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CORRECTED DIFFUSION APPROXIMATIONS AND THEIR APPLICATIONS

David Siegmund

Stanford University

1. Introduction and Summary

Let x1, x2, ... be independent, identically distributed random vari-

ables with mean 1j, and put Sn = x 1 ... + xn . In a variety of contexts,

e.g. sequential analysis, nonparametric statistics, queueing theory,

insurance risk theory, one is interested in a probability or expected

value defined in terms of the time at which S first crosses a boundary
n

c(n). In general c(n) is nonlinear, but the linear case is particularly

important. Exact results are possible only in very special circumstances,

but one can obtain asymptotic approximations reasonably generally.

One possible formulation involves contraction of the time and space

coordinates by the factor m"I and consideration of the asymptotic

behavior of (for example)

(1) P{Sn/m > c(n/m) for some I < n < m}

as mo. If c(O) > 0 and c is concave, it is clear from the law of

large numbers that (1) converges to 0 if . < col) and to 1 if

u > c(l). Precise asymptotic approximations to (1) have been developed

largely in the context of sequential analysis. See [23] or [27) for a

suimary of results and statistical applications. Since these approxima-

tions involve the rate at which a sequence of probabilities tends to 0,

it seems appropriate to call them large deviation approximations.
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A second possibility is to contract time by the factor M-  and space

by m" , so that instead of (1) one considers

(2) P{Sn/mh > c(n/m) for some 1 < n <m

with the additional assumption that V = Um ~ F/ for some fixed -= <

< -. Then under quite general conditions (2) converges as a+- to

(3) P{W(t) > c(t) for some 0 < t < I

where W(t) is Brownian motion with drift 6. Unfortunately the approxi-

mation of (2) by (3) is rather crude unless m is quite large, so it seems

interesting to try to develop an asymptotic expansion of (2) with (3) as

the leading term. Such approximations resemble Edgeworth expansions to

improve the central limit theorem. They have been called corrected dif-

fusion approximations [21].

The purpose of this paper is to survey the present state of develop-

ment of corrected diffusion approximations and to compare them with the

considerably more developed large deviation approximations.

Section 2 reviews the ruin problem of risk theory, for which the

classical large deviation approximation is due to Cramer (cf. Feller,

[7), p. 411). Section 3 discusses some related results for which a large

deviation formulation is in a certain sense inappropriate.. Section 4 is

concerned with first passage times to a linear boundary with applications

to the one sample Kolmogorov-Smirnov statistic, truncated sequential prob-

ability ratio tests, and risk theory.

The results of Sections 2-4 involve crossings of linear boundaries,

for wbich corrected diffusion approximations are typically as good and
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often better than large deviation approximations. However, it has proved

difficult to develop corrected diffusion approximations for nonlinear

boundaries, and it is only recent research of Hogan [91 that has led to

some progress. Section 5 discusses one particular application of Hogan's

work to repeated significance tests for a normal mean.

2. Ruin of a Risk Process

For b > 0 define

Tf= T(b) = inffn: S n> b}

with the understanding that inf 4-. In this section we shall review

some known results concerning PfT(b) < -}. With the proper interpreta-

tion this is the probability of ultimate ruin of a risk process or the

stationary waiting time distribution of a single server queue. See

Feller [7), Chapters VI and XII.

Assume that the distribution of the x. is of the form
1

(4) dF Cx) = expfex - ip(O)) dF(x)

where U = j' (e) i f xdF (x) is strictly increasing (unless F is con-

centrated at a point), so one can consider U to be a function of e,

or 0 a function of V - say 8(U). After a linear transformation one

can assume without loss of generality that

() fxdF(x) -0 , 0 x2dF(x) = 1.

In particular F0 - F. Since 1 is strictly convex, given any U 0 < 0

(Ul > 0) there exists at most one value Ul > 0 (u0 < 0) such that
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V00) - Ve6), where 6i - e(i). We shall assume that such a "conjugate"

value of U exists for all p 0 0.

