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THE CAUCHY AMD BOMM HYPOTHESES FOR CRYSTALS
J¢ L. Bricksen*
'. Iwmsoouctiom.
Commonly, molecular theories of crystal elasticity lean upon hypotheses introduced by
Cauchy [1=3) ér Born [4) to relate changes in atomic positions to macroscopic

deformation. Both men pictured the atoms as mass points. Briefly and roughly, Cauchy

.l s

assumed that atomic motion and gross motion are the same, where both are defined. 1later,
it was appreciated, in particular by Born, that, in a solid which appears to be at rest,
atoms still undergo vibratory (thermal) motions about equilibrium positions. Since such

things as x-ray observations average out such fluctuations, they can appear to be in good
~ h

gy

agreement with Cauchy's hypothesis. By these standards, Cauchy's hypothesis might or might
not describe deformations encountered in transitions observed in crystals. PFor purposes of
discussion, I will ignore such fluctuations. Born pointed out that, in some cases,

Cauchy's hypothesis is in trouble for a different reason, being inconsistent with certain

Py RN

conditions of equilibrium. As an alternative, he proposed that lattice vectors deform as

would material line elements, subject to the macroscopic deformation, the aforementioned

oquilibrium conditions being used to fix the finer details of atomic arrangement. In

[

¥ particular cases, this leads to deformations consistent with Cauchy's hypothesis.
Commonly, studies requiring such an hypothesis use ons of the two.
In trying to apply, or to decide whether either hypothesis is applicable to

deformations involved in phase transformations, one encounters ambiguities, complicating

the matter. Ny prisary purpose is to elaborate this.

“Department of Aerospsce Engineering and Mschanics and School of Mathesatics, University of
Minnesota, Minneapolis, MM 55453

Sartially sponsored by the United States Army under Contract Wo. DAAG29-80-C-0041. This
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2. THMER HYPOTHESES.

A classical definition of crystals pictures configurations of atoms, filling all of
space. To be crystal configurations, these must have a periodic structure, described by a
translation group, generated by three (constant) linearly independent vectors, a4, a;
and ajy. The idea is that any point must be carried to a physically indistinguishable

point by all translations of the form

K
nl‘ ’ (2.1)

where we use the susmation convention, and the nKX represent any set of integers. What is
sometimes left unsaid, but to be understood, is that this group is maximal; we don't skip
over any indistinguishable points. Por example, we commonly picture amorphous solids as
homogeneous, meaning that we have such a translation group for any choice of ay, but a
crystallographer would not include them. With this understanding, the ay are called
lattice vectors. less than maximal groups are sometimes encountered in practice, as will
become clear. Different sets of lattice vectors are equivalent, in the sense that they
generate the same translation group. Por two sets 4y and ;' to be equivalent, it is
necessary and sufficient that they be related by an equation of the form
=K, (2.2)

where the sf are any integers such that

det.1alt = 41, (2.3)
descridbing the equivalence as a representation of an infinite discrete group G, which
plays an important role in the classical theory of crystallographic groups. A monatomic
crystal may or may not occur as a so~called simple or Bravais lattice, doing .o' provided
application of the translation group to one atom gives the positions of all.

Of course, we observe bodies which are not infinite, but, finite. If a body, or some
macroscopic part of it, can reasonably be identified with a restriction of the ideal
infinite crystal, the part passes as a crystal. In the process, one exercises some
judgment about defects occurring in real crystals. One crystal might, after a phase
transition, exist as a number of crystals somehow joined together. It can be hard to know

