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ABSTRACT

Comonly, hypotheses introduced by Cauchy or Born are used to relate

macroscopic deformation to atomic motions, in molecular theories of

elpsticity. Our purpose is to discuss the applicability of these to crystal-

crystal phase transformations and the ambiguities which are involved in

estimating the deformation from observations of lattice vectors.
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TOR CAUCEN A m UIOSnMn EN R CRUYTALS

J. L. Urioheen'

Commonly, molecular theories of crystal elasticity Iean upon hypotheses introduced by

Cauchy 11-31 Or Down 14) to relate changes in atomic positions to macroscopic

deformation. Both son pictured the atas as mans points, Briefly and roughly, Cauchy 4*

assumed that atomic motion and gross action are the sae, where both are defined, Later,

It me appcsciatod, In particular by Born, that, in a solid which appears to be at rest,

atom still undergo vibratory (thermal) motions about equilibrium positions. Since such

things as x-ray observations average out such fluctuations,* they can appear to be in good

agreement with Cauchy$& hypothesis. By them standards, Cauchy's hypothesis might or might 4

not describe deformations encountered in transitions observed in crystals.. For purposes of

discussion, I will Ignore such fluctuations. Sorm pointed out that, in som cases,

Cauchy' s hypothesis Is In trouble for a different reason, being inconsistent with certain

conditions of equilibrium. As an alternative, he proposed that lattice vectors deform as

would material line elements, subject to the macroscopic deformation, the aforementioned

equilibrium conditions being used to f ix the finer details of atomic arrangement. In -

particular cases, this leads to deformations consistent with Cauchy' s hypothesis.

Commonly, studies requiring such an hypothesis use one of the two.

In trying to apply, or to decide chether either hypothesis in applicable to

deftometions involved in phase transformations, one encounters ambiguities, complicating

the matter. My primary purpose is to elaborate this.
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Minnesota, Minneapolis, NO 51455
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2. 2M IITIownusS.

A classical definition of crystals pictures configurations of atoms, filling all of

space. To be crystal configurations, these must have a periodic structure, described by a

translation group, generated by three (constant) linearly independent vectors, 1 , a 2

and a3 .  The idea is that any point must be carried to a physically indistinguishable

point by all translations of the form

n aK  , (2.1)

where we use the summation convention, and the nK represent any set of integers. What is

sometimes left unsaid, but to be understood, is that this group is maximal; we don't skip

over any indistinguishable points. For eXample, we cOMonly picture amorphous solids as

homogeneous, moaning that we have such a translation group for any choice of ax, but a

crystallographer would not include them. With this understanding, the ax are called

lattice vectors. Less than maximal groups are soetimes encountered in practice, as will

become clear. Different sets of lattice vectors are equivalent, in the sense that they

generate the same translation group. For two sets AR and ax to be equivalent, it is

necessary and sufficient that they be related by an equation of the form

a.~3~aL,(2.2)

where the 4L are any integers such that

det.mlU - * 1 , (2.3)

describing the equivalence as a representation of an infinite discrete group G, which

plays an important role in the classical theory of crystallographic groups. A nonatomic

crystal may or may not occur as a so-called simple or Bravais lattice, doing so provided

application of the translation group to one atom gives the positions of all.

Of course, we observe bodies which are not infinite, but, finite. If a body, or some

macroscopic pert of it, can reasonably be identified with a restriction of the ideal

infinite crystal, the part passes as a crystal. In the process, one exercises some

judgment about defects occurring in real crystals. One crystal might, after a phase

transition, exist as a number of crystals somehow joined together. It can be hard to know

just what part of the original configuration corresponds to a qiven part of the final, let
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alm deode eactly what deformation it experienced. Clearly, deciding which of an %

ideatical met of atoms goes where Involves same guesswork. As is discussed by Nishiyama

(5, Ch. 61, for eample, metllurgists have had some limited succes unravelling such

puzles. D osng the Ideas used Is Cauchy'*. Actually, some bodies of interest consist of

parts which are not true crystal., but strongly resemble them. For, ay, comon carbon

steels, the iron atome can form a good simple lattice, but carbon atoms are distributed

rather randomly. for present pirposes, such things might well be regarded am crystals.