By Wald's likelihood ratio identity, for any stopping time N and

event A 4 $(x I , ... , xN), for all u

(6) P (A n (N < ) -,exp{(e-e)S N - NE )-e); A n (N < ®))

where e a emi), 6' = O(U'), and E(Z;B) = E(ZIB). In particular, if

U0 < 0 < u1 are conjugate in the sense of the preceding paragraph, then

(6) yields

(7) P 0rT < = E l[exp{-A(S -b))] exp(-Ab)

where A 1 -e 0' From (7), the renewal theorem, and some calculation, it

follows that as b-

(8) P0 { < aa} K(a0) exp(-Ab)

where, for nonarithmetic random variables,

(9) K(110) = P ]Ot u ao}p ((TP = {T }/AA

with T+ C.) =i inffn: S n > 0 (Sn< 0)]. In general K(pO) must be

evaluated numerically [271, p. 25. The relation (8) is Cra6r's classical

approximation obtained essentially by the method introduced by Feller [73,

Chapter XII.

Suppose now that b-, V0-0 in such a way that bV0  is bounded

away from - and 0. It is easy to see that Ab is bounded away from

0 and -. The following result appears in [21).
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(10) Theorem. Suppose b+o, A-i O so that Ab is a fixed positive number.

If F is nonarithmetic, then

P 0{T < a} = exp(-Ab) [l - p+4A + oA)]

where p. = Eo(S2 )/Eo(ST ). If F is strongly nonarithmetic in the

sense that

lim inf II - J x dF(x)j > 0
4 W

then

(11) P {T < 0} = exp(-Ab) El - p A + p A a o A 2]
110+

Remarks.

2 2
(12) Since 1-x + x = exp(-x) + o(x ) as x-O, and exp(-x) is always

positive, it seems reasonable for numerical purposes to express (1I) in

the form

P {T < o} = expE-A(b + p+)] + o(A 2 )

This also has an appealing interpretation, since expE-A(b + p+)] is

exactly the probability that Brownian motion with drift - j ever crosses

the level b + p+. Most of the results of Sections 3-5 admis similar inter-

pretation.

(13) At first glance (11) is quite surprising, because an informal expan-

sion of (7) leads one to expect the coefficient of A2 in (11) to involve

lim E (S -b)2] = E (S3+)/3 E
b-w P 1 T 0 T (S

(14) The proof of (11) follows from (19) - (21) given below. For details,

see E211.
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(IS) There is a version of (11) in the case that F is an arithmetic dis-

tribution, provided b--o through the span of the support of F.

(16) In view of (8) and (11), it is not surprising to obtain

K = exp(-Ap+) oA 2 )  (A40)

which follows from (20) and some easy calculation.

(17) An algorithm for computing 0+ numerically is given in [211. For the

special case dF(x) =(27)
- l exp(- x2),

P = -Tr1  logf2Cl-exp(- X2)]/X2 } dX z .583
JO

(18) Because of (16) one expects (and is supported by experience) to find

that (8) and (12) give similar numerical results. The main advantage of

(12) is that it requires numerical evaluation of only a single constant.

The results of Section 3 provide examples where the asymptotic normalization

of (8) is difficult to justify, but precise analogues of (12) are easily

obtained.

Let W(t), 0 < t < w, denote Brownian motion with drift 11 and put

TW = Tw(b) = infft: W(t) > b} .

Let G(t; P,b) - P {w(b) < t}. Suppose to be definite that F is non-

arithmetic and let

Hx = (E0 S) f(0X) P0ST+ > y)dy

The following lemmas yield (10) as an immediate consequence.

6

±

S f



(19) Lemma. Suppose F is nonarithuetic. Let p0, b0 in such a way

that for some -- < E < -, jb C . Then for all 0 < t, x <

lir P {T(b) < b2t, S -b < x} = G(t; ,I) H(x)

and for all r > 0

lim E {(S b)r; T < =E (S r+l)/(r+l) E (S

(20) Lemma. Assume that F is nonarithmetic. Let r > 0, U > 0. Then

lim iE {TS r = E (Sr+l)/(r+l)
1.+0 + +T+

and consequently as Vj+O

E (Sr) r ES r +  Or Eo(Sr+l)/(r+l) + o(p)

E1T+ 0( TOS +/rl 0 oTp+

where 6 - 8(U) .

