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LANCZO0S COORDINATES

by
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and

Ray W. Clough?
SUMMARY

A procedure for deriving the Lanczos Coordinates is explasined and their use in structural
dynamics analysis as an alternative to modal coordinates is discussed. The coordinates are
obtained by an inverse iteration procedure in which orthogonality is imposed between the vectors
resulting from successive iteration cycles. Using these Laaczos coordinates the equations of
motion are transformed to tridiagonal form, which provides for very eflicient time-stepping solu-

tion. The eflectiveness of the method is demonstrated by a numerical example.
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Introduction

Analysis of the response of structures subjected to dynamic loads typically involves first
establishing » discretized model of the structural system, using an appropriate discretization pro-
cedure such as finite elements or finite differences. Then the equations of motion are expressed as
follows:

Mi+ Ci+ Kum? (1)
in which M, C, K, are the n X n mass, damping and stifiness matrices, respectively; f is the time
dependent external load; and u is the displacement vector describing the response of the struc-
ture. The number of displacement coordinates, n, employed in the discretization depends on the
complexity of the structure and on the amount of detail desired in the description of the dynamic

stress response.

Because the discretized model of a complicated structural system may have many hundreds
or even thousands of degrees of freedom, it is customary to reduce the equations of motion to a
much smaller number before the dynamic response is calculated. In the analysis of linear struc-
tures, it has become essentially standard practice to express the response in terms of the
undamped free vibration mode shapes, using only enough of the lower modes to express the
behavior adequately. The main analytical problem then becomes the evaluation of the mode
shapes, and the problem of reducing the number of degree of freedom is transferred to this phase
of the analysis.

The Rayleigh-Ritz method |1} has been used widely to reduce the dimension of the equa-
tions of motion. This may reduce the dimensions of the equations of motion. This may be looked

upon as nothing more than a coordinate transformation, the essential step being the choice of a

set of vectors Y, = |y,,¥s,¥s, " ,¥m| for describing the dynamic response. Thus aa

approximation to the dynamic response, u,,, is expressed as a linear combination of the chosen

displacement vectors

Uy = Yn‘(‘) (2)
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in which the amplitudes of these vectors, x(¢), are the generalized coordinates representing the
approximate solution. Applying this coordinate transformation and its time derivatives to Eq. 1,

leads to

M,i+ Caa+ Kau=Tt, (3)
in which the generalized coordinate mass, damping, and stiffiness matrices and the external force
vector are defined as follows:

M.=YIMY,

C.=YICY,

R, =YIKY, (4)
fa =YI?

The basic problem in the use of the Rayleigh-Ritz method is that the quality of the approx-
imate solution, u,, depends entirely on the adequacy of the assumed set of displacement vectors,
Ya. One approach to dealing with this problem is to apply iterative “‘improvement’ of the vec-
tors. In this method, known as “subspace’’ or ‘‘simultaneous” iteration, the trial vectors are all
subjected to inverse iteration combined with some technique (such as Gram-Schmidt orthogonali-
zation) that forces convergence to independent shapes. Actually the convergence is to the lowest

undamped vibration mode shapes, s, and then the coordinate transformation
u, = Z . x(t) ()
leads to an uncoupled set of modal equations. That is, the equations equivalent to Eq. 3 are

independent because the mode shape orthogonality properties applied to Eq. 4 leads to diagonal

generalized mass, damping and stiffness matrices (assuming C is a proportional damping matrix).

It frequently is assumed that this modal coordinate transformation provides the most
efficient method of dynamic response analysis because the independent modal equations can be
solved separately and the total response obtained by superposition. However, there is no reason
to believe that the modal coordinates will always give the best results with the fewest degrees of
freedom. In fact, alternatives or supplements to mode superposition, such as the mode accelera-
tion methods 2] and static corrections [3], have been developed to obtain satisfactory results with

fewer coordinates. It is the purpose of this paper to describe how Lanczos coordinates can lead to
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a still more efficient procedure for dynamic response analysis.