In dealing with the ideal infinite configurations, It seams fairly natural to assume,

as DOrn did, that deformations taking one to another are homogeneous, the deformation

gradient P being constant. Here we asme that som such configuration is taken an a

reference, with some definite choice of reference lattice vectors AK. 7he Born hypothesis

then reads

a. - VA1 , (2.4)

the aK  being a possible met of lattice vectors in the deformed crystal. Given AX and

F, we clearly get just one of the infinitely possible choices of lattice vectors for the

deformed crystal, it being a matter of chance whether these are the same lattice vectors

which an x-ray crystallographer would select. Clearly, (2.4) describes a linear

tranformatiom so, In particular, for any element of G, we have

* ukx -w(4A) ,(2.5)

from which one can am that the validity of the Dorn hypothesis does not really depend upon

a special choice of the reference lattice vectors. For a simple lattice deforming to a

simple lattice, (2.4) rather suggests, as many would asme, that the atom originally at

n AX move to n'aX, ignoring a trivial translation. If so, it is consistent with

Cauchy's hypothesis. Conversely, it is not hard to show that an homogeneous deformation

taking a simple lattice to another will, if it Is consistent with Cauchy's hypothesis,

satisfy (2.4), for some choice of lattice vectors. Similar agreement occurs in some other

cases, not in others. Of course, in itself, (2.4) says nothing about the fate of

individual atom, only about the periodicity of sets which they form. Thus, some

as-mtions are added, in making such comparison.

-3-
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It seems pretty clear that (2.4) fails to apply to some of the kinds of continuous or %

second-order transformations considered by Landau (61, who did not discuss F or the

equivalent, avoiding the need for accepting any particular hypothesis about it. Briefly

and roughly, atomic positions are assumed to shift in a continuous way with pressure and

temperature, but there can be, say, a sudden doubling in length of a lattice vector. Nor*

precisely, no matter how we select lattice vectors at least one experiences a siceable

discontinuity. To se that this is possible one need only appreciate that the precise

periodicity can be changed considerably, by infinitesimal shifts in positions of m

atoms. ere, (2.4) would require F to suffer an unbelievably large discontinuity.

Cauchy's hypothesis seens much more reasonable, on the face of it. 1o accept it. one mast

argue that the macroscopic F can vary somewhat over distances of the order of a few

atomic spacings, which induces some queasiness.

The latter type of difficulty becomes still more severe n so-called dffle

transformations. Here, lattice vectors, chosen in an obvious way, remain 2ined. so does

F, as observations are interpreted. This is coasistent 'with (2.4). so Barn's hypothesis

can be considered to apply. However, some atom in a unit cell undergo finite

displacements, to symetry-related positions. Certainly, it does not eas very reasonable

to consider that Cauchy's hypothesis Is applicable to suah *a~.

While these hypothesis have their faults, they deserve serious consideration, so we

should clearly understand just what they imply. In part, this is complicated by

ambiguities inherent in either. We now focus on same associated with the Born hypothesis,

there being rather similar kinds associated with Cauchy's.

%e
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3. UlAzC-InUkRIAN caromATZoU.

1.

rven when the Dorn rule applies, with F constant, the previous discussion makes

clear that measurements of lattice vectors alone do not suffice to determine r

uniquely. Said differently, infinitely many homogeneous deformations, which I call

lattice-invariant deformations, take the ideal infinite crystal onto itself, in a manner

consistent with the Born rule.