(21) Lemma. Suppose F is strongly nonarithmetic. There exists an

c > 0 such that uniformly for v E [O,e]

E [(S -b)j = E (S+I)/(j+l) E (S + O(e-cb)

for j=l, 2, 3.

3. Two-Sided Problems

Consider the stopping rule of a sequential probability ratio test

(22) T = inf{n: Sn 4 [a,b])
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where a< 0 < b. If b- and a--, then for fixed p 0 < 0, Puo{ST>bl

~ P VT(b) < -}, so a large deviation approximation does not distinguish

between this situation and that of Section 2. In [18) I have a heuristic

approximation to P )(ST > b) which did not lose sight of the lower

boundary at a, but which seems impossible to justify in general. The

following approximations do have precise mathematical justification and

ji  agree with the heuristic approximations of [18) when U-0.

(23) Theorem. Assume that F is nonarithmetic. Suppose b-m, a+--, and

A -1 - 0 - 0 in such a way that Ab and b/la[ are fixed positive

numbers. Then for j=0 or 1

1 - exp[(-l) j A(a+p_)]
(24) P [sT > b} = [l+ 04),

-exp[(-1)) A(b )] - exp[(-1)3 A(a+p )]

where p Eo(S 2 )/EO(ST ) and (T_) = inffn: S > 0 (Sn < 0).

Also

E j(T) = -l[(a+p_) + (b~p - a-p ) p*) e 0( 1

where p* denotes the right hand side of (24). If F is strongly nonarith-

metic, the remainder in (24) is o(A2

Remarks.

(2S) Like (12), (23) has an interesting interpretation in terms of Brownian

motion: The approximations would be exact for Brownian motion with drift

+ IA stopped upon hitting the boundaries b + p, or a + p_.

(26) For the case P=0, see [18).
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(27) Example.

Suppose yl' y2 .... are independent with probability density function

Xe " x  for x > 0. A sequential probability ratio test of H0: X = X(0)

against H1 : X = AX') (X(0) < X(1)) is defined by a stopping rule of the
n) i

form (22) with S = (1- A y1 ), where A* = ( -l) _ X(O))/log(Cl/O)
1

For this test the classical approximations of Wald [26] for the error prob-

abilities and expected sample size are given by (23), but with p = P = 0.

From the lack of memory property of the exponential distribution it follows

that ST  is exponentially distributed and hence that p_ = -1. An easy

calculation based on the Wiener-Hopf factorization ([7], p. 605) shows that

P+ = 1/3. Hence (23) provides a theoretical explanation for the modifica-

tions to Wald's approximations suggested independently in [8] and [12].

(The modification of a to a-l is also easily justified by relating this

test to an equivalent one for the mean of a Poisson process observed con-

tinuously, for which there is no excess at the lower boundary. But the

suggestion to replace b by b + 1/3 has apparently been justified on

the basis of numerical evidence.)

Now suppose that T is defined by (22) with a=0. This stopping rule

arises in the study of cusum control charts [51, where one quantity of

particular interest is E (T)/P (ST > b), the so-called average run length.

(28) Theorem. Suppose a=0 and F is nonarithmetic. Let b- and

A-0 so that Ab is a fixed positive number. Then for j=O or 1

E j(T)/P j (S T > b) = (AljJ)"1 fexp[(-l) ASb+o+ -)]

- (-l)j A ~b - P.) -b + oCA "

where p+ and p are defined as in (23).

9
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Remarks.

(29) To see that this approximation provides excellent numerical results

it can be compared with the exact numerical computations of van Dobben de

Bruyn [5J for the case of the normal distribution and Lorden and Eisenberger

[1S] for the exponential distribution.

(30) The proof of (28) uses (20) repeatedly; see [23] for details.

(31) An interpretation of (28) in terms of Brownian motion involves the

replacement of b by b+p+ - p-. Without this correction the approximation

is very poor for U < 0.