just what part of the original configuration corresponds to a given part of the final, let
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alone decide exactly what deformation it experienced. Clearly, deciding which of an
identical set of atoms goes vhere involves some guesswork. As is discussed by Nighiyama
(S, Ch. 6), for example, metallurgists have had some limited success unravelling such
pussles. Mmong the ideas ugsed is Cauchy's. Actually, some bodies of interest consist of
parts which are not trus crystals, but strongly resemble them. For, say, cosmon carbon
s steels, the iron atoms can form a good simple lattice, but carbon atoms are distributed
rather randomly. For present purposes, such things might well be regarded as crystals.
In dealing with the ideal infinite configurations, it seems fairly natural to assume,
as Born did, that deformations taking one to another are homogeneous, the deformation
gradient P Dbeing constant. Here we assume that socme such configuration is taken as a
reference, with some definite choice of reference lattice vectors Ayx. The Born hypothesis
then reads
ag = FAy , (2.4)
the agx being a possible set of lattice vectors in the deformed crystal. Given Ay and

P, we clearly get just one of the infinitely possible choices of lattice vectors for the

deformed crystal, it being a matter of chance whether these are the same lattice vectors

Y SR

. which an x-ray orystallographer would select. Clearly, (2.4) describes a linear

transformation so, in particular, for any element of G, we have

wpay = r(sfry) , (2.5)

from which one can see that the validity of the Born hypothesis does not really depend upon

e g W

a special choice of the reference lattice vectors. PFor a simple lattice deforming to a
simple lattice, (2.4) rather suggests, as many would assume, that the atom originally at
n‘l‘ moves to n‘lg, ignoring a trivial translation. 1If so, it is consistent with
Cauchy's hypothesis. Conversely, it is not hard to show that an homogeneous deformation
taking a simple lattice to another will, if it is consistent with Cauchy's hypothesis,
satisfy (2.4), for some choice of lattice vectors. Similar agreement occurs in some other
cases, not in others. Of course, in itself, (2.4) says nothing about the fate of
individual atoms, only about the periodicity of sets which they form. Thus, some

assumptions are added, in making such comparison.
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It seems pretty clear that (2.4) fails to apply to some of the kinds of continuous or
second~order transformations considered by lLandau (6], who did not discuss F or the
equivalent, avoiding the need for accepting any particular hypothesis about it. Briefly
and roughly, atomic positions are assumed to shift in a continuous way with pressure and
tewperature, but there can be, say, a sudden doubling in length of a lattice vector. MNore
precisely, no matter how we select lattice vectors, at least one experiences a siseable
discontinuity. To see that this is possible one need only appreciate that the precise
periodicity can be changed considerably, by infinitesimsl shifts in positions of some
atoms. BHerxe, (2.4) would require P to suffer an unbelievably large discontinuity.
Cauchy's hypothesis seems much more reasonable, on the face of it. 7o accept it, one must
argue that the macroscopic P can vary somevhat over distances of the ocvder of a few
atomic spacings, which induces some gqueasiness.

The latter type of difficulty becomes still more gevere in so—called shuffle
transformations. Here, lattice vectors, chosean in an obvious way, remain Zixed. 8o does
P, as observations are interpreted. This is consistent ‘with (2.4), 90 Born's hypothesis
can be considered to apply. However, some atoms in a unit cell undergo finite
displacements, to sysmetry-related positions. Certainly, it does not seem very reasonable
to consider that Csuchy'’s hypothesis is applicable to such cases.

While these hypothesis have their faults, they deserve ssrious consideration, so we
should clearly understand just what they imply. In part, this is complicated by
ambiguities inherent in either. We now focus on some associated with the Born hypothesis,

there being rather similar kinds associated with Cauchy's.
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3. LATTICE-INVARIANT DEPORMATIONS.

Bven when the Born rule applies, with F constant, the previous discussion makes
clear that measurements of lattice vectors alone do not suffice to determine P
uniquely. Said differently, infinitely many homogeneous deformations, which I call
lattice-invariant deformations, take the ideal infinite crystal onto itself, in a manner
consistent with the Born rule.

