Fig. A-3. Task program structure.

A-6

Ilk

ached(:

STATS= Iwake()

SIGNAL - 0 Interrupt SGA

CALL run()

w a k e():N

A w 0 ~

SIGNAL =I
STATUS - I

Fig. A-4. Task states and state chonmecmilws

A-7

A task may be awakened from the WAITING state by calling wake(). This
function's single argument specifies the number of the task to be awakened.
It is used as an index into the array of TCBs. Wake() sets the task's
"status" and "signal" flags. These are the only operations performed by
wake; it is written entirely in C. Wake() may be called either from an
interrupt handler or from a task.

One additional scheduler program component is the pause() function. It
was not included as a "basic" function since it can be derived from the wake()
and sleep() functions. It provides a means for a task to voluntarily give

processor control back to the scheduler but, before doing so, reschedule
itself to run again. This gives higher priority tasks that may have been
awakened by interrupt handlers a chance to run before the pausing task
resumes. The pauseo) function may be implemented simply as a C function
that calls wakeo) and then sleepo. The task number needed as an argument in
the call to wake() may be supplied either as an argument in the pauseo) call
or, since the number of the currently running task is known to the scheduler,
it may be supplied automatically.

2.3 Scheduler Initialization

All C programs start at the beginning of the function called maino. In

this application main() performs initial startup operations that do not have
to be performed during a program-controlled restart.

One operation performed by main() is to initialize run() and sleepo), as
shown in Fig. A-5, by computing addresses RUNADR and SLPADR, respectively.
These addresses are needed when control is passed between run() and sleep()
during invocation and suspension of tasks, as will be explained later. Since
these addresses will be referenced from outside their respective functions,
they umst be computed and treated as global data items.

As mentioned earlier, each task must be called and run to the point at
which it first suspends itself. This operation is diagramed in Fig. A-6. In
maino, return address STRADR is computed and stored in variable "rtnadr". It
is used as a return address by sleepo) during task initialization operations.
Then main() saves its stack pointer and gets the stack pointer for the first

application task (in the figure, taskno) represents "task n") from its TCB.

It then calls the task using a normal C function call operation. The task
initializes startup data, as described earlier, and suspends by calling
sleepo. Function sleep() saves the task's stack pointer in its TCB and
passes control back to main() via the address in "rtnadr". Main() then
restores its stack pointer and repeats the entire sequence of operations for
each application task. At this point sleepo's return address, "rtnadr", is

switched to RUNADR, the entry point in runo). During all future operations
sleep() will return to this point.

A-8

YESp yes

COPT
COPT

RUNADR: GLPADR

Fig. A-5. Computing return addresses: RUNADR. SLPADA.

A- 9

SAVE SPM0 mb.
(NET taska(Ys SP ten

FROM IS TC@

CALL tokn

SYDADR:I

RESTORE SP SAVE SP IN

I JUMP TO

+ SLPADR:~

RETURN

FWg A-41. Took khltzation

A-10)

2.4 Scheduler Operation

After initialization, scheduler operation proceeds as diagramed in
Fig. A-7. Function sched() scans TCBs, starting at the beginning of the

linked list, until one is found in which the "status" flag is set. It then
stores the index of the selected TCB in variable "tcbidx" and calls runo.
Run() saves the scheduler's context by switching to the second set of
registers provided by the Z80 (it also pushes registers IX and IY on its
stack). 3 It then saves the current stack pointer and transfers control to

address SLPADR in sleep(). Sleep() gets the stack pointer from the TCB

pointed to by "tcbidx" and places it in the Z80's SP register. It then

restores the task's context from its stack and returns to the task by means of
the normal C function return protocol. This is possible since the return
address was pushed on the stack when the task was initially run to its first
call to sleepo, as described earlier.

At this point the task proceeds to perform application operations until
it again calls sleepo). As shown in Fig. A-7, after sleep() clears the
"status" flag it checks the "signal" flag. If it is set it proceeds, as
described earlier, to reschedule the task. In either case it then saves the
task's context on its stack, stores the task's stack pointer in its TCB and

transfers control to address RUNADR in run(). run() then restores the
scheduler's stack pointer and its context and returns to the scheduler via the
normal C return protocol. The scheduler then starts at the top of the TCD
linked list and scans for another task to run.