Assume now that dF(x) = (2) -  exp(- x2), so the P distribution

of xi, x2 9 ... is normal with mean v and variance 1. A special but

particularly interesting case of a class of sequential tests proposed by

Anderson [ ] is based on the stopping rule

= inf{n: IS n 1 b - n} (I > 0)

Anderson studied these tests for Brownian motion. In general a corrected

diffusion approximation for the error probabilities is quite complicated,

but for p = -n (with a similar result for V-=n), if b-, n-O so that

bn is fixed, then

(32) P {S- > 0} exp-n(b+p+)I + o(T)

where p Z .583 (cf. (17)). It is interesting to compare (32) with the

approximation of Lorden [14], who on the basis of numerical computations

and curve fitting suggested

10
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exp(-nb) [.4996 - .28645 n + .0696 n 2

which in the range he explored is extremely accurate. For P+= .583, the

right hand side of (32) equals

2 o~2)
exp(-nb) [.5 - .2915 n + .0850 r + O(n 2

and numerically (32) is usually even closer to Lorden's approximation than

this expansion suggests.

4. The Distribution of T(b).

Assume that x1, x2, ... are independent, identically distributed random

variables with mean 0, variance 1, and finite third moment K. The expon-

ential family assumption (4) will be introduced when needed. Let S =n

x + ... + x and

t = inf{n: S > b}

nLet f(X) = E[exp(iX xl)], and assume that for some no > 1

(33) f dA <

It follows from (33) that for all n > n0  Sn  has a bounded density func-

tion which obeys a variety of local limit theorems (cf. (45) below). It

will be convenient to use the notation

P(m)(A) = P(AIS m = ) , A Ex

&
(34) Theorem. Suppose b f mil and f m E0  for some t > 0 and

"< 0 < 4. Then as m--

11



(35) P(m){T < m} = exp{-2(b+p+)(b+p+ - - K/3)/(m + ic/3)} + oCm" )

If in addition c = my for some y < g, then

(36) P{T < m,S <)=( c ( + ic) +o(m )C m.+ c/3)

H 3 2Here = E(xt), p+ = + E(S )/E(S ), and 0 denotes the standard normal
T+

distribution function.

(37) Theorem. Now assume that the distribution of x has the exponential

form (4) and that for some n0 > 1 and all U in a neighborhood of 0

ooJE [exp(iX xl) 0 dX <

~,and

that m1A = 6 is a fixed positive constant. Then as m, for j=O or

P {T<m, S<c} = exp[-(-l) j A(b+p+)J (I+1c/3)) C-1) j A(m+Kc/3)
m \ (mwtc/3) 1

+ o(m" )

Remarks.

(38) Guided by the results of Sections 2 and 3, the approximations (35)-(37)

have been expressed insofar as possible to resemble analogous exact results

for Brownian motion. In fact, they are precisely the corresponding results

for Brownian motion with drift 0 or + h&, b replaced by b * p+, (c)

replaced by + i/3 (c + 4c/3), and m replaced by m + Eic/3 (m + ,c/3).

12



(39) The approximations (36), (37) are similar but not identical to those

suggested in (21) on the basis of some heuristic Laplace transform inver-

sions. To illustrate the difference consider

(40) P {T < m} = P (Sm > b} + P (T < m, Sm < b}

Suppose for simplicity that F=0 is standard normal, so F (x) (x-).

Then the first term on the right hand side of (40) is exactly

1-4(bm-  - im ), and the second can be approximated by (37) to obtain

P ft < ml 1-(bm - 11m ) + expE2U(b+p+)] 0[-(b+2p+)m-  it

where p 1 .583. The approximation suggested in [21] is

P fT < m) = 1-0[(b+p+ )m-  - Pm h + exp[21i(b+p+)] 0[-(b+p+)m -  
- m 1

The differences between these approximations is o(m' ), so both are con-

sistent with (37). However, in view of (40), the first one would seem

preferable, and some numerical experimentation shows it is typically more

accurate - especially for small values of m.