Lanesos Algorithm

The Lanczos method [4], first introduced in 1950, is an efficient algorithm for extracting
some frequencies and mode shapes of an eigensystem. It can be thought of as a means of con-
structing an orthogonal set of vectors, known as Lanczos vectors, for use in the Rayleigh-Ritz
[1,7] procedure. Recently Wilson, et al [5] independently developed the idea of generating a set of
orthogonal vectors for use in a Ritz type analysis as an alternative to the mode superposition
method. Their method is identical to the Lanczos algorithm with full reorthogonalization [6,7].
The results they report show that these “‘Ritz vectors’™ give better results than the same number

of modal coordinates.

It will be shown here that the Lanczos vectors can be used to formulate a very efficient
means of dynamic response analysis without solving the vibration eigenproblem. These vectors do
pot have the full uncoupling property of the mode shapes, but they are much less expensive to
generate. Moreover, they are derived from the applied load vector and include the static dis-
placed shape as the first vector; thus no '‘static correction” is required no matter what the shape
of the loading is nor how few vectors are employed in the analysis. Moreover, an indication of the
number of vectors required to obtain the desired degree of accuracy may be determined during

the derivation of the Lanczos vectors.

The Lanczos algorithm is closely related to the inverse iteration and power methods for cal-
culating 2 single vibration mode shape aand frequeacy of an eigen problem. Given a pair of
matrices K and M, and a starting vector r these methods generates a sequence of vectors,
(v, K'Mr, (K 'MJPr,...,(K'M) ¢|, during j iterations. These vectors are referred to as the
Krylov sequence; the sequence converges to the eigenvector corresponding to the smallest eigen-

value, in magaitude, of the eigenproblem (K - \M)s = 0.

The basic difference between the Lanczos method and the other two methods is that the

information contained in each successive vector of the Krylov sequence is employed in the
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dyaamic response analysis, instead of using only the final converged vector. To be more specific,
the Lanczos algorithm involves supplementing the Krylov sequence with a Gram-Schmidt orthog-
onalization process at each step; the result is a set of M-orthonormal vectors that is used to
reduce the dimension of the dymamic equation set. In the form of the Lanczos algorithm
described here, orthogonalization is applied only with respect to two preceding vectors, leading to
a tridiagonal form of the dynamic equations that can be used to great advantage either directly in

time step integration or in solution of the free vibration eigenproblem.

To derive the Lancz2os algorithm it will be assumed for the moment that the first j Lanczos
vectors, (qQ,,qQz, * * * ,q,) have beea found, and the analysis of the j + 1 vector will be performed.
The resulting vectors all satisly the condition q.’Mq, == 5, where 5, is the Kroneker delta; that
is the vectors are orthonormal with respect to the mass matrix. To calculate q,4,, a preliminary
vector F, is first calculated from the previous vector, q,, as in the Krylov sequence:

F, = K'Mq, (6)
Now in general it may be assumed that this preliminary vector contains components from each of

the preceding vectors, thus

F,=r + a,q,+ 8,91+ 1,90+ - (7)

where r, is the ‘‘pure” vector orthogonal to all previous Lanczos vectors, and ), §,, 7,, - -
are the amplitudes of the previous vectors contained in ¥,. These amplitude coeflicients are
evaluated from the orthonormality of the Lanczos vectors. Thus il both sides of Eq. 7 are multi-
plied by q,’M. the result is

q,/MF, = q/Mr, + o,q/Mq, + 8,q/Mq, + 7,qMq,. + - 8)
Here the first term on the right hand side vanishes by defipition and all terms beyond the second
vanish similarly due to orthogonality. The normalizing definition applied to the second term then
reduces Eq. 8 to an expression for the amplitude of q, along F,:

a, = q/MF, 9
The amplitude of q,; contained in ¥, may be found similarly by multiplying Eq. 7 by

q, ;M. In this case all terms except the third vanish by orthogomality and the coefficient of 4, is

