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DYNAMIC ANALYSIS OF STRUCTURES USING

LANCZOS COORDINATES

Babrarn Nour-Omid t

and

Ray W. Clough

SUMMARY

A procedure for deriving the Lancios Coordinates is explained and their use in structural

dynamics analysis as an alternative to modal coordinates is discussed. The coordinates awe

obtained by an inverse iteration procedure in which orthogonality is imposed between the vectors

resulting from successive iteration cycles. U'sing these Laaczos coordinates the equati.ons of

motion are transformed to tridiagonal form, which provides for very efficient time-stepping solu-

tion. The effectiveness of the method is demonstrated by a numerical example.
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Introdution

Analysis of the response of structures subjected to dynamic loads typically involves fint

establishing a discretized model of the structural system, using an appropriate discretization pro-

cedure such as finite elements or finite differences. Them the equations of motion are expressed as

follows:

MU + Ci + Ku- (1)

in which M. C, K, re the n X n man, damping and stiffness matrices, respectively; f is the time

dependent external load; and u is the displacement vector describing the response of the struc-

ture. The number of displacement coordinates, n, employed in the discretization depends on the

complexity of the structure and on the amount of detail desired in the description of the dynamic

stress response.

Because the discretized model of a complicated structural system may have many hundreds

or even thousands of degrees of freedom, it is customary to reduce the equations of motion to a

much smaller number before the dynamic response is calculated. In the analysis of linear struc-

tures, it has become essentially standard practice to express the response in terms of the

undamped free vibration mode shapes, using only enough of the lower modes to express the

behavior adequately. The main analytical problem then becomes the evaluation of the mode

shapes, and the problem of reducing the number of degree of freedom is transferred to this phase

of the analysis.

The RayleiSh-Ritz method Il has been used widely to reduce the dimension of the equa.

tions of motion. This may reduce the dimensions of the equations of motion. This may be looked

upon as nothing more than a coordinate trnsformation, the essential step being the choice of a

set of vectors Y. " IYl, ys, ya,'" ,yj for describing the dynamic response. Thus an

approximation to the dynamic response, us, is expressed as a linear combination of the chosen

displacement vectors

us - YN X(') (2)
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in which the amplitudes of these vectors, x(), are the generalized coordinates representing the

approximate solution. Applying this coordinate transformation and its time derivatives to Eq. 1,

leads to

(3)

in which the generalized coordinate mass, damping, and stiffness matrices and the external force

vector are defined as follows:

- YZMY.

- Y.KY. (4)

F -Y.rr

The basic problem in the use of the Rayleigh-Ritz method is that the quality of the approx-

imate solution, u., depends entirely on the adequacy of the assumed set of displacement vectors,

Y.,. One approach to dealing with this problem is to apply iterative "improvement" of the vec-

tors. In this method, known as "subspace" or "simultaneous" iteration, the trial vectors are all

subjected to inverse iteration combined with some technique (such as Gram-Schmidt orthogonali-

zation) that forces convergence to independent shapes. Actually the convergence is to the lowest

undamped vibration mode shapes, s. and then the coordinate transformation

U. - Z.x(t) (5)

leads to an uncoupled set of modal equations. That is, the equations equivalent to Eq. 3 are

independent because the mode shape orthogonality properties applied to Eq. 4 leads to diagonal

generalized mass, damping and stiffness matrices (assuming C is a proportional damping matrix).

It frequently is assumed that this modal coordinate transformation provides the most

efficient method of dynamic response analysis because the independent modal equations can be

solved separately and the total response obtained by superposition. However, there is no reason

to believe that the modal coordinates will always give the best results with the fewest degrees of

freedom. In fact, alternatives or supplements to mode superposition, such as the mode accelera-

tion methods JA and static corrections 13, have been developed to obtain satisfactory results with

fewer coordinates. It is the purpose of this paper to describe how Lanexos coordinates cam lead to

4
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a still more efficient procedure for dynamic response analysis.

Lanenos Algorithm

The Lanczos method 141, first introduced in 1950, is an efficient algorithm for extracting

some frequencies and mode shapes of an eigensystem. It can be thought of as a means of con-

structing an orthogonal set of vectors, known as Lanczos vectors, for use in the Rayleigh-Ritz

1l,7j procedure. Recently Wilson, et al [5I independently developed the idea of generating a set of

orthogonal vectors for use in a Ritz type analysis as n alternative to the mode superposition

method. Their method is identical to the Lanczoo algorithm with full reorthogonalization 16,T1.

The results they report show that these "Ritz vectors" give better results than the same number

of modal coordinates.