Note that as far as the task is concerned, its call to sleepo) and the
return were just the same as any other C function call. It is not "aware" of

the fact that sleep() transferred control back to the scheduler and that other

tasks possibly ran before sleep() returned. The same is true of sched() and
its call to runo. The scheduler is not "aware" that run() transfers control
to a task and receives control back before returning. It is therefore

unnecessary for the person writing an application task to know the operational
details of the task scheduler; (s)he simply programs a call to sleep() to

cause a suspension and expects the task to be awakened at the next C

instruction.

Programming interrupt handlers is somewhat more complicated. First, the

context of the interrupted function must be saved on the currently active
stack. This is performed using PUSH instructions in machine code. After
performing I/0 operations the context is POPed off the stack and control is

returned to the interrupted function.

if the second register bank is needed for some other purpose, the
scheduler's entire context may be saved on its stack. For example, the second
register bank could be used to save context in interrupt handlers and thereby
minimize their execution times.

A-1l

IIt
-- -. - - - --- - g -

II
o

m >mI

it 0o CC cw agI I

_ _ _!
__-___ 2_____1

r- - ---- -.---

II

n i " I I A- . ..2

The interrupt handler is written as a normal C function (with in-line
machine code). However, it is not entered or exited using the normal C
protocol. Instead, the interrupt vector is computed such that the first
instruction performed is the first PUSH of the context-save sequence. This
bypasses the normal C function entry sequence. It is necessary to save the
context before any other operations occur so that the interrupted program's
context will not be lost. Similarly, control is transferred back to the
interrupted program with a normal Z80 return-from-interrupt (RETI) instruction
just after the context has been POPed from the stack, bypassing the normal C
function exit sequence.

An interesting observation can now be made concerning this particular
implementation of a task scheduler. It has not been necessary for the
implementor to be aware of the details of the C function entry or exit
protocols used by the compiler. In interrupt handlers, they are simply
bypassed. The running program's context (machine state) is saved, interrupt
operations are performed, the context is restored and control is returned to
the running task before the handler's normal C function return operations.
Similarly, transfers between the scheduler and tasks are performed within C
functions run() and sleepo). These functions save machine context on the
currently active stack, transfer control and restore the context of the
destination function from its stack. In this way task scheduling and
interrupt operations are transparent to the compiler. The C program's context
is saved before these operations are performed and restored afterward.

3.0 QUEUES

The other aspect of real-time program design involves the implementation
of a means for passing data between tasks and between interrupt handlers and
tasks. Since tasks and interrupt handlers run asynchronously, the use of
queues for these operations insures that messages will not be lost. A
discussion of the subject of queues, queue access functions, and their
interaction with the task scheduler will be presented in this section.

3.1 Queue Structures

Within C it is possible to define a queue header structure data type by
using a "typedef" declaration. For a variable-entry-size queue, this might
take the form:

typedef struct(
mnt head
int tail
int length
char task
char *pbuf

A1QUE

A- 13

This declaration may be placed in an "include" file that is attached to each
program source file. Entries are added to the queue starting at the "tail"

pointer and removed starting at the "head". The queue's length is specified
by parameter "length". The parameter "task" will be described in more detail
later when queue access functions are described. Briefly, it contains the
number of a task that suspended itself when it was not able to complete a

requested queue access operation. Pointer "pbuf" points to the beginning of

the actual queue data array. The first byte in each queue entry contains the
number of bytes that follow in that entry.

Using the QUE data type it is then possible to define queues and their
headers as follows:

#define TKLNGTH - 6
QUE timkey - {0,0,TKLNGTH,0}
char tkbuf[TKLNGTH;

This might define, for example, a queue for passing data between a timer task
and a keyboard task. The pointer "pbuf" to the queue array tkbuf[J must be
initialized to the address of the array with a statement of the form:

timkey.pbuf - tkbuf

This queue may be referenced from the file containing the timer or
keyboard task by first declaring the queue header as an external reference:

extern QUE timkey

and then by referring to its address, &timkey, in, for example, the argument
list of a queue access function.