Consider any crystal configuration as a reference, and take any possible set of
lattice vectors ay &s a reference set. From (2.2) and (2.4), we see that F can
reasonably be considered to describe a lattice-invariant deforsmation provided there is some
element of the group G such that

Pay = *‘L . (3.1)
Mathematically, such P merely form a different representation of G or, if you like, a
conjugate group. Introducing the dual basis aX, the so-called reciprocal lattice
vectors, such that
L

a s -6:, a‘..‘-i,

we can solve (3.1) for P, obtaining

!-{%.at.

Commonly, F {s understood to be orientation preserving, so

det r>0, (3.4)
Assuming this, we are restricted to the subgroup of G whose elements have positive
determinant and, using (2.3), we find that (3.3) implies that

det 7 =1, (3.5)
8ince such deformations take the infinite crystal to an indistinguishable configuration,
superposing a lattice-invariant deformation on any deformation should leave invariant such

things as elastic strain energy functions or associated Cauchy stress tensors, at least as

T

I and some others see it. Molecular theory of elasticity seems to support shis 7iew. When

Nishiyama (5, p. 339) argues that the Bain deformation is most reasonable because it has

3
aPe¥as

the smallest strain energy, he seems to espouse a contrary view. Given this and other
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similar statements in the metallurgical literature, it seems unfair to claim that the
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assertion is comsonly accepted. Parry (7-8] and Pitteri [9) present analyses helpful in
constructing constitutive equations exhibiting the aforementioned invariance. Of course,
Born's hypothesis might hold in cases where elasticity theory fails to apply. Rivlin (10]
discusses some cases which might be regarded as illustrating the possibility. Then, the
usual ideas of strain energy and stress require some modification, to fit some different
kind of theory.

One can push the motion a bit further, to consider the possibility that F is not
constant, but piecewise constant. This seems reasonable, as long as the diameter of a set
on which P is constant is reasonably large, compared to atomic spacing. Roughly, this is
measured by the lengths of lattice vectors, selected to be a short as possible. In a
rather natural way, this leads to a notion of lattice-invariant shears, similar to that
used by metallurgists, in attempts to describe rather complex deformations encountered in
some martensitic transformations. The discussion by James {11] is likely to be more
accessible to those trained in mathematics or continuum mechanics.

Suppose that two neighboring parts undergo homogeneous deformations relative to some

homogeneous configuration, with deformation gradients F; and F,. We can define the

relative deformation gradient F by
P, =rPy, (3.6)

what would be the deformation gradient if we took as a reference the obvious homogeneous
extrapolation of the first part. Picture some part of this reference as undergoing the
deformation corresponding to PF, with the gradient having a finite discontinuity on a
plane with unit normal initially v, say. We assume that the displacement remains
continuougs. The usual kinematical conditions of compatibility then imply that

r=1+a8v, (3.7)
where G {s some constant vector, not the null vector. Actually, the same condition
obtains if we assume that the displacement has a constant jump discontinuity, as might be
associated with slip, one of the possibilities considered by metallurgists. Second, we
assume that F is a restriction of a lattice invariant deformation. This is, if ay are

lattice vectors in the first region, we must have, for some element of G,
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E.(‘} Bere, a definite choice of ag might be dictated to be obtained from the original

reference set by applying P, using the Born rule. As an x-ray crystallographer would see
- it, lattice vectors then remain continuous.
In particular, (3.5) now applies, giving
* det F = 1 (==) gev =0 , (3.9)
Thus, P has the form commonly associated with a simple shearing deformation, making it
natural to call these lattice-invariant shears. Some metallurgists seem to use the term to
include such things as martensitic twinning, involving a Aiscontinuity in lattice vectors
which is quite apparent from x—ray observations. According to theories of elasticity,
invariant in the manner indicated, it is not automatic that stresses in such twins will be
the same, although one will be unstressed if the other is. Common analyses of these employ
a relation which is similar to, but different from (3.8). Some special features of
equilibrium under sero stress are discussed by James [11]). Similar considerations apply to
cases vhere the Cauchy stress reduces to an hydrostatic pressure.
Particular examples can be defined by
Pay = aq, Pagy = nay + a3, Faz=az., (3.10)
where n is any integer, ax any linearly independent vectors, considered as lattice
vectors. Here, solving for F gives
P=14+n, @ a?.