It will be shown here that the Lanczos vectors can be used to formulate a very efficient

means of dynamic response analysis without solving the vibration eigenproblem. These vectors do

not have the full uncoupling property of the mode shapes, but they are much less expensive to

generate. Moreover, they are derived from the applied load vector and include the static dis-

placed shape as the first vector; thus no "static correction" is required no matter what the shape

of the loading is nor how few vectors are employed in the analysis. Moreover, an indication of the

number of vectors required to obtain the desired degree of accuracy may be determined during

the derivation of the Lanczos vectors.

The Lanczos algorithm is closely related to the inverse iteration and power methods for cal-

culating a single vibration mode shape and frequency of an eigen problem. Given a pair of

matrices K and M, and a starting vector r these methods generates a sequence of vectors,

Ir, K- Mr, (K' Mjr .... (K-aM)' rJ, during j iterations. These vectors are referred to as the

Krylov sequence; the sequence converges to the eigenvector corresponding to the smallest eigen-

value, in magnitude, of the eigenproblem (K - XM)s - 0.

The basic difference between the Lanczos method and the other two methods is that the

information contained in each successive vector of the Krylov sequence is employed in the

I, ~ ~ *-



dynamic respown analysis, instead of using only the final converged vector. To be more specific,

the Lanczos algorithm involves supplementing the Krylov sequence with a Gram-Schmidt orthog.

onalization process at each step; the melt is a set of M-orthonormal vectors that is used to

reduce the dimension of the dynamic equation set. to the form of the Lanczos algorithm

described here, orthogonalization is applied only with respect to two preceding vectors, leading to

a tridiagonal form of the dynamic equations that can be used to great advantage either directly in

time step integration or in solution of the free vibration eigenproblem.

To derive the Lanctos algorithm it will be assumed for the moment that the first j Lanczos

vectors, (q4 ,q , a, , ,q%) have been found, and the analysis of the j + I vector will be performed.

The resulting vectors all satisfy the condition q,TMq, _ 6,, where 5,, is the Kroneker delta; that

is the vectors are orthomormal with respect to the maws matrix. To calculate q,, a preliminary

vector F, is first calculated from the previous vector, %,, as in the Krylov sequence:

IF, - K-Mq, 8

Now in general it may be assumed that this preliminary vector contains components from each of

the preceding vectors, thus

IF , r; + ajq, + j%_q1 + y)_ + (7)

where r, is the "Pare" vector orthogonal to A previous Lanczos vectors, and ai, 01, 7),**

are the amplitudes of the previous vectors contained in F,. These amplitude coefficients are

evaluated from the orthonormality of the Lanczos vectors. Thus if both sides of Eq. 7 are multi-

plied by %7M, the result is

qjMFj - q Thfr) + a,%W.M, + 6;,qWqjL + 7,q,~q,4 + (8)

Here the list term on the right hand side vanishes by definition and all terms beyond the second

varnish similarly due to orthogonality. The normalizing definition applied to the second term then

reduces Eq. 8 to an expression for the amplitude of q% along F,:

a qww J

The amplitude of q,.-1 contained in Y, may be found similarly by multiplying Eq. 7 by

q71,M. to this case all terms except the third vanish by orthogornality and the coefficient of 0. is
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unity, so

-[Pj -m ql!M Fj

But substituting Eq. 6 this gives , - q 1MK'IM, and applying the transpose of Eq. 6 to the
7i

q) vector gives

- ir _Mq, (10)

Finally, expanding F,_1 in terms of its pure vector, r,-,, and the preceding Lanczos vectors, as in

Eq. 7, the transpose of Eq. 10 becomes

0, - qj~r,_ + a,- 1=Nq%,.q_ + 5_1%qqjq2 + 7j-lq.,1 qj,4 + "'" (11)

It is evident that all terms except the irst vanish on the right hand side. Now q is the vector

obtained by normalizing P,-, with 0, as the normalizing factor, i.e.

I

q )1 (12)

then the value of 0, is given by Eq. 11: 01 - -',rT-Mr,-l or

= rf1 Mr,- (13)

Continuing in the same way, the amplitude of q,- 2 contained in 7, is found to be

11M- q T-. (14)

Following the procedure used to derive Eq. 11, this leads to

I- qjrr, 2 + a_2,rq,-2 + 3;-2q ,q3 + y,.%rMq,.4 + "" (15)

But using the normalizing relationship equivalent to Eq. 12, rt,2 = 3-q,-, hence when this is

substituted into Eq. 15 it is clear that all terms on the right hand side vanish, with the result that

71 = 0. A corresponding procedure could be used to demonstrate that all further terms in the

expansion for F, (Eq. 7) vanish; in other words, the orthogonalization procedure used in generat-

ing each Lanezos vector need be applied only to the previous two vectors.