3.2 Queue Access Functions

Various queue access functions may be written to satisfy different

application requirements. These functions may be built upon two primitive
functions which will be called putq() and getqo.

The putqo) function declaration has the form:

putq(source, dest, count)

where "source" is a pointer to an array (or item) of data to be placed in the
queue and "dest" is a pointer to the queue header. "Count" is the length of
the message to be moved, in bytes. For example, this function could be used
to move a four-byte message from array gmttim[l in the timer task to the
keyboard task by writing:

if (putq(gmttim, &timkey, 4) == -1)
sleep()

A-14

As indicated, putq() is programmed to return a -I value if not enough room
exists in the specified queue to store a message of length four (including one
more byte for the entry size). In the case shown the programmer has simply
chosen to suspend the task if this situation arises.

The function getq() is declared similarly:

getq(source, dest).

It also returns a -I if no entry is present in the queue pointed to by
argument "source".

Using these two primitive functions to perform the actual queue access
operations it is possible to write other useful functions that have general

application within a task scheduling environment and support the orderly flow
of messages between tasks. For example, a function may be designed such that
when an attempt is made to enter a message into a full queue, the task will be

suspended. Later, when a message is removed, the suspended task will be
awakened so that it can store its message. The suspended task identifies
itself by storing its task number in the queue's header in item "task". Such
a function might be declared as follows:

putqwt(source, dest, stask, count).

The function name suggests that the task will put a message in the queue if
room exists but will wait (suspend, call sleepo) if not enough room exists.

Parameter "stask" specifies the number of the calling task4 . Similarly, a
function to remove messages from a queue, getqwto, may be designed such that
when a task attempts to remove a message from an empty queue It will suspend.
When a message is later placed in the queue the suspended task will be
awakened.

By using putqwt() and getqwt() it is possible to control the execution of
tasks In response to the availability of messages to process in their input
queues and the availability of space to store messages in their output queues.
For example, if an output device becomes momentarily blocked, the queues that

feed it messages will become "backed up" and will cause the corresponding

tasks to suspend. When the device becomes unblocked the tasks waiting to send

data will be awakened in an orderly manner, based upon the availability of
storage space in their respective output queues. The flow of messages is
similar to the flow of automobiles in a traffic tie-up on a major highway.

4.0 SYSTEM OPERATION

The previous sections have described the design and operation of the task

scheduler and queue management functions. What remains is to describe the
sequence of operations that occur during the startup of an application program
and to briefly discuss some typical application tasks.

4Note that the number of the currently running task is available in global
parameter "tcbidx" so that it need not be specified as an argument. This

would eliminate a possible source of programming error.

A-15

After the initialization of each task, as described earlier, main() calls
wakeo) to schedule the initialization task, inito, and sets the TCB linked
list pointer to zero so that the scheduler will test inito)'s TCB first
(init() is the highest priority task). Maino) then calls sched() and, from

this point on, control is never passed back to main() unless the system is
reset from hardware. Sched() then checks inito's TCB and passes control to
it.

Task init() performs all initialization operations that must be performed
first during startup and later during restart. That is, init() is programmed
so that if another task or interrupt handler wakes it, it will restart the
application program from the beginning. It performs these operations with
interrupts disabled and it enables interrupts just before it suspends itself.

The first operation performed in init() is to link all the TCB's together
in a loop. This is accomplished by setting the forward link pointers in the
TCBs. As described earlier, the last (lowest priority) TCB is linked to the
first so that the scheduler will loop looking for READY tasks. lnit() then
performs other application-specific restart initialization operations and
finally suspends itself by calling sleepo. These operations may involve
waking application tasks. However, if other tasks are not awakened the
scheduler will simply loop until an interrupt handler wakes a task.

Tasks and interrupt handlers provide the various data processing and
control services required by the particular application. For example, most
real-tim, applications will be required to service interrupts from a hardware
timer device. The interrupt handler wakes a timer task which, in turn,
provides interval timing services to other application tasks. Applications

that provide a man-machine interface will usually need to service a keyboard.
The interrupt handler for this device places the received key-stroke character

in an output queue and wakes a keyboard task. This task will then input the
character from the queue and process it. Tasks and interrupt handlers may

also be defined to process data from other sources such as communication
channels or measurement sensors.