Consider any crystal configuration as a reference, and take any possible set of

lattice vectors a1  as a reference set. From (2.2) and (2.4), we see that F can

reasonably be considered to describe a lattice-invariant deformation provided there is some

element of the group G such that

t a - + . (3.1)

Mathematically, such F merely form a different representation of G or, if you like, a

conjugate group. Introducing the dual basis mK, the so-called reciprocal lattice

vectors, such that

a1 .'L a1  a1 -1, (3.2)

we can solve (3.1) for F, obtaining

(3.3)

Commonly, F is understood to be orientation preserving, so

dot F > 0, (3.4)

Assuming this, we are restricted to the subgroup of G whose elements have positive

determinant and, using (2.3), we find that (3.3) Implies that

dot P 1. (3.5)

Since such deformations take the infinite crystal to an indistinguishable configuration,

superposing a lattice-invariant deformation on any deformation should leave invariant such

things as elastic strain energy functions or associated Cauchy stress tensors, at least as

I and some others see it. Molecular theory of elasticity seems to support tis view. When

ishiyama (5, p. 339) argues that the kain deformation is most reasonable because it has

the smallest strain energy, he seems to espouse a contrary view. Given this and other

similar statements in the metallurgical literature, it seems unfair to claim that the

S -5-
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assertion is commonly accepted. Parry (7-81 and Pitteri (9) present analyses helpful in

constructing constitutive equations exhibiting the aforementioned invariance. Of course,

Barn's hypothesis might hold in cases where elasticity theory fails to apply. Rivlin (10]

discusses same cases which might be regarded as illustrating the possibility. Then, the

usual ideas of strain energy and stress require some modification, to fit some different

kind of theory. b

One can push the motion a bit further, to consider the possibility that F is not

constant, but piecewise constant. This seems reasonable, as long as the diameter of a set

on which F is constant is reasonably large, compared to atomic spacing. Roughly, this is

measured by the lengths of lattice vectors, selected to be a short as possible. In a

rather natural way, this leads to a notion of lattice-invariant shears, similar to that

used by metallurgists, in attempts to describe rather complex deformations encountered in

some martensitic transformations. The discussion by James [11] is likely to be more

accessible to thoe trained in mathematics or continuum mechanics.

Suppose that two neighboring parts undergo homogeneous deformations relative to some

homogeneous configuration, with deformation gradients F1 and F2 . We can define the

relative deformation gradient F by

2 "r 1 F (3.6)

what would be the deformation gradient if we took as a reference the obvious homogeneous

extrapolation of the first part. Picture some part of this reference as undergoing the

deformation corresponding to F, with the gradient having a finite discontinuity on a

plane with unit normal initially v, say. We assume that the displacement remains

continuous. The usual kinematical conditions of compatibility then imply that

F - I + aI V, (3.7)

where a is some constant vector, not the null vector. Actually, the same condition

obtains if we assem that the displacement has a constant jump discontinuity, as might be

associated with slip, one of the possibilities considered by metallurgists. Second, we

aseme that F is a restriction of a lattice invariant deformation. This is, if a. are

lattice vectors In the first region, we must have, for some element of G,

% J
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S- I + a a L J .  (3.8)

Here, a definite choice of aX might be dictated to be obtained from the original

reference set by applying F, using the Born rule. As an x-ray crystallographer would see

it, lattice vectors then remain continuous.

In particular, (3.5) now applies, giving

dot F -1 i<-> ** 0 (3.9)
4|

Thus, V has the form comonly associated with a simple shearing deformation, making it

natural to call these lattices-invariant shears. ome metallurgists seem to use the term to

include such things as martensitLc twinning, involving a discontinuity in lattice vectors

which is quite apparent from x-ray observations. According to theories of elasticity,

invariant in the manner indicated, it Is not automatic that stresses in such twins will be

the saew, although one will be unstressed if the other is. Common analyses of these employ

a relation which is similar to, but different from (3.8). Sam special features of

equilibrium under sero stress are discussed by James (113. Similar considerations apply to

cases where the Cauchy stress reduces to an hydrostatic pressure.