(41) Asymptotic expansions essentially equivalent to (36) and (37) were

obtained in [24); but the method of proof used there broke down in the most

interesting special case cfb (y=).

Examples.

(42) Let F n(x) denote the empirical distribution function of n inde-

pendent, uniform random variables. The representation of uniform order

statistics in terms of exponentially distributed random variables (e.g.

[3], p. 285) shows that

13
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P{ sup (x - F nCx)) > n-hO = Pf max (Wj-j) > n\ - liWnl - (n+l) = -1}
O<x<l l<j<n

where W = 1 + + yj with yl, Y2 -'' Yn. l independent standard

exponential random variables. Putting m = n~l, = -1, b = n -l, and

P+ I (because S is standard exponential) in (35) yields

P Sul n (x - F nCx)) > 4} - exp[-2 (4 + (3n ) 1)] + o(n),
O<x<l

a result first derived by Smirnov [25]. This approximation is much simpler

and almost as accurate as the large deviation approximation given in [22].

See [22] or [29) for numerical examples.

(43) The approximations (34), (35), and similar results for two-sided

stopping rules can be used to calculate error probabilities for truncated

sequential probability ratio tests. See [22) and (23] for numerical examples

for normal and exponential distributions.

(44) Asmussen [2) has studied various approximations to the probability

of ruin before time t for a risk process, and has concluded that an

approximation similar to (37) is better than several alternative proposals.

Proof of (34).

Let fn denote the probability density function of Sn' which by (33)

exists for all n > n0. According to [16], p. 207.

(45) fnCxn )n . *(x){l + (ic/6n ) (x$-3x)) + (1 + 1x1) 1 oJn" )

where o(,) is uniform in x.

Let Pm(A) P(AIS A, So Set A M* A and C

for some A0, %0 < C. Let ' - 2b-C - M*(2C-C0) denote C reflected

14
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about b. From (45) and the renewal theorem it follows as in Lemas 1-3

of [241 that for a = mil - (log a) ) and some em 0

(46) P() { < mI - P (M){T < 1 S-b < ci }  o(w - )

and

(47) m, I<l} -PC) r<m, ST-b < cl C o(m )

I T m

Set A= (T < al, ST-b < mh e }, and let (am)(n, Sn )  denote the likeli-

hood ratio of x1 , ..., xn  under PErelative to P,, For all

n < m-nO

c48 0)-

(48) Z(, S f em-n(E-Sn)
n f- n n a dfmCX

By (46) and Wald's likelihood ratio identity

(49) p(T {T < ) E(m)(L(m)( S); S+ o(m )

Substitution of (48) into (49) and expansion with the aid of (45) gives

the first order result

P(T)T < MI - exp-2(ft-XO) ( -E0)]

This motivates the following reformulation of (49) (which is justified by

(47) and the fact that P(R) (T-=.} - o(m')):

(50) P(mi){, < m}- exp[-2(C-) O) ( -O))+ o0Cm - )

,, () ( , sT - exp[-2( -X ) (-to)); Am)

15



The likelihood ratio of xI , ... , xn  under ,, relative to P(-S 0 1)

is f 3 n (V'-Sn)/f (C'-A). Hence by (48) and Wald's likelihood ratio

identity once again the right hand side of (50) becomes

Tcf -s'-s )

(,1) El f CS'_(-X) " exp[-2(-X 0) ( f%) m-T)(C -ST);

The rest of the proof of (35) involves use of (45) to expand the inte-

grand in (51) and application of (19) to evaluate the resulting expectations.