ST leras 9 R




uRity, so

B, = Q}-.lmj
But substituting Eq. 6 this gives §, = q,'.lMK“Mﬁ, and applying the transpose of Eq. 6 to the

qQT, vector gives

B, = ¥ Mq, (10)
Finally, expanding F,_, in terms of its pure vector, r,_;, and the preceding Lanczos vectors, as in

Eq. 7, the transpose of Eq. 10 becomes

5; = Q;’Mr]-l + a)-lq;MQ}-l + r";-l“;qu;-z + 7}-IQJ’MQJ4 + - (ll)

It is evident that all terms except the first vanish on the right hand side. Now q, is the vector
obtained by normalizing r,_; with 3, as the normalizing factor, i.e.

1
q; = —PF, (12)
7

then the value of g, is given by Eq. 11 : 3, = —l-r,'.'.er,-l or
b

Bl=rI Mr, (13)

Continuing in the same way, the amplitude of q,_; contained in F, is found to be

1, = q,MF, (14)

Following the procedure used to derive Eq. 11, this leads to

7, =q,Mr, o+ a, 9 Mq, + ﬂ:-‘-’qu‘lj-a + 7,29/ Mq, + - (15)

But using the normalizing relationship equivalent to Eq. 12, r, ; = §,.,q,.,, hence when this is
substituted into Eq. 15 it is clear that all terms on the right hand side vanish, with the result that
7, = 0. A corresponding procedure could be used to demonstrate that all further terms in the
expaansion for ¥, (Eq. 7) vanish; in other words, the orthogonalization procedure used in generat-

ing each Lanczos vector need be applied only to the previous two vectors.

In summary, the Lanczos algorithm to derive the vector q,,,, may be expressed by the fol-

lowing sequence of equations:
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F, = K'Mq,
v, =F, -a,q, -89,
where : a, = qMF,

B, = (v I".IM’J’l)

1
- r
Q+1 B

where : 8, = (r,Mr,)

Starting Vector

In general, the starting vector q; for the Lanczos algorithm may be chosen arbitrarily.
Then setting q, = 0, the procedure defined by Eqs. 16 will produce the second Lanczos vector qz,
and the process may be continued to produce as many vectors as are desired. It will be noted
that the cost of evaluating each successive vector is constant after qs has been obtained because it

is necessary to impose orthogonality only with respect to the two preceding vectors.

The Lanczos algorithm is particularly advantageous in dynamic analysis when the applied

load is of the form

P = be(t) . (17)
that is, when the distribution of the load, b remains constant and only its amplitude varies with

time. The starting vector in this case is taken in the direction of the static displacemeat, thus

ro = f,q, = K'b (18)

This choice gives the Lanczos vectors the important advantage noted before, that they automati-
cally include the static displacement and avoid any possible need for a static correction. It is of
interest to note that Wilson, et al. [5] adopted this starting vector for this reason. Further, it is
evident from Eqs. 16 that if b is orthogonal to any of the modes then all the Lanczos vectors will

also be orthogonal to this mode.

An important type of dynamic loading of the form of Eq. 17 is earthquake excitation, where
the eflective loading results from accelerations applied at the supports. In this case, b = Ms

where s is the influence coeflicient vector listing the displacement of the degrees of freedom due to

e (P R TS - ¢ T
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a unit support displacement, and ¢(t) is the acceleration history applied at ihe support.

Dynamic Response Analysis Procedure

The orthogonality properties identified in the derivation of the Lanczos algorithm can be
utilized eflectively in transforming the equations of motion to a reduced form. Equating the two

expression for ¢, given by Eqs. 16b and 16e, and substituting Eq. 16a leads to

'1 = ﬁ}+l Q,+| = K-I M q] - Q_y a; - ql-l ﬂ) (19)

Transferring the right side to the left, the combined set of the Lanczos vectors obtained after m

steps can be arranged in a single equation as follows:

=]

K'M Qan - Qa 0 = Pa eur (20)

where Q,, is the n X m matrix with columns q;, @;, * - - qu, e, is the last column of the I,

identity matrix of dimension m, and T, is a tridiagonal matrix made up of the coeflicient « b B,

a, B2 1
Bz @2 By
Bs
T, = (1)
.. B
B a,J

Now multiplying Eq. 20 by QM and applying the orthonormal properties of the Lanczos vec-
tors, QTMQ,, = I, leads to

:M K-‘MQR-T. (m)
That is, the projection of M K™ M on the subspace with basis Q,, is a tridiagonal matrix.