Particular examples can be defined by

pal a a,, F&2 m nal + a 2 , a3 va3 (3.10)

where n is any integer, a. ay liAerly independent vectors, considered as lattice

vectors. fore, solving for r gives

1 + n I 8 a
2 • (3.11)

Here, we have

4 tna I al

(3.12)
V, - talg /1A:

Clearly, we here take

I Im= n : 0 ( (3.13)

0 0 1

which, being a unimodular matrix of integers, is in G. In a certain sense, all

" 7-



possibilities are of this kind. Suppose we have F, aX, and mO satisfying (3.1). we

can take any other element of G, say -, and define an equivalent *et of lattice

vectors axby

K - maJ .(3.14)

with

-P - P
FK X 'TL eLa P

-L P -- 1Q-
= mKmtl )pa Q I

-L.- (3.15)
KaL'

Rere, we have denoted in an obvious way the inverse of the group element used. Clearly,

represents an element of G, obtained from bapplying smlarity

transformation, selected as an arbitrary element of G. The allegation is that, given any

solution to the problem indicated, we can use such similarity transformations to reduce it

to the form described by (3.10)-(3.10).

To begin to establish this, solve (3.8) for m2, which gives

L - .L L (.6x K K(3.16)

where

Vx- VaK ,

6 *a (3.17)
L Lue

we have, using (3.2) and (3.9),

GLvL - **L 4 % V " 0 * (3.18)

Generally, ML and VK  won't be integers,but the mi must be. For any X * 0, we will

have

- GVK (3.1)

if

L - , my = (l/X)vl . (3.20)

By properly choosing )., we can arrange that the 0 L are all integers, the Krational

Ah--- -t5/ . r." . -.." -." . ... " - ." . ". "'. ".... -.. -- '. .. ,.. .. . . '

-**, .. , .... ...... ......... ...... .*. .. ... . .. ..,~ .. . ... . ... ...
. .. .. - . S .. .. , , . . . , - . . . .. . . . ..-.. ,.-,-.. . .

"'-": ' ' ,.,,,-% r o-. -. .. ,,, , ',% . . .. '... ,.. .. , .. . .. '" " - "- v', """* -



, A V

numbers. For example, if V1  0, take ) - 1/v 1 . In particular, we then know that the

quantities

a L L L  (3.21)

2
must be integers. Assuming this, if. say, 0 0 0, we know that

2
BUK1 (3.22)

must be integers, requiring the v to be rational numbers. One can say more about them,

but this will suffice. Similarity transformations of the type allowed will takeL L

8 8K +LU (3.23)

to elements of the same form, say

81 +EL
K K L + VK (3.24)

whore the R are linear functions of the B with integer coefficients, similarly
;K

related to P Thus the former will again be integers, the latter rationals. Also,

(3.16) implies that

OI,. . UK .0(3.25)

Starting with this information, it is straight forward to use an elementary theorem in

9.. number theory to construct algorithms for calculating the similarity transformations needed

,* to effect the indicated reduction, for the various possible cases.

CUMZ I t Two of the B K vanish.

By a possible transformation, renumbering lattice vectors, we can assume that

61 * 0, 62 , 3 = 0 ,(3.26)%

whence follows from (3.25) that

- 0 . (3.27)

Zf either 112 or 13 vanishes again renumber to get 113 - 0. We then know that

112 n

where n is some integer. This gives us (3.13). if 112113 0 0, we know that, for some

integers n 2 and n3 , we have

B1 112 w n 2 , (3.28)
, U3 w n3

If n is the greatest common divisor of theme integers, so that the integers

. .. . - .. -. -.. .. . . .... .... . .. .- - . .• . . . . .- ,,



p2  n n2/n, p3  n n3/n (3.29)

are relatively prime, it is an elementary theorem in number theory that there exist

integers q and r such that 1(

P2q "P3
r =

I.(3.30) ,'''

A possible transformation, described in terms of reciprocal lattice vectors, is then given

by

-2 2 + 3--. -
aa,a P2a +P 3a

-3 2 3 .
a ra + qa

which implies that a, a1  Thus,

+ a1 ( a  + i a ) '.