Here, we have
2
Q= h\.,la i,
v = ta2/1a%1

Clearly, we here take

y

:_’; L 1 0 o
_:.;-, "l'- n 1 o0,
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which, being & unimodular matrix of integers, is in G. 1In a certain sense, all
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possibilities are of this kind. Suppose we have F, &y, and u%, satisfying (3.1). We
can take any other element of G, say i:, and define an equivalent set of lattice

vectors ;! by

.

:’;‘ﬁ i - it‘:. . (3.14) ’
‘;:-* with

Pay = mFa, = mema

‘,‘.4 - Eﬁ:{(i")gig .

l;é] - ﬁ:'L . (3.15)

.

Here, we have denoted in an obvious way the inverse of the group element used. Clearly,

Py
-
>

% represents an slement of G, obtained from nt by applying a similarity

P AR

Y transformation, selected as an arbitrary element of G. The allegation is that, given any
)
ik solution to the problem indicated, we can use such similarity transformations to reduce it
.. to the form described by (3.10)~(3.10).
T
v‘ To begin to establish this, solve (3.8) for ll:, which gives
3 L _aL, U
" n GK +a Ve o (3.16)
P
where
W
o : "K = “..x ’ .
A
§ (3.17)
.‘;:’ a!' = c-al' .
bt
We have, using (3.2) and (3.9),
.’é atv, = aca® M avegw=0. (3.18)
? Generally, a" and v‘ won't be integers,but the n: must be. For any ) # 0, we will
% ,,}‘
"M have
o L &
) [ W = vx (3.19)
30 it
5
»", L
% 8 = aa®, e = (AN, . (3.20)
:, By properly choosing ), we can arrange that the 8Y are all integers, the U rational
i7n
{2’ .
K "
A




i
.

‘-..
o d' -

i %

WVIRN

numbers. For example, if v, #0, take )\ = 1/\»1. In particular, we then know that the

quantities

L
av, = BLu1 = BL (3.21)

must be integers. Assuming this, if, say, 32 # 0, we know that

2

8 vy (3.22)
must be integers, requiring the u‘ to be rational numbers. One can say more about them,

but this will suffice. Similarity transformations of the type allowed will take

N R (3.23)
to elements of the same form, say
L
LR R ¥ (3.24)
where the ll‘ are linear functions of the Bx with integer coefficients, 'Tx similarly

related to u!. Thus the former will again be integers, the latter rationals. Also,
(3.18) implies that

K - trd

=BG =0 (3.25)
Starting with this information, it is straight forward to use an elementary theorem in
number theory to comstruct algorithms for calculating the similarity transformations needed

to effect the indicated reduction, for the various possible cases.

CASE 1: Two of the 8° vanish.

By a possible transformation, renumbering lattice vectors, we can assume that
8'#0,82=83=0, (3.26)
vhence follows from (3.25) that
Uy, =0, (3.27)
If either U, or p, vanishes again renumber to get by = 0. We then know that
B‘Il2 =q,
where n 1is some integer. This gives us (3.13), 1If [P ¢ 0, we know that, for some
integers ny and ny, we have
8%, =, , (3.28)
S‘u, =n, ,

If n is the greatest common divisor of these integers, so that the integers

-9
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p, = n2/n, Py = n3/n (3.29)
are relatively prime, it is an elementary theorem in number theory that there exist

integers q and r such that

Pq ~p3r = 1. (3.30)
A possible transformation, described in terms of reciprocal lattice vectors, is then given
by )

-1

a = a

-2 2 3
a = pza + p3a A

3 2 3
a =ra +ga ,

which implies that 31 = a,. Thus,

e

F=14%+ f!'a1 ] (uza2 + u3a3) '