Tasks processing data inputs will usually wake tasks that provide data to
output devices. These might be video or alpha-numeric displays, communication

channels or equipment controllers. The typical output device is designed to
receive a byte of data and then produce an interrupt when it is ready to
receive the next byte. The interrupt handler must therefore be designed to
output subsequent bytes until the entire message has been sent. It then wakes
the output task. The output task must initiate the transfer by sending the
first byte and then suspend and wait to be awakened by the interrupt handler.
It may be assured that the wakeup was from the interrupt handler if the
handler sends a "signal" byte message to the task before waking it. The task,
on being awakened, checks the queue from the interrupt handler and possibly
other input queues to determine the source of the wakeup.

A-16

APPENDIX B

"C" To Z80 Assembly Optimization

1.0 INTRODUCTION

The purpose of this appendix is to provide a brief guideline for
generating and optimizing the Z80 assembly language output of Vandata's "C"
compiler and translator. The reader is assumed to be familiar with the C
programming language and with Z80 assembly language. In addition, the reader
is assumed to be familiar with the use of Vandata's compiler under the RSX-IIM
operating system.

1.1 Procedure

The C source to be optimized should be compiled as usual and thoroughly
tested before the optimization procedure is started. When this has been done,
the first step in optimizing is to generate the Z80 assembly language from the
C source code. This is accomplished using the indirect command file
CZ80A.CMD, which goes through all the phases of the compiler to the point
where the asharp code has been generated and then invokes the translator to
cotivert asharp to Z80 assembly. The output assembly language file has the
file name extension .ASM.

The next step is to use PIP to copy the .ASM file to a file with .Z80 as
an extension. All subsequent modifications are done to the .Z80 file. This
step is done for several reasons: first, it leaves the original assembly
language source intact for comparisons to the edited version; second, it
provides a way to know if the assembly source has been optimized; and third,
it provides some safety in preventing the deletion of the hand-optimized file
if, for example, the CZ80A.CMD command file is invoked again.

The .Z80 file is then edited and when the optimizations required are
accomplished, the AZ80.CMD command file is invoked to assemble the file and
generate the relocatable object file. (If a listing file is desired in
addition, use AZ80W.CMD.) Again, the modified object should be thoroughly
tested. When this is done, the .ASM file may be deleted since it can be
regenerated easily from the C source and is no longer useful.

1.2 Optimization Guidelines

The primary reason In the AID application for optimizing the C code is to
increase the speed of execution. Appropriate optimization can usually gain a
factor of two in execution speed but much consideration must be given to what
parts should be optimized and how in order to obtain the benefits. Efforts in
improving the original C algorithm will often result in higher performance
than hand optimizing a poor algorithm.

B-1

1.2. 1 Tiuning the C Source

In addition to tile proper choice of algori thn, there ire a nuldDer Ai

considerations at the C source level that will aid in l te stI)se]uenIt

optimization of the Z80. First, the C source should be divided iiit,

relatively small and simple modules in order to maKe the optimization editlnc
more tractable and easier to follow. A two-page C source tile may h e Ligult or

more pages long when translated to assembly language and becausk 01 tnt, nature
ot the compilation process, the generated assembly code will not nece.ss-arily
follow the C source line for line, especially with deeply imbedded logical
structures. On the other hand, it may not help much to optimize- procedures

which are too sma!L because the overhead i:n calling and returnin - trn'r; sucii
routines could account for a large part)t the time s ptnt in them.

Secondly, one must give some consideration to the variables in tie
routine. As tar as possible all variables should be de.clared as characters

(I byte) and local variables should be declared static. Static variaoles are

easier to locate and eliminate the relatively long indexed stack instructions,
but using static local variables will render a subroutine nonrecursive.

Thirdly, care should be used in selecting arithmetic operations. -o[

example, multiplication always calls tite linrarv Aultiplicat ion routine,

whereas left shifts are encoded in-line wito add instructioni. Thus , it
multiplication by a power ot two is needed, use the left sirt operator

instead.