+ I na a + P3 (3.31)

giving us the reduction to (3.11).

CASE 2: One of the B vanishes.

-J 3As before, renumber to get 3 - 0. With m as the greatest common divisor of B1

2and B2, write

B1 . Mp 1, B2  up 2 (3.32)

now letting q and r be integers such that

plq - p 2 r - I . (3.33)

With the allowable change of lattice vectors given by

- -p 1  
2

, p a1 + pa 2 ,

a2 
= ra 1 + qa2 (3.34)

a 3  a3

we have

BK - m(p 1  2 - 3.5K = lpa 1 + pa 2 ) - ma 1  1.

-K-

or g2 _ 3 0. Applying to this the analysis described in CASE I then gives the desired

reduction.

%"
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Ix

CN 3sl h 6 are all non-lero.

Bere write

0 2 P, O2 3  uip3 , (3.36)

with p2  and p3  relatively prime, nov choosing integers q and r so that

p2q - p3r - 1 . (3.37)

The change of lattice vectors given by
a1 - a1 , 1

2 2a 2 apa2 + p(a3 (3.38)

S w ra2 +qa 3  J
then gives

a1 2 3a
la a 01 a + m(p a2 + p a3 )

a 0.; 1 , a -2 a, , (3.39)

reducing this to CASE 2.

To -un up, if e  and iL are, respectively, integers and rational numbers, (3.23)

defines an element of Q provided the numbers also satisfy (3.25) and the condition that*.-,

the products 0 *L be integers. With aX  taken as a possible selection of lattice

vectors, P, given by (3.8) defines one of the possible lattice-invariant shears. By

using the above algorithms, we can always find lattice vectors reducing any possible F to

the form (3.11). Said differently, V must be parallel to a possible reciprocal lattice

vector, a to one of the corresponding perpendicular lattice vectors, its magnitude being

limited by (3.12).

Rather obviously, such discontinuities give rise to discontinuities in lattice vectors

which agree with the Born rule, although the x-ray crystallographer would perceive lattice

vectors as constant throughout. Perhaps it only reflects my lack of ingenuity, but I find

it difficult to seriously consider anything more general than piecewise homogeneous

deformations, as a real ambiguity involved in relating the Born hypothesis to measurements

of lattice vectors. Of course, the metallurgist uses other clues, pondering how finite

crystals are seen to be shaped, fit together, etc. It is not entirely easy to sort out all

of the mathematical and mechanical ideas which might be involved in such considerations.

-11-
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4. PRACTXCI.

It is not so hard for the uninitiated to be misled by common descriptions of

configurations. In a certain temperature range, a monatomic crystal might adopt a

configuration sometimes described as a face-centered cubic. At other temperatures, it

might occur in the form described as body-centered cubic. Different phases of iron are of

these forms, for example. The words suggest picturing an homogeneous deformation of one

cube to another. Apart from a rather inconsequential translation and rotation, this could

only be a uniform dilation, all directions being stretched the same, a conformal mapping.

Ekperience contradicts this, and it is inconsistent with the Cauchy and Born hypotheses.

For the face-centered cubic, the words suggest a translation group generated by three

orthogonal vectors of equal lengthl forming edges of a cube, say b1 , b2 and b3.

Application of this translation group to one atom, located at the origin, would generate a

simple lattice,\a simple cubic configuration. To get the face centered variety, we add

identical atoms t three places, say

1/2 (b + 2) 1/2(b2 + b3) 
1/2 (b3 + b1) , (4.1)

applying the same translation group to these, to locate positions of remainder. Or,

equivalently, we place atoms at positions whose components, relative to this basis, are

either integers or half-integers.