In summary, the Lanzcos algorithm to derive the vector q,+,, may be expressed by the fol-

lowing sequence of equations:
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F, K-Zq (a)

- , - aq, - Pq_l (b)

where: a, ql4[F, (e)

-(r,,_,l,.,)r (d) (16)

q, "+1 (e)

where: 0, - (wrjTA,) (fM

Startln Vector

In general, the starting vector q, for the Laaczos algorithm may be chosen arbitrarily.

Then setting qO - 0, the procedure defined by Eqs. 16 will produce the second Lanczos vector q2 ,

and the process may be continued to produce as many vectors as are desired. It will be noted

that the cost of evaluating each successive vector is constant after qg has been obtained because it

is necessary to impose orthogonality only with respect to the two preceding vectors.

The Lanezos algorithm is particularly advantageous in dynamic analysis when the applied

load is of the form

f-be() (17)

that is. when the distribution of the load, b remains constant and only its amplitude varies with

time. The starting vector in this case is taken in the direction of the static displacement, thus

ro - - (18)

This choice gives the Lanczos vectors the important advantage noted before, that they automati-

cally include the static displacement and avoid any possible need for a static correction. It is of

interest to note that Wilson, et al. 151 adopted this starting vector for this reason. Further, it is

evident from Eqs. 16 that if b is orthogonal to any of the modes then all the Lancsos vectoms will

also be orthogonal to this mode.

An important type of dynamic loading of the form of Eq. 17 is earthquake excitation, where

the effective loading results from accelerations applied at the supports. In this case, b - Me

where a is the influence coefficient vector listing the displacement of the degrees of freedom due to

4&M
-. ,-..
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a unit support displacement, and e(t) is the acceleration history applied at the support.

Dynamic Response Analyis Procedure

The orthogonality properties identified in the derivation of the Lanczos algorithm can be

utilized effectively in transforming the equations of motion to a reduced form. Equating the two

expression for r, given by Eqs. 16b and 16e, and substituting Eq. 16a leads to

I = 61+1 q,+1 = K-' M q, - q, a - qI-I ,5 (19)

Transferring the right side to the left, the combined set of the Lanczos vectors obtained after m

steps can be arranged in a single equation as follows:

[T-]

K- I  = 0 2= (0)

where Q. is the n X m matrix with columns qG, q2, q., e. is the last column of the I.,

identity matrix of dimension m, and T. is a tridiagonal matrix made up of the coefficient ,r, 0':

a, 0

i's

Tm .. •. (21)

Now multiplying Eq. 20 by QTrM and applying the orthonormal properties of the Lanczos vec-

tos. Q.MQM - I. leads to

Q7 M K M Q-T. (22)

That is, the projection of M K-1 M on the subspace with basis Q. is a tridiagonal matrix.

This tridiagonal property will be used advantageously in the dynamic response analysis pro-

cedure. For this purpose, the equations of motion (Eq. 1) are multiplied by M K- with the

result:

,..-~

~--. .. ~.



MK'Md + MK-'Ci+ Mu MK-'f (23)

Before accepting this expression it should be noted that the mass matrix M used in dynamic

response analyses frequently is singular (because mass coefficients may not be associated with all

degrees of freedom), and also that significant information may be lost when a set of equations is

multiplied by a singular matrix. Therefore, the use of Eq. 23 may not be justified. However, it is

shown in the Appendix that using Eq. 23 instead of Eq. 1 results in the same solution, whether or

not M is singular.

Now expressing the response in Lanczos coordinates, u - Q~x(t) and completing the

transformation, Eq. 23 becomes

Q.M K-' M Q.i + Q M K-' C Q.i + Q.M Q.x = Q.T? K/-' f

Neglecting damping and using Eq. 22 and the orthonormal property of the Lanczos vectors; this

may be written in tridiagonal form:

T. 9 + X =I. (24)

in which g. = QT M K-' f. If Rayleigh damping is used:

C= a0 M+ alK

the tridiagonal form is still preserved, as follows

T, 2 + [aoT, + alQ i + x=g. (25)

If the more general form of proportional damping giveL by the Caughey series [81 is

adopted:

C-M td -K
km,-p

then the corresponding damping term to be used in Eq. 24 will be of the form

km

It should be noted that the damping only approximates the projection of the Caughey damping

on the Lanczos subspace but the discrepancy is of no significance in practical cases.