There are a number of other ways to help tune' to C source tor later
optimization. For example, the ordering of statements altects tile way in
which the compiler generates its output. Such considerations, however, are

too specific to discuss here, and can be (earned through experience.

1.2.2 Optimizing the W.8) Assemblv Language

Once tle assembly code has been generated, care must be livelen to what

sections should be modified. Obvious candidates for optimization are loops
and code inside loops, arithmetic expressions, array indexing, expressions,

complex logical tests, and procedure calls. The following discussions are

intended as general cons i derat ions and cannot cover all the possible means of

opt imization.

1.2.2.1 Arithmetic Expressions

One of the specifications of C is that in arithmetic expressions, all

8-bit quantities are converted to 16-bit quantities and lb-bit arithmetic is

performed, even if all the quantities are 8 bits. On an 8-bit imlachine like

the Z80, the overhead involved in doing 16-bit arithmetic is considerable,

and can be eliminated if it is not necessary. Here is a typical example.

B-2

C Source Z-80 OUTPUT OPTIMIZED Z-80

char na, nb; LD H,20H LD A,(na.)
nb 32 -na ; LD A,(na.) LD B,A

LD E,A LD A, 20H
ADD A SUB B
SBC A LD (nb.) A
LD D,A 10 see(@4 MHz)
LD A,L
SUB E
LD L,A
LD A,H
SBC D
LD H,A
LD A,L
LD (nb.), A
20 sec (@ 4 MHz)

Multiplication and division by powers of two should be done by adding
and shifting instead of the calls to the C library functions. Here is a

typical example:

C Source Z-80 Output Optimized Z80

setups (xv,nb,nl) LD L,(IX+0AH) LD A,(IX+OAH)
int x,v ; LD H,(IX+OBH) SRL A
char nb,nl ; PUSH HL LD (h.),A

LD HL,02H 10 Psec
static char n ; PUSH HL
n = nl/2 ; CALL c.idiv

POP HL
LD A,L
LD (n.),A
30 + lsec (not including time in c.idiv)

(Note that even though n1 was declared a character argument, C always passes
argument values as 16-bit integers).

There are many other ways of improving arithmetic expression coding, and

some experience is needed to be able to understand why the compiler sometimes
generates very obscure code and to be able to optimize the coding
appropriately. Needless to say, a primary consideration in modifying such
code Is that the result should be the same as in the unmodified version. Here
Is another example where the compiler must perform unnecessary operations to
perform 16-bit logic where only 8-bit is required. It also shows how register
usage may be improved.

B-3

C Source Z80 OUTPUT OPTIMIZED

CALL c.ent0 CALL c.ento
#define MASKO 0x70 LI) A, (ccolor.) LD A, (ccolor.)

CP OfOH CI' OFOH
#define MASKI OxFO JR Z,.35 JR z, .35

LD A, (ccolor.) LD (.74), A
#define WHITE OxFO LD (.74),A AN) 70H

LD A, (ccolor.) CPL
extern char ccolor ; LI) C,A AND OFOH

ADD A LD L,A
SBC A L) 11,0
LI) B,A CALL colorg

stbyt() LI) L,C .35 JP c.ret0
LD H,B 17 sec (not including
LD A,L calls)
AND 70H

static char scolor ; LI) L,A

LI) A,H
if (ccolorl =WHITE) AND 00

LI) H,A
LI) A,L
CPL

scolor = ccolor ;LI) L,A

LI) A,H
colorg ((-(ccolor & CPL
MASKO)) &MASKI); LI) H,A

LI) AL
AND OFOH

SLI) L,A

LI) A,H
AND 00
LD H,A
CALL colorg

.35: JP c.retO
44 iisec (not including calls)

1.2.2.2 Loops

Loops are an obvious area for optimization. If it is known that a loop
index will always be less than 128, it should be declared as a character
rather than an integer. Even when declared as a character some time can be
saved in incrementing and checking the loop index as the following example
demonstrates:

B-4

C Source Z80 OUTPUT OPTIMIZED Z80

static char 1, nb; SUB A SUB A

LD (.34),A LD (.34),A
for (i=0; i<nb; 1++) .55:LD HL, nb. .55: LD HL, nb.