LENA BN

.
1
P

- 2 3
=1 + na, ] (pza + p,a ) ., (3.31)

P

=1+na, 0a’,

1

giving us the reduction to (3.11).

a

.
.,

CASE 2: One of the BX vanishes. o
As before, renumber to get B3 = 0. With m as the greatest common divisor of B' ;:
.._:.‘
and 82, write e
e
8! = mp!, 82 = mp?, (3.32) !
now letting g and r be integers such that ‘ 1
plq - pr =1, (3.33) _J
e
Tuly
With the allowable change of lattice vectors given by aday
- 1 2 RCY
a1tpa1+pa2' --_.'_-,
a, =ra + qa, ., (3.34) ._]
- e
a, = a
3 3’ va J
we have
gFa_ = n(p‘a + pza ) = ma (3.35)
% 1 2 1
K=
=g .K I}

or Bz = 33 = 0. Applying to this the analysis described in CASE I then gives the desired

reduction.
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-~
t CASE 3: The 8% are all non-gero.
A
> Here write
°
: 82 = mp?, 8% =, (3.36)
: N with pz and p3 relatively prime, now choosing integers q and r so that
3 pPa - pr=1. (3.37)
:-":f ' ‘ The change of lattice vectors given by
4y =a,
a, = ps, + play . (3.38)

;3 - ra, + q8,

o' then gives

‘z B‘a‘ - O‘a + l(pzlz + psaa)

N -8's + ma, - BN (3.39)
Nj reducing this to CASE 2.

N To sum up, if B‘ and un sre, respectively, integers and rational numbers, (3.23)
:: defines an element of G provided the numbers also satisfy (3.25) and the condition that
o

::‘ the products qub be integers. With ay taken as a possible selection of lattice

3 'H - vectors, P, given by (3.8) defines one of the possible lattice-invariant shears. By

) using the above algoritims, we can always £ind lattice vectors reducing any possible F to
:, . the form (3.11). 8Said differently, VvV must be parallel to a possible reciprocal lattice
’.3 vector, & to one of the corresponding perpendicular lattice vectors, its magnitude being
w limited by (3.12).

A Rather obviously, such discontinuities give rise to discontinuities in lattice vectors
: which agree with the Born rule, although the x~ray crystallographer would perceive lattice

vectors as constant throughout. Perhaps it only reflects my lack of ingenuity, but I find

i ¥

4

it 4difficult to seriously consider anything more general than piecewise homogenecus

"y deformations, as a real ambiguity involved in relating the Born hypothesis to measurements
)]
. ’ of lattice vectors. Of course, the metallurgist uses other clues, pondering how finite
&
.'?o; crystals are ssen to be shaped, fit together, etc. It is not entirely easy to sort out all
- of the mathematical and mechanical ideas which might be involved in such considerations.
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4. PRACTICE.

It is not so hard for the uninitiated to be misled by common descriptions of
configurations. In a certain temperature range, a monatomic crystal might adopt a
configuration sometimes described as a face-centered cubic. At other temperatures, it
might occur in the form described as body-centered cubic. Different phases of iron are of
these forms, for example. The words suggest picturing an homogeneous deformation of one
cube to another. Apart from a rather inconsequential translation and rotation, this could
only be a uniform dilation, all directions being stretched the same, a conformal mapping.
Experience contradicts this, and it is inconsistent with the Cauchy and Born hypotheses.

Por the face-centered cubic, the words suggest a translation group generated by three
orthogonal vectors of equal length; forming edges of a cube, say by, b, and b:’
Application of this translation group to one atom, located at the origin, would generate a
simple latticc,\f simple cubic configuration. To get the face centered variety, we add
identical atoms kt three places, say

Y (by + by), Yoiby + by), YRiby + by, (4.1)
applying the same translation group to these, to locate positions of remainder. Or,
equivalently, we place atoms at positions whose components, relative to this basis, are
either integers or half-integers.