This tridiagonal property will be used advantageously in the dynamic response analysis pro-

cedure. For this purpose, the equations of motion (Eq. 1) are multiplied by MK with the

result:

o e, TR A T SO

P TS T .
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MK'Mi+ MK!'Cu+ Mu=MK'? (23)
Before accepting this expression it should be noted that the mass matrix M used in dynamic
response analyses frequently is singular (because mass coeflicients may not be associated with all
degrees of freedom), and also that significant information may be lost when a set of equations is
multiplied by a singular matrix. Therefore, the use of Eq. 23 may not be justified. However, it is
shown in the Appendix that using Eq. 23 instead of Eq. 1 results in the same solution, whether or

not M is singular.

Now expressing the response in Lanczos coordinates, u = Q,x(¢) and completing the

transformation, Eq. 23 becomes

MK'MQ.X+ QIMK'CQ.x+ QMQ.x=QIMK!?
Neglecting damping and using Eq. 22 and the orthonormal property of the Lanczos vectors; this

may be written in tridiagonal form:

TaX+ X=ga (24)

in which g, = QI M K™ f. If Rayleigh damping is used:

C= M+ K

the tridiagonal form is still preserved, as follows

TaX+ [8Ta + o)l )x+ x=g, (25)
If the more general form of proportional damping giver by the Caughey series 8] is

adopted:

s %
C=M Z B [M‘IK]
]
then the corresponding damping term to be used in Eq. 214 will be of the form
: 1-¢
6,‘ - 2 Vi [rm]
tam-p

It should be noted that the damping only approximates the projection of the Caughey damping

on the Lanczos subspace but the discrepancy is of no significance in practical cases.

The tridiagonal for of Eq. 24 or 25 is particularly advantageous when the applied load is of
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the form of Eq. 17 because then the forcing function can be reduced as follows:

g = Q. MK'?

=Q. MK!be(t)

= Q. Mq, 5 ¢(t)

=Qa MQ. e fe(t)

= f, e ¢(t)
where e, is the first column of the identity matrix I,,. Eq. 24 then takes the form

TeX+ x=p¢17(t) (27)
which shows that the excitation is applied only in the first of these equations of motion. Of

course, the same loading would be applied to the damped system of Eq. 25.

The solution to the equations of motion in the form of Eqs. 24 or 25 may be obtained either
by a time-stepping scheme such as the Newmark method [10], or the eigenvectors of T,, can be
calculated and the response obtained by superposition of the uncoupled equations. The storage
demands and the number of operations required for either of these analytical procedures is of the
order m. This is in contrast with the cost of solving an n X n eigenproblem in order to employ a
standard mode superposition analysis. Moreover, because the Lanczos vectors explicitly recognize
the load distribution, fewer Lanczos vectors than mode shapes are needed to obtain a desired level

of approximation.

Required Number of Vectors

In order to determine how many Lanczos vectors may be required to obtain the desired
accuracy in a dynamic analysis it is necessary to assess the errors resulting from a given approxi-
mation; or more precisely, to determine the number of vectors required with a tolerable error.
The participation factor, which indicates the component of the applied load that contributes to
the response of the corresponding Lanczos vector, provides a measure of the significance of that

vector in the total response. Defining the j participation factor as

7, =qM (28)

the product QI b = h, gives a vector listing the participation factors of all m Lanczos vectors.




11

So if the elements of this vector are evaluated sequentially during construction of the Lanczos
vectors, their successive values may be judged as a criterion for termination of the Lanczos algo-
rithm.