To avoid some tedious algebra, consider the special case %n(x) = n h(xn-)

(€ the standard normal density function). Let Rm = S - m C. The inte-

grand in (S1) equals

E(1 - T/M)' h( 0- 0)A." 1ff ¢ - 0 + R /* _C -0" %a/M"

I (1- 'rim)") (1- tim) /

ti)O(-0) T/'TIM

which can be expanded to give

(52) -2(1 - T/m)'' exp C( C0-X0)
2 -(;-EO) 2/(1 - TIm)] [(;-E 0) RM/m (1 - TIm)]

+ 0([1 + R 2J/m)

uniformly on Am. According to (19) T/m and Rm  are asymptotically inde-

pendent, converge in law, and (Rm) is uniformly integrable. Also (52)

is a bounded, continuous function of T/m on A . Hence (52) can be sub-

stituted into (51) and (19) applied to evaluate the result. Putting

X-0 and performing the appropriate integrations yields (35) in the case

of normally distributed xi. The general case is similar, but with more

complicated algebra.

16
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Formally (36) and (37) follow by substituting (35) into

(S3) PT < M, S~ < c}i(M < M} P{S. E d~l

However, some care is required to justify this calculation - especially

in the case c=b (y=), when in (53) can be arbitrarily close to b.

It is easy to see that (35) holds uniformly on each compact subinterval

of (-c,C); but if -0 (52) is not necessarily bounded, (46) may

fail to hold, and indeed the proof of (35) disintegrates.

To circumvent this difficulty, let

T* = sup{n: n < m, Sn > b} ,

and observe that

P(m),' < M) = P(M){T* > O} - .(m){. < M}

so to approximate P~m~OT < m for C-e < O < C, it suffices to consider

PW(T < m) for E=0 and C- < < C (recall that X a m _)). It is

easy to see from (50) - (52) that uniformly for -c < X< -m

P(MT < m) - exp{-24(;-) )+ O(3M) ,

which suffices to justify formal substitution of (35) into (53) for t

in a neighborhood of b.

There remains the problem of large E. If sufficiently many moments

of xi  exist, for example, under the exponential family assumption of

(37), it is easy to improve (45) by a tilting argument and show that

(35) holds uniformly for -log m < E0< -e. This suffices to complete

the proof of (37). However, under the minimal assumption of a finite

third moment I have not been able to complete the proof of (36) except

17



by resorting to the rather different techniques developed in [24), which

prove (36) directly (for y < ) without going through (35).

Remark. It is interesting to compare the preceding proof of (35)

with the superficially similar proof of the analogous large deviations

result (Theorem 1 of (221). An especially important difference is that in

the large deviation scaling, after an appropriate use of Wald's likelihood

ratio identity the distribution of T/im degenerates to a point mass.

This means that if T were defined by a nonlinear boundary, one could

expect to obtain some results by linearizing the boundary at the point

where the distribution of T/m concentrates. In the case of a diffusion

limit the distribution of T/m does not degenerate, and this makes non-

linear problems substantially more difficult than linear ones.

S. Repeated Significance Tests for a Normal Mean

The first steps towards developing corrected diffusion approximations

for first crossings of nonlinear boundaries have been taken by Hogan [9),

who gives partial generalizations of (36) and (37). This section describes

one possible application.

Let x1 , x2, ... be independent N(pI,l) random variables, and put

S = xI + + xn . A (modified) repeated significance test of H0 : i=0

against Hl: VA0 is defined as follows. Let 0 < c < b < , 0 < 0 < I

< -, and define

(54) T - inffn: n > 0, [Sn > bnAl

Stop sampling at min(T,m) and reject H0 if either T < i or T > i

and ISMI > cmh. The design parameters c, b, 0, and m are customarily

18
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chosen to give a desired significance level and desired power at some chosen

.'0, i.e. to give prescribed values of

(SS) PUT <m + P fT > m, I m

=P {JS I > cmh + P fT < m, IS I < cmh IT m m

for U=0 and some chosen UO0. Usually either c = b = bl, say, and (55)

* 'simplifies to

P {T m ,
U -

or b is slightly larger than b and c considerably smaller, so that

the test has essentially the same power function as a fixed sample test.

See [23) for a thorough discussion.