{body of loopi LD A,(.34) CP (HL)

CP (HL) JP P,.75

JP P,.75 (body of loop)

(body of loop) LD A,(.34)
LD A,(.34) INC A
ADD 01H LD (.34),A

LD (.34),A JP .55
JP .55 .75:

.75:

While in this example only 4 wsec per iteration is saved, it shows one type of
optimization that can be performed. If the above loop was executed 100 times

inside of a loop that executed 1000 times, a total 4/10 second could be saved.

In a real-time program, such a savings could be crucial.

1.2.2.3 Logical and Ar!thmetic Tests

Normally, the code generated for tests is quite compact, but it is not

unusual to encounter jumps to jumps, unnecessary register manipulations, and

other time wasting instructions. Here is an example where an integer on the

stack is compared to -1.

Z80 OUTPUT Improved Optimized

LD A,(IX+04) LD A,(IX+04) LD A,(IX+04)

CP OFFH CP OFFH INC A

JR NZ, .2 JR N2, .11 JR NZ, .il
LD A,(IX+05) LD A,(IX+05) LD A,(IX+05)
CP OFFH CP OFFH INC A

.2: JR NZ, .11 JR NZ, .11 JR NZ, .11

(body) (body) (body)

.11: (continue) .11: continue 11: continue

The above "optimized" version could be further improved if the integer was
expected to be -1 more often than not. It is left to the interested reader

to find the improvement.

1.2.2.4 Other Areas of Optimization

There are a number of other areas where code optimization can be applied.

For example, the compiler does not do an optimum job at allocating and using

registers. Many such cases are obvious, but in complex expressions, it may
require considerable thought and effort to improve the code. How much effort
should be applied to extract as much as possible from code optimization must
be answered from the overall programming effort.

B-5

6L

1.2.3 Warnings, Bugs, and Disclaimers

There is one known bug in the Vandata Z80 assembler which must be
mentioned - it does not flag some relative addresses properly to the linker.
In particular, this means that one ahould not use the CASE statement in the C
source of routines to be optimized because the CASE statement generates a
table of addresses. When this table goes through the ZS0 assembler and the
linker, only the address offsets get generated in the actual code, which
causes the program to jump to the wrong place.

B-6

APPENDIX C

Aural Alerting for Phase I AID System

The AID alerting system is based primarily upon the guidelines for TCAS
alerting developed in simulation at the Boeing Commercial Airplane Company.
Sounds employed in the alerting system are stored in digital form in 48K of
RAM. Both voice and non-voice sounds are employed. The user-processor single

board computer contains logic which determines when to annunciate each aural

alert message.

Aural alerting phrases are listed in Table C-i. Definitions of the

siren, C-chord and chime are provided in Fig. C-i. These sounds are identical
to those used in the Boeing simulation.

Figures C-2 and C-3 define the voice alerting messages which correspond
to each of the possible IVSI commands. In the event of both up-sense and

down-sense limit rate advisories, the aural messages for each will be
concatenated with a short pause.

Figure C-4 provides a flowchart of the logic used for resolution
advisory alert processing. This logic is called once per scan.

Figure C-5 provides a flowchart of the logic used for controlling alerts

associated with traffic advisories. This logic is entered once per scan per
target. It is entered after resolution advisory alert processing has been
completed.

Figure C-6 provides a high-level flowchart of the logic used to determine
whether or not a particular target received from the CAS logic should be
selected for possible display.

Figure C-7 provides a high-level flowchart of the logic used to determine
if a selected target can be displayed on-screen or, if it is off-screen,
whether to use an off-screen symbol or to simply delete the target.

Some principal design characteristics of this alerting system are:

1. The siren is annunciated once at the beginning of a sequence of RA

indications on the IVSI.

2. After the siren, a voice message which corresponds to the types of
RA's present is repeated continuously until manually cancelled by the

crew.

3. After cancellation, the voice alert message (unaccompanied by the
siren) will sound once each time the state of the IVSI changes. Only

the RA-sense which has changed is annunciated.