The values of the participation factors associated with each Lanczos vector may be obtained
at negligible cost during the determination of the vector. Multiplying Eq. 16b by b7 yields

bTr, =bTF, -bTq, a,-bT q,,; 5, (29)

Noting from Eq. 163 that F, = K“Mq,, and recalling that the starting vector was given by
fiqy =K'b (Eq. 18), the first term on the right side of Eq. 29 becomes
brK"Mq, - ﬂ,q,"Mq, == 0. Thus, introducing Eq. 16c on the left side, Eq. 29 can be reduced
to

B4 b7 Q1= - br‘l; a, - bT q; 5,

or.making use of the definition of the participation factors (Eq. 28), this gives

(a,n, + 8, n,.1)
Br4+1

N4t = - (30)

Including this simple scalar calculation with the Lanczos algorithm makes it possible to terminate

the calculation when the magnitude of 7,4, drops bellow a specified tolerance value.

Loss of orthogonality

The simple Lanczos algorithm presented here, involving orthogonalization with only the two
preceding vectors at each step, is subject to loss of orthogonality with respect to earlier vectors
due to roundoff error. If such errors are not corrected when they reach a critical size, the vectors
may become linearly dependent. Paige [11] characterized the way in which orthogonality is lost
and provided the theoretical background for avoiding this gradual loss of orthogonality without
applying full reorthogonalization at each step. From Paige’s work a number of procedures were
developed [1,12] which take advantage of the simplicity of the basic Lanczos algorithm while

maintaining robust orthogonality.

An algorithm proposed by Simon [12] is adopted here as the simplest means of retaining the

necessary level of orthogonality. The vector w, = q,,,MQ, is formed to indicate the loss of

PO TP




orthogonality at any step j; that is w, comtains terms of the order of roundofl, and Simon's algo-

rithm is aa inexpensive scheme for updating w, at each step of the Lanczos analysis. His formu-
lation for w,,., may be written

Pe1 W1 =T, w -a,w, -5 w,, (31)
To start this algorithm it is necessary to note that wy = 0 and w, = q/Mq,; then the further
values of w, are obtained at the cost of only 5 multiplications per step. The magnitude of the
elements of this vector demonstrate the trend of the orthogonality condition. When any element
of w, is excessive, q,,, is orthogonalized against all the preceding vectors. Then the simple
Lanczos algorithm is coatinued until the vector w, at some subsequent step again indicates the

need for orthogonalization against all vectors.

; Numerlcal Results
As an example we use the finite element model of a multistory building frame shown in Fig. {
1. The model consist of 170 two dimensional truss elements resulting in a total of 100 degree’s of
i freedom. The material properties were chosen such that the fundamental period is close to 1 |
second (T, = 1.082 sec.). A step-function load is applied at the third story of the structure as
shown in the figure. This loading configuration ensures the participation of the higher modes in
the response of the structure. It is worth noting that this model also may be viewed as a lattice
analogy representation of a plane stress orthotropic elasticity problem, consequently the response
to the step function load will contain the eflects of a stress wave rediating from the load point.
Also it should be noted that the structure was assumed to be undamped in order that the higher

mode contributions to the response would not be suppressed.

The Lauczos method was applied to reduce the equations of dynamic equilibrium to the tri-

T

diagonal form. The Newmark step-by-step method then was used to evaluate the response of the
reduced problem. Newmark parameters, J and 7 were chosen to be [ = % and 7= L to avoid

any sumerical damping for consistency with the physical assumption and the time step was taken

to be At == 0.001 sec. This requires performing just over 1000 time steps per fundamental period
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of the respoase. The analysis was carried out for various numbers of Lanczos vectors. In figure 2
the displacement response st the top story, v, is compared with that obtained by applying the
Newmark method to the unreduced problem using the same parameters. From figure 2 it is clear
that the response of the structure caa be obtained accurately with as few as 15 Lanczos vectors.
In figure 3 we show the way the displacement « at time ¢ == 3.0 sec. stabilizes as the number of
Lanczos vectors is increased. This convergence behaviour is also typical of the finite element
method as the number of clements are increased. This similarity is due to the fact that, like the
Baite element method, the L anczos method also minimizes the potential energy. From this plot it
can be seen that with oaly 6 Lancios vectors the displacement u is to within §% and with 20 vec-
tors to within 2%% of the solution obtained by the direct method. Figure 4 shows the variation of
the Lanczos participatios factors, n,, with the namber of Lancios vectors. It is appareat that as
n, approaches zero the displacement response stabalizes. Therefore as soom as n, falls bellow a

specified tolarence the Lanczos algorithm can be terminated.