In light of (36) and (37) a natural conjecture is the following. (See

also [4).) Suppose m0 , m so that the ratio m/m0 remains constant,

and assume that 4 is proportional to m1. .Define

(56) T f infft: t > mo , IW(t)1 > bth + P+)

where p+ is as defined in Section 2 and has approximately the numerical

value .583. Then as -o (with b, c fixed)

(57) p UT < m, ISm' < cm ) = P < m, Iw(m)l <cmh + om " h)

Hogan's elegant argument [9) lends considerable credence to (57). It

should be noted, however, that although Hogan's results are not restricted

to normal populations, they do require that the xi have vanishing third

central moment. In the contrary case the form of a corrected diffusion

approximation for nonlinear boundaries appears to be such more complicated.
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To use (57) one must compute numerically or by means of some approxima-

tion the boundary crossing probability for Brownian motion which appears on

the right hand side of (57). Techniques for obtaining such approximations

have been developed in £10), Ell), and [19). For our present purposes the

methods described in [23) are convenient. The following result is easily

proved by the methods of Theorems 4.14 and 11.1. (Note that the asymptotic

normalization used here is one of large deviations.)

(58) Theorem. Suppose that b, c, m0 , m so that b/m = Ul < b/M  0 = 0'

and c/m = y < V1 are fixed constants. Then for U > 0

(59) P < m, -w(m)j < c ~ expC-mn U(b-c) - p+b 2 /mc] 0(b-m'i) b/cml,

and

U0

(60) P {T < m, Iwcm)l < cal 2b$(b) 2 x" exp(-p+ x)dx

+ 2&UUJJA10 x ep -PJX)A 2 x 2-_1+ 3p4 x -2p,2 x2

2 -2 2 4

- 2 P x3 + 1 2 p2 x 4 dx

+ b- 1 ((b) exp(-p+ i0) (pOi0 - 1) Eho/vl) 2 _ 3 + o[b- 1 *(b)]

Remark. The expansion (60) is given in a convenient form for numerical

integration. An alternative form is perhaps preferable if tables of the

exponential integral and exponential function or incomplete gamma function

are to be used.

The approximation of P (T < m, ISal < cmIl by the right hand side of

(59) when u > 0 is essentially the same approximation as that suggested on

20

• ' "________ii_____,_.._ i " =



the basis of a direct large deviation analysis of (55) (cf. [20) for c=b

and [22) for c < b). It is easily seen to be very accurate, at least in

the case c=b, by comparing it to the exact numerical computations of

Pocock [17]. The large deviation approximation of P0{T < m, ISmI < cmil,

to wit (cf. [22])

(61) PofT < m, ISml < - b,(b) V - X (x) dx
0 2 -1

where v(x) = 2x "2 exp[-2Z n- 1  (- j xn ) = exp(-p+ x) + o ) as X-0

(cf. (16)), is similar to the first term on the right hand side of (60).

The second order terms in (60) lead one to hope that (60) is better than

(61), but on the basis of the evidence given below this does not appear

to be the case, except perhaps when m0 and m are quite large.

Table 1 compares the large deviation and corrected diffusion approxi-

mations to (55) in the case U=0. For the large deviation case (61) is

used to approximate the second term on the right hand side of (55), whereas

(60) is used for the corrected diffusion case. For comparison, exact

numerical computations of [6] or [17) are included when available. Other-

wise the results of an 8100 repetition Monte Carlo experiment + one stan-

dard error provide a standard of accuracy. For the Monte Carlo experiment

a variation of the importance sampling scheme described in [13) was utilized

for variance reduction.

Woodroofe and Takahashi [28) have calculated a second order term for

the large deviation approximation to (55) when b=c. For the last two

rows of Table 1, their approximation yields .111 and .064 respectively.
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TABLE 1

0(Is* I > c ) c P 0 T < m, IS m <

Corrected Large Exact or
b c U0  m Diffusion Deviation Monte Carlo

2.289 2.289 1 3 .044 .049 .050

2.535 2.53S 1 9 .04S .OSO .050

2.986 2.20 1 5 .031 .032 .032

2.413 2.00 1 5 .064 .069 .072

2.80 2.00 3 9 .049 .OSO .051 + .001

2.24 2.24 4 24 .108 .110 .114 + .001

2.59 2.59 20 100 .057 .056 .059 + .001
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