The tridiagonal for of Eq. 24 or 25 is particularly advantageous when the applied load is of

~T~T7777S'
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the form of Eq. 17 because then the forcing function can be reduced as follows:

*. = Q MK-'f
- Qa M K-

1 b ( )

M . q,, , €(t
-Q. M Q. el #I6(

where el is the first column of the identity matrix I.. Eq. 24 then takes the form

T. X- + x -i 1 el -() (27)

which shows that the excitation is applied only in the first of these equations of motion. Of

course, the same loading would be applied to the damped system of Eq. 25.

The solution to the equations of motion in the form of Eqs. 24 or 25 may be obtained either

by a time-stepping scheme such as the Newmark method 110, or the eigenvectors of T. can be

calculated and the response obtained by superposition of the uncoupled equations. The storage

demands and the number of operations required for either of these analytical procedures is of the

order m. This is in contrast with the cost of solving an r X n eigenproblem in order to employ a

standard mode superposition analysis. Moreover, because the Lanczos vectors explicitly recognize

the load distribution, fewer Lanczos vectors than mode shapes are needed to obtain a desired level

of approximation.

Required Number of Vectors

In order to determine how many Lanczos vectors may be required to obtain the desired

accuracy in a dynamic analysis it is necessary to assess the errors resulting from a given approxi-

mation: or more precisely, to determine the number of vectors required with a tolerable error.

The participation factor, which indicates the component of the applied load that contributes to

the response of the corresponding Lanczos vector, provides a measure of the significance of that

vector in the total response. Defining the j participation factor as

- q, b (28)

the product QZr b - h. gives a vector listing the participation factors of all m Laaczos vectors.

A-
+ .,. . . ,+ , + ., . + + . f . + ; , , , • i " + ... . ,, , , .. ., -"
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So if the elements of this vector are evaluated sequentially during construction of the Lancas

vectors, their successive values may be judged as a criterion for termination of the Lanczos algo-

rithm.

The values of the participation factors asociated with each Lanczos vector may be obtained

at negligible cost during the determination of the vector. Multiplying Eq. 16b by br yields

br r, = br F, - brq a, -br q_, pJ (29)

Noting from Eq. 16a that F, - K-Mq,, and recalling that the starting vector was given by

-Ich K-tb (Eq. 18), the first term on the right side of Eq. 29 becomes

brK-'Mql - ~1qrMq, . 0. Thus, introducing Eq. 16c on the left side, Eq. 29 can be reduced

to

8j+1 qVs1 = - brq, a, - r ql,9j

or making use of the definition of the participation factors (Eq. 28), this gives

qj 0, + 1 ,01 )

Including this simple scalar calculation with the Lanczos algorithm makes it possible to terminate

the calculation when the magnitude of q,+ drops bellow a specified tolerance value.

Loss of orthogonallty

The simple Lanczos algorithm presented here, involving orthogonalization with only the two

preceding vectors at each step, is subject to loss of orthogonality with respect to earlier vectors

due to roundoff error. If such errors are not corrected when they reach a critical size, the vectors

may become linearly dependent. Paige fllJ characterized the way in which orthogonality is lost

and provided the theoretical background for avoiding this gradual loss of orthogonality without

applying full reorthogonalization at each step. From Paige's work a number of procedures were

developed 11,121 which take advantage of the simplicity of the basic Lanczos algorithm while

maintaining robust orthogonality.

An algorithm proposed by Simon (121 is adopted here as the simplest means of retaining the
4

necessary level of orthogonality. The vector w, - q,+iMQI is formed to indicate the loss of

I.~~ .~ ... ..** ak
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orthogonality at any step j; that is w, cmntains Sns of the oder of roundol, and Simon's algo-

rithm is an inexpensive scheme for updating w, at each step of the Lascsoo analysis. His formu-

lation for w,+ 1 may be written

,+ w11+ - T, w, - a, w, - O, w ._1  (31)

To start this algorithm it is necessary to note that wo - 0 and w, -m q'Mq; then the further

values of wy are obtained at the cost of only Sj multiplications per step. The magnitude of the

elements of this vector demonstrate the trend of the orthogonality condition. When any element

of w. is excessive, q+ 1 is orthogonalized against all the preceding vectors. Then the simple

Lanczos algorithm is continued until the vector w, at some subsequent step again indicates the

need for orthogonalization against all vectors.

Numerical Results

As an example we use the finite element model of a multistory building frame shown in Fig.