The orthogonality state among the Lanczos vectors was monitored using the algorithm of
Eq. 31. In this example, a reorthogonalization step was carried out, on average, every § iterations

with the first occuring at iteration 6.

Concluding Remarks

This paper points out that the Lanczos algorithm can be related directly to the inverse
iteration method of eigenvector evaluation. The esseatial concept of the Lanczos procedure is
that the successive vectors obtained during inverse iteration become the coordinates used in the
dynamic response analysis when they are successively made orthogoaal to the previously derived
vectors. It is shown here that the orthogonality need be enforced only with respect to the two
preceding vectors; the way the Gram-Schmidt orthogonalization is applied automatically easures
orthogomality with all earlier vectors, and this fact permits the equations of motion to be restated
in tridiagonal form. Thus the dynamic respoase may be obtained by step-by-step integration of

the simplified equations.

= LTI ™ 3% PR
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An slternative analysia procedure, of course, would be to derive the vibration mode shapes
from the Lancios coordinates, sad thes to calculate the respomse in terms of these uncoupled
modal coordinates. However, because the dynamic loading geweraly is defined 25 3 numerical
sequence, the response usually must be obtained by step-by-step method even for a mode superpo-
sition solution. Typical time-stepping methods such as those of the Newmark family, requires a
total of 8m + (4w - 2)m operations per time step to evaluate the solution to an undamped sys-
tem of m equations with its matrices haviag 3 haif band width w. When the system is tridiago-
nal (v == 2), a8 in Eq. 27, the cost per time step becomes 14m operations, and whea the system js
uncoupled this cost oaly reduces to 10m. It appears that this additional reduction is not substan-
tial emough to justify the overhead cost of 3m® + 9m?® operations required for reducing Eq. 27 to

an sncoupled system of equations.
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Appendix

The question that is addressed here is whether the sclution to Eq. 23 is equivaleat to the
solution of the original equation (Eq. 1) when M is singular. For simplicity the undamped case is

considered, and with no loss in generality, the mass and stiffness matrices can be partitioned a8

: O n Ky
M= 00 and K= 2 Ke

where K;» = K.I. The explicit forms of K and M is used to reduce Eq. 1 to

follows:

M, ﬁ, + K“ w + Ku g a= f (323)
Kgl uy + Kﬂ Uy = fz (32!))

where u = ':;] and £ == l:;] Multiplying Eq. 32b by K,,K:! and subtracting the resuit from
Eq. 32a, eliminates u, to get

M, + (K -Kp K2 Ko Ju, =, - Kp K2 f, (33)
The next step is to obtain an expresion for K™ by performing the block LT DL factoriza-
tion of K (not the usual LDLT) and inverting the result to get
I o (Ki-KKzZKn)™" 0 1 -KK32
K= [-x;xa 1 ] [ 0 K3 ] [o 1 ] (%)
When putting this relation and the singular expresion for M in Eq. 13, the Grst term on the left

hand side becomes

M, (K, Ko K2 Ka ) M, 6,
MK 'Mi= (35)

aond similarly for the right hand side of Eq. 13 yields
-1
M, (K, - Ko K2 xm] (h - KoK o)

MK'f = (36)
°

and the first of these equations becomes

S EWAKS vt a o
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M, (K -K s K2 Ky, ).luxax + My, = M, (K- K; K Ky )-‘ (K K 1t,)

Multiplying this equation by (Ky-K;2 KZKz) M;* reduces to Eq. 33.

===~ e
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Details of the Truss Example.
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