In discussing deformations likely to occur in transitions of the kind mentioned,

metallurgists sometimes picture the configuration in a different way, as a body-centered

tetragonal. Here one introduces as translation vectors cx, given by

cl - 1/ (bi - b2 ) P

c2 .1/2 (bi + b2 ) , (4.2)

c 3 - b3

still orthogonal, with c1 and c2 , but not c3 of equal length, describing edges to the

tetragon. With the factors of 1/2occurring, the two sets are not related by G. From this

alone, it follows that not both can be lattice vectors. Application of the second group to

an atom at 1/d (b 1 + b2 ) generates most atomic positions. To get the rest, similarly

-12-



translate an atom whose position vector, relative to this point, Is1/2 (bi + b2 + b3 ) ,(4.3)

Another way of describing the same configuration is to introduce translation vectors

a, - 1A(bI - b2 ) - c,

a2 -1 (b1 + b2 ) - P2  ( (4.4)

a3 "t2(bi + b3 ) " '(c 1 + 02 + c 3 )

Applied to one atom, this generates the whole not, describing it as a simple lattice,

these a1 being one of the possible sets of lattice vectors. With the factors of 1/2

runing in (4.4), neither bX nor cX can be lattice vectors. In the jargon used by

Bricksen 1121, they are sub-lattice vectors. Generally sub-lattice vectors b1  are

related to lattice vectors by equations of the form .

bK - nL (4.5)

where the L are integers such that

detlanl * 0, 1, -1 , (4.6)

so the inverse transformation exists, with coefficients which are rational numbers, not all

integers. In at least some cam where the born hypothesis fails, a modification can

reasonably be applied, with lattice vectors replaced by suitably selected sub-lattice

vectors. Of course, this makes the hypothesis still more ambiguous.

for the body-centered cubic, we also introduce throe orthogonal vectors d4 of equal

length, like the previous br. fram an atom at the origin, this again generates a simple

cubic lattice. Add an atom at
t/(d 1 +*d 2  3 ) , (4.7)

and similarly translate it to complete the configuration. Again, this is a simple lattice,

with one set of lattice vectors a. being given by

I1 a al

- I2a2 - d2 , (4.)

a3  "(d 1 + d 3 ) ,

and, again, the d4 are sub-lattice vectors, but not lattice vectors. The descriptions as

face-or body-centered cubes have some merit, making rather obvious the ctystallographic

::"i ,-13-
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point groups appropriate for these. By a routine calculation, one can get this from the

simple lattice description. The body-centered tetragonal description suggests a different

point group, and it is less routine to correctly calculate the point group, using it, but

it makes it sealer to picture som relevant deformations. According to either the Cauchy

or the born hypothesis, which here agree, a possible homogeneous deformation taking the

face-conterod cubic to the body-centered cubic configuration is defined in terms of lattice

vectors described above by, as the deformation with gradient F such that

aKFa. (4.9)

Of course, one can superpose lattice-invariant deformations, as described earlier,

including use of lattice-invariant shears. on theoretical grounds, I see no easy way of

deciding that one of these is more likely to be observed than another, although one expects %

then to be separated by energy barriers. With (4.9), elementary calculations indicate that

one can picture the deformation as that taking the tetragon with edges cK to the cube

with edges 4K, a deformation which in clearly different from the uniform dilatation

mentioned at the beginning of this section. In the metallurgical literature, this is

called the Bain distortion or Bain deformation. some discussions of this such as that of

Nishlyama [S, p. 3391 mention experimental confirmation that this is the deformation which

occurs in at least some cases. pollowing this is a discussion of martensitic

transformations which involve much more complex patterns of deformation, with quite

different crystal configurations contacting each other. Certainly, it would be nice to

have better tools, to resolve such puzzles.

In this discussion, I glossed a point. Conceivably, the uniform dilatation and the

deformation given by (4.9) could both be consistent with the orn hypothesis. It is not

very hard to show that they can't, but I won't take space to elaborate this.
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