In discussing deformations likely to occur in transitions of the kind mentioned,
metallurgists sometimes picture the configuration in a different way, as a body-centered
tetragonal. Here one introduces as translation vectors cyx, given by

cy =Yo (b, - by)

c; =% (by + by) , (4.2)

c3 = by,
still orthogonal, with cy and c;, but not c3 of equal length, describing edges to the
tetragon. With the factors of 5 occurring, the two sets are not related by G. From this
alone, it follows that not both can be lattice vectors. Application of the second group to

an atom at Uﬁ(b, + by) generates most atomic positions. To get the rest, similarly

-12-
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translate an atom whose position vector, relative to this point, is
B (by + by + by) . (4.3)
Another way of describing the same configuration is to introduce translation vectors
ag=%(by - By) = ¢, ,
ay =%y +p)=c,, (4.4)
a3 =Ya(by + b3) =Vh(cq + oy +cy) ,
Applied to one atom, this generates the whole set, describing it as a simple lattice,
these ay being one of the possible sets of lattice vectors. With the factors of 9&
running in (4.4), neither by nor cy can be lattice vectors. In the jargon used by
Bricksen (12], they are sub-lattice vectors. Generally sub-lattice vectors by are
related to lattice vectors by equations of the form
by = nia, . (4.5)
wvhere the n{' are integers such that
d.tln:l $0, 1, -1, (4.6)
80 the inverse transformation exists, with coefficients which are rational numbers, not all
integers. In at least some cases where the Born hypothesis fails, a modification can
reasonably be applied, with lattice vectors replaced by suitably selected sub~lattice
vectors. Of course, this makes the hypothesis still more ambiguous.

Por the body-centered cubic, we also introduce three orthogonal vectors dy of equal
length, like the previous byg. From an atom at the origin, this again generates a simple
cubic lattice. Ad4d an atom at

Biay + 4 + 8y , (4.7)
and similarly translate it to complete the configuration. Again, this is a simple lattice,
with one set of lattice vectors ;‘ being given by

l,'d‘,

‘2 - dz * (4.8)
- -1
.3 4(41*62"43)1
and, again, the dy are sub~lattice vectors, but not lattice vectors. The descriptions as

face-or body-centered cubes have some merit, making rather obvious the crystallographic
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i point groups appropriate for these. By a routine calculation, one can get this from the

* simple lattice description. The body-centered tetragonal description suggests a different
point group, and it is less routine to correctly calculate the point group, using it, but

;; it makes it easier to picture some relevant deformations. According to sither the Cauchy

&

;;i or the Born hypothesis, which here agree, a possible homogeneous deformation taking the

§ face-centered cubic to the body-centered cubic configuration is defined in terms of lattice

. vectors described above by, as the deformation with gradient F such that

o a =r (4.9)

o - . .

4 " Fx

o)

Of course, one can superpose lattice~invariant deformations, as described earlier,

PO

including use of lattice~invsriant shears. On theoretical grounds, I see no easy way of

% deciding that one of these is more likely to be observed than another, although one expects

v}: them to be separated by energy barriers. With (4.9), elementary calculations indicate that

,{; one can picture the deformation as that taking the tetragon with edges cp to the cube

v with edges d‘. a deformation which is clearly different from the uniform dilatation
mentioned at the beginning of this section. In the metallurgical literature, this is
called the Bain distortion or Bain deformation. Some discussions of this such as that of

b Wishiyama (5, p. 339) mention experimental confirmation that this is the deformation which

. occurs in at least some cases. PFollowing this is & discussion of martensitic

g' transformations which involve much more complex patterns of deformation, with quite

’é different crystal configurations contacting each other. Certainly, it would be nice to

{':’ have better tools, to resolve such puszzles.

i3 In this discussion, I glossed a point. Conceivably, the uniform dilatation and the

;. deformation given by (4.9) could both be consistent with the Born hypothesis. It is not

2: very hard to show that they can't, but I won't take space to elaborate this.
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