4. A C-chord is sounded when a target transitions to prethreat (amber)
status from a lower priority status. However, this alert is

suppressed if an uncancelled aural alert for an RA is being

annunciated.

C-1

TABLE C-i.

Aural Alerting Phrases Available in Phase I AID System

(Note: Some of these phrases are not employed in the Phase I AID system,
but have been provided to facilitate future modifications.)

VOICE NON-VOICE

ABORT Beep

ALERT Buzz

ALTITUDE C-chord

CAUTION Chime

CLEAR Chirp

CLIMB Pause

DESCEND Siren

DESCENT

DON'T

FEET

FIVE

HUNDRED

LIMIT

MAINTAIN

ONE

PER MINUTE

TCAS

TEST

THOUSAND

TRAFFIC

TWO

WARNING

C-2

(a) Waening (siren)
800

~-200

1,000
Wb Caution (C-chord)

Bo800 (750 Hz)

o- 600 (500 Hz)
zwi
D 400-

U. 200

01

80- c) Advisory (Frequency: 475 Hz) (chime) --e- 50-rns rise
S 1.8-sec decay

Z 40wU
Z 20

0 J
0 0.1 0.2 0.3 OA 0.5 0.6 0.7 0,13 0.9 1.0 1.1 12

TIME (sec)

Fig. C-i. Alerting sounds.

C-3

RA VOICE MESSAGE CAS/IVSI LAMPS

10 9 8 7 6 5 4 3 2 1

1 CLIMB 1 0 0 0 0 0 0 0 0 0

2 DESCEND 0 1 0 0 0 0 0 0 0 0

3 DON'T CLIMB 0 0 1 1 1 1 0 0 0 0

4 LIMIT CLIMB 0 0 1 1 1 0 0 0 00

5 LIMIT CLIMB 0 0 1 1 0 0 0 0 0 0

6 LIMIT CLIMB 0 0 1 0 0 0 0 0 0 0

7 DON'T DESCEND 0 0 0 0 0 0 1 1 1 1

8 LIMIT DESCENT 0 0 () 0 0 0 0 1 1

9 LIMIT DESCENT 0 0 0 0 0 0 00 1 1

to LIMIT DESCENT 0 0 0 0 0 0 0 0 0 1

11 MAINTAIN CLIMB 0 0 0 0 0 1 1 1 1 1

12 MAINTAIN CLIMB 0 0 0 0 1 1 1 1 1 1

13 MAINTAIN CLIMB 0 0 0 1 1 1 1 1 1 1

14 MAINTAIN DESCENT 0 0 1 1 1 1 1 0 0 0

15 MAINTAIN DESCENT 0 0 1 1 1 1 1 1 0 0

16 MAINTAIN DESCENT 0 0 1 1 1 1 1 1 1 0

17 TCAS ABORT I I I 1 I I 11

Fig. C-2. Voice Messages For Resolution Advisory Alerts.

C-4

C.0

C-5

IGHN T ON Ifsienha osondd o

SRE N O eue e thes . SIREN 1;

CWRED I Yed UP-ENS lAhND o
otherwse, OWED. 1DLWghtcan b
cancelled~~~VS RAulyo b otaeFN

Pie.~~~~NUNIT B-.Rslto dioyaetpOeTHg

oval YS UP-SN(E -N

NOTE:

Logic EA NO etrdocfoeahcTi H tRgEtATA 0OATu

?(?

EThis logic is called once per scan for

each target received from the CAS logic.

YE OER _ A hard limit on the number of targets to be
TARGET displayed can be set as any number 0 to S.

~YES

?O Time of activation Is stored to
allow S-second time-out.

THREAT in- DISPLAY

~~~ACTIVE YS.

NO NO

Note: Continuous mode

means that display

iNT t t Is lways active'.

NO RXTERIAY
r NO RANGE

~LT 4 NMI

P NO r YESET

. k1200 IFT __TARGET

Fig. C-0. Target selection logic.

hL!



This logic Is entered once per *can
for each target selected by the target
selection logic.

OPFOCREN N-SREE

EXI

THREATgO C-E. UO-SCe diSy logic.E