1. The model consist of 170 two dimensional truss elements resulting in a total of 100 degree's of

freedom. The material properties were chosen such that the fundamental period is close to I

second (TI - 1.082 sec.). A step-function load is applied at the third story of the structure as

shown in the figure. This loading configuration ensures the participation of the higher modes in

the response of the structure. It is worth noting that this model also may be viewed as a lattice

analogy representation of a plane stress orthotropic elasticity problem, consequently the response

to the step function load will contain the effects of a stress wave rediating from the load point.

Also it should be noted that the structure was assumed to be undamped in order that the higher

mode contributions to the response would not be suppressed.

The Lanczoe method was applied to reduce the equations of dynamic equilibrium to the tri-

diagonal form. The Newmark step-by-step method then was used to evaluate the response of the

reduced problem. Newmark parameters, 0 and 7 were chosen to be P -0 . and t7 .to avoid

any numerical damping for consistency with the physical assumption and the time step was taken

to be At - 0.001 sec. This requires performing jut over 1000 time steps per fundamental period

- - 27:-;*<~~~7 77J
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of the respons. The analysis was carried oat for various numbers of Lanczos vectors. In figure 2

the displacement respous at the top stary, u, is compared with that obtained by applying the

Newmark method to the ureduced problem using the same parameters. From figure 2 it is clew

that the response of the structure can he obtained accurately with as few as 15 Lane:.. vector.

hlafgw 3 we show theway thedisplacement a at time 9- 3.0e.stabilizes asthe number of

Lamcmo vectors is increased. This convergence behaviour is also typical of the blite element

method as the number of elements are increased. This similarity is due to the fact that, like the

finite element method, the Laoczo. method also minimnizes the potential energy. From this plot it

can be seen that with only 6 Lane:.. vectors the displacement v is to within 6% aad with 20 vec-

tors to within 2% of the solution obtained by the direct method. Figure 4 shows the variation of

the Lancsos participation factors, 9,, with the number of Lanmas vectors. It is apparent that as

qp, approaches zero the displacement response stabalizes. Therefore as soon as q, fallk bellow a

specified tolarence the Lanct.. algorithm can he terminated.

The orthogonality state among the Lanczos vectors was monitored using the algorithm of

Eq. 31. In this example, a reorthogonalization step was carried out, on average, every 5 iterations

with the first occuriag at iteration 6.

Concluding Remaks

This paper points out that the Lanczos algorithm can be related directly to the inverse

iteration method of eagenvector evaluation. The essential concept of the Lane:.. procedure is

that the successive vectors obtained during inverse iteration become the coordinates used in the

dynamic response analysis when they are successively made orthogonal to the previously derived

vector. It is shown here that the orthogonality need be enforced only with respect to the two

preceding vectors; the way the araui-Schmidt orthogonalizatiom is applied automatically ensures

orthogonality with all earlier vector, and this fact permits the equations of motio to be restated

in tridlagosal form. Thu the dynamic response may he obtained by stepby-step integration of

the simplified equations.
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sal (w - 2), as in Eq. 27, the cost per time step becomes 14.. operations, and when the system is

uncoupled this cost only reducee to 10in. It appears that this additional reduction is not substan-

tial enough to justify the overhead cost of 3ma + 9=2 operations required for reducing Eq. 27 to

as uncoupled system of equations.



Appendix

The question that is addressed here is whether the solution to Eq. 23 is equivalent to the

solution of the original equation (Eq. 1) when U is singular. For simplicity the undamped case is

considered, and with no loss in generality, the mass and stifues matrices can be partitioned as

follows:

M ot] and K-

where K =K. The explicit forms of K and M is used to reduce Eq. I to

IM, Gt + Kilu 1 + K12 u2 - r' (32a)
K2, u, + KU u2 - fr (32b)

where u U11 and f - t Multiplying Eq. 32b by K 12 Kjj and subtracting the result from

Eq. 32a, eliminates u.. to get

M, GI+ ( Kit -K2jC j K= )at -f- t, - 'f2 < t (33)

The next step is to obtain an expresion for K-1 by performing the block LT DL factoriss-

tion of K (not the usual LDL T) and inverting the result to get

K-1 IK o ] [(Kjj7KISK&'K~Jr o I K.K'(4

When putting this relation and the singular expresion for M in Eq. 13, the uint term on the left

hand side becomes

M K-1 M -- (35)
0

and similarly for the right hand side of Eq. 13 yields

MMI(KII - K 2KjoKa) (t - K"2K.tf,,

d te0

and the first of these equations becomes

a - -



M, (K11-KoK~iica) ) 1  1 + M, u, - ,4(K1 -ICu~iKa)- (t 1-KaIcjrjtt

Multiplying this eqation by (KIt-XK =YuiLg) M-~' reduces to Eq. 33.

jig,
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